
The influence of sequence length on the clustering
performance of MalPaCA

Johannes Hagspiel, Azqa Nadeem, Sicco Verwer

Abstract

MalPaCa is a novel, unsupervised clustering algorithm, which creates based on the
network flow of a software a behavioral profile representing its actual capabilities. One
of the key variables affecting is performance and usability is the sequence length or
how many packets it analyzes in order to group a connection to a cluster. This arti-
cle explore different sequence length amounts as well as different positions from where
to extract the packets from. The findings indicate that the current default sequence
length of 20 is too high, leading in many cases to no clusters being found. 8 has been
determined to be the optimal length for both performance and efficiency. Additionally,
it has been established that using a windowed approach whereby a connection is being
sliced into multiple, smaller connections could make MalPaCa more usable in situations
where connection lengths are unequally distributed. Furthermore, MalPaCas usability
as a tool has been improved by automating the clustering error metric determination,
thereby providing the user with a valuable, visual measure as to how well MalPaCa
has fared in creating the clusters. Lastly, MalPaCas definition of behavior was com-
pared to the "Netflow v5" behavior definition, however no substantial performance
improvements could be obtained from this change.

1 Introduction

1.1 Background & Motivation
Malware Classification Problem

There has been a rapid growth in the numbers of malware variants in the past years which
in part is the result of improved malware obfuscation techniques (Li, Liu, Gao, & Reiter,
2010, p.238). As an example, for the Bagle/Beagle worm, over 30,000 unique variants have
been found only in the time between January and March 2007 (Commtouch, 2007)(Li et
al., 2010, p.1). Correspondingly, the need to accurately identify and classify malware has
only become more important. Whereas in the beginning, most of malware classification was
done manually, recently more and automated approaches have been developed in order to
deal with the explosion in malware variants (e.g. Bayer, Comparetti, Hlauschek, Kruegel,
& Kirda, 2009; Bailey et al., 2007).

However, the current process of assigning labels has been shown to suffer from a series of
shortcomings. For instance, anti-virus (AV) labels are notorious for not being consistent in
that the same binary is frequently classified by one AV engine as benign and by the other as
malicious (Sebastián, Rivera, Kotzias, & Caballero, 2016, p.1)(Bailey et al., 2007). Another,
more fundamental problem with the labels assigned by an AV engine is that they either not
accurately reflect the behavior of a sample or they only highlight one specific behavior, which

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering



1 INTRODUCTION 2

is particularly troubling as multi-vector attacks are becoming more common (Bailey et al.,
2007, p.179). And as the rules that these engines follow essentially are a "black-box", it is
difficult to double-check the assigned labels (Nadeem, Hammerschmidt, Gañán, & Verwer,
2021, p.382).

MalPaCA

MalPaCA has been developed in response to these challenges. It is an unsupervised cluster-
ing algorithm, which creates based on the network flow of the sample a behavioral profile
representing the actual capabilities of a program (Nadeem et al., 2021, p.383).

MalPaCA consists of five phases. First, the actual network flow generate by a software in
the form of Pcap files is split into uni-directional connections. In step two, four features are
extracted: packet size, time interval between packet arrival, source port and desination port
(Nadeem et al., 2021, p.391).Then, temporal distances between connections are calculated,
based on which the HDBScan clustering algorithm generates clusters. In the last step,
temporal heatmaps are produced for each cluster and for each feature which are turned into
a cluster membership string.

Motivation

For the actual clustering, MalPaCa uses the temporal similarity between connections in
order to group them together (Nadeem et al., 2021, 382). This temporal similarity is in the
base version established based on only the first 20 packets of a connection. Additionally,
the behavior observed by MalPaCa is defined as the uni-directional flow of packets from
a source to a destination IP address. Determining the optimal sequence length as well as
the best segments in a connection from where to obtain the packets used as an input is
intimately related with the usability and performance of MalPaCa. Therefore, in order to
improve MalPaCas viability for malware clustering, these underlying assumptions need to
be questioned and analyzed.

1.2 Research Question
The main research questions this thesis thus wants to answer are:

"RQ 1: Which packets in a network connection are required to characterize behavior?"
"RQ 2: How many packets in a network connection are required to characterize behavior?"

To determine the section of a network connection that best describes the underlying behav-
ior, it first has to be established whether different parts of a connection relate to different
behavior. Therefore, question 1 can be further broken down into:

"RQ 1.1: Do different segments of a network connection represent different behavior?"

Based on the answer to this question, it can then be discovered which segment or segments
are most characteristic of the behavior of a software.

"RQ 1.2: Which network connection segment or segments are most indicative of the
underlying behavior?"

Additionally, a third question is related with these previously described questions namely:

"RQ 3: On which level should behavior best be defined in order to capture this behavior in
Malpaca?"



2 METHODOLOGY 3

1.3 Relevant Literature
Roeling, Nadeem, and Verwer have used MalPaCa in order to find a novel way for using
clustering to analyze " spatial-temporal network data" (Roeling, Nadeem, & Verwer, 2020).
In this paper, they also tackled the issue of which sequencing length to chose. However, their
experimentation was limited to testing four different threshold values; 5, 10, 15 and 20. They
did not explore threshold values larger than 20 and they stuck to MalPaCas default mode
of selecting packets from the beginning of a connection. Lastly, they also did not investigate
whether a completely different definition of behavior than the unidirectional definition used
by MalPaCa might not be more appropriate.

In general, a frequently selected tactic to avoid having to deal with these issues is to
simply turn sequential data into aggregate values (Roeling et al., 2020, p.3)(Saad et al.,
2011)(Strayer, Lapsely, Walsh, & Livadas, 2008). Other attempted solutions include using
"time windows" or filtering out connections based on pre-established criteria (Roeling et al.,
2020, p.3)(Gu, Zhang, & Lee, 2008)(Cai, international conference on Wireless, & undefined
2012, n.d.). However behavior is defined, be it on the host level or on the unidirectional
level, some information is always lost. The question now which strategy is most appropriate
for MalPaCa and leads to the best clustering performance.

MalPaCas decision to analyze behavior based on the unidirectional flow of packets from
source to destination IP address is one that is not commonly observed in the existing lit-
erature. Much more frequently one encounters for instance the "Netflow" definition of a
connection, i.e. (Sarhan, Layeghy, Moustafa, & Portmann, 2020)(Grill, Nikolaev, Valeros,
& Rehak, 2015)(Kheir & Wolley, 2013). In line with MalPaCa, the 5th version of "netflow"
is also unidirectionl, it however defines a flow based on seven criteria: 1. Source IP Address,
2. Destination IP Address, 3. Source Port, 4. Destination Port, 5 IP Type of Service, 6.
IP Protocol and 5. Router interface (InterProjektWiki, 2021). "Netflow" is not only much
more commonly encountered in Academia, it is also one of the most widely implemented
standards for network traffic flow aggregation (Petryschuk, 2019). It is so popular in fact
that it has also been turned into an official standard by the IETF in the form of the "IP
Flow Information Export" (IETF, 2021).

2 Methodology

2.1 Dataset
As stated previously, the dataset used in this experiment is the publicly available "IoT-23
Dataset" by the Avast AIC laboratory (Parmisano, Garcia, & Erquiaga, 2020). The specialty
of this dataset is that it has labelled the captured network flow both whether it is benign or
malicious (hereafter referred to as the label of a connection) as well as what kind of behavior
it is (hereafter referred to as the detailed label of a connection).

These detailed labels are not equally distributed. On the contrary, four kinds of behavior
namely "benign", "okiru", "ddos" and "partofahorizontalportscan" together make up over
99,977 percent of all the captured traffic. Given that the malware observed in the "IoT-23
Dataset" are 11 different kinds of botnets and the remainder are three benign IoT home
devices, this at least partially explains this distribution. The prevalence of both the "ddos"
and "partofahorizontalportscan" detailed label makes sense given that for both tasks, a
botnet bombards a target with a huge number of of connection requests.

The information provided by Avast online regarding the label distribution does not en-



2 METHODOLOGY 4

tirely match the information found in the actual data set. For one, 425320 less benign
connections can be found in the data set. This is likely due to the fact that not for all
the connections in the pcap files of the three benign scenarios can one find a correspond-
ing label. Additionally, whereas online, it is stated that there are 60990708 "okiru" and 3
"okiru-attack" connections in the "CTU-IoT-Malware-Capture-33-1" scenario, one in fact
finds 47381241 "okiru" and 13609467 connections labelled as "okiru-attack" in the actual
data set.

IoT-23 Dataset

An important issue to note is that the "IoT-23 Dataset" has defined network behavior on
a bi-directional flow level based on characteristics such as i.e. the host and destination
IP address as well as port in addition to the protocol used and not as a uni-directional
connection, solely dependent on source and destination IP address as Malpaca does.

There are significant differences as to the distribution of detailed labels when comparing
these two ways of aggregation. In short, moving from the flow level to malpacas uni-
directional connection level means that rarely occurring labels are becoming even rarer
whereas more common behavior is even more widespread. This observation is a key insight
for question 3, "On which level should behavior best be defined in order to capture this
behavior in Malpaca ?", as by simply defining behavior as a uni-directional connection
based only on the source and destination IP address, Malpaca has it made less likely to
capture all of the behavior present in the data set given that the HDBScan algorithm used
for the actual clustering is prone to placing less frequent data in a noise cluster. For the
exact differences in distribution, see Figures 34 and 32 in the appendix.

Dataset Processing Pipeline
In order to obtain from the original "IoT-23 Dataset" a dataset to be used for the actual
experimentation, a data processing pipeline was set up in which both data filtering as well
as data enriching steps were carried out.

Two metrics were used when setting up this pipeline: realism and usability.
Usability was mainly concerned with the size of the data set. The full, original dataset

was over 60GBs in size and thus it was simply too larget to be used in its entirety by the
equipment available. Therefore, in a first step, only those connections were filtered out
that had a minimum length of 5 packets and a maximum length of 1000. Additionally, one
scenario, namely scenario "CTU-IoT-Malware-Capture-60-1" was excluded simply because
it was too large with its 22 GBs. Even with this exclusion, it took three, full days to sieve
out the required connections.

In the next two stages, information was then added to this filtered datatset. First,
this came in the form of looking up the label as well as detailed label information of each
connection from the separate Zeek files. The different aggregation levels used by Malpaca
and Avast once again became a problem as the label information was again only available
on a flow level. Therefore, for a few uni-directional connections, this information was only
available when the source and destination IP address were switched. The decision was made
to make as few assumptions as possible and instead rely on the provided information were
available. For this reason, the few connections were no detailed labels were available or the
information was only available with the IP addresses switched were discarded.

As the detailed labels only provide a coarse description of the actual underlying behavior
of the captured network traffic, the decision was made to look for a secondary classification



2 METHODOLOGY 5

of the connections. Another, potentially corroborating source of information could be the
application protocol used in a connection, which can be determined via deep-packet inspec-
tion. NFStream which is based on the deep-packet inspection library nDPI is an open source
framework that provides exactly this kind of information. However, NFStream also uses a
different aggregation level from Malpaca, which again is based on the flow level where it
takes into account characteristics like the transport protocol or the involved ports. There-
fore, by combining application protocol information that was intitally established on a lower
level, potentially one could assign multiple distinct behaviors to the same connection. Yet,
an analysis of the resulting aggregation reveals that on average, only one unique behavior is
assigned to a connection. Therefore, the decision was made to include and use deep-packet
inspection in order to obtain a better vision of the actual behavior under study.

The second metric, realism, guided the fourth step where from this filtered and enriched
dataset, a smaller as well as more balanced dataset was constructed. As the original "IoT-23
Dataset" is based on the sandboxed behavior of actual malware, it is reasonable to assume
that it is a realistic depiction of malware behavior.Therefore, in order to obtain a balanced
dataset, the original detailed label ratios as seen in Figure 32 should be preserved as closely
as possible. However, simply downsizing the original dataset was not possible given the fact
that by filtering out all connections with a length shorter than five packets, the detailed label
distribution has changed drastically, as can be seen in Figure ?? found in the appendix.
The main change is that the "partofahorizontalportscan" detailed label constitutes now with
95.39% the vast majority of observable behavior. In order to address this issue, a multi-step
process was developed with attempted to extract from the filtered dataset a balanced subset
based on the detailed label ratios from the original dataset. An example of how this process
looked like in detail can be found in Appendix 2 - "Balanced Dataset Creation Example". In
the end, as can be seen in Figure 38, the biggest difference in the resulting "10000" dataset
is that the "ddos" and the "okiru" behaviors are underrepresented due to the fact that not
enough connections of this behavior remained in the filtered data set while the "benign"
label had to be over-represented in order to make up for this shortfall.

However, this selection of connections that is predetermined in regards to the detailed
label and random in regards to everything else, resulted in a data set were the average
connection length for the most common detailed labels was quite short, as depicted in
Figure 39 found in the appendix. As will be described in more detail in chapter 4, these
connections were in fact too short for most experiments to result in valid clusters. For that
reason, the decision was made to create a secondary balanced data set, "Min 20", which
has roughly the same detailed label ratios as can be seen in Figure 40 in the appendix.
However, instead of randomly selecting connections with the needed detailed labels, only
those connections were taken into consideration which had a minimum length of 20.

In the end, by combining the deep packet inspection output from NFStream with the
available labels from the "IoT-23 Dataset", 5 sources of information were available for each
connection: label (whether a connection was malicious or benign), detailed label (what kind
of behavior is associated with the connection), application name (what kind of protocol was
used i.e. Telnet), application category name (to what kind of category the protocol belongs
to i.e. RemoteAccess) as well as the name (the name of the malware).

Both of these balanced datasets were then used in the final step to create the actual
input into Malpaca based on the different experimental configurations, which can be found
in chapter 4. All information associated with these discussed datasets can be found in detail
in Appendix 5 - "Dataset Information".



2 METHODOLOGY 6

2.2 Evaluation Metrics
In order to evaluate the clusters created by Malpaca, a number of different evaluation criteria
were established that fell in roughly three different categories. The actual formulas used in
order to compute these metrics can be found in Appendix 1 - "Metric Calculation".

2.2.1 Validity

The first criteria is whether the sequence number results in a clustering that is valid, which
comprises of a number of different sub-metrics:

• general clustering quality metrics: these include common measures such as the silhou-
ette score and HDBScan’s validity index. Broadly speaking, both of them rate how
far apart individual clustering groups are and how closely together members of one
cluster are to each other. A good silhouette score and validity index is one that is
equal to 1.

• cluster purity: this metric measures how pure a cluster is in regards to the five sources
of information. A good cluster is one, that has only i.e. one kind of behavior present.
A good cluster purity is one that is close to 1.

• label cohesion: this metric assesses how concentrated all instances of i.e. one detailed
label are as the goal would be to have each detailed label not spread out over multiple
clusters but rather focused in one.

The five purity and cohesion scored for the five sources of information were also combined
into one "cohesion score" and one "purity score" for

Lastly, the "clustering error" measure as first described in the original paper is being
employed once again in order for the results to be comparable with the initial findings.
However, whereas determining the clustering error as intended by the original authors was
a manual process, requiring inspecting per cluster all four heatmaps and then making an
educated guess as to who is the rightful owner of a cluster, this paper attempts to improve
upon this by automating this procedure. Like in the original paper, the algorithm still uses
not the underlying data but the visual output in form of the produced heatmaps. In its new
automated form, the algorithm also produces as its output what is deems to be clustered
incorrectly and what clustered correctly, thereby directly providing the user with a visual
overview of how the metric has come to its conclusion. An example of the new clustering
error algorithm can be found in "Appendix 3 - Clustering Error Algorithm".

2.2.2 Reliability

Reliability is measured through two different metrics which are established by running the
HDBScan algorithm ten times over the same data set:

• percentage cluster change: measures how frequently a particular connection is assigned
to different clusters in different HDBScan iterations.

• percentage probability change: measures how frequently the probability changes with
which a particular connection is assigned to a clusters in different HDBScan iterations.

Obviously the reliability of MalPaCas clustering might not depend on the input data but
rather on the algorithm used. This, however, should easily be detectable as in the latter
case, a systematic trend should be visible over all the different experiments.



3 CONTRIBUTION 7

2.2.3 Usability

The last criteria, usability, mainly centers around the amount of time needed for MalPaCa
to finish creating its groupings. Only the time needed to determine the distance matrix and
for the actual clustering is measured.

2.3 Netflow Behavior Definition
As established in Chapter 1, "Netflow" is one of the most common network flow aggregation
standards. For that reason, it has was selected as the alternative to compare MalPaCas
unidirectional definition against. Based on the seven features of "Netflow v5", the whole
dataset processing pipeline was undergone once again to created the two balanced datasets.

3 Contribution
The original paper has already highlighted "performance optimizations" as one of the key
areas to be focused on in future research (Nadeem et al., 2021, p.179). Already then was the
dynamic-time warping algorithm singled out as a bottleneck of the problem and indeed. This
indeed turned out be the case as during the initial runs, when using the original MalPaCa
source code, the distance matrix was not calculated even after one hour. By switching to
an algorithm that is based on the "Numba" compiler, the same distance matrix could now
be computed in a manner of minutes.

As will be shown in chapter 4, the current default of taking the first 20 packets from
the beginning of a connection does in some cases not lead to any valid cluster being found
as not enough connections meet this requirement. Additionally, as calculating the distance
matrix for the four features has a O(N2) time complexity, selecting too many connections
can be prohibitively time-consuming. And depending on the computing resources available,
it can also lead to memory issues causing MalPaCa to crash. Therefore, on a practical level,
finding a sequence length that balances these two concerns is crucial in order to ensure that
MalPaCa can actually be used for malware research purposes.

On a practical level, MalPaCa functionality as a tool has also been improved. For one,
in addition to heatmaps, now a number of extra graphs are created to provide a more in-
depth visual look into the composition of each cluster. As stated previously, the clustering
error metric has also been improved upon as it is now automatically calculated without
any manual heatmap inspections. Additionally, it also outputs both what it deems to be
correct and what it deems to be incorrect clusterings, thereby providing the user with a
visual means to determine the veracity of this metric. An example output of the clustering
error algorithm can be found in "Appendix 3 - Clustering Error Algorithm".

4 Experimental Setups, Results and Discussion

4.1 Experimental Setups
Four different experiments were conducted with both balanced data sets. The total output
of these experiments are too large to include them here, they however can be found in their
entirety in Appendix 4 - "Experiment Results". What follows is an excerpt of most key
results of each experiment, again for the full findings refer to the Appendix.



4 EXPERIMENTAL SETUPS, RESULTS AND DISCUSSION 8

4.2 Reliability
What can be said even before going into detail into the different experiments is that for all
the different values and both data sets, neither "percentage cluster change" nor "percentage
probability change" ever take on another value than 0. Therefore, one can conclude that the
HDBScan algorithm used by MalPaCa is deterministic and that both the sequence length
as well as the position in a connection from where the packets are being selected have no
influence on the reliability of the resulting clustering.

Experiment 1 - What sequence length taken from the start of a connection leads
to the best clustering results?

The goal of the first experiment is to emulate the current behavior of Malpaca and therefore
take from the start of each connection a fixed amount of packets. What varies here is the
number of packets selected. The values 5, 10, 15 and 20 have been taken from the previously
discussed article by Roeling, Nadeem, and Verwer (Roeling et al., 2020). They have been
extended by 30, 40 and 100 to also explore how values larger than the current default fare.

Figure 1: 10000 Dataset - Experiment 1 - Results

The first key result observed is that for the "10000" data set, no sequence length above
10 results in a valid clustering as instead all the data is being put into the noise cluster as
seen in Figure 1. Again, looking at the average connection length per detailed label of the
balanced dataset as seen in Figure 39, this is no surprise as the most frequent behaviors
"benign" and "partofhorizontalportscan" have an average connection length of 6.5 and 7.5
respectively. Therefore, with the current default value of 20, MalPaCa would not lead to a
successful clustering.

Figure 2: Min 20 Dataset - Experiment 1 - Results



4 EXPERIMENTAL SETUPS, RESULTS AND DISCUSSION 9

The "Min 20" data set does not suffer from the same problem as seen in Figure 2, as for
all but the 100 packet sequence length, HDBScan resulted in valid, albeit oftentimes small
clustering groups. Again, by including only those connections in the "Min 20" balanced
dataset that are longer than 20, obviously this leads to better clustering results at higher
threshold values.

However, the best result was achieved with a sequence length of eight. This is in line
with the results of the previously mentioned paper by Roeling, Nadeem, and Verwer as they
in the end identified 10 to be the optimal value (Roeling et al., 2020). As can be seen in
Figure 3, at that threshold, the underlying behavior as represented by the detailed labels
is nicely distributed over the clusters.

Figure 3: Min 20 Dataset - 8 Threshold - Detailed Labels per Cluster

Additionally, this threshold also does a great job of separating malicious from benign
behavior as can be seen in Figure 4.

Figure 4: Min 20 Dataset - 8 Threshold - Labels per Cluster

Benign behavior is concentrated in clusters 0, 1, 2 and 3, leading to a high overall purity
score of 0.947 and a cohesion score of 0.89. Unfortunately, the algorithm used to determine



4 EXPERIMENTAL SETUPS, RESULTS AND DISCUSSION 10

the clustering error could not handle this particular dataset, thereby no corresponding value
can be reported.

Neither dataset performed particularly well in the general clustering quality metrics cat-
egories. Particularly on the silhouette score perform both datasets poorly as neither achieves
even a positive value for one experiment. This indicates that on conventional clustering qual-
ity metrics, these resulting clusters do not perform well. For the "clustering error" metrics, a
clear trend can be determined in that the smaller the threshold is, the smaller the clustering
error becomes. This could be due to the fact that "partofhorizontalportscan" makes up a
vast majority of the connections present in both datasets. This behavior leads to very short
connections, and what can be observed is that as the threshold decreases more and more
clusters pop up that only contain "partofhorizontalportscan". Therefore, the clustering er-
ror decreases with decreasing threshold values due to the fact that in this scenario, there
are now many clusters with only one behavior present, namely "partofhorizontalportscan".

Experiment 2 - Is there a difference in the clustering results depending on which
part of a connection is being selected?

The second experiment is carried out in order to determine whether changing the position
from where to take the packets has an influence on the resulting grouping. To that end,
varying amounts of packets are being selected from three positions, once from the start,
middle and end. Each of these three sequences are used as a distinct input into Malpaca
and the resulting clusters are than compared to see if there are substantial differences.

When it comes to the question whether sequencing different segments of a connection
captures different behavior, there is enough evidence to suggest that this indeed is the case.
As seen on Figure 5, a custom made transition graph, in this representative example from
the "10000" dataset using a fixed threshold of five, the same connection is being grouped
into different clusters when different segments of the same connection are being analyzed.

Figure 5: 10000 Dataset - Transition Graph

The focus of the interpretation of the transition graph should not be on how large a
particular cluster is in different experiments but rather on the name-sake transition of how
connection assignment to a cluster shifts between experiment. In Figure 5, for instance
between Experiment 2 and 3, over 3/4s of the connections in cluster 1 are being assigned to
cluster 0 while only roughly 13% stay in cluster 0.



4 EXPERIMENTAL SETUPS, RESULTS AND DISCUSSION 11

However, not only the cluster assignment differs between experiments, the cluster makeup
varies as well.

Figure 6: 10000 Dataset - 5 Threshold - Detailed Labels per Cluster per Experiment

As can be seen in Figure 6, there are substantial differences in the make-up of each
cluster in the different experiments. Cluster 0 in experiment 1 for instance is dominated by
the "okiru" behavior while in experiment 2, the "benign" behavior is most wide spread.

Experiment 3 - What is the effect of taking packets from the end of a connection
and of skipping some packets ?

In contrast to the first study, in experiment three both the sequence length and the position
from which packets are selected are altered. In particular, two new setups are being tested:
taking packets from the end of a connection as well as skipping a certain amount of and
then taking a fixed amount of packets. The intuition behind these experiment layouts is
that perhaps the behavior of a connection can best be established not from the first but
from the last packets send. The threshold values chosen for experiment 4 were the same as
for experiment 1 in order to facilitate easy comparison. The skip amounts chosen are 5 and
10 as the previous experiments have indicated that already many connections are shorter
than that.

Due to the combination of all possible threshold values with all possible skip values, too
many experiments have been conducted in order to depict the results here. However, in
Appendix 4 - "Experiment Results", one can find all outcomes. In short, no experiment has
performed better than the fixed threshold value 8 found in experiment 1. Additionally, even
after closer inspection, the benefits from analyzing a connection from the end or skipping
certain packets are not clear.

Experiment 4 - What is the effect of breaking up one connection into multiple
smaller connections of equal length ?

One possible solution to the issue of some data sets not containing enough connections for
MalPaCa to create valid clusters could be to instead split one connection into a number of
sub-connections of equal length. This also has the added benefit of covering the behavior of
a connection throughout its entire lifetime and not just at one particular moment in time.
The threshold values chosen for experiment 4 were the same as for experiment 1 in order to
facilitate easy comparison.

The first thing to note for these experiments is that for many of the selected values, the
MalPaCa Algorithm could not actually create a successful clustering as there simply were
too many connections to be compared for the computing hardware that was available. For



4 EXPERIMENTAL SETUPS, RESULTS AND DISCUSSION 12

Figure 7: 10000 Dataset - Experiment 4 - Results

Figure 8: Min 20 Dataset - Experiment 4 - Results

the values that could be computed, the overall performance was worse compared to that of
the previously identified best threshold of 8. However, for neither the "10000" nor the "Min
20" dataset could experiment 4 actually be conducted for this value. Thus, it is entirely
possible that with this value, the windowed approach would actually fare best.

Experiment 5 - What is the effect of defining behavior according to Netflow 5?

All of experiments 1 to 4 were also conducted once again on both the "10000" and the "Min
20" dataset, however this time using the "Netflow v5" definition of a connection.

The precise results can be found once again in Appendix 4 - "Experiment Results". In
short, no systematic differences in terms of clustering results can be observed when behavior
is defined along the lines of "Netflow v5". This is likely due to the fact that both the current
MalPaCa definition and "Netflow v5s" definition are quite similar. Both are unidirectional
and both take into account the source and destination IP address. As "Netflow v5" posses
additional requirements based on which a connection is defined, there are more and shorter
"Netflow v5" connections. This, however, seemingly has no effects on the clustering outcomes
of MalPaCa. Therefore, no immediate performance boost would be obtained by changing
the behavior definition to that of "Netflow v5". However, MalPaCa would then follow a more
universally accepted definition of behavior, thereby making its results more comparable.



5 RESPONSIBLE RESEARCH 13

5 Responsible Research
As stated previously, both the "IoT-23 Dataset" 1 and the MalPaCa source code with all
the modifications carried out in the context of this scientific article 2 are publicly available.
The conditions needed in order to obtain the filtered dataset as well as the precise ratios
used to create the balanced datasets are described in chapter 2 as well as in the appendix.
If desired, the NFStream library 3 used for deep-packet inspection is also freely available.
Therefore, the results of the previously discussed experiments can easily be recreated. And
as the HDBScan clustering algorithm used by MalPaCa was shown to be deterministic, the
groupings should be the same given that the identical data set is used.

Additionally, wherever possible, attempts where made to make the findings comparable
to that of the original paper. For instance, by re-using the "clustering error" metric, the
results can be put into context of the initial findings. Some of the tested threshold values
were being taken from related research that was carried out using MalPaCa so that the
findings could be compared (Roeling et al., 2020).

A great deal of effort was being put into ensuring that the datasets used do not suffer
from data manipulation in any form. For this reason, the experiments were carried out on
both the "10000" and the "Min 20" balanced dataset so that a clear view is being obtained
as to how the results look like in more favorable and in more realistic conditions.

As the "IoT-23 Dataset" is based on traffic simulated by the Stratosphere Laboratory
of the czech CTU University, no sensitive personal information is being transmitted via
the captured network traffic. Therefore, no need exists to anonymize or otherwise obscure
information like the IP addresses.

6 Conclusions and Future Work

6.1 Limitations
The files of the "IoT-23 Dataset" containing the label type of a connection did not include
any information regarding two of the features based on which a netflow connection can be de-
termined namely "IP Type of Service" and "Router or switch interface" (InterProjektWiki,
2021). Therefore, the label attribution had to be done solely on the basis of the available
features. It could be now, that without this information, the detailed label association is not
correct. However, a cursory examination of the "IP Type of Service" values show that there
is not a lot of variation among them, indicating that this is unlikely the case. Nonetheless,
recreating the experiment of this article would further strengthen its findings.

As stated previously, some of the planned experiments, particularly for the smaller
threshold values and for the windowed approach could not be executed simply due to the
fact that the computing hardware available could not handle the memory requirements. It
is now possible that in those instances, the clustering algorithm would perform much better.

6.2 Future Work
On a practical level, the process used to calculate the "clustering error" should further be
improved upon. In particular, a thorough investigation is necessary to understand what

1https://www.stratosphereips.org/datasets-iot23
2https://github.com/mrjojo11/malpaca-pub
3https://github.com/nfstream/nfstream



6 CONCLUSIONS AND FUTURE WORK 14

exactly causes the algorithm to fail when facing larger data sets. Additionally, instead of
requiring an exact match in terms of feature value in order to be classified as clustered
correctly, correctness should be based on a range of acceptable values.

More experimentation with splitting up a connection into a number of windows is nec-
essary. As it stands, each window is treated as an individual behavior and no upper limit is
set on how many windows can be created from one connection. As stated previously, this
decision was made to capture the entire behavior of a connection and to prevent malware
obfuscation techniques such as adding a random delay or sending unnecessary packets to
mask the actual behavior. However, as seen, this approach can be extremely resource inten-
sive to a point where multiple experiments could not be completed due to lack of memory.
One obvious change would be to put a limit on how many windows can be extracted from
one connection. However, then again one runs into the problem of potentially not capturing
behavior that occurs towards the end of a connection. A preprocessing step thus could be
explored, where longer connections are examined one the basis of the same features that
MalPaCa uses in order to identify segments of the connection that are most dissimilar.
These segments then could be then be used for the windows.

Lastly, the network traffic captured in the "IoT-23 Dataset" is quite bifurcated in that
a connection is either very large or very small as Figure 33 found in the appendix reveals.
Additionally, the behavior distribution is skewed in that four of the 12 types of behavior
account for over 90% of all observed behavior. Testing MalPaCa on another, more balanced
dataset would be an important step towards fully understanding its clustering behavior.

6.3 Conclusion
The current default sequencing length value of 20 is definitely too high and should in any
case be reduced to 10 or 8. Threshold values larger than 20 did not result in valid clusterings
which is largely due to the fact that the vast majority of behavior in the "IoT-23 Dataset"
results in connections that are much shorter than 20. The window approach where one
connection is repeatedly sliced into shorter, equally sliced windows has shown great promise
for dealing with heterogeneous connections. As the "IoT-23 Dataset" has shown, frequently
behavior can lead to connections that are either very long or very short. A static threshold
of any value can no do this justice as it runs into the danger of not picking up important be-
havior or cutting short connections representing longer chains of action. Using a windowed
approach can counteract both issues at least partially. By setting the window size small,
shorter behavior can be picked up and by repeatedly extracting this small window, even
behavior spread out over long connections can be included. Hardware limitations however
have prevented many of the experiments using this approach from being completed, partic-
ularly for small threshold values. Therefore, this indicates that one potential downside of
this approach could be its resource intensive nature. For research is necessary to investigate
both how MalPaCa performs in these circumstances as well as whether these processing
problems could not be mitigated. Lastly, changing MalPaCas definition of behavior to the
more common "Netflow v5" does not lead to performance improvements, however MalPaCas
results would become more comparable.



References 15

References
Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., & Nazario, J. (2007).

Automated classification and analysis of Internet malware. In Lecture notes in com-
puter science (including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics) (Vol. 4637 LNCS, pp. 178–197). Springer Verlag. Retrieved
from https://link.springer.com/chapter/10.1007/978-3-540-74320-0_10 doi:
10.1007/978-3-540-74320-0_10

Bayer, U., Comparetti, P., Hlauschek, C., Kruegel, C., & Kirda, E. (2009). Scalable,
behavior-based malware clustering. In Network and distributed system security sym-
posium (ndss). Retrieved from https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.148.7690http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.148.7690&rep=rep1&type=pdf

Cai, T., international conference on Wireless, F. Z. . t., & undefined 2012. (n.d.).
Detecting HTTP botnet with clustering network traffic. ieeexplore.ieee.org .
Retrieved from https://ieeexplore.ieee.org/abstract/document/6478491/
?casa_token=FzbaQWbfU7kAAAAA:l6wqhy4gti1CiP7zv9SHAbV0mEdqDEcWCSmnNuf
_pFI6eGhF0CivgbFVbhjPb8XFIuAwG5mPVg

Commtouch. (2007). Inc. Malware outbreak trend report: Bagle/beagle. Retrieved from
http://www.commtouch.com/documents/Bagle-Worm_MOTR.pdf%0A

Grill, M., Nikolaev, I., Valeros, V., & Rehak, M. (2015, jun). Detecting DGA malware using
NetFlow. In Proceedings of the 2015 ifip/ieee international symposium on integrated
network management, im 2015 (pp. 1304–1309). Institute of Electrical and Electronics
Engineers Inc. doi: 10.1109/INM.2015.7140486

Gu, G., Zhang, J., & Lee, W. (2008, feb). BotSniffer : Detecting Botnet Com-
mand and Control Channels in Network Traffic. Proceedings of the 15th An-
nual Network and Distributed System Security Symposium., 53 (1), 1–13. Retrieved
from https://corescholar.libraries.wright.edu/cse/7http://citeseerx.ist
.psu.edu/viewdoc/download?doi=10.1.1.110.8092&rep=rep1&type=pdf

IETF. (2021). IP flow information export (ipfix). Retrieved 2021-06-27, from https://
tools.ietf.org/html/rfc7011

InterProjektWiki. (2021). NetFlow. Retrieved 2021-06-27, from https://pliki.ip-sa.pl/
wiki/Wiki.jsp?page=NetFlow

Kheir, N., & Wolley, C. (2013, nov). BotSuer: Suing stealthy P2P bots in network traffic
through netflow analysis. In Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 8257
LNCS, pp. 162–178). Springer Verlag. Retrieved from https://link.springer.com/
chapter/10.1007/978-3-319-02937-5_9 doi: 10.1007/978-3-319-02937-5_9

Li, P., Liu, L., Gao, D., & Reiter, M. K. (2010). On challenges in evaluating malware
clustering. In Lecture notes in computer science (including subseries lecture notes
in artificial intelligence and lecture notes in bioinformatics) (Vol. 6307 LNCS, pp.
238–255). Springer Verlag. Retrieved from https://link.springer.com/chapter/
10.1007/978-3-642-15512-3_13 doi: 10.1007/978-3-642-15512-3_13

Nadeem, A., Hammerschmidt, C., Gañán, C. H., & Verwer, S. (2021). Beyond Labeling: Us-
ing Clustering to Build Network Behavioral Profiles of Malware Families. In Malware
analysis using artificial intelligence and deep learning (pp. 381–409). Springer Interna-
tional Publishing. Retrieved from https://link-springer-com.eur.idm.oclc.org/
chapter/10.1007/978-3-030-62582-5_15 doi: 10.1007/978-3-030-62582-5_15



References 16

Parmisano, A., Garcia, S., & Erquiaga, M. J. (2020, jan). Stratosphere Laboratory.
A labeled dataset with malicious and benign IoT network traffic. Retrieved 2021-
06-16, from https://zenodo.org/record/4743746https://www.stratosphereips
.org/datasets-iot23 doi: 10.5281/ZENODO.4743746

Petryschuk, S. (2019). What Is NetFlow? How It Works, Why to Use It, and Exam-
ples. Retrieved 2021-06-27, from https://www.auvik.com/franklyit/blog/netflow
-basics/

Roeling, M. P., Nadeem, A., & Verwer, S. (2020, sep). Hybrid Connection and Host Cluster-
ing for Community Detection in Spatial-Temporal Network Data. In Communications
in computer and information science (Vol. 1323, pp. 178–204). Springer Science and
Business Media Deutschland GmbH. Retrieved from https://link.springer.com/
chapter/10.1007/978-3-030-65965-3_12 doi: 10.1007/978-3-030-65965-3_12

Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., . . . Hakimian, P. (2011).
Detecting P2P botnets through network behavior analysis and machine learning. In
2011 9th annual international conference on privacy, security and trust, pst 2011 (pp.
174–180). doi: 10.1109/PST.2011.5971980

Sarhan, M., Layeghy, S., Moustafa, N., & Portmann, M. (2020, nov). NetFlow Datasets
for Machine Learning-based Network Intrusion Detection Systems. Lecture Notes
of the Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering, LNICST , 371 LNICST , 117–135. Retrieved from http://arxiv.org/
abs/2011.09144http://dx.doi.org/10.1007/978-3-030-72802-1_9 doi: 10.1007/
978-3-030-72802-1_9

Sebastián, M., Rivera, R., Kotzias, P., & Caballero, J. (2016). Avclass: A tool for massive
malware labeling. In Lecture notes in computer science (including subseries lecture
notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 9854 LNCS,
pp. 230–253). Springer Verlag. doi: 10.1007/978-3-319-45719-2_11

Strayer, W. T., Lapsely, D., Walsh, R., & Livadas, C. (2008). Botnet detection based
on network behavior. Advances in Information Security , 36 , 1–24. Retrieved
from https://link.springer.com/chapter/10.1007/978-0-387-68768-1_1 doi:
10.1007/978-0-387-68768-1_1



7 APPENDICES 17

7 Appendices

7.1 Metric Calculation
Variables:
mfl = most frequent label in cluster
mfdl = most frequent detailed label in cluster
mfan = most frequent application name in cluster
mfacn = most frequent application category name in cluster
mfn = most frequent name in cluster

lalc = largest amount of one label present in one cluster
tsl = total amount one label present
nl = number of distinct labels
ladlc = largest amount of one detailed label present in one cluster
tsdl = total amount one detailed label present
ndl = number of distinct detailed labels
laanc = largest amount of one application name present in one cluster
tsan = total amount one application name present
nan = number of distinct application names
laacnc = largest amount of one application category name present in one cluster
tsacn = total amount one application category name present
nacn = number of distinct application category names
lanc = largest amount of one name present in one cluster
tsn = total amount one name present
nn = number of distinct names

tcc = total number of connections in cluster
tc = total number of connections
c = number of clusters

Formulas:
avg_label_purity =

∑
mfl
tcc

c

avg_detailed_label_purity =
∑

mfdl
tcc

c

avg_application_name_purity =
∑

mfan
tcc

c

avg_application_category_name_purity =
∑

mfacn
tcc

c

avg_name_purity =
∑

mfn
tcc

c

avg_label_cohesion =
∑#labels

n=1

lalc
tsl

nl

avg_detailed_label_cohesion =
∑#detailed_labels

n=1

ladlc
tsdl

ndl

avg_application_name_cohesion =
∑#application_name

n=1

laanc
tsan

nan

avg_application_category_name_cohesion =
∑#application_category_names

n=1

laacnc
tsacn

nacn

avg_name_cohesion =
∑#name

n=1

lanc
tsn

nn



7 APPENDICES 18

purity_score = 0.35∗avg_overall_label_purity+0.45∗avg_overall_detailed_label_purity+
0.05∗avg_overall_application_name_purity+0.05∗avg_overall_application_category_name_purity+
0.1 ∗ avg_overall_name_purity
cohesion_score = 0.35∗avg_label_cohesion+0.45∗avg_detailed_label_cohesion+0.05∗
avg_application_name_cohesion+ 0.05 ∗ avg_application_category_name_cohesion+
0.1 ∗ avg_name_cohesion

7.2 Balanced Dataset Creation Example
This example recaptures how for the unidirectional behavior, the "10000" balanced dataset
was created.
Step 1: Calculate the detailed label distribution of the original dataset based
on the desired definition of behavior

Figure 9: Detailed Label Distribution - Unidirectional Behavior

In this example, the used definition of behavior is the original MalPaCa definition of the
"Unidirectional Behavior". Based on this level of aggregation, it is assessed per scenario how
many connections of each detailed label are present. Then, the percentage of each detailed
label being found in the overall "IoT 23" dataset is calculated.



7 APPENDICES 19

Step 2: Calculate the detailed label distribution of the filtered dataset

Figure 10: Detailed Label Distribution - Filtered Dataset - Unidirectional Behavior

Step 1 now is repeated, but this time on the filtered dataset where all connections shorter
than 5 are being excluded and connections longer than 1000 packets are being cut off. This
step is necessary to make the data set usable for the computation equpiment available.
Step 3: Match up the filtered dataset with the original ratios

Figure 11: Matching Filtered Dataset with Original Dataset

In this step, it is determined how many of each detailed labels should be present in the
balanced dataset. To that end, the first step is to attempt to create a subset of filtered
dataset based on the original ratios with which each detailed label was present in the "IoT
23" dataset. Firstly, a targeted data size is established, which in this example was 10000,
based on which then the needed amount of each detailed label is determined by calculating
the original ratio with the selected total data size. In many cases now, it is not possible
to actually select as connections of a detailed label as required as the previously conducted
filtering step fundamentally changed the detailed label distribution. To solve this, first for
those detailed labels where less connections are present in the filtered data set than needed,
such as in the case of the "ddos" label, simply as many connections as exist are selected.
Then, in order to still arrive at the desired data set size, first all of those detailed labels
are picked out, which are so rare that they would not show up in the balanced dataset such
as the "okiru-attack" or the "c&c" detailed labels. Lastly, from those detailed labels where



7 APPENDICES 20

more exist than needed, such as "attack" or "benign", as many connections are selected as
needed to reach the desired dataset size. The "benign" detailed label was favored as this
behavior is most likely to be highly represented in real-world traffic. The end result of this
matching process can be observed in Figure 11
Step 4: Extract from the filtered dataset connections based on the matched
detailed label distribution

Figure 12: Extracting Table - 10000 Dataset

The detailed label distribution created in step 3 is then matched up with the detailed
label distribution from the filtered dataset, seen in Figure 10. To do this, the ratio from the
filtered dataset with which each detailed label is distributed over the different scenarios is
used in order to make sure that the required amount of connections can actually be extracted
from one scenario. As seen in Figure 12, this means that for instance from scenario "CTU-
IoT-Malware-Capture-1-1", 335 connections with the "benign" detailed label have to be
selected for the balanced dataset. These 335 connections are randomly chosen from the
14625 "benign" connections in "CTU-IoT-Malware-Capture-1-1" in order to ensure a non-
biased selection.
Creating other types of balanced datasets

In order to create the "Min 20" balanced dataset, all that is necessary to change is in
step 2, only those connections should be taken into account when determining the detailed
label distribution of the filtered dataset that are longer than at least 20 packets. Step 4 also
needs to be changed, so that instead of randomly selecting a connection from the total pool
of connections of a particular detailed label in a particular scenario, now the connection
should be randomly selected from the total pool of connections of a particular detailed label
in a particular scenario that are longer than 20.

In order to create a balanced dataset for the "netflow" behavior definition, instead of
using the "unidirectional" definition of a connection when determining the detailed label
distribution, use the "netflow" definition of a connection. All other tasks can remain the
same.



7 APPENDICES 21

7.3 Clustering Error Algorithm
Example Output

Figure 13: Overall heatmap for the bytes feature

Figure 14: Heatmap representing what the algorithm has deemed as correctly clustered

Figure 15: Heatmap representing what the algorithm has deemed as incorrectly clustered



7 APPENDICES 22

7.4 Experiment Results
Unidirectional Behavior

10000 Dataset

Figure 16: 10000 Dataset - Experiment 1 Results

Figure 17: 10000 Dataset - Experiment 4 Results



7 APPENDICES 23

Figure 18: 10000 Dataset - Experiment 3 Results - 1



7 APPENDICES 24

Figure 19: 10000 Dataset - Experiment 3 Results - 2



7 APPENDICES 25

Min 20 Dataset

Figure 20: Min_20 Dataset - Experiment 1 Results

Figure 21: Min_20 Dataset - Experiment 4 Results



7 APPENDICES 26

Figure 22: Min_20 Dataset - Experiment 3 Results - 1



7 APPENDICES 27

Figure 23: Min_20 Dataset - Experiment 3 Results - 2



7 APPENDICES 28

Netflow Behavior

10000 Dataset

Figure 24: 10000 Dataset - Experiment 1 Results

Figure 25: 10000 Dataset - Experiment 4 Results



7 APPENDICES 29

Figure 26: 10000 Dataset - Experiment 3 Results - 1



7 APPENDICES 30

Figure 27: 10000 Dataset - Experiment 3 Results - 2



7 APPENDICES 31

Min 20 Dataset

Figure 28: Min 20 - Experiment 1 Results

Figure 29: Min 20 - Experiment 4 Results



7 APPENDICES 32

Figure 30: Min 20 - Experiment 3 Results - 1



7 APPENDICES 33

Figure 31: Min 20 - Experiment 3 Results - 2



7 APPENDICES 34

7.5 Dataset Information
Original Dataset

Figure 32: Detailed Label Distribution - Unidirectional Behavior

Figure 33: Detailed Label Average Length - Unidirectional Behavior



7 APPENDICES 35

Figure 34: Detailed Label Distribution - IoT-23 Behavior

Figure 35: Detailed Label Distribution - Netflow Behavior



7 APPENDICES 36

Filtered Datasets

Figure 36: Detailed Label Distribution - Filtered Dataset - Unidirectional Behavior

Figure 37: Detailed Label Distribution - Filtered Dataset - Netflow Behavior



7 APPENDICES 37

Balanced Datasets - Unidirectional Behavior

Figure 38: Detailed Label Distribution - Unidirectional Behavior - 10000 Dataset

Figure 39: Detailed Label Connections Summary - Unidirectional Behavior - 10000 Dataset



7 APPENDICES 38

Figure 40: Detailed Label Distribution - Unidirectional Behavior - Min 20 Dataset

Figure 41: Detailed Label Connections Summary - Unidirectional Behavior - Min 20 Dataset



7 APPENDICES 39

Balanced Datasets - Netflow Behavior

Figure 42: Detailed Label Distribution - Netflow Behavior - Min 20 Dataset

Figure 43: Detailed Label Connections Summary - Netflow Behavior - Min 20 Dataset



7 APPENDICES 40

Figure 44: Detailed Label Distribution - Netflow Behavior - 10000 Dataset

Figure 45: Detailed Label Connections Summary - Netflow Behavior - 10000 Dataset


