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Abstract
Policy gradient methods have become one of the most popular classes of algorithms for multi-agent reinforcement learning.

A key challenge, however, that is not addressed by many of these methods is multi-agent credit assignment: assessing an

agent’s contribution to the overall performance, which is crucial for learning good policies. We propose a novel algorithm

called Dr.Reinforce that explicitly tackles this by combining difference rewards with policy gradients to allow for learning

decentralized policies when the reward function is known. By differencing the reward function directly, Dr.Reinforce

avoids difficulties associated with learning the Q-function as done by counterfactual multi-agent policy gradients (COMA),

a state-of-the-art difference rewards method. For applications where the reward function is unknown, we show the

effectiveness of a version of Dr.Reinforce that learns an additional reward network that is used to estimate the difference

rewards.

Keywords Multi-agent reinforcement learning � Policy gradients � Difference rewards � Multi-agent credit assignment �
Reward learning

1 Introduction

Many real-world problems, like air traffic management

[49], packet routing in sensor networks [55] and traffic

light control [40], can be naturally modelled as cooperative

multi-agent systems [6]. Here multiple agents must learn to

work together to achieve a common goal. Such problems

have commonly been approached with multi-agent rein-

forcement learning (MARL) [5, 22, 28], including recently

with deep reinforcement learning. Often in these settings

agents have to behave in a decentralized fashion [30],

relying only on local perceptions, due to the prohibitive

complexity of a centralized solution or because commu-

nication is too expensive [4, 37].1

The paradigm of centralized training with decentralized

execution (CTDE) [28, 38] deals with this: agents use

global information during training, but then only rely on

local sensing during execution. In such settings, policy

gradient methods are amongst the few methods with con-

vergence guarantees [39], and multi-agent policy gradient

(MAPG) methods have become one of the most popular

approaches for the CTDE paradigm [18, 29].

However, one key problem that agents face with CTDE

that is not directly tackled by many MAPG methods is

multi-agent credit assignment [9, 35, 53, 56]. With a shared

reward signal, an agent cannot readily tell how its own

actions affect the overall performance. This can lead to

sub-optimal policies even with just a few agents. Differ-

ence rewards [12, 13, 41, 54] were proposed to tackle this

problem: agents learn from a shaped reward that allows
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them to infer how their actions contributed to the shared

reward.

Only one MAPG method has incorporated this idea so

far: counterfactual multi-agent policy gradients (COMA)

[18] is a state-of-the-art algorithm that does the differenc-

ing with a learned action-value function Qxðs; aÞ. How-

ever, there are potential disadvantages to this approach:

learning the Q-function is a difficult problem due to com-

pounding factors of bootstrapping, the moving target

problem (as target values used in the update rule change

over time) and Q’s dependence on the joint actions. This

makes the approach difficult to apply with more than a few

agents. Moreover, COMA is not exploiting knowledge

about the reward function, even though this might be

available in many MARL problems.

To overcome these potential difficulties, we take inspi-

ration from [12] and incorporate the differencing of the

reward function into MAPG. Extending the work in [8]

with additional results and analysis, we propose difference

rewards REINFORCE (Dr.Reinforce), a new MARL

algorithm that combines decentralized policies learned

with policy gradients with difference rewards that are used

to provide gradients with information on each agent’s

individual contribution to overall performance. Addition-

ally, we provide a version, called Dr.ReinforceR, for set-

tings where the reward function is not known upfront. In

contrast to [12], Dr.ReinforceR exploits the CTDE para-

digm and learns a centralized reward network to estimate

difference rewards. Although the dimensionality of the

reward function is the same as the Q-function, and simi-

larly depends on joint actions, learning the reward function

is a simple regression problem. It does not suffer from the

moving target problem, which allows for faster training and

improved performance. Our empirical results show that our

approaches can significantly outperform other MAPG

methods, particularly with more agents.

2 Background

Here we introduce some notions about multi-agent systems

and policy gradients used to understand the remainder of

this work.

2.1 Multi-agent reinforcement learning

Our setting can be formalized as a multi-agent Markov

decision process (MMDP) [4] M ¼ hD; S; fAigjDji¼1; T ;R; ci,
where D ¼ f1; . . .;Ng is the set of agents; s 2 S is the

state; ai 2 Ai is the action taken by agent i and a ¼

ha1; . . .; aNi 2 �jDji¼1A
i ¼ A denotes the joint action;

Tðs0ja; sÞ : S� A� S! ½0; 1� is the transition function that

determines the probability of ending up in state s0 from s

under joint action a; Rðs; aÞ : S� A! R is the shared

reward function and c is the discount factor.

Agent i selects actions using a stochastic policy

phiðaijsÞ : S� Ai ! ½0; 1� with parameters hi, with h ¼
hh1; . . .; hNi and ph ¼ hph1 ; . . .; phN i denoting the joint

parameters and policy, respectively. With rt denoting the

reward at time t, and expectations taken over sequences of

executions, the policy ph induces the value functions

VphðstÞ ¼ Eph
P1

l¼0 c
lrtþljst

� �
and action-value function

Qphðst; atÞ ¼ Eph
P1

l¼0 c
lrtþljst; at

� �
. At each time step t, the

agents try to maximize the value function VphðstÞ.

2.2 Reinforce and actor-critic

In single-agent reinforcement learning [26, 46], policy

gradient methods (PG) [47] aims to maximize the expected

value function VphðstÞ by directly optimizing the policy

parameters h. These methods perform gradient ascent in the

direction that maximizes the expected parametrized value

function VðhÞ ¼ Es0
Vphðs0Þ½ �. The simplest policy gradient

method is REINFORCE [52], which is a Monte Carlo

algorithm, executing the current policy ph for an entire

episode of T steps and then optimizing it with the following

update:

h hþ a
XT�1

t¼0

ctGtrh log phðatjstÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ĝ

;

where the return Gt ¼
PT�t�1

l¼0 clrtþl is an unbiased esti-

mate of VphðstÞ computed over the episode. This update

rule corresponds to performing stochastic gradient ascent

[3] on VðhÞ because the expectation of the update target is

the gradient of the value function, Eph ĝ½ � ¼ rhVðhÞ. Under

appropriate choices of step sizes a the method will con-

verge [47].

REINFORCE suffers from the high variance of the

sampled returns because of the stochasticity of environ-

ment and agent policy itself, and thus converges slowly. To

reduce such variance, a suitable baseline b(s) can be sub-

tracted from the return Gt [46].

Another possibility to overcome such problem are actor-

critic methods [27, 32] that try to do so by learning an

additional component called the critic. The critic is para-

metrized by x and represents either the value or action-

value function. It is learned along with the policy ph to

minimize the on-policy temporal difference (TD) error at
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each time step t, which for a critic that represents the Q-

function is:

dt ¼ rt þ cQxðstþ1; atþ1Þ � Qxðst; atÞ: ð1Þ

The policy is then optimized using the estimates given by

the critic:

h hþ a
XT�1

t¼0

Qxðst; atÞrh log phðatjstÞ: ð2Þ

As for REINFORCE, a baseline b(s) can be subtracted

from the critic estimate in Eq. (2) to further reduce vari-

ance. If bðsÞ ¼ VðsÞ, then Aðs; aÞ ¼ Qxðs; aÞ � VðsÞ is

called the advantage function and is a used in many actor-

critic methods [32].

In cooperative MARL, each agent i can individually

learn a decentralized policy by using the distributed policy

gradient [39] update target for phi :

hi  hi þ a
XT�1

t¼0

ctGtrhi log phiðaitjstÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ĝi

;
ð3Þ

where ai is this agent’s action and Gt is the return com-

puted with the shared reward and is identical for all agents.

2.3 Difference rewards

In settings where the reward signal is shared, agents cannot

easily determine their individual contribution to the

reward, a problem known as multi-agent credit assignment.

It can be tackled with difference rewards [41, 54]. Instead

of using the shared reward R(s, a), agents compute a

shaped reward:

DRiðaijs; a�iÞ ¼ Rðs; aÞ � Rðs; ha�i; ciiÞ; ð4Þ

where a�i is the joint action all agents except i and ci is a

default action for agent i used to replace ai. This way, an

agent can assess its own contribution, and therefore, each

action that improves DRi also improves the global reward

R(s, a) [1]. This, however, requires access to the complete

reward function or the use of a resettable simulator to

estimate Rðs; ha�i; ciiÞ. Moreover, the choice of the default

action can be problematic. The aristocrat utility [54]

avoids this choice by marginalizing out an agent by com-

puting its expected contribution to the reward given its

current policy phi :

DRiðaijs; a�iÞ ¼ Rðs; aÞ � Ebi � phi
Rðs; ha�i; biiÞ
� �

: ð5Þ

The work of [12] learns a local approximation of the

reward function Rwiðs; aiÞ for each agent i and uses it to

compute the difference rewards of Eq. (4), by fixing a

default action ci, as:

DRi
wiðaijsÞ ¼ Rðs; aÞ � Rwiðs; ciÞ:

Counterfactual multi-agent policy gradients (COMA) [18]

is a state-of-the-art deep MAPG algorithm that adapts

difference rewards and aristocrat utility to use the Q-

function, approximated by a centralized critic Qxðs; aÞ
learned under the CTDE paradigm (as the algorithm is

designed for general partially observable multi-agent

domains [37], where agents cannot access the environment

state st), by providing the policy gradients of the agents

with a counterfactual advantage function:

Aiðs; aÞ ¼ Qxðs; aÞ �
X

ci2Ai

phiðcijhitÞQxðs; ha�i; ciiÞ:

3 Difference rewards policy gradients

COMA learns a centralized action-value function critic

Qxðs; aÞ to do the differencing and drive agents’ policy

gradients. However, learning such a critic using the TD

error in Eq. (1) presents a series of challenges that may

dramatically hinder final performance if they are not

carefully tackled. The Q-value updates rely on bootstrap-

ping that can lead to inaccurate updates. Moreover, the

target values for these updates are constantly changing

because the other estimates used to compute them are also

updated, leading to a moving target problem. This is

exacerbated when function approximation is used, as these

estimates can be indirectly modified by the updates of other

Q-values. Target networks are used to try and tackle this

problem [31], but these require careful tuning of additional

parameters and may slow down convergence with more

agents.

Our proposed algorithm, named Dr.Reinforce, combines

the REINFORCE [52] policy gradient method with a dif-

ference rewards mechanism to deal with credit assignment

in cooperative multi-agent systems, thus avoiding the need

of learning a critic.

3.1 Dr.Reinforce

If the reward function R(s, a) is known, we can directly use

difference rewards with policy gradients. We define the

difference return DGi
t for agent i as the discounted sum of
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the difference rewards DRiðaitjst; a�it Þ from time step t

onward as:

DGi
tðait:T jst:T ; a�it:TÞ,

XT�t�1

l¼0

clDRiðaitþljstþl; a�itþlÞ; ð6Þ

where T is the length of the sampled trajectory and

DRiðaitjst; a�it Þ is the difference rewards for agent i, com-

puted using the aristocrat utility [54] as in Eq. (5). Please

note that the subscript t : T in our notation is a shorthand

used to identify the sequence of values of given quantity

from time step t up to (but not including) time step T.

To learn the decentralized policies ph, we follow a

modified version of the distributed policy gradients in

Eq. (3) that uses our difference return, optimizing each

policy by using the update target:

hi  hi þ a
XT�1

t¼0

ctDGi
tðait:T jst:T ; a�it:TÞrhi log phiðaitjstÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gDR;i

;

ð7Þ

where DGi
t is the difference return defined in Eq. (6). This

way, each policy is guided by an update that takes into

account its individual contribution to the shared reward,

and an agent thus takes into account the real value of its

own actions. We expect this signal to drive the policies

towards regions in which individual contributions are

higher, and thus also the shared reward, since a sequence of

actions improving DGi
t also improves the global return [1].

3.2 Online reward estimation

In many settings, complete access to the reward function to

compute the difference rewards is not available. Thus, we

propose Dr.ReinforceR, which is similar to Dr.Reinforce

but additionally learns a centralized reward network Rw,

with parameters w, that is used to estimate the value

Rðs; hai; a�iiÞ for every local action ai 2 Ai for agent i.

Following the CTDE paradigm, this centralized network is

only used during training to provide policies with learning

signals and is not needed during execution, when only the

decentralized policies are used. The reward network

receives as input the environment state st and the joint

action of the agents at at time t, and is trained to reproduce

the corresponding reward value rt�Rðst; atÞ by minimiz-

ing a standard MSE regression loss:

LtðwÞ ¼
1

2
rt � Rwðst; atÞ
� �2

: ð8Þ

Although the dimensionality of the function R(s, a) that

we are learning with the reward network is the same as

that of Q(s, a) learned by the COMA critic, growing

exponentially with the number of agents as both depend

of the joint action a 2 A ¼ �jDji¼1A
i, learning Rw is a

regression problem that does not involve bootstrapping or

moving targets, thus avoiding many of the problems faced

with an action-value function critic. Moreover, alternative

representations of the reward function can be used to

further improve learning speed and accuracy, e.g. by

using factorizations [7].

We can now use the learned Rw to compute the differ-

ence rewards DRi
w using the aristocrat utility [54] as:

DRi
wðaitjst; a�it Þ, rt �

X

ci2Ai

phiðcijstÞRwðst; hci; a�it iÞ: ð9Þ

The second term of the r.h.s. of Eq. (9) can be estimated

with a number of network evaluations that is linear in

the size of the local action set Ai, as the actions of the

other agents a�it remains fixed, avoiding an exponential

cost.

We now redefine the difference return DGi
t from Eq. (6)

as the discounted sum of the estimated difference rewards

DRi
wðaitþljstþl; a�itþlÞ:

DGi
tðait:T jst:T ; a�it:TÞ,

XT�t�1

l¼0

clDRi
wðaitþljstþl; a�itþlÞ: ð10Þ

3.3 Theoretical results

REINFORCE [52] suffers from high variance of gradients

estimates because of sample estimation of the return. This

can be accentuated in the multi-agent setting. Using an

unbiased baseline is crucial to reducing this variance and

improving learning [20, 46]. Here we address these con-

cerns by showing that using difference rewards in policy

gradient methods corresponds to subtracting an unbiased

baseline from the policy gradient of each individual agent.

Since this unbiased baseline does not alter the expected

value of the update targets, applying difference rewards

policy gradients to a common-reward MARL problem

turns out to be same in expectation as using distributed

policy gradients update targets. Such gradients’ updates

have been shown to be equivalent to those of a joint gra-

dient [39], which under some technical conditions is known

to converge to a local optimum [27, 47].
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Lemma 1 In a MMDP, using difference return

DGi
tðait:T jst:T ; a�it:TÞ as the learning signal for policy gradi-

ents in Eq. (7) is equivalent to subtracting an unbiased

baseline Biðst:T ; a�it:TÞ from the distributed policy gradients

in Eq. (3).

Proof We start by rewriting DGi
tðait:T jst:T ; a�it:TÞ from

Eq. (6) as:

DGi
tðait:T jst:T ; a�it:TÞ ¼

XT�t�1

l¼0

clrtþl

�
XT�t�1

l¼0

cl
X

ci2Ai

phiðcijhitþlÞRðstþl; hci; a�itþliÞ:
ð11Þ

Note that the first term on the r.h.s. of Eq. (11) is the return

Gt used in Eq. (3). We then define the second term on the

r.h.s. of Eq. (11) as the baseline Biðst:T ; a�it:TÞ:

Biðst:T ; a�it:TÞ ¼
XT�t�1

l¼0

cl
X

ci2Ai

phiðcijstþlÞ � Rðstþl; hci; a�itþliÞ:

ð12Þ

We can thus rewrite the total expected update target for

agent i as:

Eph ĝDR;i
� �

¼ Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

DGi
tðait:T jst:T ; a�it:TÞ

" #

¼ Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

Gt � Biðst:T ; a�it:TÞ
� �

" #

(by definition of DGi
tÞ

¼ Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

Gt

"

� rhi logphiðaitjstÞ
� �

Biðst:T ; a�it:TÞ
�

(distributing the product)

¼ Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

Gt

" #

� Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

Biðst:T ; a�it:TÞ
" #

(by linearity of the expectation)

¼ Eph ĝPG;i
� �

þ Eph ĝB;i
� �

:

ð13Þ

We have to show that the baseline is unbiased, and so, the

expected value of its update Eph ĝ
B;i½ � with respect to the

policy ph is 0. Let

Pph
t ðstÞ ¼

X

st�12S
Pph
t�1ðst�1Þ

X

at�12A
phðat�1jst�1Þ Tðstjat�1; st�1Þ

be the probability of the state at time step t to be st under

the joint policy ph (with Pph
0 ðs0Þ ¼ qðs0Þ and q is the initial

state distribution), we have:

Eph ĝB;i
� �

,� Eph

XT�1

t¼0

rhi log phiðaitjstÞ
� �

Biðst:T ; a�it:TÞ
" #

¼ �
XT�1

t¼0

X

st2S
Pph
t ðstÞ

X

a�it 2A�i
ph�iða�it jstÞ

X

ait2Ai

phiðaitjstÞ

rhi log phiðaitjstÞ
� � X

stþ1:T ;atþ1:T

YT�t�1

l¼1

Tðstþljatþl�1; stþl�1Þ�

phðatþljstþlÞ Biðst:T ; a�it:TÞ
(by expanding the expectation)

¼ �
XT�1

t¼0

X

st2S
Pph
t ðstÞ

X

a�it 2A�i
ph�iða�it jstÞ

X

ait2Ai

rhiphiðaitjstÞ
� �

X

stþ1:T ;atþ1:T

YT�t�1

l¼1

Tðstþljatþl�1; stþl�1Þ�

phðatþljstþlÞ Biðst:T ; a�it:TÞ
(by applying the inverse log trick)

¼ �
XT�1

t¼0

X

st2S
Pph
t ðstÞ

X

a�it 2A�i
ph�iða�it jstÞ

rhi
X

ait2Ai

phiðaitjstÞ

0

@

1

A

X

stþ1:T ;atþ1:T

YT�t�1

l¼1

Tðstþljatþl�1; stþl�1Þ�

phðatþljstþlÞ Biðst:T ; a�it:TÞ
(by moving the gradient outside the policy sum)

¼ �
XT�1

t¼0

X

st2S
Pph
t ðstÞ

X

a�it 2A�i
ph�iða�it jstÞ rhi1

X

stþ1:T ;atþ1:T

YT�t�1

l¼1

Tðstþljatþl�1; stþl�1Þ�

phðatþljstþlÞ Biðst:T ; a�it:TÞ
(policy probabilities sum up to 1)

¼ 0:

ð14Þ

Therefore, using the baseline in Eq. (12) reduces the

variance of the updates [20] but does not change their

expected value, as it is unbiased and its expected update

target Eph ĝ
B;i½ � ¼ 0. h

Corollary Using the estimated reward network Rw to

compute the baseline in Eq. (12) still results in an unbiased

baseline.

Proof We rewrite DGi
tðait:T jst:T ; a�it:TÞ from Eq. (10) as:

DGi
tðait:T jst:T ; a�it:TÞ ¼

XT�t�1

l¼0

clrtþl

�
XT�t�1

l¼0

cl
X

ci2Ai

phiðcijstþlÞRwðstþl; hci; a�itþliÞ;
ð15Þ

for which we define the second term on the r.h.s. of

Eq. (15) as the baseline Bi
wðst:T ; a�it:TÞ:
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Bi
wðst:T ; a�it:TÞ ¼

XT�t�1

l¼0

cl
X

ci2Ai

phiðcijstþlÞ � Rwðstþl; hci; a�itþliÞ:

We observe that the derivation of Eq. (14) still holds, as it

is not altered by the use of the reward network Rw rather

than the true reward function R(s, a). Therefore, the

baseline Bi
wðst:T ; a�it:TÞ is again unbiased and does not alter

the expected value of the updates. h

Theorem 1 In a MMDP with shared rewards, given the

conditions on function approximation detailed in [47],

using Dr.Reinforce update target as in Eq. (7), the series of

parameters fht ¼ hh1
t ; . . .; h

N
t ig

k
t¼0 converges in the limit

such that the corresponding joint policy pht is a local

optimum:

lim
k!1

inf
fhtgkt¼0

jjĝDRjj ¼ 0 w:p: 1:

Proof To prove convergence, we have to show that:

Epht ĝDR
� �

¼ Epht

XN

i¼0

ĝDR;i

" #

¼ rhtVðhtÞ:

We can rewrite the total expected update target as:

Epht ĝDR;i
� �

¼ Epht ĝPG;i
� �

þ Epht ĝB;i
� �

as in Eq. (13), and by Lemma 1, we have that

Epht ĝ
B;i½ � ¼ 0. Therefore, the overall expected update

Epht ĝ
DR;i½ � for agent i reduces to Epht ĝ

PG;i½ � that is equal to

the distributed policy gradient update target in Eq. (3).

These updates for all the agents has been proved to be

equal to these of a centralized policy gradients agent

Epht ĝ
PG½ � by Theorem 1 in [39] and therefore converge to a

local optimum of rhtVðhtÞ by Theorem 3 in [47]. h

4 Experiments

We are interested in investigating the following questions:

1. How does Dr.Reinforce compare to existing

approaches?

2. How does the use of a learned reward network Rw

instead of a known reward function affect

performance?

3. Is learning the Q-function (as in COMA) more difficult

than learning the reward function R(s, a) (as in

Dr.ReinforceR)?

To investigate these questions, we tested our methods on

two gridworld environments with shared reward: the multi-

rover domain, an established multi-agent cooperative

domain [13], in which agents have to spread across a series

of landmarks, and a variant of the classical predator–prey

problem with a randomly moving prey [48].

4.1 Comparison to baselines

We compare to a range of other policy gradient methods:

independent learners using REINFORCE to assess the

benefits of using a difference rewards mechanism, labelled

PG. We also compare against a standard actor-critic algo-

rithm [27] with decentralized actors and a centralized

action-value function critic to show that our improvements

are not only due to the centralized information provided to

the agents during training, denoted as CentralQ here. Our

main comparison is with COMA [18], a state-of-the-art

difference rewards method using the Q-function for com-

puting the differences. Finally, we compare against the

algorithm proposed in [12], to show the benefit of learning

a centralized reward network to estimate the difference

rewards in Dr.ReinforceR. Indeed, this algorithm learns an

individual approximation of the reward function Rwiðs; aiÞ
for each agent i and uses this in estimating the difference

rewards as in Eq. 4 to learn the agents’ policies. We

adapted this method to use policy gradients instead of

evolutionary algorithms to optimize the policies to not

conflate the comparisons with the choice of a policy opti-

mizer where possible, and only focus on the effect of using

difference rewards during learning. Additionally, the multi-

agent A* (MAA*) exact planning algorithm [36, 37] has

been applied to the smaller instances of the two problems

with only N ¼ 3 agents, as an upper bound for assessing

the overall performance of the investigated learning algo-

rithms. Because of the exponentially many joint actions to

expand at each state, it has not been possible to apply such

an algorithm to larger instances.

Fig. 1 Schematic representation of the two gridworld domains.

Agents are green, landmarks are yellow, and the prey is red
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4.1.1 Multi-rover domain

In this domain, a team of N agents is placed into a 10� 10

gridworld with a set of N landmarks. The aim of the team is

to spread over all the landmarks and cover them (which

agent covers which landmark is not important): the reward

received by the team depends on the distance of each

landmark to its closest agent, and a penalty if two agents

collide (reach the same cell simultaneously) during their

movements is also applied. Each agent observes its relative

position with respect to all the other agents and landmarks

and can move in the four cardinal directions or stand still.

Fig. 2 (left) reports the median performance and 25� 75%

percentiles (shaded area in the plots) across 30 independent

runs obtained by the compared methods on a team of

increasing size, to investigate scaling to larger multi-agent

systems.

It can be observed that both Dr.Reinforce and

Dr.ReinforceR are always outperforming all of the other

compared baselines on this domain. Also, Dr.ReinforceR is

generally matching the upper bound given by Dr.Reinforce

(that represents a limit case when the centralized reward

network Rw has perfectly converged to the true reward

function). However, the wide gap between these two

algorithms and the other baselines when N ¼ 3 reduces

when more agents are introduced in the system, possibly

pointing out that also these methods start to struggle in

achieving optimal and coordinated behaviours on larger

instances of this domain. When more agents are present,

the gridworld becomes quite crowded: an explanation for

this loss in performance is that the difference rewards

signal pushes each agent towards the landmark that is

furthest from all of the agents, thus contributing the most to

the negative reward value, in an attempt to mitigate this

problem, but letting another landmark increase its negative

contribution in turn. Coordination is key to efficiently solve

this domain, and achieving such coordination may be dif-

ficult in larger settings.

Moreover, even if the reward network learns a good

representation, the synergy between this and the agents’

policies has to be carefully considered: the reward network

has to converge properly before the policies got stuck into a

local optimum, or it could be the case that these will not be

able to escape it even if the gradients signals are then

accurate enough. However, the simpler learning problem

used to provide signals to the agents’ policies, as opposed

to the very complex learning of the action-value function

critic used by COMA, proves effective in speeding up

learning and achieve higher returns, even in difficult set-

tings with many agents where all the other policy gradient

methods seem to fail as well. Computing the difference

rewards requires very accurate reward estimates, so if the

reward network do not exhibit appropriate generalization

capabilities it may end up overfitting on the reward values

(a) Multi-Rover, N = 3 (b) Predator-Prey,N = 3

(c) Multi-Rover, N = 5 (d) Predator-Prey,N = 5

(e) Multi-Rover, N = 8 (f) Predator-Prey, N = 8

Fig. 2 Training curves on the

multi-rover domain (left) and

the predator–prey problem

(right), showing the median

reward and 25� 75%
percentiles across seeds
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encountered during training but not being able to give

correct predictions beyond those. It is true, however, that

also difference rewards methods using the action-value

function like COMA have the same requirements.

4.1.2 Predator–prey

In this version of the classical predator–prey problem, a

team of N predators has to pursue a single prey for as long

as possible in a 10� 10 gridworld. Each predator has got a

range of sight of one cell in each direction from its current

position: if the prey is into this range, the whole team

receives a positive reward bonus; otherwise, they do not

receive any reward. Each agent observes its relative posi-

tion with respect to the other agents and the prey itself and

can move in the four cardinal directions or stand still. The

prey selects actions uniformly at random from the same set

of actions available to the agents. Figs. 2 (right) shows

median results and 25� 75% percentiles across 30 inde-

pendent runs with teams comprising an increasing number

of predators.

Also in this environment, Dr.ReinforceR is outper-

forming all the other compared methods, achieving per-

formance that is equal or close to these of the Dr.Reinforce

upper bound (of which the former is an approximated

version). On the one hand, some of the other baselines are

also performing well: PG and Colby are almost performing

on-par with the two above algorithms, even on larger

instances of the problem. This is probably due to the less

strict coordination requirements of the predator–prey

problem compared to the previous multi-rover domain:

each agent is independently contributing towards the

common goal and thus simply needs to optimize its own

behaviour by learning how to reach and stay on the prey in

order to improve global performances.

On the other hand, COMA is performing extremely

poorly, being outperformed even by the simple CentralQ

(that has slowly learned something in the simpler case with

N ¼ 3). This points out how accurately learning an optimal

Q-function may be problematic in many settings, even

more so on a sparse setting such as this, in which the agents

are only perceiving rewards if some of them are effectively

on the prey. If the Q-function converges to a sub-optimal

solution and keeps pushing the agents towards a local

optimum, the policies may struggle to escape from it

afterwards and in turn push the action-value function

towards a worst approximation. Moreover, to compute the

counterfactual baseline in COMA, estimates of Q-values

need to be accurate even on state-action pairs that the

policies do not visit often, further exacerbating this prob-

lem. From this side, learning the reward function to com-

pute the difference rewards is an easier learning problem,

cast as a regression task and not involving bootstrapped

estimates or a moving target, and thus can improve policy

gradient performance providing them with better learning

signals in achieving high return behaviours with no further

drawback.

4.2 Analysis

The results of the proposed experiments show the benefits

of learning the reward function over the more complex Q-

function, leading to faster policy training and improved

final performances, but also that this is not always an easy

task and it can present issues on its own that can hinder the

learning of an optimal joint policy. Indeed, although not

suffering from the moving target problem and no boot-

strapping is involved, learning the reward function online

together with the policies of the agents can lead to biases of

the learned function due to the agents behaviours. These

biases could push the training samples towards a specific

region of the true reward function, hindering the general-

ization capacity of the learned reward network and in turn

leading to worst learning signal for the policies themselves,

that can get stuck into a sub-optimal region. Similarly, this

problem can appear when a centralized action-value critic

is used to drive the policy gradients.

To investigate the claimed benefits of learning the

reward function rather the Q-function, let now analyse the

accuracy of the learned representations on the two pro-

posed gridworld domains by sampling a set of different

trajectories from the execution of the corresponding poli-

cies and comparing the predicted values from the reward

network Rwðs; aÞ of Dr.ReinforceR and the Qxðs; aÞ critic

from COMA to the real ground-truth values of the reward

function and the Q-function, respectively. This has been

called the on-policy dataset, representing how correctly can

the reward network and the critic represent the values of

state-action pairs encountered during their training phase.

Moreover, both Dr.ReinforceR and COMA rely on a dif-

ference rewards mechanism and thus need to estimate

values for state-action pairs that are only encountered

infrequently (or not at all) in order to compute correct

values to drive the policy gradients. To investigate the

generalization performances of the learned representations,

let also analyse the prediction error on a off-policy dataset,

by sampling uniformly across the entire action-state space

S� A and again comparing the predicted values from the

learned reward function Rwðs; aÞ of Dr.ReinforceR and the

Qxðs; aÞ critic from COMA to their corresponding ground-

truth values. Please note that, not knowing the true Q-

function for the proposed problems to compare against,

these have been approximated that via 100 rollouts sam-

pled starting from the current state-action sample and fol-

lowing the corresponding learned policies afterwards.
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Fig. 3 shows the mean and standard deviation of the pre-

diction error (PE) distribution of these networks. All the

prediction errors have been normalized by the value of

rmax � rmin (respectively, qmax � qmin for COMA critic) for

each environment and number of agents individually, so

that the resulting values are comparable across the two

different methodologies and across different settings. It is

to note that, although normalized, the errors may be higher

than the normalization range itself, and thus exceed the

value of 1 (as it is the case with the errors of COMA critic

on the multi-rover domain).

These plots give us some insights on the performance

reported in Sect. 4.1. Dr.ReinforceR is in general achieving

improved performances with respect to the compared

baselines, and the low prediction error of its reward net-

work on the two problems may be an explanation for this:

with correct value estimates, the learning signals provided

to the policy gradients are better in turn, and thus lead to

higher-return behaviours. Also the variance is low, mean-

ing that most of the sampled values are consistently pre-

dicted correctly and the network exhibits good

generalization performances across the increasing number

of agents on both datasets. This generalization capacity of

the learned approximation also explains why Dr.Rein-

forceR is in general matching the Dr.Reinforce upper

bound: the difference rewards mechanism requires multiple

predictions to compute the agents’ signals and, if these are

not accurate enough, the resulting values may be com-

pletely wrong and push the agents towards sub-optimal

policies in turn.

The prediction errors for COMA action-value critic

instead are higher, especially on the multi-rover domain,

where the errors do not scale so gracefully in the number of

agents even on the on-policy dataset. It can be observed

that the critic network is biased towards overestimating

most of the samples for the multi-rover domain, while

instead underestimates them for predator–prey (especially

more so on the off-policy dataset, where non-encountered

state-action pairs may be sampled), thus resulting in bad

estimations of the counterfactual baseline. On the predator–

prey environment, it seems that COMA critic quickly

overfits to the Q-function of a sub-optimal joint policy,

resulting in a very low prediction error on the off-policy

dataset when the number of agents increases (and most of

the samples indeed lead to no rewards trajectories), that

does not seem able to give good signals to the agents’

policies and leads them to get stuck into this poor local

optimum in turn. These results can also explain why

COMA is performing worse than CentralQ on this domain:

if the critic is not accurate or is representing the value of a

poor policy (as it can be hypothesized for the above

results), COMA requirement of more estimations from it in

order to compute the counterfactual baseline only

Fig. 3 Normalized mean

prediction error and standard

deviation for Dr.ReinforceR

reward network Rw and COMA

critic Qx on the on-policy

dataset (first row) and the off-

policy dataset (second row), for

the two environments
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exacerbates this problem and further hinders the final

performance.

Finally, the effect of noise on computation of the dif-

ference rewards are investigated. Generally, an accurate

reward value for every agent’s action is needed to compute

correct difference rewards. The reward network Rw is an

approximation of the true reward function R(s, a) and can

therefore give noisy estimates that could dramatically

affect the resulting computation. To investigate this, noise

sampled from different processes is added to the reward

values of the agent’s different actions that are obtained

from the environment. These are used to compute the

baseline (the second term of the r.h.s. in Eq. 5, as this is the

only term for which Rw is used in Eq. 9), and the resulting

difference rewards are compared with the true ones for a

generic agent i under a uniform policy phiðaijsÞ ¼ 1
jAij.

Fig. 4 reports the mean value and variance over 1000 noise

samples of a set of sampled state-action (SA) pairs from the

reward function of the two investigated domains with N ¼
3 agents.

It can be observed how different noise processes dif-

ferently affect the resulting difference rewards. For

example, in both environments, the difference rewards

mechanism is quite resistant against noise from a normal or

a uniform distribution. This is probably due to the sym-

metricity of these noises that tends to cancel out with each

other. However, a masking kind of noise, under which

some of the reward values are replaced with a value of 0

with a certain probability, seems to be more detrimental for

difference rewards evaluation: cancelling out some of the

reward values definitely changes the computation and gives

wrong estimates. This is worse in the multi-rover domain,

in which the reward function is dense, while for the

predator–prey environment and its sparse reward function

it seems to be less harming.

These two observations together help explain why

Dr.ReinforceR outperforms COMA on the two proposed

environments: learning the reward function R(s, a) is easier

than learning the Q-function and, although function

approximation introduces noise, the difference rewards

mechanism is resistant against common types of noise and

still provides useful signals to policy gradients. Therefore,

if one is able to learn a good approximation of the reward,

the proposed algorithm learns better and more reliable

policies than other policy gradient algorithms, without the

difficulties of learning the Q-function.

5 Partial observability

Full observability of the environment as in MMDPs is a

desirable property, but in many real-world situations

[40, 43, 55] such a strong assumption is often unrealistic.

The complexity of the environment itself or the limited

sensing or communication capabilities available are

usually transforming such problems into a partially

observable ones from the perspective of the agents. In

these, the agents cannot directly observe the state of the

environment, but instead are provided with a local and

possibly noisy observation that represents only a limited

amount of information about the underlying environment

state itself.

Fig. 4 Mean and variance of

difference rewards for a set of

samples under different noise

profiles
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Formally, such settings can be modelled as a decen-

tralized partially observable Markov decision process

(Dec-POMDP) [37] M ¼ hD; S; fAigjDji¼1;T;R; fOigjDji¼1;

Z; ci, where D; S;Ai;T;R and c are the same as in a

MMDP. As mentioned above, agents are provided with a

local observation oi 2 Oi, such that o ¼ ho1; . . .; oNi 2
�jDji¼1O

i ¼ O is called a joint observation and o� ZðsÞ,
where Z : S! O is the observation function. With such

limitations, each agent has to keep track of its own action-

observation history hit ¼ ðo1
0; a

i
0; o

i
1; a

i
1; . . .; o

i
t�1; a

i
t�1; o

i
tÞ 2

ðOi � AiÞ� � Oi ¼ Hi up to the current time step t to try

and assess the underlying state of the environment, and use

this to condition its policy and draw its decisions. A joint

history at time step t can also be defined as ht ¼
ðo0; a0; o1; a1; . . .; ot�1; at�1; otÞ 2 ðO� AÞ� � O ¼ H.

Policy gradients algorithms can easily be adapted to

work under partial observability by simply replacing the

environment state s used by the agents policies phi with the

corresponding agent’s local action-observation history hit.

The distributed policy gradients in Eq. (3) thus becomes:

hi  hi þ a
XT�1

t¼0

ctGtrhi log phiðaitjhitÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ĝi

:
ð16Þ

5.1 Method

Similarly, it is straightforward to also adapt Dr.Reinforce

to work in Dec-POMDPs by simply adjusting the policy

terms that appear in Eq. (6) and Eq. (7) to condition on the

agents’ local action-observation histories hit. The difference

return DGi
t in thus defined as:

DGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞ,

XT�t�1

l¼0

clDRiðaitþljstþl; a�itþl; h
i
tþlÞ;

ð17Þ

while the decentralized policies are learned by using the

update target:

hi  hi þ a
XT�1

t¼0

ctDGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞrhi log phiðaitjhitÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gDR;i

:

ð18Þ

When complete access to the reward function is not

available, a modified version of Dr.ReinforceR can be

applied. The centralized reward network Rw, by following

the CTDE paradigm, can still be learned in the same way as

in Eq. (8) and condition on the environment state s 2 S, as

it is not required during execution. It is enough to adapt

Eq. (9) as done before, thus obtaining:

DRi
wðaitjst; a�it ; hitÞ,rt �

X

ci2Ai

phiðcijhitÞRwðst; hci; a�it iÞ;

ð19Þ

and consequently adjust Eq. (10) as:

DGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞ,

XT�t�1

l¼0

clDRi
wðaitþljstþl; a�itþl; h

i
tÞ:

ð20Þ

5.2 Theoretical results

Above, we adapted Dr.Reinforce, which intuitively can

improve learning by providing individual agents with a

better learning signal, to partially observable settings. In

these, using difference rewards as the agents’ learning

signals induces a partially observable stochastic game

[23, 37] P̂ ¼ hD; S; fAigjDji¼1;T; fDRigjDji¼1; fOigjDji¼1; Zi in

which the cooperating agents do not receive the same

reward after each time step. Even though difference

rewards are aligned with the true reward values [1, 34], for

these games convergence to an optimal solution is not

immediate.

When agents are required to base their decisions on their

local action-observation history hit, the same result on an

unbiased baseline derived in Sect. 3.3 for the fully

observable case does not hold anymore. Generally speak-

ing, this is due to the Monte Carlo nature of the difference

return DGi
t that requires future quantities in order to com-

pute the value of the baseline. The local histories for the

episode time steps (used to compute the aristocrat utility

values in the r.h.s. of Eq. (17)) are now strictly depending

on the actions selected at the previous time steps, and thus

break this independence of the baseline from the current

action selection.

Observation In a Dec-POMDP setting, using difference

return DGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞ as the learning signal for

policy gradients in Eq. (18) is in general not equivalent to

subtracting an unbiased baseline Biðst:T ; a�it:T ; h
i
t:TÞ from the

distributed policy gradients in Eq. (3).

Proof We start by rewriting DGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞ from

Eq. (17) as:
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DGi
tðait:T jst:T ; a�it:T ; h

i
t:TÞ ¼

XT�t�1

l¼0

clrtþl

�
XT�t�1

l¼0

cl
X

ci2Ai

phiðcijhitþlÞRðstþl; hci; a�itþliÞ:
ð21Þ

Note that the first term on the r.h.s. of Eq. (21) is the return

Gt used in Eq. (3). We then define the second term on the

r.h.s. of Eq. (21) as the baseline Biðst:T ; a�it:T ; h
i
t:TÞ:

Biðst:T ; a�it:T ; h
i
t:TÞ ¼

XT�t�1

l¼0

cl
X

ci2Ai

phiðcijhitþlÞ � Rðstþl; hci; a�itþliÞ:

ð22Þ

We can thus rewrite the total expected update target for

agent i as:

Eph ĝDR;i
� �

¼ Eph

XT�1

t¼0

rhi log phi
�

"

ðaitjhitÞ
�
DGi

tðait:T jst:T ; a�it:T ; h
i
t:TÞ

�

¼ Eph

XT�1

t¼0

rhi log phiðaitjhitÞ
� �

Gtð
"

�Biðst:T ; a�it:T ; h
i
t:TÞ

��

(by definition of DGi
tÞ

¼ Eph

XT�1

t¼0

rhi log phiðaitjhitÞ
� �

Gt

"

� rhi log phiðaitjhitÞ
� �

Biðst:T ; a�it:T ; h
i
t:TÞ

�

(distributing the product)

¼ Eph

XT�1

t¼0

rhi log phiðaitjhitÞ
� �

Gt

" #

� Eph

XT�1

t¼0

rhi log phiðaitjhitÞ
� �

Biðst:T ; a�it:T ; h
i
t:TÞ

" #

(by linearity of the expectation)

¼ Eph ĝPG;i
� �

þ Eph ĝB;i
� �

:

In order to show that the baseline is unbiased the expected

value of its update Eph ĝ
B;i½ � with respect to the policy ph

should be 0. Let

PphðhtÞ ¼ Pphðht�1Þ � phðat�1jht�1Þ
X

st2S
Pph
t ðstÞ � Zðot; stÞ

(with Pphðh0Þ ¼
P

s02S Zðo0js0Þqðs0Þ and qðs0Þ the initial

state distribution) be the joint action-observation history

distribution. Let also define the complete system history

ĥt ¼ hht; at; s0:ti 2 Ĥt, so that PphðĥtÞ ¼ PphðhtÞ � phðatjhtÞ�Qt
l¼0 P

ph
l ðslÞ, we have:

Eph ĝB;i
� �

,� Eph

XT�1

t¼0

rhi log phiðaitjhitÞ
� �

Biðst:T ; a�it:T ; h
i
t:TÞ

" #

¼ �
XT�1

t¼0

X

ĥt2Ĥt

PphðĥtÞ rhi log phiðaitjhitÞ
� �

X

ĥT2ĤT

PphðĥT jĥtÞ Biðst:T ; a�it:T ; h
i
t:TÞ

(by expanding the expectation)

¼ �
XT�1

t¼0

X

ht2Ht

PphðhtÞ
X

a�it 2A�i
ph�iða�it jh�it Þ

X

ait2Ai

rhiphiðaitjhitÞ
� � X

ĥT2ĤT

PphðĥT jĥtÞ Biðst:T ; a�it:T ; h
i
t:TÞ

(by applying the inverse log trick)

6¼ �
XT�1

t¼0

X

ht2Ht

PphðhtÞ
X

a�it 2A�i
ph�iða�it jh�it Þ

rhi
X

ait2Ai

phiðaitjhitÞ

0

@

1

A

X

ĥT2ĤT

PphðĥT jĥtÞ Biðst:T ; a�it:T ; h
i
t:TÞÞ

(by moving the gradient outside the policy sum)

We cannot move the gradient outside of the sum now (as

done in Eq. (14)), because of the baseline Bi depending on

the policy parameters via the agent action ait included in the

histories hitþ1:T . The sum over the policy term is therefore a

weighted summation over different baseline values, and

these in general do not sum up to 0, and thus, the baseline

is in general not unbiased (although problems for which the

summation is 0 in any case may exist, and in these special

cases the baseline is still unbiased). h

The result in the above Lemma shows that using the

baseline in Eq. (22) alter the expected value of the overall

gradient, as the baseline Biðst:T ; a�it:T ; h
i
t:TÞ is not unbiased,

and thus, the policy gradients are not guaranteed to con-

verge to the same solutions of the distributed policy gra-

dients [39].

5.3 StarCraftII experiments

Although there is no theoretical guarantee on the conver-

gence of our proposed method under partial observability,

it might still work well in practice. Therefore, we investi-

gate the application of our method on the StarCraftII multi-
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agent challenge (SMAC) [43], a very complex, partially

observable environment that provides a wide set of dif-

ferent maps, each with a different number and different

types of units that has to fight against an opposing team

controlled by the game AI, to show good empirical per-

formances. As with the current game back end [50], it has

not been possible to obtain all the reward values for the

possible agents actions, we have not been able to apply

Dr.Reinforce here. Figure 5 shows median return and 25�
75% percentiles across 10 independent runs on the whole

set of available maps, with the difficulty level of the

opponent team set to Very Hard.

Fig. 5 Training curves on the

entire set of SMAC maps,

showing the median return and

25� 75% percentiles across

seeds
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In this setting, Dr.ReinforceR is almost never under-

performing with respect to all the other baselines, with

significant improvements over COMA on heterogeneous

maps like 3s5z, 1c3s5z or MMM. This shows how

learning the Q-function may be difficult in complex setting,

while the reward network is easier to learn and in turn

produces better policies. Also, it is worth mentioning that

the severe partial observability of this setting is well

addressed in practice by our use of the CTDE paradigm,

with the reward network conditioned on the true state s:

these results show how advantageous it is to resort to

centralized training of the reward network over a local

Fig. 5 continued
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approximation as in the algorithm from [12]. In particular,

the good performance on the 25m map, involving a large

number of agents, shows again the better scalability of the

proposed centralized reward network with respect to a

centralized Q-function critic, where the effects of boot-

strapping and the moving target problem become even

more severe when the number of agents grows larger.

A noticeable exception is represented by the so_-

many_baneling map, where COMA is achieving good

results, where neither Dr.ReinforceR and all the other

baselines are outperformed. An hypothesis for this is that

the difference return DGi
t is driving each agent into per-

forming the more rewarding actions at each step (for

example, hit an opponent if possible), but in the long run

this strategy is not a winning one on this particular map,

and thus, the agents never experience the high reward for

winning and are thus never able to change their learned

behaviours. Reasoning on the more complex Q-function

here could be helpful to drive the policies towards a win-

ning situation at the cost of performing actions that seem

sub-optimal at the current step. In Appendix D, we also

report the median win rate obtained by the investigated

algorithms. From these, we can observe that, even when

Dr.ReinforceR is capable of learning high return policies,

these may not be sufficient to also achieve a significant win

rate in some scenarios (for example, on more challenging

maps with asymmetrical teams, like 6h_vs_6h or MMM2,

although the gap in achieved median returns with respect to

all the other baselines is very significant).

6 Related work

Application of reinforcement learning techniques to multi-

agent systems has a long and fruitful history [5]. Funda-

mental works like [48] were the first to investigate the

applicability of these algorithms in the form of independent

learners to cooperative settings, while [11] further analyses

the dynamics of their learning process depending on their

consideration of the others. Specific algorithms to improve

performance by learning the value of cooperation and

coordination has been proposed, like in [21]. Also policy

gradients has been widely applied to cooperative settings:

[39] first proved convergence of distributed policy gradi-

ents to the same solution obtained by a centralized agent.

Closer to our approach are recent works of policy gradients

with deep reinforcement learning: for example, [18] pre-

sents COMA that efficiently estimates a counterfactual

baseline for a team of cooperating homogeneous agents

using a centralized critic for discrete problems. [44] takes

inspiration from game theory and regret minimization to

design a family of algorithms based on counterfactual

regret minimization for partially observable domains. [57]

combines actor-critic with a consensus mechanism to solve

cooperative problems when communication is available,

and also provide convergence proof under certain condi-

tions, while [51] combines value decomposition with a

counterfactual baseline in the actor-critic framework. All

the above algorithms use the action-value function in order

to compute the counterfactuals that can be difficult to learn

because of bootstrapping target problems. Our method on

the other hand learns the reward function to approximate

the difference rewards that do not suffer from these prob-

lems. For a more extensive review on recent deep rein-

forcement learning algorithms for cooperative multi-agent

systems see [24, 38].

Another important line of work for us is that on differ-

ence rewards [54] that already served as a basis for some

existing algorithms like COMA. [49] uses difference

rewards in learning to control a fleet of air vehicles that has

to coordinate on traffic routes. [35] proposes two difference

rewards-based value functions to improve multi-agent

actor-critic in the CDec-POMDP setting, while [16] com-

bines difference rewards and dynamic potential-based

reward shaping [14, 15] to improve performance and

convergence speed. Also, [56] applies difference rewards

to multi-objective problems, speeding up learning and

improving performance. Finally, some works try to

improve the standard definition of difference rewards: [41]

proposes to approximate difference rewards using tabular

linear functions when it is not possible to access the value

of the reward for the default action through a simulator,

while [12, 13] both propose to approximate the difference

rewards by using only local information. With the excep-

tion of the latter, the aforementioned works all uses value

based algorithms to learn, while our method resorts to a

policy gradients algorithm that recently showed great pre-

mise in multi-agent learning contexts.

Finally, the idea of learning the reward function has also

received some attention, especially in the single-agent

setting. [42] learns an additional state-reward network to

reduce variance when updating the value function in noisy

environments, [9] uses Kalman filters in problems with

noise coming from different sources to explicitly learn

about the reward function and the noise term, while [25]

proposes UNREAL that additionally learn to predict

rewards as an auxiliary task to improve deep reinforcement

learning agent performance. Finally, [7] learns a factored

reward representation for multi-agent cooperative one-shot

games. While these works learn the reward function, these
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are mainly limited to the single-agent setting (with the

exceptions of [7, 9], which analyse different aspects from

our and can be considered orthogonal and used in con-

junction with our work) and do not use it to approximate

the difference rewards.

7 Discussion and future work

Despite the good empirical results obtained by Dr.Rein-

forceR in the experiments detailed above, Lemma 5.2

clearly shows that the combination of difference rewards

and policy gradients in a partially observable setting has in

general no theoretical guarantees of convergence, as the

baseline that is subtracted from the distributed policy gra-

dients is not unbiased. This means that experimental per-

formance could be unstable or arbitrarily bad.

Here we try and identify possible alternatives to our

investigated formulation that are capable of restoring the

theoretical convergence guarantees. This could be ensured

by replacing the current baseline Biðst:T ; a�it:T ; h
i
t:TÞ in

Eq. (22) with a new ~Biðst:T ; a�it:T ; h
i
tÞ that does not depend on

the currently selected action ait via the local histories hitþ1:T .

We identified a couple of possible solutions that are not,

however, investigated in the current paper:

1. Replace the current agent policy phiðaitjhitÞ with a fixed

policy lðaitÞ (a type of difference rewards also

proposed in [54]):

~Biðst:T ; a�it:TÞ ¼
XT�t�1

l¼0

cl
X

ci2Ai

lðciÞ � Rðstþl; hci; a�itþliÞ:

This idea, however, would require to fix beforehand a

policy lðaitÞ to use, a choice similar to that of the

default action [41, 54] in Eq. (4).

2. Use the current agent policy phiðaitjhitÞ, but do not

condition on the local histories for the episode time

steps hitþ1:T , but only on the current local history hit:

~Biðst:T ;a�it:T ;h
i
tÞ ¼

XT�t�1

l¼0

cl
X

ci2Ai

phiðcijhitÞ �Rðstþl; hci;a�itþliÞ:

3. Use a potential-based reward shaping mechanism.

These are known to retain policy invariance in

single-agent reinforcement learning, both under full

observability [34] as well as partial one [17], while in

multi-agent systems converge to the same set of Nash

Equilibria of the policies learned with the shared

reward alone [14, 15], while improve learning perfor-

mance. In general, a potential-based reward shaping

mechanism provides the agents with a shaped reward r̂:

r̂,rt þ Fðst; stþ1Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

~Bi

;

where Fðst; stþ1Þ ¼ c/ðstþ1Þ � /ðstÞ and /ðsÞ is a

suitable function that provides additional information

on the state s, so that Fðst; stþ1Þ is unbiased in expec-

tation with respect to the policy gradients, and thus

keep the convergence guarantees. A particular form of

potential-based reward shaping, which combines its

benefit with those of difference rewards, is Counter-

factual as Potential [16], in which the potential-based

reward shaping function is:

/ðsÞ ¼ Rðs�iÞ;

and Rðs�iÞ is a reward term that marginalizes out the

presence of agent i. It is to note that in general such

term needs to be provided by the environment itself via

the use of a simulator (as with difference rewards),

with our learned reward network that issue could be

overcome.

Another crucial aspect of Dr.ReinforceR is that it resorts to

the CTDE framework [28, 38] to learn its centralized

reward network. Although CTDE is a widely used and

accepted methodology [18, 29], it indeed restricts the

training procedure to be carried out offline and in a separate

step from the agents execution. There are settings, how-

ever, in which being able to retain decentralized execution

while being able to learn during real interactions with the

environment may be required. In such cases, it may be

appropriate to replace the centralized reward network Rw

with a set of individual reward networks Rwiðs; aiÞ (or

Rwiðhit; aiÞ when learning in a Dec-POMDP), one for each

agent i, to approximate the difference rewards computa-

tion. These local networks are learning the expected value

of the reward for each agent when performing a certain

action in a given situation, independently of what the

others are doing

Rwiðs; aiÞ � Eph�i Rwðs; hai; a�iiÞ
� �

:

This additional approximation is suitable to break the

dependence from the CTDE paradigm, although it may

introduce approximation error in the local reward terms via

the expectation over the other agents policies (while the

centralized reward network Rw is in principle capable of

perfectly approximate the reward function R(s, a) and thus

provide the policy gradients with perfect difference

rewards values).
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8 Conclusions

In cooperative multi-agent systems agents face the problem

of figuring out how they are contributing to the overall

performance of the team in which only a shared reward

signal is available. Previous methods like COMA, a state-

of-the-art difference rewards algorithm, used the action-

value function to compute an individual signal for each

agent to drive policy gradients. However, learning a cen-

tralized Q-function is problematic due to inherent factors

like bootstrapping or the dependence on the joint action.

We proposed Dr.Reinforce, a novel algorithm that

tackles multi-agent credit assignment by combining policy

gradients and differencing of the reward function. When

the true reward function is known, our method outperforms

all compared baselines on two benchmark multi-agent

cooperative environments with a shared reward signal, and

scales much better with the number of agents, a crucial

capability for real cooperative multi-agent scenarios.

Additionally, for settings in which such reward function

is not known, we additionally proposed Dr.ReinforceR that

learns a centralized reward network used for estimating the

difference rewards. Although the reward function has got

the same dimensionality of the Q-function used by COMA,

its learning is easier as no bootstrapping or moving target is

involved. Although learning a reward network capable of

appropriately generalizing across the state-action space

may be challenging and have pitfalls, we showed how

Dr.ReinforceR is able to outperform COMA, a state-of-the-

art difference rewards algorithm, and achieve higher

performance.

Therefore, exploring how to improve the representa-

tional capabilities of the reward network to allow it to

better generalize to unseen situations and to be applicable

to more complex scenarios is an interesting future direction

that could further push the performance of these methods.

Appendix A: Hyperparameters and training

For our implementation, we relied on and expanded the

pymarl [43] framework, as already providing many use-

ful tools and the official implementation of COMA to

compare against. The policy networks are either feedfor-

ward networks for the two gridworld problems or GRU

[10] to deal with partial observability on SMAC, and both

use parameter sharing across agents [22] to reduce training

time, while the critics and reward networks use feedfor-

ward networks instead.

On each of the three problems independently, the opti-

mal values for policy learning rate ah and the critic or

reward network one ax=w [19] have been found for each

method through a gridsearch over a common set of stan-

dard values. We used the setting with N ¼ 3 agents for the

two gridworld environments and the map 2s3z on SMAC,

and the values obtained this way have been subsequently

used for the other instances of the same problem, respec-

tively. Table 1 reports the value of the used learning rates

ah and ax=w for each compared method on each problem.

COMA [18] and CentralQ critics have been trained

using the TD(k) [45, 46] variant presented in [18]. For

these, the optimal value for the parameter k with the

learning rates already found by the gridsearches has also

been assessed following the same procedure detailed

above, resulting in the values in Table 2:

All the methods have been trained for the same amount

of steps and all their other hyperparameters are set to the

corresponding default values provided by the pymarl

framework, without being optimized: the reward network

Rw and the critic network Qx for CentralQ and COMA all

Table 1 Value of the learning

rates for each method
Multi-rover Predator–prey SMAC

Method ah ax=w ah ax=w ah ax=w

Dr.Reinforce 25 � 10�4 N.A. 25 � 10�4 N.A. N.A. N.A.

Dr.ReinforceR 25 � 10�4 25 � 10�4 5 � 10�4 25 � 10�4 25 � 10�4 25 � 10�4

COMA 1 � 10�2 5 � 10�4 1 � 10�2 5 � 10�4 25 � 10�4 5 � 10�4

[12] 5 � 10�3 25 � 10�4 5 � 10�4 1 � 10�2 5 � 10�4 5 � 10�4

CentralQ 5 � 10�4 25 � 10�4 5 � 10�4 5 � 10�3 5 � 10�4 5 � 10�4

PG 5 � 10�4 N.A. 5 � 10�4 N.A. 5 � 10�4 N.A.

Table 2 Value of k for each method

Method Multi-rover Predator–prey SMAC

COMA 0.4 0.8 0.8

CentralQ 0.2 0.8 0.8
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(a) Multi-Rover, N = 3 (b) Predator-Prey, N = 3

(c) Multi-Rover, N = 5 (d) Predator-Prey, N = 5

(e) Multi-Rover, N = 8 (f) Predator-Prey, N = 8

Fig. 6 Results of the t-test for

different methods’ pairs,

corrected using the Bonferroni

correction term, on each

problem instance
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have the same structure, which is a two-layer feedforward

neural network with 128 hidden units using the ReLU

activation function [33] before the final linear layer, as the

size of the functions these have to represent is analogous.

Every experiment has been repeated 10 times with different

random seeds to assess variance across multiple runs, and

in each episode, the initial configuration has been randomly

reset to avoid the policies to overfit.

Appendix B: Statistical significance tests

To assess the statistical significance of the proposed results,

we computed a t-test on each algorithms’ pair. The tested

null hypothesis is that the samples (the return obtained by

the different methods) are taken from the same distribution,

meaning that any difference in the corresponding plotted

lines are solely due to statistical noise rather than on the

different capabilities of the algorithms. The test has been

corrected with the Bonferroni correction term [2] to

account for the possible errors across the different pairings.

Test results are reported in Fig. 6, where a þ symbol on a

given cell means that the test value for a given algorithms’

pair p[ 0:05. It is to note that results on the diagonal are

obtained pairing a method with itself, and thus are clearly

statistically correlated.

Appendix C: Additional analysis plots

See Figs. 7, 8 and 9

(a) Multi-Rover (b) Predator-Prey

Fig. 7 Distribution statistics for Dr.ReinforceR reward network Rw and COMA critic Qx on the on-policy dataset, normalized by the value of

rmax � rmin (respectively, qmax � qmin for COMA critic), for the two environments
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Appendix D: Additional SMAC plots

See Fig. 10.

Fig. 9 Mean and variance of

difference rewards for a set of

samples under different noise

profiles

(a) Multi-Rover (b) Predator-Prey

Fig. 8 Distribution statistics for Dr.ReinforceR reward network Rw and COMA critic Qx on the off-policy dataset, normalized by the value of

rmax � rmin (respectively, qmax � qmin for COMA critic), for the two environments
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Fig. 10 Training curves on the entire set of SMAC maps, showing the median victory rate and 25� 75% percentiles across seeds
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Fig. 10 continued

Neural Computing and Applications

123



Acknowledgements This work was supported by an Azure for

Research computing grant. F.A.O. is funded by EPSRC First Grant

EP/R001227/1. This project received funding

from the European Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation programme (grant

agreement No. 758824 – INFLUENCE).

Declarations

Conflict of Interest The authors have no conflict of interest to declare

that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Agogino AK, Tumer K (2008) Analyzing and visualizing mul-

tiagent rewards in dynamic and stochastic domains. Auton Agent

Multi-Agent Syst 17:320–338

2. Bonferroni CE (1936) Teoria statistica delle classi e calcolo delle
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43. Samvelyan M, Rashid T, Schröeder de Witt C, et al (2019) The

starcraft multi-agent challenge. arXiv abs/1902.04043

44. Srinivasan S, Lanctot M, Zambaldi V, et al (2018) Actor-critic

policy optimization in partially observable multiagent environ-

ments. In: Advances in neural information processing systems 32.

NIPS’18, Curran Associates Inc., p 3426–3439

45. Sutton RS (1988) Learning to predict by the methods of temporal

differences. Mach Learn 3(1):9–44

46. Sutton RS, Barto AG (1998) Introduction to reinforcement

learning, 1st edn. MIT Press

47. Sutton RS, McAllester DA, Singh SP, et al (2000) Policy gradient

methods for reinforcement learning with function approximation.

In: Advances in neural information processing systems 12.

NIPS’00, MIT Press, p 1057–1063

48. Tan M (1993) Multi-agent reinforcement learning: Independent

vs. cooperative agents. In: Proceedings of the 10th international

conference on machine learning. Morgan Kaufmann Publishers

Inc., ICML’93, pp 330–337

49. Tumer K, Agogino A (2007) Distributed agent-based air traffic

flow management. In: Proceedings of the 6th international con-

ference on autonomous agents and multiagent systems. associa-

tion for computing machinery, AAMAS’07

50. Vinyals O, Ewalds T, Bartunov S, et al (2017) StarCraft II: A

new challenge for reinforcement learning. arXiv abs/1708.04782

51. Wang Y, Han B, Wang T, et al (2020) Off-policy multi-agent

decomposed policy gradients. arXiv abs/2007.12322

52. Williams RJ (1992) Simple statistical gradient-gollowing algo-

rithms for connectionist reinforcement learning. Mach Learn

8(3):229–56

53. Wolpert DH, Tumer K (1999) An introduction to collective

intelligence. Tech. rep., NASA-ARC-IC-99-63, Nasa Ames

Research Center

54. Wolpert DH, Tumer K (2001) Optimal payoff functions for

members of collectives. Adv Complex Syst 4:265–280

55. Ye D, Zhang M, Yang Y (2015) A multi-agent framework for

packet routing in wireless sensor networks. Sensors

15(5):10026–47

56. Yliniemi L, Tumer K (2014) Multi-objective multiagent credit

assignment through difference rewards in reinforcement learning.

In: Asia-Pacific conference on simulated evolution and learning.

Springer International Publishing, pp 407–418

57. Zhang Y, Zavlanos MM (2019) Distributed off-policy actor-critic

reinforcement learning with policy consensus. arXiv abs/

1903.09255

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications

123


	Difference rewards policy gradients
	Abstract
	Introduction
	Background
	Multi-agent reinforcement learning
	Reinforce and actor-critic
	Difference rewards

	Difference rewards policy gradients
	Dr.Reinforce
	Online reward estimation
	Theoretical results

	Experiments
	Comparison to baselines
	Multi-rover domain
	Predator--prey

	Analysis

	Partial observability
	Method
	Theoretical results
	StarCraftII experiments

	Related work
	Discussion and future work
	Conclusions
	Appendix A: Hyperparameters and training
	Appendix B: Statistical significance tests
	Appendix C: Additional analysis plots
	Appendix D: Additional SMAC plots
	Acknowledgements
	References




