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Summary 

Flight test engineering is an interdisciplinary science that gathers flight-test data 

and develops methods with the objective of evaluating an aircraft or an airborne system 

in its operational flight environment. The need for flight testing emanates as a 

necessary effort that complements ground-based verification activities such as wind-

tunnel testing, simulators and computational modelling. Flight testing is a broad field   

that involves many disciplines. Performance flight testing is one discipline that is 

responsible of providing answers to questions like: How high can the aircraft fly? How 

fast can it fly? How much power does the aircraft need in order to sustain specific 

flight conditions of gross-weight, altitude and ambient air temperature? Or How long 

can the aircraft remain airborne before it runs out of gas (or electric power)? A 

profound data base for the performance of any type of aircraft is essential for their 

safe and efficient operation.  

This thesis focuses on performance flight-testing methods for conventionally-

configured helicopters, i.e., those that employ a single main rotor to generate lift and 

thrust, and a single tail rotor to counter-act the torque effect of the main rotor. More 

specifically, the scope of this research was limited to gas-turbine available power testing 

and power required for out of ground effect (OGE) hover and power required for 

level-flight (AKA cruise flight). The research was limited to the execution of up to ten 

flight test sorties on two types of helicopters; the Bell Jet-Ranger and the MBB BO-

105 helicopters, both normally used for training at the National Test Pilot School 

(NTPS) in Mojave, California.   

 The goal of this thesis is to develop new and improved flight-test methods to 

rectify existing problems associated with the conventional methods. The conventional 

method for the maximum available power of a gas-turbine relies on three independent, 

single-variable polynomials that often yield poor prediction accuracy that sometimes 

even defy basic engineering concepts. The conventional method for OGE hover 

performance is overly simplified and neglects important blade non-linear effects. This 

results in inaccurate empirical models for hover performance representation. The 



xx 

conventional flight-test method for level-flight performance incorporates several 

drawbacks which not only make the execution of flight-test sorties inefficient and time 

consuming, but also compromise the level of accuracy achieved. This conventional 

level-flight method fails to specifically address non-linear effects such as blade-tip 

compressibility and drag-divergence that often results in inaccurate predictions, 

especially at high altitude and low air temperature conditions.  

The research intended to develop new flight-test methods for the available power 

of a gas-turbine engine and for the power required for hover and level-flight. Both new 

methods are based on multivariable polynomial approach. The research was initiated 

with the development of a new method for the maximum available power of a gas-

turbine engine. A novel method, referred to as the ‘Multivariable Polynomial 

Optimization under Constraints’ (MPOC), was developed. This method seeks for a 

third order multivariable polynomial to describe the engine output power as a function 

of the other three variables of the engine (compressor speed, temperature and fuel-

flow). The maximum available engine power is realized by solving an optimization 

problem of maximization under constraints. For this optimization, the Karush-Khun-

Tucker (KTT) method was used successfully. For the exemplary BO-105, the standard 

deviation of the output power estimation error was reduced from 13 hp (conventional 

method) to only 4.3 hp by using the proposed method. Expanding the flight-test data 

base to include seven different engines reveals that the multivariable polynomials 

approach of the proposed method performed much better with all seven engines, as 

compared to the conventional single-variable approach. The maximum average 

prediction error was only 0.2% as compared to a maximum average prediction error 

of 1.15%, yielded by the conventional method.  

The research effort conducted for the OGE hover performance was concluded 

successfully with the development of the novel “Corrected Variables Screening using 

Dimensionality Reduction” (CVSDR) method for hover performance. This novel 

method combines fundamental dimensional analysis to generate a list of candidate 

corrected-variables (CVs) to represent the hover performance problem, then screens 

for the most essential ones by means of dimensionality reduction, implemented by 
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singular-value-decomposition (SVD). This phase of the research was executed with 

four sorties on the Bell Jet-Ranger helicopter and produced a total of five conclusions. 

The most significant conclusion was that power predictions of the CVSDR method 

were 1.9 times more accurate than the conventional method. At the 95% confidence 

level, the CVSDR method deviated by an average of only 0.9 hp (0.3% of the maximum 

continuous power of the example helicopter) from the actual power required to hover, 

whereas power predictions from the conventional method deviated by an average of 

1.7 hp. 

The final phase of the research concentrated on developing a new flight-test 

method for the level-flight regime. This effort spanned over five distinct sorties using 

the BO-105 helicopter. Similar concepts used for the hover performance testing were 

expanded and adapted for level-flight performance flight testing. The CVSDR method 

for level flight performance can be regarded (abstractly) as an expansion of the CVSDR 

method for OGE hover into a higher dimensional space.  This phase of the research 

was aimed at addressing five research questions and yielded ten conclusions. The top 

three conclusions were that (1) the power predictions accuracy achieved using the 

CVSDR method for level-flight was nearly 21% better (on average and at the 95% 

confidence level), as compared to the prediction accuracy yielded from the 

conventional method. (2) the CVSDR method made planning and execution of flight-

test sorties more efficient and time conserving. It is estimated to reduce flight-time for 

data gathering by at-least 60%, and (3) the CVSDR method is not restricted by the 

high-speed approximation, hence is also appropriate for the low-airspeed regime, and 

can potentially bridge the empirical modelling gap between the hover and level-flight 

regimes.  

The novel flight-test methods developed within this research (the MPOC for the 

available power of a gas-turbine engine and the CVSDR for OGE hover and level-

flight performance) are recommended to be used by the helicopter flight-testing 

community, as they were shown to increase accuracy and promote execution 

efficiency.    



xxii 

This thesis produced six recommendations concerning possible future expansion 

of the work already done during the current research. These include an expansion of 

the CVSDR method into more areas of performance testing like vertical and forward 

flight climb, partial power and unpowered descent, etc. Another continued research 

recommendation relates to the applicability and efficiency of the CVSDR method to 

relevant vertical-lift aircraft that combine both RW and FW characteristics. It is also 

recommended that continued research look into the potential and feasibility of 

employing the CVSDR method for empirical modelling used by Health and Usage 

Monitoring Systems (HUMS) installed in helicopters.  
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If you are in trouble, an airplane can fly over and drop flowers, 

but a helicopter can land and save your life. 

    Igor Ivanovich Sikorsky 

 

1 INTRODUCTION 

1.1 BACKGROUND AND RELEVANCE 

light test engineering is an interdisciplinary science that gathers flight-test data 

and develops methods with the objective of evaluating an aircraft or a system in 

its operational flight environment. The need for flight-testing means that the system 

or the vehicle under testing requires accurate and efficient assessment of its 

characteristics and performance while operating in its flight environment, rather than 

just relying on the results of ground-based verification methods such as wind tunnels, 

simulators, and software models [1]. There are many disciplines involved in flight 

testing based on the nature of the questions in search. Such ones include, for example, 

performance assessment, structural integrity testing, stability, and handling-qualities 

evaluation, etc. Performance flight-testing is an expensive activity that requires efficient 

and accurate methods for determining the aircraft performance in its certified flight 

envelope and under a wide range of atmospheric conditions. Such methods involve 

careful considerations regarding testing techniques and flight-test data analysis.  

Accurate performance prediction of any aircraft is essential for a safe and 

efficient operation of the air-vehicle. Knowing, in advance and with high level of 

confidence, the answers to questions like “how high can the aircraft fly under specific 

atmospheric conditions and gross weights? How fast can the aircraft fly? How long 

can the aircraft remain airborne before it runs out of gas?” etc., are essential for 

ensuring safety of flight and mission compliance. Although aircraft manufacturers 

provide early-stage aircraft performance predictions, those are normally based on 

F 
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practical engineering simplifications and assumptions. Performance validation through 

an expensive and lengthy phase of flight-testing is inevitable.   

Conducting a performance flight-test campaign is not limited to new aircraft 

programs. Performance flight-testing programs are also required during the life cycle 

of an aircraft. It is common-practice for aircraft operators to design and implement 

modifications that alter the aerial-vehicle baseline performance. These modifications 

can be limited in scope or even a full-scale upgrade programmes, initiated by either 

economic, political, or operational reasons. The helicopter is no exception in this 

regard. This type of ‘low and slow’ aircraft requires efficient and accurate performance 

flight-testing methods, either to be used by the manufacturers, or by the common 

operator (civilian or military) for post productions modifications and upgrades. 

Moreover, the limited flight envelope of the helicopter, as compared to the fixed-wing 

airplane, gives its operators the confidence and motivation to implement post-

production structural modifications that warrant limited-scope performance flight-test 

campaign [2-6].  

The performance charts and tables published by the helicopter manufacturers are 

based on a certain available power level. As explained in Subsection 1.2.1 hereinafter, 

the maximum available power out of the engine(s) deteriorates as the engine(s) matures 

and accumulates an increasing number of working hours. For this reason, the 

published performance of the helicopter is based on the minimum allowed level of the 

available power, i.e., just when it is time for the engine(s) to be overhauled. It is 

common for borderline missions to evaluate the feasibility of a specific helicopter to 

execute the specific challenging mission. For this, the operator needs to execute ad-

hoc performance flight testing using the specific helicopter in order to conclude about 

mission performance compliance. Accurate and efficient performance flight testing 

methods are of high relevance for helicopter operators who wish to know the precise 

performance of their particular helicopter.   
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1.2 HELICOPTER PERFORMANCE 

One might wonder what does ‘helicopter performance’ exactly mean? According 

to Cambridge dictionary, performance is defined as: “how well a person, machine, etc. 

does a piece of work or an activity”. The Collins dictionary defines someone’s or 

something’s performance as: “how successful they are or how well they do something”. 

According to Meriam-Webster dictionary: “PERFORM implies action that follows 

established patterns or procedures or fulfils agreed-upon requirements and often 

connotes special skill”. The previous section has already alluded that ‘helicopter 

performance’ has something to do with answering questions like how high can the 

helicopter fly? How heavy can it hover? How long can it stay airborne? etc. The FAA 

[7] defines aircraft performance as: “a term which is used to describe the ability of an 

aircraft to accomplish certain things that make it useful for certain purposes”. It 

continues and provides examples like the ability to carry heavy loads or to fly at high 

altitudes. Definitely, not a sharp and elegant definition for aircraft performance. Prouty 

[8] also struggles with this performance definition and provides the following 

explanation instead; helicopter performance analysis is made to answer the questions: 

How high? How fast? How far? How long? The results of the analysis may be used in 

design trade-off studies, in a pilot’s handbook, in a set of military standard aircraft 

characteristics charts, or in a sales brochure. Another explanation for helicopter 

performance is provided by Gessow & Myers (1967) [9]: “The precise estimation of 

helicopter performance depends on an accurate determination of the thrust produced 

and the power required by the rotor in those conditions” (p. 66). Leishman (2006) [10] 

explains the term ‘helicopter performance’ in the introduction to the performance 

chapter as: “the estimation of the installed engine power required for a given flight 

condition, determination of maximum level flight speed, evaluation of the ceiling (in 

and out of ground effect), or the estimation of the endurance or range of the 

helicopter”.  

The previous definitions and explanations for helicopter performance draw a clear 

distinction between two parts of this term. One is the amount of power available for 

use by the helicopter. The other is the amount of power required to sustain any 
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specific flight condition. These two parts constitute the term helicopter performance 

for flight-testing. The power available is provided by the power-plant installed in the 

helicopter. This power-plant can be based on a single-engine or on a multi-engine 

configuration. The power required is the amount of power needed to maintain the 

helicopter under a specific flight and ambient conditions. The power available and 

power required are independent of each other and can be visualized as the two hands 

of a scale, the performance scale. As long as the amount of power generated by the 

power plant is equal to or larger than the power required for the specific flight 

conditions, the performance of the mission is feasible.   

1.2.1 Available Power   

Commercial and military helicopters are powered by mainly two types of engines: 

reciprocating (piston) engines and gas-turbine (GT) engines. In recent years, few 

programs were conducted to demonstrate and study the feasibility of use of electric 

engines in helicopters. The Firefly program introduced by Sikorsky innovations in 2010 

is a good example to these types of technology demonstration programs [11]. Although 

some progress was made with the idea of electric propulsion of helicopters, there is 

still a way to go before electric propulsion turns into a common way to power 

helicopters for all their types of missions. The use of gas-turbine engines is far more 

popular than the use of reciprocating engine in helicopters. The superior ratio of power 

to weight of the gas-turbine engine, makes it a better choice when it comes to medium 

to large types of helicopters. For small size and light helicopters, the piston engine 

might be considered. According to Moon and Yakovlev [12] in 2018 the gas-turbine 

engine helicopters accounted for 69.1% of all in-operation helicopters worldwide. This 

unrivalled popularity of the gas-turbine engine, as the preferred propulsion system for 

helicopters, motivates development of efficient flight-testing methods that facilitate 

accurate prediction of installed gas-turbine output power under a wide range of 

atmospheric conditions.  
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Although all engine manufacturers measure their engine performance (‘bench 

testing’) and provide charts that describe the engine output power under various 

ambient conditions (‘engine deck’), there is still a necessity for flight-testing methods 

to measure the actual installed gas-turbine engines output power. The following are 

two main reasons to support this necessity and provide motivation to develop new 

methods for gas-turbine engine performance flight testing:  

1) The performance of a gas-turbine engine once installed in any type of a 

helicopter, is different from its performance measured by the engine manufacturer on 

a test-bench. Each helicopter type imposes specific levels of degradation in engine 

output power as compared to the same exact engine, uninstalled original performance. 

This is referred-to as the engine installation loss. According to Prouty [8], there are 

various contributors to this degradation in the output power of an installed engine, as 

compared to its performance outside of a helicopter. One of them is the engine inlet 

structure element. The purpose of the inlet on any type of aircraft is to slow-down the 

air flow prior it enters the engine. This deceleration process in the inlet involves loss 

in total pressure due to friction and increase in static temperature, due to exhaust re-

ingestion [13,14] and installation of various heat-exchange devices. The alteration of 

the thermodynamic properties of the air enters the engine are a cause for up to 5% of 

power installation loss. In addition to power loss associated with inlets, many 

helicopters are fitted with ‘particle-separator’ systems designed to protect the gas-

turbine engine by filtering the air before it gets into the engine. Taslim and Spring 

(2010) [15] show that ‘particle-separator’ systems reduce the available power by 3% to 

10%. Another system installed on military helicopters and is responsible to high power 

loss (3-15%) is the infrared suppressor designed to protect the helicopter against IR 

missiles by lowering the IR signature generated by the engine(s) exhaust [16,17]. Finally 

for installation loss, is the power drained from the engine(s) via compressor bleed, for 

the benefit of particular helicopter on-board systems operation. This type of power 

loss can reach up to 20%. The engine performance as provided by the engine 

manufacturer, is not sufficient for the task of total helicopter performance 

determination. Explicit flight-testing of an installed engine output power is mandatory 
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for the total performance determination of any specific type of helicopter and even for 

the determination of engine installation-loss themselves. 

2) The gas-turbine engine performance as published by the engine manufacturer 

represents a new gas-turbine engine. This is referred-to as a specification (‘spec’) engine 

or a ‘commercial off-the-shelf’ (COTS) engine. Any gas-turbine engine is ensured to 

deliver, as a minimum, the ‘spec’ engine performance. It is common for gas-turbine 

engine manufacturers to provide new engines with even better performance than the 

‘spec’ engine. As the engine accumulates flight hours and matures, its performance 

degrades. This is the natural aging process of the gas-turbine engine. Once the engine 

performance reaches a well-defined, minimum level of performance it is taken-off 

from the helicopter and sent for overhaul. This minimum level of performance 

delivered by the engine is frequently defined as the ‘reject-line’ of the engine. This 

aging process of the engine is illustrated in Fig. 1.1. In this figure the available power 

which is the engine output power is represented as a function of the various engine 

parameters. The helicopter operator must know at any given phase of the gas-turbine 

life cycle the actual performance the engine possesses, and more importantly the 

margin of power it maintains above the minimum acceptable power (the reject-line). 

For this reason, the helicopter operator needs an explicit flight-testing method for the 

evaluation of the installed gas-turbine engine output power at any given phase of the 

life cycle of the engine; either newly installed in the helicopter or just prior for it to be 

retired and sent for overhaul.   
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Figure 1.1. Gas-Turbine engine aging process. The engine performance drops once 

installed in a helicopter. As the engine accumulates flight-hours its performance decreases until it 

meets the reject line and is taken-off the helicopter to be overhauled.  

1.2.2 Power Required 

As previously stated, the power required is the amount of power needed to 

maintain the aircraft under specific flight and ambient conditions. The power required 

is independent of the available power, although the two are often evaluated 

simultaneously in flight-test campaigns. It is common practice within the flight-testing 

community to break down the power required envelope into the following disciplines 

[18-21]:   

1) Hover performance, in and out of ground effect (HIGE/HOGE, respectively); 

2) Vertical climb and decent performance; 

3) Level flight performance; and   

4)  Forward flight climb and descent performance. 
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As stated in the subsequent Section 1.5 (Research Goals and Objectives), the current 

research is limited to only two performance disciplines out of the helicopter power 

required. These are the hover out of ground effect (HOGE) and the level flight, also 

known as ‘cruise flight’. For this reason, only these two-helicopter power required 

subjects are discussed hereinafter.     

1.2.2.1 Hover Performance  

Igor Sikorsky, the legendary helicopter developer, was once asked by an 

anonymous scientist, a friend of his, when will the helicopter go faster than an airplane? 

In a documented interview Igor Sikorsky replied that it will never go faster than an 

airplane, but the helicopter will be able to do ‘number of jobs no other airplane will be 

able to do’, referring mainly to the remarkable ability of the helicopter to stabilize in a 

long-term hover. Indeed, the most distinguishing characteristic of a helicopter as stated 

by Leishman (2006) [22] and by Gessow and Myers (1967) [23] is its ability to steadily 

hover at any phase of its mission, given it has a sufficient power margin. Knowing the 

power required to hover throughout all mission phases is crucial for any helicopter 

flight crew.  

For a conventional helicopter, i.e., one which employs a single main-rotor and 

a single anti-torque tail-rotor, the entire lift force in the hover is generated by the single 

main rotor. The set of main-rotor blades, referred to as rotary-wings, generate the lift 

required to hold the helicopter airborne. The main rotor is the helicopter major power 

consumer in a hover. The actual percentage of power it consumes changes in between 

types of helicopters and for a given type of helicopter it varies based on the gross 

weight, external configuration, and atmospheric conditions, but the ‘golden-rule’ for 

this power consumption percentage is about 85% [19,20,24]. The remaining ~15% of 

the hovering power is dissipated by the tail-rotor (5-10%), various accessory drives and 

transmission loss. Typical values of helicopter transmission loss at nominal rotor speed 

can be learnt from Lewicki and Coy (1987) [25] and Coy et al. (1988) [26]. The 

mechanical efficiency of a Black Hawk helicopter transmission at full power (2,828 
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hp.) was measured between 97.3% and 97.5% (depends on the lubricant oil inlet 

temperature). For the lower power rated transmission of the OH-58C helicopter 

(317hp.) measured transmission loss were between 1.2% and 1.7%.  This relative 

portion of the total power consumed by the main rotor is known as the mechanical 

efficiency of the helicopter, denoted as (ηm). Since the main rotor is responsible for 

about 85% of the total power required in a hover, much attention is given by helicopter 

manufacturers for its blades design. Moreover, since the main rotor is the most 

significant power consumer in a hover, it dictates the conventional flight-test method 

for hover performance, as initially presented in Subsection 1.3.2 and thoroughly 

discussed in Chapter 2 of the thesis.  

1.2.2.2 Level Flight Performance  

The helicopter does not exhibit superior capabilities over other types of aircraft 

when it comes to level-flight (‘cruise flight’). Nevertheless, a typical helicopter spends 

most of its flying time in the level-flight regime. The relative time while cruising varies 

based upon the type and the specific mission the helicopter was designed for. 

Porterfield and Alexander (1970) [44] analysed data from various types of helicopters 

and proclaimed that, on average, the helicopter spends 71% of its flight-time in level-

flight. The FAA (2008) [45] provides different estimates for two exemplary gas-turbine 

helicopters. The first example is a utility business type which is estimated to spend 

61% of its flight time while cruising, and the second example is for a transport 

helicopter which is estimated to spend 73% of its flight time in level-flight. Regardless 

of where this value for relative time spent in level-flight truly resides, the helicopter 

spends most of its airborne time while cruising. This observation makes the evaluation 

of level-flight performance utterly important in any new or modified helicopter 

performance flight-test campaign. 

The power consumed by a conventional helicopter in level-flight is composed 

out of three major components as illustrated in Fig. 1.2. These power components are 

the induced power, the profile power and the parasite (or parasitic) power. The first 
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two power terms are familiar from the hover domain, although their relative 

magnitudes significantly change from the hover, based upon the airspeed of the 

helicopter. The induced power, which is required for the creation of thrust, drops 

rapidly with the increase of airspeed. From constituting about 85% of the power 

required for hover, the induced power can drop to about only 10% of the total power 

required for level flight at a maximum allowed cruising airspeed of a conventional 

helicopter. The profile power, required to overcome the viscous effects between the 

blades and the air, increases with airspeed and even becomes the dominant power 

component, over a certain airspeed section. The parasite power component is due to 

fuselage drag and it increases rapidly with airspeed (cubic relationship). The parasite 

power is typically the dominant power component for a cruising helicopter at a high 

airspeed. The general behaviour of the power required for level flight has the shape of 

a ‘bathtub’, i.e., it decreases with airspeed increase until it gets to a minimum power 

level (referred-to as the ‘bucket’), then the power level increases with airspeed, as it is 

dominated by the parasite and profile power components.  

Figure 1.2. Power curve of a conventional helicopter in level flight. The power required 

in level flight comprises of three main components (induced, profile and parasite). The total 

power in level flight decreases with airspeed increase until it gets to a minimum (‘bucket’). 

Past the bucket airspeed, the power required for level flight increases with airspeed increase.  

A more comprehensive discussion about the power required for a conventional 

helicopter in level-flight is presented in Chapter 2, Helicopter Performance Theory 

and Conventional Testing Methods.  
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Following this brief introduction to the relevant aspects of helicopter 

performance, a short introduction to the applicable conventional performance flight 

testing is presented.  

1.3 CONVENTIONAL METHODS FOR 

PERFORMANCE FLIGHT TESTING 

The fundamental question troubling the helicopter performance flight-testers 

has always been how should the performance of the helicopter be tested? This broad 

question can be further narrowed down to the following set of specific questions; at 

which particular weights should the performance be measured? Under which 

combinations of atmospheric conditions? Is it possible to standardize the 

measurements obtained? Can the performance measurements in a specific flight be 

used to predict the performance under different flight conditions? These types of 

questions, which are essentials in performance flight-testing, can be addressed by using 

tools of dimensional analysis and the Buckingham PI theorem [66] which is commonly 

regarded as the fundamental theorem of dimensional analysis [67]. Evans [67] also 

claims that the Buckingham PI theorem is not widely known and that its full generality 

has not been exploited. 

According to the Buckingham PI theorem, any physically meaningful problem 

with numerous dimensional parameters involved, can be reduced to a lesser number 

of significant non-dimensional parameters, based on the dimensions involved. The 

Buckingham PI theorem is used in many walks of science and engineering [68-73]. 

Zohuri [74] concludes its Chapter 1 by stating that many engineering problems are too 

complex to find a mathematically closed form of solution for them. In such cases, a 

type of analysis, which involves the dimensions of the quantities entering the problem 

may be useful.  

The Buckingham PI theorem is no stranger to aerodynamics problems. In fact, 

this theorem can be used to justify the projection of conclusions from wind-tunnel 
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tests, performed using reduced size models, onto the actual true-size aircraft. The 

Buckingham PI theorem can also be used to justify the importance of the Reynolds 

number in flow dynamics study, or the importance affect the Mach number has on 

flight performance. Using dimensional analysis in flight-testing allows to collect data 

under specific atmospheric and flight conditions and to project the data to particular 

conditions of choice (interpolation and extrapolations). As a ground rule, the flight 

testers try to refrain, as much as possible, from carrying-out extreme extrapolations to 

their measured data. Breaking new grounds for the operators is the motto of the flight-

testers. Interpolation of flight-test data, on the other hand, is always blessed. The 

competency of dimensional analysis to reduce the number of affecting variables and 

to support interpolation and extrapolation of data, has made it a popular tool in 

performance flight testing. By applying dimensional analysis tools, the flight-tester can 

answer all performance questions raised above and at the same time, significantly 

reduce the number of flight-test sorties required to quantify the performance of an 

aircraft throughout its flight-envelope.  

1.3.1 Available Power Flight-Test Method 

The current method widely used within the flight-test community for determining 

the available power any gas-turbine helicopter possess is based on the single-variable 

analysis [18-21]. According to this method, all four engine performance variables 

(output power, compressor speed, turbine gas-temperature and fuel-flow), 

accompanied with their corresponding atmospheric conditions, are recorded during 

steady engine operation conditions. For this, the helicopter is flown throughout its 

certified flight-envelope and under diverse atmospheric conditions.  

Once a substantial database is gathered, it is analysed with the goal of evaluating 

the maximum power the engine is able to produce under various atmospheric 

conditions. This procedure is carried-out in two phases, the first (Phase I) is to generate 

a convenient mathematical model describing the dependency of the engine output 

power with all other engine performance variables (typically a third order polynomial). 
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Phase I can be regarded as uncovering and defining (mathematically) the specific 

engine ‘rules of operation’. The second phase (Phase II) uses the ‘rules of operation’ 

to derive the maximum output power of the engine under a wide range of atmospheric 

conditions, and for the various engine power ratings i.e., the maximum continuous 

power, the maximum 5-minute take-off rating power, etc.  

This conventional flight test method for the available power of a gas-turbine 

engine (GTE) is further discussed and demonstrated in Chapters 2 and 3 of this thesis. 

The deficiencies associated with this flight-test method originated the first question of 

this research (RQ1), as presented in Subsection 1.4.1. A comprehensive discussion 

about the deficiencies of this conventional method is presented in Chapter 3 of the 

thesis.  

1.3.2 Hover Performance Flight Testing 

The objective of hover performance flight-testing is to provide a detailed map of 

the actual power required to sustain the specific type of helicopter at a hover (either in 

or out of ground effect, IGE/OGE) for all certified gross-weights, external 

configurations, main-rotor angular speeds and the surrounding atmospheric 

conditions of air temperature, pressure, and density. This performance ‘map’ is 

traditionally presented in a format of a graph, or a set of synchronized graphs and 

plots. For this objective, the hover performance flight-tester task is to measure the 

actual power required for hover throughout the flight envelope. Since it is impractical 

to hover the helicopter in each combination of gross-weight, main-rotor angular speed, 

atmospheric conditions of pressure altitude and temperature, the flight tester applies 

means of dimension analysis, as previously discussed in the introduction of this Section 

(1.3). Applying means of dimensional analysis allows the flight-tester to reduce the 

number of planned flight test sorties to an achievable and practical number, and at the 

same time to provide a detailed performance map that covers the entire certified flight 

envelope of the aircraft.    
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The conventional, widely used, flight-test method for hover performance is 

derived from the non-dimensional form of the mathematical relationship that 

describes the power required for the main-rotor of a hovering helicopter. Since the 

main-rotor is the principal power consumer in a conventional helicopter hover (about 

85%), it justifies enforcement of the main-rotor power model onto the helicopter as 

a whole. The flight-test team is required to regress a mathematical model which relates 

between the power required for hover and the variables of gross-weights, main-rotor 

angular speeds and atmospheric ambient conditions (pressure, temperature and 

density). This empirical hovering model retrieved from flight-testing is then used, 

analytically, to create the detailed performance map mentioned above. This is the 

estimated power required to hover at any certified gross-weight and main-rotor speed, 

and under any combination of atmospheric conditions. 

The conventional flight-testing method for hover performance is further 

discussed and demonstrated in Chapters 2 and 5 of this thesis. The deficiencies 

associated with this flight-test method originated the second question of this research 

(RQ2), as presented in Subsection 1.4.2.  A comprehensive discussion about the 

deficiencies of this conventional hover performance flight-test method is presented in 

Chapter 5 of this thesis.       

1.3.3 Level Flight Performance Flight 

Testing 

The objective of level-flight performance flight testing is to provide a detailed map 

of the actual power required to maintain the specific type of helicopter at a level flight 

conditions, for all certified gross-weights, external configurations, main-rotor angular 

speed range and the surrounding atmospheric conditions of air temperature, pressure, 

and density. This performance ‘map’ is traditionally presented in a format of a graph, 

or a set of synchronized graphs and plots. Moreover, cross-referencing the power 

required in level flight to the fuel-consumption data base, as evaluated during the 

available power flight-testing phase (described in Subsections 1.2.1 and 1.3.1 above), 
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enables to define the helicopter ‘best-effort’ airspeeds, such as airspeed for maximum 

range and for maximum endurance. Similarly to the available-power and hover 

performance flight-testing, the conventional method for level-flight performance flight 

testing makes use of dimensional analysis concepts in order to reduce significantly the 

number of planned flight test sorties.  

The conventional flight-test method for level-flight performance of a 

conventional helicopter is thoroughly discussed in the literature [8, 10, 18, 49, 76] and 

demonstrated in numerous flight test reports [6,77,78]. At its core, this flight-test 

method seeks for various discrete empirical relationships (for several non-dimensional 

gross-weights referred-to as coefficient of weight) between the non-dimensional forms 

of power (coefficient of power) and airspeed (advance ratio). For this, the flight-tester 

is required to perform many ‘speed-runs’ while maintaining the coefficient-of-weight 

at a constant value, a requirement that imposes execution difficulties, and is responsible 

to one of the method deficiencies. The acquired set of empirical models is then used, 

analytically, to predict the level flight performance of the tested helicopter at any 

certified gross-weight and main-rotor speed, and under any combination of 

atmospheric conditions. 

The conventional flight-testing method for level-flight performance is further 

discussed and demonstrated in Chapters 2 and 6 of this thesis. The deficiencies 

associated with this flight-test method originated five research questions (RQ3, RQ4, 

RQ5, RQ6 and RQ7), as presented in Subsection 1.4.3. A comprehensive discussion 

about these deficiencies of the conventional method for level-flight performance 

flight-testing is presented in Chapter 6 of this thesis 

1.4 PROBLEM STATEMENT 

The conventional flight-testing method for the evaluation of conventional 

helicopter power available and power required for OGE hover and level-flight were 

briefly presented in the preceding Section 1.3. A comprehensive discussion and 
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thorough demonstration of these methods, accompanied with authentic flight-test data 

to highlight deficiencies, is presented in the subsequent Chapters 2, 3, 5 and 6 of this 

thesis. This section lists seven deficiencies associated with the conventional 

performance flight-testing method. These seven deficiencies constitute the problem 

statement (PS’s) of this thesis, and derive the corresponding seven research questions 

(RQ’s) this thesis attempts to address.    

1.4.1 Available Power   

The conventional method which is briefly described in Subsection 1.3.1 and 

thoroughly demonstrated in Chapter 2 (Subsection 2.3.1) relies on the intrinsic 

assumption of complete independency between all three limiting parameters of engine 

output power (compressor speed, turbine gas temperature and fuel-flow). This 

conventional method uses three independent, single-variable, empirical polynomials 

for the purpose of predicting the maximum available power of the installed engine, 

under a wide range of atmospheric conditions and engine power ratings (Eq.(2.34), 

(2.35) and (2.36)). The available power predictions are frequently inaccurate and can 

even contradict basic engineering rules. An example for this inaccuracy and 

fundamental rules contradiction is provided in Chapter 3, Subsection 3.3.2. The poor 

prediction performance of the conventional method can be mainly attributed to over 

simplification of the gas-turbine engine output power, as a linear combination of 

single-variable functions instead of the more realistic engineering problem it is, a 

multivariable type of a problem. Power prediction based on the simplistic single-

variable approach fails to reveal the complex internal relationship between the power 

limiting parameters of the engine, i.e., the compressor speed, the gas-turbine 

temperature and the engine fuel-flow.  

A designated BO-105 helicopter example presented and analysed in Chapter 3 

demonstrates the deficiency of this conventional single-variable method. This BO-105 

flight test sortie yielded a physically impossible behaviour that predicts a temperature-

limited engine to produce more power under a higher ambient-air temperature. 
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Moreover, the power prediction errors using the three single-variable polynomials 

(Eq.(2.34), (2.35) and (2.36)) are substantial and should be reduced (standard deviation 

of 13hp, which is about 4% of the engine maximum continuous power).  

PS1: The current flight-test method for the available power of gas turbine 

helicopters is based on a simplistic single-variable approach (instead of a 

multivariable approach) that often results in unacceptable power-prediction 

errors and physically unrealistic available power modelling.  

RQ1: Can a novel flight-test method be developed for the available power of a 

gas-turbine helicopter, which demonstrates enhanced power prediction 

accuracy as compared to the conventional method?  

1.4.2 Power Required for OGE Hover   

The conventional flight-test method for OGE hover performance is based on the 

combined blade-element momentum theory (BEMT). This method is briefly described 

in Subsection 1.3.2 and thoroughly demonstrated in Chapter 2 (Subsection 2.3.2), with 

the supporting theory presented in Section 2.1. This flight-testing method seeks to find 

an overly simplified empirical model to relate between two non-dimensional variables. 

These are the coefficient-of-power (CP) and coefficient-of-weight (CW) as expressed by 

Eq.(2.41). The current method fails to explicitly address significant non-linear effects 

such as blades’ compressibility issues and power increase due-to drag-divergence. 

These non-linear effects are more common for helicopters operating at high-

altitude/low air temperature conditions. Any non-linear effects measured during hover 

performance flight-test sorties, are being averaged into one simplistic empirical model, 

instead of being handled specifically and exclusively for their effects.  

PS2: The conventional flight-test method for OGE hover performance is overly 

simplified and does not account for rotor-blades non-linear effects. This 

conventional flight-test method often yields empirical models that fail to 
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accurately and consistently predict the total power required to hover, under a 

wide range of helicopter gross-weights and atmospheric conditions.  

RQ2: Can a novel flight-test method for OGE hover performance of a 

conventional helicopter, which demonstrates enhanced prediction accuracy as 

compared to the conventional OGE hover method, be developed? 

1.4.3 Power Required for Level Flight   

The conventional flight-test method for helicopter level-flight performance is 

based on a simplified equation that describes the power required to sustain a helicopter 

in level-flight (Eq.(2.44)). This flight-test method is briefly described in Subsection 

1.3.3 and thoroughly demonstrated in Chapter 2 (Subsection 2.3.3), with the 

supporting theory presented in Section 2.2. Although widely used and being taught in 

test-pilot schools around the world, this method incorporates several drawbacks which 

not only make the execution of flight-test sorties inefficient and time consuming, but 

also compromises the level of accuracy achieved. The following is a list of the five 

deficiencies associated with the current level-flight performance flight-test method. 

This list constitutes five problem statements (PS’s) that derive five corresponding 

research questions (RQ’s):   

PS3: The conventional flight-test method for level-flight performance fails to 

specifically address non-linear effects such as blade-tip compressibility and 

drag-divergence. This often results in inaccurate predictions for the power 

required for level-flight, especially at high altitude and low air temperature 

conditions.  

RQ3: Can a novel flight-test method be developed for level-flight performance 

of a conventional helicopter, which accounts for non-linear effects and 

demonstrates enhanced prediction accuracy as compared to the current level-

flight method?   
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PS4: The conventional flight-test method for level-flight performance entails 

the executions of ‘speed-runs’ at constant coefficients-of-weights (Cw). This 

makes the method inefficient, cumbersome, and time-consuming. Moreover, 

the resulting empirical model is prone to elevated levels of inaccuracy since it 

is merely a set of single power curves for constant coefficients-of-weight, rather 

than a unified empirical model that accounts for the entire range of coefficients-

of-weights. 

RQ4: Can a novel flight-test method for level-flight performance, which is more 

convenient, efficient and time-saving than the current one, and produces a 

unified empirical model for a range of coefficient-of-weights, be developed?  

PS5: The conventional flight-test method for level-flight performance is based 

on Glauert’s high-speed approximation, hence making it irrelevant for the low-

airspeed regime. The current flight-test method ignores the airspeed regime 

from the hover to about 40 kts. (depending on the particular helicopter type and 

configuration).  

RQ5: Can a novel flight-test method for helicopter level-flight performance, that 

also includes the low-airspeed regime, be developed? 

PS6: The conventional flight-test method for level-flight performance of a 

conventional helicopter incorporates no analytical means to account for the 

helicopter centre-of-gravity location.  

RQ6: Can a novel flight-test method for helicopter level-flight performance, 

which includes analytical means to account for the centre-of-gravity location, 

be developed? 

PS7: The conventional flight-test method for level-flight performance requires 

the flight-test crew to precisely adjust the main-rotor speed during the test. This 

requisite makes the method unsuitable for types of helicopter that do not allow 

for a trivial main-rotor speed manipulation by the flight-test crew.   
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RQ7: Can a novel flight-test method for helicopter level-flight performance, 

which does not require adjustment of the main-rotor speed, be developed? 

1.5 RESEARCH GOALS AND OBJECTIVES 

The general objective of this research is to develop new and improved flight 

test methods for the available and required power of a conventional helicopter. This 

general objective is further reduced to form the following set of particular and concise 

objectives, as imposed by the limitations and the scope of the research.  

(1) Develop an enhanced flight-test method to evaluate the available power of a gas-

turbine engine installed in a conventional helicopter. The proposed available-power 

method shall present an improved prediction accuracy, as compared to the current 

flight-test method. The proposed method shall rectify the identified deficiencies of the 

current method (PS1), as specified by RQ1 in Subsection 1.4.1 above. The proposed 

method shall demonstrate an improved prediction accuracy, as compared to the 

current flight-test method.  

(2) Develop an original flight-test method to evaluate the power required for OGE 

hover of a conventional helicopter. The proposed OGE hover performance method 

shall address and rectify the identified deficiencies of the current method (PS2), as 

specified by RQ2 in Subsection 1.4.2 above. The proposed method shall demonstrate 

an improved prediction accuracy, as compared to the current flight-test method.  

(3) Develop an original flight-test method for the level-flight performance of a 

conventional helicopter. The proposed level-flight performance method shall address 

and rectify the identified deficiencies of the current method (PS3, PS4, PS5, PS6 and 

PS7), as specified by RQ3, RQ4, RQ5, RQ6 and RQ7 in Subsection 1.4.3 above. The 

proposed method shall demonstrate an improved prediction accuracy, as compared to 

the current flight-test method.    



1.6   |   RESEARCH  L IMITATIONS AND SCOPE  

21 

1.6 RESEARCH LIMITATIONS AND SCOPE  

The research is limited to gas-turbine engine powered conventional type of 

helicopters, i.e., those which employ a single main-rotor to generate lift and thrust and 

a single tail-rotor to counter act the torque effect of the main-rotor. Other types of 

helicopters that employ a different arrangement of rotors is not covered by this 

research. The research required planning and execution of flight-test sorties to enable 

comparison between the conventional and the proposed flight-test methods. 

Dedicated flight-test sorties were limited to only two types of helicopters, the Bell Jet-

Ranger (Fig. 1.3) and the MBB (Messerschmitt-Bölkow-Blohm) BO-105 (Fig. 1.4), 

normally used for training at the National Test Pilot School (NTPS) in Mojave, 

California (https:\\www.ntps.edu). The comparison drawn between the proposed and 

the current flight-test methods is mainly based on flight-test data gathered from these 

two helicopters. A more detailed description of these two specially instrumented 

helicopters used for the research is presented in Appendix C. - Research Helicopters 

Description.    

The scope of the research was limited to the execution of ten flight-test sorties, 

one single sortie for the available-power, four sorties for the hover performance and 

five sorties for level-flight performance flight-testing. The research sorties were 

launched from one single geographic location (Mojave) and were conducted under the 

prevailing atmospheric conditions. These research constraints restricted the varying 

range of essential parameters affecting helicopter performance, such as ambient air 

temperature, pressure altitude, centre of gravity location, etc.  

The performance flight-test methods that were developed within this research 

are valid and applicable for any type of a conventional gas-turbine powered helicopter, 

configured with a single main rotor and a single tail rotor.       
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Figure 1.3. The Bell-Jet Ranger helicopter used for the research. Photo courtesy 

of the National Test Pilot School.  

    

Figure 1.4. The MBB BO-105 helicopter used for the research. Photo courtesy 

of the National Test Pilot School. 
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1.7 METHODS ACCURACY COMPARISON  

The main goal and objective of this thesis, as defined in Section 1.5 above, is 

to develop new, more accurate performance flight-test methods, as compared to the 

current conventional flight-test method. This section presents the procedure by which 

the prediction accuracy achieved by each method, is evaluated and compared.  

For the available power method (Chapter 3), the same flight-test data of 34 

stabilized engine points are used to establish the empirical models for the engine 

output power. First, using the conventional single-variable approach then by using the 

proposed multivariable approach. Power estimation errors result from each method 

are then compared for a trivial comparison. The more challenging task of the available 

power testing is the estimation of engine maximum available power under various day 

conditions. The maximum available power (continuous rating) of the helicopter is 

estimated for various atmospheric conditions using each method. The physical 

legitimacy of the two estimated maximum continuous power, under a wide range of 

atmospheric conditions is then compared. 

The prediction accuracy attained by each method for the required power 

(Chapters 5, 6) is based on establishing an empirical model by using only a part of the 

flight-test data. The empirical model is then used to predict the helicopter required 

power under the conditions of the remaining flight-test data base, the data not used 

for the empirical model. Power estimation errors arise from each method are 

compared (literally), and by using hypothesis testing are projected from the particular 

measured case to the general case.  For the OGE hover performance method (Chapter 

5) an empirical model based on the first three sorties is used to predict the hover 

performance of Sortie 4. For the level-flight performance method (Chapter 6) a more 

elaborated comparison scheme, in two tiers, is executed. The first tier is using flight-

test data from each sortie to predict the helicopter performance under conditions of 

the other three sorties (referred to as the single-sortie approach). The second layer of 

comparison is accomplished by predicting the helicopter performance in each one of 

the four sorties by using an empirical model based on data taken from the other three 
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sorties. This second-tier comparison scheme is referred to as the cluster of sorties 

approach.  

1.8 THESIS OUTLINE 

The thesis is structured into seven chapters in order to answer the seven 

research questions (RQ1 to RQ7 as specified in Section 1.4 above). This process of 

addressing the seven RQ’s is illustrated in Fig. 1.5 and clarified hereinafter. In this 

Chapter 1 (Introduction) the reader is briefly introduced to helicopter performance 

theory and the relevant conventional flight-testing methods and their embedded 

deficiencies. This preliminary description of the relevant helicopter performance and 

the associated flight-testing methods is merely sufficient to allow the reader 

understanding the major goals and objectives of this research.  

Chapter 2 (Helicopter Performance Theory and Conventional Testing 

Methods) provides a thorough discussion augmented with examples of the relevant 

helicopter performance and the associated conventional flight-test methods. This 

Chapter 2 serves as the literature review for the thesis and is crucial for a full 

understanding of the succeeding chapters that propose an original and improved flight-

test method to address embedded deficiencies with the conventional flight-test 

methods. The substantial portion of this research effort is presented in Chapters 3 

through 6. Chapter 7 concludes the thesis by providing summary remarks, reiterate the 

fulfilment of all research goals and objectives and offering recommendations for 

further research. The following is a short description of each chapter (3 through 7) and 

its role in the big scheme of the thesis: 

Chapter 3 - A Multivariable Approach in Gas-Turbine Engine Flight-Testing. 

This chapter presents an improved flight-test method for the evaluation of the 

available power of installed gas-turbine engines in helicopters. The method called 

‘Multivariable Polynomial Optimization under Constraints’ (MPOC) is demonstrated 

using flight-test data from a BO-105 helicopter and exhibits a better prediction 
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capability, as compared to the conventional flight-test method for the available power. 

Chapter 2 addresses research goal (1) of Section 1.5 and answers RQ1, as defined in 

Subsection 1.4.1.   

Chapter 4 - A Singular Values Approach in Helicopter Flight-Testing Analysis. 

This chapter intends to further address research goal (1) of Section 1.5 by elaborating 

on the process of choosing between empirical models. More specifically, it deals with    

empirical multivariable polynomials that best represents the available power of a gas-

turbine engine. This chapter is intended to complement the MPOC method presented 

and demonstrated in Chapter 3, and to provide the flight-test team a systematic and 

repeatable methodology to choose in-between various empirical models for the task 

of flight-test data representation. The proposed approach is based on the singular-

value-decomposition (SVD) concept and is demonstrated by using gas-turbine engine 

flight-test data gathered from a variety of seven helicopters. One of the several 

conclusions of this chapter is that although the SVD approach is demonstrated for 

gas-turbine engine performance, it can and should be used for any type of helicopter 

performance flight-testing analysis where empirical models are evaluated. The method 

developed and presented in this chapter for gas-turbine engine performance, 

undertakes an essential role in the development of new flight-test methods for the 

hover and level-flight performance, as presented in Chapter 5 and Chapter 6 

accordingly.  

Chapter 5 – Hover Performance Flight-Testing Using Dimensionality 

Reduction Approach. This chapter presents an improved flight-test method for the 

evaluation of the power required to hover OGE. The method is based on concepts of 

dimensional-analysis and dimensionality-reduction to construct an effective and 

accurate empirical model for the OGE hover performance. The proposed method 

called Corrected Variables Screening using Dimensionality Reduction (CVSDR) is 

demonstrated using flight-test data from an instrumented Bell Jet-Ranger helicopter. 

The CVSDR method displays a better prediction accuracy, as compared to the 

conventional flight test method. Chapter 4 addresses research goal (2) of Section 1.5 

and answers RQ2 as defined in Subsection 1.4.2.   
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Chapter 6 - Level Flight Performance Flight-Testing Using Dimensionality 

Reduction Approach. This chapter presents an improved flight-test method for the 

evaluation of the power required for level-flight. The method is based on similar 

concepts used for the improved CVSDR hover flight-test method (Chapter 5) but 

takes it further to higher dimensional space. The proposed CVSDR flight-test method 

for level flight performance is demonstrated using flight-test data from an 

instrumented MBB BO-105 helicopter. The proposed method is proved more accurate 

and more efficient as compared to the conventional flight-test method for level-flight. 

Chapter 6 addresses research goal (3) of Section 1.5 and answers RQ3, RQ4, RQ5, 

RQ6 and RQ7 as defined in Subsection 1.4.3.  

Chapter 7 – Conclusions and Recommendations. The last chapter of the thesis 

opens with a conceptual discussion about the difference between the two flight testing 

approaches, that of the conventional methods and that of the proposed methods. 

Next, a concise list of 22 main conclusions drawn from the research is presented in 

the context of the research goals and objectives. The chapter ends with few 

recommendations about how this research can be further expanded.   
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Figure 1.5. Thesis outline illustration. This flow-chart illustrates the structure of the thesis, 

how the various chapters are interrelated and serve for answering all research questions (RQ’s).  

1.9 THESIS PUBLICATIONS  
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Part G: Journal of Aerospace Engineering, Vol. 223, No. 3, March 2019. 

https://doi.org/10.1177/0954410017741329 

(2) Arush, I., & Pavel, M.D. (2018). “Flight testing and analysis of gas turbine engine 

performance: A multivariable approach.” In C. Hermans (Ed.), Proceedings of the 

44th European Rotorcraft Forum: Delft, The Netherlands, September 2018. 

Chapter 4 is based on the following paper: 

(3) Arush I, Pavel M.D; and Mulder M. “A Singular Values Approach in Helicopter 

Gas Turbine Engines Flight Testing Analysis.” Proceedings of the Institution of 

Mechanical Engineers, Part G: Journal of Aerospace Engineering 234, no. 12 (2020): 

1851–65. https://doi.org/10.1177/0954410020920060. 

Chapter 5 is based on the following paper: 
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Society 67, no. 3 (2022): 129–41. https://doi.org/10.4050/JAHS.67.032010 

Chapter 6 is based on the following paper: 
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The more you know, the more you know you don’t know. 

Aristotle  

2 HELICOPTER PERFORMANCE 

THEORY & CONVENTIONAL 

TESTING METHODS 

his chapter elaborates on the relevant two disciplines of the helicopter power 

required for hover and level-flight. The performance theory is demonstrated 

using arbitrary helicopter types, making the abstract concepts more practical for the 

reader to grasp. Once a sound foundation for the hover and the level-flight 

performance has been laid down, the conventional flight-testing methods are 

presented and illustrated by using authentic flight-test data.    

2.1 HOVER PERFORMANCE 

The power consumed by the main-rotor (PM/R) of a hovering conventional 

helicopter is comprised out of two main terms as presented in Eq.(2.1). The 

relationship given by Eq. (2.1) involves the helicopter gross-weight (W), the ambient 

air density (ρa), the main-rotor disk area (Ad), the main-rotor blade zero-lift drag 

coefficient (Cd0), the main-rotor radius (R), the main-rotor angular velocity (Ω) and a 

non-dimensional term (σR), defined as the ‘solidity-ratio’ of the main-rotor disk. As 

implied by its name, the solidity ratio describes how solid is the rotor disk, i.e., the 

relative disk area that is occupied by the blades. The first term of Eq.(2.1) is referred-

T 
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to as the induced-power (or the ideal-power) and was derived from the momentum 

concept. This term which represents the amount of power required to generate lift (or 

thrust) is comprised from the product of thrust (T), equals the helicopter weight (W) 

in a hover, and the uniform induced velocity (Vih) across the disk (Eq.(2.2)). The 

expression for the constant induced velocity across the disk is based on linear-

momentum conservation concept, first presented by Rankine in use of marine 

propellers in 1865 [27], later refined by Froude in 1878 [28] and generalized by Glauert 

in 1935 for aeronautical applications [29]. A detailed derivation of the uniform induced 

velocity through the hovering main-rotor disk (Eq. (2.2)) was presented by Prouty [33].  
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The second term in Eq. (2.1) is referred-to as the profile power and it 

represents the amount of power required to overcome the viscous effects between the 

main-rotor blades and the surrounding air. This second term is based on principles of 

blade element theory (BET). One should recognise that Eq. (2.1) relies on few 

simplifications such as a uniform induced-velocity distribution across the main-rotor 

disk, a constant zero-lift drag coefficient (Cd0) and a constant chord length ( c ) along 

the main-rotor blades.  

Figure 2.1 (a) illustrates a hovering rotor-blade with a constant chord and 

length of R, rotating at a constant angular velocity (Ω). An arbitrary blade element 

distanced ‘r’ from the centre-of-rotation is subjected to a tangential velocity equals 

(Ωr), and an induced velocity (Vih) which is assumed, for this preliminary approach, 

constant across the hovering disk.  
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Figure 2.1. The main-rotor blade in a hover flight. The blade is subjected to a tangential 

velocity due to its rotation. The aerodynamic forces acting on each blade-element are integrated 

and used to estimate the induced and profile power required by the rotor disk at a hover. 
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In hover, the aerodynamic forces acting on this blade element are illustrated in 

Fig. 2.1 (b), (c) and are calculated as per the fundamental lift and drag terms for 

incompressible flow (Eq.(2.3)).  

The power required to overcome the profile-drag is defined as the profile 

power and can be estimated by the mechanical work done by this profile-drag force 

per unit of time. This becomes a simple multiplication between the elementary profile-

drag force (dD) and the tangential velocity as expressed in Eq. (2.4). Integrating along 

the span of a single blade (from zero to the blade length, R) yields the profile power 

of a single blade. The profile power for the whole rotor (Eq. (2.5)) is attained by 

multiplying the single-blade profile power by the number of blades (b) resulting in the 

profile power term presented in Eq.(2.1). Note that Eq.(2.5) is expressed by using the 

solidity ratio of the disk (σR).   
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Referring back to the induced power term presented in Eq.(2.1), the reader 

should appreciate it is attained by using a similar approach, as used for the profile 

power. The elementary induced power is calculated by taking the product of the lift 

(or thrust) and the induced velocity (Vih). Since this induced velocity is assumed 

constant (for this simplistic approach where the actuator disk is used), integration 

along the blade and accounting for the number of blades (b) becomes utterly simple. 

The thrust generated by the disk which equals the helicopter gross-weight in a hover, 

is multiplied by the constant induced velocity (Eq.(2.2)). This results in the exact 

induced power term, as appears in Eq.(2.1).  
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The induced power term neglects elementary engineering information regarding 

the number of blades (b) and their shape.  The uniform distribution of the induced-

velocity across the disk (Vih) represents the minimum possible induced power, or the 

‘best-case-scenario’, as stated by Prandtl’s lifting-line theory [30]. According to this 

1921 era theory, the necessary and sufficient condition for minimum induced drag (and 

power) is that the downwash produced by the longitudinal vortices be constant along 

the entire lifting line, i.e., a constant profile of induced velocity across the rotor disk 

minimizes the induced power. This best-case scenario can be regarded analogous to 

the elliptical lift distribution of a fixed-wing aircraft. 

A more realistic analysis of the hovering disk, that considers the number of blades 

(b) and their shape, was first presented by Gessow in 1948 [31]. This analysis, known 

as the combined blade element momentum theory (BEMT), treats the actuator disk as 

a combination of infinitesimally thin annuli (rings) of constant induced velocity profile. 

The practicality of this approach is that the induced velocity through the disk is only 

considered constant with respect to the blade station (r), regardless of the azimuth 

angle (ψ). This approach is more accurate compared to the previous analyses [27-29] 

that assume a uniform induced velocity throughout the disk area.  

The quadratic equation in induced velocity (Eq.(2.6)) arises from equating the 

elementary thrust generated by an infinitesimally thin ring of the disk, using the two 

analytical approaches of conservation of linear momentum and blade-element theory 

(BET), illustrated in Fig. 2.1(c). The BET assumes a symmetrical blade cross-section 

and estimates the angle-of-attack (α) of each blade cross-section as the difference 

between the pitch angle (Θ) and the induced angle (Φ). This quadratic equation is then 

solved for a constant-chord blade, providing an explicit expression for the induced 

velocity through the hovering disk (Eq.(2.7)), for any blade station (r), as measured 

from the blade centre of rotation. 
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It follows from Eq.(2.7) that maintaining a constant value for the product of 

the blade station and the pitch angle (r∙Θ) along a constant-chord blade, ensures a 

uniform induced velocity distribution across the hovering disk. This, according to 

Prandtl’s lifting-line theory, guarantees the minimal possible induced power in a hover 

[30]. One can easily identify the widely known ‘ideal’ blade twist profile (Eq.(2.8)) is 

merely this requirement for keeping the product of blade station (r) and blade pitch 

angle (Θ) constant along the span of the blade. Rotor blades with constant-chord and 

a variable pitch angle that follow the ‘ideal’ blade twist profile (Eq.(2.8)) yield a constant 

induced-velocity across the hovering disk which can be calculated precisely by using 

Eq.(2.2).  

 ( )   r R  tip

R
r

r
       (2.8) 

As stated by Prouty [32], it is impractical to manufacture rotor blades with the 

‘ideal’ geometric twist profile due to the pitch angle tends to infinity close to the root. 

Instead, most conventional blades are made with a variable pitch angle that follows a 

linear change (angle reduction of Θ1) from the root to the tip. Although, not the ‘ideal-

twist’ this linear geometric twist defined in Eq. (2.9) offers a practical method to 

substantially reduce the induced power of the helicopter at a hover. The other pitch 

angle (Θ0) in Eq. (2.9) represents the collective pitch angle, commanded by the pilot. 

Prouty [32] states that in-general, it is fair to say that high values of main-rotor blade 

twist (Θ1) produce good hover performance. This also reflects on the primary mission 

the helicopter was designed for. When designing blades, variations on the conventional 

linear twist distribution should be considered only for special reasons [32].  
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An arbitrary example helicopter is selected for illustration purposes. This 

hovering helicopter weighs 18,000 lbs., has a 4 bladed main-rotor disk with an area of 

about 2,262 ft2 and a blade tip speed of 725 fps. The blades have a constant chord 

length of 1.73 ft. and a linear pitch reduction (geometric twist) of 18° (Θ1=−18°). The 

coefficient-of-lift to AOA (α) line slope is approximated as 2π rad-1. The collective 

angle can be controlled by the pilot in a range between 9.5° to 25.9°. This constitutes 

the ‘collective-stick’ range provided to the pilot. Figure 2.2 presents the calculated 

parameters required to support the hover using the two types of blades twist, the first 

using the theoretical ideal-twist and the other by using the actual -18° linear twist.  

Numerical solution suggests that with a linear-twist of -18° the pilot must command a 

collective pitch angle (Θ0) of about 22.6° to generate the precise amount of thrust 

needed for the OGE hover. This collective pitch angle command of the example 

helicopter is achieved by using about 79% of the total collective-control throw.   

As shown in the left graph of Fig. 2.2, there are two crossings in pitch angle 

between the two types of geometric pitch schedules. The first is at a blade station of 

about 0.39 and the other at about 0.86. The theoretical pitch angle at the tip of the 

blade is 6.1° for the ideal-twist profile and 4.6° for the linear-twist. The induced 

velocity through the disk at the various blade stations is also presented (top-right graph 

of Fig. 2.2). While the ideal blade twist produces a constant induced velocity of about 

41 fps. across the disk, the -18° linear twist profile yields a variable induced velocity, 

with a maximal value of about 45.4 fps. at the 0.63 blade station. The blade thrust-

distribution in each case (ideal and linear) is calculated using Eq.(2.10), and presented 

in the bottom-right graph of Fig. 2.2. For simplicity, this estimation neglects blade tip 

loss. While the ideal blade twist yields a triangular thrust distribution, the -18° linear-

twist generates a non-linear thrust distribution that peaks at a blade station of 0.8 with 

a maximal calculated value of 296.6 lbs./ft.  
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Figure 2.2. The ideal and a -18° linear blade twist in an OGE hover. The two blades pitch 

schedules are presented in the left. On the top-right a comparison between the induced velocities 

is calculated. The bottom-right graph provides a comparison between the cross-sectional thrust 

generated by each type of geometric twist. 
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Next, the induced power required for each case of geometric twist is calculated 

and then compared. The induced power of each blade cross-section is calculated by 

taking the product of the thrust and the induced velocity for each blade element. 

Integration along the blade produces the induced power required for a single blade. 

The induced power for the entire main rotor is attained by accounting for the number 

of blades (b). This procedure is presented as Eq.(2.11). Notice that for the ideal-twist 

case, this integral is immediately reduced to a simple multiplication of the (constant) 

induced velocity by the total thrust produced by the rotor.  

Figure 2.3 presents the estimated induced power required to support the 

specific OGE hover example, using the -18° linear-twisted blades rotor system. The 

bottom and top right graphs of Fig. 2.3 present, separately, the two factors of the 

induced power. These are the induced velocity distribution and the thrust distribution 
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as a function of the blade station. The left graph of Fig. 2.3 presents the induced power 

distribution which peaks at the 75% blade station with a value of 23.6 hp/ft. 

Integrating the power distribution along the blade provides an induced power of 

342 hp per blade, and a total induced power of 1,368hp for the 4 bladed main rotor. 

In the case of ideally twisted blades, the required induced power is only 1,339 hp. As 

expected, a lower value compared to the linear-twist case, but not by much. For the 

particular hover case illustrated, the -18° linear-twisted blades require an induced-

power increase of about 2.2% (29 hp), as compared to the ideal-twisted blades.  
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Figure 2.3. Induced power of a -18° linear-twisted blade in an OGE hover. The two factors 

of the induced power are presented on the right, the thrust distribution along the blade (top 

graph) and the induced velocity distribution (bottom graph). The left graph presents the induced 

power distribution along the span of the blade. The area under the curve represents the induced 

power required by the blade, under the specific OGE hover conditions. 

The main rotor induced power in a hover is considerably larger than the profile 

power required by the blades (more than double). The ratio between the induced and 

the total power required for the main rotor at a hover is known as the ‘Figure of Merit’ 

(FM) of the rotor-system, as presented in Eq. (2.12)[33-35]. The FM, a value bounded 
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between zero and one, is used by helicopter designers to articulate about the 

aerodynamic efficiency of the hovering rotor. The higher the value is, the more 

efficient the rotor is for the hovering conditions. Typical maximum FM values for 

actual rotor systems at a hover range from 0.75 to 0.8 [36-38].  

The relative quantities of induced and profile powers in hover are not constant 

and vary with altitude. As the hovering altitude increases, the air density decreases 

resulting in opposite tendencies of the induced and the profile power portions; the 

induced increases while the profile decreases. Figure 2.4 presents a typical breakdown 

of the power required to OGE hover by a 22 ft. in radius and 6.5% solidity-ratio (σR) 

main rotor of an arbitrary 8,500 lbs. helicopter. This estimated power is presented for 

a standard day condition (ISA), from sea-level to 10,000 ft. of pressure altitude. Mind 

this power is for the main rotor only. The total power required to hover (for the entire 

helicopter) can be estimated by accounting for the mechanical efficiency (ηm) of the 

specific helicopter at a hover. Typical values for conventional helicopter mechanical 

efficiency at an OGE hover are around 0.85, as stated by Richards [24]. Figure 2.3 also 

presents the theoretical FM and the induced to profile powers ratio for the entire 

altitude range between sea-level and 10,000 ft. of pressure altitude (standard day 

conditions).  
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Figure 2.4. Main rotor power components in an OGE hover. Also presented are the 

theoretical figure-of-merit (FM) and the ratio of the induced to profile powers. 

From the data presented in Fig. 2.4, under standard day conditions and for 

pressure altitude of 5,000 ft., the required induced power is about 571 hp, the required 

profile power is about 191 hp., total power for the single main rotor is 762 hp and the 

total power required to hover under the assumption of 85% mechanical efficiency is 

about 896 hp. The estimated ratio between the induced and the profile powers is 2.99. 

The main rotor FM under the conditions above is estimated to be 74.9%. The practical 

interpretation is that 74.9% of the power consumed by the main rotor is directed 

towards a beneficial purpose of creating lift. The rest 25.1% is just a waste of power 

since it served to overcome the viscous effects between the blades and the air.    

It is worth emphasizing that data presented in Fig 2.4 are a theoretical 

estimation based on few assumptions and approximations. The precise FM is 

dependent on the actual induced and profile powers of the main rotor. The induced 

power used in Fig. 2.4 is based on an ideal main rotor, characterised by constant 

induced velocity across the disk (Eq.(2.2)) which yields the minimum possible induced 

power (that is the best-case scenario from an operator standpoint). This estimation 

serves as a minimum bound for the induced power. Higher values of induced power 

(profile power remains constant) would increase the actual FM of the rotor system. 
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Moreover, the estimated profile power for Fig. 2.4 is based on a constant zero-lift drag 

coefficient (Cd0) of 1% for all blades. This means that all cross-sections of the main-

rotor blades have a constant 0.01 zero-lift drag coefficient. In reality, this value is not 

constant and increases (much) with both angle of attack and Mach number of the blade 

cross-sections. An increase of the profile power component (while keeping the 

induced power constant) would result in FM reduction.   

Another ratio with high significance to helicopter hover performance is the 

disk loading (DL). This dimensional parameter defined in Eq. (2.13) has units of 

pressure and indicates how loaded the rotor disk is. The higher the DL value is the 

higher the induced velocity through the rotor disk is. Since, the thrust (T) produced by 

the main-rotor equals the gross-weight of the helicopter in a hover it can be 

represented as the ratio of the helicopter gross-weight (W) to the disk area (Ad). It can 

be shown using the DL definition and the induced velocity through an ideal rotor disk 

(Eq.(2.2)) that the DL serves as the theoretical dynamic pressure of the airflow under 

the disk (the ‘down-wash’ or ‘wake’ of the rotor). Actual measurements of non-

uniform distributed induced velocity rotor in a hover show the local dynamic pressure 

may be significantly higher (more than double) than the DL [39]. Nevertheless, an 

important conclusion that can be drawn from this is that the dynamic pressure 

underneath a hovering helicopter is related to the DL (helicopter gross-weight and 

main-rotor disk area), regardless the atmospheric surrounding parameters.  Figure 2.5 

presents maximum weight DL values of twelve different types of helicopters under 

standard sea level conditions. The maximum DL values range between 2.8 psf. (small 

helicopters like the Robinson 22) to about 14.3 psf. for large transport helicopters like 

the MI-26.    
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Figure 2.5. Maximal disk-loading values for various helicopters. The maximal disk loading 

(DL) values of helicopters varies from as low as 2.8 psf. for a Robinson-22 helicopter to high 

values of over 14 psf. for large and heavy helicopters like the CH-53E and the MI-26.  
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disk
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The power loading (PL) of a hovering disk is defined as the ratio between the 

thrust produced by the rotor and the power it consumes (Eq.(2.14)). By consolidating 

information from the three equations, Eq.(2.2), (2.12) and (2.13), the power loading 

(PL) of the hovering main-rotor disk is expressed in terms of disk loading (DL), figure 

of merit (FM) and ambient air density (Eq.(2.15)).  The PL, yet another significant ratio 

for hover performance, can be regarded as the power efficiency for hovering. This 

dimensional ratio provides information about how many thrust units can the hovering 

rotor produce for a unit of power demanded. More generally, it can be seen from  

Eq. (2.15) that for a given FM, the power loading and the disk loading are inversely 

proportional to each other. This means that a highly loaded disk cannot be a power 

efficient hovering device. The inversely proportional relationship between the PL and 

the DL is demonstrated in Fig. 2.6 for an imaginary rotor disk under standard sea-level 

conditions, for three distinct FM values (0.7, 0.75, 0.8) for a range of DL between 3 to 

15 psf. The following is a practical interpretation of Fig 2.6; given an arbitrary main 

rotor with a FM of 0.75 and a disk area of 2,260 ft2. Using this rotor system to stabilize 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2   |   HELICOPTER PERFORMANCE THEORY &  CONVENTIONAL TESTING METHODS  

42 

a 15,820 lbs. helicopter in a hover (OGE) requires an amount of power of 1,472 hp. 

to be provided to the main rotor only. This procedure involved calculating the relevant 

DL value of 7 psf. (15,820 divided by 2,260) and using the 0.75 FM curve of Fig 2.6 

to read the corresponding PL value of 10.75 lbs. to hp. The main rotor generates thrust 

that equals the gross weight at a hover, i.e., a value of 15,820 lbs., therefore the power 

required for the main rotor is about 1,472 hp. (15,820 divided by 10.75). Mind this 

amount of power is required for the main rotor only. Projecting from the main rotor 

onto the entire helicopter, requires information about the mechanical efficiency (ηm) 

of the helicopter in a hover (OGE). By assuming a mechanical efficiency of 85% an 

OGE hover power estimation of 1,732 hp. is yielded.  A smaller size rotor-system with 

a similar aerodynamic efficiency (0.75 FM) would require more power to sustain an 

OGE hover flight. For example, decreasing the disk area by 20% would increase the 

power to hover by about 11.8%, all other variables are kept constant.           
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Figure 2.6. The power-loading (PL) and the disk-loading (DL) relationship. The 

inversely-proportional relationship between the PL and the DL of a rotor system is presented 

for three distinct values of figure-of-merit (FM) and under standard sea level (SSL) conditions.  

It is common practice and knowledge that hovering a helicopter in close 

proximity to the ground is more efficient in terms of power required to sustain the 

flight. The ground imposes an external constraint on the induced velocity through the 

rotor system, which reduces the induced power component of the total power required 

to hover for the same amount of thrust generated. Cheeseman and Bennett [40] 

modelled the effect of the ground on the flow through the disk. The ground effect is 

simplified for the hovering flight and presented as Eq.(2.16). A graphical illustration 

of Eq. (2.16) is provided in Fig. 2.7. It follows from Eq. (2.16) that hovering at an 

example height above the ground of 40% of the rotor diameter (distance between the 

rotor plane and the ground), the induced power required to sustain the hover reduces 

by 9.8% compared to the out of ground effect case. Moreover, this power reduction 

estimation, Eq. (2.16)can be used to estimate the practical hover height for which the 

helicopter gets out of ground effect. This IGE/OGE transition height is widely 

considered above 1.2 times the rotor diameter, for which the reduction in the induced 
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power falls below 1%. This 1% reduction in power is practically undetectable to the 

flight crew. This practical and useful relationship given by Eq. (2.16) has been validated 

numerous times in more recent research work and performance flight testing 

campaigns [41-43].  
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Figure 2.7. The theoretical ground effect on the induced power in a hover. This chart 

demonstrates the theoretical reduction in the induced power of the rotor system (as compared 

to the out-of-ground effect case), while hovering in close proximity to the ground. Data 

presented are based on Eq.(2.16).  

2.2 LEVEL FLIGHT PERFORMANCE 

The power consumed by a conventional helicopter in level-flight (Plvl) is 

composed out of three major segments, as presented in Eq.(2.17). This equation can 
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be regarded as an expansion of the power equation for the hover (Eq.(2.1)), once a 

forward motion of the helicopter is initiated. The forward velocity of the helicopter 

(VT) alters the two power terms already familiar from the hover flight (Induced and 

Profile) and introduces a new power-term, the parasite power. The induced power 

terms in Eq.(2.17) is an approximation that is only valid above a certain (vague and 

unclear) airspeed. It is obvious this induced power term cannot be used for the hover 

and low airspeed regime, since it will tend to infinity. The parasite power arises from 

the aerodynamic drag of the helicopter fuselage. The expression ‘helicopter-fuselage’ 

in the context of the parasite power means any helicopter structural element excluding 

the main and the tail rotors.  

Equation (2.17) introduces a new non-dimensional variable (μ) that represents 

the non-dimensional velocity of the helicopter, also known as the ‘advance-ratio’. This 

non-dimensional variable is defined in Eq.(2.18) as the ratio between the helicopter 

true airspeed (VT) projected onto the main-rotor tip path plane (TPP), and the main-

rotor blade tip tangential velocity at a hover (ΩR). The main-rotor TPP, also known 

as the ‘plane of no flapping’, and the TPP angle of attack (αTPP) are illustrated in 

Fig. 2.8. The TPP is that plane spanned by the tips of the blades and the TPP angle of 

attack is defined as the angle between the helicopter velocity vector and the main-rotor 

tip path plane. By assuming small αTPP and applying the small angle approximation, the 

TPP projected true airspeed can be used as the true airspeed itself and the advance-

ratio (μ) converts into a more practical form as expressed by Eq.(2.19).     
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Figure 2.8. The main-rotor tip path plane (TPP). The main rotor TPP is spanned by the tips 

of the blades. The TPP angle of attack (αTPP) is assumed small enough so that the projection of 

the helicopter true airspeed (VT) onto the TPP can be approximated as the true airspeed itself.   

 

 

Figure 2.9. The power curve of a helicopter in level-flight. The power required to sustain a 

conventional helicopter in level-flight is comprised out of three main components, the induced 

power (reduced with airspeed increase), the profile power (increases moderately with airspeed 

increase) and the parasitic power which increases rapidly with airspeed increase. The power curve 

demonstrates a local minimum point, known as the ‘bucket’, which corresponds to the airspeed 

for minimum required power for level-flight.  
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Figure 2.9 presents the general behaviour of all power terms and the total 

power required against the airspeed of an example helicopter in level flight. Mind this 

plot is not based on the approximated induced power term of Eq.(2.17) since this high-

speed approximation is irrelevant for the low-airspeed regime. The induced power for 

this plot is based on the induced velocity form of Eq. (2.20) multiplied by the example 

helicopter gross-weight. 

2.2.1 The Induced Power in Level Flight  

The first term in Eq. (2.17) is the induced power. This term is based on a simple 

multiplication of the thrust generated by the rotor-disk, which equals the gross-weight 

in level-flight, by the induced velocity through the rotor disk. The induced velocity 

through the cruising disk, as appears in this term, is slightly more obscured than the 

thrust produced and is based on Glauert’s ‘high-speed’ approximation. Glauert [46] 

treated the main-rotor as an actuator-disk and by applying concepts of conservation 

of linear momentum, accompanied with the lenient assumption of a uniformed-profile 

induced velocity across the disk, the expression for the induced velocity in level-flight 

was developed (Eq.(2.20)). Notice that Eq. (2.20) is also applicable for the hover case, 

where the helicopter true airspeed (VT) is zero. For this case the induced velocity 

reduces to the induced velocity at a hover (Eq.(2.2)).  

This development of the constant induced velocity across the disk in level flight 

is repeated by Leishman and Prouty [34,47] and its outcome (Eq.(2.20)) is known as 

the constant momentum induced velocity (CMIV). Prouty [47] comments that a 

more realistic view of the induced velocity through the disk in level flight should be 

based on a complex vorticity pattern, consisting of trailing, shed, and bound vortex 

elements associated with the lift and the change of the lift on each blade element. This 

type of rigorous approach for the induced velocity across the rotor-disk in cruising 

flight is presented by Vil’dgrube et al. [48]. That being said, Prouty [47] clarifies this 

complexity and rigorous approach is of great importance when studying blade loads 

and vibrations problems, but for performance calculations the use of the constant 
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momentum induced velocity represents the average of the complex velocity field and 

provides reasonable accurate results.  
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The constant momentum induced velocity (Eq.(2.20)) can be further simplified 

for cases where the induced velocity through the disk is negligible compared to the 

true airspeed the helicopter is flying at (VT). The same momentum analysis approach 

is applied, but this time the true airspeed the helicopter flies at is used as the velocity 

the actuator disk is subjected to, neglecting any alteration caused by the induced 

velocity. This yields Eq. (2.21) known as the ‘Glauert’s high-speed approximation’ 

which can be used for cases where the true airspeed the helicopter flies at are ‘much’ 

higher than the induced velocity through the cruising rotor. Mind that the first term of 

Eq. (2.17) is precisely the product of the lift force the rotor disk is generating (equals 

the gross-weight) and the high-speed approximation for the induced velocity in level-

flight (Eq.(2.21)).  
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One should be asking for a more precise definition for the true airspeed from 

which the ‘high-speed’ approximation is valid. The previous loose guidance of when 

the helicopter true airspeed is ‘much’ higher than the induced velocity through the 

rotor disk is vague and impractical. Leishman [34] provides a definite criterion for the 

practical validity of the high-speed approximation. This criterion is set for the advance 

ratio (μ) to be larger than 0.1. A brief observation of the two methods for calculating 

the induced velocity (Eq.(2.20),(2.21)) reveals that by using the advance-ratio value as 

a criterion for the high-speed approximation validity, the user will be faced with 

inconsistent approximation errors. The advance-ratio alone cannot be used as a 

validity-criterion for the high-speed approximation. A particular helicopter can be 
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flown under a wide range of disk loading (DL) values that alters the relative proportion 

of the induced velocity calculated in both ways, the CMIV and the high-speed 

approximation. Figure 2.10 presents a comparison between the two methods for 

calculating the induced velocity through the main-rotor disk for six example 

helicopters at their maximum certified disk loadings and under standard sea-level 

conditions. Leishman’s advance-ratio criterion (μ equals 0.1) is shown on all plots. 

Figure 2.10 shows that applying the same threshold of μ equals 0.1 (translated to a 

narrow range of true airspeeds between 39 to 43 kts. for the six example helicopters) 

resulted in erratic differences between the two calculated induced velocities. This is 

attributed to the different disk loadings of the example helicopters.   

 

Figure 2.10. The theoretical induced velocity in level flight. Data are presented for six 

example helicopters.  Data are calculated using two methods. One according to the constant 

momentum induced velocity (CMIV) approach, and the other using the high-speed (HS) 

approximation.  

The estimation-error using Glauert’s high-speed approximation as compared 

to the CMIV approach is calculated per Eq.(2.22) and presented for the six example 

helicopters in Fig. 2.11. Note the estimation-errors presented in Fig. 2.11 were 

calculated for standard sea-level conditions.  While using μ equals 0.1 as a criterion 

yielded acceptable estimation errors for few helicopters (below 2.3%), this criterion 
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was found unacceptable for the BO-105, UH-60 and the MI-26 helicopters. The 

resulted unacceptable estimation errors for the three helicopters were 3.9%, 6.4% and 

12.1%, respectively.  

An improved tool to assess the validity (or the level of inaccuracy introduced) 

of the high-speed approximation under various helicopter conditions was developed 

and is presented in Fig. 2.12. The estimation error associated with the approximated 

induced velocity, as calculated by Eq.(2.22), is presented against the helicopter true-

airspeed for various discrete disk-loading values, ranging from 2 to 15 psf., and for 

standard sea-level conditions. Figure 2.12 also includes an illustrated example to assess 

the minimum airspeed for which the high-speed approximation is valid, given a 5 psf. 

disk-loading and an allowed estimation error of up to 2%. Using Fig. 2.12 the minimum 

true airspeed is 42.5 kts. It is clear from Fig. 2.12 that for a given estimation error, the 

minimum airspeed for the validity of the high-speed approximation is proportional to 

the helicopter disk-loading. While a true airspeed of 33 kts. is valid for an acceptable 

2% estimation error for a low 3 psf. disk-loaded helicopter, the minimum valid airspeed 

for a 14 psf. disk-loaded helicopter is 71 kts., for the same error budget of 2%. 

Establishing a legitimacy criterion for the high-speed approximation which is solely 

based on the advance ratio, as given by Lishman [34], is simply unacceptable. A similar 

type of graph to Fig. 2.12 but for 10K ft. of pressure altitude (standard day conditions) 

is provided in Appendix B of this dissertation.      

 
_ ( ) _ ( )

_ ( )

100
i lvl HS i lvl CMIV

HS

i lvl CMIV

v v
Err

v

 
   

 
  (2.22) 

 



2.2   |   LEVEL  FLIGHT PERFORMANCE  

51 

 

Figure 2.11. The error induced by using the high-speed approximation. This chart 

demonstrates the percentage of error caused by using Glauert’s high-speed (HS) approximation. 

The error is calculated with respect to the induced velocity based on the constant momentum 

induced velocity (CMIV) method. Data are presented for six example helicopters and under 

standard sea-level (SSL) conditions.  

 

Figure 2.12. High-speed (HS) approximation validation chart. This fan-type chart can be 

used as a tool for assessing the acceptable minimum true-airspeed for the high-speed 

approximation, given the disk-loading and the required estimation error. This chart is applicable 

for standard sea-level (SSL) conditions.  
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2.2.2 The Profile Power in Level Flight  

The second term in Eq. (2.17) is the profile power. This term is merely an 

extension of the profile power component from the hover (see Eq.(2.1)) but with a 

correction-term that makes it relevant to the level flight regime. This correction term 

is based on an empirical coefficient (kP) multiplied by the advance-ratio squared (μ2) to 

represent the proportional rise in profile power with the level-flight airspeed. Since this 

kP is an empirical coefficient, it also accounts for the profile power of the tail-rotor. 

Typical values for kP vary between 4.65 [8,10,18-20] to a value of 4.7 presented by 

Stepniewski [49].  

Taking the main-rotor from the hover into a forward flight disrupts the 

symmetric velocity-field surrounded the rotor blades. In the hover, each one of the 

main-rotor blades senses the same chord-wise velocity profile, regardless of the 

azimuth angle of the blade (ψ). Once the rotating main-rotor is flooded with the 

forward flight airspeed, the chord-wise velocity profile of each blade varies based on 

the azimuth angle of the blade. The chord-wise velocity (VCW) each cross-section of 

the blade senses is expressed in Eq. (2.23) as a function of the true airspeed of the 

helicopter (VT), the azimuth angle (ψ) and the station of the blade (r).  

  ( , ) sin [0, ]CW TV r r V r R        (2.23) 

The main-rotor disk in forward flight can be divided into two halves: the 

advancing and the retreating sides. For a rotor system rotating in a counter clockwise 

orientation (as viewed from above), the advancing side (azimuth angles between zero 

and 180°) is on the right. Rotor blades on the advancing side are exposed to a relative 

velocity profile which is higher than the tangential velocity, results from the angular 

motion of the rotor. The advancing side is subjected to higher relative velocities as 

compared to the retreating side of the disk. The advancing blades are exposed to the 

tangential velocity resulting from the angular motion of the blade, added with the 

chord-wise component of the helicopter airspeed. For the retreating blade it is the 

opposite, the chord-wise component of the helicopter airspeed is subtracted from the 
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tangential velocity of the blade. This asymmetry is the cause for the formation of three 

main areas on the main-rotor disk in forward flight. (1) A circular-section area on the 

advancing side, which is subjected to high Mach number and compressibility issues. 

This area stretches from the tip of the disk and grows inboard, as the helicopter 

increases its airspeed. (2) A reverse-flow area in which all blade elements face an air 

flow from the trailing edge to the leading edge. This reverse flow area, located on the 

retreating side of the disk, is a perfect circle with a diameter of exactly the product of 

the advance ratio (μ) and the main-rotor radius (R). The centre of the reverse flow area 

is always located at an azimuth angle of ψ=270°, regardless of the helicopter airspeed. 

(3) The blade-stall area on the retreating side of the disk. This area stretches from the 

edge of the disk inbound and grows with helicopter airspeed increase.  

 Figure 2.13 presents the theoretical compressibility and reverse flow areas of 

an example main-rotor disk in level flight. This example uses the formerly 22 ft. in 

diameter example helicopter for three distinct values of advance-ratio (0.1, 0.3, and 

0.5) and two types of atmospheres; standard sea-level and standard-day 10K ft. 

pressure altitude. All calculations for Fig. 2.13 are based on the example helicopter 

standard angular speed (Ω) of 324 RPM (33.9 radians per second.). The Mach number 

each blade cross-section is subjected to (MBE) is calculated from Eq.(2.23) divided by 

the applicable speed of sound (Eq.(2.24)). The same information is used to annotate 

the constant Mach lines in Fig. 2.13. For this, the blade station (r) is explicitly expressed 

as a function of the desired Mach number, the applicable speed of sound, the advance-

ratio and the azimuth angle (Eq.(2.25)).  

 air air aa R T   (2.24) 

  sinBEM a
r R  


  (2.25) 
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Figure 2.13. An example main-rotor disk in forward flight. An example main-rotor disk is 

subjected to two atmospheric conditions and three distinct advance ratios. The reverse-flow area 

grows proportionally to the advance ratio. The advancing side of the disk faces higher Mach 

numbers with increase in altitude (decrease in speed of sound) and with increase in advance ratio.  

 

The profile power in level-flight (Eq.(2.17)) assumes constant profile drag 

coefficient (Cd0). This assumption is valid for an airflow-regime free of compressibility 

effects, i.e., characterised by Mach numbers below the drag divergence Mach number. 

Figure 2.13 presents the estimated maximal Mach numbers exist on an example main 

rotor, under fairly moderate atmospheric conditions. Flying on a standard day, 10K ft. 

pressure altitude at advance-ratios above 0.3 clearly places a substantial circular section 

of the main-rotor disk above 0.8M and inside the drag-divergence region of many 

aerofoils [47,50-53]. This drag-divergence region is characterized by an abrupt increase 

in the profile drag coefficient due to the formation of shockwaves, responsible for 

significant drag increase. Flying the helicopter under more extreme conditions of 

higher altitudes and lower ambient temperatures, would increase the disk area 

subjected to compressibility issues, resulting in a steep increase in the profile power. 

As stated by Prouty [47] “if any blade element exceeds the drag divergence Mach 
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number for its aerofoil, the power required will be higher than that calculated from the 

closed-form equations” (p. 177).  

The two particular zones on the rotor disk, the circular-section infested with 

compressibility-effects on the advancing side, and the blade-stall area on the retreating 

side are the reason for the practical (low) airspeed limitation of the conventional 

helicopter. As the airspeed increases on the advancing blade, certain blade elements on 

the outbound part of the blade might experience critical Mach values associated with 

formation of shockwaves on their upper and lower surfaces. This sudden change in 

the flow regime around those blade element causes a jump in the aerodynamic centre 

of the relevant cross-sections and a pitch-down moment. Mind this chain of events, 

formation, and deformation of shock-waves, repeats periodically on a rotating rotor 

disk. The phenomenon briefly described here is commonly known from fixed-wing 

airplanes as the ‘Mack Tuck’. A flight-test campaign on the Sikorsky NH-3A (modified 

Sea-King, SH-3A) compound helicopter was aimed to investigate flight characteristics 

of a helicopter in the high airspeed regime. The flight-test team encountered an 

unstable blade-twist singularity due-to the Mach Tuck phenomenon. This severe 

dynamic problem described by Paul [54] was the cause for elevated blade-loads above 

a tip Mach number of 0.92. This value is commonly considered as the practical 

limitation for the maximum tip Mach number a main rotor-disk can endure in forward 

flight. Recalling the maximal Mach number a generic blade section senses is the tip at 

the 90° azimuth angle, this practical criterion is expressed as Eq.(2.26). 

 (max) 0.92T
tip

air air a

V R
M

R T


    (2.26) 

  The retreating side of the rotor-disk is subjected to an increasing zone of blade 

stall. Increasing the helicopter airspeed results in lower relative speeds on the outboard 

sections of the retreating blades. This combined with the flap-down motion of the 

retreating blade (ψ between 180° to 270°) makes it more susceptible for stalling. There 

are many types of stall characteristics based on the shape of the aerofoil (thickness, 

thickness to chord ratio, symmetry, etc.) and the prevailing non-dimensional variables 
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of the flow (Reynolds and Mach numbers). A thorough discussion of blade stall is 

beyond the scope of this dissertation and can be found in Ref [55, 56]. The outboard 

elements of the retreating blade are subjected to a special type of stall, referred to as 

the dynamic stall. It was found that when the AOA on an aerofoil is increased rapidly, 

it can postpone the stall AOA and temporarily generate a higher coefficient of lift, as 

compared to the static or the quasi-static case. This phenomenon is thoroughly 

explained and demonstrated in Ref [57-61]. Mind the dynamic aspect of the rotor 

blades stall can arise from (1) the flapping motion of the blade (defined as ‘plunge’ 

motion in the context of dynamic stall. (2) the commanded pitch oscillations. (3) the 

flap-wise bending structural mode and (4) the torsion structural mode of the blade. 

McCroskey et al. [57] provide stall results for seven different helicopter aerofoils 

oscillating in pitch at 0.3M.  All aerofoil sections demonstrated a similar increased 

maximal coefficient of lift. No significant correlation was found between the amount 

of increase (between 0.7 and 0.8) and the shape of the aerofoil. Prouty [32] provides a 

quick and easy guideline for preventing excessive retreating blade stall: “It is also 

generally accepted that for conventional helicopters at maximum speed, the tip speed 

ratio limit should not exceed 0.5 to avoid retreating blade stall” (p. 646). This practical 

criterion is expressed in Eq.(2.27). 

 0.5TV

R
  


  (2.27) 

The two conflicting criteria from Eq. ((2.26),(2.27)) are presented on the VT, ΩR 

plane in Fig. 2.14. As the airspeed increases the requirement for restraining the 

advancing blade compressibility issues results in a decrease of the rotor angular speed, 

whereas the criteria for preventing excessive retreating blade stall requires an increase 

in the main-rotor angular speed. The two contradictory requirements meet to define 

an equilibrium point that represents the maximal-practical airspeed of a conventional 

helicopter in forward flight and the corresponding main-rotor tip speed. This 

maximum true airspeed is about 203 kts. (Standard sea-level conditions) and about 
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196 kts. (Standard-day, 10K ft. pressure altitude). The corresponding main-rotor tip 

speeds are 685 and 661 fps.    

 

Figure 2.14. Maximum airspeed of a conventional helicopter in forward flight. The two 

contradicting constraints for restraining compressibility issues on the advancing blade and for 

preventing excessive retreating blade stall define the practical maximal airspeed for a 

conventional helicopter in forward flight.  

Notice that the two equations can be combined to form an explicit form  

(Eq.(2.28)) to represent the maximum practical airspeed of a conventional helicopter. 

This insight relates back to Igor Sikorski’s famous quote about the helicopter to never 

be able to fly faster than the airplane, as already mentioned in the introduction to hover 

performance in Chapter 1, Subsection 1.2.2.1.   

 (max)

3MAX

tip

T air air a

M
V R T   (2.28) 

2.2.3 The Parasite Power in Level Flight  

The third term in Eq. (2.17) is the parasite power. This power term is required for 

the support of the aerodynamic drag generated by the helicopter fuselage. This 

‘fuselage’ term holds for any structural element of the conventional helicopter, 
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excluding the main and tail rotor blades. The main and tail rotor blades are already 

accounted for in the power equation (Eq.(2.17)) as the profile power. The parasite 

power term is based on the same fundamental mechanical concept previously used for 

the induced and profile power components. The mechanical work done by a force on 

an object is defined by the scalar-multiplication of the two vectors, the force and the 

object’s displacement. The rate of work (power) is then expressed by the evaluation of 

the work done per unit of time. This ratio of displacement per unit of time is precisely 

the true airspeed of the helicopter, and when multiplied by the fuselage aerodynamic 

drag force the parasite power term is attained.  

The parasite power term, as appears in Eq.(2.17), is slightly manipulated and is 

explained hereinafter. Since the conventional helicopter flies at relatively low altitudes 

and airspeeds characterized by Mach numbers below 0.3, the flow-field surrounding 

its fuselage can be treated as incompressible flow, as explained by Dommasch et al. 

[62]. The fuselage aerodynamic drag-force (Df) is calculated as per Eq. (2.29) which is 

the product of the dynamic pressure (q), the drag reference area (Sref) and the drag-

coefficient based on the drag reference area (CDf). For an incompressible flow the 

dynamic pressure is calculated as per Eq.(2.30).  

 f ref DfD qS C   (2.29) 

 
21

2
a Tq V   (2.30) 

For reasons of convenience and ease of common-base comparison, the product 

of coefficient-of-drag (CDf) and drag reference area (Sref) is expressed by a different 

product, which has the same numerical value. This new product consists of a 

convenient coefficient-of-drag (equals 1), associated with a new reference drag area, 

defined as the ‘equivalent flat plate area’ (EFPA) and depicted by fe (Eq.(2.31)). By 

using these new terms, the fuselage aerodynamic drag-force (Df) is conveniently 

expressed as Eq.(2.32). The power required to provide against this aerodynamic drag 
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(Df) is merely the product of the aerodynamic drag force and the true airspeed of the 

helicopter, as expressed by (Eq.(2.33)).  

 1ref Df e eS C f f     (2.31) 

 
21

2
f a T eD V f   (2.32) 

 
31

2
parasite f T a T eP D V V f    (2.33) 

Helicopter airframes are less aerodynamic than their fixed-wing counterparts, this 

source of drag can be very significant, as shown by Leishman [10]. According to 

Leishman [50] the drag of a helicopter fuselage may be up to one order of magnitude 

higher than that of a fixed-wing aircraft of the same gross weight. As presented by 

Prouty [47] and Rosenstein et al. [63], typical values for helicopter EFPA range from 

as low as 5 ft2, for small and clean designs, up to 60 ft2 for large flying cranes. Leishman 

[10] presents data of a variety of helicopter designs as a plot on the EFPA, gross-weight 

plane. This plot suggests helicopter designs fall into two major categories of ‘clean’ and 

‘utility’ helicopters (excluding the large flying cranes) and within each category the 

EFPA value is approximately proportional to the square root of the helicopter gross-

weight. This empirical observation is referred to as the ‘square-cube’ law.  

According to Sheehy [64] the main-rotor hub and landing gear are the two major 

contributors to the parasite drag of the helicopter. While, the drag arises from the 

landing-gear can be significantly reduced by fairings, or even entirely eliminated by 

retracting the lading-gear into the fuselage, the rotor hub drag contribution cannot be 

easily reduced and accounts for approximately 20-30% of the total parasite drag. 

Moreover, fully articulated rotor hub designs can contribute to about 60% of the total 

parasite drag of a helicopter designed for high-speed operations. Prouty [8] provides 

parasite drag breakdown estimates for an undisclosed example helicopter (Fig. 2.15), 

accompanied with the following personal note: “I have never known of an airplane, or 
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a helicopter drag estimator who was pleasantly surprised by flight-test results showing 

an overestimation of the drag” (p. 304). For illustration purposes, this estimated EFPA 

of 19.3 ft2 converts using Eq. (2.33) to a parasite power of  677 hp, while flying at a 

true airspeed of 150 kts under standard sea-level (SSL) conditions.  

 

Figure 2.15. Parasitic drag breakdown for an example helicopter. The two main 

contributors to the parasitic drag of a conventional helicopter are the main-rotor hub with an 

EFPA of 7 ft2 (36.3% of total parasite drag) and the fuselage with an EFPA of 5.8 ft2 (30.1%). 

The landing gear system is the third largest contributor, with a combined main and nose landing 

gear EFPA of 2 ft2 (10.4%).  

Maintaining a constant external configuration does not guarantee a permanent 

parasite drag. The fuselage EFPA varies as the fuselage angle of incidence changes. 

This variation in the fuselage angle of incidence may be attributed to changes in 

airspeed or even to migration of the centre-of-gravity (CG). Any change in the fuselage 

angle of incidence, not only varies the EFPA of the fuselage but also causes for EFPA 

changes in all components attached to the fuselage, i.e., nacelles, landing gear, stub-

wings, and stabilizer surfaces. Notice that changing the angle of incidence on 

aerodynamic surfaces results in not only skin-friction change but also induced drag 

change. Flight tests conducted on the prototype OH-58A helicopter with a flat-plate 

canopy showed [65] that while flying at the cruise airspeed of this helicopter (102 kts.), 

an aft migration of the longitudinal CG, from the mid-point to the maximum aft 
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position resulted in 2.2 ft2 (22%) increase in the EFPA. A forward migration of the 

CG, from the mid-point to the maximum forward position, resulted in a more subtle 

EFPA increase of 0.7 ft2 (7%). The 2.2 ft2 ERPA increase is equivalent to a power 

increase of about 24.3 hp (7.7% of available power), under the relevant flight-

conditions.  

Level flight performance flight testing conducted on the 18K lbs. UH-60A 

helicopter, equipped with the External Stores Support System (ESSS), demonstrated a 

strong relationship between the EFPA and the longitudinal CG location of the 

helicopter [6]. A 15 inches longitudinal CG migration from an aft fuselage station 

(FS 358”) to a forward FS 343” resulted in an EFPA increase of 9.6 ft2 while flying 

straight and level at airspeeds between 40 to 140 kts. This 9.6 ft2 increase in EFPA is 

equivalent to a power increase of about 274 hp (9.6% of available power) while flying 

at 140 kts under SSL conditions.  

2.3 CONVENTIONAL METHODS FOR 

PERFORMANCE FLIGHT TESTING 

As already mentioned in the introduction to this thesis (Section 1.3), the 

fundamental question troubling the helicopter performance flight-testers has always 

been how should the performance of the helicopter be tested? More specifically, at 

which particular gross-weights? Under which combinations of atmospheric 

conditions? Can measurements be standardized? Is it possible to use data from a 

specific flight to predict performance under different and arbitrary flight conditions? 

These types of questions which are essentials in performance flight-testing can be 

addressed by using tools of dimensional analysis and the Buckingham PI theorem [66] 

which is commonly regarded as the fundamental theorem of dimensional analysis, as 

stated by Evans [67]. 

The Buckingham PI theorem states that any physically meaning problem with 

numerous dimensional parameters involved, can be reduced to a lesser number of 
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significant non-dimensional parameters, based on the dimensions involved. The 

competency of dimensional analysis to reduce the number of affecting variables and 

to support interpolation and extrapolation of data, has made it a popular tool in 

performance flight testing. By applying dimensional analysis tools, the flight-tester can 

answer all performance questions raised above and at the same time, significantly 

reduce the number of flight-test sorties required to quantify the performance of an 

aircraft throughout its flight-envelope. 

2.3.1 Available Power Flight-Test Method 

The current method widely used within the flight-test community for determining 

the available power any gas-turbine helicopter possess is based on the single-variable 

analysis, as presented in few flight testing method text books [18-21] and practicably 

demonstrated in Belte and Stratton [78] and Benson et al. [86]. This conventional flight 

test method is further demonstrated, with its major deficiencies emphasized, in 

Chapter 3 of this thesis. For this, authentic flight test data from a MBB (Messerschmitt-

BÖlkow-Blohm) BO-105 helicopter are used. According to this flight-test method, all 

four engine performance variables (output power, compressor speed, temperature, and 

fuel-flow), accompanied with their corresponding atmospheric conditions, and are 

recorded during steady engine operation conditions. For this, the helicopter is flown 

throughout its certified flight envelope and under diverse atmospheric conditions. As 

demonstrated by Jackson [75], it is essential for multi-engine helicopters to handle data 

from each engine separately. Each engine is a separate entity with potentially a different 

level of maximum available power that might be operated under slightly different 

atmospheric conditions, even if installed on the same helicopter.  

Once a substantial database is gathered, it is analysed with the goal of evaluating 

the maximum power the engine is able to produce under various atmospheric 

conditions. This procedure is carried-out in two phases. The first (Phase I) is to 

generate a convenient mathematical model to describe the dependency of the engine 

output power with all other engine performance variables (compressor speed, 
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temperature and fuel-flow). Phase I can be regarded as uncovering (mathematically) 

the specific engine ‘rules of operation’. The second phase (Phase II) concentrates on 

deriving the maximum output power of the specific installed engine under a wide range 

of atmospheric conditions i.e., performance under hot day or cold day conditions, and 

for the various engine power ratings i.e., the maximum continuous power, the 

maximum 5-minute take-off rating power etc.  

2.3.1.1 Phase I – The Engine ‘Rules of Operation’ 

The essence of this phase is to derive simple empirical models to represent the 

dependency between the engine output power and each one of the performance 

variables of the engine i.e., the engine temperature (TGT), compressor speed (Ng) and 

fuel-flow (Wf). As already discussed above, dimensional analysis plays a major role in 

helicopter performance flight-testing. Using the Buckingham PI theorem, the engine 

performance problem can be simplified to include a set of only four corrected 

variables. These corrected variables are essentially non-dimensional magnitudes which 

bear units and for this reason they are addressed by Knowles [73] as the GT engine 

corrected variables, rather than non-dimensional. Specifically, these corrected variables 

are the corrected output power of the engine (CSHP), the corrected compressor speed 

(CNg), the corrected engine temperature (CTGT) and the corrected fuel-flow into the 

engine (CWf). The definitions of these non-dimensional variables are presented in the 

nomenclature and the rigorous procedure to derive these corrected variables is 

presented as Appendix A in this thesis.  

By applying common methods of linear regression, a set of third order single-

variable polynomials is retrieved to relate between the corrected output power and 

each one of the other corrected variables of the GT engine, as given by Eq.(2.34), 

Eq.(2.35) and Eq.(2.36). Third order polynomials are employed for the reason they are 

the lowest order that enable modelling an inflection point, a fundamental behaviour of 

the gas-turbine engine. These polynomials, based on actual flight-test data, serve as 

empirical models to represent the ‘rule of operation’ of the specific GT engine, as 
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installed in the particular type of helicopter and at the specific phase of its life cycle. 

An example of actual experimental polynomials is presented in Fig 2.16.  

  
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Figure 2.16. Example of 3rd order empirical model of gas-turbine engine. The presented 

three 3rd order polynomials are derived from actual flight-test data and serve as an empirical 

model for the installed gas-turbine engine (GTE).  

As previously mentioned, the requirement for these polynomials to be of the 

third order is to ensure the empirical model captures the inflection point of the engine 

performance. This inflection point represents a fundamental property of any gas-

turbine engine for which the rate of change in output power with respect to the engine 

variables (compressor speed, temperature, or fuel-flow) changes its sign. For the same 

amount of engine variable increase, the resulted increase in engine output-power is to 
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be reduced beyond the inflection point, as compared to the output-power increase 

below this inflection point.   

2.3.1.2 Phase II – Maximum Available Power 

The second phase of the available power flight-test method uses the empirical 

models retrieved from Phase I to define the maximum available power the installed 

engine can generate, for any power rating and under any atmospheric conditions as 

selected by the flight tester. This phase involves an iterative process, as illustrated by 

Fig. 2.17 and explained hereinafter. The maximum engine power can be limited by 

either one of the following parameters: the engine temperature (TGT), the engine 

compressor speed (Ng), the engine fuel-flow (Wf) or the maximum output shaft torque 

(TRQ). These limitations are well known to the helicopter operator and their values 

are typically different for the various power ratings of the engine. The iterative process 

of evaluating the available power commences by defining the relevant power rating. Is 

it the continuous power rating with no time limitation? Or is it for the take-off which 

is limited to only 5 minutes of operation.  

Once the power rating is decided, the type of day must be defined. A standard 

day (ISA) is defined as one with a temperature of 15°C at sea level which decreases by 

1.98°C for every 1,000 ft. of climb. Other day conditions are based on the ISA day and 

are symbolised as the temperature difference from the standard day conditions. For 

example, ISA+10 represents a day for which the ambient air temperature at sea level 

is 5°C. The elapsed rate of the temperature with altitude is assumed as 1.98°C per 1,000 

ft., although it is seldom the reality. Once a type of day is decided upon, for each 

pressure altitude selected the relative temperature (θ) and relative pressure (δ) are 

calculated. For each pressure altitude the three-engine limiting corrected variables can 

be calculated and plugged into the three flight-test based polynomials retrieved in 

Phase I. Each one of these polynomials yields a corrected output power which can 

easily be turned into actual output power and output shaft torque.  
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Figure 2.17. The iterative procedure for engine available power disclosure. The maximum 

available power of an installed gas-turbine engine (GTE) is disclosed by executing an iterative 

procedure based on the empirical model of the GTE and its operating limitations.  

The maximum output power of the engine for the selected pressure altitude would be 

the minimum of the three values yielded from the empirical polynomials and the 

transmission limitation (the output shaft torque limitation). Once the maximum 

available power for the selected pressure altitude is defined, another iteration for the 

next pressure altitude is carried out. This procedure is repeated for other types of day 

and all relevant power ratings of the engine. Figure 2.18 presents an example outcome 

of this procedure, a plot that specifies the maximum available power an installed GT 

engine is capable of delivering, for a range of pressure altitudes. Note that Fig. 2.18 is 

not related to the specific set of polynomials presented in Fig. 2.16. Figure 2.18 

specifies the maximum available power of the engine, for a continuous power rating 

and for two distinct types of day. It shows that for standard day conditions (ISA) this 

specific installed GT engine is limited by the transmission of the helicopter (569 hp.), 

from sea level up to a pressure altitude of 3,500 ft. Above 3,500 ft. the engine becomes 

compressor-speed (Ng) limited. Under hot-day conditions (ISA+25°C), the maximum 

continuous power is limited by the compressor speed throughout the altitude range 
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presented, from sea-level up to 10,000 ft. At sea-level the installed engine is capable of 

continuously producing 486 hp. This continuous maximum power reduces to only 403 

hp. at a pressure altitude of 10,000 ft. 

  

 

Figure 2.18. Example of an installed engine available power chart. The data represent the 

available power for continuous operation rating of a GTE, under standard day (ISA) and hot-

day (ISA+25°C) conditions.  

2.3.2 Hover Performance Flight Testing 

As already mentioned in the introduction (Subsection 1.3.2), the objective of 

hover performance flight testing is to provide a detailed map of the actual power 

required to sustain the specific type of helicopter at a hover (either in or out of ground 

effect, IGE/OGE) for all certified gross-weights, external configurations, main-rotor 

angular speeds and the surrounding atmospheric conditions of air temperature, 

pressure, and density. This performance ‘map’ is traditionally presented in a format of 

a graph, or a set of synchronized graphs and plots. For this objective, the hover 

performance flight-tester task is to measure the actual power required for hover 

throughout the flight envelope. Since it is impractical to hover the helicopter in each 
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combination of gross-weight, main-rotor angular speed, atmospheric conditions of 

pressure altitude and temperature, the flight tester applies means of dimension analysis 

as previously discussed in the introduction of this section (2.3). By applying means of 

dimensional analysis, the flight-tester can both reduce the number of planned flight 

test sorties to an achievable and practical number, and at the same time to provide a 

detailed performance map that covers the entire certified flight envelope of the aircraft.    

2.3.2.1 Non-Dimensional Hover Performance 

The conventional, widely used, flight-test method for hover performance is 

based on Eq. (2.1) which describes the power required for the main rotor at an OGE 

hover. The main-rotor system is the principal power consumer in a conventional 

helicopter hover. Its relative consumption varies between different types of 

helicopters, and for various flight conditions of a specific type of helicopter, but 

nevertheless it consumes an immense power portion surrounding 85% [19,20,24]. The 

remaining ~15% of the hovering power is dissipated by the tail-rotor, all sorts of 

accessory drives and systems and transmission loss. For this reason, the hover flight 

test method of the complete helicopter is based on the power of the main-rotor and 

the applicable Eq. (2.1). 

Equation (2.1) is normalized by dividing both of its sides by the term  

(  
3

a diskA R  ) which is a product of the ambient air density, main-rotor disk area 

and the blade tip tangential speed cubed. This division yields Eq. (2.37) which simply 

represents the non-dimensional version of Eq. (2.1). The reader should recall that Eq. 

(2.1) describes the ideal case, or the ‘best-case-scenario’, of minimum possible induced 

power in a hover. Leishman [34] compensates for the non-ideal case by implementing 

an empirical correction factor (ki) as presented in Eq.(2.38). This (ki) is called the 

induced power correction factor and its typical average value is about 1.15. A power 

correction value of 1.15 indicates 15% increase in the actual main rotor induced power, 

as compared to the ideal case of constant induced velocity across the hovering disk. 
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Mind that Eq. (2.39) merely defines the main-rotor solidity ratio (σR), and the two 

non-dimensional variables known as the ‘coefficient-of-power’ (CP), and the 

‘coefficient-of-weight’ (CW). It is common for applicable textbooks, papers and flight-

test reports to interchangeably use either the coefficient-of-weight or the coefficient-

of-thrust (CT) since the thrust equals the weight at a hover, hence CT equals the 

coefficient-of-weight (CW).  
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The conventional flight-test method for hover performance is based on 

imposing the main-rotor power onto the helicopter as a whole. This approach is 

presented as Eq.(2.40), where CP is the coefficient-of-power based on the total power 

in hover. The task of the flight-tester is to relate between all measured coefficient-of-

power (CP) and coefficients of weight (CW) while hovering under a wide range of gross-

weights (W), main-rotor angular speeds (Ω) and ambient air atmospheric conditions. 

This task can be regarded, mathematically, as Eq. (2.41) for which the flight-tester is 

required to define the two constants (α1, α2) for a particular type of helicopter and/or 

helicopter external configuration. 
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The flight-test team is required to plan and execute numerous hover test-points 

in order to cover the entire flight envelope of the test article. This includes all certified 

gross-weights, from minimum to the maximum certified, the entire ambient air 

temperatures and pressure-altitudes the helicopter is expected to fly at, and throughout 

the governed range of the main-rotor angular speed (Ω).   

There are two fundamental techniques to execute the precise hover sorties for 

data gathering. The first is the free-flight hover and the second is the tethered hover. 

The first technique requires the flight-test crew to stabilize the helicopter at a hover 

and record the essential data to regress the CP to CW relationship, as presented in 

Eq.(2.41). Variation of gross weights is achieved by physical ballast added/removed 

from the helicopter. Altering the atmospheric conditions is done either by changing 

testing sites or by hovering in formation to another aerial vehicle, equipped with a low 

airspeed system capable of establishing a true hover flight.  

The second technique of tethered hover is more complicated and requires 

additional preparation effort. For this technique the helicopter is attached via a tether 

and an instrumented load-cell device to the ground. The tension in the tether is 

continuously measured by the load-cell, recorded by the flight-test instrumentation 

package and presented real time to the flight-test crew. This manner, the thrust 

generated by the rotor system counter both the physical weight of the helicopter added 

with the tether tension.  

The main advantage of the tethered hover technique over the free-flight 

technique is that reconfigure the helicopter for different gross-weight is done 

immediately, just by raising the collective-stick for more thrust. It does not require the 

flight-test crew to land and to add or remove ballast for the next gross-weight data 
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planned. Regardless of the hover flight-test technique, whether it is the free-flight or 

the tethered hover technique, it is utterly important to establish a true and accurate 

aerodynamically hovering flight. This means that the relative motion between the 

helicopter and the ambient air is limited to 3 kts. A relative motion that exceeds 3 kts. 

is outside of the allowed tolerance for this test, since it significantly reduces the induced 

power, hence deceiving the test results.  

A closer look at Eq. (2.41) can provide practical limitations on the empirical 

values for α1 and α2. These limitations allow the flight-tester to perform a basic ‘sanity-

check’ to validate the empirical non-dimensional hover performance equation yielded 

from the test. As discussed before, typical values for the induced power correction 

factor (ki) and the mechanical efficiency (ηm) at hover are 1.15 and 0.85, respectively. 

This dictates an expected nominal α1 value of about 0.957. Furthermore, since it is 

physically impossible for the value of (ki) to plunge below 1, an established α1 value 

below 0.83 should trigger a detailed investigation about either the data analysis process, 

or the validity of the flight test sorties execution. A possible reason for a lower-than-

expected α1 value can be attributed to hover-data gathering under high relative winds 

(above the 3 kts. limitation). This will cause for a lower induced power component, 

hence a lower-than-expected α1 value. The expected value for α2 is more trivial and can 

be easily interpreted from the solidity ratio, zero-lift drag coefficient and the nominal 

mechanical efficiency at a hover.  

Figure 2.19 presents a genuine relationship between the measured coefficient-

of-power (Cp) and the coefficient-of-weight (Cw) raised to the 1.5 power, as measured 

during a limited scope hover performance performed for this research. A linear 

regression based on minimum squares is performed to retrieve the two coefficients (α1, 

α2). The specific non-dimensional OGE hover performance of the evaluated helicopter 

is presented in Eq.(2.42). This simple equation is assumed to encapsulate the entire 

OGE hover performance of the evaluated helicopter. This authentic Bell Jet Ranger 

(OH-58C) flight-test data are further discussed and analysed in Chapter 5 within the 

context of deficiencies associated with this current flight-test method. 
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Figure 2.19. Non-dimensional OGE hover performance data. The data represents a limited-

scope hover performance flight testing campaign of the Bell Jet-Ranger helicopter that includes 

76 stabilized OGE hover points.      

2.3.2.2 Un-Referring to Conditions of Choice 

For the common helicopter operator this non-dimensional OGE hover 

performance as presented by Eq. (2.42) does not tell much. It cannot be used explicitly 

for flight planning purposes. This implicit (or convoluted) OGE hover performance 

information needs to be simplified and be presented in an accessible manner to the 

common operator. This simplification procedure, called ‘un-referring the data to 

specific conditions of choice’, is discussed and demonstrated hereinafter.  

The process starts with reinstituting the explicit definitions of the coefficient-

of-power and coefficient-of-weight into the established non-dimensional hover 

performance (Eq.(2.42)). This back-substitution yields an explicit multivariable 

function that relates between the power required to hover and the following three 

independent variables of gross-weight, ambient air density and main-rotor angular 
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speed (Eq.(2.43)). This allows the flight-tester to generate the performance ‘map’ 

mentioned in the introduction of Subsection 2.3.2 above. The power required to 

sustain a hover flight can be predicted for any arbitrary combination of gross-weight, 

ambient air density (atmospheric conditions) and main-rotor angular speed. An 

example OGE hover performance chart based on Eq. (2.43) is presented as Fig. 2.20. 
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Figure 2.20. Explicit presentation of OGE hover performance. This graph is based on data 

extracted from the non-dimensional OGE hover performance of the Bell Jet-Ranger helicopter 

(Eq.(2.43)), and the procedure defined as ‘un-referring data to conditions of choice’.       

2.3.2.3 Extremum Hover Performance 

The previously presented information about the power required to hover a 

particular helicopter can be combined with the information regarding the available 

power of the helicopter (Subsection 2.3.1 above) to form what is known as the 

extremum hover performance of the helicopter. The extremum hover performance 
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relates to the hover ceiling of the helicopter, i.e., the maximum altitude the helicopter 

can hover at. Another extremum hover performance aspect is the maximum gross-

weight for which the helicopter can establish a hover flight, under various atmospheric 

conditions. This extremum hover performance evaluation can be accomplished once 

both the power available, and the power required to hover flight-test campaigns are 

concluded. Figure 2.21 demonstrates this procedure for a hot-day condition 

(ISA+20°C). By overlaying the available power on the required power, the extremum 

hover performance is exposed. On the one hand, the available power of the installed 

gas-turbine engine reduces with altitude increase (unless limited by the transmission). 

On the other hand, the power required to hover increases with altitude increase. Both 

contradicting tendencies reach an equilibrium point which defines the maximum hover 

altitude (hover ceiling), for a specific gross-weight, specific type of day and a particular 

engine power rating (continuous, take-off rating, etc.). For clarifying the data presented 

in Fig. 2.21, the continuous rating OGE hover ceilings of this example helicopter, 

while operated at standard main-rotor speed (354 RPM) and under ISA+20°C 

conditions are 9,380, 6,560 and 3,730 ft., for gross-weights of 2,700, 2,900 and 

3,100 lbs., accordingly.  

The procedure to conclude about the maximum gross-weight the helicopter 

can hover at for various atmospheric conditions and power ratings, is similar, although 

not explicitly demonstrated here. For this, Eq.(2.43) should be rearranged to solve for 

the gross-weight, while all the other variables are treated as known values (P, the 

available power, the desired atmospheric conditions expressed by the air density, and 

the main-rotor angular speed). 

 



2.3   |   CONVENTIONAL  METHODS FOR PERFORMANCE FLIGHT TESTING  

75 

    

Figure 2.21. Example helicopter OGE hover ceiling determination. The graph shows the 

hover ceiling of the Bell Jet-Ranger helicopter for three distinct gross-weights, under hot-day 

conditions (ISA+20°C).        

2.3.3 Level Flight Performance Flight 

Testing 

As previously mentioned in the introduction of this thesis (Subsection 1.3.3), the 

objective of level-flight performance flight testing is to provide a detailed map of the 

actual power required to maintain the specific type of helicopter at a level flight 

conditions, for all certified gross-weights, external configurations, main-rotor angular 

speed range and the surrounding atmospheric conditions of air temperature, pressure, 

and density. This performance ‘map’ is traditionally presented in a format of a graph, 

or a set of synchronized graphs and plots. Moreover, cross-referencing the power 

required for level flight with the fuel-consumption data base, as evaluated during the 

available power flight-testing phase (described in Subsections 1.2.1 and 2.3.1 above), 

enables to define the helicopter ‘best-effort’ airspeeds, such as airspeeds for maximum 

range and for maximum endurance. It is impractical for the flight-tester to measure 

the actual power required for level-flight throughout the flight envelope of the 

helicopter, and for all possible combinations of configurations and atmospheric 

conditions. Application of dimensional analysis concepts and means, allows the fight-
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tester to both, reduce the number of planned flight test sorties to an achievable and 

practical number, and to provide a detailed performance map that covers the entire 

flight envelope of the helicopter. 

2.3.3.1 Non-Dimensional Level-Flight Performance 

The conventional flight-test method for determining the level-flight 

performance of a conventional helicopter is thoroughly discussed in the literature [8, 

10, 18, 49, 76] and demonstrated in numerous flight-test reports [6, 77, 88]. This 

method originates from Eq. (2.17) which describes the power required to sustain the 

helicopter in level flight. Equation (2.17) is converted into a non-dimensional form 

(Eq.(2.44)) by dividing both sides of the equation by the mathematical-term  

(  
3

a diskA R  ).  The non-dimensional (ND) power required for level-flight equation 

(Eq.(2.44)) relates between only three variables, the coefficient-of-power (Cp), the 

advance-ratio (μ) and the coefficient-of-weight (Cw). All other terms in Eq. (2.44) are 

constants for a specific helicopter and configuration.  
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  (2.44) 

The conventional flight-test method for level-flight performance seeks to 

simplify this rather already simple three-variable relationship. The three-variable 

relationship described in Eq. (2.44) is further reduced into sets of two-variable 

mathematical relations that describes the association between the coefficient-of-power 

(Cp) and the advance-ratio (μ), for discrete values of coefficient-of- weight (Cw). The 

conventional flight-test method seeks to find this exact empirical relationship (Cp to 

μ) for the helicopter entire coefficient-of-weight spectrum. For this, the flight-test 

crew executes numerous ‘speed-runs’ while maintaining a constant coefficient-of-

weight. The method of assuring a constant coefficient-of-weight during the speed run 

of the helicopter is what defines the flight-test method and can be achieved in two 
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ways: (1) the constant weight over sigma (W/σ) method; and (2) the constant weight 

over delta (W/δ) method. 

2.3.3.2 Constant Weight over Sigma (W/σ) Method 

This flight-test method is the foremost popular and recognized method 

conducted for the evaluation of the level-flight performance on the conventional 

helicopter. In this method the flight-test crew maintains the coefficient-of-weight at a 

certain value by keeping the main-rotor speed constant and maintaining a constant 

ratio of weight (W) to the air relative density (σ). As presented in Eq.(2.45), the air 

relative density is defined as the ratio between the ambient air density (𝜌a) and the 

standard sea level air density (𝜌o). Maintaining a constant ratio of weight to relative 

density (W/σ) is achieved by a gradual adjustment of the cruise altitude for the speed 

runs as the helicopter burns fuel and becomes lighter. This constant W/σ method is 

demonstrated mathematically in Eq.(2.45). The required altitude change in-between 

test points of the speed-runs is calculated in real time by the test-crew. Typically, the 

flight-test campaign for a specific helicopter configuration requires the execution of 

five sorties, each conducted at a different coefficient-of-weight value. The various 

coefficient-of-weights shall cover the entire certified envelope of the helicopter. Each 

speed run consists of at least eight different airspeeds, beginning at some ‘arbitrary’ low 

airspeed to the maximum level flight airspeed defined either by maximum available 

power (Vh), or by the manufacturer’s definition for the ‘never-exceed’ airspeed (VNE).    
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Figure 2.22 presents a genuine non-dimensional (ND) relationship between 

the measured coefficient-of-power (Cp) and the advance-ratio (μ) for a single 

coefficient-of-weight (CW) of 5.79×10-3. Data are gathered for twelve distinct advance-

ratios during a dedicated constant W/σ level flight performance flight-test sortie 
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performed for this research. The presented range of advance-ratio (0.098 to 0.28) 

translates for the specific helicopter type and test conditions into a true airspeed range 

in between 42 to 118 kts. A linear regression based on minimum squares is performed 

to retrieve the four coefficients required to define the particular 3rd order polynomial 

(Eq.(2.46)). This polynomial represents the non-dimensional level-flight performance 

of the BO-105 helicopter for the specific coefficient-of-weight (CW = 5.79×10-3) and 

for the tested external configuration. This authentic MBB BO-105 helicopter flight-

test data is further discussed and analysed in Chapter 6 within the context of 

deficiencies associated with this current flight test method. 

 
3 2 30.0119 0.0218 0.0057 0.0007  5.79 10P WC C             (2.46) 

   

 

Figure 2.22. Non-dimensional level flight performance. The graph shows the relationship 

between the coefficient-of-power (Cp) and the advance ratio (μ) for a CW value of 5.79×10-3 as 

measured on a BO-105 helicopter. Flight test sortie was based on the constant W/σ method.  
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2.3.3.3 Constant Weight over Delta (W/δ) Method 

The second and less common approach of maintaining a constant coefficient-

of-weight during the speed run is called the ‘weight over delta’ method. This method 

is demonstrated mathematically in Eq.(2.47). Note that the air relative pressure ratio 

(δ) is defined as the ambient air static pressure (Pa) over the standard sea level air 

pressure (P0). By using the equation of state (Eq.(2.48)), the ambient air density is 

expressed using the ambient static-temperature (Ta) ambient pressure (Pa) and the 

specific gas constant of the air (Rair). It is evident from Eq. (2.47) that by holding a 

constant ratio of weight over the relative pressure (W/δ) and a constant ratio of static 

ambient pressure over the angular rotor speed squared (Ta/Ω2), the flight-test crew 

assures a constant coefficient-of-weight during the various speed runs. The only 

advantage this method has over the W/σ method is that by maintaining a constant 

ratio the flight-test crew can control a particular blade tip Mach number. For flight 

conditions where compressibility is an issue, the test-crew can avoid gathering flight-

test data contaminated with compressibility effects. Nevertheless, level-flight 

performance is typically required for flight conditions that include compressibility 

effects. This constant W/δ flight-test method requires even more flight-test sorties 

than the amount required for the W/σ method. This increased number of sorties is 

mostly attributed to the complexity and cumbersome associated with the continuous 

adjustments of the main-rotor angular speed.  
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2.3.3.4 Un-Referring to Conditions of Choice 

As stated for the hover performance is Subsection 2.3.2.2 above, this non-

dimensional level-flight performance (Eq.(2.46)) will not be appreciated by the 

common helicopter operator, since it cannot be used explicitly for the task of flight 

planning. However, this implicit information can be simplified or ‘un-referred’ to 

specific conditions of choice. According to this conventional method, the coefficient-

of-power (Cp) and the advance-ratio (μ) are interrelated in level-flight as per Eq.(2.46) 

as long as the coefficient-of-weight of the helicopter equals 5.79×10-3. For a normal 

operations main-rotor speed of 423 RPM (blade tip speed of 715 fps.), this specific 

coefficient-of-weight value can be converted into a range of gross-weight and ambient 

density combinations (Eq.(2.49)). Exhausting the one degree of freedom by choosing 

an arbitrary gross-weight of 4,850lbs (within the tested range) defines the applicable 

ambient density of 0.002 slug/ft3. This ambient air density corresponds to an altitude 

of 5,744 ft. under standard day conditions. The coefficient-of-power can also be 

reduced into a dimensional value as expressed by Eq.(2.50). Next, by using the 

empirical level-flight model retrieved from the flight-test campaign (Eq.(2.46)), the 

actual power required to sustain a 4,850lbs. BO-105 helicopter in level-flight and under 

the relevant conditions (5,744 ft. standard day, 423 RPM main-rotor speed) is known. 

This is expressed as Eq.(2.51) and illustrated in Fig. 2.23. This tedious procedure is 

repeated for the entire flight envelope covered by the flight-testing sorties.    
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Figure 2.23. Level-flight performance of an example helicopter. The graph is based on 

extracted data from the ND level-flight performance (Eq.(2.46)) and the procedure discussed in 

Subsection 2.3.3.4, ‘Un-Referring to Conditions of Choice’. 
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Once a theoretical foundation for the relevant sections of helicopter 

performance and the associated conventional flight test methods have laid down, the 

substantial portions of the research are presented in the following chapters. Chapter 2 

is intendent to provide the crucial theoretical background to allow the reader for a full 

understanding of the succeeding chapters of the thesis that discuss deficiencies 

embedded within the conventional flight test method and propose enhanced methods 

instead.  
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Nothing takes place in the world whose meaning is not that of 

some maximum or minimum. 

Leonard Euler  

3 A MULTIVARIABLE APPROACH IN 

GAS-TURBINE ENGINE TESTING 

3.1 CHAPTER OVERVIEW 

elicopter performance relies heavily on the available output power of the 

engine(s) installed. A simplistic single-variable approach is often used within the 

flight-testing community to reduce flight-test data in order to predict the available gas-

turbine engine power under various atmospheric conditions. This conventional 

approach which often results in unrealistic power predictions was previously debated 

in Subsection 2.3.1. This chapter presents a novel method for analysing flight-test data 

of a helicopter gas turbine engine. The so-called “Multivariable Polynomial 

Optimization under Constraints” (MPOC) method is capable of providing an 

improved estimation of the engine maximum available power. The MPOC method 

relies on optimization of a multivariable polynomial model subjected to equalities and 

inequalities constraints. The Karush-Khun-Tucker (KKT) optimization method is 

used with the engine operating limitations serving as inequalities constraints. 

This Chapter 3 was published as a journal paper (i) and as a conference paper (ii): 
 

i. Arush, I., and Pavel, M.D., “Helicopter Gas Turbine Engine Performance Analysis: A 
Multivariable Approach”, Proceedings of the Institute of Mechanical Engineers, Part G: 
Journal of Aerospace Engineering, Vol. 223, No. 3, March 2019.  

ii. Arush, I., & Pavel, M.D., “Flight testing and analysis of gas turbine engine performance: 
A multivariable approach.” In C. Hermans (Ed.), Proceedings of the 44th European 
Rotorcraft Forum: Delft, The Netherlands, September 2018. 

H 
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The MPOC method is applied to a set of flight-test data of a Rolls Royce/Allison 

MTU250-C20 gas turbine, installed on a MBB BO-105M helicopter. It is shown that 

the MPOC method can predict the engine output power under a wider range of 

atmospheric conditions and that the standard deviation of the output power estimation 

error is reduced from 13hp in the single-variable method to only 4.3hp using the 

MPOC method (over 300% improvement). 

3.2 INTRODUCTION 

Flight testing is an expensive activity that requires efficient methods for 

determining correctly the helicopter performance. Such methods involve 

considerations regarding testing techniques and data reduction of the raw flight-test 

data. This chapter relates to the flight-test methodology performed for defining the 

maximum available power of a helicopter gas-turbine engine. Unlike the conventional 

single-variable method, the novel method presented in this chapter is based on 

multivariable polynomials defined for the engine parameters, i.e., shaft output power, 

compressor speed, temperature and fuel-flow. It is shown that this multivariable 

approach results in more realistic and accurate modelling of the gas-turbine engine 

output power.  

This chapter is structured as follows: following this short introduction, the 

conventional single-variable method is applied in Section 3.3 to a set of authentic flight 

test data (34 stabilized test points) of a Rolls Royce/Allison MTU250-C20 gas turbine 

engine, installed as the left engine on a MBB BO-105 helicopter used for training at 

the National Test Pilot School in Mojave, California. The two phases of the 

conventional methodology, as previously presented in Chapter 2 (Subsection 2.3.1), 

are closely executed to determine the maximum available power of this particular 

MTU250-C20 gas-turbine engine. In Section 3.4 the novel MPOC methodology is 

presented and demonstrated by using the same flight test data used for the 

conventional single-variable method. Final conclusions and recommendation are 

provided in Section 3.5.   
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3.3 THE CONVENTIONAL S INGLE-VARIABLE 

METHOD 

The useful performance of any helicopter depends on the amount by which 

the power available exceeds the power required [79]. The conventional single-variable 

method widely used by the flight-test community for determining the maximum 

output power of the helicopter engine is based on gathering stabilized engine(s) 

parameters (such as temperature, compressor speed, fuel-flow and shaft output power) 

accompanied by their corresponding atmospheric conditions prevailed during the test 

[18-21]. These flight-test data are collected while flying the helicopter throughout its 

certified envelope and collecting engine parameters to their approved operating 

limitations. Once a substantial data base is gathered it can be analysed with the final 

goal of deriving the maximum shaft output power that the turbine engine can deliver 

under various combinations of atmospheric conditions. One should comprehend that 

the limiting factor for the maximum output power could change under different 

atmospheric conditions. For example, under hot day conditions the engine maximum 

output power could be limited by the engine temperature, while under relatively cold 

day conditions the engine compressor speed could limit the maximum output power 

the engine can deliver. The flight-test methodology must provide the answer to the 

following two questions: what is the maximum output power, and what is the related 

limiting factor. The limiting factor can be either one (or a combination) of the engine 

temperature, the engine compressor speed or the fuel flow to the engine. Another 

common power-limiting factor is the maximum transmission torque. Although this 

limiting factor is not an engine limitation ‘per-se’, it has a fundamental effect on 

maximum output power of the engine.  

3.3.1 Phase I – Engine ‘Rules of Operation’  

The first step in analysing the specific BO105 gas turbine engine data is to ‘correct’ 

or ‘non-dimensionalize’ the raw flight-test data of 34 stabilized test points. The four 
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engine parameters: shaft output power, compressor speed, temperature and fuel-flow 

are corrected using the corresponding atmospheric ambient conditions and are 

converted into, CSHP, CNg, CTGT, and CWf respectively. As previously mentioned 

in Chapter 2, the definitions of these non-dimensional variables are presented in the 

nomenclature and the rigorous procedure to derive these corrected variables is 

provided in Appendix A.  

By applying common methods of linear regression, the following set of third 

order single-variable polynomials is retrieved to relate between the corrected output 

power and each one of the other corrected variables of the specific gas-turbine engine, 

as given by Eq.(3.1), Eq.(3.2), and Eq.(3.3). Note that third order polynomials are 

employed for the reason they are the lowest order that enable modelling an inflection 

point, a fundamental behaviour of the gas-turbine engine.  

           

       

   
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  (3.3) 

These polynomials, based on actual flight-test data, serve as empirical models 

to represent the ‘rule of operation’ of the specific MTU250-C20 gas turbine engine, 

installed as the left engine on the specific BO-105 helicopter, and at the specific phase 

of its life cycle. Each polynomial is treated like the ‘finger print’ of the specific installed 

engine in the particular helicopter, representing the mathematical relationship between 

the corrected output power and the separate corrected engine variable (temperature, 
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compressor speed and fuel-flow). Figure 3.1 presents the 34 stabilized test points of 

the specific MTU250-C20 gas turbine engine, accompanied by the three best-fit third 

order polynomials specified in Eq.(3.1), Eq.(3.2) , and Eq.(3.3).  

As previously mentioned, the requirement for these polynomials to be of the 

third order is to ensure the empirical model captures an inflection point of the engine 

performance. This inflection point represents a fundamental property of any gas-

turbine engine for which the rate of change in output power with respect to a particular 

engine variables (compressor speed, temperature, or fuel-flow) changes its sign. For 

the same amount of engine variable increase, the resulted increase in engine output-

power is to be reduced beyond the inflection point, as compared to the output-power 

increase below this inflection point. 

 

Figure 3.1. Nom-dimensional single variable engine performance. Data represents 34 

stabilized engine operation points of a RR/Allison MTU250-C20 engine installed as a left engine 

on a BO105 helicopter. The corrected engine output power (CSHP) is separately presented 

against each of the other corrected variables: corrected engine temperature (CTGT), corrected 

compressor speed (CNg), and corrected fuel-flow (CWf, presented in pounds per hour units).  
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3.3.2 Phase II – Maximum Available Power 

The second phase of the single-variable method uses the empirical models 

retrieved from Phase I (Eq.(3.1), Eq.(3.2), and Eq.(3.3)) to define the maximum 

available power the installed engine can deliver, for any desired power rating and under 

any atmospheric conditions as selected by the flight tester. This phase involves an 

iterative procedure, as previously explained in Chapter 2 (Subsection 2.3.1.2) and 

illustrated by Fig. 2.17. The data presented in Fig. 3.2 were derived by following the 

relevant iterative procedure with the specific polynomials (Eq.(3.1), Eq.(3.2), and 

Eq.(3.3)). Figure 3.2 shows the synthesised data for up to 12,000 ft. of pressure-altitude 

and for five distinct day conditions; a standard day (ISA), 10°C and 20°C hotter than 

standard, and 5°C and 10°C colder than standard day conditions. Figure 3.2 presents 

the estimated maximum continuous output power of the engine based on a set of 34 

stabilized engine flight-test data points.   

The continuous power rating of this type of engine was set at engine 

temperature of 738°C and compressor speed of 105%. For the fuel-flow a fictitious 

limitation (@ 450 pounds per hour) was used. Note that for this specific type of engine 

and under the atmospheric conditions used for Fig. 3.2, the engine fuel-flow is known 

to be a non-limiting factor. The maximum continuous power limitation associated with 

the transmission torque was set at 344 hp. It can be easily seen from Fig. 3.2 that for 

ISA, ISA-5 and ISA-10 day conditions the helicopter maximum power is limited by 

the transmission, from sea-level up to 790 ft., 2800 ft. and 3800 ft. above sea-level 

respectively. For higher pressure-altitudes the limiting factor swaps from the 

transmission to the engine temperature. As for ISA+10°C and ISA+20°C day 

conditions, the analysis suggests the engine output power is expected to be 

temperature limited immediately above sea-level.  
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Figure 3.2. Estimated maximum continuous power of the example engine. Note the 

specific MTU250-C20 engine installed as the left engine on the tested BO105 helicopter is 

transmission limited for continuous operation under ISA, ISA-5°C and ISA-10°C conditions.  

The major disadvantage of this single-variable analysis method lies in the intrinsic 

assumption of independency between the rules of operation in all three engine limiting 

factors. This drawback manifests itself by the unrealistic relative behaviour of the three 

lines of ISA, ISA-5°C and ISA-10°C crossing each other above pressure-altitude of 

8,000 ft. as seen in Fig. 3.2. It is physically impossible for a temperature limited engine 

to deliver more power whilst the ambient temperature is higher.   

The absolute errors between the actual measured engine output power and the 

corresponding predicted values using the reduced polynomials (Eq.(3.1), Eq.(3.2), and 

Eq.(3.3)) are calculated as per Eq.(3.4),(3.5),(3.6),  and are presented in Fig. 3.3.  
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Figure 3.3. The MTU250-C20 engine power estimation errors using single-variable 

models. Note the relative large estimation errors of up to 30 hp using the engine temperature 

variable.   

 

These errors were found to be normally distributed about a practically zero mean. 

Figure 3.4 shows the error standard deviation for each prediction channel plotted 

against its relevant error mean. This figure also includes a horizontal bar to represent 

the 95% confidence level interval range for the mean of the error. This bar shows 

where the mean of the error can be found for the 95% confidence level. Inspecting 

this figure one can immediately see that the output power prediction, based on engine 

temperature (Eq.(3.2)) presents the worst performance; the relevant standard deviation 

of this error is 13 hp. and under 95% confidence level the mean of the estimation 

could be found anywhere along a range of ±4.6 hp. For the specific engine/helicopter 

combination tested, a standard deviation of 13 hp is considered a substantial error 

value for power predictions.  
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Figure 3.4. Mean and standard deviation of the single-variable estimation errors. 

The engine temperature based estimation presented the worst performance with an error 

standard deviation of 13 hp.    

Concluding, the conventional single-value method used for determining the 

maximum output power of the helicopter gas-turbine engine can result in large errors 

and unrealistic prediction trends. Next section presents a novel, more accurate method 

for available power determination of a helicopter gas-turbine engine.  

 

3.4 THE MPOC METHOD FOR ENGINE 

AVAILABLE POWER DETERMINATION 

This section presents a novel flight-test method, referred to as ‘Multivariable 

Polynomial Optimization under Constraints’ (MPOC), for the task of helicopter gas-

turbine engine available power determination. This method requires no change to the 

way engine performance flight-test sorties are carried out, only to the flight-test data 

analysis. Using the elegant method of projection onto subspaces a list of mathematical 

candidate models is derived to best represent the relationship between the engine 

output power and the engine other variables. The maximum output power of the 
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engine is assessed as an optimization problem under constraints. The nature of this 

optimization (maximization) problem has both equalities and inequalities constraints. 

For this, the Karush-Khun-Tucker (KKT) optimization method which deals with both 

type of constraints is utilized. The MPOC method presented in this section hereinafter 

is exemplified with the same MTU250-C20 gas turbine engine flight-test data, used for 

the conventional single-variable method demonstration in Section 3.3.  

The MPOC method is implemented in four phases; phase I is to establish a list 

of candidate multivariable models to describe the gas-turbine engine rules of operation, 

Phase II is to fit the candidate models with experimental flight-test data, Phase III 

concentrates on choosing the right empirical model to represent the gas-turbine engine 

performance, and in Phase IV the chosen empirical model is used for estimating the 

maximum available power under a wide range of atmospheric conditions.  

3.4.1 Phase I – Multivariable Empirical 

Models for the Rules of Operation 

A convenient mathematical relationship needs to be found for representing the 

flight-test data. Polynomials serve great role in flight-testing due to their simplicity 

which makes them suitable candidates for best-fit type models. Various math model 

search algorithm were developed in the literature of specialty for optimizing regression 

models of multivariate experimental data obtained in aviation. For examples see 

Ulbrich [80, 81] and Zhao and Xue [82]. The MPOC method seeks for a multivariable 

polynomial limited to the third order as in the conventional single-variable method. 

The first step of the MPOC method is finding candidate multivariable polynomial 

models to relate between the corrected shaft output power (CSHP), the corrected 

compressor speed (CNg), corrected engine temperature (CTGT) and corrected fuel 

flow to the engine (CWf). For simplification and based on common practice, six basic 

two-variable polynomials of the third order are defined using the three independent 

engine variables. This results in six different combinations as presented in 

Table 3.1. Each mathematical term presented in Table 3.1 yields six lower order terms 
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resulting in a long list of 42 regressors (predictors). However, many of the lower order 

terms are merely duplicates and can be dismissed. Filtering out repeating terms gives 

an updated list of regressors as presented in Table 3.2. This table corresponds to a list 

of 18 candidate regressors to work with for a best fit mathematical expression under 

the generic expression as given by Eq.(3.7). 

Table 3.1. Third order polynomials for GTE performance modeling. This list of third-

order polynomials and their lower-order terms yields the empirical model regressors.  

# Mathematical term List of lower-order terms 

1 (CNg)3(CTGT) CNg, (CNg)2, (CNg)3, CTGT, (CTGT)(CNg), (CTGT)(CNg)2 

2 (CNg)3(CWf) CNg, (CNg)2, (CNg)3, CWf, (CWf)(CNg), (CWf)(CNg)2 

3 (CTGT)3(CNg) CTGT, (CTGT)2, (CTGT)3, CNg, (CNg)(CTGT), (CNg)(CTGT)2 

4 (CTGT)3(CWf) CTGT, (CTGT)2, (CTGT)3, CWf, (CWf)(CTGT), (CWf)(CTGT)2 

5 (CWf)3(CNg) CWf, (CWf)2, (CWf)3, CNg, (CNg)(CWf), (CNg)(CWf)2 

6 (CWf)3(CTGT) CWf, (CWf)2, (CWf)3, CTGT, (CNg)(CTGT), (CNg)(CTGT)2 

     0
1

, , , , 18


    
n

f i i f
i

CSHP f CNg CTGT CW f CNg CTGT CW n    (3.7) 

Table 3.2. Empirical model predictors. An updates list of regressors for best fit hierarchical 

math regression model. 

Single Variable Regressors Double Variable Regressors 

f1=(CNg)3 

f2=(CNg)2 

f3=CNg 

f4=(CTGT)3 

f5=(CTGT)2 

f6=(CTGT) 

f7=(CWf)3 

f8=(CWf)2 

f9=(CWf) 

f10=(CNg)(CTGT) 

f11=(CNg)(CWf) 

f12=(CTGT)(CWf) 

f13=(CNg)2(CTGT) 

f14=(CNg)2(CWf) 

f15=(CTGT)2(CWf) 

f16=(CNg)(CTGT)2 

f17=(CNg)(CWf)2 

f18=(CTGT)(CWf)2 
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With the 18 derived regressors one has an enormous amount of possible 

models to check. The case can be thought as a combination of 1, 2, 3… 18 functions 

from a set of 18 regressors i.e., 262,143 possibilities as per Eq.(3.8), for which N 

represents the number of possibilities. 

 
18 18 18 18! 18! 18!

262,143
1 2 18 1!17! 2!16! 0!18!

     
           
     

N   (3.8) 

The number of possible combinations can be reduced by setting a base model 

which is a linear combination of the elementary regressors f1 to f9 (Eq.(3.10)). The 

polynomial as given by Eq.(3.10) is addressed in this chapter as model number 1. This 

way, the problem has been reduced to finding a model which will be constructed from 

Model 1 superimposed with any combination of the regressors f10 to f18. The number 

of combinations is now reduces to 512 as per Eq.(3.9). 

 
9 9 9 9! 9! 9!

' 1 1 512
1 2 9 1!8! 2!7! 0!9!

     
             

     
N   (3.9) 

 
         

       

3 2 3 21 1 1 1 1
1 1 2 3 4 5

3 21 1 1 1 1
6 7 8 9 0                           

     

    

M g g g

f f f

CSHP CN CN CN CTGT CTGT

CTGT CW CW CW

    

    

  (3.10) 

This still represents a substantial number of combinations but more 

manageable. Within the limited scope of this chapter, a performance comparison 

between ten different models from the 512 is presented. Model 1 presented as 

Eq.(3.10) is merely being added with the nine regressors (f10 to f18 of Table 3.2), one at 

a time. This process of providing candidate multivariable polynomials is presented 

mathematically as Eq.(3.11). Equation (3.12) presents the suggested model number 4 

(CSHPM4) as a particular case of the generic formula described by Eq.(3.11). 
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  (3.12) 

3.4.2 Phase II – Fitting the suggested 

models with experimental data 

This subsection presents the method used to fit the ten proposed multivariable 

models (Eq.(3.11), for M=1 to 10) with actual experimental flight-test data. The 

method used is based on a linear Algebra concept known as projection onto subspaces 

[83] and is demonstrated hereinafter for Model 1. The 34 flight-test data points of the 

example MTU250-C20 gas turbine engine considered in this chapter are next 

substituted in Eq.(3.10). This gives a linear system of 34 equations with ten unknowns 

(the coefficients 1

n ). This system of equations is compactly represented as Eq.(3.13).  

    A b   (3.13) 

The matrix A is of size of (34x10) and contains the numerical regressors as 

columns, α is a column vector (34x1) containing the unknown coefficients and �⃗�  is a 

column vector (34x1) representing the measured experimental corrected output power 

of the engine (CSHP). Substituting the regressors of the proposed model number 1 

into Eq.(3.13) gives Eq.(3.14).  
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3   |   A  MULTIVARIABLE APPROACH IN GAS -TURBINE ENGINE TESTING  

96 

This system of equations is over-determined and does not have an exact 

solution. However, one can look for the “closest” solution for this system, i.e. the 

“best-fit” solution. This best-fit solution is denoted as {̂ }. The matrix constructed 

from [ATA]-1AT is the projection matrix which when multiplied by the vector �⃗�  yields 

a solution in a subspace of matrix A (Eq.(3.15)). This solution serves as a best-fit or 

the closest solution one can determine. 

  
1

ˆ


  
 

T TA A A b   (3.15) 

Following the above-described procedure one can immediately solve for the 

10 coefficients of model number 1, see Eq.(3.16) 
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For the numerical set of flight-test data exemplified in this chapter, model 

number 1 as given in Eq.(3.10) is presented as Eq.(3.17). 
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  (3.17) 

Similar procedure was repeated for all other nine candidate models.  
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3.4.3 Phase III – selecting the right model 

for the task 

Consider the prediction errors of models number 1 to 10 per an experimental 

data point as presented in Fig. 3.5 and calculated according to Eq.(3.18). 

    1, 34,  1, ,10      r i MK iMK
E CSHP CSHP i K   (3.18) 

For completeness reasons, Fig. 3.5 includes data obtained from the 

conventional single-variable analysis method presented in Fig. 3.3. Looking at Fig. 3.5 

one can see that, even before any statistical tool is used, each MPOC proposed 

multivariable polynomial is performing better in predicting the engine output power 

as compared to the conventional method. However, only one empirical model is 

required. Since a projection from a limited sample of experimental flight-test data to 

the entire population needs to be made, inferential statistics tools is utilized. In general, 

an empirical model is best replicating the experimental data if both the mean and 

variance of the estimation errors are zero. Obviously, this hypothetical perfect model 

is not to be found, however the following two approaches look for the closest one. 

 

Figure 3.5. Estimation errors for the 10 proposed multivariable models. This figure also 
includes the estimation errors yielded by the single-variable method. The multivariable empirical 
models performed far better in estimating the output power of the MTU250-C20 gas turbine 
engine, as compared with the experimental data.     
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(1) The p-value approach. The p-value approach (‘p’ stands for probability) 

is used to compare between the different ten proposed models. The idea behind the 

p-value is thoroughly discussed by Guttman et al. [84]. This statistical test concept 

involves stating two contradicting hypotheses and use the experimental data to either 

support or to reject the first hypothesis (the Null-Hypothesis, H0). In our analysis H0 

is set to claim that each of the multivariable models has an array of estimation errors 

with a zero mean. The level of significance for this statistical analysis was set at 1% 

(meaning 99% of confidence level). The p-values returned from normal distribution 

tables represent the smallest significant level that lead to rejecting the Null-Hypothesis. 

In general, low p-values cast a doubt on the validity of the Null-Hypothesis and once 

submerge under the significance level of the test, the Null-Hypothesis must be rejected 

and the Alternative-Hypothesis should be accepted instead. One may think about the 

p-value as the probability that one would observe a more extreme statistic than actually 

observed if the Null-Hypothesis were true. All models except for model number 10 

strongly supported the Null Hypothesis for the 1% significance level set. All first 5 

models returned similar p-values, ranging from 0.999 to 1 with model number 2 being 

the only one to return a computed p-value of 1. The p-value approach resulted in the 

elimination of model number 10 from the list. 

(2) Mean-Variance Plane. A complementary approach to the p-value concept 

was to compare the models performance on the mean-variance plane. Figure 3.6 

presents the paired values of mean and standard-deviation (square root of the variance) 

of the estimation prediction errors obtained for the first nine proposed models.  
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Figure 3.6. Various multivariable empirical models performance. This figure presents the 

nine multivariable empirical models performance on the mean-standard deviation plane. Model 

number 10 was omitted from this figure due to an outstanding mean of estimation error of 4 hp.     

Concluding from the two approaches and the relative performance of all ten 

multivariable empirical models involved, model number 2 (Eq.(3.19),(3.20)) was 

selected as the one to best represent the engine output power.  Model number 2 is 

further used in the subsequent Subsection 3.4.4 for the demonstration of the MPOC 

method. 
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3.4.4 Phase IV – maximum gas-turbine 

engine output power estimation 

Once acquiring a multivariable polynomial to best describe the change in 

corrected engine output power based on other engine corrected parameters 

(compressor speed, temperature and fuel-flow), one can look for the maximum 

available output power of the engine under various atmospheric conditions. The 

engine output power is limited by reaching one (or more) of its parameters. 

Determining the maximum output power is equivalent to a mathematical problem of 

finding an extremum point (maximum output power) under constraints (the engine 

variables: compressor speed, temperature and fuel-flow). Finding an extremum point 

of a multivariable function under constraints is of a totally different nature from the 

case of extremum of a single-variable function. The typical approach for the 

multivariable case is to use the Lagrange multipliers, but this approach works with 

equalities constraints only, whereas the problem we have in hand involves both 

equalities and inequalities constraints.  

One applicable method for optimization under both equalities and inequalities 

constraints is the KKT (Karush-Kuhn-Tucker) thoroughly discussed by Singiresu [85]. 

According to this KKT approach, Eq.(3.21) provides the general Lagrange equations 

required for satisfying extremum points of a multivariable function f(xi) subjected to 

‘m’ number of inequalities constraints, g(xi), and ‘l’ number of equalities constraints 

given by h(xi). As per Eq.(3.21) ηj represent the Lagrange multipliers associated with 

the inequalities constraints and λk represent the Lagrange multipliers associated with the 

equalities constraints. 
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The function to be maximized is the empirical model number 2 (Eq.(3.19)

,(3.20)) subjected to several engine operational constraints. For this specific 

optimization problem to be solvable, at least two equality constraints need to be 

provided. Those are fulfilled with the engine internal rule of operation, as explained 

hereinafter. Implementing similar approach as described in Subsection 3.4.3 above 

with the p-value and comparative evaluation on the mean-standard deviation plane, a 

best-fit surface was calculated to constitute the example MTU250-C20 gas turbine 

engine multivariable internal rule of operation. This type of surface which describes the 

relationship between the corrected engine temperature (CTGT) and both the corrected 

compressor speed (CNg) and the corrected fuel-flow (CWf), complemented with the 

experimental data points, is presented in Fig. 3.7.  

The first equality constraint denoted as h1 and presented in its implicit form as 

Eq.(3.22) relates between the corrected engine temperature and the corrected 

compressor speed. The second equality constraint is denoted as h2 and represents 

relationship between the corrected compressor speed and the corrected fuel-flow 

(Eq.(3.23)). Note that h1 and h2 constraints are projections of the multivariable rule of 

operation onto two planes; the CTGT-CNg plane and the CNg-CWf plane, 

respectively 
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Figure 3.7. The engine internal rule of operation. This figure presents the relationship 

between the engine corrected temperature and the engine corrected compressor speed and 

corrected fuel-flow. The circles plotted are the example MTU250-C20 engine data points, which 

few are obscured by the best-fit surface.      

The inequalities constraint for the engine maximum output power are simply 

the operational limitations imposed on the engine. For the exemplary MTU250-C20 

gas turbine engine those are the continuous rating of the engine, denoted as g1 to g3 

and are presented as equations (3.24) to (3.26). 
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105
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
  (3.24) 

 2

738
: 0 g CTGT


  (3.25) 

 3

450
: 0 fg CW

 
  (3.26) 

The partial differential equations based on Eq.(3.21) and the KKT conditions 

specified as equations (3.24) to (3.26) for a maximization problem result in equations 

(3.27) to (3.29). 
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Equations (3.27) to (3.29) can be rearranged compactly as presented in 

Eq.(3.30). 
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  (3.30) 

The system of partial differential equations (Eq.(3.30)) describes conditions for 

candidate engine corrected variables representing maximization of the engine output 

power. This set of equations does not have a unique solution but a solution with two 

degrees of freedom for the three distinct cases it represents. The first case (Case I) is 

when the compressor speed is at its maximum value, i.e., the engine output power is 

limited by the compressor speed. The second case (Case II) is when the output power 

is limited by the engine temperature and the last case (Case III) represents a fuel-flow 

limited engine. Splitting Eq.(3.30) into the three individual cases and applying the KKT 

conditions on the Lagrange multipliers associated with the inequalities constraints (η1, 

η2, η3) eliminates the two degrees of freedom and makes each one of these cases to 

have a unique solution. The three cases are demonstrated hereinafter:  
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1) Case I – compressor speed limited engine. 

Application of the relevant KKT conditions for this case imposes the 

following conditions on the Lagrange multipliers associated with the inequalities 

constraints (Eq.(3.31)). 

  1 2 30, 0, 0         (3.31) 

Combining Eq.(3.31) and Eq.(3.30) results in the following system of equations 

(Eq.(3.32)):  
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  (3.32) 

2) Case II – temperature limited engine. 

Application of the relevant KKT conditions for this case imposes the 

following conditions on the Lagrange multipliers associated with the inequalities 

constraints (Eq.(3.33)). 

  1 2 30, 0, 0         (3.33) 

Substituting Eq.(3.33) into Eq.(3.30) results in the following system of 

equations (Eq.(3.34)):  
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3) Case III – fuel-flow limited engine. 

Finally, the third case is when the maximum output power of the engine is 

bounded by reaching the maximum fuel-flow the pump is capable of delivering to the 

engine. Application of the KKT conditions for this case imposes the following 

conditions on the Lagrange multipliers associated with the inequalities constraints 

(Eq.(3.35)). 

  1 2 30, 0, 0         (3.35) 

Combining Eq.(3.35) with Eq.(3.30) results in the following set of equations 

(Eq.(3.36)):  
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  (3.36) 

 

For demonstration purposes, the specifics of Case II (temperature limited 

engine) are used with the exemplary MTU250-C20 gas turbine engine flight-test data. 

Similar methodology can be applied to find the maximum output power for the other 
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two cases, compressor speed limited engine (Case I) and fuel-flow limited performance 

(Case III). 

The set of equations specified in Eq.(3.34) has a solution if and only if (IFF) 

the rank of the system matrix is the same as the rank of the auxiliary matrix. This 

solution would be unique if both ranks equal three (the three unknowns of the problem 

which are the Lagrange multipliers). This requirement for a unique solution can be 

stated mathematically as in Eq.(3.37).   
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Instead of pursuing for a pair of corrected compressor speed (CNg) and 

corrected fuel-flow (CWf) under a limited corrected temperature (CTGTlimit) to satisfy 

Eq.(3.34), one can simplify the process by using the following “back-door” approach: 

for each and every combination of atmospheric conditions a pair of candidate 

corrected compressor speed and corrected fuel-flow will be suggested via the engine 

internal rule of operation (Eq.(3.22) and (3.23)). These candidate pairs complemented 

with the engine temperature limit will then be evaluated for fulfilment of the KKT 

conditions required for maximization of the engine output power. Since the 

equations specified in Eq.(3.34) have a unique solution, they can be rearranged as in 

Eq.(3.38). The three engine parameters (candidates for maximum output power) can 

be used in Eq.(3.38) to solve for the Lagrange multipliers. The three candidate 

simultaneous engine parameters are then proved valid, as ones that define a maximum 

output power of a temperature limited engine, if and only if the solution of the system 

specified as Eq.(3.38) is achieved while coinciding with the KKT conditions required 

for the case. 
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  (3.38) 

This “back-door” procedure was executed by using the engine internal rules of 

operation (Eq.(3.22) and (3.23)) for different type of day conditions (ISA, ISA+10°C, 

ISA+20°C, ISA-5°C, and ISA-10°C). Figure 3.8 presents the maximum output power 

of the exemplary MTU250-C20 gas turbine engine alongside with all the KKT 

requirements as a function of pressure-altitude for an ISA day conditions. It is evident 

that all of the KKT requirements are met.  

 

Figure 3.8. A simultaneous presentation of all engine variables. This figure presents the 

exemplary MTU250-C20 engine parameters between sea level to 12,000 ft. of pressure altitude 

and under standard day conditions (ISA). The engine maximum continuous output power is 

limited by its temperature (738°C). Note the fulfilment of all KKT requirements.       

The estimated maximum continuous output power of the exemplary MTU250-

C20 gas turbine engine as a function of pressure-altitude for different day conditions 

is presented in Fig. 3.9. The maximum continuous output power of the engine is either 

transmission limited or temperature limited under all atmospheric conditions 
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presented in Fig. 3.9. Note the KKT requirements were omitted from Fig. 3.9 although 

they were all met. 

 

Figure 3.9. A simultaneous presentation of all engine variables. This figure presents the 

exemplary MTU250-C20 engine parameters between sea level to 12,000 ft. of pressure altitude 

and under standard day conditions (ISA). The engine maximum continuous output power is 

limited by its temperature (738°C). Note the fulfilment of all KKT requirements.       

3.5 MAXIMUM POWER ESTIMATION 

COMPARISON  

The estimated maximum engine output power was compared using both the 

conventional single-variable and the MPOC methods. This comparison is presented 

in Fig. 3.10. From this figure one can observe that both methods demonstrate similar 

results for atmospheric conditions close to those prevailed during the actual flight-tests 

(ISA+21°C); however, while the conventional single-variable method completely 

collapses under standard (ISA) and colder day conditions, the MPOC method 

predicted reasonable and logical estimations for ISA and colder day conditions. The 

fundamentally wrong estimation provided by the single-variable method by which a 

temperature-limited engine delivers more power under higher ambient temperatures, 

is rectified by the MPOC method.   
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Figure 3.10. MPOC and single-variable methods comparison. This figure shows that while 

the conventional single-variable method collapses under the estimation for engine maximum 

continuous output power for standard and colder day conditions, the MPOC method provides 

logical maximum output power estimations.        

3.6 SUMMARY AND CONCLUSIONS  

The output power of a helicopter gas turbine engine is a multivariable problem 

that can be non-dimensionalized as any other physically meaning problem. Over 

simplification of the problem as linear combination of single-variable models does not 

provide sufficient accuracy and frequently provides unrealistic estimations for 

maximum output power under atmospheric conditions different than those prevailed 

during the test. The novel method presented in this chapter referred to as the 

Multivariable Polynomial Optimization under Constraints, or MPOC for short, is 

based on multivariable polynomials. These polynomials demonstrate a substantial 

better performance in estimating the output power of an exemplary MTU250-C20 gas-

turbine engine installed in a MBB BO105 helicopter. The P-value concept 

complemented with a comparative performance on the mean-standard deviation plane 

were used successfully as an inferential statistical tool for sorting between various 

candidate multivariable models to represent the gas turbine engine output power.  
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The prediction of the maximum output power of the gas-turbine engine can 

be regarded, mathematically, as an optimization problem of a multivariable function 

subjected to both equalities and inequalities constraints. The equalities constraints are 

based on the experimental data and the inequalities are provided by the engine 

operating limitations. While the conventional single-variable method provides 

unrealistic estimations for certain atmospheric conditions, the novel MPOC method 

demonstrates adequate prediction performance for a wider range of atmospheric 

conditions. Although the conventional single-variable method is simple to use it should 

be utilized only as a first estimation and not as a formal analysis tool in the process of 

estimating the maximum output power of a gas turbine engine. The approach 

presented in this chapter is next expanded in Chapter 4 of this dissertations to include 

flight-test data of other types of helicopters and engines. This also includes a 

comparative analysis between a broader base of candidate multivariable polynomials 

in order to better understand which type of regressors are performing better in 

modelling the output power of a gas turbine engine.  
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Algebra is generous. She often gives more than is asked of her. 

Jean le Rond D’Alembert  

4 A SINGULAR VALUE APPROACH 

IN HELICOPTER FLIGHT TESTING 

ANALYSIS 

4.1 CHAPTER OVERVIEW 

he process of empirical models evaluation is at the core business of experimental 

flight-testing data analysis. Accurate and convenient flight-testing of helicopter 

engine(s) available power is crucial for predicting the total helicopter performance. 

Common practice in estimation of in-flight helicopter gas turbine engine power consist 

of a reduction of flight-test data into simplistic single-variable analysis approach. While 

such an approach is convenient for practical use, it often results in unrealistic 

predictions of the available engine(s) power. A novel approach for the gas-turbine 

engine maximum available power problem, referred to as the Multivariable Polynomial 

Optimization under Constraints (MPOC) method, was introduced in Chapter 3. This 

chapter is intended to complement the MPOC method and answer the question of 

which multivariable-polynomial can be generally used in representing helicopter gas-

turbine engine performance?  

This Chapter 4 was published as the following journal paper: Arush, I., and Pavel, M. D., and 
Mulder, M., “A Singular Value Approach in Helicopter Gas Turbine Engine Flight Testing 
Analysis”, Proceedings of the Institute of Mechanical Engineers, Part G: Journal of Aerospace 

Engineering, April 2020.  https://doi.org/10.1177/0954410020920060. 

T 

https://doi.org/10.1177/0954410020920060
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In this sense, a variety of seven gas-turbine engines installed on different helicopters 

are analysed, each one giving 512 possible polynomial models to be used for available-

power calculations. While conventional statistical methods of hypothesis-testing failed 

in providing the answer to the question stated above of which the best general 

empirical model for representing engine performance is, an alternative approach based 

on the Singular-Value-Decomposition (SVD) theorem, was proven successful in 

providing the answer. Moreover, this approach presented in this chapter yielded a 

short list of ten simple and convenient multivariable-polynomials, best representing the 

performance of all seven engines analysed as a group. 

4.2 INTRODUCTION 

Flight test engineering is an interdisciplinary science that gathers data and 

develops methods with the objective of evaluating an aircraft or a system in its 

operational flight environment. This requisite for flight-testing means that the system 

or the vehicle under testing requires accurate assessment of its characteristics while 

operating in its flight environment rather than just relying on the results of ground-

based verification methods such as wind tunnels, simulators, and software models [1]. 

There are many disciplines involved in flight-testing based on the nature of the 

questions in search. Such ones include, for example, performance assessment, 

structural integrity testing, handling-qualities evaluation, etc. Regarding helicopter 

performance assessment, the useful performance of any helicopter is directly derived 

from the amount by which the engine power (the available-power) surpasses (or falls 

below) the power required by the main and tail rotor systems, the drag of the fuselage 

and all other consumers of power for the specific conditions [79].  

The “off-the-shelf” engine available power as given by the manufacturer 

changes once installed in a particular type of helicopter. It typically reduces due to inlet 

loss. Moreover, the maximum output-power of the installed engine degrades as it 

matures. Therefore, the actual available-power of the installed engine during a 

particular phase of its life is of high practicality to helicopter users. This chapter relates 
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to the methods used in flight-test engineering for measuring helicopter gas turbine 

engine performance and estimating the maximum available output power under a wide 

range of environmental conditions.  

The conventional flight-test method widely used for determining the 

maximum power of a helicopter gas turbine engine relies on empirical single-variable 

polynomials. This method is thoroughly discussed and demonstrated in Chapter 2 

(Subsection 2.3.1) and Chapter 3. The method requires the collection of stabilized 

engine parameters while flying the helicopter throughout its operational envelope. The 

four main raw engine variables measured in flight (compressor speed, temperature, 

fuel-flow and the output power) are normalized (or ‘corrected’) using the surrounding 

atmospheric conditions. By applying linear regression methods, three third-order 

single-variable polynomials are defined, representing the empirical relation between 

the corrected engine power (CSHP) and each one of the three engine corrected 

variables: corrected compressor speed (CNg), given by Eq.(4.1), corrected temperature 

(CTGT), given by Eq.(4.2) and corrected fuel-flow (CWf), given as Eq.(4.3). 

    1
0

3


   
n i

g i g
i

CSHP f CN a CN n   (4.1) 

    2
0

3


   
n

i

i
i

CSHP f CTGT b CTGT n   (4.2) 

    3
0

3


   
n i

f i f
i

CSHP f CW c CW n   (4.3) 

The maximum available power of the installed engine is next estimated by using 

these three empirical single-variable polynomials as demonstrated in Chapter 2 

(Subsection 2.3.1.2).  The three calculated values of the engine output power are first 

compared with each other and then against the maximum transmission torque 

(transmission limitation). This comparison is performed through an iterative process 

executed for various atmospheric conditions. The maximum available power under 

various atmospheric condition is then prescribed as the minimum value out of all four 
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values compared. The main advantage of the single-variable method lies in its 

simplicity. The flight-tester does not need to be confused with which mathematical 

model to choose, since the method is based on third-order single-variable polynomials. 

However, this simplicity is also the method’s biggest disadvantage since (1) it requires 

careful analysis of the data especially when the required flight conditions are outside 

of the limitations of the helicopter; (2) it may not replicate performance limiting factors 

that depend on actual flight conditions although matching non-dimensional values has 

been targeted successfully; and (3) it frequently yields poor estimations of the 

maximum engine output power, especially under atmospheric conditions outside of 

the actual tested range. A comprehensive demonstration of the poor estimation using 

the single-variable method is presented in Chapter 3 (Section 3.3).  

The novel “Multivariable Polynomial Optimization under Constraints” (MPOC) 

method to estimate the maximum output power of a helicopter gas turbine engine 

more accurately and under a wider range of atmospheric conditions is presented in 

Chapter 3. The main advantages to analysing data using MPOC models over the single-

variable method are: (1) it gives the ability to determine the relative influence of one 

or more predictor variables to the criterion value; (2) it has the ability to identify 

outliers, or anomalies; and (3) it gives a superior estimation precision. As demonstrated 

in Chapter 3 for the exemplary MTU250-C20 gas-turbine engine installed in a MBB 

BO105 helicopter, the MPOC provided a more accurate engine power estimation (in 

excess of 300%) when compared to the single-variable method. However, the main 

weakness of the MPOC method is that it struggles with a large number of possible 

multivariable-polynomials (more exactly 512 polynomials) to choose from without 

clear and decisive guidelines. 

The primary objective of this chapter is to address this disadvantage of MPOC 

method by developing a systematic and repeatable approach on which specific, pre-

defined multivariable-polynomial models shall be used. For this goal the MPOC 

method is applied to a large set of flight-test data gathered from seven different types 

of helicopters as presented in Table 4.1. Using the Singular-Value-Decomposition 

(SVD) approach, the relative performance of 512 different potential models is 
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compared towards the objective of identifying the best performing multivariable 

polynomial model to be generally used by the MPOC method. 

This chapter is structured as follows: right after the introduction, the MPOC 

method, as applied to a set of flight-test data gathered from a MBB BO-105 helicopter, 

is reviewed. The MPOC review in Subsection 4.3.1 also presents the procedure of 

fitting the candidate multivariable polynomials with the flight-test data. Next in 

Subsection 4.3.2, the conventional method of hypothesis-testing is used 

(unsuccessfully) for the task of screening between all 512 candidate multivariable 

models and choosing the best-performing empirical model, with respect to a group of 

seven distinct engines (Table 4.1). This unsuccessful screening attempt is then rectified 

in Section 4.4 which presents a novel method based on the Singular-Value-

Decomposition (SVD) theorem. This novel screening method was used successfully 

with the seven gas-turbine engines in producing a short list of accurate and convenient 

multivariable-polynomial models. This list is provided in Table 4.4. Section 4.5 draws 

a short comparison between this chapter findings and other similar studies. A summary 

and conclusions portion in Section 4.6 completes this chapter.  

 

Table 4.1. Gas-turbine engines used for the analysis. The following table lists the 

seven different gas-turbine engines used for the MPOC analysis. 

Engine 
No. 

Engine Model Helicopter Installed Rated Pwr. 
[hp.] 

Installation 
Config. 

1 RR MTU250-C20B  MBB BO-105M 420 Twin 

2 Turbomeca Arriel 1E2 Eurocopter EC-145 740 Twin 
3 Allison T63-A-700 Bell OH-58C 420 Single 
4 Turbomeca Arriel 1C2 Aerospatiale SA365-N2 700 Twin 
5 PW-207E  MD-902 Explorer 710 Twin 
6 Turbomeca Arriel 1M1 Eurocopter AS-565  780 Twin 
7 GE T700-GE-701A Sikorsky UH-60A  1700 Twin 
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4.3 GAS-TURBINE ENGINE PERFORMANCE 

FLIGHT TESTING  

4.3.1 Principles of MPOC Method 

Unlike the conventional single-variable polynomial method, the MPOC method 

is seeking for a multivariable-polynomial model representing the engine power while 

capturing the interrelation between the engine variables. The maximum engine power 

can then be assessed as an optimization problem of a multivariable-function under 

constraints. Such a multivariable approach applied to engine analysis results in a more 

accurate and realistic available power prediction as it contains the intrinsic couplings 

between all engine variables. Chapter 3 demonstrates that the empirical model for the 

engine output power (Eq.(4.4)) should rely on a basic model, superimposed with any 

possible combination of nine regressors (f1 to f9), as listed in Table 4.2.  

(
(

)
(1)

1
) , 1,2,3,...,( 12, ) 5


  M i M g f

i
CSHP CSHP CN CTGT CW i Model nf umber i   (4.4) 

Table 4.2. List of MPOC engine predictors. The following table lists nine engine regressors 

to be superimposed on Model 1.  

f1=(CNg)(CTGT) 

f2=(CNg)(CWf) 

f3=(CTGT)(CWf) 

f4=(CNg)2(CTGT) 

f5=(CNg)2(CWf) 

f6=(CTGT)2(CWf) 

f7=(CNg)(CTGT)2 

f8=(CNg)(CWf)2 

f9=(CTGT) (CWf)2 

 

The basic model, referred to as Model 1 and denoted hereinafter as CSHPM(1), is a 

third-order multivariable-polynomial in all engine variables given as Eq.(4.5). One 

should acknowledge there are 511 different combinations of choosing from regressors 

f1 to f9 of Table 4.2, as demonstrated by Eq.(4.6). Adding the basic model 1 with the 

511 possible combinations sets the total number of candidate models to be as large as 
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512. Having a list of 512 candidate models is impractical as the flight-tester still needs 

to undertake a tedious task of evaluating the performance of each candidate model 

(Eq.(4.4)) against the actual flight-test data. 
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4.3.2 Hypothesis testing and P-values 

All 512 proposed polynomial models can be fitted with actual experimental flight-

test data, yielding the specific coefficients for the best-fit solution. A practical method 

to solve for the best-fit coefficient, based on linear concept known as projection onto 

subspaces, is thoroughly described by Strang [83] and demonstrated in Chapter 3 

(Subsection 3.4.2).  The best-fit solution obtained for any candidate polynomial model 

can be used to evaluate how precisely this model predicts the actual measured flight-

test data. The corrected engine power (CSHP) is estimated by substituting the measured 

independent variables in the model, i.e., corrected engine compressor speed (CNg), 

corrected engine temperature (CTGT) and corrected engine fuel-flow (CWf). The 

prediction errors of the arbitrary chosen model 122 for each measured data point of 

the exemplary MTU250-C20B gas turbine engine of Chapter 3 are then calculated 

using Eq.(4.7) and presented graphically in Fig. 4.1. The prediction errors of model 

122 are approximately normally distributed about a practically zero mean (actual mean 

is -4x10-10 hp). 

   122
122

1, 34    r i i
E CSHP CSHP i   (4.7) 

The conventional approach in flight-testing assessing prediction goodness is 

based on hypothesis testing and the associated p-values assigned. This approach 
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follows from the Central Limit Theorem and is thoroughly discussed in literature 

[84,87]. In a nutshell, one can set-up a hypothesis (‘the null hypothesis’) with regards 

to the mean value of the prediction errors and by using the actual measured data, the 

probability of falsely rejecting this hypothesis (making a ‘type-I’ error) is calculated. 

This probability numeral is known as the p-value and once it falls under a predefined 

value (the statistical significance level) it raises doubts about the statistical validity of 

the null hypothesis.   

 

Figure 4.1. Corrected output power prediction errors. This figure shows the MTU250-C20B 

gas turbine engine corrected output power (CSHP) prediction errors using the arbitrary 

polynomial Model 122.  

Once again, the process is demonstrated by using the exemplary MTU250-C20B 

engine data and the arbitrary chosen, Model 122. The hypothesis assigned claims all of 

model 122 prediction errors have a mean of zero. The test-statistic of this two-sided 

case is calculated as per Eq.(4.8) to be an extremely low value of -5.47x10-10.  
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In Eq.(4.8) the symbol ‘n’ represents the number of measured test-points and ‘S’ 

stands for the sample standard deviation with respect to the estimation errors of the 

engine power. One should realize for this particular case, low test-statistics values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3   |   GAS-TURBINE  ENGINE PERFORMANCE FLIGHT TESTING  

119 

return large p-values and vice versa. This extremely low test-statistic value returns a 

calculated p-value of 1 (the maximum available due to software rounding errors). There 

is no statistical data to support rejection of the null hypothesis, meaning that model 

number 122 predicts the MTU250-C20B engine performance with zero mean errors. 

Theoretically, this makes Model 122 an excellent multivariable model for the available 

power prediction. 

4.3.3 Prediction goodness comparison 

between candidate models 

Assuming the arbitrary-chosen model number 122 is the “perfect” multivariable-

polynomial model to represent the output power of the BO-105 engine, how will all 

other 511 candidate models perform? Repeating the previous analysis presented in 

Subsection 4.3.2 for all other candidate models returned far too many calculated p-values 

of 1. The immediate conclusion one can draw is that the p-value by itself is not an 

effective screening tool.  Since in our case the p-value and the absolute-value of the 

test-statistic are inversely proportional to each other, it is reasonable to use the test-

statistic value itself as an indicator for prediction goodness. The screening process 

should be based then on minimum values of the test-statistics in lieu of a maximum p-

values. 

Figure 4.2 presents a wide perspective of the test-statistics, mean of prediction 

errors and errors standard deviations for all 512 candidate models. Figure 4.3 presents 

a closer look (“zooming”) at the test-statistic of a group of only 84 candidate models, 

those involving the base model (Eq.(4.5)) superimposed with any combination of three 

predictors out of the list of the nine (f1 to f9 in Table 2). Note that each one of those 

84 models returned a perfect computed p-value of 1, including models number 62, 88, 

107 and 112 which seem to stand out from the group.  The conclusion arising from 

Fig. 4.3 is that the conventional approach of screening models using the p-value is not 

practical for the specific task of finding the best empirical model to represent gas-

turbine engine performance. 
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Figure 4.2. Output power prediction performance. This figure shows a wide perspective of 

all 512 candidate models performance in predicting the exemplary MTU250-C20B engine output 

power.   

 

Figure 4.3. Test-statistics of models number 47-130. This figure shows the test-statistics of 

84 candidate models (models number 47-130) involving the base Model 1 (Eq.(4.5)) 

superimposed with any combination of three regressors from Table 4.2.   

The absolute-values of the test-statistics are then used instead of the p-values. 

Figure 4.4 presents the test-statistics (absolute-value) of the top ten performing models 

for the MTU250-C20B engine. Table 4.3 specifies these models in details. Examining 

Table 4.3, no obvious pattern can be detected with respect to which regressors yield 

the best prediction performance. Nevertheless, the number of regressors used in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4.3   |   GAS-TURBINE  ENGINE PERFORMANCE FLIGHT TESTING  

121 

model has no immediate obvious effect on the prediction performance. Within the set 

of ten top-performing models there are models which involve additional one, two, 

three or four regressors to be superimposed over the basic model number 1. The trivial 

question to be asked next is do these 10 top performing models also excel when applied 

to different gas-turbine engines? Can findings from the MTU250-C20B engine 

installed in the BO-105 helicopter be generalized to other types of helicopter gas-

turbine engines? These enquiries are addressed hereinafter. 

 

Figure 4.4. Top ten performing models. This figure shows the test-statistics (absolute value) 

of the top ten performing models for the MTU250-C20B engine installed in the BO-105 

helicopter. 

Table 4.3. List of 10 top-performing models for the BO-105 helicopter.  

Auxiliary Regressors Model Number 

Involved † 367 3 53 127 61 12 65 94 199 355 
f1=(CNg)(CTGT)   x  x x x    

f2=(CNg)(CWf)  x x     x x X 

f3=(CTGT)(CWf) x     x   x  

f4=(CNg)2(CTGT) x    x     x 

f5=(CNg)2(CWf) x      x    

f6=(CTGT)2(CWf)    x x  x   x 

f7=(CNg)(CTGT)2    x    x x  

f8=(CNg)(CWf)2 x   x     x x 

f9=(CTGT)(CWf)2 x  x     x  x 
† Regressors to be superimposed over the basic Model 1 (Eq.(4.5)). 
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Consider next a different type of gas-turbine engine (Engine 2 as per Table 4.1) 

installed on a different type of helicopter and a new set of flight-test data.  Performing 

similar analysis reveals completely different findings from the BO-105 case. Figure 4.5 

presents test-statistics of the 10 top-performing models for engine number 2. Further 

analysis was undertaken to include flight-test data from five other types of gas-turbine 

engines installed on different helicopters, as presented in Table 4.1.  Results merely 

confirmed the previously stated conclusion that the best performing model to describe 

helicopter gas-turbine power, if it exists, cannot be found using a conventional 

approach of screening between models using hypothesis testing, neither based on the 

p-value nor on the test-statistics. Concluding this section, an alternative general 

approach needs to be taken. The alternate approach for screening between empirical 

models relates to the Singular-Value-Decomposition (SVD) theorem and is discussed 

and demonstrated in the next section of this chapter.  

 

Figure 4.5. Top ten performing models for the EC-145 engine. This figure shows the test-

statistics (absolute value) of the top ten performing models for the Turbomeca Arriel 1E2 engine 

installed in the EC-145 helicopter. 
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4.4 SINGULAR VALUES APPROACH FOR 

MODEL SCREENING 

The singular values approach for screening between various engine output power 

model candidates is derived from a mathematical theorem known as the Singular-

Value-Decomposition (SVD). This theorem which relates to the field of linear algebra 

is briefly introduced in the following subsection, before it is applied for the task of 

candidate models screening.  

4.4.1 The SVD Theorem 

The theory and mechanics of the SVD are thoroughly discussed in Strang [88]. In 

a nutshell, this theorem states that any matrix from any size which holds real numbers 

as entries can be decomposed as a product of 3 unique and special matrices as shown 

in Eq.(4.9). One should view this decomposition as a way of finding convenient 

orthogonal bases for both the column-space and the row-space of an arbitrary real 

matrix. 
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Consider a real matrix Z to be of size ‘m’ by ‘n’ (denoted (m,n)) and rank ‘r’. Matrix 

Z can then be expressed as a product of the three unique matrices: 

(1) Matrix U called the “left-singular-vectors” (LSV) is an orthonormal matrix of 

size (m,r). The columns of this matrix are unity-norm vectors which are orthogonal to 

each other. This set of vectors serves as a basis for the column-space of matrix Z. 
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(2) Matrix Σ is a diagonal matrix (size (r,r)) which holds the singular-values of Z 

as entries along its diagonal. The singular-values are non-negative real numbers which 

can be arranged along the diagonal in a descending order.  

(3) Matrix V called the “right-singular-vectors” (RSV) is an orthonormal matrix 

of size (n,r). The columns of this matrix (or the rows of the transposed matrix, VT) are 

unity-norm vectors which are orthogonal to each other. The set of these vectors serves 

as a basis for the row-space of matrix Z. 

The SVD of a real matrix can alternatively be regarded as a linear combination of 

‘r’ rank-one matrices (Eq.(4.10)). This complementary manner to look at the SVD is 

referred-to as the spectral decomposition of the matrix Z. With this approach, any 

real matrix Z of rank ‘r’ can be “approximated” as a lower ranked matrix (lower than 

rank ‘r’). This reduction in the rank of a matrix is the essence of the dimensionality 

reduction of matrix Z. 
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4.4.2 SVD implementation for model 

screening 

The SVD theorem can be implemented to identify latent dimensions or concepts 

in the gas-turbine engine flight-test data. For this, matrix Z is defined with its elements 
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to indicate measures of excellence (scores) for each specific multivariable-polynomial 

model in predicting performance of each specific engine tested (see Eq.(4.11)). 

1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,1 3,2 3,3 3,4 3,5 3,6 3,7

511,1 511,2 511,3 511,4 511,5 511,6 511,7

512,1 512,2 512,3 512,4 512,5 512,6 512,7

. . . . . . .

. . . . . . .
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  This matrix Z is of size (512, 7) with its rows representing all 512 candidate 

multivariable-polynomial models and its columns representing the various 

engines/helicopters tested. For example, engine number 1 is represented by the most 

left column and engine number 7 by the most right column of matrix Z.  

Next step is to assign scores as elements of matrix Z to quantify level of precision 

each model predicts a specific engine. As explained before, these scores are based on 

the absolute-values of the relevant test-statistics (Eq.(4.11)). Since prediction goodness 

and test-statistics (absolute-value) are inversely proportional to each other, that is the 

smaller the test-statistic absolute-value is the better the model represents the 

experimental data, the reciprocals of all test-statistics (absolute-value) are used as 

elements in matrix Z. The variable ti,j as appears in Eq.(4.11) represents the test-statistic 

calculated for model number (i) using the flight-test data of engine number (j). Note 

that matrix Z encapsulates the entire flight-test data base. 

Equation (4.9) displays the SVD decomposition of matrix Z into its three unique 

matrices as defined above. The idea of linearly-independent vectors to span a base in 

space can be regarded as an exposure of hidden dimensions in the data.  The 

conceptual interpretation of the SVD of matrix Z is illustrated in Fig. 4.6 and further 

explained hereinafter: 
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The rank of matrix Z represents the number of independent hidden Principal 

Dimensions (PDs). The diagonal singular-values matrix (Σ) has all PDs represented by 

elements along its main diagonal. These elements are arranged in a descending order 

and indicate the relative ‘strength’ of appearance of each PD in the flight-test data. 

The left singular-vectors (LSV) matrix has seven columns, each with 512 elements. 

These seven columns are orthonormal vectors which represent the level of 

correspondence between each one of the 512 models and an identified PD in the data. 

As illustrated in Fig. 4.6 the first column vector indicates correspondence between 

each one of the 512 models to the first (and the most significant) PD identified in the data. 

The second column vector specifies level of correspondence between all 512 models 

to the second most significant PD, and so on. Figure 4.6 explicitly notates one element 

of the left-singular vector matrix (third row and sixth column) as an example to indicate 

the level of correspondence between model number 3 and PD number 6. 

The right singular vectors (RSV) matrix has seven rows (the rank of matrix Z) 

with seven elements each (the seven engines in the flight-test data base). As illustrated 

in Fig. 4.6, these rows of VT (or the columns of V) represent the level of 

correspondence between each specific engine (denoted by the column number of VT) 

and a Principal Dimension (denoted by the row number of VT). The first row vector 

indicates relative levels of correspondence between all 7 engines and the first (and the 

most significant) PD. The second row specifies the relative strength between all 

engines and the second most significant PD, and so on. Figure 4.6 specifies one 

element of the right-singular vector matrix (7th row and 2nd column) as an illustration 

of the level of correspondence between engine number 2 and PD number 7 (the least 

significant PD exposed in the data). 

The relative strength of each PD which is indicated by the corresponding 

singular-value is then normalized as per Eq.(4.12).  
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Figure 4.6. The conceptual interpretation of SVD of matrix Z. This matrix decomposition 

is used as a tool for screening between 512 distinct empirical models based on their relative 

prediction performance using flight-test data from seven distinct gas-turbine engines. 

Figure 4.7 presents the normalized seven PDs singular-values. One can observe 

that the major PD detected in the data holds a relative strength of 36%, while the 

following two PDs (PD2 and PD3) share an almost similar relative strength of 23% 

and 22%, respectively. The combination of the first four PD’s encapsulates about 96% 

of the PDs representation in the data. 
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Figure 4.7. The relative strength of the seven Principle Dimensions (PDs). This figure 

presents the normalized strength of each identified PD as demonstrated by the normalized 

Singular-Values (SV’s) of matrix Z (Eq.(4.12)). 

4.4.2.1 The LSV – Models to PDs correspondences 

The absolute-value of each element along a column vector of the LSV indicates the 

level of correspondence between a specific model (row number of the vector) and the 

relevant PD. Each element along the column vectors is normalized as per Eq.(4.13).  
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Figure 4.8 presents a collage of seven plots to indicate the normalized elements 

along the seven columns of the LSV as level of correspondence between each one of 

the 512 candidate models and the seven PDs. The first plot represent correspondences 

between each candidate model and the first and most significant PD (PD1). It is 

evident from this plot that Model 320 demonstrates the strongest correspondence to 

PD1. The other plots on Fig. 4.8 are broadening the spectrum of models to PD’s 

correspondence. Model 125 demonstrates the strong correspondence to PD2, model 
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367 to PD3, model 4 to PD4, models 49 and 226 to PD5, model 7 to PD6 and model 

282 to PD7. 

 

Figure 4.8. Models to PDs correspondences (LSV). This figure presents the normalized 

correspondences (Eq.(4.13)) between all 512 candidate models and the seven identified PDs. 

4.4.2.2 The RSV – Engines to PDs correspondences 

The absolute-value of each element along a row vector indicates the level of 

correspondence between a specific engine (column number of the row-vector) and the 

relevant PD. Each element along a row is normalized as per Eq.(4.14).  
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Figure 4.9 presents a collage of seven plots to indicate the normalized elements 

along the seven row-vectors as level of correspondence between engines and PDs. It 

follows from the first plot in Fig. 4.9 that PD2 is mainly driven by two engines; engine 

number 1 and engine number 4. In a more general context, these two engines share a 

substantial similarity with respect to performance models through the second most 

significant PD (PD2). This demonstrates the capability of the SVD decomposition to 

detect latent dimensions in the data, hence to expose hidden similarities between 

different types of engines.   

The other six plots in Fig. 4.9 continue to expose the similarity shared between 

engines 1 and 4 through PD3. The most significant PD1 is mostly driven by engine 

number 7, PD4 by engine number 2, PD5 by engine number 5 and PD7 by engine 

number 6. 
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Figure 4.9. Engines to PDs correspondences (RSV). This figure presents the normalized 

correspondences (Eq.(4.14)) between all seven engines and the principal dimensions (PDs). 

4.4.3 Selection of the best multivariable 

polynomial model 

Once the SVD theorem and its practical interpretation for flight-test data analysis 

has been demonstrated, the fundamental question raised in this chapter can be 

readdressed, namely, is it practicable to find a general approach to the MPOC method 

for best prediction of the gas turbine engine available power? Can the flight-test data 

recommend a short list of multivariable polynomial models best describing the 
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helicopter gas-turbine engine performance? As concluded in Subsection 4.3.3 above, 

the conventional method of hypothesis-testing provided confusing and incoherent 

results. For this a new matrix (W) is defined as per Eq.(4.15). 

  
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ˆ0

ˆ ˆ ˆ      

 
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  (4.15) 

Matrix W is the product of the normalized LSV matrix and the normalized 

singular-values matrix. This matrix is of the same size of matrix Z, i.e. 512 rows and 7 

columns. Each column of W represents the relative correspondence of the 512 models 

to the relevant PD (the column number). Adding all column vectors of matrix W to 

each other results in a single column vector {S} with 512 elements (Eq.(4.16)).  

             1 2
1

. .


    
r

i r
i

S w W w w w   (4.16) 

Practically, each element of the column-vector {S} holds a normalized value for 

the overall/combined performance of each model in predicting the output power of 

the “generic” engine, a hypothetical engine that represents all engines tested. The 

elements of the column-vector {S} can be regarded as the Combined Normalized 

Scores (CNSs) of each one of the 512 models used in predicting the performance of a 

gas-turbine engine in general. Figure 4.10 presents the CNS for all 512 candidate 

multivariable polynomial models. Based on the highest CNS achieved, the best 

empirical model describing the gas-turbine engine performance is model number 320. 

This outcome can be expanded to provide a short list of the ten top-performing 

multivariable polynomial for the seven engines tested (see Table 4.4). From Table 4.4 

one can find the similarities between this list and the one formulated for Engine 1 

(Fig. 4.4) and for Engine 2 (Fig. 4.5). Although engines number 1 and 2 ‘sent’ few of 

their top 10 performing models as “representatives” to the final ten top-performing 

models list, neither one nor the other shared the best final model proposed based on 

their level of correspondence to the most significant PD1. The engine that 
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demonstrates the maximum correspondence to PD1 was Engine 7 (Fig. 4.9) and its 

top-performing model comes leading in the final list.  As presented in Table 4.4, model 

number 320 involves the basic ten predictors as given by Eq.(4.5), superimposed with 

five other predictors: f1, f4, f6, f8 and f9. One should notice that adding more predictors 

to the basic model, Model 1 (Eq.(4.5)), does not necessarily correlate with prediction 

performance improvement. The final top-ten list actually includes two models which 

are using only one extra predictor to the basic Model 1. These are models number 4 

and number 3.  Model number 4 (Eq.(4.17))) uses f1 as the auxiliary predictor and 

Model 3 (Eq.(4.18)) uses f2. When analysis requires simple model to use, either one of 

the two is suitable. Another point worth addressing is how well the basic model 

performs in the bigger scheme of all seven engines? It appears that model number 1 

attains the 173rd place, at the top of the second trimester of the pack of all 512 models. 
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Table 4.4. List of 10 top-performing models for helicopter gas turbine engines. 

Auxiliary 
Regressors 

Model Number 

Involved* 320 367 125 4 3 157 305 237 53 103 
f1=(CNg)(CTGT) x     x x  x  
f2=(CNg)(CWf)  x   x    x  
f3=(CTGT)(CWf)  x  x  x x x  x 
f4=(CNg)2(CTGT) x x         
f5=(CNg)2(CWf)  x x   x x x  x 
f6=(CTGT)2(CWf) x     x     
f7=(CNg)(CTGT)2   x    x    
f8=(CNg)(CWf)2 x x     x x  x 
f9=(CTGT)(CWf)2 x x x     x x  

* Regressors to be superimposed to the basic-model expressed as Model 1 (Eq.(4.5))  
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Figure 4.10. The Combined Normalized Scores (CNSs) for all 512 engine models. This 

figure presents the CNS values for all 512 multivariable engine models based on data from the 

seven engines. Model number 320 outperforms all other empirical models in predicting the 

output power of the seven gas-turbine engines tested.    

4.5 COMPARISON TO CONVENTIONAL 

METHODS AND APPLICATIONS 

The conventional method for estimating helicopter installed gas turbine engine 

output power is based on single-variable analysis method. The innovative MPOC 

method, based on multivariable polynomial models, was shown in Chapter 3 to 

significantly improve prediction of maximum available power under a wider range of 

atmospheric conditions. The main weakness of the MPOC method is that it struggles 

with a large number of candidate multivariable polynomial models to choose from. 

Table 4.4 addresses this shortcoming by providing a brief list of 10 best-performing 

multivariable polynomial models to be used with the MPOC method. Figure 4.11 

presents the mean of the prediction error of all these multivariable polynomial models 

using the seven engines of Table 4.1.  

The mean of the prediction errors presented in Fig 4.11 were calculated as per 

Eq.(4.19). In this equation the variable CSHPi represents the measured engine power 
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for data point “i” and CSHPj is the engine output power as estimated by sequential 

model number “j”. The parameter “n” represents the number of measured data points.   
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Figure 4.11. The mean errors of engines output power estimations. This figure presents 

the mean of output power prediction errors for all seven engines tested using the top-ten 

multivariable models listed in Table-4.4 and the conventional single-variable model.    

Figure 4.11 also presents the prediction performance of the seven engines of 

Table 4.1 using the conventional method based on the single-variable models (Eq.(4.1) 

-(4.3)). One can notice that the multivariable polynomial models performed much 

better in predicting all seven engine output-power. The maximum average prediction-

error using a multivariable model was measured to be only 0.2%. This relatively low 

prediction error belongs to the two models 3 and 4 whilst predicting the output power 
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of Engine 4 (as per Table 4.1). Comparing the prediction performance of the 

multivariable polynomial models to those achieved using single-variable models 

disclose a clear advantage for the multivariable models. The single-variable models 

returned much higher prediction errors for all seven engines tested. One can see in 

Fig. 4.11 these prediction errors reached up to 1.15% (for Engine 3).   

A different multivariable approach for helicopter engine performance 

determination is presented by Gomez et al. [89]. Although prediction accuracy 

achieved is not specifically discussed in Gomez [89], the method presented completely 

ignores the engine temperature as a predictor for the engine performance model. The 

engine temperature is essential for the determination of maximum available power, 

since the engine output power is often limited by this variable reaching the maximum 

allowed. Discarding the engine temperature from the performance model, makes this 

approach useless for the MPOC method.  Another fundamental difference between 

the MPOC method and the one presented by Gomez [89] is the order of the 

polynomials used to describe the engine output power. The MPOC method is based 

on third-orders, while Gomez [89] uses second-orders. Limiting the engine 

performance model to a second-order only, prevents an inflection point and therefor 

fails from modelling an important physical characteristic of the engine that the rate of 

power increase with engine temperature increase must reduce, while operating the 

engine close to its limitations.  

All multivariable models presented in Table 4.4 were found to estimate the output 

power of the seven different engines tested with an average accuracy of no more than 

0.2% for each model tested. The absolute prediction error for a single measured point 

never exceeded 4.1% for all seven different engines tested. Similar analysis, based on 

conventional single-variable models, returned best estimation errors of only 8%. 

Putting the work presented in this chapter in the larger context of gas turbine engine 

performance and comparing the prediction accuracy achieved using the multivariable 

polynomial with prediction accuracy of commonly used research simulation tools, such 

as Turbomatch [90] reveals similar or better results. Goulos et al. [91] uses Turbomatch 

to predict helicopter gas-turbine performance for their work. Chapter 3 of Goulos et 
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al. [91] reports that the model has been matched at design point conditions with public 

domain data in terms of specific fuel consumption (SFC) with an accuracy of 0.3%. 

Heng et al. [92] presents a method of calculating gas-turbine engine output power 

based on flow-field simulation and aerodynamics modelling. The engine output-power 

estimation is based on the engine outlet temperature. Predictions for engine outlet 

temperature were validated against five measured steady-state engine operating data 

points (output power between 340 to 1,394 hp) using five similar-type but different 

helicopter gas turbine engines tested on a bench. The reported temperature estimation 

errors ranged between 2.4% and 4.1% for all 25 data points measured.    

Simple and accurate mathematical models that represent the available output 

power of the engine, such as presented in Table 4.4, can efficiently be used not only 

for the immediate prediction of a specific helicopter performance, but also in relevant 

adjacent research which requires a gas-turbine engine power model.  Examples of such 

are improvement of existing gas-turbine engine technologies, where current 

performance is needed for comparison (see Zhang and Gummer [93]). Other examples 

can be improvement and validation of helicopter performance where the engine output 

power is needed as a module in the big scheme of total helicopter performance as 

presented by Savelle and Garrard [94], and Yeo et al. [95].  

4.6 CONCLUSIONS AND SUMMARY 

The process of empirical models evaluation is at the core business of experimental 

flight-testing data analysis. A commonly used technique in experimental flight testing 

to sort between candidate models is the one based on hypothesis-testing and the 

associated P-values. The hypothesis-testing method is thoroughly demonstrated in 

Subsection 4.3.2 above for the purpose of selecting the best empirical multivariable-

polynomial model to represent the BO-105 engine. After applying minor adjustments, 

the hypothesis-testing method was implemented successfully in ranking all 512 

candidate multivariable-polynomial models based on their relative performance. 
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However, the hypothesis-testing approach became completely ineffective once the 

experimental data-base was expanded to include six more engines. The method failed 

providing a clear answer to the question of which is the best-performing model when 

the entire experimental data from all seven engines is analysed as a whole. 

The Singular-Value-Decomposition (SVD) approach was used successfully where 

the hypothesis-testing method failed and produced a list of top-performing 

multivariable polynomial models to describe gas turbine engine performance in 

general. The SVD approach was also used for exposing latent similarities between 

different engines with respect to their performance models. 

Analysis showed no correlation between the number of auxiliary predictors used 

in the multivariable-polynomial model and the power prediction accuracy. The fourth 

and fifth best-performing models out of the 512 evaluated incorporated only 11 

predictors, making either one of them a great choice, if analysis simplicity is 

paramount.  

Although the SVD approach is demonstrated in this chapter using engine data, it 

is not bounded only to gas-turbine engine testing and available power flight-testing. In 

the following chapters of this dissertation, the SVD approach is implemented for other 

disciplines of helicopter performance flight-testing, for which empirical models are 

being evaluated.  
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It does not matter how beautiful your theory is. If it does not 

agree with experiments, it’s wrong. 

Richard P. Feynman  

5 HOVER PERFORMANCE TESTING 

BASED ON DIMENSIONALITY 

REDUCTION 

5.1 CHAPTER OVERVIEW 

he power required to hover a helicopter is fundamental to any new or modified 

helicopter performance flight-testing effort. The conventional flight-test method 

that was previously discussed in Chapters 1 and 2 (Subsections 1.3.2 and 2.3.2) is based 

on relating two non-dimensional variables (coefficient of power and coefficient of 

weight). This single-variable method is overly simplified and neglects compressibility 

effects in the power required to hover under a wide range of gross weight and 

atmospheric conditions. This chapter presents an alternative flight test method for 

hover performance that addresses the deficiencies of the conventional method, as 

stated in Subsection 1.4.2 (PS2). This novel hover performance testing method is 

referred-to as the ‘Corrected-Variables Screening using Dimensionality Reduction’ 

(CVSDR). The method uses an original list of 15 corrected-variables derived from 

fundamental dimensional analysis.  

This Chapter 5 was published as the following journal paper: Arush I., Pavel M.D., and Mulder 
M., “A Dimensionality Reduction Approach in Helicopter Hover Performance Flight 
Testing”, Journal of the American Helicopter Society 67, No. 3 (2022): 129–41. 
https://doi.org/10.4050/JAHS.67.032010. 

T 

https://doi.org/10.4050/JAHS.67.032010
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This list is further reduced by means of dimensionality reduction to include only the 

essential and effective hover performance predictors.  The CVSDR method is 

demonstrated and tested in this chapter using flight-test data of a Bell Jet-Ranger and 

shows that at the 95% confidence level; the averaged prediction error is only 0.9hp 

(0.3% of the helicopter maximum continuous power). Using the same set of flight-test 

data, the conventional method yields a much larger average prediction error of 1.7 hp. 

Although demonstrated in this chapter with a specific type of helicopter, the CVSDR 

method is applicable for hover performance flight-testing of any type of a conventional 

helicopter configured with a main rotor and a tail rotor. 

5.2 INTRODUCTION 

The most distinguishing characteristic of a helicopter is its ability to steadily hover 

at any phase of its mission given it has a sufficient power margin [22,23]. Knowing the 

power required to hover is fundamental to any new or modified helicopter flight-test 

effort. As already discussed in Chapter 2, the conventional flight-test method for hover 

performance is based on the combined blade-element momentum (BEM) theory and 

is overly simplified. This simplification often yields empirical models that fail to 

accurately and consistently predict the total power required to hover under a wide 

range of helicopter gross weight and atmospheric conditions. Bousman [96]  

demonstrates this drawback by using Out-of-Ground Effect (OGE) hover 

performance testing of five different flight test programs and reporting inconsistency 

in OGE hover performance of up to 5% of which the source of the error could not 

be explained.  

As already mentioned in Chapter 1 (Subsection 1.4.2), a major disadvantage of the 

conventional OGE hover flight-test method is that it does not address main rotor 

blade compressibility effects as those are often assumed to have negligible effect on 

the hover performance. An example of this frequently taken assumption can be found 

in the study on uncertainty quantification in helicopter performance by Siva et al. [97]. 

The ability to account for compressibility effects, mostly related to blade tip Mach 
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number and shape, is essential for accurate hover performance predictions. This 

relation is well illustrated by computational fluid dynamic (CFD) simulations used to 

predict hover performance of rotor systems. Jacobson and Smith [98] presents hover 

performance comparison between predictions from a hybrid CFD methodology and 

measured hover performance of a rotor with three different blade tip configurations 

at three different tip Mach numbers (0.55, 0.6 and 0.65). They state that future work is 

needed to understand why CFD models do not predict the same impact of the tip 

shape as measured in the experiment. Moreover, one of Jacobson and Smith [98] 

conclusions states that hover performance predictions from the hybrid methodology 

CFD improve as tip Mach numbers reduce. This conclusion solidifies the significance 

compressibility effects have on hover performance. Garcia and Barakos [99] provide 

another example to show compressibility effects should not be neglected from hover 

performance predictions. Their work, which focuses on accurate rotors hover 

performance predictions using modern CFD methods with modest computer 

resources, shows the significance the tip shape and Mach number have on hover 

performance of a rotor system. 

Measuring compressibility effects in flight-testing of a full-scale helicopter and not 

just a rotor system requires the hover trials to be performed in high altitude and low 

air temperatures. Whereas in the past, these kind of high altitude hover trials were 

challenging since they required high-ground reference points, recent technological 

developments show potential to make these trials more practical in the future. 

Matayoshi et al. [100] present results from a flight-test evaluation of a helicopter 

airborne LiDAR (Light Detection and Ranging) system. This system can measure 

accurately three-axis true airspeed which is crucial for high altitude hover performance 

trials. Boirun [101] attempts to rectify the disadvantage of the conventional hover 

flight-test method by including compressibility effects into the empirical performance 

model of the helicopter. However, his approach does not determine a definitive single 

empirical model to include compressibility effects. Instead, various curves for different 

values of main-rotor tip speeds are offered. 
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Obtaining an accurate single empirical model to predict the hover performance is 

highly beneficial since it can also be used for real-time applications. A single empirical 

hovering model can be used in conjunction with existing algorithms that predict the 

gross weight of the helicopter for real time hovering performance. Abraham and 

Costello [102] present such a practical algorithm to estimate the gross weight and 

center of mass of a helicopter in flight and report the algorithm works well in hover. 

Chapters 3 and 4 present an alternative and more accurate approach to helicopter 

performance flight-testing, using multivariable polynomials as empirical models. This 

approach was proven in Chapter 3 more accurate in the prediction of the available 

power of a helicopter under a wide range of atmospheric conditions as compared to 

the conventional single-variable flight-test method. Chapter 4 provides a systematic 

method for screening between candidate multivariable predictors. This multivariable 

polynomial approach is next applied in this chapter (Chapter 5) to the power required 

to sustain a helicopter in an OGE hover, without taking any lenient assumptions such 

as negligible compressibility effects. 

This Chapter 5 is structured as follows: after a short introduction, the 

conventional method for hover performance testing is briefly reminded and 

demonstrated using flight-test data from a Bell Jet-Ranger helicopter. Flight-test data 

from three distinct sorties, totalling 56 data points are used to obtain an empirical 

single-variable model for the power required to OGE hover. The expected level of 

accuracy is then evaluated while using this empirical model to predict the power 

required to hover, under condition of the 20 hover points of Sortie 4. Unsatisfied with 

the level of prediction accuracy, an alternative method referred to as the “Corrected-

Variables Screening using Dimensionality Reduction” (CVSDR), is presented and 

discussed in Section 5.4. The CVSDR method is applied to the same Jet-Ranger flight-

test data and yields an alternative empirical multivariable model for power required to 

OGE hover. The level of prediction accuracy expected from the CVSDR driven model 

is discussed in Sections 5.5 and compared with the conventional method in Section 

5.6. The later Section 5.6 also provides possible reasoning to explain the different 
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prediction accuracy between the two methods. Section 5.7 presents the conclusions 

and summary and concludes this chapter.  

5.3 CONVENTIONAL METHOD FOR HOVER 

PERFORMANCE TESTING 

The conventional single-variable flight-test method for determining the power 

a helicopter required for a hovering flight is thoroughly discussed in Chapter 2 

(Subsection 2.3.2), and demonstrated in many helicopter hover performance papers 

[77,103-105]. In a nutshell, this method seeks to uncover the linear relation between 

the coefficient of power (𝐶𝑝) and the coefficient of weight raised to the 1.5 power 

(𝐶𝑤)1.5, i.e., to realize the two coefficients 𝛼1and 𝛼2 of Eq.(5.1) for a particular type of 

helicopter.  
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The flight-test team is required to plan and execute numerous hover test points 

in order to cover the entire flight envelope of the helicopter under test. This includes 

all certified gross-weights (W), the entire atmosphere the helicopter is expected to fly 

at (which defines the ambient air density, 𝜌𝑎), and throughout the governed range of 

the main-rotor angular speed (ω,Ω). As already discussed in Chapter 2, there are two 

fundamental techniques to execute the precise hover sorties for data gathering. The 

one is the free-flight hover and the other, which requires more preparation efforts and 

coordination, is the tethered hover. The pros and cons of each technique are discussed 

in Chapter 2 (Subsection 2.3.2.1).  

Next, the conventional method is demonstrated using free-flight OGE 

hovering flight-test data obtained during from four distinct sorties of a Bell Jet-Ranger 
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helicopter. The four sorties were conducted under different atmospheric and gross-

weight conditions, as summarized in Table 5.1.  

Table 5.1. Summary of OGE hover conditions. This table presents the ambient conditions 

and range of Bell Jet-Ranger parameters during the free-flight OGE hovers. 

Sortie W [lbs.] CW [x10-3] Pressure Altitude 
[ft.] 

Ta  [°C] Mtip 

1 2900 - 3000 3.298 – 4.032 2200 - 6600 11 to 18 0.59 – 0.62 
2 2850 - 2960 2.986 – 4.046 3100 - 6100 10 to 15 0.59 – 0.61 
3 2850 - 2980 3.161 – 3.739 700 - 6350 -2 to 3 0.61 – 0.64 
4 2700 - 3060 3.043 – 4.062 425 - 6800 20 to 26 0.59 – 0.61 

 

Figure 5.1 presents the total of 76 matching pairs of coefficient of power (𝐶𝑝) 

and coefficient of weight raised to the 1.5 power ((𝐶𝑤)1.5) measured in all four sorties. 

All 76 OGE hover points were obtained using the free-flight (un-tethered) flight-test 

technique. Specialty Flight Test Instrumentation (FTI), which was calibrated for the 

test, sampled relevant parameters at a rate of 10 cycles per seconds. The helicopter was 

stabilized at each hover point for a duration of at least 20 sec., and sampled data was 

averaged over this period of time post flight. The power required to hover was reduced 

from the engine output torque and the free-turbine speed which were both sampled 

by the FTI. The gross weight (W) of the helicopter was calculated by subtracting the 

fuel used from the take-off all up weight. All hover points were conducted under the 

restrict limitation for the relative wind to be less than 3 kts. For ground referenced 

hover points the relative was measured using a ground based anemometer and for high 

altitude hover points, an independent helicopter with an independent Low Airspeed 

Indicator (LAI) was used as a hover reference for the tested Jet-Ranger.   
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Figure 5.1. Non-dimensional OGE hover performance. This figure shows the non-

dimensional OGE hover performance of a Bell Jet-Ranger. The figure is split into four 

distinct sorties (Sortie 1-4), as per the conditions specified in Table 5.1. 

The level of accuracy achieved using the conventional method was assessed by 

taking the following approach: flight-test data from the first three sorties was used for 

the derivation of an empirical OGE hover model, obtained from a linear regression. 

Then, the accuracy and effectiveness of this empirical model was evaluated by 

comparing its predictions with the actual flight-test data gathered in Sortie 4. The 

reason for this specific partition of predicting the performance of Sortie 4 by using 

data obtained from the first three sorties was to challenge the method to the fullest 

extent possible. It is evident from Table 5.1 that Sortie 4 was executed under a wider 

range of gross weights and pressure altitudes, not covered by the first three sorties. By 

applying this specific partition, the empirical hovering model is challenged with an 

extrapolation task.  

Linear regression was executed in order to describe the relationship between 

the coefficient of power (𝐶𝑝) and the coefficient of weight raised to the 1.5 power 

((𝐶𝑤)1.5). The 56 flight-test hover points of Sorties 1-3 were substituted in Eq.(5.1), 

yielding a linear system of 56 equations with only two unknowns (𝛼1and 𝛼2). This set 

of equations is compactly represented as Eq.(5.2). 
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    A b   (5.2) 

The matrix A is of size (56,2) and contains the numeral values of the coefficient 

of weight (𝐶𝑤) raised to the 1.5 power as the first column, and a unity vector as the 

second column. The column vector α is of a size (2, 1) and contains the coefficients 

(α1 and α2). The column vector �⃗�  is of size (56,1) and contains the numerical values of 

the measured coefficient of power (𝐶𝑝) for all hover points. The explicit representation 

of Eq.(5.2) is presented as Eq.(5.3). 
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The system of equations represented by Eq.(5.3) is over-determined and does 

not have an exact solution. However, one can look for the ‘closest’ solution of this 

system, i.e., the “best-fit” solution denoted as �̂� (see Strang [83]). The matrix 

constructed from [ATA]-1AT is defined as the projection-matrix, and when multiplied 

by the vector �⃗�  provides the best-fit solution or the “closest” solution one can look 

for (Eq.(5.4)). Although this specific example solves for only two coefficients (𝛼1, 𝛼2), 

this method is applicable for an over-determined system with any arbitrary number of 

coefficients. 
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ˆ
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T TA A A b   (5.4) 

For the exemplary Bell Jet-Ranger considered in this chapter, the regressed 

empirical OGE hover model is presented as Eq.(5.5). 
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 Figure 5.2 presents all 56 data points from the first three sorties and the “best-

fit” solution (Eq.(5.5)).  

 

Figure 5.2. Non-dimensional OGE hover performance (Sorties 1-3). 

The errors between the measured and the predicted OGE hovering power for 

Sortie 4 were calculated in accordance with Eq.(5.6) and are presented in Fig. 5.3.  
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The prediction errors ranged up to an absolute maximum value of 11.7 hp, a 

mean of -3.7 hp and a variance of 18.1 hp2. For the type of helicopter tested, a power 

deviation of more than 1.6 hp (absolute value) is already noticeable to the aircrew. The 

averaged prediction error of -3.7 hp (over-estimate) with a variance of 18.1 hp2 is 

therefore considered substantial. The conventional approach in flight-testing for 

assessing how accurate a model predicts the actual performance is based on 

hypothesis-testing. This approach which follows from the central-limit theorem is 

thoroughly discussed in the literature [84,87]. In a nutshell, a hypothesis is set (the 

‘null-hypothesis’) and by using the test-statistic (Eq.(5.7))) the validity of the null-

hypothesis is assessed against the alternative hypothesis.  
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For the specific case presented, the null-hypothesis assigned is that on-

average the power-to-hover predicted by the empirical model obtained (Eq.(5.6)) does 

not differ from the true measured power by more than ±1.6 hp (deviation mismatch 

noticeable to the Jet-Ranger aircrew). This null hypothesis is tested against the 

alternative that on-average the power to hover from Eq. (5.6) shows an absolute 

prediction error of more than 1.6 hp. 

 

Figure 5.3. Power prediction errors for Sortie 4 (base model). This figure shows the power 

to OGE hover prediction errors generated by the base model (Eq.(5.6)) for the conditions of 

Sortie 4.  

The relevant test-statistic for this hypothesis testing is calculated per Eq.(5.7). 

The symbol ‘n’ represents the number of measured test points of Sortie 4 (n=20) and 

‘S’ stands for the standard deviation of the prediction errors of the empirical hover 

model (Eq.(5.6)) which are presented in Fig. 5.3. The calculated value for the test-

statistic (Eq.(5.7)) was found to be 2.18. Inferential statistical analysis based on the 

sampled data from Sortie 4 shows the probability for making a type-I error by rejecting 

the null-hypothesis to be only 4.2%. This low probability for a type-I error is below 

the 5% significance level accustomed in helicopter performance flight-testing. The 
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practical meaning of this test is that there is significant statistical evidence at the 95% 

confidence level to reject the null hypothesis and adopt the alternative hypothesis 

instead. It can be concluded that on-average and at the 95% confidence level, the 

power required to hover predictions (Eq.(5.6)) deviates by more than 1.6 hp from the 

actual measured power. Complementary statistical analysis shows that on-average and 

at the 95% confidence level, the hover-power predictions based on Eq.(5.6) deviate by 

up to 1.7 hp from the actual measured power. This noticeable prediction error of the 

conventional hovering model is to be expected. One should doubt the linear relation 

between the coefficient of power and the coefficient of weight raised to the 1.5 power 

(Cp, (Cw)1.5). Merely by looking at Fig. 5.2 one should doubt if the relation is actually 

linear and whether there are some other latent factors that affect the relation between 

the data points. 

Concluding this subsection, the conventional flight-test method for assessing 

the OGE power required to hover can result in substantial estimation errors as 

demonstrated for the prediction of Sortie 4. Statistical analysis at the 95% confidence 

level shows that on-average the hover-power predictions based on Eq.(5.6) deviate by 

up to 1.7 hp from the actual measured power. Next, in Sections 5.4 an alternative 

analysis method with an improved prediction accuracy is proposed. 

5.4 CORRECTED-VARIABLE SCREENING 

USING DIMENSIONALITY REDUCTION 

An alternative analysis method for the power required to hover is proposed, 

referred-to as the ‘Corrected-Variables Screening using Dimensionality Reduction’ 

(CVSDR). This method requires no variation to the way flight-test sorties are carried-

out, only the analysis method is modified. The method involves three phases. In phase 

one, an original list of corrected-variables is generated for a multivariable analysis 

approach. In phase-two, this list of corrected-variables is refined based on concepts of 

dimensionality reduction. Phase three starts once the bare-essential list of corrected 
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variables is defined, and an empirical multivariable model is fitted to the flight-test 

data. The entire derivation process is demonstrated hereafter using the same flight test 

data from a Bell Jet-Ranger helicopter that was used in Section 5.3. 

5.4.1 Phase One - Original list of corrected-

variables for hover performance 

Phase one of this method starts by proposing the dimensional variables that affect 

the physical problem of the amount of power needed for a helicopter in a hover. These 

are the ambient static pressure, Pa, the ambient static temperature, Ta, the helicopter 

gross-weight, W, the main-rotor disk area, Ad, the main rotor angular speed, ω, and 

the main-rotor height above the ground, h. The power required to hover, P, can be 

represented mathematically as Eq.(5.8) and Eq.(5.9) in an implicit form. The 

dimensions involved are presented in Table 5.2, where ‘M’ represents mass, ‘L’ 

represents length and ‘T’ represents time. 

 ( , , , , , ) a a dP f P T W A h   (5.8) 

 ˆ ( , , , , , , ) 0a a df P P T W A h   (5.9) 

Table 5.2. Variables and dimensions involved in hover performance. This table 

presents all major variables affecting the OGE hover performance problem and 

associated dimensions.  

# Physical Variable  Notation Dimension 

1 Power Required to Hover P [M][L]2[T]-3 
2 Ambient static Pressure Pa [M][L]-1[T]-2 
3 Ambient static Temperature Ta [L]2[T]-2 
4 Helicopter Gross-Weight  W [M][L][T]-2 
5 Main-Rotor Disk Area Ad [L]2 
6 Main-Rotor Angular speed ω  [T]-1 

7 Main-Rotor Height Above Ground h [L] 
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The physical problem of OGE hover performance has seven variables involved 

with three dimensions (L,M,T). According to the Buckingham Pi-theorem [66] the 

complexity of the problem can be reduced from the seven dimensional-variables 

dependent to only four Non-Dimensional (ND) variables. These four ND variables 

are next defined as products of the dimensional variables. The four ND variables are 

denoted by 𝜋𝑖 . Since there are seven dimensional variables to construct four ND 

variables, three dimensional variables are used as repeating variables in the ND 

products (𝜋𝑖). There are 35 different options to choose three variables out of seven 

for the case where the order does not matter (combinations). This sets a fairly tedious 

task of screening between 35 different options, defining the best appropriate manner 

to describe the ND helicopter hover performance. The derivation is demonstrated for 

only one of the 35 options available. The following example involves setting the main-

rotor disk area, the ambient static pressure and the ambient static temperature as 

repeating variables. The four ND products are defined in Eq.(5.10). 
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  (5.10) 

Next, the dimensional analysis procedure requires to replace each of the 

dimensional variables with its dimensions and to enforce each one of the four 𝜋𝑖 

parameters to be non-dimensional. This process is demonstrated as per Eq.(5.11).  
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Each one of the 𝜋 products yields 3 equations with 3 unknowns, which are the 

exponents. Solving for the exponents of 𝜋1 is demonstrated in Eq.(5.12). The same 

process is repeated for each one of the other ND variables, 𝜋2, 𝜋3 and 𝜋4. 

 

 

 

: 1 0

0 1 0 1 1

: 2 2 2 0 2 1 2 2 1

0 2 2 3 1/ 2

: 2 2 3 0

M b

a a

L a b c b b

c c

T b c

  
 

           
          

                     
                      
     

  (5.12) 

Based on Eq.(5.12) the first ND variable, 𝜋1, can be written as Eq.(5.13). 
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A P T
   (5.13) 

The interest is in developing a method to gather hover performance for a specific 

helicopter and not in drawing a comparison between different types of helicopters. 

Therefore, the ND variable (Eq.(5.13)) can be further simplified. The main-rotor disk 

area (Ad) is constant, and the static pressure (Pa) and temperature (Ta) of the ambient 

air can be expressed as per their ratio to the standard sea level values (Eq.(5.14)).  

 0 0 ,     a aP P T T    (5.14) 
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This gives a simplified expression for 𝜋1 defined as 𝜋1
∗ in Eq.(5.15). 
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
 

  (5.15) 

Since this term has dimensions and is not a pure ND, it is better defined as a 

“corrected” variable (CV) to describe the hover performance of a specific helicopter. 

It can be used to facilitate the forthcoming analysis.  

Similar analysis performed for 𝜋2, 𝜋3 and 𝜋4 yielded the corresponding three 

corrected-variables (𝜋2
∗, 𝜋3

∗ and 𝜋4
∗). The hover performance of a specific helicopter 

can now be simplified as presented as Eq.(5.16).   

 * * *
2 3 4 ,   ,    

d

W h

A


  

 
  (5.16) 

One should be noted that 𝜋4
∗ is a true ND variable which represents the ND 

height of the main-rotor above the ground. This ND variable is beneficial only if the 

hover performance deals with in-ground-effect (IGE). This thesis is limited to the out 

of ground effect (OGE) only and does not address the ground effect on hover 

performance.  

Identical dimensional analysis was repeated to evaluate all other 34 possibilities of 

choosing three dimensional variables out of the seven. Ten options were found to not 

having a unique solution, and few other options returned repeated ND variables. 

Overall, the analysis yielded 15 different corrected-variables which can be used for the 

specific hover performance analysis. Table 5.3 summarizes all 15 corrected-variables 

in an array form that indicates which of the three dimensional-variables (power, weight 

and main-rotor angular speed) is used in the specific corrected-variable. Three of the 

corrected-variables (𝜋13
∗ , 𝜋14

∗  and 𝜋15
∗ ) are based on all three dimensional-variables.  
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Table 5.3. Corrected Variables (CV) to represent the OGE hover performance.   

 Power 
Based 

Weight 
Based 

Main-Rotor & 
angular-speed 

based 

Power, Weight and 
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*
5 2
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*
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







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
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5.4.2 Phase Two - Screening for essential 

CVs using dimensionality reduction 

Phase Two of the proposed CVSDR method is to refine the list of 15 

corrected-variables (Table 5.3) generated from fundamental dimensional analysis and 

to select only the essentials for the task of acquiring an empirical model to represent 

the OGE hover performance of a helicopter. A power based corrected-variable needs 

to be expressed as a function of other corrected-variables. It is immediately evident 

that the three corrected-variables (𝜋13
∗ , 𝜋14

∗  , 𝜋15
∗ ) cannot serve as effective predictors 

since each one of them simultaneously involves all three major variables of power, 

weight and angular speed of the main rotor. Even prior to implementing 

dimensionality reduction tools, the list of candidate corrected variables is reduced to 

12 candidate predictors. 
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The proposed dimensionality reduction approach for hover CVs screening is 

based on the Singular Value Decomposition (SVD) theorem which is thoroughly 

presented and discussed in Chapter 4 (Subsection 4.4.1). As a reminder, the SVD 

theorem states that any generic real matrix can be uniquely decomposed into a set of 

three matrices as given in Eq.(5.17). Consider a real matrix Z to be of size (m,n) and 

rank ‘r’. This matrix Z can be expressed as a product of the following three unique 

matrices: matrix U, an orthonormal matrix of size (m,r) called the “Left-Singular-

Vectors” (LSV); matrix Σ, a diagonal matrix which holds along its diagonal the 

singular-values of Z; and matrix V, an orthonormal matrix of size (n,r) called the 

“Right-Singular-Vectors” (RSV).  
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 (5.17) 

The SVD theorem can be implemented for refining the corrected-variable 

(CV) list and to identify those which stand-out from the group of 12 as the most 

effective predictors for the OGE hover empirical model. A comparable approach is 

performed in the process of gas-turbine empirical models screening presented in 

Chapter 4. For this task of screening the most effective CVs for hover performance,   

matrix Z is filled with numeral entries of the 12 corrected-variables as evaluated for 

the first three flight-test sorties of the Bell Jet-Ranger helicopter. Matrix Z becomes of 

size (56,12); 56 rows that each represents a distinct single hover point and 12 columns 

that represent the 12 CVs (𝜋1
∗ to 𝜋12

∗ ). Next is to normalize the columns of Z to have 

a mean of zero and a variance of 1. For this, each entry along the columns of Z is 

normalized as per Eq.(5.18).  
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 
      (5.18) 



5   |   HOVER PERFORMANCE TESTING BASED ON D IMENSIONALITY REDUCTION  

156 

The normalized Matrix Z (defined as Z’) is then decomposed into its unique 

three matrices as per Eq.(5.17). As expected, the rank of Z’ is 12 representing the 

dimensionality of the flight-test data. The OGE hover performance problem as 

appears in matrix Z’ can be represented by using all 12 CVs (𝜋1
∗ to 𝜋12

∗ ). However, not 

all corrected-variables have the same level of significance in representing the variance 

in the flight-test data held by matrix Z’.  The singular-values (𝜎𝑖) which are arranged 

in a descending order along the main diagonal of matrix Σ are key to understanding 

the level of importance each corrected-variable (‘i’) holds. The conceptual 

interpretation of the SVD of Z’ for the specific problem of OGE hover performance 

is illustrated in Fig. 5.4 and is further explained herein. 

 

Figure 5.4. The conceptual interpretation of SVD of Z’ in OGE hover performance.  This 

figure presents how the abstract SVD of matrix Z’ (normalized predictors) should be interpreted 

for the task of screening out the most effective predictors for OGE hover performance 

representation.  
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The 12 singular-values of the diagonal matrix Σ are normalized as per Eq.(5.19) 
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      (5.19) 

 The normalized singular values are presented in Fig. 5.5 along with a 

cumulative-sum plot of all normalized singular values. The main conclusion one can 

draw from Fig. 5.5 is that the dimensionality of the general OGE hover problem can 

be practically reduced from 12 (the general case) to only five for the specific OGE 

hover analysed. The empirical model representing the general OGE hover 

performance can be substantially simplified for the specific case analysed, to include 

only five CVs, instead of the original 12. The cumulative sum plot presented in 

Fig. 5.5 indicates that 98% of the variance in the flight-test data stored in matrix Z (or 

Z’) can be captured by using only the first five most significant CVs. Also from 

Fig. 5.5, it can be noticed that the most significant dimension of the problem is 

responsible to 52% of variance in the flight-test data, the second dimension explains 

19% of  variance in the data, and the third, fourth and fifth can explain 13%, 8% and 

6%, respectively. 

 

Figure 5.5. The Singular Values (SVs) of Matrix Z’. This figure shows the relative 

significance of the 12 SVs (or dimensions) involved in the specific OGE hover performance.  
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The following necessary question one might have is “which are the most 

significant corrected-variables?” This question is answered by evaluating the absolute 

values of the entries of the RSV matrix. As illustrated in Fig. 5.4, each row of the RSV 

indicates the level of correspondence to a specific singular-value (or a dimension) of 

the problem. For example, the first row of the RSV specifies the level of 

correspondence each one of the 12 corrected-variables has to the first (and most 

significant) singular-value.  The second row of the RSV indicates the correspondence 

between all 12 corrected-variables to the second most significant dimension of the 

problem and so on. Since the dimensionality of the problem was reduced from 12 to 

5, it is required to evaluate the first five rows of the RSV matrix in order to expose the 

most significant CVs of the OGE hover problem. Figure 5.6 presents the significance 

of each CV to each one of the five substantial dimensions of the OGE hover 

performance problem by indicating the normalized values (as per Eq.(5.20)) of the 

entries along the first five rows of the RSV matrix. 

 
12

1

( , )
ˆ( , ) , 1,2,3,4,5

( , )


 
 j

V i j
V i j i

V i j
      (5.20) 

 

Figure 5.6. Dimensions to CVs correspondence. This figure shows the correspondence 

between each one the 12 CVs to the detected dimensions of the OGE hover problem.   
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The left singular vectors (LSV) matrix has no significant role in the type of 

analysis addressed in this chapter since it only indicates level of correspondence 

between each one of the 56 OGE hover points and the singular-values of Z.  This type 

of correspondence between particular hover test-points and the various dimensions of 

the OGE hover performance is deemed irrelevant to the subject of this analysis.  

The following five conclusions are drawn from Fig. 5.5 and Fig. 5.6: 

(1) The first and most significant dimension of the OGE hover problem holds 

for 52% of variance in the data, and is best represented by 𝜋12
∗ .  

(2) The second most significant dimension of the OGE hover problem holds 

for 19% of variance in the data, and is best represented by 𝜋11
∗ . 

 (3) The third dimension of the OGE hover problem holds for 13% of variance 

in the data, and is best described by 𝜋2
∗.  

(4) The fourth dimension of the problem holds for 8% of variance in the data, 

and is best represented by 𝜋12
∗ .  

(5) The least significant dimension in the truncated list of 5 dimensions holds 

for only 6% of variance in the data and is best represented by 𝜋9
∗, followed by 𝜋7

∗.  

Since only one power-based predictor is required for the empirical model in 

quest and the previous conclusions suggest two (𝜋12
∗  and 𝜋9

∗), it was decided to use the 

one that shows the highest correspondence with the first dimension which is 𝜋12
∗ . 

Furthermore, 𝜋9
∗ is replaced with 𝜋7

∗ as the predictor which best represents the fifth 

dimension of the OGE hover problem. 

Finally for Phase Two, a conceptual empirical model to represent the OGE 

hover performance of the example helicopter can be stated as Eq.(5.21). This 

conceptual relationship is next pursued with a first-order linear model as described in 

Eq.(5.22).  
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The numerous steps executed for dimensionality reduction in Phase Two are 

summarized as a flowchart presented in Fig. 5.7. 

 

Figure 5.7. Steps required for dimensionality reduction. This figure presents the seven steps 

required for screening between the various CVs and choosing the most significant ones.    
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5.4.3 Phase Three - Deriving a practical 

empirical model 

The proposed model (Eq.(5.22)) is fitted with the 56 flight-test OGE hover 

points from the first three sorties. This regression process is based on the ‘least-

squares’ method as previously explained in Section 5.3. The refined OGE hover 

model, based on the CVSDR method and the flight-test data from the first three 

sorties, is presented as Eq.(5.23). This empirical model is addressed hereinafter as 

Model number 1 and denoted as M1. 
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  (Model   (5.23) 

5.5 THE CVSDR MODEL PREDICTION 

ACCURACY (OGE HOVER) 

The OGE hover model generated by the CVSDR method (Eq.(5.23)) is next 

evaluated for its expected level of accuracy. For this, Model 1 (Eq.(5.23)) is used to 

predict the power required to OGE hover under the conditions of Sortie 4. The errors 

between the predicted power and the actual measured power were calculated in 

accordance with Eq.(5.24), and are presented in Fig. 5.8.  
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Prediction errors ranged up to a maximum absolute deviation of 8.5 hp. The 

mean of the prediction errors for the 20 hover points of Sortie 4 was calculated to be 

-2.3 hp with a variance of 9.7 hp2. 
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Figure 5.8. Power prediction errors for Sortie 4 (CVSDR model). This figure shows the 

power to OGE hover prediction errors generated by the CVSDR model (Eq.(5.23)) for the 

conditions of Sortie 4.  

Parallel statistical analysis as discussed in Section 5.3 for the base-model was 

performed in order to evaluate the level of accuracy to be expected from the CVSDR-

based OGE hover model (Model 1, Eq.(5.23)).  The applicable test-statistic for the 

relevant hypothesis testing was calculated per Eq.(5.25). 
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The symbol ‘n’ represents the number of measured test points of sortie 4 

(n=20) and ‘SM1’ stands for the standard deviation of the prediction errors of Model 1 

(the standard deviation of the data presented in Fig. 5.8). Test-statistic was found to 

be 1.06. Inferential statistical analysis based on the sampled data from Sortie 4 show a 

significant probability of 30.1% for making a type-I error by rejecting the null-

hypothesis. This probability for a type-I error is well above the 5% significance level 

accustomed in helicopter performance flight-testing. Practically, there is no significant 

statistical evidence at the 95% confidence level to reject the null hypothesis therefore 

it has to be accepted. Complimentary statistical analysis shows that at the 95% 

confidence-level, Model 1 (Eq.(5.23)) predictions deviate on-average by up to 0.9 hp 
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from the actual measured power to hover.  This value of 0.9 hp is well below the 

deviation threshold of 1.6 hp noticeable to the Bell Jet-Ranger aircrew. 

5.6 A COMPARISON BETWEEN THE 

CONVENTIONAL AND CVSDR METHODS 

As previously noted in Section 5.3, the OGE hover flight-test data obtained 

from a Bell Jet Ranger helicopter in a course of 4 different sorties were divided into 

two groups. The first, which consisted of data from the first three sorties, was used to 

develop an empirical model to represent the power for OGE hover. This model was 

evaluated for accuracy while used to predict hover points of Sortie 4. Two different 

models were used, the base-model which relies on the conventional hover flight-testing 

method (the single-variable, Cp to (Cw)1.5 method), and another multivariable 

empirical model derived from the proposed CVSDR method. Figure 5.9 presents a 

comparison between the prediction errors of the two OGE hover models, the 

conventional method (Eq.(5.5)) and the proposed multivariable Model 1 (Eq.(5.23)). 

 

Figure 5.9. The conventional and CVSDR methods prediction comparison. This figure 

compares the prediction accuracy achieved by both methods (conventional and CVSDR) for the 

conditions of Sortie 4.  
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The conventional model predicts the hover points of Sortie 4 with an average 

error of –3.7 hp and a variance of 18.1 hp2, whereas the proposed Model 1 yields better 

predictions with an average error of -2.3 hp and a narrower variance of 9.7 hp2. 

Hypothesis testing aimed at projecting from the particular case of Sortie 4 to the 

general case, shows that at the accustomed 95% confidence level Model 1 predictions 

deviate on-average by only 0.9 hp. Power predictions of the conventional model 

deviate, on average, by a significant 1.7 hp, which is noticeable to the Jet-Ranger 

helicopter aircrew. This power deviation of 1.7 hp can be translated to a gross-weight 

difference of about 15 lbs. under the conditions tested (Sorties 1 - 4).  The power to 

hover prediction of the proposed CVSDR method was found to be substantially more 

accurate than the conventional method as its deviation from the actual power was 1.9 

times less than the conventional method. 

One might question why is it that Model 1 predicts the power required to hover 

more accurately than the conventional model?  First and foremost, the CVSDR 

method does not assume beforehand which predictors should be used in the empirical 

model. Instead, the list of the potential 15 predictors is reduced to the most essential 

and effective ones based on the specific flight-test data analyzed.  This approach by 

itself provides more flexibility which allows for more accurate modelling. Specifically 

and as emphasized in the introduction to this chapter, compressibility effects have 

substantial influence on hover performance of rotors as reported by current CFD 

analysis. The conventional model neglects compressibility and drag-divergence effects,  

whereas the multivariable Model 1 employs a predictor to represent the blade tip 

Mach-number (𝜋11
∗ =

𝑊𝜔2

𝛿𝜃
 ), therefore capable of representing compressibility and 

drag-divergence effects. The inherent assumption of the conventional single-variable 

method for a constant zero-lift drag coefficient (Cd0) cannot be held valid for a wide 

range of Mach numbers and for high values of main rotor disk-loading. Hovering at 

low ambient temperatures (high Mach tip numbers) and at high gross-weights might 

be responsible for some sections of the main rotor disk to be subjected to drag-

divergence conditions.  



5.7   |   CONCLUSIONS  AND SUMMARY  

165 

The two predictors (𝜋7
∗, 𝜋11

∗ ) used in Model 1 can provide the extra degree of 

freedom in modelling compressibility effects, which are absent in the conventional 

model (the Cp to (Cw)1.5 method). 

5.7 CONCLUSIONS AND SUMMARY 

The proposed CVSDR hover performance flight-testing method requires no 

modification to the manner helicopter hover performance flight-test sorties are carried 

out. The change is to the procedure of the data analysis. An original list of 15 corrected 

variables (predictors) to represent the general hover performance of a helicopter was 

formulated by means of dimensional analysis. This list is further reduced by applying 

concepts of dimensionality reduction to include only the most essential and effective 

CVs to represent the hover performance problem. For the particular Jet Ranger case 

demonstrated in this chapter, this list of 15 CVs was reduced to only four essential 

predictors. Those four CVs represented 98% of variance in the specific hover 

performance data, and were applied in an empirical model to represent the OGE hover 

performance of the Jet-Ranger.    

The CVSDR method showed great potential as it was used successfully with OGE 

hover flight-test data. The power predictions of the proposed CVSDR method were 

compared to those of the conventional single-variable method, and were found to be 

1.9 times more accurate. At the 95% confidence level, the CVSDR method deviated 

by an average of only 0.9 hp from the actual power to hover, whereas the conventional 

method deviated by an average of 1.7 hp. 

Although demonstrated in this chapter using flight-test data of a Bell Jet-Ranger 

helicopter, the CVSDR method is applicable and can be used for OGE hover flight-

testing of any other types of conventional helicopters, which employ a single main 

rotor and a single tail rotor. The CVSDR method, at its core, is using dimensionality 

reduction concepts to select the most the most effective and essentials predictors of 

any physically meaningful problem. This competency of the CVSDR method can also 
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be applied to other types of helicopter performance testing which seek to relate ND 

variables. After proved successful for hover performance testing, the following 

Chapter 6 continues to develop the CVSDR method and expands it further into higher 

dimensional space of level-flight performance flight-testing.  
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Philosophy consists mostly of kicking up a lot of dust and then complaining 

that you can’t see anything. 

Gottfried Leibniz  

6 LEVEL FLIGHT PERFORMANCE FLIGHT 

TESTING 

6.1 CHAPTER OVERVIEW 

he evaluation of the power required in level-flight is essential to any new or 

modified helicopter performance flight-testing effort. The conventional flight-

test method is thoroughly discussed in Chapters 1 and 2 (Subsections 1.3.3 and 2.3.3). 

This testing method is overly simplified as it is based on approximations of the induced 

and profile power components. The method incorporates several drawbacks which, 

not only make the execution of the flight-test sorties inefficient and time consuming, 

but also compromise the level of accuracy one can expect from the empirical model 

yielded. This chapter proposes an alternative flight test method for level-flight 

performance of a conventional helicopter that addresses and rectifies all the identified 

deficiencies of the conventional method, as stated in Subsection 1.4.3 (PS3-PS7). The 

novel method, referred-to as the ‘Corrected-Variables Screening using Dimensionality 

Reduction’ (CVSDR), is practically an expansion of the hover method discussed in 

Chapter 5. The CVSDR flight-test method for level flight performance can be regarded 

as an expansion of the hover CVSDR method into a higher dimensional space. 

This Chapter 6 was published as the following journal paper: Arush I., Pavel M.D., and 
Mulder M., “A Dimensionality Reduction Approach in Helicopter Level Flight Performance 
Flight Testing”, Journal of the Royal Aeronautical Society, First View 13 July 2023.  
https://doi.org/10.1017/aer2023.57  

T 
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The CVSDR method for level-flight performance uses an original list of 36 corrected-

variables (CVs) derived from fundamental dimensional analysis principles. This list of 

candidate predictors is reduced by means of dimensionality reduction to retain only 

the most essential and effective predictors. The CVSDR method is demonstrated and 

evaluated for prediction accuracy level in this chapter by using flight-test data of a 

MBB BO-105 helicopter. It is shown that the CVSDR method predicts the power 

required for level-flight about 21% more accurately than the conventional method, 

while lowering the required flight time by an estimate of at least 60%. Unlike the 

conventional method, the CVSDR is not bounded by the high-speed approximation 

associated with the induced power estimation, therefore it is also relevant to the low 

airspeed regime. This low-airspeed relevancy allows the CVSDR method to bridge 

between the two important flight regimes of a helicopter, hover and level-flight. The 

CVSDR method for level-flight performance is applicable to any type of conventional 

helicopter.  

6.2 INTRODUCTION 

The helicopter spends most of its flying-time in the level flight regime. The 

relative time while cruising varies based upon the type and the specific mission the 

helicopter was designed-for. Porterfield and Alexander [44] analysed data from various 

types of helicopters and proclaimed that on average the helicopter spends 71% of its 

flight-time in level-flight. The FAA [45] provides different estimates for two exemplary 

turbine helicopters. The first example is a utility business type helicopter which 

estimated to spend 61% of its flight time while cruising and the second example 

presented is for a transport helicopter which is estimated to spend 73% of its flight 

time in level-flight. Regardless of where this value for relative time spent in level-flight 

truly resides, it is fair to say the helicopter spends most of its flight time while cruising.  

The helicopter performance flight test team may be tasked to execute a level 

flight performance test campaign for various reasons; it might be for a limited-scope 

validation of existing performance charts for certification purposes; or it might be for 
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the task of updating performance charts due to external configuration modification; or 

it even be required for a full-scope level flight performance campaign, for which a 

complete set of charts and/or tables is required to specify the level flight performance 

of a brand new helicopter type. Whatever the reason is, the performance flight test 

team has a need for an efficient and accurate method to evaluate the helicopter 

performance in level-flight.  

The conventional flight-test method for helicopter level flight performance is 

based on a simplification of the equation for the power required to sustain a helicopter 

in level flight, as already discussed in Chapter 2 (Subsection 2.3.3). This method is 

further demonstrated in this chapter using flight-test data of a MBB BO-105 

helicopter. Although widely used, common practice shows that this flight-testing 

method is inefficient, time-consuming and includes few drawbacks which seriously 

compromises the accuracy of the empirical power model it yields. The following is a 

compilation of the main disadvantages of the conventional flight-testing method, as 

listed in Chapter 1 (Subsection 1.4.3) as the problem statements (PS3 to PS7).  

First, the conventional method reduces a multi-dimensional physical problem 

into a three non-dimensional variable one. The three non-dimensional variables are 

the coefficient of power, Cp, the advance ratio, μ, and the coefficient of weight, Cw. 

The conventional method provides no comprehensive tools for addressing the effect 

of rotor blades compressibility on the power required for level flight. Boirun [101] 

addresses the compressibility effect in his work but his approach does not determine 

a decisive unified empirical model to include compressibility effects. Instead, various 

curves for different values of main-rotor tip Mach numbers are presented in the format 

of a ‘carpet-plot’. Obtaining an accurate and unified empirical model to predict the 

level flight performance is highly desirable since it can also be easily used and 

implemented for real-time applications. 

Second, the current method requires executions of various airspeed runs at 

constant coefficients of weight (Cw). This requirement makes the method inefficient, 

cumbersome and time consuming. Moreover, the resulting empirical model is prone 
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to elevated levels of inaccuracy since it is merely a set of single power curves for 

constant Cw, rather than a unified empirical model which accounts for the entire range 

of coefficients of weight. 

Third, the conventional method takes the high-speed approximation for which 

the induced velocity of the air through the main-rotor disk is assumed negligible 

compared to the airspeed the helicopter flies at. By adopting this approximation, the 

conventional method becomes irrelevant for the low airspeed regime. 

Fourth, the current method has no analytical means to account for the 

helicopter center-of-gravity location although numerous flight-test campaigns show 

substantial dependency between the helicopter longitudinal center-of-gravity and the 

power required for level-flight. For example, Buckanin et al. [6] present an increase of 

about 10 square-feet in the equivalent flat-plate drag area of a Blackhawk helicopter 

resulting from a 15 inches forward migration of the center-of-gravity in level flight. 

Finally, the conventional method requires the flight test crew to precisely 

control the main rotor-speed. This requirement makes the current flight-test method 

unsuitable for helicopters which their main-rotor speed control system cannot be easily 

overridden by the pilot.  

Chapters 3-5 presented an alternative and more accurate approach to 

helicopter performance flight-testing, using multivariable polynomials as empirical 

models. Chapter 3 discussed this approach for gas-turbine power testing, and 

demonstrated an increased prediction accuracy (in excess of 300%). This multivariable 

approach was also used successfully in the prediction of hover performance in Chapter 

5; taking this multivariable approach reduced the average prediction error by about 

47% as compared to the conventional hover flight test method. The systematic 

procedure to screen between candidate predictors, which is at the core of the CVSDR 

method, is discussed in Chapter 4.  

The goal of this Chapter 6 is to expand this multivariable polynomial approach 

for the greater benefit of improving the level-flight test method. The CVSDR method 
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is stretched to accommodate a more complicated helicopter performance problem 

than the hover performance discussed in Chapter 5. Abstractly, this Chapter 6 can be 

regarded as a rigorous expansion of hover CVSDR method into a higher dimensional 

space of level-flight performance. The proposed CVSDR level-flight performance 

method is aimed at addressing all identified drawbacks of the conventional method, as 

specified in this Introduction and specifically listed as the five problem statements PS3-

PS7 in Chapter 1 (Subsection 1.4.3).   

This chapter is structured as follows: after the short introduction, the 

conventional level flight performance testing is discussed and demonstrated in 

Subsection 6.3 by using flight-test data from a MBB BO-105 helicopter. The flight-test 

data obtained from four distinct sorties totalling 44 data points are used to generate 

four empirical models to represent the helicopter required power in level-flight. Each 

empirical model is then used to predict the power required for the other three sorties. 

This procedure is implemented to assess the accuracy level one can expect by using 

the conventional flight-test method. Next, in Section 6.4, an alternative method 

referred to as the ‘Corrected-Variables Screening using Dimensionality Reduction’ 

(CVSDR) is proposed. This method is demonstrated by using the same flight-test data 

used with the conventional method. Section 6.5 provides a summary of the CVSDR 

method and a practical step-by-step guidance to facilitate the execution of this method 

by future flight-test crew. Next in Section 6.6, the expected prediction accuracy of the 

CVSDR method is assessed. This expected accuracy evaluation is executed in few 

different combinations of sorties to be used as data-base for model building, and 

sorties to be predicted by those empirical models. Section 6.7 provides a 

comprehensive comparison between the conventional and the proposed CVSDR 

methods. Section 6.8 concludes and summarizes the chapter.  
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6.3 LEVEL-FLIGHT PERFORMANCE TESTING- 

THE CONVENTIONAL WAY  

The conventional flight test method for level flight performance of a helicopter is 

thoroughly discussed in Chapter 2 (Subsection 2.3.3) and only briefly reminded in this 

chapter. As per Eq.(6.1), the conventional method attempts to define sets of empirical 

relationships between the coefficient-of-power (Cp) and the advance-ratio (µ) for 

various discrete values of coefficient-of-weight (Cw). The different Cw values need to 

span the entire operational envelope of the helicopter. 
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For this, the flight-test crew needs to execute numerous ‘speed-runs’ while 

maintaining a constant coefficient-of-weight. The technique by-which the coefficient 

of weight is held constant throughout the speed-runs, defines the specific flight-test 

method. Ensuring a constant coefficient-of-weight during the speed run can be 

attained in two ways: (1) the constant “weight over sigma (W/σ)” method; and (2) the 

constant “weight over delta (W/δ)” method.  

6.3.1 Constant Weight over Sigma (W/σ) 

Method 

As previously discussed in Chapter 2, the constant “weight over sigma” is the 

foremost popular method for level-flight performance of a conventional helicopter. 

Following this method,  the flight-test crew maintains the coefficient-of-weight at a 

certain value by keeping the main-rotor angular speed (ω,Ω) constant and maintaining 



6.3   |   LEVEL-FLIGHT  PERFORMANCE TESTING-  THE CONVENTIONAL W AY  

173 

a constant ratio of weight (W) to the air relative density (σ). As presented in Eq.(6.2), 

the air relative density is defined as the ratio between the ambient air density (𝜌a) and 

the standard sea level air density (𝜌o). Maintaining a constant ratio of weight to relative 

density (W/σ) is achieved by a gradual adjustment of the cruise altitude for the speed 

runs as the helicopter burns fuel and becomes lighter. The required altitude change in-

between test points of a specific speed-run is calculated in real time by the test-crew. 

It is common to encounter few iterations before the accurate altitude is reached. The 

extent of altitude climb between consecutive data points relates directly to the fuel 

consumption of the helicopter and the efficiency of the flight test crew to stabilize the 

helicopter in the desired conditions. This altitude climb is typically between a few tens 

to a few hundreds of feet. Once the new altitude is reached, the pilot needs to stabilize 

the helicopter at the new airspeed and to validate (or to readjust) the main-rotor 

angular speed remains constant. Note that the pilot is required to ‘stay-on-conditions’ 

for the entire duration necessary for the engine(s) to reach thermal equilibrium, 

followed by the data gathering period of time. Typically, the flight-test campaign for a 

specific helicopter configuration requires the execution of five sorties, each conducted 

at a different coefficient-of-weight value. The various coefficient-of-weights shall 

cover the entire certified envelope of the helicopter. Each speed run consists of at least 

eight different airspeeds, beginning at some ‘arbitrary’ low airspeed to the maximum 

level flight airspeed defined either by maximum available power (Vh), or by the 

manufacturer’s definition for the ‘never-exceed’ airspeed (VNE).    
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6.3.2 Constant Weight over Delta (W/δ) 

Method 

The second and less common approach of maintaining a constant coefficient-

of-weight during the speed run is called the ‘weight over delta’ method. This method 

is demonstrated mathematically in Eq.(6.3). Note that the air relative pressure ratio (δ) 

is defined as the ambient air static pressure (Pa) over the standard sea level air pressure 

(P0). By using the equation of state (Eq.(6.4)), the ambient air density is expressed using 

the ambient static-temperature (Ta) ambient pressure (Pa) and the specific gas constant 

of the air (𝑅𝑎𝑖𝑟). It is evident from Eq.(6.3) that by holding a constant ratio of weight 

over the relative pressure (W/δ) and a constant ratio of static ambient pressure over 

the angular rotor speed squared (Ta/Ω2), the flight-test crew assures a constant 

coefficient-of-weight during the various speed runs. As previously discussed in 

Chapter 2 (Subsection 2.3.3.3), the only advantage this method has over the W/σ 

method is that it allows the flight-test crew to gain some limited control over 

compressibility effect of the main rotor advancing blades.  
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 a a air aP R T   (6.4) 

This constant W/δ flight-test method requires even more flight-test sorties than 

the amount required for the W/σ method. This increased number of sorties is mostly 

attributed to the complexity and cumbersome associated with the continuous 

adjustments of the main-rotor angular speed. 

The following procedure illustrates how cumbersome and time consuming the 

conventional flight-test method is. For a small size and light helicopter, such as the 
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BO-105, it takes about five minutes to obtain one data point. One should appreciate 

that out of those five minutes, only about two are essential for engine(s) thermal 

equilibrium attaining and data gathering. There is about 60% of time wasted due to the 

inefficiency of the conventional flight test technique.  The requirement of at least eight 

data points (different airspeeds) for each constant Cw and evaluating five different 

values of coefficient-of-weight translates into at least 3 hours and 20 minutes of flight. 

This duration should be regarded as an optimistic estimation based on small sized 

helicopters. Executing level flight performance flight-test campaign on a large and 

heavy helicopter might even double this time duration. Proposing an alternative flight 

test method that eliminates the requirement for flying at constant coefficient of weight 

has the potential for saving at least 2 hours of flight time for the same amount of 

required data points (60%).        

According to the conventional flight-test technique, as long as the helicopter flies 

straight and level at a constant coefficient-of-weight (Cw), its level flight performance 

can be uniquely represented by a single curve of coefficient-of-power (Cp) to 

advance-ratio (μ). One should question how extensively can the single variables that 

constitute the coefficient of weight be varied, while keeping the coefficient of weight 

constant before an effect on the coefficient of power is noticeable? In other words, 

how realistic is the assumption on which the conventional level-flight test technique is 

built upon? 

6.3.3 Example Application - Constant 

Weight over Sigma (W/σ) Method 

The conventional method (constant weight over sigma approach) is demonstrated 

within the context of the deficiencies associated with this method, using flight-test data 

obtained from a MBB BO-105 helicopter. The power required to sustain level flight at 

various airspeeds was recorded during four distinct sorties. All four sorties, totalling 

44 stabilized level flight points, were conducted at a targeted coefficient-of-weight 

(5.79x10-3) with a tight tolerance between -0.3% to +0.7%. The main-rotor angular 
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speed was kept constant at 100% (equivalent to 423 RPM for the specific helicopter) 

throughout the four sorties, as required by the conventional method. All physical 

values for gross-weight and atmospheric conditions are summarized in Table 6.1. 

Figure 6.1 presents all 44 data points of Sorties 1-4 as matching pairs of coefficient-of-

power (Cp) and advance ratio (μ) accompanied with third order polynomial best-fit 

curves.  

Table 6.1. Summary of flight-test conditions for Sorties 1-4.   

Sortie 
# 

Gross 
weight* 

[lbs.] 

Average 
Long. C.G.  

[in.] 

Pressure 
Altitude* 

[ft.] 

Ambient 
Air Temp.* 

[°C] 

Cw*  
[x10-3] 

Average 
Cw 

[x10-3] 

1 4890 - 5012 123.8 4000 - 4670 12 to 14 5.78 – 5.80 5.79 
2 4760 - 4865 123.9 5040 - 5400 12 5.77 – 5.83 5.80 
3 4270 - 4380 123.5 7770 - 8520 9 to 10 5.78 – 5.80 5.79 
4 3890 - 3960 124.4 11210 - 11820 0 to 2 5.78 – 5.80 5.79 

* values represent the range of change during the sortie 

 

 

Figure 6.1. Level flight performance (ND) of a BO-105 helicopter. This figure presents the 

coefficient of power (Cp) against the advance ratio (μ) measured under conditions of four 

distinct sorties listed in Table 6.1. Data points are accompanied with third order best-fit curves.  

The first concern to be discussed is with the uniqueness of the coefficient-of-

power (Cp) to advance ratio (μ) curve for the four sorties executed. As previously 
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noted, all four sorties were conducted at the same coefficient of weight and hence 

should all generate a unique coefficient-of-power (Cp) to advance-ratio (μ) curve. One 

can immediately doubt it, just from observing Fig. 6.1. It is quite evident that not all 

44 flight-test data points belong to the same (Cp) to (μ) curve. As listed in Table 6.1 

the coefficient-of-weight (Cw) was held constant within a tight tolerance range of 1%. 

The expected variance in the coefficient-of-power (ΔCp) due to the variance in Cw 

(ΔCw) can be estimated by a sensitivity analysis to Eq.(6.1). This derivation is presented 

explicitly as Eq. (5). 
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This analysis show that the actual 1% variance in Cw should only be responsible 

to a ΔCp of 0.02%, under a high advance ratio of 0.3. For a low advance ratio of 0.1 

the expected variance in Cp should reach up to only 0.06%. The actual variance in Cp 

during the four sorties reached 11% in low advance ratios of about 0.1, and 9% for 

high advance ratios of about 0.3. This variance in (Cp) cannot be entirely explained by 

the 1% variance in (Cw), therefore casting severe doubts on the soundness of this 

conventional flight test method. 

The level of accuracy achieved using the conventional flight-test method was 

assessed in two ways. The first and the foremost trivial assessment was to use each 

single sortie for the prediction of power required in each one of the other three sorties, 

then comparing the prediction to the actual power measured. This simplistic approach 

is addressed hereinafter as the single sortie approach. The second approach for 

accuracy assessment was to base the power prediction of each sortie on a conglomerate 

of flight-test data from the other three sorties. This approach is referred-to hereinafter 

as the cluster of sorties approach.   

1) The single-sortie approach: linear regressions were performed to retrieve 

four distinct third order polynomials to describe the non-dimensional level-flight 

performance of the BO-105 helicopter for the particular tested coefficient of-weight 

(Eq.(6.6)). 
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Each one of those four third order polynomials (CP(1), CP(2), CP(3), and CP(4)) was 

used to predict the power required for level flight under the conditions of the other 

three sorties. For example, the third order polynomial based on Sortie 1 was used to 

predict power required for level flight under the conditions of sorties 2, 3 and 4. The 

third order polynomial retrieved from Sortie 2 was used to estimate the power required 

for level flight under the conditions of Sorties 1, 3 and 4 and so on. Power estimations 

were compared to the actual measured values and prediction errors for each data point 

were calculated as per Eq.(6.7). 
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Figure 6.2 presents a summary of all prediction errors retrieved for all four sorties. 

These errors are presented in horse-power units and as a function of the corresponding 

advance-ratio (μ). It is worth noting that positive prediction errors mean under 

estimation of the power required and a negative value represents an over estimation of 

power. From an operator stand-point, underestimation is the worst-case scenario since 

the helicopter demands for more power than predicted and planned for. This extra 

power needed might not be available from the engine or the engines, jeopardizing a 

successful execution of the mission. On the other hand, overestimation of the power 

required can only contribute to inefficient planning and execution of the mission. 

The prediction errors presented in Fig. 6.2 reveal a dissatisfying accuracy 

performance of the conventional method. For example, power prediction errors for 

Sortie 1 ranged between -20 hp (overestimate) to +18 hp (underestimate) using flight-

test data from Sortie 2. Using flight-test data from Sortie 4 to predict power levels of 

Sortie 1 resulted in enormous overestimation errors that ranged between -50 hp to -2 

hp. The means of the absolute prediction errors for each sortie were calculated as per 

Eq.(6.8) and are presented in Fig. 6.3. 
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Figure 6.2. Power prediction errors of the BO-105 (single-sortie approach). This figure 

presents the level-flight power prediction errors yielded by the conventional power models, 

based on the single-sortie approach.    

 

Figure 6.3. Mean of absolute power prediction errors (single-sortie approach). This figure 

presents the mean of the absolute errors yielded for each sortie by the conventional empirical 

models and based on the single-sortie approach.   
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The average power prediction errors range from 7.2 hp to 28 hp and are 

considered by the author unacceptable for the task of level flight power prediction. It 

is worth noting that for the specific type of helicopter tested, any power deviation 

above (or below) 4 hp from the expected value is clearly evident to the aircrew. The 

BO-105 helicopter (like many other types of helicopters) is not equipped with an 

instrument that explicitly presents the engines output power in hp units; however, it is 

equipped with a torque-meter gauge (‘steam-gauge’ style), installed on the instrument 

panel, that indicates both engines output shaft torques. The smallest detectable 

resolution of this gauge translates into a 4 hp quantity. 

One might debate whether these samples of prediction errors presented in 

Fig. 6.2 were drawn from a normally distributed population. For this a Quantile-

Quantile (QQ) plot is presented in Fig. 6.4. This plot compares the test data, the 

prediction errors samples in the case presented, to a theoretical sample drawn from a 

normally distributed population. A sample of data that comes from a normally 

distributed population would manifest itself as a straight line on the QQ plot. It is clear 

from Fig. 6.4 that all sampled prediction errors for sorties 1 through 4 do not come 

from a normally distributed population. Taking Sortie 1 as an example, the inflection 

of the curves might indicate that the largest (and smallest) estimate errors are not as 

extreme as would be expected in a normal distributed population. The QQ plots for 

Sortie 4 show a different behavior than those of Sortie 1. The curves inflect in a way 

that might indicate heavier tails of the Probability Density Function (PDF) as 

compared to a PDF of a normally distributed population. This means more extreme 

prediction errors are expected from both sides, under-estimation and over-estimation, 

compared to a normal distributed population. 

The correlation between the power prediction level and the advance ratio was 

studied. For this, the correlation coefficient (r) between the prediction error and the 

advance ratio was calculated for each combination of sortie predicted and sortie used 

to base the empirical prediction model on. The correlation coefficient was calculated 

as per Eq.(6.9), where (n) represents the number of data points (sample size) and (S) 

stands for the standard deviation of the sample. 
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Figure 6.4. Prediction errors quantiles to theoretical normal quantiles (“QQ plot”). This 

figure shows the sampled prediction errors don’t come from a normally distributed population.    

Figure 6.5 presents these correlation coefficients for all four Sorties. Sorties 1,2 

and 3 had twelve data points and Sortie 4 had only eight. The sample size affects the 

correlation coefficient value to be considered significant. At the accustomed 95% 

confidence level and for a sample size of twelve, a correlation coefficient of 0.58 

(absolute value) and above indicates significant correlation between the two variables. 

For a smaller sample size of eight (Sortie 4), significant correlation between two 

variables (95% confidence level) is indicated by a correlation coefficient of 0.71 and 

above. Figure 6.5 clearly indicates a significant correlation between the power 

prediction errors and the advance ratio. The correlation value peaks when Sorties 1 

and 2 are used to predict the power levels of sorties 3 and 4 (and vice versa). The 

conclusion taken from this correlation analysis is there might be one (or few) latent 

dimensions which is (are) missed by the conventional flight-test method. The empirical 

prediction models based on the conventional method fail to equally estimate power 

levels regardless of the advance ratio. 
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Figure 6.5. Power prediction errors to advance-ratio correlation (single-sortie approach). 

This figure shows a significant correlation between the prediction errors using the conventional 

method and the advance-ratio.    

2) The cluster of sorties approach: similarly to the single-sortie approach, four 

linear regressions were performed to retrieve four distinct third order polynomials to 

describe the non-dimensional level-flight performance of the BO-105 helicopter for 

the particular tested coefficient of-weight (Eq.(6.6)). The difference from the single-

sortie approach is that data used for the regression was based on a conglomerate of 

three distinct sorties. Each one of these third order polynomials was used to predict 

the power required for level flight under the conditions of the fourth Sortie, the one 

not used for the linear regression. For example, data measured in Sorties 1, 2 and 3 

was used to regress a third order polynomial which was used to predict the power 

required of Sortie 4. Power estimation from each third order polynomial were 

compared with the actual measured values and the estimation errors were calculated 

as per Eq.(6.7). Figure 6.6 presents a summary of all prediction errors retrieved for all 

four sorties. The prediction errors are presented in horse-power units and as a function 

of the corresponding advance-ratio. 
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Figure 6.6. Power prediction errors of the BO-105 (cluster of sorties approach). This figure 

presents the level-flight power prediction errors yielded by the conventional power models, 

based on the cluster of sorties approach.     

Subscribing to the cluster of sorties approach slightly improves the prediction 

performance. The power prediction errors of Sortie 1 ranged from -23 hp 

(overestimate) to 13 hp (underestimate). Using flight test data measured in Sorties 1,3 

and 4 to predict power levels of Sortie 2 yielded prediction errors between -14 hp to 

19 hp. The power predictions errors for Sortie 3 ranged between -27 hp to 5.5 hp and 

power predictions for Sortie 4 were all underestimating the true measured power by 

up to 37 hp.  The four means of the absolute prediction errors for each sortie were 

calculated as per Eq.(6.8) and are presented in Fig. 6.7, alongside the absolute 

prediction errors yielded from the single-sortie approach (Fig. 6.3). The averaged 

absolute power prediction errors ranged between 8.8 hp to 22.9 hp (mean of 13.4 hp 

with a standard deviation of 6.5 hp). 
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Figure 6.7. Mean of absolute prediction errors (single & cluster of sorties comparison). 

This figure presents a comparison between the power prediction errors yielded by the two 

approaches, the single-sortie and cluster of sorties.     

Inferring from the specific averaged prediction errors presented in Fig. 6.7 to the 

general case is based on hypothesis-testing. The null-hypothesis assigned is that on-

average the power required for level-flight, as predicted by the conventional flight-test 

method (using the cluster-of-sorties approach) and the empirical model obtained 

(Eq.(6.6)) does not differ from the true measured power by more than ±4 hp. This 

null hypothesis is tested against the alternative that on-average the power required for 

level-flight as estimated by the conventional method differ from the actual power by 

more than 4 hp (absolute value). The motivation for setting 4 hp as the threshold for 

the null-hypothesis is derived from the reasoning that for the BO-105 helicopter any 

power deviation above (or below) 4 hp is noticeable to the aircrew. As previously 

explained in this Subsection, the amount of power produced by the engines is 

(implicitly) presented to the aircrew by the engines torques meter gauge. The smallest 

detectable resolution of this gauge translates into a 4 hp quantity.    

The relevant test-statistic for this hypothesis-testing is calculated per Eq.(6.10) for 

which the symbol ‘n’ represents the number of sorties and ‘S’ stands for the standard 
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deviation of the averaged power prediction errors that were calculated per Eq.(6.8) and 

presented in Fig. 6.7. 

 
0

0  , 4


 
r

t hp
S n

E 
      (6.10) 

The calculated value for the test-statistic was 2.89. Inferential statistical analysis 

shows the probability for making a Type-I error by rejecting the null-hypothesis to be 

small (3%). This small probability for a Type-I error fall below the 5% significance 

level accustomed in helicopter performance flight-testing. The practicality of this test 

is that there is sufficient statistical evidence to reject the null hypothesis and to adopt 

the alternative hypothesis instead. There is practically no statistical evidence to support 

the null-hypothesis assigned. Complementary statistical analysis shows that on-average 

and at the 95% confidence level, the level-flight power predictions based on the current 

method and Eq. (6) deviate by ±5.8 hp from the actual measured power.   

The poor power-prediction performance of the current flight-test method is to be 

expected. As discussed above, the current level-flight performance method assumes 

that for a constant coefficient-of-weight the coefficient-of-power is solely dependent 

on the advance ratio, regardless of any compressibility effects that might be present. 

Based on data and analysis presented above, this is clearly not a sound assumption to 

make. Another potential contributor to the unsatisfactory power prediction might be 

related to the change of the longitudinal center-of-gravity. As mentioned in the 

introduction to this chapter, a longitudinal migration in the center-of-gravity should 

have an effect on the total drag area of the fuselage, hence affecting the power required 

for level flight.  

The next section of the chapter presents an alternative flight test method for level-

flight performance with an improved prediction accuracy, as compared to the 

conventional method. This method is based on the SVD concept, first introduced in 

Section 4.4 for empirical model screening in available power testing. This SVD 

approach was then reused in Chapter 5, for the novel CVSDR hover performance 
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flight-testing. The following section continues this course of research with the 

presentation of the CVSDR method for level flight performance, which can be 

regarded abstractly as a rigorous expansion of hover CVSDR method into a higher 

dimensional space.  

6.4 THE CVSDR METHOD FOR LEVEL-

FLIGHT PERFORMANCE TESTING  

The CVSDR method for level-flight performance aims to rectify all identified 

drawbacks of the existing method, while providing better prediction accuracy as 

compared to the conventional method. The CVSDR method is implemented in three 

phases. Employment of this method by flight-testers requires recitation of only the last 

two phases since the first phase is generic to all conventional helicopters. Phase one 

deals with the generation of an original list of CVs for a multivariable analysis. In Phase 

two this list of corrected variables is refined based on concepts of dimensionality 

reduction through SVD. Phase three of the proposed method focuses on finding an 

empirical multivariable model using the bare-essential CVs (‘predictors’) identified in 

Phase 2. This list of CVs serves as an orthogonal base for the specific helicopter level-

flight performance. The complete CVSDR method is demonstrated using the same 

BO-105 helicopter flight-test data, already presented in Section 6.3. Using the same 

flight-test data allows for a genuine comparison of the prediction accuracy achieved 

from each one of the two methods, the conventional and the CVSDR.  

A practical and convenient summary of the method is presented in the next 

section of the chapter (Section 6.5). This summary is intended to serve as a guide for 

the flight-tester who wishes to evaluate the power required for level flight of a 

conventional helicopter using the CVSDR method. This Summary provides brief 

directions with regards to level-flight data base establishment and analysis. 
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The helicopter spends most of its flying-time in the level flight regime. The relative 

time while cruising varies based upon the type and the specific mission the helicopter 

was designed-for. Porterfield and Alexander [44] analysed data from various 

6.4.1 Phase One – Original list of corrected 

variables for level flight performance 

The physical problem of the power required to sustain a helicopter in level-

flight (out-of-ground effect) was re-evaluated using tools of dimensional analysis [66, 

67, and 73]. The procedure starts by proposing variables that are expected to affect the 

power required in level-flight. These are the ambient static pressure (Pa), the ambient 

static temperature (Ta), the helicopter gross-weight (W), the true airspeed the 

helicopter flies at (VT), the main-rotor disk area (𝐴𝑑), the main rotor angular speed 

(𝜔), and the longitudinal location of the center-of-gravity, Xcg. The power required to 

hover, P, can be represented mathematically as Eq.(6.11) and Eq.(6.12) in implicit 

form. 

 ( , , , , , , ) a a T d cgP f P T W V A x   (6.11) 

 ˆ ( , , , , , , , ) 0a a T d cgf P P T W V A x   (6.12) 

The dimensions involved are presented in Table 6.2. ‘M’ represents mass, ‘L’ 

represents length and ‘T’ represents time. 
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Table 6.2. Variables and dimensions involved in level-flight performance. This 

table presents all major variables affecting the level-flight performance problem and 

associated dimensions. 

# Physical Variable  Notation Dimension 

1 Power Required for Level-Flight P [M][L]2[T]-3 
2 Ambient static Pressure Pa [M][L]-1[T]-2 
3 Ambient static Temperature Ta [L]2[T]-2 
4 Helicopter Gross-Weight  W [M][L][T]-2 
5 True Airspeed  VT [L][T]-1 
6 Main-Rotor Disk Area Ad [L]2 
7 Main-Rotor Angular speed ω [T]-1 

8 Longitudinal Center-of-Gravity Xcg [L] 

 

The physical problem of power required for level flight involves eight variables 

with three dimensions (L,M,T). According to the Buckingham Pi-Theorem [66] the 

complexity of the problem can be reduced from eight dimensional variables to only 

five Non-Dimensional (ND) variables. Following the methodology presented by 

Buckingham [20], these 5 ND variables (denoted by ψ) are formed as products of the 

dimensional variables. Since there are eight dimensional variables to construct five ND 

variables, three dimensional variables were used as repeating variables in the ND 

products (ψ). There are 56 different options to choose three variables out of eight for 

the case where the order does not matter (combinations). This requires a fairly tedious 

task of screening between 56 different options in order to identify the best way of 

describing the non-dimensional level-flight performance. The following is a 

demonstration of only one combination out of the 56 options available.  In this 

particular demonstration, the three repeating variables are the ambient static 

temperature (Ta), the helicopter gross-weight (W) and the main rotor disk area (Ad).  

The five ND products (ψ) are defined in Eq.(6.13). According to Buckingham [66], the 

repeating variables should be raised to some arbitrary powers, those are denoted as 

a1,b1,c1,…,c5 in Eq.(6.13). As demonstrated hereinafter, these arbitrary powers are 

identified as those numeric values that make the ψ products non-dimensional. 
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Next, the procedure requires to replace each one of the dimensional-variables 

with their corresponding dimensions and to enforce each one of the five ψ products 

to be non-dimensional. This process is demonstrated as per Eq.(6.14). Each one of the 

ψ products yields three equations with three unknowns, which are the exponents. 

Solving for the exponents of ψi is demonstrated in Eq.(6.15). The same process is then 

repeated for each one of the other ND variables, ψj , ψk , ψm and ψn. 
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Based on Eq.(6.15), the first ND variable (ψi) can be written as Eq.(6.16). 

 i

a

P

W T
   (6.16) 

This ND variable (Eq.(6.16)) can be further simplified once the ambient static 

temperature is represented using its relative value (Eq.(6.17)). This gives a simplified 

expression for ψi (Eq.(6.18)) denoted as ψi*. Since this term indeed carries dimensions 

and is not a pure ND, it is better defined as a ‘corrected’ variable (CV). 

 0 0 ,     a aP P T T    (6.17) 
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  (6.18) 

A similar analysis was conducted to reveal the other four ND variables (ψj, ψk, 

ψm and ψn).  These ND variables were further simplified to represent non-dimensional 

variables of a particular helicopter, hence referred-to as corrected-variables (CVs). The 

corresponding CV’s are denoted with an asterisk and presented as Eq.(6.19). 

 * * * *,  ,  ,     
cgT

j k m n

XVW

R


   

  
  (6.19) 

The procedure demonstrated above was repeated for all other 55 possibilities 

of choosing three variables out of eight. From all 56 options evaluated, 20 did not yield 

a unique solution and a few other returned repeating ND variables. Overall, the 

analysis yielded 36 distinct CVs which can be used for the helicopter level-flight 

performance. Table 6.3 summarizes all 36 CVs in an array form to indicate which of 

the five dimensional-variables (power, weight, true airspeed, main-rotor angular speed 

and\or longitudinal center-of-gravity location) are used in the specific CV. This list of 

CVs is also presented graphically in Fig. 6.8, where one can clearly observe the number 
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of dimensional-variables involved in each CV. There are 6 CVs which are based on 

only one dimensional-variable (1-D), 16 CVs that include two dimensional-variables 

(2-D), 13 CVs which employ three dimensional-variables (3-D) and only one CV (ψ36*) 

which involves four dimensional-variables (4-D). Note this ψ36* was omitted from 

Table 6.3 for reasons of formatting efficiency and is presented as Eq.(6.20)  

Table 6.3. Corrected-Variables (CVs) for level-flight performance. 
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Figure 6.8. Graphical presentation of all 36 CVs for level-flight performance. This figure 

presents the classification of all determined level-flight performance CVs with their traced 

dimensionality.      

6.4.2 Phase Two – Screening for essential 

CVs. 

Phase Two of the CVSDR method, as already presented for the hover 

performance in Subsection 5.4.2, focuses on narrowing the list of all candidate CVs 

(Table 6.3 above) to select only those most essential and effective CVs for the specific 

helicopter level-flight performance data that is being analysed. A power-based 

corrected variable needs to be expressed as a function of few other CV’s. For this, the 

flight tester might be asking the following two questions: 

(1) How many CVs are required for a sufficient description of the level-flight 

performance? 

(2) Which CVs should be used? 
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These questions are addressed in this phase of the CVSDR method. The 

procedure of CVs selection, both the quantity and types of CVs, is based on principals 

of dimensionality-reduction and the correlated mathematical procedure known as the 

Singular Value Decomposition (SVD). This phase of the method is demonstrated 

using the same MBB BO-105 level-flight test data presented and analysed in 

Subsection 6.3.3 above. 

  The SVD theorem is thoroughly discussed in Chapter 4 (Subsection 4.4.1), 

however its fundamentals are briefly reminded to the reader hereinafter. The SVD 

theorem states that any generic real matrix can be uniquely decomposed into a set of 

three matrices as given in Eq.(6.21). Consider a real matrix Z to be of size (m,n) and 

rank ‘r’. This matrix Z can be expressed as a product of the following three unique 

matrices: matrix U, an orthonormal matrix of size (m,r) called the “Left-Singular-

Vectors” (LSV); matrix Σ, a diagonal matrix which holds along its diagonal the 

singular-values of Z; and matrix V, an orthonormal matrix of size (n,r) called the 

“Right-Singular-Vectors” (RSV). From an algebraic point of view, this decomposition 

is viewed as a convenient way to reveal an orthogonal bases for the column and row 

spaces of matrix Z (given by matrix U and VT accordingly). 
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  (6.21) 

 

Alternatively, the SVD decomposition can be regarded as a ‘spectral’ 

decomposition of any arbitrary real matrix Z. A generic real matrix Z of rank ‘r’ can 

be expressed as a linear combination of ‘r’ rank-one matrices (Eq.(6.22)).  
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The practicality of this approach is that any real matrix Z can be approximated 

as a lower ranked matrix by using only parts of its rows and columns basis. The 

‘closeness’ between the original matrix and the approximated one can be assessed by 

comparing the norm of the two. There is more than one way to measure the 

‘magnitude’ of a matrix (various norms). The preferable norm for the proposed 

CVSDR method is the Frobenius-norm [106]. This norm is defined as the square root 

of the sum of all squares of the elements of the matrix. This norm can be expressed, 

with few simple algebraic passages, as the square root of the sum of all singular-values 

squares (Eq.(6.23)). 
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The ability to approximate any arbitrary real matrix of rank ‘r’ by an increasing 

sum of rank-one matrices is the essence of the dimensionality reduction concept. 

Reducing the long list of 36 corrected variables (Table 6.3 and Eq.(6.20)) to a short 

and practical list of effective CVs for the level-flight performance is precisely based on 

this concept of dimensionality reduction.   

The procedure starts with filling matrix Z with numeral entries of all 36 CV’s 

as measured for the BO-105 level-flight sorties and already presented in Subsection 

6.3.3. For this demonstration 36 stabilized level-flight points measured in Sorties 1, 2 

and 3 are used. The columns of the matrix represent the various CV’s (ψ1* to ψ36*) and 
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the 36 rows represent the different test-points measured.  Next is to normalize all 

columns of Z to have a mean of zero and a variance equals 1. This is done by 

normalizing each entry along the columns of Z by using Eq.(6.24). 

 
*

* *
' , 1,2,...,35,36


 

i

i i
i i

S


 
      (6.24) 

Once matrix Z contains normalized columns it is defined as Z’ and can be 

partitioned into the three unique matrices expressed by Eq.(6.21). The level-flight 

performance as appears in matrix Z’ is represented by all 36 CVs (ψ1* to ψ36*). 

However, not all CV’s possess the same significance in representing the variance 

captured in the flight-test data.  The singular-values (𝜎𝑖) which appear along the main 

diagonal of matrix 𝛴 in a descending order are key to understanding the level of 

importance each CV (‘i’) holds. The conceptual interpretation of the SVD of Z’ for 

the specific problem of level-flight performance is illustrated in Fig. 6.9. 

 

Figure 6.9. The conceptual interpretation of SVD of Z’ in level-flight performance. This 

figure presents how the abstract SVD of matrix Z’ (normalized predictors) should be interpreted.       

 

 

 

 

 

 

 

 

 

 



6   |   LEVEL FLIGHT PERFORMANCE FLIGHT TESTING  

196 

The 36 singular-values of matrix Σ are normalized as per Eq.(6.25) and are 

presented in Fig. 6.10 alongside a cumulative-sum plot of all normalized singular-

values. 
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   ,    (6.25) 

 

Figure 6.10. The normalized singular values of the level-flight performance. This figure 

represents the relative magnitude of all 36 dimensions involved in the level-flight performance 

of the BO-105 helicopter.       

One should deduce from Fig. 6.10 that the dimensionality of the level-flight 

problem can be significantly reduced from a 36-dimension problem to only a 

7-dimension one. In linear-algebraic terms, it can be stated that the level-flight 

performance can be sufficiently described by a basis of only seven orthogonal CVs. 

The cumulative sum plot presented in Fig. 6.10 shows that 96.7% of the total variance 

in the flight-test data, as stored in matrix Z, can be presented by using the seven most 

significant CVs. Also indicated by Fig. 6.10, the most significant dimension of the 

specific level-flight performance problem analysed holds 35% of the variance in the 

data. Comparing the Frobenius norm of matrix Z’ and its 7th order approximation 
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(the combination of the first seven rank-1 matrices) reveals a practically similar norm 

of the two; 34.986 for Z’ and 34.983 for its 7th order approximation. 

The identity of the seven most important CVs is solely indicated by the right-

singular-vector (RSV) matrix. As illustrated in Fig. 6.9, each row of the RSV indicates 

the level of correspondence to a specific singular-value, or a dimension, of the 

problem. For example, the first row of the RSV specifies the level of correspondence 

each one of the 36 CVs has with to first (and most significant) singular-value.  The 

second row of the RSV indicates the correspondence between all 36 CVs to the second 

most significant dimension of the problem, and so on. Since the dimensionality of the 

problem is reduced from 36 to seven, it is required to evaluate only the first seven rows 

of the RSV matrix. For this, the elements along the first seven rows of the RSV matrix 

are normalized as per Eq.(6.26) and presented in Fig. 6.11. The significance of each 

CV towards the seven substantial dimensions of the level-flight performance is then 

concluded.  
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V i j
V i j i

V i j
  ,    (6.26) 

 

The left singular vectors (LSV) matrix has no significant role in the type of 

analysis addressed in this paper since it only indicates the “level of correspondence” 

between each one of the level-flight test points and the singular-values of Z. This type 

of correspondence between particular test-points and the various dimensions of the 

level-flight performance was deemed irrelevant to the topic analysed. 
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Figure 6.11. Correspondence between CVs and level-flight dimensions. This figure 

represents the relative correspondence between each CV and each one of the 36 dimensions of 

the specific BO-105 level flight performance (rows of the RSV).       

 

The following conclusions can be drawn from Fig. 6.10 and 6.11:  

(1) The first and most significant dimension of the level-flight performance 

analysed holds for 35% of variance in the data and is best represented by ψ1*. This CV 

represents variance in power.  

(2) The second most significant dimension of the level-flight performance 

analysed holds for 21.7% of variance in the data and is best represented by ψ2*. This 

CV represents the variance in gross weight of the helicopter.  

(3) The third dimension of the level-flight performance analysed holds for 

16.1% of variance in the data and is best described by ψ14*. 

(4) The fourth dimension of the problem holds for 14.3% of variance in the 

data and is best represented by ψ3*. 
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(5) The fifth dimension of the problem holds for 5.1% of variance in the data 

and is best represented by ψ30*. This ψ30* involves power and since the first dimension 

already yielded a power-based CV for the role of an independent CV for the physical 

problem in-hand this CV was renounced. Next in-line (non-power related) to best 

represent the fifth dimension were the two CVs ψ10* and ψ13* which could not be 

differentiated with respect to their representation of the fifth dimension. 

(6) The sixth dimension of the problem holds for 2.3% of variance in the data 

and is best represented by ψ15*. 

(7) the least significant dimension in the truncated list of seven dimensions 

holds for only 2% of variance in the data and is best represented by the same CV 

selected to represent the third dimension, which is ψ14*. 

Finally for Phase Two, a conceptual empirical-model to represent the level-

flight performance of the MBB BO-105 helicopter, as resulted from the CVSDR 

method, can be stated as Eq.(6.27). This relation involves six independent corrected 

variables (CVs) and one power-based dependent CV. 

 * * * * * * * 2
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  (6.27) 

6.4.3 Phase Three – Deriving a practical 

empirical model 

Once the most influential CVs of the level-flight performance problem are 

exposed, a practical empirical polynomial in the six independent CVs is pursued. The 

physical nature of the problem (Eq.(6.1)) suggests a third order as the highest degree 

to represent the power in level-flight. This puts a cap on the order of the empirical 

polynomials to be explored. As a guideline for simplicity the prospective polynomial 

needs to refrain from employing any cross-products of CVs as regressors. Numerous 

configurations involving the six independent CVs were evaluated for their power 
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estimation accuracy using the 36 stabilized data points from the first three sorties 

specified in Table 6.1. The particular polynomial presented as Eq.(28, 29) was selected 

due to its best performance in representing the power measurements in the first three 

sorties, i.e., yielding the least values for the mean and the variance of the estimation 

errors. This empirical model is addressed hereinafter as Model 123 (denoted M123) 

since it is based on flight-test data from sorties 1, 2 and 3. 
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6.5 PRACTICAL GUIDANCE FOR THE CVSDR 

METHOD IN LEVEL-FLIGHT  

A performance flight-test campaign starts with a careful planning of the 

required sorties. The power required for level flight using CVSDR is no exception to 

this rule. The flight tester should plan for a set of level-flight ‘speed runs’ to cover the 

applicable and required flight envelope. With the aim of establishing a sound data base 

to be analysed, the flight tester should gather level-flight performance that covers the 

entire range of airspeed (VT), gross-weight (W),  center of gravity (Xcg), main-rotor 

angular speed (ω), and ambient air properties of pressure and temperature. Figure 6.12 

provides a methodical approach for sorties planning and execution while using the 

CVSDR method. The flight test campaign should be executed in three configuration-

based stages. Each stage includes a set of various ‘speed-runs’ (denoted as the numbers 

1 to 9 in Fig. 6.12) conducted at various conditions of gross weight, altitude and main-

rotor angular speed. Every single ‘speed-run’ should be conducted from the lowest 

practicable airspeed (hover if possible) to the highest attainable level flight airspeed, 

with about eight different intermediate airspeeds. 

 

Figure 6.12. CVSDR level flight performance testing- Sorties planning sequence. This 

figure represents three configuration based stages for planning and execution of level-flight 

performance testing, based on the CVSDR method.        
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At each stabilized airspeed point, the flight-tester should gather all data needed to 

compute the CVs presented in Table 6.3 and Eq.(6.20). The flight-test campaign starts 

with a middle center of gravity (c.g.) configuration (the left chart in Fig. 6.12), followed 

by an aft c.g. configuration (the middle chart in Fig. 6.12) and end with a forward c.g. 

configuration. The first sets of speed-runs should be conducted at high altitude and 

high gross weight, this would extend the range of many weight-based CVs. For 

helicopters that allow the crew to adjust the main-rotor speed under standard 

procedures, few sets of speed runs shall be repeated three times for three distinct values 

of main rotor speed that span the governed range (see example denoted as 1a, 1b and 

1c in Fig. 6.12). Note that by following the directions of Fig. 6.12 closely, the flight-

test team are expected to acquire a data base of 17 distinct speed runs, totalling about 

136 stabilized level flight data points. This would constitute a sound data base to be 

analysed. Succeeding the establishment of this data base, the flight test data analysis 

should be conducted by following the sequential eight steps of Table 6.4. This table is 

intended to provide a practical, step-by-step guidance, to realize the three phases of 

the CVSDR method as discussed in Subsections 6.4.1, 6.4.2 and 6.4.3 above. 
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Table 6.4. A step-by-step guidance for CVSDR level-flight performance testing. 

Step Task Description & Instruction 
 
Phase One – Establish an applicable list of CVs to represent the level-flight performance. 
This phase is described in Subsection 6.4.1. 
 

1 Compute all 36 CVs (Table 6.3) for each stabilized level-flight data point 
measured. There should be 136 stabilized data points, If all sorties of Fig. 6.12 
are exactly executed.  

2 Arrange the computed CVs in a matrix form (this is matrix Z). The rows of Z 
should represent the different data points and columns of Z should represent the 
various CVs. If all sorties of Fig. 6.12 were closely executed, matrix Z should be 
of size 136x36.   

 
Phase Two – Screening for the most effective CVs using dimensionality reduction. This 
phase is described in Subsection 6.4.2. 
 

3 Normalize all columns of matrix Z as per Eq.(6.24) to have a zero mean and a 
variance equals 1.  

4 Decompose the normalized matrix Z into its three unique matrices (U,Σ and V) 
using a Singular Value Decomposition (SVD) algorithm. Matrix U is also referred 
to as the Left Singular Vectors (LSV), matrix Σ is called the singular values and 
matrix V is called the Right Singular Vectors (RSV). 

5 Normalize all singular values (entries along the main diagonal of matrix Σ) as per 
Eq.(6.25). The normalized values represent the relative strength of the various 
dimensions exist in the data. Determine the number of significant dimensions 
involved in the specific level-flight performance data, based on the cumulative 
sum of the normalized singular values (as presented in Fig.6.10).  

6 Normalize the rows of matrix VT (RSV) as per Eq.(6.26). This normalization calls 
for the absolute value of each element along the rows of RSV to be divided by 
the sum of all elements absolute values along the corresponding row of RSV.   

7 Identify the most significant CVs of the specific level-flight performance 
analysed. The level of correspondence between each CV and an abstract 
dimension of the level-flight problem is illustrated in Fig. 6.9. Note that only the 
first significant rows of the normalized RSV should be evaluated. The number of 
significant rows of RSV equals the number of significant dimensions retrieved in 
sequential step 5 above. Example for this step is presented in Fig.6.11. 

 
Phase Three – Forming a practical empirical model (Subsection 6.4.3) 
 

8 Use the most significant CVs identified in sequential step 7 to form a practical 
polynomial that uses the relevant CVs as regressors in this empirical model.  

 

  



6   |   LEVEL FLIGHT PERFORMANCE FLIGHT TESTING  

204 

6.6 THE CVSDR MODEL PREDICTION 

ACCURACY (LEVEL-FLIGHT) 

The prediction accuracy achieved using the CVSDR method is evaluated 

hereinafter in a build-up manner. First, it is evaluated against the conventional flight-

test method by using the flight test data from sorties 1 through 4, all conducted at the 

same targeted coefficient of weight. Next, the CVSDR method is challenged to predict 

level flight performance of a new sortie (Sortie 5), which was conducted under arbitrary 

and varying coefficient-of-weights (Cw). This evaluation is performed only for the 

purpose of challenging the CVSDR-based empirical model, and to experiment up to 

what extent it can predict (extrapolate) the level flight performance of the same 

helicopter but under arbitrary conditions. Note the empirical models retrieved using 

the conventional method in Section 6.3 (Eq. (6.6)) are irrelevant for the prediction of 

Sortie 5. These empirical models are representing the level flight performance of the 

helicopter for a single and specific coefficient of weight (Cw), the one targeted in 

Sorties 1 through 4. For Sortie 5, the comparison between the conventional and 

CVSDR methods is trivial since the conventional method immediately fails. 

6.6.1 Prediction Accuracy within the same 

coefficient-of-weight  

The latter two phases of the CVSDR method, Phases 2 and 3 as presented in 

Subsection 6.4.2 and 6.4.3, are repeated by utilizing the three other combinations 

available from the flight-test data of Sorties 1 through 4. An empirical model based on 

flight-test data from Sorties 1, 3 and 4 (denoted M134) is used to predict power 

required under the conditions of Sortie 2. This empirical model which employs nine 

distinct regressors and a constant is presented in Eq.(6.30) without the numeral 

coefficient. The same approach was repeated for the derivation of M234 and M124 

(empirical models based on sorties 2,3,4 and 1,2,4 accordingly) for power levels 

predictions of sorties 1 and 3 respectively. The two models, M234 and M124, employ 
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(each) eight regressors and a constant and are presented in Eq.(6.30). Mind that the 

four empirical models (M123,M134,M234 and M124) share many of the same 

regressors but are not exact. This is expected since they are based on slightly different 

flight test data bases. 
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Power prediction errors were calculated for all four sorties in the same manner 

demonstrated by Eq.(6.31), specifically for Sortie 4. Figure 6.13 presents these 

calculated prediction errors against their corresponding advance ratios. For 

comparison purposes, Fig. 6.13 includes the prediction errors obtained from the 

conventional flight-test method (cluster of sorties approach). 
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Figure 6.13. Conventional and CVSDR power prediction errors. This figure provides a 

comparison between the power prediction errors yielded from the CVSDR method and the 

conventional method (cluster of sorties approach) for all four sorties.         

The superiority of the CVSDR over the conventional method is immediately 

evident from Fig. 6.13. Power prediction of Sortie 1 using M234 resulted in prediction 

errors that ranged from -12.6 hp (overestimate) to 9.9 hp (underestimate). The 

prediction errors mean was -1.7 hp with a standard deviation of 7 hp. This compares 

to prediction errors ranging from -23.1 hp to 12.8 hp (averaged at -7.6 hp with a wide 

standard deviation of 13 hp) achieved by using the conventional method. Comparing 

the two methods for the other three sorties reinforces the prediction accuracy 

advantage of the CVSDR method: for Sortie 2, the CVSDR prediction errors averaged 

at 0.2 hp with a standard deviation of 7.3 hp as compared to a mean of -6.3 hp with a 

standard deviation of 9 hp, yielded by the conventional method. For Sortie 3, the 

respective comparisons were prediction error means of 1.4 hp and -6.4 hp in favor of 

the CVSDR and standard deviations of 5.8 hp and 10.8 hp in favor of the CVSDR. 

For Sortie 4, the CVSDR method achieved a prediction error mean of only -1.5 hp, 

compared to an underestimation average of 22.9 hp. The CVSDR prediction errors 

for Sortie 4 were also less scattered as demonstrated by the two standard deviations 

(8.1 hp compared to 11.5 hp). 
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Figure 6.14 presents an alternative view of the data displayed in Fig. 6.13. The 

means of the absolute prediction errors for each sortie were calculated as per Eq.(6.8) 

and are presented alongside the corresponding values retrieved from the conventional 

method (cluster of sorties approach). Once more, the CVSDR method performed 

better for this comparison. The means of absolute errors for Sorties 1 through 4 were 

6.3 hp, 5.2 hp, 5.1 hp and 7 hp accordingly. These means compare to 12.5 hp, 9.5 hp, 

8.7 hp and 22.9 hp resulted from the conventional method. 

 

Figure 6.14. Mean of power prediction errors - conventional and CVSDR methods. This 

figure provides a comparison between the power prediction errors yielded by the CVSDR and 

the conventional method (cluster of sorties approach) for all four sorties.         

Inferring from the particular case of the four sorties to the general case is realized 

by using the hypothesis testing, as demonstrated in Subsection 6.3.3 for the 

conventional method. The null hypothesis assigned is that on-average the power 

required for level-flight as predicted by the CVSDR method does not differ from the 

true measured power by more than ±4 hp (the smallest deviation noticeable to the 

BO-105 aircrew). This null hypothesis is tested against the alternative that on-average 

the CVSDR estimated power for level-flight differ by more than 4 hp (absolute value) 

from the actual power. The relevant test-statistic for this hypothesis-testing is 

calculated per Eq.(6.10). The symbol ‘n’ represents the number of sorties and ‘S’ stands 

for the standard deviation of the averaged power prediction errors, calculated per 
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Eq.(6.8) and presented in Fig. 6.14. The test-statistic was fairly large (4.11), mainly due 

to the relative low standard deviation. Inferential statistical analysis shows the 

probability for making a Type-I error by rejecting the null-hypothesis is very small 

(1.3%) hence does not support the null-hypothesis. On average and at the accustomed 

95% confidence level, the CVSDR power predictions deviate from the actual measured 

power by ±4.8 hp. Although above the 4 hp threshold noticeable to the BO-105 

aircrew, this average prediction error is about 17% lower than the ±5.8 hp achieved 

using the conventional method.  

The correlation coefficient between the prediction errors and the advance ratio 

was calculated for all four sorties per Eq.(6.9). Figure 6.15 presents these coefficients 

accompanied with those obtained from the conventional method, cluster of sorties 

approach. It is evident the CVSDR prediction errors are not significantly correlation 

to the advance ratio. As already explained in Subsection 6.3.3, any correlation 

coefficient above 0.58 (absolute value) for sorties 1 through 3, and above 0.71 for 

Sortie 4 indicates a statistically significant correlation.  

It can be concluded that based on flight-test data from all four sorties, the power 

prediction accuracy obtained from the CVSDR method is not related to the advance 

ratio. Similar accuracy level is expected from the CVSDR method regardless of the 

corresponding advance-ratio. 
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Figure 6.15. Prediction errors to advance ratio correlation. This figure presents the 

correlation between power prediction errors to the advance ratio using both methods, CVSDR 

and the conventional (cluster of sorties approach).          

6.6.2 Prediction Accuracy within a different 

coefficient-of-weight  

One might inquire whether the adequate performance of the CVSDR method is 

made possible only due-to the fact the power estimations were made for the same 

coefficient-of-weight. For this, another Sortie (number 5) was conducted under 

different values of coefficient-of-weight as specified in Table 6.5. Sortie 5 was executed 

without the cumbersome restriction imposed by the conventional method for 

maintaining a constant coefficient-of-weight and a constant main-rotor speed while 

gathering the power required to sustain level flight at various airspeeds. The 

coefficient-of-weight varied between 4.8x10-3 to 4.95x10-3 and was significantly 

different from the value maintained constant during the first four sorties  

(5.79x10-3).  
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Table 6.5. Summary of flight-test conditions for Sortie 5. 

Gross 
weight* 
[Lbs.] 

Long. C.G.*  
[In.] 

Pressure 
Altitude* 

[ft.] 

Ambient 
Temp. 
[°C] 

Cw*  
[x10-3] 

Main Rotor 
speed* 
[RPM] 

3920 - 4080 125.6 – 125.8 5980 - 6050 8 4.81 – 4.95 421 - 425 

* values represent the range of change during the sortie 

 

The four empirical models originated from the CVSDR method were used to 

predict the power levels of ten stabilized data points of Sortie 5. These empirical 

models are M123 defined in Eq. (6.28) and Eq.(6.29); M234, M134 and M124 specified 

in Eq.(6.30). Prediction errors were calculated by subtracting the predicted power from 

the measured value, this way a positive error represents an underestimation of the 

actual measured power. All power estimation errors for Sortie 5 are presented in 

Fig. 6.16 against the appropriate advance ratio. This figure also includes a presentation 

of the average estimation error of the four models for each data point. 

 

Figure 6.16. Power prediction errors for Sortie 5 (CVSDR method). This figure presents the 

power estimation errors for Sortie 5 using four distinct CVSDR empirical models.           

As expected, all four empirical models provided adequate prediction levels, even 

for different and varying values of coefficient of weights. Prediction errors ranged 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6.7   |   CONVENTIONAL  AND CVSDR  METHODS COMPARISON  

211 

from -11.1 hp to 10.1 hp for M134, -12.4 hp to 9.1 hp for M234, -9 hp to 12 hp for 

M124 and from -10.6 hp to 8.7 hp for M123. The prediction-error means were all close 

to zero (-0.9 hp, -1.3 hp, -0.7 hp and -0.4 hp for M134, M234, M124 and M123 

accordingly) with relatively narrow standard deviations of 7.3 hp, 8.6 hp, 6.8 hp and 

9.8 hp respectively. Hypothesis testing at the 95% confidence level shows no 

statistically significant difference between the prediction performances of all four 

empirical models. Moreover, no statistical significance was found between the 

performance of each empirical model when acted on Sorties 1 to 4 (constant Cw) or 

when acted on Sortie 5. That means one can expect adequate prediction performance 

when using the CVSDR method for extrapolating to a different coefficient of weight. 

The correlation-coefficients (r) between the power-prediction errors of each 

empirical model and the advance-ratio were calculated per Eq.(6.9). The values were 

significantly low; 0.17 for M134, 0.25 for M234, 0.42 for M124 and 0.41 for M123.  

For the specific number of data points in Sortie 5 (10 data points) and the accustomed 

95% confidence level, only a value of 0.632 and above indicates a significant 

correlation between the two variables. It can be concluded that based on flight-test 

data of Sortie 5 no significant correlation was found between the power prediction 

errors using all four empirical models (M134, M234, M124 and M123) and the 

advance-ratio. 

6.7 CONVENTIONAL AND CVSDR METHODS 

COMPARISON  

The conventional flight-test method for level-flight performance is based on a 

simplification of the physical problem and comprises several drawbacks which affect 

the accuracy and efficiency of the method. This section draws a comparison between 

the conventional and the CVSDR methods by dwelling on each one of the 

conventional method’s drawbacks specified in the introduction to this chapter (Section 

6.2).  
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First and foremost, the prediction accuracy to be expected from each method is 

different. Figure 6.13 shows a comprehensive comparison between the prediction 

errors attained from each method for all four sorties, totalling 44 flight-test data points. 

Figure 6.14 compares between the two methods by presenting the mean of the 

absolute prediction errors for each sortie. The superiority of the CVSDR method over 

the conventional method is clear. The conventional method generates average absolute 

prediction errors of 12.5 hp, 9.5 hp, 8.7 hp and 22.9 hp, as compared to 6.3 hp, 5.2 hp, 

5.1 hp and 7 hp (respectively) yielded by the CVSDR method. Statistical analysis shows 

that on-average (at the 95% confidence level) the CVSDR power predictions deviate 

by up to 4.8 hp (absolute value) from the actual measured power. The corresponding 

deviation obtained from the conventional method is 5.8 hp, an increase of nearly 21%.  

The prediction errors generated from the conventional method were significantly 

correlated to the advance-ratio, whereas the CVSDR method demonstrated prediction 

accuracy with no correlation to the advance ratio. This correlation between the 

prediction error and the advance ratio might suggests there is a latent phenomenon 

related to the advance ratio which is missed by the conventional method and the 

empirical model it yields.   

The conventional method is aimed at constant coefficient-of-weight data. As 

such, the empirical models retrieved from the first four sorties were useless for the 

predictions of Sortie 5. The CVSDR method is more versatile in this manner and was 

successfully used for the predictions of Sortie 5. Besides the versatility aspect, the 

constant coefficient-of-weight restriction makes the execution of the conventional 

flight-test method cumbersome and more time consuming, as compared to the 

CVSDR method. As discussed in Section 6.3, the conventional method requires the 

flight-test crew to continuously calculate (in real-time) and adjust the cruise altitude for 

maintaining a constant coefficient of weight. For a small sized and light helicopter, this 

inflates the flight time required for each data point from about 2 minutes to about 5 

minutes. For large and heavy helicopters this inflation rate is even expected to increase 

more. For example, on a flight-test campaign that requires five different coefficients 

of weight, each including eight different airspeeds, the CVSDR method is expected to 
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save about 2 hours of flight time. This is about 60% reduction in the flight-test duration 

required by the conventional method. Moreover, losing the requirement for a 

continuous adjustment of the cruise altitude based on the helicopter weight can free 

up valuable crew resources and promote flight safety.  

There are two approaches of maintaining a constant coefficient-of-weights (Cw) 

during a speed runs. The first is to keep a constant ratio of weight over relative density 

(W/σ), and a constant main-rotor angular speed. This approach is discussed 

Subsection 6.3.1 and thoroughly demonstrated using BO105 data in Subsection 6.3.3. 

The second approach for maintaining a constant coefficient-of-weight was not 

demonstrated in the paper but is discussed in Subsection 6.3.2. This second approach 

requires the flight-tester to maintain a constant ratio of static ambient temperature (Ta) 

over the main-rotor angular speed squared (Ω2) during the speed-runs. These 

requirements dictate a continuous involvement of the flight-test crew with the main-

rotor speed. For the first approach of constant main-rotor speed the crew needs to 

continuously apply fine-tuning, either to compensate for a non-perfect control system 

(M/R speed governor) functioning, or even to override an inherent scheduling profile 

dictated by the govern control laws. When executing the second approach the flight 

tester involvement with main-rotor speed adjustments is even more challenging since 

they need to maintain a constant value of Ta/Ω2. Besides the fact this main-rotor speed 

continuous manipulation during the test imposes inconvenience on the crew, there are 

types of helicopters (the MD-902 Explorer as an example) which do not allow the crew 

to adjust the main rotor speed under standard procedures. For these types of 

helicopters, a precise execution of the conventional level flight performance testing 

method is questionable, and undesirable scatter in the data is almost inevitable.  

The CVSDR method does not force the test crew to follow any kind of main-

rotor speed profile, or to keep it fixed. Any variation in the main rotor speed regardless 

of its initiation source (automatically by the control system or manually by the flight-

test crew) can be used as a valid flight-test data point. That said, the flight-tester should 

be reminded that flight-test data should be collected throughout the flight envelope of 
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the aircraft. For this reason, performance data should be collected for the entire range 

of main-rotor angular speed under normal operations (as presented in Fig. 6.12).    

Another drawback inherent to the conventional method and efficiently addressed 

by the proposed CVSDR method is the influence of the center-of-gravity on the power 

required for level-flight. As mentioned in the chapter introduction (Section 6.2), 

migration of the center-of-gravity can affect the helicopter attitude, hence alter the 

drag frontal area of the helicopter. Through this mechanism the power required to 

sustain level flight is affected as well. Unlike the conventional method which neglects 

this influence, the CVSDR method identified a corrected variable (ψ15*) which conveys 

the effect of center-of-gravity migration into the empirical power model. For the 

specific type of helicopter tested and the limited scope of tests, this center-of-gravity 

was identified as the 6th concept in the data (𝜎6), responsible for 2.3% of variance in 

the data (as presented in Fig. 6.11). Note that the specific data analyzed covers a limited 

center-of-gravity travel range (between longitudinal stations 123.5 and 124.4 inch as 

per Table 6.1), which represents only 6.4% of the allowed longitudinal center-of-

gravity of the BO105 helicopter. Expanding the flight-test data base to include level 

flight performance data measured under a larger center-of-gravity travel range might 

have resulted in a larger significance of the relevant corrected variable (ψ15*).  

The conventional method is bounded by the high-speed approximation, meaning 

it is relevant only for airspeeds in which the induced velocity through the main-rotor 

disk is negligible as compared to the airspeed the helicopter flies at. This makes the 

conventional method irrelevant for modeling and estimating power required in the 

low-airspeed regime. The CVSDR method is not bounded by this high-speed 

approximation and is indeed relevant for the low-airspeed regime. As seen in Fig. 6.16, 

the CVSDR method was also applied to the low-airspeed regime and provided 

adequate power estimations in this regime. Three power estimations were made for 

the advance-ratios of 0.05, 0.07 and 0.08 representing true-airspeeds of 19, 30 and 

35 kts. respectively. Those estimations were at a similar accuracy level as achieved for 

the high-speed regime. Nevertheless, statistical analysis for Sortie 5 and the CVSDR 
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method showed no significant correlation between the power prediction errors and 

the advance-ratio. 

6.8 CONCLUSIONS AND SUMMARY 

The conventional flight-test method to evaluate helicopter performance in level-

flight includes many drawbacks which seriously compromise its accuracy and its 

execution efficiency. The proposed CVSDR method aims at addressing those 

downsides of the conventional flight-test method. The CVSDR method showed great 

potential as it was used successfully with level-flight test data obtained from a MBB 

BO-105 helicopter. The power prediction accuracy achieved using the CVSDR 

method was nearly 21% better than the level of accuracy yielded from the conventional 

flight-test method. Moreover, the CVSDR method does not require the test crew to 

follow a strict and binding flight scheduling, as mandated by the conventional method. 

This potentially makes the CVSDR more efficient and time conserving. The CVSDR 

is estimated to reduce flight-time for data points gathering by at least 60%.  

The CVSDR method is not restricted by the high-speed approximation and is 

therefore relevant to the low airspeed regime, as opposed to the conventional flight-

test method. This low-airspeed regime relevancy can potentially bridge the empirical-

modelling gap between the two most important flight regimes of the helicopter, the 

hover, and the level-flight.  

Although demonstrated using flight-test data from a MBB BO-105 helicopter, the 

CVSDR method is applicable for any other type of conventional helicopter in level-

flight. 
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No matter how thin you slice it, there will always be two sides. 

Baruch Spinoza 

7 CONCLUSIONS AND 

RECOMMENDATIONS 

he goal of this dissertation is to develop new and improved flight-testing methods 

for the available power, the OGE hover and the level-flight performance of a 

conventional, GT engine(s) powered helicopter. The identified drawbacks of the 

current flight-test methods are spelled out in the problem statement of this thesis 

(Subsection 1.4). These shortcomings can be sorted under two core categories of 

inefficiency and inaccuracy. The two most important properties the performance 

flight-tester is seeking for are those of efficiency and accuracy. Performance flight-

testing is all about acquiring accurate empirical models for the performance of the 

aircraft by applying efficient methods that minimize time and effort.   

7.1 NOVEL VS. CONVENTIONAL FLIGHT 

TEST METHODS –MAIN DIFFERENCES  

The novel flight-test methods presented in this thesis are derived from the 

same source as the conventional flight-test methods. This is the fundamental approach 

of dimensional analysis. The performance flight-testing problem is addressed more 

efficiently by reducing the number of the participating variables. The practicality for 

the performance flight-tester is that the test matrix and the associated number of 

planned sorties is immensely reduced. The first substantial difference between the two 

T 
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performance flight-testing approaches (novel and the conventional) relates to the role 

dimensional analysis plays within the method. While the conventional flight-test 

methods are using the Buckingham PI Theorem [66] only as a mean for justification, 

the novel approach uses it as a genuine tool that provides non-dimensional (ND) 

variables. These ND variables are used as predictors (regressors) in the empirical 

models explored.   

The conventional dated methods originate from overly simplified physical 

models that are ‘reversed-engineered’ to yield ND variables. While the conventional 

methods are simple to comprehend, and even provide satisfactory interpolation 

predictions for conservative helicopter and atmospheric conditions (‘center of the 

envelope’), these methods easily fail, when challenged with performance prediction of 

less benign conditions, where non-linear effects become a factor. The novel flight-test 

methods employ an original list of ND variables to be used as predictors. This list is 

reduced using tools of dimensionality reduction (SVD) to retain only the most essential 

and effective ND variables for the specific performance problem. This method is 

referred-to as the ‘Corrected-Variables Screening using Dimensionality Reduction’, or 

shortly the CVSDR method. Unlike the conventional method, the proposed CVSDR 

is not bounded by any predetermined simplifications and approximations. This 

method adjusts and adapts based on the actual flight-test data analysed. This flexibility 

of the CVSDR method allows to accommodate for the various sensitivities each type 

of helicopter demonstrates and also for any kind of non-linear effects, as they become 

even more significant while the helicopter operates under extreme conditions and close 

to the boundaries of its envelope. The proposed CVSDR method accommodates for 

the exceptionality of each helicopter and for uncommon flight-conditions. This stands 

opposite to the conventional flight test methods which are bounded by conservative 

approximations and simplifications.   

Another fundamental difference between the two approaches is with respect 

to multi-variability modelling. The conventional approach consistently avoids dealing 

with multivariable models and prefers the use of several single-variable mathematical 

relations over employment of one multivariable relationship. The conventional flight-
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testing method for the available power of a gas-turbine (GT) engine is centred on single-

variable polynomials as discussed in Chapter 1 (Subsection 1.3.1) and demonstrated, 

using actual flight-test data, in Chapter 2. The conventional approach simplifies a 

multivariable-type problem by assuming the output power of a GT engine can be 

treated as a linear combination of single-variable models. This notion of refraining 

from employing multivariable models also guides the conventional flight-test methods 

for the required power. Taking the level-flight performance as an example (Subsection 

1.3.3), the three-variable empirical model in coefficient-of-power (Cp), advance-ratio 

(μ) and coefficient-of-weight (CW) is traded in the name of simplicity for series of two-

variable models (Cp to μ), given at various discrete values of coefficient-of- weight 

(CW).  

7.2 CONCLUSIONS 

The main conclusions of this dissertation are summarized and presented 

hereinafter with respect to the goals and objectives of the research (Section 1.5). All 

conclusions are numbered for ease of tracking and referencing. This list of conclusions 

relates to the specific seven Research Questions (RQ’s) specified in the problem 

statement of the dissertation (Section 1.4). Figure 7.1 presents a ‘checkers-board’ type 

plot that maps the correspondence between the conclusions and the seven RQ’s of 

this thesis. A dark element in the rectilinear plot of Fig. 7.1 indicates a relationship 

between the specific conclusion and a particular RQ. Note there are specific 

conclusions which are related to more than one RQ and vice versa; there are few RQ 

which are supported by more than one conclusion. Conclusion 22 is not related directly 

to any RQ’s but refers to the conventional level-flight performance method.    
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Figure 7.1. Conclusions to RQ’s Mapping. This checkers-board type plot presents 

the correlation between the 7 RQ’s and the 22 conclusions of the thesis. A dark element 

represents a correspondence between a specific conclusion and a specific RQ.   

7.2.1 Flight Testing for Power Available  

This subsection relates to the first Research Question (RQ1) which is Can a novel 

flight-test method be developed for the available power of a gas-turbine 

helicopter, which demonstrates enhanced power prediction accuracy as 

compared to the conventional method?  For answering RQ1 a novel method, 

referred to as the ‘Multivariable Polynomial Optimization under Constraints’ (MPOC), 

was developed for the available power of a gas-turbine helicopter. The method, which 

is presented in Chapter 3, seeks for a third order multivariable polynomial to describe 

the corrected output power of a GT engine (CSHP) as a function of the three engine 

corrected variables, the corrected compressor speed (CNg), the corrected temperature 

(CTGT) and the corrected fuel-flow (CWf). The MPOC method is further developed 

and tuned in Chapter 4, where a systematic and repeatable methodology to choose in-

between various empirical models is discussed. The following seven conclusions, 

Conclusion (1) to Conclusion (7), are related to RQ1 and were drawn while developing 

the MPOC method:  
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(1) The output power of a helicopter GT engine is a multivariable problem that 

can be adequately described by a third-order multivariable polynomial in corrected 

compressor speed (CNg), corrected temperature (CTGT) and corrected fuel-flow 

(CWf). 

(2) The prediction of the output power of a GT engine by using a multivariable 

polynomial in corrected compressor speed (CNg), corrected temperature (CTGT) and 

corrected fuel-flow (CWf) is more accurate as compared to single-variable polynomials. 

For the example BO-105 flight-test data used in Chapter 3, the standard deviation of 

the output power estimation error is reduced from 13hp using the current single-

variable method, to only 4.3hp by using a multivariable polynomial. Expanding the 

flight-test data base to seven different engines in Chapter 4 reveals that the 

multivariable polynomials performed much better with all seven engines, as compared 

to the single-variable approach. The maximum average prediction error using a 

multivariable polynomial model was only 0.2% as compared to a maximum average 

prediction error of 1.15%, using the single-variable approach.   

(3) The maximum available power of a GT engine under various atmospheric 

conditions can be accomplished by finding the extremum (maximum) of a 

multivariable polynomial that represents the output power of the engine, subjected to 

both equalities and inequalities constraints. The novel method called Multivariable 

Polynomial Optimization under Constraints (MPOC) seeks for optimizing a 

multivariable polynomial representing the engine output power, while satisfying 

equalities and inequalities constraints. The equalities constraints are the engine 

empirical internal rules of operation and the inequalities constraints are the engine 

operating limitations, i.e., the compressor speed limitation, the maximum allowed 

engine temperature, and the maximum fuel-flow imposed by the engine fuel pump.   

(4) The Karush-Khun-Tucker (KTT) optimization method was used 

successfully with the MPOC method for the task of evaluating the maximum available 

power of a GT engine, under various atmospheric conditions. While the current flight-

test method yielded unrealistic predictions for certain atmospheric conditions, the 
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proposed MPOC method demonstrated acceptable predictions for the maximum 

available power of the engine for a wider range of atmospheric conditions. 

(5) The process of empirical models evaluation and screening is at the core 

business of experimental flight-test data analysis. The flight-test team needs to select 

the most effective and accurate empirical model to represent the aircraft performance, 

as reflected by the measured data. The conventional statistical method known as the 

hypothesis-testing failed to differentiate between the many candidate multivariable 

polynomials based on their performance in representing the output power of a GT 

engine.  

(6) A singular-value-decomposition (SVD) based procedure was used 

successfully to distinguish between many candidate multivariable polynomials based 

on their excellence level in representing the output power of a GT engine. 

Furthermore, this SVD procedure is capable of exposing latent similarities between 

different GT engines with respect to their output power models.  

(7) No significant correlation was found between the number of predictors 

used in the multivariable empirical model and the prediction accuracy of the GT engine 

output power. Two specific multivariable polynomials that employ only 11 predictors 

(out of 19 available) were identified as the fourth and the fifth best-performing models 

(out of 512 candidates) for the output power of an example group of seven GT 

engines.  

7.2.2 Flight Testing for Power Required in 

OGE Hover  

This subsection relates to RQ2 which is Can a novel flight-test method for 

OGE hover performance of a conventional helicopter, which demonstrates 

enhanced prediction accuracy as compared to the conventional OGE hover 

method be developed?  For answering RQ2 a novel method, referred to as the 
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‘Corrected Variables Screening using Dimensionality Reduction’ (CVSDR), was 

developed for the power required of a conventional helicopter in OGE hover. The 

method is presented in Chapter 5 and its explicit steps are summarized in Table 7.1 

presented hereinafter. The following five conclusions, Conclusion (8) to Conclusion 

(12), are related to RQ2 and were drawn while developing the CVSDR method for 

OGE hover performance:   

(8) The power required for OGE hover of a conventional helicopter can be 

adequately described by a multivariable first order polynomial in corrected variables 

(predictors) retrieved from a rigorous dimensional analysis.  

(9) The identity and number of corrected variables required for the OGE hover 

multivariable empirical model (‘conceptual empirical model’) is obtained by the 

CVSDR method. For the example Bell Jet-Ranger helicopter and the specific OGE 

hover flight test data base presented in Chapter 5, the CVSDR method propose a list 

of four corrected variables that represent 98% of the variance in the flight-test data.       

(10) The power predictions of the CVSDR method were 1.9 times more 

accurate than the conventional method, when used with OGE hover flight test data of 

the example Bell Jet-Ranger helicopter. At the 95% confidence level, the CVSDR 

method deviated by an average of only 0.9hp (0.3% of the maximum continuous power 

of the example helicopter) from the actual power required to hover, whereas power 

predictions from the conventional method deviated by an average of 1.7hp. 

(11) Unlike the conventional hover performance flight-testing method, the 

CVSDR approach is capable of representing non-linear phenomena such as 

compressibility and drag divergence in its empirical model.  The CVSDR method does 

not determine beforehand which predictors must be used in the empirical model. 

Instead, it chooses from a list of 15 corrected variables (derived from dimensional 

analysis) the most essential and effective predictors to represent the specific flight test 

data analysed. This approach, by itself, provides more flexibility and allows for more 

accurate empirical modelling, as compared to the conventional method.  
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(12) The novel CVSDR method for OGE hover performance requires no 

changes to the manner current OGE hover flight test sorties are carried out. The 

modification is with the data analysis procedure only.  

Table 7.1. A step-by-step guidance for CVSDR OGE hover testing. 

Step Task Description & Instruction 
 
Phase One – Establish an applicable list of CVs to represent the hover performance. This 
phase is described in Subsection 5.4.1. 
 

1 Compute all 15 CVs (Table 5.3) for each stabilized OGE hover data point 
measured.  

2 Arrange the computed CVs in a matrix form (this is matrix Z). The rows of Z 
should represent the different data points and columns of Z should represent the 
various CVs.   

 
Phase Two – Screening for the most effective CVs using dimensionality reduction. This 
phase is thoroughly explained in Subsection 5.4.2. 
 

3 Normalize all columns of matrix Z as per Eq.(5.18) to have a zero mean and a 
variance equals one.  

4 Decompose the normalized matrix Z into its three unique matrices (U,Σ and V) 
using a Singular Value Decomposition (SVD) algorithm. Matrix U is also referred 
to as the Left Singular Vectors (LSV), matrix Σ is called the singular values and 
matrix V is called the Right Singular Vectors (RSV). 

5 Normalize all singular values (entries along the main diagonal of matrix Σ) as per 
Eq.(5.19). The normalized values represent the relative strength of the various 
dimensions exist in the data. Determine the number of significant dimensions 
involved in the specific hover performance data, based on the cumulative sum of 
the normalized singular values (as presented in Fig.5.5).  

6 Normalize the rows of matrix VT (RSV) as per Eq.(5.20). This normalization calls 
for the absolute value of each element along the rows of RSV to be divided by 
the sum of all elements absolute values along the corresponding row of RSV.   

7 Identify the most significant CVs of the specific hover performance analysed. 
The level of correspondence between each CV and an abstract dimension of the 
hover problem is illustrated in Fig. 5.4. Note that only the first significant rows 
of the normalized RSV should be evaluated. The number of significant rows of 
RSV equals the number of significant dimensions retrieved in sequential step 5 
above. Example for this step is presented in Fig.5.6. 

 
Phase Three – Forming a practical empirical model (Subsection 5.4.3) 
 

8 Use the most significant CVs identified in sequential step 7 to form a practical 
polynomial that uses the relevant CVs as regressors in this empirical model.  
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7.2.3 Flight Testing for Power Required in 

Level Flight  

This subsection addresses the five Research Questions (RQ3, RQ4, RQ5, RQ6, 

and RQ7) which are specified in the problem statement of this thesis (Section 1.4). 

These five research questions relate to the deficiencies associated with the current 

level-flight performance flight-testing of a conventional helicopter. The novel CVSDR 

flight-test method for power required in level flight was developed specifically for 

addressing the five RQ’s (RQ3, RQ4, RQ5, RQ6, and RQ7). This novel method is 

thoroughly discussed and demonstrated in Chapter 6 and its explicit steps are 

summarized in Table 7.2 presented hereinafter. Abstractly, the CVSDR method for 

level flight can be regarded as a rigours expansion of the hover CVSDR method into 

a higher dimensional-space. The following ten conclusions, Conclusion (13) to 

Conclusion (22), were drawn while developing the CVSDR method for level flight 

performance. The detailed mapping of these ten conclusions to the particular five RQ’s 

is presented in Fig. 7.1. 

(13) The power required for level flight of a conventional helicopter can be 

adequately described by a multivariable first order polynomial in corrected variables 

(predictors) retrieved from a rigorous dimensional analysis. The list of corrected 

variables includes predictors that represent various coefficient-of-weight and account 

for non-linear effects. This conclusion relates directly to two research questions; the 

non-linear effects of RQ3 and the various coefficient-of-weight of RQ4.     

(14) The identity and quantity of corrected variables required for the level flight 

multivariable empirical model (‘conceptual empirical model’) are established by the 

CVSDR method. For the example MBB BO-105 helicopter and the specific level flight 

test data base presented in Chapter 6, the CVSDR method proposed a list of seven 

corrected variables that represent 96.5% of the measured variance in the data. 

(15) The power predictions accuracy achieved using the CVSDR method for 

level-flight was nearly 21% better (on average and at the 95% confidence level), as 
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compared to the prediction accuracy yielded from the conventional method. Note this 

conclusion relates directly to the improved prediction accuracy of the novel CVSDR 

method as required by RQ3. 

(16) The novel CVSDR method for level flight made planning and execution 

of flight-test sorties more efficient and time conserving. It is estimated to reduce flight-

time for data gathering by at-least 60%. Note this conclusion relates directly to the 

efficiency of the novel CVSDR method as required by RQ4.   

(17) The novel CVSDR method for level flight does not require a continuous 

and accurate adjustment of the flight altitude, as mandated by the conventional 

method. Renouncing this burdensome requirement can free up valuable crew 

resources and promote flight safety. Note this conclusion relates directly to the 

efficiency of the novel CVSDR method as required by RQ4 

(18) The novel CVSDR method for level flight does not require to keep the 

main-rotor angular speed constant throughout the test, as required by the conventional 

method. This makes the CVSDR method more versatile and relevant for helicopter 

types, which do not enable pilot-initiated main rotor speed adjustments under standard 

flight procedures. This conclusion relates directly to RQ7.  

(19) The novel CVSDR method for level flight is not restricted by the high-

speed approximation like the conventional method. This makes the CVSDR an 

appropriate method for the low-airspeed regime, and can potentially bridge the 

empirical modelling gap between the hover and level-flight domains. This conclusion 

relates directly to RQ5.  

(20) The power predication errors yielded by the CVSDR method were not 

significantly correlated to the advance ratio, as opposed to the prediction errors 

returned from the conventional method. This might suggest that the CVSDR method 

is capable of identifying a latent advance-ratio related phenomenon, completely 

overlooked by the conventional method.      



7.2   |   CONCLUSIONS  

227 

(21) The novel CVSDR flight test method for level flight comprises the effect 

of center-of-gravity location on the power required. This significant competence adds 

much value to the CVSDR method over the conventional method. This conclusion 

relates directly to RQ6. 

(22) The soundness of the conventional flight-test method for level flight 

performance is seriously questionable in light of the research level-flight test sorties. 

The theoretical uniqueness of the coefficient-of-power (Cp) to advance ratio (μ) curve 

for four sorties executed at a nominal constant coefficient-of-weight (CW) was found 

inaccurate. The measured 11% variance in Cp cannot be entirely explained by the 

inaccurate flight test execution which resulted in only 1% variance in CW.  Note this 

conclusion is not related directly to any RQ’s but refers to the drawbacks of the 

conventional level-flight performance method.  
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Table 7.2. A step-by-step guidance for CVSDR level-flight testing. 

Step Task Description & Instruction 
 
Phase One – Establish an applicable list of CVs to represent the level-flight performance. 
This phase is described in Subsection 6.4.1. 
 

1 Compute all 36 CVs (Table 6.3) for each stabilized level-flight data point 
measured. There should be 136 stabilized data points, If all sorties of Fig. 6.12 
are closely executed.  

2 Arrange the computed CVs in a matrix form (this is matrix Z). The rows of Z 
should represent the different data points and columns of Z should represent the 
various CVs. If all sorties of Fig. 6.12 were closely executed, matrix Z should be 
of size 136x36.   

 
Phase Two – Screening for the most effective CVs using dimensionality reduction. This 
phase is described in Subsection 6.4.2. 
 

3 Normalize all columns of matrix Z as per Eq.(6.24) to have a zero mean and a 
variance equals 1.  

4 Decompose the normalized matrix Z into its three unique matrices (U,Σ and V) 
using a Singular Value Decomposition (SVD) algorithm. Matrix U is also referred 
to as the Left Singular Vectors (LSV), matrix Σ is called the singular values and 
matrix V is called the Right Singular Vectors (RSV). 

5 Normalize all singular values (entries along the main diagonal of matrix Σ) as per 
Eq.(6.25). The normalized values represent the relative strength of the various 
dimensions exist in the data. Determine the number of significant dimensions 
involved in the specific level-flight performance data, based on the cumulative 
sum of the normalized singular values (as presented in Fig.6.10).  

6 Normalize the rows of matrix VT (RSV) as per Eq.(6.26). This normalization calls 
for the absolute value of each element along the rows of RSV to be divided by 
the sum of all elements absolute values along the corresponding row of RSV.   

7 Identify the most significant CVs of the specific level-flight performance 
analysed. The level of correspondence between each CV and an abstract 
dimension of the level-flight problem is illustrated in Fig. 6.9. Note that only the 
first significant rows of the normalized RSV should be evaluated. The number of 
significant rows of RSV equals the number of significant dimensions retrieved in 
sequential step 5 above. Example for this step is presented in Fig.6.11. 

 
Phase Three – Forming a practical empirical model (Subsection 6.4.3) 
 

8 Use the most significant CVs identified in sequential step 7 to form a practical 
polynomial that uses the relevant CVs as regressors in this empirical model.  
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7.3 RECOMMENDATIONS 

The following are recommendations concerning possible future expansion of the 

research.   

(1) One of the main advantages of the CVSDR method for level flight is that it is 

unrestricted by the high-speed approximation (Conclusion 19), therefore is applicable 

to the low-airspeed regime, unlike the conventional method. This opens up an 

opportunity to provide a unified empirical model to describe the power required from 

hover to the maximum horizontal airspeed of the helicopter. Under the current 

research limitations for number of flight-hours, availability of aircraft and special 

flight-test instrumentation it was not feasible to employ the CVSDR method for level 

flight, from a hover, through the low airspeed regime to the maximum airspeed for 

level flight. Future research should focus on the applicability and accuracy of the 

CVSDR method when used as a unified empirical model for the power required from 

hover to maximum airspeed in level flight.  

(2) The current research was limited to out of ground effect (OGE) hover only. 

Although performance flight testing for in-ground-effect (IGE) was excluded, the 

derivation of the proposed CVSDR method in Chapter 5 includes provisions to also 

address the IGE hover. The applicability and accuracy of the CVSDR method for 

power required to IGE hover should be evaluated in future research.  

(3) Future research should expand the CVSDR flight-testing method to include 

more areas of helicopter performance. These are the power required in a climb (vertical 

climb and forward climb), and partial-power and unpowered descent performance 

(‘Autorotation’).    

(4) In recent years we have witnessed an increasing number of vertical lift aircraft 

types that combine both fixed-wing (FW) and rotary-wing (RW) characteristics. This 

duality also affects the performance flight-test methods, especially for the transition 

from RW to FW envelope. The general approach presented in this thesis, of 
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establishing a generic list of corrected-variables using dimensional analysis, followed 

by an elimination procedure based on dimensionality reduction to identify the most 

essential for the specific performance problem analysed and then to establish an 

empirical multivariable model, can work better for this type of a dual-characteristic 

aircraft. Future research should be focused on evaluation of the applicability and 

efficiency of the performance flight-testing method developed in the current research, 

to relevant vertical-lift aircraft that combine both RW and FW characteristics.  

(5) The current research shows that power prediction accuracy for hover and 

level-flight is better with the proposed empirical models, as compared to the empirical 

models yielded by the conventional methods. Part of the improved prediction accuracy 

can be attributed to the increased number and improved quality of the predictors 

(corrected-variables) used. Using more appropriate and effective degrees of freedom in the 

empirical model surely promotes prediction accuracy. That being said, the hover and 

level-flight research sorties were conducted under relatively moderate flight-

conditions. It is believed the full potential of the proposed performance flight-testing 

methods was not entirely exposed by the relatively moderate flight conditions tested. 

Future research should apply the novel CVSDR method for hover and level flight 

under extreme conditions of atmosphere and configuration. This includes high altitude 

and low ambient temperatures to expose the helicopter to severe compressibility 

effects, and for all corners of gross-weight/center-of-gravity envelope. 

(6) Future research should look into the potential and feasibility of employing the 

CVSDR method for empirical modelling by the Health and Usage Monitoring Systems 

(HUMS) installed in helicopters. For example, the novel CVSDR method for 

performance flight testing could be entirely automated and integrated into HUMS to 

provide real time performance empirical modelling for and prediction of the specific 

helicopter (not just the type). The CVSDR algorithm can also be used to flag 

exceptional prediction discrepancies that might be indicative of potential helicopter 

malfunctions and hazards.   
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7.4 CLOSING REMARKS  

The performance flight-tester needs practical and efficient flight-test methods 

with the purpose of producing accurate empirical models for aircraft performance 

prediction. The novel flight-test method presented in this dissertation fits into this 

need for a practical, efficient and accurate performance flight-testing method. The 

novel method developed and tested in this research, yielded better prediction accuracy 

as compared to the accuracy level of conventional methods. The available power 

prediction using the novel method was on average 5.75 times more accurate than the 

conventional flight-test method. The novel method predicted power required for 

OGE hover, about 1.9 times more accurately than the conventional method. Superior 

performance prediction of the novel method was also demonstrated for power 

required for level flight (about 21% more accurate). It is believed the main reason for 

superior prediction accuracy is mainly attributed to the flexibility of the novel method. 

It is capable to adjust and to adapt to specific flight-test data reflecting various 

helicopter types, aircraft configurations and ambient conditions. This flexibility does 

not exist to the same extent within the conventional flight-test methods. The efficiency 

and practicality of the novel method is mostly demonstrated in level flight performance 

flight-testing. As thoroughly discussed in Chapter 6, the novel method is estimated to 

reduce flight-time for data gathering by at-least 60%, while at the same time decreasing 

the complexity in flight-test execution, hence promoting safety of flight.  

Alongside the many advantages of the novel flight-test method, there is one 

drawback.  At the core of this novel method lies an analytical procedure that starts 

with fundamental dimensional analysis, followed by dimensionality reduction 

procedure, based on the concept of singular-value-decomposition (SVD). This 

dimensionality reduction procedure requires for more analysis effort, both in terms of 

flight-test data reduction and a supporting software package, capable of performing 

the SVD algorithm. 

The scope of this research was limited to the power available of gas-turbine 

engines and the power required for a conventional helicopter in OGE hover and in 
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level-flight. Despite focusing on limited flight-testing areas only, it is believed the novel 

method presented in this dissertation is applicable to other areas of performance flight-

testing and can be employed outside of the conventional helicopter configuration. It 

is recommended the novel performance flight-test method be evaluated in the future 

under extreme flight and ambient conditions, for other areas of performance flight-

testing and also for unconventional helicopters, those which do not conform to the 

single main-rotor and a single tail-rotor configuration.
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A. GAS-TURBINE ENGINE 

DIMENSIONAL ANALYSIS 

his appendix provides the generic gas-turbine engine dimensional analysis. The 

classical Buckingham Pi theorem [66] is used to demonstrate how the gas-turbine 

engine dimensional physical problem is converted into a non-dimensional (ND) 

problem and how should the dimensional variables involved in the gas-turbine engine 

performance problem be non-dimensionalized or ‘corrected’ in order to reduce the 

number variables involved in the problem. The method of parameter correction 

presented here is the classical approach that follows from the theorem. Note there are 

few turbine engine manufacturers that tweak or ‘fine-tune’ these classical correction 

factors to better work with their specific engine types.   

Consider first the dimensional variables that affect the generic gas turbine engine 

output power problem. The practice would suggest that these should be the ambient 

static pressure, Pa, ambient static temperature, Ta, engine compressor speed, Ng, 

engine temperature, TGT, fuel-flow (weight flow), Wf and the physical size of the 

engine. Consider a descriptive cross section area, Ae, to represent the physical size of 

the engine. The engine output power, SHP, can be mathematically represented as in 

Eq.(A.1) or equivalently implicitly as in Eq.(A.2). 

 ( , , , , , ) a a fSHP f P T Ng TGT W Ae   (A.1) 

 ( , , , , , , ) 0a a ff SHP P T Ng TGT W Ae   (A.2) 

T 
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The dimensions involved in this physical problem are presented in Table A.1. The 

notation M represents mass, L represents length and T represents time.  

Table A.1 – Gas turbine engine - summary of variables and dimensions involved. 

# Physical Variable  Notation Dimension 

1 Shaft Output Power SHP [M][L]2[T]-3 
2 Ambient Air static Pressure Pa [M][L]-1[T]-2 
3 Ambient Air static Temperature Ta [L]2[T]-2 
4 Engine Compressor Speed   Ng [T]-1 
5 Engine Temperature  TGT [L]2[T]-2 
6 Engine Cross Section Area Ae [L]2 
7 Fuel (Weight) Flow  𝑤𝑓 [M][L][T]-3 

 

There are seven dimensional variables involved in the problem with three 

dimensions (L, M, and T). According to the Buckingham Pi Theorem, the complexity 

of the physical problem can be reduced from seven dimensional variables to four Non-

Dimensional (ND) variables. This is the number of dimensional variables minus the 

number of dimensions involved in the problem, i.e., seven minus three equals four.  

The next phase is to build those four ND variables as products of the dimensional 

variables. The four ND variables will be denoted by 𝜋𝑖 (hence the origin of the name 

of this Pi theorem). Since there exist seven dimensional variables to be used for the 

construction of the four ND variables, three dimensional variables out of the seven 

must be used as repeating variables in the ND products.   

There are 35 different options to choose three variables out of seven for the case 

where the order does not matter (combinations) as shown by Eq.(A.3), for which N 

represents the number of options.  

 
  

7 7!
35

3 3! 4!
N

 
   
 

  (A.3) 
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It is a fairly tedious task of screening between 35 different combinations. This 

phase usually involves some trial and error rounds before obtaining the most suitable 

configuration. The following is a demonstration of only one combination out of the 

35 options available.  In this particular example presented in Eq.(A.4), the three 

repeating variables were chosen as the ambient air static pressure, Pa, the ambient air 

static temperature, Ta, and the engine cross-sectional area, Ae.  
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  (A.4) 

According to Buckingham [66], the repeating variables should be raised to some 

arbitrary powers, those are denoted as a1,b1,c1,…,c4 in Eq.(A.4). As demonstrated 

hereinafter, these arbitrary powers are identified as those numeric values that make the 

𝜋𝑖 products non-dimensional.  

The next step in this process of non-dimensionalizing the problem is to enforce 

all four 𝜋𝑖 products to be non-dimensional. First, each variable is replaced with its 

equivalent dimensions representation, then a system of linear equations is produced. 

Each non-dimensional variable produced a set of three equations in three unknowns 

as presented in Eq.(A.5).  
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  (A.5) 

Realizing the exponents for each ND variable 𝜋𝑖  is done through solving the 

four sets of three equations with three unknowns. This procedure is demonstrated for 

for 𝜋1 in Eq.(A.6): 
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  (A.6) 

Once the exponents of 𝜋1 are found, the first ND variable is revealed (Eq.) 
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The static ambient pressure, Pa, and the static ambient temperature, Ta, can be 

replaced with the pressure and temperature ratios as respectively appears in Eq.(A.8) 

and (A.9) to constitute Eq.(A.10)   

  , 14.7 a
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o

p
p psi

p
   (A.8)
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Since 𝐾1 in Eq.(A.10) is a constant for a specific helicopter (the engine cross 

sectional area does not change and P0 and T0 represent the standard sea level values 

for static air pressure and static air temperature respectively) it is evident that the first 

ND variable involved in the problem (𝜋1) is the expression presented in Eq.(A.11).  

 
*
1 

SHP
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  (A.11) 

Note that the term defined in Eq.(A.11) is not a pure ND parameter and it 

carries units. For this it is better defined as a “corrected-variable” and is symbolized 

with an asterisk (*) to differentiate it from the true ND variable in Eq.(A.10).    

From the second equation in Eq.(A.4), one can extract the following set of 

equations (Eq.(A.12)) to yield the second ND (Eq.(A.13),(A.14)) and corrected 

variable (Eq.(A.15)) by following the same procedure presented above for 𝜋1. 
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From the third equation in Eq.(A.4), one can extract the following set of 

equations (Eq.(A.16)) to yield the third ND (Eq.(A.17),(A.18)) and corrected variable 

(Eq.(A.19)) by following the same procedure presented above for 𝜋1, 𝜋2. 
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From the fourth equation in Eq.(A.4), one can extract the following set of 

equations (Eq.(A.20)) to yield the third ND (Eq.(A.21),(A.22)) and corrected variable 

(Eq.(A.23)) by following the same procedure presented above for 𝜋1, 𝜋2 and 𝜋3.
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Finally, Eq.(A.2) can be rewritten in its corrected form (ND for a specific 

engine) as in Eq.(A.24). The gas-turbine engine output power problem is now reduced 

to be a function of only four corrected variables, π1*, π2*, π3* and π4*. Another way to 

present Eq.(A.24) is in its explicit form as Eq.(A.25). The corrected output power of 

the engine is a function of three corrected variables i.e., the corrected compressor 

speed, the corrected engine temperature and the corrected engine fuel flow. 
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B. HIGH SPEED APPROXIMATION, 

10K FT., STANDARD DAY 

This appendix provides a graphical tool to assess the inaccuracy introduced by 

using Glauert’s high-speed approximation, as compared to the CMIV under standard 

day conditions, 10K ft. pressure altitude. A similar graph for Standard Sea Level (SSL) 

conditions is presented in Chapter 2 (Subsection 2.2.1) as Fig. 2.12.   
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C. RESEARCH HELICOPTERS 

DESCRIPTION  

This appendix provides a more detailed description of the two helicopters used 

for this research; the Bell Jet Ranger and the MBB BO-105 helicopters used for training 

at the National Test Pilot School (NTPS) in Mojave, California.  

THE BELL JET-RANGER HELICOPTER 

The Bell Jet-Ranger helicopter used for the research is a single-engine light 

observation helicopter, designed for day and night, visual flight rules (VFR) and 

instrument flight rules (IFR) operations. The helicopter is designed for landing and 

take-off from prepared or unprepared surfaces with a skid-type landing gear. The 

helicopter can be flown by a single pilot from the right-hand seat and has a place for 

three passengers in the back. The helicopter has an overall length of 12.5 m (main 

rotor fore to aft end of tail) and a maximum allowed take-off gross weight of 

3,200 lbs. (1,452 kg.). The helicopter conforms to the definition of a ‘conventional’ 

helicopter, as it has a single main-rotor (M/R) and a single tail-rotor (T/R). The M/R 

assembly is a two-bladed, semi-rigid, teetering type also known as underslung 

feathering axis hub. The M/R rotates counter-clockwise, when viewed from above, at 

a standard angular speed of 354 RPM. An audio warning tone and a RPM warning 

light are designed to come on and alert the pilot when the M/R angular speed decreases 

below 335 RPM.  The M/R blades are all metal and consist of extruded aluminium 
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alloy nose block and trailing edge, filled with aluminium honeycomb structure filler. 

The T/R configuration is two bladed teetering with 30° delta-three flapping hinge 

offset. The T/R is mounted on the left side of the tail-boom structure, and rotates 

with the bottom blade traveling forward. The T/R operates as a ‘pusher’ type, i.e., it 

generates an anti-torque force which pushes the tail structure of the helicopter to the 

right.  

The helicopter is powered by a single Allison T63-A-720 gas-turbine engine, 

which is installed immediately behind the main transmission as shown in Fig. C.1. The 

engine uninstalled maximum output power is rated at 420 shaft horsepower (shp) 

under standard day, sea level conditions. Once installed in the Jet-Ranger helicopter, 

the engine performance is de-rated due to drivetrain limitations to a maximum output 

power of 317 hp (5 minutes take off rating limit) and of 270 hp (continuous operation). 

The dry weight of this engine is 158 lbs. The engine power is transmitted through a 

freewheeling unit to the main transmission, which drives both the main and the tail 

rotors. The freewheeling unit is designed to disconnect both rotors drive shafts from 

the engine, enabling rotation of the main and the tail rotors through the main 

transmission in case of an emergency engine-out auto-rotational descent. The 

maximum output power (take-off rating) is attained with a 100% engine indicated 

torque and 100% N2 (power turbine angular speed). The engine incorporates a 

compressor section with six axial stages followed by a centrifugal stage, a gas-turbine 

section with two axial stages and a two axial stages power-turbine. This engine 

configuration is of a reverse-flow annular type, for which the exhaust gases follow a 

reverse path to the compressor gasses, before passing through the turbine section. 
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Figure C.1. The Allison T63-A-720 gas turbine engine. This photo shows the engine, as 

installed on the Jet Ranger helicopter.  

The output power of the engine is controlled by the turbine power governor 

through means of varying the amount of fuel that flows to the engine. The power 

turbine speed (N2) is selected by the pilot, and the output power required to maintain 

this speed is commanded by the power-turbine hydro-mechanical governor. With the 

throttle rotated to full-open position, the power-turbine governor works to maintain a 

constant N2 speed. Rotating the throttle towards the idle position causes the N2 speed 

to be manually selected, instead of automatically controlled. A droop-compensator 

unit, within the power-turbine governor, maintains a constant N2 speed as power 

demand is increased (or decreased) by main-rotor collective stick manipulation. This 

function is implemented through a mechanical linkage that connects between the 

collective stick to the speed selector lever on the N2 governor.  

The dual flight controls of the helicopter (for the pilot and for another crew 

member) consist of mechanical type non reversible cyclic-stick, collective-stick, and 

reversible directional pedals to control the helicopter in yaw. Figure C.2 shows the 

pilot station (right-hand side) flight controls. The flight controls pass-on the pilot 

inputs to the three main-rotor hydraulic servo cylinders and to the tail-rotor forged 
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aluminium alloy yoke. An electrically operated mechanical unit provide cyclic stick 

force trim function which helps in providing artificial force gradient to the pilot and 

to hold the cyclic stick in place and prevent it from migrating due to vibrations and 

mass imbalance. The collective stick incorporate no means of ‘trimming’ capabilities 

besides a simple adjustable mechanical friction.     

The helicopter features a rectangular fixed-position horizontal stabilizer. This 

stabilizer is mounted approximately at the middle of the tail-boom and has a span of 

6 ft. and 5 inches (195.6 cm.) and a chord of 45cm. This rectangular shaped horizontal 

stabilizer (shown in Fig. C.3) is designed to generate a down force with forward 

airspeed. A fixed position vertical fin is located to the right of the tail-boom. 

 

Figure C.2. The Jet-Ranger flight-controls. This photo shows the pilot seat (right-hand side) 

flight-controls; the cyclic-stick, the tail-rotor pedals (only the right pedals is shown) and the 

collective stick mounted to the left of the pilot seat.  
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The pitot-static system is used to measure airspeed, pressure-altitude and vertical 

rate of climb and descent. This system is made-up of two ports (static pressure ports) 

mounted on either side of the helicopter, forward of the pilot and the co-pilot doors, 

a single Pitot port mounted on the nose of the aircraft, plastic tubing and analogue 

instruments of (1) airspeed indicator (ASI), (2) altimeter and (3) vertical velocity 

indicator (VVI) all three located on the instrument panel as shown in Fig. C-4. The 

Pitot tube which is a heated type and is mounted approximately four inches to the right 

of the helicopter centreline. The static pressure is fed by means of plastic tubing to all 

three pneumatic analogue instruments. The total pressure is fed from the Pitot tube to 

the airspeed indicator only. 

 

Figure C.3. The horizontal stabilizer. The horizontal stabilizer is designed to generate a 

down-loaded aerodynamic force in forward flight.  
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Figure C.4. The Jet-Ranger flight instruments fed by the Pitot system. The pneumatic 

flight instruments that present to the flight crew the airspeed (ASI), pressure altitude (Altimeter) 

and the vertical velocity (VVI).  

The Jet-Ranger’s important specifications pertaining to its performance are 

summarized in Table C.1.     

Table C.1 – The Bell Jet Ranger performance specifications. 

Parameter  Value 

M/R (T/R) diameter [ft.] 35.3 (5.2) 
M/R (T/R) standard angular speed (RPM) 354 (2,670) 
M/R (T/R) number of blades (b) 2 (2) 
M/R (T/R) blade chord [ft.] 1.08 (0.43) 

M/R (T/R) solidity ratio (𝜎𝑅) 0.039 (0.105) 

Take-off (continuous) power rating [hp.]  317 (270) 
Take-off (continuous) max. TGT [°C]  810 (738) 
Max. take-off gross weight [lbs.] 3,200 
Never Exceed Airspeed, VNE [KCAS]   120 
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THE MBB  BO-105 HELICOPTER 

The Messerschmitt-Bölkow-Blohm (MBB) BO-105 helicopter used for the 

research is a dual-engine light observation and utility helicopter, designed for day and 

night, visual flight rules (VFR) and instrument flight rules (IFR) operations. The 

helicopter is designed for landing and take-off from prepared or unprepared surfaces 

with a skid-type landing gear. The helicopter can be flown by a single pilot from the 

right-hand seat and has a place for three passengers in the back. The helicopter has an 

overall length of 11.86 m (main rotor fore to aft end of tail) and a maximum allowed 

take-off gross weight of 5,512 lbs. (2,500 kg.).  The helicopter conforms to the 

definition of a ‘conventional’ helicopter, as it has a single main-rotor (M/R) and a 

single tail-rotor (T/R). The M/R assembly is a four-bladed, hinge less, rigid type with 

an effective flapping offset of 14%. The M/R blades motion in flapping in lead/lagging 

was enabled through a flexible blade root. The M/R rotates counter-clockwise, when 

viewed from above, at a standard angular speed of 423 RPM. The M/R blades are 

constructed of fiberglass reinforced plastic with a NACA 23012 aerofoil and a 

geometric pitch angle twist of -8° between the root and the tip. As shown in Fig. C.5, 

each one of the four M/R blades is fitted with appended pendulum absorber (‘pendab’) 

designed to reduce the 4/rev. vertical vibration transferred to the fuselage. These 

pendabs are installed on the roots of the M/R blades, at about 16.2% of the blade 

length (M/R radius). The T/R configuration is a two-bladed semi-rigid, teetering with 

45° delta-three flapping hinge offset. The tail-rotor is mounted on the left side of the 

tail-boom structure, and rotates at a standard 2,219 RPM with the bottom blade 

traveling forward. The tail-rotor operates as a ‘pusher’ type, i.e., it generates an anti-

torque force which pushes the tail structure of the helicopter to the right. 
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Figure C.5. The main-rotor assembly of the BO-105 helicopter. Each one of the blade is 

fitted with a pendulum absorber designed to alleviate vertical vibrations.  

The BO-105 helicopter is powered by two Allison 250-C20B gas-turbine engines, 

each with independent drive-train systems. These engines are very similar to the Bell 

Jet-Ranger gas-turbine engine. The maximum (uninstalled) output power of each 

engine is rated at 420 shaft horsepower under standard-day sea-level conditions. Due 

to drive-train limitations of the helicopter, each one of the 158 lbs. (dry) engines, is de-

rated to a maximum output power of 400 hp (5 minutes take off rating limit) and of 

344 hp (continuous operation). Each engine incorporates a compressor section with 

six axial stages followed by a centrifugal stage, a gas-turbine section with two axial 

stages and a two axial stages power-turbine. This engine configuration is of a reverse-

flow annular type, for which the exhaust gases follow a reverse path to the compressor 

gasses, before passing through the turbine section 

The dual flight controls of the helicopter (for the pilot and for another crew 

member) consist of mechanical type non-reversible cyclic-stick, collective-stick, and 

reversible directional pedals to control the helicopter in yaw. The helicopter is 

equipped with a dual-redundant, 103 bar hydraulic power supply system that is used 
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to boost the cyclic-stick and the collective stick controls. The T/R pedals are not 

hydraulically boosted. The helicopter features a trim-system designed to provide 

artificial cyclic-stick force gradient and to reduce opposing control forces to zero. This 

is activated by a four-way switch located on top of the cyclic stick grip.  

The airframe consists of the fuselage, the cabin and the cargo compartment. The 

fuselage is a conventional “semi-monocoque” structure. The floor of the helicopter 

runs through both the cabin and the cargo compartment at the same level. The engines 

deck forms the roof of the cargo compartment and acts as a firewall for the engines. 

The engines deck also provides mounting for the main transmission, the two engines 

and the dual-redundant hydraulic boost system. The two cabin doors are sliding doors 

which allow them to be opened during flight. As shown in Fig. C.6, access to the cargo 

compartment is via two clam-shell doors, opening sideways at the rear end of the 

fuselage. The aft fuselage incorporates a spoiler designed to assist in increasing stability 

by imposing a flow separation over the clamshell doors. 

Figure C.6. The rear end of the BO-105 fuselage. Access to the cargo compartment in via 

two clamshell doors.  
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The BO-105 helicopter incorporates a horizontal stabilizer with vertical endplates 

installed symmetrically on both sides of the tail boom as shown in Fig. C.7. The 

horizontal stabilizer has a span of 2.5 m with an aspect ratio of 5.2 and extends beyond 

the maximum width of the fuselage. 

 Figure C.7. The tail section of the BO-105 helicopter. The 2.5 m span horizontal stabilizer 

extends beyond the fuselage width.  

The pitot-static system is used for measuring airspeed, pressure-altitude and 

vertical rate of climb and descent. This system is made-up of two static ports mounted 

on either side of the helicopter, below the pilot and the co-pilot doors, a single Pitot 

port mounted in proximity and below the right static port, plastic tubing and analogue 

instruments of airspeed indicator, altimeter and vertical velocity indicator located on 

the instrument panel (see Fig. C.8). The BO-105 helicopter basic specifications 

pertaining to its performance are summarized in Table C.2.   
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Table C.2 – The MBB BO-105 performance specifications. 

Parameter  Value 

M/R (T/R) diameter [ft.] 32.3 (6.28) 
M/R (T/R) standard angular speed (RPM) 423 (2,219) 
M/R (T/R) number of blades (b) 4 (2) 
M/R (T/R) blade chord [ft.] 0.86 (0.59) 

M/R (T/R) solidity ratio (𝜎𝑅) 0.07 (0.12) 

Take-off (continuous) power rating [hp.]  800 (688) 
Take-off (continuous) max. TGT [°C]  810 (738) 
Max. take-off gross weight [lbs.] 5,512 
Never Exceed Airspeed, VNE [KCAS]   145 

 

 

 

Figure C.8. The BO-105 Instrument Panel. The pneumatic flight instruments are located first 

from the right (pressure altitude on the top row and vertical rate of climb/descent on the 

bottom). The airspeed indicator is located on the top row, third from the right.   
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