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Abstract

This thesis explores a Bayesian Optimization technique for improving the tuning process of
Model Predictive Control systems applied to soft robotics. Due to their high compliance and
actuation redundancy, soft robotic systems are challenging to control through traditional rigid
control frameworks. The objective of this study is to automate the hyperparameter tuning
of MPC in order to enhance adaptability and efficiency in the control systems, handling the
intricate behaviour of soft robots.

The study employs BO, leveraging its capability to efficiently navigate complex and high-
dimensional optimization landscapes through a Gaussian Process (GP)-based surrogate model.
This allows a systematic exploration and exploitation of the hyperparameter space toward
setting up MPC optimal conditions that improve the performance metrics, such as response
time and stability, under operational constraints. Two main acquisition functions, Expected
Improvement (EI) and Lower Confidence Bound (LCB), are evaluated for their effectiveness
in balancing exploration of the parameter space with exploitation of promising regions.

Obtained results, from simulations analyses, show that BO significantly reduces the manual
effort involved in MPC tuning. The study also looks into the performance of the BO approach
under varying initial conditions and introduces variance to the weights of the MPC to analyse
the performance of BO under uncertainty.
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Chapter 1

Introduction

1-1 Soft robots

Robots come in various shapes and sizes depending upon their intended use. Their impact on
the society in which we live can be characterized by their ability to improve our lives by offering
faster and cheaper products with high precision. The level of competency demonstrated by
the robots is highly challenging for humans to accomplish. Hence, the influence of robots has
become more prominent over the years, ranging from the food industry to aerospace.

From the first robot introduced by General Motors in 1961 to the Mars Perseverance rover
in recent years, remarkable development has occurred in robotics. Among the many develop-
ments in the field of robotics, soft robots have recently emerged as a prominent and noteworthy
advancement. They represent a new frontier and a significant development among the latest
trends and developments. With the further development of soft robots, new challenges and
opportunities have established a foundation for research and development in various engineer-
ing fields.

When comparing soft robots to conventional robots, there are several separate and distinct
characteristics that set them apart. Traditional robots are rigid and stiff in physical struc-
ture, mainly due to the materials used in making them. However, soft robots are made up
of "soft" or flexible parts. There are several cases where the joint or moving part is made
of flexible materials, which still qualify as soft robots. Traditional robots are developed to
perform specific tasks in a structured environment, in contrast to soft robotics, which are
developed to perform in an unstructured environment [52]. Figure 1-1 shows the distinction
between traditional and soft robots based on the material used and degrees of freedom. Soft
robots stand out from their traditional counterparts in that they are more flexible and adap-
tive, making human-machine contact safer. Hence, soft robots provide usability in various
applications where accuracy, adaptivity, safety and performance are preferred [23], [65]. A
brief history of the evolution of soft robots is shown in Figure 1-2

In research articles [65], [76], the robots made of soft materials are considered soft robots. In
[23], a soft robot is defined as "Robotic systems with purposefully designed compliant element
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2 Introduction

embedded into their mechanical structure’. The inspiration behind the design of soft robots has
come from biological systems, exploiting their softness and flexibility to reduce the complexity
of environmental interactions further. This led [76] to characterize soft robots as a new class
of machines that are created from the study of biological processes. Some examples are
the jellyfish [79], [34], worms robot [13], octopus arm inspired by octopus [51], [59], manta
swimming robot [72], robot hydraulic autonomous soft robotic fish [56] (both motivated by
fish) and so on.

Based on the inspiration from the primary source, soft robotics research is divided into two
primary divisions: articulated soft robots and continuum or continuous soft robots. While

Figure 1-1: Classification of robots based on material and degrees of freedom [60]

Muscular Thin Films Biohybrid Microswimmer Adaptive Biological Machine Biohybr 1 ! Moving

-O-O_O_O_O_O_O-

Tissue Engineered Jellyfish Actuation of Human Skeletal Biosensing through Bacteria
Muscle

Figure 1-2: The evolution of soft robot [60]
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1-2 Motivation 3

articulated soft robot research is roused from vertebrate biological systems, continuous soft
robot research is motivated by invertebrates. The continuous soft robot is also influenced
by boneless parts of the animal or other parts that are able to deform continuously [23].
Furthermore, a wide variety of soft robots are described based on their modelling technique,
sensing technology, actuation method, fabrication, control strategy and materials. Therefore,
there are several critical challenges in the domain of soft robotics because traditional robotics
relies on conventional methodologies that are either inapplicable or just partially applicable;
this presents numerous vital issues in the field of soft robotics. Thus leading to comprehensive
research in this domain [6].

1-2 Motivation

Soft robots are complex, and due to the uncertainties involved, many challenges in design,
modelling, fabrication and control (to name a few) must be addressed before their full potential
can be realised. Methodologies for controlling traditional robots were deemed a bad fit for soft
robots. This is due to their nonlinear characteristics, such as soft nature, underactuation,
and several degrees of freedom. Various studies have been conducted to overcome these
limitations, and an overview of such challenges is mentioned below.

Soft materials have elastic properties and thus can perform several complex motions like
bending, twisting, compressing, etc. Unlike traditional robots, soft robots’ movement is not
limited to planar motions, with several degrees of freedom added. Therefore, designing soft
robots deals with several challenges. Soft materials have elastic properties and thus can per-
form several complex motions like bending, twisting, compressing, etc. Different mechanical
components or materials are used to mimic the functions of muscles, ligaments, and ten-
dons showing that their movements are not limited to planar motions. Pneumatic artificial
muscles [77], tendon-driven soft limbs [58], cable-driven mechanisms [48] [1], smart materials
like dielectric elastomers [2], and shape memory polymers [7] (both used in developing soft
muscles) are a few examples.

Determining the optimal softness is a challenge in designing these robots. However, this
softness makes modelling these robots more complicated and challenging. The conventional
modelling techniques, like the standard ordinary differential equations for a Lagrangian sys-
tem, can not be applied due to the continuous nature posed by the soft robots [23]. The
soft sensors and actuators further increase the complexity due to the tolerance from manu-
facturing, variations in the properties of elastomers and calibration errors. Their hyperelastic
nature contributes to non-linearity, wear and tear, high hysteresis, and drifts in the model.
Moreover, time-varying properties (like friction and ageing) along with high degrees of free-
dom further limit the modelling of soft robots [65]. Thus, the mathematical modelling of a
soft robot with high accuracy poses a considerable challenge and makes it more complex to
control these robots to perform tasks.

Model-based and data-driven techniques are widely used when it comes to modelling tradi-
tional robots. Soft robots have different methods, but these two modelling techniques are
widely practised. Data-driven techniques were the first techniques to be used in developing
the models, as the model-based techniques were intricate [24]. Further, different assump-
tions and approximations led to decreasing complexity in using model-based techniques and
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4 Introduction

methods like piecewise constant strain approximations [21], rod model [37], energy-based
model [12] and finite element model [86] were delivered, which paved the way for having fairly
accurate models for the control design process. These models had a lot of advantages over
their predecessors, and an elaborated discussion of this is made in Chapter 2.

With the availability of a reasonably accurate model, several control strategies are available
now, from open-loop control to model-based reinforcement learning [43]. Model Predictive
Controller (MPC), is a promising approach of model-based controller for its efficient control
and good trajectory tracking performance. This controller can minimize a cost function
subject to the system’s dynamics as constraints over a finite time horizon. According to
different research, MPC’s characteristic of predicting the future over a prediction horizon
helps the controller perform well against the soft nature of the robot [38], [10], [16]. If
cost is not a concern, MPC is one of the best control strategies for developing model-based
controllers. However, manually tuning the performance parameter is time-consuming, can
cause instability and could even damage the soft robot [61].

1-3 Problem statement

Trial and error is the traditional way of tuning model-based controllers. The careful tuning,
however, does not guarantee the best results. To address this challenge, there are several auto-
mated tuning techniques available in the literature. Gradient-based auto-tune framework [20]
establishes that manual tuning is far inferior to model-based controllers’ automatic tuning.
This technique has shown promising results even for the likes of controllers like LQR [57].
Reinforcement learning is used in tuning the MPC [11]. AutoMPC, an open-source library in
Python, is used for tuning data-driven MPC [28], [63], thus establishing the relevance.

The goal of the thesis is to get closer to solving the challenges that can be decomposed as:

e Improve the performance of MPC, hence overcoming the limiting model accuracy issue
in soft robots.

¢ Replace the manual trial and error practice with a less time-consuming and exhaustive
approach followed in MPC.

While attempting to address two distinct issues, it becomes evident that these problems are
interconnected. The thesis will take a step towards solving this challenge in a simplified
framework. Therefore, the challenge that is posed and formulated by the problem statement
is as follows:

How do we find an optimal trade-off (according to a performance metric) between
exhaustive search and incorporating process knowledge in tuning an Model Predictive
Controller (MPC) for soft robots?

One solution to this question is using Bayesian optimization Bayesian Optimization (BO) to
auto-tune the performance parameter of MPC. BO is a proven tool as a global optimization
algorithm [31], [45]. BO provides a choice as it is used in many other scenarios to improve
the performance of MPC [54]. Therefore, in the context of soft robots, a method is developed
primarily viewed from an analytical perspective on how the MPC performs.
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1-4 Thesis outline 5

1-4 Thesis outline

The organizational structure of the thesis is as follows: Chapter 2 includes brief literature
on different modelling and control techniques used in soft robots and the choice of model
and controller used for this work. Chapter 3 overviews the concepts involved in Bayesian
optimization and the working principle. Chapter 4 provides results of the experiments
conducted, performance analysis and the conclusion on the overall contribution.
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Chapter 2

Soft robot modelling and control

The modelling of soft robots is one of the challenges in realizing a soft robot. Various types of
modelling are available, and the review is done first, closing with prevalent control strategies
used for soft robots. Further in this chapter, a model is chosen, and its dynamics are discussed.
The second half of the chapter includes the controller selected for this thesis, its motivation,
and the design of the controller.

2-1 Related work

In this section, first, the commonly used models and their characteristics are discussed. Also,
looking into the different types of modelling techniques used, as well as their advantages and
drawbacks. Later, this section delves into previous work done to tackle the soft robot control
challenges.

The complex dynamics of soft robots are broadly tackled in two distinct ways: model base
and model-free, which will be elaborated on below with relevant references. A brief of
both techniques will be discussed in this section. Due to the extensiveness of this partic-
ular research, only the popular methods are mentioned. Additionally, several survey pa-
pers [24], [66], [50], [76], [3], [4] are available that provide a more in-depth analysis of the
different modelling techniques used.

Modelling methods

The complex of soft robots made the modelling challenging, especially since model-based
methods were limited. These limitations were mainly due to the intensity and difficulty of
solving the excessively intricate models of soft robots. However, various new modelling tech-
niques emerged over time [24]. Another reason for this possibility was the different approx-
imation techniques and, in some cases, assumptions that made the models simpler without
compromising a lot on their main characteristics. One such modelling method is Constant
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8 Soft robot modelling and control

Curvature (CC) [82], one of the primarily used kinematic models initially employed in mod-
elling the continuum soft robots. This method assumes that the soft robot comprises constant
curvature segments, each represented by a reference frame attached to its end. The config-
uration of each segment can be fully defined by the reference frames, allowing the robot’s
kinematics to be described by homogeneous transformations mapping each reference system
to the subsequent one. This modelling technique is easy and simplified. However, when ex-
ternal force is applied, the model fails to capture the entirety of the complex behaviour of
the soft robot [66]. While this model is a primitive method, it displays lower accuracy than
other available techniques but is good enough to integrate the essential characteristics of the
soft robot.

Piecewise Constant Curvature (PCC) [25] also works on the same assumption that the soft
robot is formed of constant curvature and provides a homogeneous transformation for each
segment using geometrical relations. The soft robot is represented as a series of finite arcs
defined by the bending plane, radius and angle of the arc. This model incorporates elastic
and dissipative terms to model thus the behaviour of the soft robot is not lost. The elasticity
of a link is modelled through a continuous distribution of infinitesimal springs along the cross-
sectional area of a segment, and the damping is introduced through linear dampers parallel to
the springs. These elements contribute to the overall impedance of the soft robot. Therefore,
it helps develop control strategies to perform dynamic tasks like reference tracking in an
unstructured environment, as shown in [25] and [43], where, in the latter, an MPC is used,
and a nonlinear controller is used in the former. Nevertheless, in [19] claims a few drawbacks
that are associated with the PCC model. First, the impact of friction and other mechanical
implications are not factored in PCC. Second are the large nonlinearity characteristics and the
numerical instability at singular points. The authors claim to have overcome the numerical
instability with an improved Approximate Piecewise Constant Curvature (APCC) method.
Another limitation of PCC was that the assumed model was considered in planar, which
limited its relevance in 3-D as the real-world robots are three-dimensional. This issue is
handled using PCC with state parameterization [22]. But the new approach increased the
complexity since it became more intensive computationally.

A significant challenge limiting the growth of model-based methods was the complexity of
the infinite dimension formulation of state space and its practicality in developing control
strategies. However, developing simplified finite set variable models helped overcome the lim-
itations. The Finite Element Method (FEM) [86] follows such a technique where kinematic
is defined using the real-time FEM. Even though this method provides a better model than
PCC, FEM has its shortcoming in its model. One reason for this issue is the need to specify
the properties of the material of the soft robot that needs to be defined. However, the biggest
problem with this method is its high computational cost; also, expanding to a dynamics model
using FEM will further increase the complexity. Using FEM is difficult when developing a
close-loop control due to the large dimensionality. A reduced-order model [75] was intro-
duced to resolve this issue where the nonlinear model is reduced using Proper Orthogonal
Decomposition (POD). The model is then linearized to develop a closed-loop controller. The
limitations of this method come from the errors associated with reducing the model. Also,
the performance is evaluated around an equilibrium point. Due to the complex nonlinear
behaviour of the soft robot, this might not be desirable.

In Cosserat’s theory [14], the infinite degrees of freedom property of the soft robot is defined
as micro solid infinitesimal. They are then stacked together in order to maintain hyper-
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2-1 Related work 9

redundancy. In recent research, the discrete Cosserat approach [64] was developed, where the
limited state-space dimension property of the PCC is used with the Cosserat theory. Com-
pared to all the other model-based methods, the Cosserat modelling technique provides a
highly accurate model but at a cost. These methods are complex to compute and computa-
tionally expensive. This limits the ability to develop control strategies for these models [66].
The survey [24] provides in-depth information on more model-based methods used for soft
robots and states that this type of method performs better than the model-free one. How-
ever, dynamic challenges like interaction with the environment, uncertainty pertaining to
system parameters, and completing tasks (dynamic) are still being explored and have their
shortcomings.

Data-driven methods are constructed from data collected by exciting the soft robot, hence
defining their model based on observations. Collecting data in the robot’s operating range
can provide good accuracy since it can also map the soft behaviour. Unlike model-based
techniques, no structural assumptions or approximations are made. System identification is
one of the techniques used in identifying nonlinear models. In [17], Koopman operator theory
is used as a system identification method to develop a nonlinear model of a soft robot. Later,
the linear model is generated using the Koopman operator (a linear operator). This research
claims that this is an easy technique to construct an accurate model of a soft robot. However,
this technique requires the effort of the parameters to be manually tuned, which is a limitation
as it involves the issues inherited from trial and error. Another problem is that imperfect
tuning can result in a poor model.

Since both model-based and model-free techniques have considerable drawbacks, there have
been efforts to use the first principle model to leverage the data-driven model primarily
deployed in the control loop. Here, an online learning loop is established in the controller
feedback. Iterative Learning Control (ILC) is a type of such learning loop. A particular task
is repeated multiple times, and the loop tries to improve this task as each iteration progresses.
This helps the soft robot perform dynamic tasks and perform well under uncertainty. However,
it might not be suitable for soft robots with continuum robots [24].

To conclude, though extensive work has been done to obtain accurate models for soft robots,
much more has to be done. Several issues need addressing, like underactuation, manoeuvring
through an unconstrained environment, etc. However, these require more intensive work to
solve it. Considering the challenges of modelling soft robots, we must make compromises.
However, heavy simplifications reduce the overall performance, and if a simple model is to
be correctly calibrated, it would lead to better results. Is obtaining a good performance
with a simple model possible? However, manual trial and error is tedious. One particular
improvement could be suggested: automating the tuning process using some techniques. This
process seems essential since parameter tuning significantly affects the system’s performance,
as discussed before.

Control strategies

An essential aspect of a soft robot is its ability to perform tasks in an unstructured environ-
ment by retaining stiffness and adaptability, in which the controllers play an important role.
However, there are several challenges to be faced when compared to controlling a traditional
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10 Soft robot modelling and control

robot. Some of the mentions are the infinite degrees of freedom under actuation and restric-
tion of high-frequency control due to hysteresis. The soft robot control domain research is
still active, and rich literature can be found in [35], [38] and [80]. The control methods are
available in two types; the first is model-based control, in which the controller is developed
with a physics-based model. The second type is model-free control, and the model used for
developing the controller will be data-driven.

In the model-based methods, some controllers are kinematic based, where the dynamics of the
soft robot are not considered, and then there is also dynamic-based, which is more complicated
than kinematic to develop [38]. Kinematic models were the first to be used due to the
complexity involved in developing the soft robot and are also widely used. The PCC and
Cosserat rod-based models were used. In the model-free method, the Gaussian Process,
online learning techniques (where the Jacobian is estimated), neural network and other data-
driven approaches were used to derive the model for the kinematic controller. While the PCC
and Cosserat rods were complex to compute and specific to design, they proved more accurate
and reliable. Also, they provided the proof for stability analysis, which was impossible with a
model-free control approach. Having to sample extensive data and the noise from the sensors
made it even more challenging to achieve the desired performance in a model-free approach.
One advantage of the model-free approach was that it was a convenient approach to estimate
the parameters of the soft robot regardless of the extensive knowledge of the soft robot’s
physicality. Since the dynamics of the soft robot are not considered, the kinematic approach
was limited in terms of performance [35], [38].

In the dynamic approach, the design cost is higher than the kinematic but is faster and more
accurate [38]. There are several model-based dynamic approaches like PD controller [49],
nonlinear controller for the PCC model [26] [25], robust control [53] and port Hamiltonian [12].
In the model-free approach, machine learning, reinforcement learning, neural networks and
more based controllers have been designed, and they have drawbacks, as stated before [50].
A new approach of the model-based controller using data-driven approaches has also been
designed [17], [47]. MPC is more computationally expensive than the rest of the model-based
method. This is because the optimization problem is solved in every control step to obtain the
optimal control output. The advantages of the MPC are the easy handling of multiple inputs
without any simplifications or assumptions and the efficient use of these multiple inputs for
the objective. Also, with additional constraints, MPC can overcome the actuator limits and
perform well in an unstructured environment. MPC promises excellent performance, and this
is also why it is a good/better choice if sufficient computation resources are spent for a good
model. Therefore, MPC is deemed as a reliable and accurate control strategy with the right
choice of performance parameter, increase of computation capacity and prediction horizon.

Next are state estimation techniques like the Extended Kalman Filter (EKF), where the
closed-loop state estimation is performed using observers. Here, the data is acquired directly
from the sensors. This method, however, has a lot of shortcomings, as the measured data
contains noise and characteristics associated with the softness of the robot are not defined
accurately [73]. A comprehensive study of machine-learning techniques is available in [50].
Though this data-driven technique delivers fairly accurate models, they require a large data
set. This considerably increases the computation time and resources. This argument is valid
for Neural Networks and Reinforcement learning techniques, and the parameter tuning re-
quired for these techniques(which affects the quality of results) is done by trial and error,
which has its own shortcomings. When direct learning techniques are applied to closed-loop
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2-2 Spherical soft robotic arm model 11

control systems, they have encountered limited performance and stability issues [24]. More-
over, data-driven models are involved in modelling nonlinear characteristics of soft robots,
resulting in solving non-convex optimization problems. Therefore, this method cannot assure
the global minima/maxima (convergence) [50].

2-2 Spherical soft robotic arm model

For this thesis, a toy model is selected with the dynamics of a spherical soft robot in [42]. To
test the auto-tuning algorithm for the MPC, it was necessary to start with a simple model,
and this was found to be apt. The spherical soft robot (from here onwards, referred to as a
robotic arm) is a robot made of two links (hence referred to as an arm) that is inflatable using
three bellow type actuators and are connected by a soft ball-socket flexible joint as shown
in Figure 2-1. This joint is restricted to two degrees of freedom, and the tip contains a motion
capture sensor with a 3-D printed net as an end effector. The links of the robotic arm are
made of fabric, and further details regarding its design and fabrication are provided in [41].

2-2-1 Robotic arm dynamics

In [42], the robotic arm is linearized from the arm dynamics equation Equation 2-1 and
pressure dynamics equation Equation 2-2 given below:

& = —koa — dote + hoApg
B =—kgB —dgB + hgApg

(2-1)

movable link

joint part

actuator triplet

static link

base plate

Figure 2-1: The left side is the physical structure of the spherical soft robot [42], and the right
is the breakdown version with components [41].
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12 Soft robot modelling and control

Apg = 1/74 (Aparef - Apa) + Cu

: (2-2)

Apg =1/75 (Apg,., — Apg) + ca
The extrinsic Euler angles configuration is shown in Figure 2-2; all the other notations are
defined in Table 2-1. Then, the author used linear regression to identify the parameters.
Unfortunately, these parameter values were unavailable; hence, values required for this thesis
are approximated from limited data available from [41]. The resultant 6 state LTI system can
be represented in the form:

x(t) = Az(t) + Bu(t)
y(t) = Cx(t),

with starting point z9 = z(to). The state matrix A € R®*6 with state dynamics z € R®*!
and the input matrix B € R%%? with input dynamics u € R?>*! is given as follows:

(2-3)

0 1 0 0
—ko —do he 0
0 ca =
A= 0 1 0 B = 0 (2-4)
—kg —dg hg 0
0 s =1 =1
L 78 | L 78 |

Tr = (a,dy ApouﬂwB?Apﬁ)

2-

U= (Aparef’ Apﬁraf)- ®5)
The definition of each parameter is given in Table 2-1. The modelling decisions taken to
describe the soft robot’s behaviour have limitations. However, MPC and BO are compu-
tationally expensive, so beginning with a simple, less computationally expensive model was
necessary. Also, the framework presented in this thesis is analyzed academically; a linear
MPC was taken to shorten the simulation time by solving a convex problem, which is also
valid for solving BO. Nonlinear dynamics will drastically increase solving time. Furthermore,
a BO with nonlinear constraints is required for which high-end systems are needed to solve it.
Since dealing with complexity is not at the core of the problem the thesis is trying to solve;
this complexity is being discarded.

2-2-2 Experiment setup of the soft robot

When designing a controller, the mathematically derived model is far from ideal, as all the
system dynamics can only be incorporated partially. To distinguish the derived model from
the real robot, in this thesis, the derived model will be referred to as the model, and the
actual system will be referred to as the plant. The plant for this thesis is developed in MATLAB
by varying the model parameters +£20% using the randn command since the scope of the
thesis is extended only to simulations and the unavailability of the dynamics of the physical
ball-catching soft robot (plant).
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2-2 Spherical soft robotic arm model 13

All real-time systems (soft robots included) are in the continuous time domain. However,
MPC requires a discrete-time model to function. Therefore, a discrete-time model needs to
be constructed from the continuous-time model from Equation 2-3. A Zero-order Hold (ZOH)
method is used to discretize Equation 2-3, and its illustration is shown in Figure 2-5. The
resultant expression is given in the form:

! 120°

v ! ¥ <

Al ® 5

120° A 120°

)
5/ e

X x

Figure 2-2: The left side represents the robotic arm orientation, and the right side shows the
ball-socket joint arrangement controller by three actuators [41].

Pole-zero map of model

Pole-zero map of plant

Imaginary A
Imaginary Axis

Figure 2-3: Left plot represents the pole-zero map of the model and right plot represents the
plant

Master of Science Thesis Nidhin Sugunan



14 Soft robot modelling and control

Notation Definition

o Extrinsic Euler angle

B Extrinsic Euler angle

ko Stiffness coefficient w.r.t «

kg Stiffness coefficient w.r.t 3

de Damping coefficient w.r.t «

dg Damping coefficient w.r.t 8

ha coefficient mapping pressure differences

to angular excitations w.r.t «
hg coefficient mapping pressure differences

to angular excitations w.r.t 8

Ca Arm movement interaction coefficient w.r.t «
cg Arm movement interaction coefficient w.r.t g
Ta closed-loop pressure dynamics time constant w.r.t o
73 closed-loop pressure dynamics time constant w.r.t 8
DA Pressure from actuator A
DB Pressure from actuator B
pC Pressure from actuator C
Apes Pressure difference between p4 and pp
Apg Pressure difference between pp and peo

Apq,.,  Input pressure required to reach the reference point

Apg,., Input pressure required to reach the reference point

Table 2-1: Table of notation used in modelling the robotic arm.

t=Az+B
y=Cux,

where,

A — AT ¢ R6x6
Y

_ Ts
B = / e Bds, € R%*2,
0

The rule of thumb is to take 1/10 of the rise time, which is considered to be good, and Ty << 1
is generally opted for fast process applications like robotics and aerospace, where T denotes
the sampling time. For convenience, z(k+ 1) is denoted as 1 and z(k), u(k), y(k) is denoted
as T, u, Y.

The model and plant are discretized via the Zero-Order Hold method as shown in Figure 2-5
using the MATLAB command c2d. The sampling time used for the discretization is Ts = 0.02s.
Theoretically, sampling time must be 1/10 of the system’s rise time as it ensures a better
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2-2 Spherical soft robotic arm model 15

representation of the system’s dynamics. However, for implementation, 0.02s is opted for
several practical reasons. The soft robots usually exhibit high-frequency dynamics, and the
opted T value can capture these dynamics and avoid computational efficiency. A smaller
sampling time can provide better resolution when capturing system dynamics. In [42], the
author opts for the same Ty, further supporting the choice. The pole-zero map of the model
and plant is shown in Figure 2-3. The pole are either in or very close to the unit circle.
Therefore, the soft robot cant be considered as strictly stable however, it can be concluded
that the marginally stable since the output does not grow and explode.

Next, the step-response is plotted to inspect the model’s characteristics further. Observation
made from Figure 2-4 confirms that the robot exhibits an underdamped behavior. This
behavior could be due to the elastic and compliant nature of the soft robot. From the point of
stability, the system can be concluded as stable. The system can be concluded as stable since
no unbound oscillations were observed. The A matrix is a full-rank matrix and controllable.
This property enables the system to start at any point and reach a desired state in a finite
time. The model assumptions include neglecting certain nonlinear effects and simplifying
the dynamics to achieve computational simplicity. Thus this is one of the limitations of the
model.

Model's step response[1:1] a Model's step response[2:2]
2 l i
ﬁ\"ﬂ% S H‘Vnﬂ'.'I;“u“a"."u"ww-wwwm
) I
-5 -10
0 500 1000 0 500 1000

Plant's step response[1:1] a Plant's step response[2:2]

dn

|
! 1 u’i“lquriﬂl'hri"d'uw Wt

o 500 1000 0 500 1000

Figure 2-4: Step response of the soft robot
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16 Soft robot modelling and control

2-3 Soft robot control

This section will look into the formulation of the controller, which includes defining the con-
straints and optimization problem formulation used in this work. Furthermore, the motivation
and impacts of auto-tune for MPC are examined.

2-3-1 MPC formulation

MPC is a model-based control approach utilizing optimization and control methods to be
iteratively applied in order to identify and implement the best possible feedback law. This
is best illustrated with an example, where the benefit of using MPC stems from its ability
to predict how a system will behave in the future utilizing its dynamical model. A flexible
iterative model-predictive-control (MPC) mechanism that can real-time customize its control
policy for highly coupled dynamics and constrained uncertain systems [74]. Despite of those,
MPC can optimize future control actions and therefore is substantial to be applied in many
engineering problems such as soft robotics [61], [16].

The main components for formulating an MPC are the inequality state and input constraints,
control and prediction horizon, cost functions and weight matrices. The inequality constraints
of states and input are represented by an Upper Bound (UB) and Lower Bound (LB). The
advantage of these constraints is to limit the input resource, mathematically define the phys-
ical limits of the soft robots and aid to a certain for the output not to blow up. The general
expression for the inequality constraint of the state and input can be defined as:

f(t) /

(0) \BEN /q——é
1
|
|
|

\ 0 /
1\ " /
(RN ’
1 o\ | /
1 AN | f——(S
/
: £(2Ts) *f—f(?. =7
1 ! 1
1 : 1
1 1
> ] ! . -
0 t 0 Ts 2Ts 3Ts T

Figure 2-5: The LHS represents the continuous-time domain function, and RHS shows its zero-
order hold sampling method [85]
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2-3 Soft robot control 17

Tmin < .’B(k‘) < ZTmax (2_7)
Umin < u(k) < Umax, (2'8)

where, Tmin, Umin denotes the lower bound and xy.x and umax denotes the upper bound for
the states and inputs respectively. The Equation 2-7 and Equation 2-8 can be represented in
a compact manner such that it obeys these equations. This compact form is given as:

Fix(k) < (2-9)
Fg’u,(k) S Cc9, (2—10)

where,

_|Is  Og 12x1
F1 = [06 _Iﬁ‘| ,C1 eR

I, 0y ax1
= R**,
2 [02 _1-2‘| ,C2 €
where, ¢; and co collect the upper bound and lower bound of the inequalities in Equation 2-
7, Equation 2-8. The values for the UB and LB are chosen based on the understanding of the
physical structure of the robot and its limitations.

For a sampling sequence k, if M is a set of control inputs u(k +i — 1) for i = 1,2,..., M,
which are calculated such that N is a set of predicted output g(k +4) for i = 1,2,..., N
then the controller obtains the input sequence starting from step k optimally according to
the objective function and constraints. The number of control steps M and prediction steps
N is the control horizon (M) and prediction horizon (), respectively [69]. While the control
horizon optimizes the control inputs, the prediction horizon greatly impacts the performance
and computation cost. A short prediction horizon gives inaccuracy in performance; however
least cost and visa versa. Therefore, the choice of the prediction horizon must be done
effectively.

The main objective of the controller is to reach a reference point via the soft robot. This
goal can be mathematically expressed using a cost function that must be minimized. The
expression is given as:

Uk, ur) = law — Treglly + lur — urey |- (2-11)

The indices for the state and input references have been omitted for clarity since they are
kept constant throughout the experiments.

The cost function has a direct impact on the performance of the MPC. The weight matrices
Q and R penalizes the state and input matrices respectively. Therefore, the choice made for
Q and R is crucial for the MPC’s performance. The weight matrices are given as:
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Q. 0 0 0 0 0
0 Qo 0 0 0 0
{0 0 @ 0 0 o _|R1 0O
Q= 0 0 0 Qi 0 O R‘[o RJ (2-12)
0 0 0 0 Q5 O
0 0 0 0 0 Qs

The tuning of Q) intensively impacts the steady-state response and the system’s transient
response. The R can impact the velocity, avoiding fast movements and acting as a constraint
on it. This cost matrix also limits the undesirable input that may lead to instability [69].
By setting the inequality constraints, prediction horizon, control horizon, cost function and
cost matrices, the Optimal Control Problem (OCP), which is the optimization problem, is
expressed as:

N-1
mu}y’lﬁlze In(z,u) = kZ::O l(x(k),u(k)) (2-13a)
subject to zt = [la:(k) + Bu(k), VYk=0,1,...,N —1, (2-13b)
z(0) = xg (2-13c¢)
Fz(k) <e, VEkel0,N], (2-13d)
Fou(k) < ¢, VEke[0,N—1]. (2-13e)

Note that x and u are the vectors that contain the states and the inputs for the N-step
horizon. The performance of the MPC depends on the model accuracy and choice of values
taken for prediction horizon. Moreover, tuning the () and R is vital since quadratic penalizing
significantly effects the states and inputs of the MPC more than the rest. This effect has a
critical impact on the MPC’s performance.

2-3-2 Experiment setup of MPC

The MPC designed for this study is central to optimize the control performance of the soft
robot. The MPC was implemented using the CasADi framework. The first step to this
is to define the control objectives. The main control objective is to control the actuation
inputs of the soft robot to the target angles using MPC. The OCP formulation and model
are already defined in Equation 2-13a. However, there are a few more parameters that need
to be defined. The values opted for these parameters have the potential to vary significantly
the performance of the MPC. The constraints of the MPC like the LB and UB of the input
and state constraints are defined are defined to ensure the robot operates within safe and
effective operational bounds as shown in Table 2-2 by taking motivation from the values
used [42]. State constraints prevent the robot from reaching physically implausible positions,
while input constraints limit the maximum and minimum pressures that can be applied by
the actuators. These constraints help in maintaining the structural integrity of the robot and
in avoiding scenarios that could lead any failures.

The state weight matrix Q penalizes the states a and 8. This will make sure that the error is
minimised thus attaining the desired state. The input weight matrix R is tuned to minimize
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2-3 Soft robot control 19

State constraints Values
LB —7 radians
o
UB 7 radians
4 LB —2m radians/second
UB 27 radians/second
A LB —50 bar
Parer B 50 bar
3 LB —7 radians
UB 7 radians
5 LB —2m radians/second
UB 27 radians/second
A LB —50 bar
P yB 50 bar

Table 2-2: Upper and lower constraint limits used for MPC implementation

the actuation effort, which balances performance and energy efficiency. These weights are
chosen as hyperparameters, which are optimized using Bayesian optimization to find the best
trade-off between control accuracy and effort. The MPC problem is formulated as a Quadratic
Programming (QP) problem, where the objective is to minimize the cost function subject to
the constraints of the soft robot. An interior point solver is used to solve this problem in
MATLAB. The solver settings are finely tuned to balance the performance and time taken to
solve the control problem.

The block diagram provided illustrated in Figure 2-6 the general structure of the implemented
MPC. The initial states zq is given to the plant. All the state measurement are assumed to be
known hence the states from the plant is directly fed to the controller. The Soft Robot (model)
block represents the mathematical model of the soft robot used by the MPC for predictions
accurately describing the dynamics to simulate. Objective Function and Constraints are
essential components of the MPC. The objective function quantifies the cost of deviations
from the target and possibly control effort. The constraints ensure that the solution stays
within safe and feasible operational limits. OCP block solves the corresponding optimization
problem, taking the error, objective function, and constraints to compute the optimal control
actions u. The control signal u is shown to act on the Real Soft Robot (plant) in the diagram.

2-3-3 Auto-tuning MPC

Model Predictive Controller (MPC) is a widely used control algorithm applied to the highly
nonlinear dynamics of soft robots. Its ability to predict future states and inclusion of con-
straints helps achieve successful control of complex and multi-DOF systems. The performance
of MPC depends greatly on the fine-tuning of its parameters, particularly the weights Q and
R in the cost function to balance between state tracking errors as well as control efforts.
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20 Soft robot modelling and control

Working with these parameters manually can be cumbersome thus requiring a lot of trial
and error to achieve desired performance. This is compounded by the non-intuitive rela-
tionships between the tuning parameters and closed-loop performance that prevent man-
ual or heuristic approaches from working well, if at all. Currently, there are optimization-
based [67], [84], [32] and machine learning-based [44] tuning approaches. However, the BO
method opts for this work as it is an effective and practical approach to optimizing per-
formance criteria [63],[29] [5], [61]. The automated tuning approach by Bayesian Optimiza-
tion (BO), which is seen drastically reducing that process. BO is a powerful technique for
optimizing computationally expensive black-box functions that have been successfully applied
to the tuning of MPC controllers in complex systems [62], [54], [36].

There are a few advantages of auto-tuning MPC using Bayesian Optimization.

¢ As BO is used to systematically explore and exploit the parameter space, it can identify
which set of parameters will further improve the closed-loop performance of the MPC
approach ultimately helping in achieving more accurate control for out soft robot.

e BO efficiently searches for optimal parameters with its model rather than performing
much manual tuning or large-scale simulations. This can greatly reduce the amount of
time and computational resources needed for tuning.

¢ Due to the iterative nature of BO, it is possible to keep on updating the design based
on real-time data and make sure that the control system adapts well in case dynamics
or operating conditions change for the robot.

e Since BO-tuned MPC is able to directly minimize a performance index which considers
uncertainties and disturbances by tuning on the parameters, reaching higher robust
control levels than manually tuned controllers can be possible with this method.

Soft Robot
(model)

y 4

Objective Function Constraints

¢« ———————x

ocp

A

Real Soft Robot
(plant)

Figure 2-6: Block diagram of the MPC
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2-3 Soft robot control 21

In this thesis work, only the 4 hyperparameters are used for tuning. Using more than 4
has practical issues as hyperparameter tuning space is large, exceeding the hardware limits.
The hyperparameter choices are (1, Q4 from the @) cost matrix and R;, Re from the R cost
matrix given in Equation 2-12. Since a goal-oriented approach is opted, the weights, i.e. Q1
and Q4 corresponding to « and (, are chosen as they make the most impact and reduce the
position error, are prioritized. Similarly, the remaining two choices (R, R2) are made to
penalize the input to guarantee that the output does not blow up and the system remains
stable. Further details about the working of BO and its major components will be discussed
in the next chapter.
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Chapter 3

Hyperparameter Tuning using
Bayesian Optimization

3-1 Bayesian Optimization

In this section, the general working of Bayesian Optimization (BO) and its components will
be explored. The motivation for choosing certain methods is also discussed. In the end, the
limitations of this approach are highlighted.

3-1-1 Block diagram of Bayesian optimization

The overview working of BO is represented in a block diagram in Figure 3-1. Let c¢(x)
be a function that needs to be minimised on some bounded set X. Next is to construct
a probabilistic model called the Surrogate Function (SF) for ¢(x), then utilize this model
to evaluate c(x) by making decisions regarding the available best location inside X. This
process simultaneously takes into account the uncertainties and incorporates them. The
model shapes the objective function in each iteration based on the points computed by the
acquisition function. The next point is selected based on the distribution over the objective
function and the trade-off between exploration (find new point) and exploitation (focus on
the possible best points). The loop continues when the termination criteria are fulfilled or
the number of iteration sets is exhausted.

The working of BO is given in the sequential steps below:

1. Setup the data points, initialization process and objective function.

2. Select the surrogate function. This function tailors an objective based on the initial
points and returns an initial observation of this. This model is then updated iteration
wise with new points.
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3. The acquisition function selects the next possible best point. It is also responsible for
the exploration and exploitation, in focus to find the points that provide an improved

objective function.

4. The objective function is then evaluated based on the possible best points, and a new
observation set of data points is generated that is given to the surrogate function in the

next iteration

5. On selecting the next possible best points, the termination criteria are checked and
the process is terminated if the criteria are met. Then the best points are fed to the
evaluation process (MPC for this thesis) to generate the optimal results. FElse, the

algorithm proceeds to the next iteration.

3-1-2 Surrogate Function

A surrogate function is a model with a mathematical representation that approximates the
unknown objective function. The surrogate function enables analysing the most favourable
solution by offering a probabilistic estimation of the objective function in unobserved ar-
eas. The surrogate function is iteratively modified using the outcomes of each assessment of
the objective function. Subsequently, the acquisition function is employed to determine the
subsequent point for evaluation, considering the posterior distribution across the objective
function. The main objective of surrogate functions is to reduce the number of expensive
evaluations of the objective function required to determine the ideal solution.

Data Points

Surrogate function

Acquisition function

Evaluate

process

——» Optimal result

Y

Next possible best
points

Y

Termination criteria

A

Figure 3-1: The block diagram of a generic Bayesian optimization approach
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Random Forest (RF) (RF) and Gaussian Process (GP) are the two commonly used SFs [18].
There are several types of SFs apart from these two and another popular choice is the Bayesian
Neural Network (BNN) explained in [71]. BNN combines Bayesian methods and neural net-
work that provides a probabilistic framework for modelling uncertainty. Though BNN can
provide flexibility and the ability to handle complexity, this method provides uncertainty
estimates.

Compared to RF, GP is more suited for models with smooth objective functions and provides
a probabilistic prediction of the objective function, allowing uncertainty quantification. GP
establish a prior distribution over the objective function, which can be used to incorporate
prior information towards the objective function. The evaluation of the GP is cost-effective
compared to the other methods and is utilized in sampling new points, which results in better
results however, has limitation when it comes to large data sets [18], [70]. Thus GP is the
choice of surrogate function that is used in this thesis.

A GP starts by specifying a prior distribution over all functions that could potentially rep-
resent the objective function, without any initial assumptions based on specific knowledge
of what form this function might take. This prior distribution is realized as the GP Prior
over functions, and can entail an infinite number of decisions. As the algorithm sees more
data points, this prior is updated to get a newer belief on the true objective function based
off of our observed values. Under this paradigm, each input point is considered to itself be
a random variable and the joint distribution of these variables fit with multivariate normal
distributions. This in turn provides a flexible view of how the objective function is being
modelled and updated, as seen by GPs. To guarantee the smoothness of the function kernel
or covariance function is introduced and expressed as [27]:

1

N o 2 112

k(z,2') = 0% exp (—WHx—azH ) (3-1)
where, z and 2’ are the two different point at which GP is being evaluated, ¢ is the horizontal

Kernel name: | Squared-exp (SE) Periodic (Per) Linear (Lin)

2 _,’
k(z,2") = af(‘\p %L af(‘\p f%C;mQ = of(

Plot of k(z,2'): / \ “ “ “ “ “ i

’1*{" T*(‘

(with 2’ = 1)
Functions f(z)
sampled from \
GP prior: —
: T
Type of structure: local variation repeating structure linear functions

Figure 3-2: Example structure of a few kernels [27]
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range and o is the variance. In Figure 3-2, a few examples of kernels are shown. Once the
kernel is computed, the covariance matrix ¥ (z,2’) is constructed with a structure shown
below:

k(.%'l,l'l) k(.%'l,.%'Q) k(.%'l,.%'g) k(a:l,xN)
> (1;7_@’) _ k (.’EQ, .Tl) k (.TQ, .’Eg) k (xg, .’Eg) . . k (ng :CN)
k(xn,xz1) k(xn,z2) k(zn,z3) ... k(xn,zN)

The covariance matrix must be positive definite. The sampling data y can be predicted from
the following formula:

Y, 1 Y11 Yo
Y = , = ’E =
<Y2> a (Mz) (5321 E22)

where, p is the mean, Y] is the values to be calculated of y, Ys is the values from the training
set, Y11 is the covariance of test set and Y99 is theﬁcovariance of training set. The distribution
of Y7 is conditional on Yy =y is Y7 | y2 ~ N (11, ) given:

fi = + S1255 (y2 — pi2)
Y =% — D985, 8y

With advantages, there are also a few limitations of GP. When the data points are large (a few
thousand), the computation of the inverse of the covariance matrix is high, thus increasing
the time complexity and slow inference. There is a degree of arbitrariness involved in the
selection of a kernel. Non-Gaussian processes may be better appropriate for comprehending
the events displayed by actual physical systems, as GP functions tend to generate perturbed
starting points [27].

3-1-3 Acquisition function

The objective function is passed to the acquisition function after a posterior GP. The acquisi-
tion function then returns a real value which quantifies the expected utility of evaluating some
point in the search space, and acts as a control variable that drives how to pick next point to
evaluate. This acquisition function’s main goal is to balance these two competing objectives
of exploration and exploitation. This means choosing between exploitative promising points,
or informative point for the learning signal of the optimisation objective [18].

Several types of acquisition function are mentioned in the literature survey, each having pros
and cons. The most commonly known ones are Expected Improvement (EI), Probability of
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Improvement (PI), Upper Confidence Bound (UCB), Lower Confidence Bound (LCB). In
recent years, more research has come up with new acquisition functions with the motivation
to improve the performance of BO, like Entropy Search (ES) [39], Predictive Entropy Search
(PES) [40], and Max-Value Entropy Search (MES) [81]. However, these acquisition functions
heavily rely on the sampling of GP and are computationally expensive. Hence, they are out of
scope for this thesis work, and traditional acquisition functions such as EI, PI, UCB and LCB
will be discussed further. The mathematical formulation and description of the acquisition
functions are referred from paper [15].

Upper Confidence Bound

UCB is a simple acquisition function, and its mathematical formulation is given below:
UCB(z;\) = p(z) + Ao (x) (3-3)

where, p(z) and o(z) are the mean and the standard deviation of the GP posterior predictive
at x for the function f(z). They are also the exploitation and exploration terms, respectively,
and the trade-off is regulated by tuning the parameter A. Therefore, when A is small, i.e. the
p(x) is high, the BO is expected to exploit the high-performing explored space. So, the UCB
will be more conservative, resulting in aggressive sampling around the possible best points.

In the next case, when the A is high, the o(z) is high, and the BO tends to explore more
the uncharted areas in the search space. Here, the UCB will favour unexplored areas and
passive around the already explored area. In the last scenario, when the value of X is ~ 1, the
UCB is expected to perform a balanced approach between the known possible best values and
unexplored areas in the search space. The LCB has a very similar approach. While the UCB
is considered to be the optimistic approach. The LCB is considered to be the pessimistic
approach because it is the subtraction of u(x) and o(z).

Probability of Improvement

The objective function that needs to be maximized is f(x), with x* being the current best
possible point. Then the PI can be defined as:

PI(x) = max (f(x) —f (x+) ,O) (3-4)

where, f(x*1) is the value of the current best solution. Now if the new x is such that the
f(x) < f(xT), then the difference is negative however Equation 3-4 returns 0. This signifies
that the BO is not improving. However, if f(x) > f(x"), then the difference is positive, and
the BO will improve the current best solution by the difference. The PI can be evaluated
analytically under the GP model:

where
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here, p(x), o(x) and ¢(Z) are the mean, standard deviation of the posterior GP at x and
Cumulative Distribution Function (CDF) of the standard normal distribution respectively.
An important observation that can be made here is that there is no explicit exploration
function. This implies that PI primarily focus on exploitation and chance of improving the
current value is uncertain.

Expected Improvement

The EI does not just consider the likelihood of improvement like PI but goes further to check
the potential improvement. The mathematical definition of EI is given as follows:

EI(x) = Emax(f(x) - f (x*),0) (3-5)

where f(x™) is the current best solution at 2 point which is defined as, xT = arg maxy,ex,., f(Xi)-
Here, f(x;) is the value of the i*" iteration at x;. Now, the analytical evaluation for EI is
given as:

EI(x) = {(a(x) —f (<) =€) (2) + a(x)6(2) ifo(x) >0
0 if o(x) =0

where
7 ue9—J(x") ¢ if o(x) >0
0 if o(x) =0

The formulation is similar to PI. However, EI has an exploration parameter £. In the equa-
tion above u(x) — f(xT) — £)®(Z) part is the exploitation term and o(x)¢(Z) part is the
exploration term. The value of £ determines the degree of exploration. Higher values will
enable the BO to explore aggressively in the search space. Another significance of ¢ is that as
¢ increases, the significance of improvement projected by the posterior GP mean p(z) dimin-
ishes in comparison to the significance of prospective enhancements in areas characterized by
high prediction uncertainty, as shown by large o(z) values.

This leads to the conclusion of acquisition functions. UCB and EI can be explored further
with the experiment setups in the thesis. As UCB and LCB are similar approaches, both
need not be explored, hence choosing UCB (since it is an optimistic approach). Similarly, PI
and EI are quite identical, and since EI can perform both exploration and exploitation, EI is
chosen.

3-2 Optimization

The following section provides an introduction to BO and how it plays in the role of hyper-
parameter tuning. Finally, the last part of this section analyzes how to apply requirements
and relates it back to a thesis.
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3-2-1 Background on Bayesian Optimization

This section provides a preliminary overview of BO, with its primary significance lying in
hyperparameter tuning. Several studies prove that BO performs better than other opti-
mization algorithms like Predictive Entropy Search with Constraints (PESC), Constrained
Optimization by Linear Approximation (COBYLA) in several benchmark functions, such as
the Ackley function [31], [83], [30], [46]. Relative to gradient-based algorithms and brute-
force search methods, BO has distinct advantages in the spaces where computing gradients
is expensive or deals with optimization of multiple objective functions. It performs well in
situations where functions are smooth but not necessarily convex. Unlike brute-force that
searches exhaustively over a predefined set, BO leverages a probabilistic model to guide the
search towards optimal solution. Then, since brute force search has a large spread in the space
to find its optimal value it is computationally expensive and takes more time than BO. This
is so because BO has a fundamentally efficient design that allows us to both explore efficiently
while also exploiting effectively without as much concern for finding local optimal /suboptimal
solutions [9].

3-2-2 Hyperparameter

Hyperparameters are the parameters which a user needs to set before the training of the model
starts, unlike normal learning mechanisms in which your algorithm itself learns these weights
(Among other weight type parameters). It controls various aspects of the behaviour of a
learning algorithm, such as its learning rate; strength regularization and a number of hidden
layers within a neural network. Choosing even the parameters of a neural network model
has a traumatic impact on its performance and being able to find those most appropriate
values becomes problematic. In hyperparameter tuning you systematically investigate a range,
asking for the best performance on validation set or optimization problem minima. While
one can also manually operate, this is work that we would usually want to automate and/or
use multiple times [70].

Hyperparameters impact model performance greatly and choosing the right values for hyper-
parameter selection can be a challenging task. Hyperparameter tuning refers to a systematic
exploration over a predetermined range of hyperparameter values, trying out their various
combination until you find the best-performing one on some validation set. Selecting the best
hyperparameters can increase the performance of this model and make it even more beneficial
for doing its primary job. This has led to its various applications, especially in machine learn-
ing covering computer vision, image processing, speech recognition etc., and nowadays it is
also serving as the preferred tool for hyperparameter tuning by a large number of researchers
since BO has advantages over random or grid search are obvious. BO identifies optimal values
while minimizing evaluations needed to learn algorithm [78].

3-2-3 Relevance to the Thesis
The utilization of BO has been extensively employed in the process of hyper-parameter tuning
for deep learning, neural networks, and machine learning models. The same approach has

been utilized to improve the performance of MPC [54], [55], [63], [78], [33]. In the context of
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using MPC for soft robots, the motivation to opt for hyperparameter tuning using the BO
approach for this thesis is the following:

1. Tuning performance parameters for an MPC via trial and error is time-consuming and
exhaustive.

2. The performance of the MPC will improve in each iteration because of the evaluations
of the closed-loop performance, hence limiting the model inaccuracy issues of the SR.

3. The functional relationship between the MPC and its tuning parameters is treated as
a black box, and the proposed BO framework will determine the optimal parameter
tuning by having a good trade-off between exploration and exploitation.

4. The utilization of this methodology can potentially improve the computational load over
a simplistic grid search technique, hence offering a more effective means of optimizing
MPC controller parameters.

Recognizing the benefits of hyperparameter tuning using the BO approach has led to the
concept of automating the tuning process of the MPC’s performance parameters.

3-2-4 Limitations

As BO comes with a lot of advantages, there are also a few limitations that need to be
discussed. Some of the limitations are listed below:

1. When optimizing a high-dimensional objective function, BO gets computationally ex-
pensive. Utilization of complex surrogate function adds to the expense. Further, evalu-
ating acquisition function and updating the surrogate function in every iteration needs
for resources is drastically increased and is prohibitive as the objective function gets
larger.

2. BO has limited scalability. As the number of variables and constraints increase, the
search space grows exponentially. This makes the acquisition function less informative
- which in turn impacts how well BO can do.

3. BO expects the objective function in such a way that it is smooth and continuous as
most of real-world problem does not verify this hypothesis.

4. The definition of BO also requires defining different hyperparameters such as kernel
function and its associated parameters, acquisition function with corresponding param-
eters. The optimal values of hyperparameters are a determining factor for the success
BO, but they can be hard to specify.

While these constraints are present, BO has been widely used in many domains like en-
gineering, finance and machine learning on a variety of theoretical optimization problems.
Accordingly, BO may be an excellent choice to optimize complex and expensive functions if
the surrogate model, acquisition function or hyperparameters are chosen carefully.
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3-3 BO Implementation

This part of the thesis discusses the BO used to optimize the hyperparameters of an MPC.
Figure 3-3 describes the block diagram of a closed-loop control system (MPC) using Bayesian
Optimization. In this configuration, an MPC uses a mathematical model to forecast future
states of the system and apply control inputs that would allow it to meet reference signals
r. The strategy is well suited for scenarios when tuning the performance of the controller is
cumbersome or takes a significant amount of time. The BO algorithm is tested using EI and
LCB acquisition functions to understand which approach provides a better performance to
the MPC. The method used to implement this algorithm is explained in the following steps:

e Step 1: Initialization

The BO starts with the initialization of the hyperparameter. The weights for the MPC
cost function () and R are selected. The values are usually set with either having prior
knowledge or sampled randomly within the range set which is 200 to 5000 for () and 0.005
to 1 for R. For this experiment, the values chosen are [Q1, Q4, R1, R2] = [300, 300, 1, 1]
which is chosen through different iteration. The ndgrid function is used to create a
4D space defined by the range with linspace creating evenly spaced vectors for each
parameter between the defined range. By defining this space the BO can evaluate
the MPC performance at each point in the grid giving a broader understanding of the
parameter space. This approach helps the BO algorithm to get the optimal region of
the hyperparameter. The larger the space the better chance for the BO to not miss the
optimal point however, this increases the computational expense. The next step is to
define the objective function to evaluate how the MPC performs with different sets of
weights which is evaluated in each iteration.

e Step 2: Surrogate model

Using a Gaussian Process (GP) to model the relationship between MPC hyperparame-
ters and observed performance metrics. The GP is fitted to data attained after repeat-
edly deploying the MPC initially at the start point and later on at the most attractive
point according to the selected performance metric that is obtained from running the
MPC in the previous iteration. The GP model provides mean performance prediction
and standard deviation for the future hyperparameters.

e Step 3: Acquisition function optimization

Expected Improvement (EI) works very well in finding the right trade-off between ex-
ploration and exploitation. Therefore could be one of the great choices for tuning an
MPC. EI is calculated on the possible next points in hyperparameter space based upon
performance till now. The predictor proceeds to choose points that will give, at expec-
tation, the most improvement over best-observed performance taking mean prediction
and variance as issued by the current GP model. For the next evaluation cycle, the
parameters with the highest EI are taken.

This exploration-exploitation trade-off is essentially the decision-making process in
choosing whether it should explore into new areas with high uncertainty, or exploit
what it already known from its experience to fine-tune some of the best solutions ob-
tained so far. Once the MPC is tested with the new parameters, the GP model is
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updated with new parameters to retain and update the GP model. This provides new
predictions that are sampled around new points.

e Step 4: Iteration

The process of predicting, optimizing, evaluating and updating continues. The MPC’s
performance tuning is further improved each iteration as the hyperparameter space
better aligns with a global minimum. The optimization loop keeps running until a limit
is met. This could be an all-around characterized number of cycles or computational
limit. In this study, the iteration is set at 50. The set of parameters that perform best
using the observed metrics are identified as optimal parameters for MPC. The optimum
parameters are then fed to the MPC to attain the best control performance for the
given conditions.

Closed Loop MPC

MPC

\

Model

Hyperparameter Performance Metrics

|

Bayesian Optimization

Acquisition Function Surrogate Function History data
(El, LCB)

A

Figure 3-3: The block diagram of the implemented BO algorithm
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Chapter 4

Simulations and Experiment Results

4-1 Experiment results

The chapter details the outcomes of simulations which are undertaken specifically to determine
whether Bayesian optimization can be effectively employed for MPC parameter tuning in soft
robotic systems. The emphasis is on tuning MPC parameters in a simulation environment
to improve the control performance. The purpose of these simulations is to eliminate the
sort trial-and-error manual tuning process that often results in sub-optimal control settings.
The experiments conducted are for exploration-exploitation trade-off, robustness to initial
conditions and BO under uncertainty. These experiments aim to provide a clear analysis of
convergence trends, solution patterns, robustness to uncertainty and any loss in the quality
of the solution.

4-1-1 Exploration-Exploitation

For the MPC setting the simulation time Ng;,,, = 30s and prediction horizon N = 20 is cho-
sen as these values are crucial for the real-time control application. The performance of the
MPC is evaluated based on several metrics, including tracking error, control effort, and com-
putational experiments. These metrics are crucial for assessing the practical viability of the
controller in real-world scenarios, even though the current study is limited to simulations. Ta-
ble 4-1 summarize the results of the exploration-exploitation experiment for EI comparing
the performance for three settings (¢ = 0.008, ¢ = 0.04, ¢ = 0.08). The fast exploration
setting (¢ = 0.08), shows fastest convergence however, has the highest cost compared the
rest. Figure 4-1 shows the convergence plot for all the 3 configurations. ¢ = 0.008 shown in
Figure 4-1(a), this shows evidence for a high exploit focus, allowing the algorithm to refine
solutions within one small area. The relatively flat line after the initial drop also indicates
that not much exploration is done off of what was originally identified as good, also it finds
the best solution late. As observed in figure(b), with ¢ = 0.04, the cost smoothly decreases
and settles around minimum faster when compared to low exploration setting ¢ = 0.008. This
results in a good trade-off between exploration and exploitation which allows for improved
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¢ Cost Convergence () Q4 Ry Ry

0.008 0.0072 48 1496 5000 0.005 0.005
0.04 0.0072 13 1592 5000 0.005 0.005
0.08 0.0073 11 200 2888 0.005 0.005

Table 4-1: Results of the exploration-exploitation experiment for El

performance more consistently. Performance cost varies less in the long run, leading to being
able to find and refine good enough solutions. In Figure 4-1(c) display a result of ¢ = 0.08.
The cost drops sharply in initial exploration as shown here. It converges relatively faster than
medium exploration ¢ = 0.04 with a higher cost. It can be observed that after getting the
local best value the algorithm explores more missing the best optimum value.

The scatter plots Figure 4-2 illustrate the distribution and performance of different hyperpa-
rameter combinations @)1 and Q4. The medium exploration setting Figure 4-2(b) ¢ = 0.04,
shows clusters of points achieving lower performance costs in the plots, indicating that re-
duced exploration still captures effective parameter regions efficiently. The very low explo-
ration (¢ = 0.008) however, seems to be too conservative, leading to slow convergence. Both
low Figure 4-2(a) and high Figure 4-2(c) exploration settings seem to miss these optimal re-
gions, either through insufficient exploration or by overextending into less effective parameter
zones.

The cost values are very close across the experiments, suggesting that all three exploration
settings are capable of finding effective hyperparameter configurations for the MPC. The
lowest exploration setting (¢ = 0.008) matches the medium setting ({ = 0.04) in achieving
the lowest cost as shown in Figure 4-3, although it takes significantly more iterations to do so.
The medium exploration setting (¢ = 0.04) achieves the quickest convergence. This suggests
that a moderate level of exploration can effectively balance the exploration-exploitation trade-
off, quickly finding a near-optimal solution.

For the same experiment conducted for LCB using different values of A = 1, A = 4.5 and

Convergence of cost J Convergence of cost J Convergence of cost J

o 10 20 EY 40 50 60 0 10 2 EY 40 50 60 0 10 20 30 40 50 60
Iteration index Iteration index Iteration index

() (b) (c)

Figure 4-1: The convergence result of the exploration-exploitation experiment for El. In the
image (a)¢ = 0.008, (b)¢ = 0.04, (c)¢ = 0.08
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A = 10, the results are shown in Table 4-2. The fastes convergence is shown for A = 1, while
the slowest is shown by A = 4.5 however, with a lower cost. Meanwhile, A = 10 strikes the
middle ground both in terms of cost and convergence. Figure 4-4(a) shows rapid decrease to
the lowest cost and maintains minimal fluctuations, suggesting that lower exploration focuses
on quickly exploiting the promising areas found early in the search. Figure 4-4(b) shows for
A = 1, the slowest convergence but with a better performance cost than the A = 1. There
is a trade-off between the exploration-exploitation which provides a good result. For A = 10
there is a quick drop in cost for Figure 4-4(c) and it helps in finding the best value at low
cost indicating effective exploration of the parameter space.

Figure 4-5 shows the scatter plot that illustrates the distribution of @1 and Q4 with the
performance cost. Figure 4-5(a) shows the trend for exploitation which causes missing out on
better-performing areas and achieving faster convergence. Therefore, focusing on exploiting
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Figure 4-2: The scatter plot of the exploration-exploitation experiment for El with (a)¢ = 0.008,
(b)¢ = 0.04, (c)¢ = 0.08
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Figure 4-3: Performance comparison for different values of (. The magnified inset shows the
highlight of the performance

Master of Science Thesis Nidhin Sugunan



36

Simulations and Experiment Results

A Cost Convergence (1 Q4 Ry Ry

1 0.0079 6 5000 5000 1 0.005
4.5 0.0072 43 968 3800 0.005 0.005
10 0.0072 11 632 4952 0.005 0.005

Table 4-2: Results of the exploration-exploitation experiment for LCB

the best-known areas, lead to the quickest convergence. Figure 4-5(a) is a balanced approach

of exploration with A = 4.5.

It has a slower convergence,

as the algorithm spends more

iterations evaluating a wider range of hyperparameters. Figure 4-6 shows the performance
comparison where is it evident that the A\ = 4.5 achieves the best cost by a small margin.
Making it more evident that the BO performance is the best for this value of A.

The result of the exploration-exploitation experiments shows that the different values of the
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Figure 4-4: The convergence result of the exploration-exploitation experiment for El. In the
image (a)A =1, (b)A =4.5, (c)A =10
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4-1 Experiment results 37

exploration parameter have an influence on the performance cost and rate at which it con-
verges to the best value. This is true for both the case of EI and LCB. With respect to the EI,
larger ¢ values resulted in wider exploration with very quick drop at the beginning, however
especially for lower losses it was over-exploring (convergence less smooth). On the other hand,
a medium ( yielded the tradeoff of best solution quality: efficiently reaching optimal solution
while managing costs effectively. Contrarily, a low ¢, which guarantees faster convergence at
the cost of exploring broader regions in parameter space, indicates that we are most likely
not sampling wide enough and hence I will be missing out better solutions.

In the case of LCB, the high A value provided an extensive exploration, quickly identifying
lower-cost regions but also leading to variability in performance, which might reflect an ineffi-
cient search pattern. Medium A\, while providing a comprehensive exploration, showed slower
convergence. Low A achieved the most rapid convergence and exhibited less change in cost,
pointing to the exploitation of known good regions but with the inherent risk of settling into
local optima.

While LCB with its high A allowed for a wide exploration of the search space that identified
low-performance cost regions rapidly, it left good performance. While Medium A showed
slower convergence but had a balanced exploration-exploitation. Convergence was fastest
and cost had the least variation, suggesting it was more likely low As just found a stable
region in which to settle rather than actually exploring widely, even though it showed a good
result, this need not be inconsistent with wide exploration then convergence on success.

From a high level, both EI and LCB are effective at the exploration-exploitation tradeoff,
albeit to different degrees due to their differing parameter sensitivities. EI reacts to changes
in ¢ as it’s the convergence behaviour that is mostly different across them, and for LCB such
a change may be mitigated by adjusting A\, which will likely affect explored hyperparameters’
distribution far greater than what an outlier can do with EI. Hence, the decision of whether
to use EI or LCB in practice may depend on the properties of a given optimization: while for
smoother landscapes and setting ( properly with balanced exploration capability, then one
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Figure 4-6: Performance comparison for different values of A. The magnified inset shows the
highlight of the performance
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Condition Initial point Cost Convergence
High Extremes 5000, 5000, 1, 1 0.0072 43
Low Extremes 100, 100, 0.001, 0.001 0.0072 13
Midpoint 2550, 2550, 0.5005, 0.5005 0.0072 28
Balanced 1 500, 5000, 0.1, 1 0.0072 41
Balanced 2 5000, 500, 1, 0.1 0.0072 27
Random point 300, 300, 1, 1 0.0072 13

Table 4-3: Results of the initial points experiment for El

might prefer using EI; otherwise choosing LCB is advantageous especially if local minima are
abundant.

4-1-2 Initial points

The BO is started with different values of initial points to evaluate the performance of the BO
algorithm to the initial condition. The experiment aims to check the consistency in finding the
optimum and convergence trend for different initial points. The starting points are selected
from the possible range of parameter values. Table 4-1 shows the different conditions of the
starting point selected and its corresponding result. The initial point is represented in the
format [Qsp1, Qspa, Rsp1, Rsp2] where, Qgp1, Qspa, Rsp1, Rsp2 represents the initial points of
parameters @1, Q4, R1 and Rs. Starting point has Extremes (high, low), Midpoint, Random
Point and Balanced Points each of these to test how well BO algorithms can handle boundary
conditions. The convergence for each condition is displayed in Figure 4-7 and Figure 4-8.
Extreme high sees an initial spike downward in performance cost, which levels out. It also
needed the longest training time among all runs, indicating that it was harder to now further
refine the solution after these initial gains. Costs normally converge towards a single value
quickly at the low extreme, because costs tend to stabilize and converges to the best value
in very few iterations. Midpoint is one of the average convergence paths seeking to explore
initial to check for all possible best values and exploits more after finding the region where it
found the best point. This suggests a trade-off between the extremes, enabling to conduct an
in depth exploration and exploitation. Balanced 1 convergence was slower than low extreme,
and midpoint. The initial guess is that it relates to the wide scale of parameters making
things complex to navigate. Balanced 2 converged faster than Balanced 1 which suggest
that the composition of parameter scales in Balanced 2 was more optimal for optimization.
Converged very quickly to the low cost, matching behavior that is seen in Low Extremes
for Random point. Every single one of them eventually got down to roughly the same cost,
indicating that EI is pretty resilient at finding a good solution no matter what you start with.
Such a rugged conformity capacity is essential for practical use cases, where there are initial
conditions that may not be ideal. Initially conditions also have a visible effect on how quickly
the optimization is converging.

Table 4-4 shows the result of conducting the inital poitn experiment on LCB. Figure 4-9
and Figure 4-10 shows the convergence for different conditions. Low extreme provide efficiency
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Condition Initial point Cost Convergence
High Extremes 5000, 5000, 1, 1 0.0072 26
Low Extremes 100, 100, 0.001, 0.001 0.0073 1

Midpoint 2550, 2550, 0.5005, 0.5005 0.0086

Balanced 1 500, 5000, 0.1, 1 0.0072

Balanced 2 5000, 500, 1, 0.1 0.0072 21
Random point 300,300, 1, 1 0.0072 43

Table 4-4: Results of the initial points experiment for LCB

in finding the optimal cost however the later reading suggest that this initial point maybe
not be reliable. Even for midpoint the convergence is fast however, the exploration for new
points is not seen. High Extremes started with a sharp drop in performance cost and it can
be noticed that the algorithm is has a better balanced approach compared to low extreme
and midpoint. The conservative exploitation trend is seen even in both the balanced 1 and
balanced 2 scenario with fast convergence. Though random point has a slower convergence,
there is a well balanced exploration-exploitation making it more reliable.

Comparing these results with the EI method, several distinctions emerge. Base on the ob-
servation it is evident that EI provide more robustness by providing consistent performance
cost and provides balanced exploration-exploitation. Meanwhile, LCB tends to converge more
rapidly, particularly from lower or midpoint initial conditions. This makes LCB particularly
effective where initial parameters are known to be sub-optimal or varied.
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4-1-3 BO under uncertainty

The work in [68] introduces uncertainty to the MPC by introducing a variance (X,,) to the
performance parameter (). This formulation is given as:

Qq

0 — Qy diag ! (Zun) (4-1)

In the context of this study, the X, is integrated into the BO framework by applying X, =
0.05 to the performance parameter of the MPC. This process is done in order to understand
how BO would adapt to the uncertainty and analyse the performance. This specific ¥y,
value is chosen to simulate moderate but significant uncertainty and reflect a scenario where
parameters are not always perfectly known. This experiment is conducted on both EI and
LCB. The initial point taken for this experiment is [Qsp1; Qspa, Rsp1, Rsp2] = [300; 300, 1, 1]
with ¢ = 0.04 for EI and A = 4.5. Figure 4-11b shows LCB has a drop in performance
cost at the very early stage and quickly finds the best value which is a slightly higher cost of
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0.0073 compared to EI and achieving convergence in just 2 iterations. This fast convergence
suggests that the LCB method quickly locates near-optimal solutions even under the presence
of significant uncertainty for the given setup. The results shown in Figure 4-11a are for
the EI method which although at a slower rate, achieves convergence in 29 iterations with
a slightly lower final cost of 0.0072. This shows that while EI explores more broadly, it
may provide marginally better performance at the expense of finding the best value at a
slower rate. LCB has an aggressive approach to finding the best value is likely due to its
nature of exploitation with cautious exploration however could be stuck at local minima.
In contrast, El's gradual convergence showcases its balanced approach to exploring a large
range of solutions, potentially providing a better understanding of the parameter space before
settling on the optimal value.

Analysis of EI and LCB in comparison with the analysis performed under uncertainty (i.e.
variance in MPC performance matrix) demonstrates strengths as well as appropriateness
based on individual operational requirements. Due to LCB’s quick adaptation, it is recom-
mended for applications of fast response as it converges to the best value quickly. In contrast,
EI's method is better suited to applications where achieving the best performance cost is a
priority as it gives the best performance cost compared to LCB however, slow at finding the
best value.
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Chapter 5

Conclusion

This chapter closes with the final remarks on our exploration of Bayesian Optimization (BO)
for Model Predictive Control (MPC) systems in soft robotics. It provides a brief synopsis of
what this research has contributed, linking the concrete cases studied in Chapter 4 back to
the motivation stated in Chapter 1. This synthesis is intended to assess the extent of which
the proposed practice solves those initial problems highlighted at step one for being addressed
in this study. Moreover, this chapter will elaborate a set of prospective directions for future
research to put forward how additional works can make use of our contributions in order to
improve and generalize the parameter tuning possibilities within BO.

5-1 Summary and Conclusion

The thesis investigates using BO to tune the hyperparameters of an MPC for soft robots.
However, these soft robots offer the challenges of non-linear highly compliant structures over
traditional control strategies employed for rigid designs. The reason for using BO are that
the tuning of MPC, which is usually done manually (which takes time and can lead to sub-
optimal performance) It should be automated. The complexity associated with high degrees
of freedom and nonlinear material properties makes the control more challenging for soft
robots, requiring an adaptive strategy able to respond dynamically when conditions change
without needing extensive manual tuning.

Performance parameters of the MPC, specifically its cost functions within control strategy
are optimized using BO. The approach is based on an iterative algorithm in which a Gaussian
Process (GP) surrogate model estimates performance metrics for different hyperparameter
configurations. These acquisition functions, especially Expected Improvement (EI) and Lower
Confidence Bound (LCB), help in choosing the next parameter sets to evaluate trying to find
a compromise between exploring new areas of parameters space against exploiting know good
ones. Several experiments conducted to evaluate the effectiveness of BO in different settings
are as follows:
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o Exploration-Exploitation: Experiments were conducted for different values of explo-
ration. Satisfactory results were found for the balanced approach, for EI ¢ = 0.04 and
for LCB A = 4.5. These values yield the most consistent performance improvements
across iterations.

e Robustness to Initial Conditions: Performance of the algorithm was tested over var-
ious initial points served as validation checkpoints. EI was consistent with optimal
cost but showed slow convergence. While LCB showed fast convergence however, the
performance cost was comparatively higher.

¢ BO Under Uncertainty: To model real-world uncertainties, we introduced variance in
performance parameters and found that both EI and LCB could adapt well to the
changing scenarios efficiently; while LCB converged faster than EI, but with a higher
cost of optimality.

To sum up, BO enabled a great step forward for soft robotics research. It presents a new
methodological gain for soft robots and could provide them with the ability to operate in
numerous fields, including both medical and industrial contexts. Lending insights into au-
tonomous tuning methods, the research also inspires further investigation about what these
results mean for how we might design and operate complex robotic systems.

5-2 Limitations and Future work

This section explores the limitations that the BO-based MPC faces along with a brief outline
of future research to improve this method further. In the current context, the implementation
is limited to linear models for the MPC. This is an informative way to derive the fundamental
dynamics and helps simplify subsequent optimization but will not generalize properly establish
all possible behaviours for more advanced soft robotic systems. This is primarily due to the
computational demands and non-linearity such models often introduce into optimization, but
even more importantly the linear approximations have been shown as inadequate in accurately
representing real-world dynamics. BO is computationally expensive in general, and even more
so with a GP that must be updated frequently. The current computation framework might
not be able to scale well with more complicated models or the added hyperparameters. Such
limitations are important in scenarios with constrained real-time computing capabilities.

Increasing the parameter space is required to make most of BO in MPC optimisation. Nonethe-
less, the applicability of BO to large parameter spaces is still quite limited as was doc-
umented in this thesis. This constraint highlights the pressing demand for algorithms of
greater efficiency in order to handle higher-dimensional spaces while remaining computation-
ally tractable. Disturbance rejection performance of the optimized MPC was not a primary
design objective in this work. Rarely, in reality, a measure of a controllers worth is how well it
can handle unknown perturbations. The extensions of these disturbances rejection abilities to
the optimizations criteria may be advantageous in future studies, improving control strategies
practical robustness.

This thesis mainly focused on utilizing EI and LCB as acquisition functions separately. How-
ever, there is new research wherein a new method is introduced which is a mixed approach
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combining EI and PT [8]. This method claims to provide better handling of complex systems
and faster convergence due to their balanced approach towards exploration. Second, consid-
ering alternative scalability enhancements for BO with more challenging nonlinear dynamics
by potentially including computationally cheaper algorithms or combinations of optimization
strategies in hybrid settings would be an interesting avenue as well. This was not only help-
ful in dealing with computational constraints, but would also lead to improvement of the
robustness and adaptability of the systems being optimized by the MPC.

In summary, although the presented thesis builds a very good baseline for exploiting BO with
MPC systems and has outlined limitations as well as future directions to provide opportunities
towards more holistic studies. Ideally, these studies would be one step closer to the practical
realization of BO by providing efficient and general control solutions for complex and dynamic
robotic systems.
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Appendix A

A-1 Model characteristics of the soft robot

Poles of the model:

Poles of the Plant:

0.9989 + 0.0268:
0.9989 — 0.0268:¢
0.0013 + 0.0000z
0.9995 + 0.01557
0.9995 — 0.0155¢
0.0013 + 0.0000z

0.9989 + 0.02441
0.9989 — 0.02441
0.0048 + 0.0000z
0.9995 + 0.0145¢
0.9995 — 0.0145¢
0.0048 + 0.0000z

A-2 Simulation environment

Appendix

The simulations were ran on a machine equipped with an Intel i7-7700HQ CPU @ 2.80GHz,
with 16 GB of RAM, Windows 10, and Matlab R2022a. The MPC was implemented using

CasADi v3.6.3.
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List of Acronyms

MPC
BO
CccC
PCC
APCC
FEM
POD
ILC
EKF
ZOH
UB
LB
oCP
QP
SF
RF
GP
BNN
EI
PI
UCB
LCB
PES

Model Predictive Controller
Bayesian Optimization

Constant Curvature

Piecewise Constant Curvature

Approximate Piecewise Constant Curvature

Finite Element Method

Proper Orthogonal Decomposition

Iterative Learning Control
Extended Kalman Filter
Zero-order Hold

Upper Bound

Lower Bound

Optimal Control Problem
Quadratic Programming
Surrogate Function
Random Forest (RF)
Gaussian Process
Bayesian Neural Network
Expected Improvement
Probability of Improvement
Upper Confidence Bound
Lower Confidence Bound

Predictive Entropy Search
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ES Entropy Search

MES Max-Value Entropy Search

CDF Cumulative Distribution Function

PESC Predictive Entropy Search with Constraints

COBYLA Constrained Optimization by Linear Approximation
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