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Summary
Visual analysis of high dimensional data is a challenging process. Direct visual-izations work well for a few dimensions but do not scale to the hundreds or thou-sands of dimensions that have become increasingly common in current data an-alytics problems. Visual analytics is the science of analytical reasoning facilitatedby interactive visual interfaces, and it has been proven as an effective tool for high-dimensional data analysis. In visual analytics systems, several visualizations arejointly analyzed in order to discover patterns in the data.One of the fundamental tools that has been integrated in visual analytics, is non-linear dimensionality-reduction; a tool for the indirect visualization aimed at the dis-covery and analysis of non-linear patterns in the high-dimensional data. However,the computational complexity of non-linear dimensionality-reduction techniquesdoes not allow direct employment in interactive systems. This limitationmakes theanalytic process a time-consuming task that can take hours, days or even weeksto be performed.In this thesis, we present novel algorithmic solutions that enable integrationof non-linear dimensionality-reduction techniques in visual analytics systems. Ourproposed algorithms are, not only much faster than existing solutions, but providericher insights into the data at hand. This result, is achieved by introducing newdataprocessing and optimization techniques and by embracing the recently introducedconcept of Progressive Visual Analytics; a computational paradigm that enablesthe interactivity of complex analytics techniques by means of visualization as wellas interaction with intermediate results.Moreover, we present several applications that are designed to provide unprece-dented analytical capabilities in several domains. These applications are poweredby the algorithms introduced in this dissertation and led to several discoveries inareas ranging from the biomedical research field, to social-network data analysisand machine-learning models interpretability.





Samenvatting
Visuele analyse van hoog-dimensionale gegevens is een uitdagend proces. Directevisualisaties werken goed voor een klein aantal dimensies, maar schalen niet naarhonderden of duizenden dimensies zoals steeds vaker het geval in huidige data-analyse problemen. Visuele analyse is dewetenschap van het analytisch redenerengefaciliteerd door interactieve visuele interfaces, en het is bewezen als een effectiefhulpmiddel voor hoog-dimensionale data-analyse. In visuele analysesystemenwor-den verschillende visualisaties gezamenlijk geanalyseerd om patronen in de datate ontdekken.Een van de fundamentele tools die in visuele analyse is geïntegreerd, is niet-lineaire dimensionaliteitsreductie; een tool voor de indirecte visualisatie gericht ophet ontdekken en analyseren van niet-lineaire patronen in de hoog-dimensionaledata. De computationele complexiteit van niet-lineaire dimensie-reductie techniekenlaat echter geen directe tewerkstelling in interactieve systemen toe. Deze beperkingmaakt het analyseproces tot een tijdrovende taak die uren, dagen of zelfs weken inbeslag kan nemen.In dit proefschrift presenterenwe nieuwe algoritmische oplossingen die hetmo-gelijk maken om niet-lineaire dimensie-reductie technieken te integreren in visueel-analytische systemen. Onze voorgestelde algoritmes zijn niet alleen veel snellerdan bestaande oplossingen, maar geven ook een rijker inzicht in de data. Dit resul-taat wordt bereikt door de introductie van nieuwe technieken voor gegevensverw-erking en -optimalisatie en door het recent geïntroduceerde concept van Progres-sive Visual Analytics; een computationeel paradigma dat de interactiviteit van com-plexe analysetechnieken mogelijk maakt door middel van visualisatie en interactiemet tussenresultaten.Bovendien presenteren we verschillende toepassingen die ontworpen zijn omongekende analytischemogelijkheden te bieden in verscheidene vakgebieden. Dezetoepassingen worden aangedreven door de algoritmes die in dit proefschrift wor-den geïntroduceerd en hebben geleid tot meerdere ontdekkingen in gebieden var-iërend van biomedisch onderzoek tot sociale netwerkdata-analyse en interpretatievan machine-learningmodellen.





1
Introduction

And yet it moves!

Galileo Galilei



1. Introduction

1.1 Motivation
In the 17th century, mainly thanks to the work of Galileo Galilei, what was known asnatural philosophy became Science as we know today. This revolution was drivenby the widespread adoption of the Scientific Method. The Scientific Method con-sists in a body of techniques that allowed humankind to understand the laws gov-erning our world and, consequently, to manipulate it to our advantage. At its core,the Scientific Method is a tool for data-driven hypothesis generation and valida-tion. In order to understand a natural phenomenon, scientists carefully design ex-periments and collect numerical data. Hypothesis on the laws governing the phe-nomenon are then formulated and are tested through a new set of experiments.The process is iterated until a law is found that is not disproved by new experi-ments.

Since the early days of Science, data visualization, i.e., the discipline focused onvisual representation of data, played a crucial role in understanding the natural phe-nomena. A good example of this can be found in the early work of Galileo, morespecifically, on his observation of the sun thanks to the then recently introducedtelescope. Galileo observed and recorded the position of the “Sunspots”, dark re-gions on the sun surface over a period of several days. By observing the evolutionof the position of the Sunspots over time, an example of which is presented in Fig-ure 1.1, Galileo observed that theirmovement could be partially explained bymakingthe hypothesis that the sun is an imperfect and rotating sphere; an observation thatwent against the Aristotelian tradition that thought the Sun as unflawed and unmov-ing. Another seminal example of data visualization for hypothesis generation is thework of Dr. John Snow in the identification of the cause of Cholera outbreaks. Inthe 19th century it was thought that Cholera was caused by pollution and “bad air”,generally identifiedwith the termMiasma. Dr. Snowwas skeptic of theMiasma the-ory and, therefore, performed a methodical data collection of Cholera cases duringthe outbreak in London of 1854. By plotting the location and the number of Choleracases on the map presented in Figure 1.2, Dr. Snow hypothesized that the sourceof the disease was a water pump at the center of the map. This hypothesis, whichoriginated from the visual analysis of the data, had to be empirically verified. Sinceno chemical nor microscopic examination of the water was able to confirm the hy-pothesis, the pump was made not functional by removing the rod that was activat-ing it. Following this action, the Cholera outbreak ended, reinforcing the hypothesisthat will be proven 30 years later by direct microscopical analysis.
These two results are just examples of the many successes of a data visual-ization approach in an Exploratory Data Analysis setting. Exploratory Data Analysiswas formally introduced by Tukey in 1961 as a set of "[P]rocedures for analyzing

data, techniques for interpreting the results of such procedures, ways of planning
the gathering of data to make its analysis easier, more precise or more accurate, and
all the machinery and results of (mathematical) statistics which apply to analyzing
data" [172]. More specifically, data visualization helps in forming hypothesis of theunderlying phenomenon that is currently investigated. After the data is gathered,
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1.1. Motivation

Figure 1.1: Maculae in Sole Apparentes is the first example of visual analytics for hypothesis generation.By observing the position of the sunspots, i.e., dark points area on the surface of the sun for several days,Galileo Galilei inferred that the sun must be a rotating sphere, a notion against the Aristotelian traditionthat thought the Sun as unflawed and unmoving.

the scientist creates visual representations that aim at discovering important pat-terns that would have been impossible to extract by a direct analysis of the data.These visual representations are then used to assist the scientist in phrasing a hy-pothesis on the phenomenon under analysis, and consequently, in supporting thedesign of experiments that can confirm or disprove the developed model.
Visual Analytics [85] is the research field that integrates human and machineanalysis to provide solutions to problems whose size and complexity would makethem otherwise intractable. Interactive interfaces and visualizations are comple-mented, in a visual analytics system, with computational tools to support the ex-traction of knowledge from the data. However, despite the successful applicationof visual analytics to support the hypothesis generation, recent years are character-ized by new challenges that limit their application. New data acquisition techniquesin the digital era, allow to collect and store data beyond any previously imaginablelevel. Scientists are not only faced with the problem of effectively analyzing mil-lions of acquired data points, but also to deal with the inherent complexity of theacquired data due to the number of readings, i.e., dimensions, associated to eachsingle data point.

1
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1. Introduction

Figure 1.2: Dr. John Snow’s map of Cholera cases during the outbreaks of 1854 in London. A visualanalysis of the data allowed for the identification of the source of the outbreak as a water pump locatedin Broad Street, epicenter of the reported cases.

High-dimensional data are, in particular, inherently challenging to visualize andanalyze. As humans, we learn to understand the world surrounding us trough oursensory input. Hence, we are naturally designed to be able to navigate in a 3-dimensional world and to interpret other sensory input such as sound and smell.It is extremely difficult for us to make sense of a higher number of dimensions, asetting that seldom has to do with our day-to-day experience. This problem is fur-ther aggravated by the size of the datasets that are often analyzed in an exploratorydata analysis settings. These datasets are not just high-dimensional, but may alsocontain millions of data points that ought to be analyzed. This work is motivatedby the need for the development of scalable algorithmic solutions that enables theanalysis of extremely large and high-dimensional data. We explore the intersectionof visualization and machine learning techniques, while providing new algorithmsand applications that are specifically designed to empower users during the ana-lytical process.

1

8



1.2. Contribution and Outline

1.2 Contribution and Outline
In this dissertation, we focus on abody of techniques for analyzing high-dimensionaldata that rely on dimensionality reduction. Dimensionality reduction techniquesaim at reducing high-dimensional data in a low-dimensional space, i.e. two or threedimensional, that is easily visualized with traditional visualization techniques suchas scatterplots. While the dimensionality is reduced and the information the datacontains, some characteristic of the high-dimensional data are preserved. Depend-ing on the characteristic that is preserved, different insights on the data are ob-tained. For example, linear-dimensionality reduction techniques preserve large pair-wise distances between data points and give an intuition on the major trends in thedata.Recent years have seen the widespread adoption of new types of dimensional-ity reduction that have been proven to be beneficial in several analytical tasks [151].Non-linear dimensionality reduction, also known as manifold learning techniques,aimat the discovery, preservation and visualization of non-linear structures of points.The development of these techniques is motivated by the “Manifold Assumption”,i.e., the idea that redundancy exists among the dimensions and the data lay onmul-tiple non-linear manifolds that are embedded in the high-dimensional space. Themanifold assumption has been empirically verified in many settings and it is at thecore of many unsupervised learning algorithms [26].While non-linear dimensionality reduction techniques allow for the discovery, vi-sualization and analysis of the manifolds, they are usually costly to compute anddo not scale well in the number of data points to be analyzed. This dissertationpresents several techniques that improve the scalability of non-linear dimensionality-reduction algorithms, allowing to push the analytical capabilities to a whole newlevel. The proposed techniques power several application, that are also presentedin this dissertation, that provide novel insights in several fields such as biomedicaldata analysis, deep neural network interpretability and social-network analysis.More specifically, the contributions of this dissertation are as follows:

• In Chapter 4, we demonstrate that approximated computations of a widelyusednon-linear dimensionality-reduction algorithm, the t-distributedStochas-tic Neighbor Embedding (tSNE), allows for a much scalable visual data anal-ysis pipeline with negligible reduction in the quality of the generated embed-ding. Following this insight, we present the Approximated-tSNE [138] and wedescribe how it is used in a Progressive Visual Analytics (PVA) computationalparadigm. PVA is a recent analytical approach that present the user with par-tial results of complex algorithms without waiting for their completion.
• In Chapter 5, we present a novel approach to the computation of the gradientdescent of the tSNE algorithm [139]. Thanks to a reformulation of the gradi-ent, our technique makes heavy use on the GPU rendering pipeline, speedingup computations by several orders of magnitude while, at the same time, iscomputed in the client side of a web browser.

1
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• A novel hierarchical approach for the exploration of high-dimensional datasets;the Hierarchical Stochastic Neighbor Embedding (HSNE) [136] is presented inChapter 6. HSNE creates a hierarchical representation of the data that is in-teractively explored by the user. During the exploration, clusters at differentscales are revealed.
• The algorithm presented in this thesis are used in different applications devel-oped for different fields. We present how our algorithms power several toolsthat support the exploratory analysis in biomedical research. In particular, inChapter 7 we present how the HSNE algorithm was used in the Cytosploreapplication for the analysis of large single-cell datasets for new cell-type dis-covery [68, 73,90, 102, 179].
• We introduce the “Who’s Acting On What-Visualization” (WAOW-Vis), a noveltechnique for the multiscale visual exploration of large bipartite graphs [135].WAOW-Vis is developed with the specific goal of analyzing datasets of social-network scale, i.e. containing millions of users, and it is introduced in Chap-ter 8. We show how our technique allows to discover “filter bubbles” on Twit-ter, i.e., groups of users that follow only polarized source of information.
• In Chapter 9, we present DeepEyes [137], an analytical tool that permits avisual analysis of deep neural networks directly during training. DeepEyesmakes use of our non-linear dimensionality-reduction techniques in order tohighlight how networks behave with respect to their input. The insights ob-tained trough DeepEyes allow the user to make informed decisions about thedesign of the network.
In order to contextualize our work with regard to the existing literature, the nextchapter presents the related work, introducing visual analytics techniques for largeand high-dimensional data analysis, while Chapter 3 establishes the technical back-ground of this work. The chapters from 4 to 9 present the contributions of the dis-sertation as stated above. Finally, Chapter 10 concludes the dissertation with anoverview of the results achieved and reflections on future work.

1
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2
Related Work

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

In this chapter we present an overview of the research field to which this dissertation belongs.
We introduce the reader with the concept of Exploratory Data Analysis and high-dimensional
data analysis. Then we present visualization techniques for exploring and analyzing high-
dimensional, with a focus on dimensionality-reduction algorithms and, finally, we introduce
the concept of Progressive Visual Analytics. Other related work, that are more specific to the
techniques and applications presented in this dissertation, will be discussed in each one of
the following chapters.



2. Related Work

2.1 Exploratory Data Analysis
When faced with novel data, the user performing an analysis does not have a clearpicture of which model can be fitted on it. Therefore, a first analysis is usuallyperformed to understand the main characteristics of the acquired dataset. Thisanalysis takes the name of Exploratory Data Analysis and, among its goals, are theextraction of important variables, the detection of outliers or the identification ofunderlying non-convex structures [172]. By exploring the data, the user can formhypothesis on the underlying phenomenon that is at the base of the acquired data.This knowledge is then used to devise novel experiments or to define statisticalmodels to fit and automatize the data analysis for a specific task at hand.Due to its exploratory nature, the data is analyzed by the user without impos-ing much prior knowledge on the patterns that ought to be found in the data. Forthis reason, Exploratory Data Analysis heavily relies on a number of visualizationtechniques that are used to support the understanding of the data for a hypothesis-generation process. A simple, yet powerful, example of why it is important to per-form an Exploratory Data Analysis of the data is given by the “Anscombe’s Quar-tet” [8] which is presented in Figure 2.1. The quartet consists of four 2-dimensionaldatasets that have nearly identical descriptive statistics. The four datasets havesimilar mean and standard deviation on the x and y axis and they also have a sim-ilar correlation between the two variables, identified by the linear regression linedrawn on the plot. However it is clear that, after visual inspection of the data, thedescriptive statistics are not enough to reveal important trends captured by thedata.The two datasets in the top row do not contain outliers. However, while thedataset on the left has a noisy but linear relationships between the values in x1and y1, the dataset on the right is characterized by an exact parabolic relationshipsbetween x2 and y2, a trend that would be unnoticed without a direct visual inspec-tion of the data. Other interesting observations can be made on the remaining twodatasets. More specifically, these two examples highlight how the presence of out-liers, i.e., data points that are distant from the other observations, can derail thestatistical analysis. While for the dataset at the bottom left the regression line de-scribing the data is only marginally modified by the outlier, for the dataset on theright, a single data point can completely ruin the line fitted to the data.The Anscombe’s quartet is a great example that motivates the need for a qual-itative understanding of the data in order to form hypothesis. These hypothesisare then validate through proper quantitative analysis with statistical techniques.However, data seldom comes in the simple form of a 2-dimensional dataset. In or-der to describe complex phenomena, a higher number of dimensions are requiredand, to this end, more advanced Exploratory Analysis techniques and visualizationsare needed. In the remainder of this chapter, we present related work in the visualdata analysis for hypothesis generation for high-dimensional data and how this dis-sertation provides novel techniques for the visual exploration of high-dimensionaldata.
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Figure 2.1: The Anscombe’s Quartet consists of four 2-dimensional datasets with nearly identical de-scriptive statistics. However, upon visualization important characteristics and differences are revealed,i.e., the presence of outliers or non-linear relationships between the dimensions. The Anscombe’s Quar-tet is the simplest and yet a clear example of the benefits of adopting an Exploratory Data Analysisapproach to the understanding of data.

2.2 Visualization of High-Dimensional Data
In the previous section, we presented themotivation to adopt a visual inspection ap-proach for data analysis. However, in a real-world setting data is described bymanyvariables, i.e., dimensions, and a scatterplot visualization as presented in Figure 2.1is not enough to reveal patterns in the data. Therefore, visualization techniquesspecifically designed for high-dimensional data analysis have been developed withthe goal of analyzing a number of dimensions that is higher than 2- or 3-dimensions.In the remainder of this Section we introduce the most commonly used visualiza-tions of high-dimensional data.

A familiar setting for displaying high-dimensional data is to organize it in a tab-ular form, where each reading, or data point is a row in the table. Each column ofthe table correspond to a dimension in the high-dimensional data. Microsoft’s Ex-cel or LibreOffice’s Calc are just two examples of possible software that save thedata in this form. However, without enriching the table with some visual feedback,it is in general impossible, if not for limited test cases, to find interesting insights bylooking directly at the numbers in the table. A possible improvement is to enrich thetable by a heatmap visualization. Here, the cells in the table are colored according to
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Figure 2.2: Heatmap visualization of high-dimensional data. Reordering of the data points and dimen-sions is used to show clusters of similar entities. Two clusters of data points, i.e., rows, are visible asthey share low values for the first group of dimensions. At the same time, groups of similar dimensions,i.e., columns, are identified as share similar values in the dataset.

the value they contain allowing for a better identification of similar rows. However,in order to identify patterns of similar data points, the order of the table is of majorimportance [7, 13,49,133,184]. It is indeed much easier to identify groups of similarpoints if those points are close together. Figure 2.2 shows an example of heatmapvisualization for high-dimensional data with rearranged columns and rows. Twoclusters of data points, i.e., rows, are visible as they share similar values in almostall dimensions. At the same time, groups of similar dimensions, i.e., columns, areidentified. A heatmap scalability is, however, limited by the resolution of the screen.Furthermore, not all the relationships become easily identifiable in this encoding.
A scatterplot matrix, or SPloM, is an alternative visualization for high dimen-sional data [24,173]. Scatterplot matrices consists of all pairwise scatterplots orga-nized in a matrix layout, where each scatterplot shows the relationships betweena pair of dimensions. Figure 2.3a shows a scatterplot matrix for the Iris dataset,which is a 4-dimensional dataset containing three different classes of objects. Whilea SPloM scales better than a heatmap visualization in the number of data pointsvisualized, it does not scale as well to a larger number of dimensions. As a matterof fact, by increasing the number of dimensions, the occupied visual space growsquadratically. Therefore, SPloMs are adequate for datasets containing less than,approximately, 30 dimensions [123]. Moreover, SPloMs require also a significantcognitive load from the user when relations beyond two values are of interest. Thiscan be improved by making use of brushing and linked selections, for example byhighlighting the selection of one scatterplot in all the others in the matrix.
Another widely used visualization for high-dimensional data analysis is the par-
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(a) (b)

Sca�erplot Matrix Parallel Coordinates Plot

Figure 2.3: Scatterplot Matrix and Parallel Coordinates Plot of a 4-dimensional dataset. In a SPloM (a),2-dimensional scatterplots are arranged in a grid. Each scatterplot shows the correlation between twodimensions. In the parallel coordinates plot (b) each dimension is represented by a vertical axis. Datapoint are polylines intersecting the vertical axes according to their values in each dimension. Thesevisual representations do not scale well with the number of dimensions.

allal coordinates plot (PCP) [76]. In a parallel coordinates plot, each dimension isrepresented by a vertical axis. A data point is visualized by a polyline intersectingthe axes according to the values of the point in the corresponding axis. PCPs allowfor the detection of patterns in the data, where similar data points create similarline bundles. Obtaining these insights is facilitated by interactions [62,159] such asbrushing [59, 143] and reordering of the axis [7, 133]. An example of a parallel co-ordinates plot for the Iris dataset is presented in Figure 2.3b. Parallel coordinatesplots also become ineffective when the number of dimensions increases. The vi-sual space needed to visualize more than a dozen of dimensions makes the gener-ation of the plot infeasible on a computer screen. Furthermore, the trends can beidentified just between neighboring elements, i.e., dimensions.
The visualizations presented in this section are indeed powerful tools for anexploratory data analysis task. However, when the dimensionality of the data ishigh, e.g., hundreds or thousands of dimensions, direct visual representations failto highlight complex patterns in the data. In the remainder of this chapter, wepresent algorithmic solutions that can be adopted to extract these complex pat-terns from the data for a visualization purpose. These algorithmic solutions takethe name of dimensionality-reduction techniques. They aim at reducing the dimen-sionality of the data to a number of dimensions that can be easily visualized, e.g.,in a 2-dimensional scatterplot. Despite the inevitable loss of information due tothe dimensionality reduction, these algorithms preserve some characteristic of the
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original data that is of user interest, hence enabling an effective data exploration.
2.3 Dimensionality-Reduction for Visualization
The visualizations presented in the previous overload the user with too much in-formation if used to analyze very high-dimensional data. This information overloadleads to two problems during the exploratory analysis. First, it translates to a cog-nitive overload for the user exploring the visualization. The more information ispresented to the user, the more difficult is to effectively discover patterns in thedata and finding the underlying rules governing the phenomenon [123]. Second, thevisualization of all the dimensions for every data point may be infeasible due totechnical limitations, e.g., due to the limited number of pixels on screen or to theamount of clutter in the resulting visualization.

Dimensionality-reduction techniques adopt a different approach for the analysisof high-dimensional data. Instead of the direct visualization of the dataset, they aimat finding a low-dimensional representation that preserves some important char-acteristic of the data. This low-dimensional representation, also called embedding,is then visualized and analyzed by the user. We define a high-dimensional data as
X = {x1 . . .xN }, N being the number of data points xi ∈Rh residing in a h-dimensionalspace. Dimensionality-reduction techniques find a mapping function DR : Rh ⇒ Rl

that embeds the high-dimensional points in an l -dimensional space, where l in vi-sualization is usually chosen to be 2 or 3. By applying the mapping function to theoriginal dataset:
∀xi ∈ X : yi = DR (xi ) (2.1)

Themapped points are collected in a derived dataset Y = {y1 . . .yN } which is usu-ally referred as embedding. Since yi ∈R2 orR3, known visualization techniques suchas scatterplots are used to effectively analyze the embedding Y . How the mappingfunction DR is defined is crucial for the correct understanding of the data duringthe exploratory phase. As a matter of fact, since the user explores the dataset in,for example, a 2D scatterplot, the understanding of the phenomenon is mediatedby the the mapping generated by DR . Moreover, the creation of the mapping mustnot only be informative, but also computationally feasible due to the size and di-mensionality of the data at hand.
A dimensionality reduction technique that is extensively used is the PrincipalComponent Analysis (PCA) [81]. PCA aims at finding a orthogonal linear transfor-mation of the data such that the greatest variance in the data is explained by thefirst coordinates in the transformed space. PCA defines a square transformationmatrix W that, whenmultiplied to an element in X , expresses this point in a new or-thogonal basis, whose axes are ordered by decreasing variance with respect to theoriginal dataset. By taking only the first columns of W , we create a dimensionality-reduction transformation W ′ that, when multiplied to the data point xi
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Figure 2.4: Principal Component Analysis of the Iris dataset presented in Figure 2.3. On the left, 3dimensions of the dataset are used to create a 3D scatterplot. On the right, the first two principal com-ponents are used to visualize the data on a 2D scatterplot. On the first dimension, PCA-1, the datasetpresents the highest variance.

∀xi ∈ X : yi = xi W ′, (2.2)
where yi is the low dimensional representation of xi . The dimensionality of theresulting dataset Y correspond to the number of columns chosen to be in W ′. Forvisualization purposes, the dimensionality of Y is usually 2 or 3, hence enabling thevisualization of the data in a scatterplot. An example of a PCA transformation for a3D dataset to a 2D representation is shown in Figure 2.4.The principal components are obtained by a Single Value Decomposition (SVD)of the covariance matrix of the dataset [81]. This leads to a computational com-plexity of the dimensionality reduction of O(h2N +h3), where h is the number ofdimensions and N is the number of data points and it has a memory complexity of

O(N 2) due to the need of storing the covariance matrix. While the approach scaleslinearly in the number of data points, increasing the dimensionality of the datasetmakes the exploratory analysis of the data prohibitive, or even impossible, due tothe computation time.A different approach that, instead of focusing on the variance of the data isfocused on the distances between points is the Classic, or Metric MultidimensionalScaling (MDS) [18]. In the multidimensional scaling the mapping function DR ischosen to preserve in least-square sense the pairwise distances between the datapoints. Therefore, a pairwise distance matrix D is computed from the points inthe dataset and a linear transformation of the dataset is computed such as thedistances between the points in Y reflects as closely as possible the distances in D .Note that, if the distance metric chosen to populate D is L2, then MDS is equivalentto a PCA reduction.The computational and memory complexity of metric MDS is O(N 3) since in-
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volves a singular value decomposition of a matrix derived from D . Since the com-plexity of the technique is prohibitive for large datasets, several techniques havebeen developed in the past in order to be able to deal with larger datasets. Silva etal. [33] introduced the Landmark-MDS, where the dimensionality reduction is per-formed only on a subset of points that are called landmarks. The location of therest of the points in the embedding is then obtained through a linear interpolationof the position of the landmarks in the embedding. Ingram et al. [75] propose Glim-mer, a multilevel MDS approach that uses multiple level of landmark to guide thecreation of the embedding.In this section, we presented the generic framework for visualizing high dimen-sional data through dimensionality reduction. The introduced techniques, namelythePrincipal Component Analysis and theMetricMultidimensional Scaling are char-acterized by a linear mapping function DR . This characteristic impose a transfor-mation a global transformation on that is shared by each point in X . In the next sec-tion we introduce a different set of techniques known as non-linear dimensionality-reduction, or manifold learning, where DR is a non-linear mapping and the transfor-mation is local in nature.
2.4 Non-Linear Dimensionality-Reduction
for Data Visualization

In recent years, a better understanding of high-dimensional data obtained from realworld phenomena, lead to the formulation of the so-called “Manifold Hypothesis”.The manifold hypothesis states that high-dimensional data often lay in low dimen-sional manifolds embedded in the high-dimensional space at hand. In this context,it is more interesting to understand the local characteristics of the manifolds thanachieving a global mapping of the data introduced by a linear transformation aspresented in the previous section. Examples of the insights that we aim at obtain-ing are the number of disconnected manifolds in the data, their interrelationshipsand their local dimensionality, also known as intrinsic dimensionality.Non-linear dimensionality-reduction techniques, also known as manifold learn-ing, have been developed in recent years with the focus on the unsupervised dis-covery and analysis of manifolds in high-dimensional data. The mapping function
DR obtained from these techniques is characterized by a non-linear mapping withlocal properties. More specifically, the mapping DR behaves differently in differ-ent regions of the high dimensional space. Whereas linear-techniques imposes aglobal transformation to the data, non-linear techniques often adopt a bottom-upapproach, where the mapping is defined by fitting a local model on each data pointin X .The Sammon-Mapping techique [152], introduced in 1969, is the first example ofnon-linear mapping, i.e., where the resulting dimensions of the embedding have norelationships with the original dimensions of the dataset X . The Sammon-Mappingminimizes the Sammon’s stress function, a measure of the mismatch between the
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localized distances between pairs of points in X and in the embedding Y . Themap-ping is created by gradient descent minimization or other iterative minimizationtechniques. Despite the approach chosen for the minimization, the embedding iscreated by randomly placing the points in the embedding Y which are then movedin the low dimensional space to minimize the chosen cost function.
Isomap [169] treats the high-dimensional data as a graph. Data points are con-sidered vertices in the graph which are connected to only a subset of neighbors,where the edges are weighted by the euclidean distances between the correspond-ing points. The shortest pairwise distances between all the points are then com-puted using the Floyd-Warshall algorithm [154]. The resulting distance matrix en-codes the geodesic length between the points, i.e., the distance that are traversedfromone point to anotherwhile remaining on the datamanifold. The points are thenembedded by preserving the distances with a Multidimensional Scaling approach,where the distances are the geodesic length.
The Locally-linear embedding (LLE) [150] also relies on the search of a set ofneighboring points for each point in X . Each point is expressed as a linear combina-tion of its neighbors in the high-dimensional space. LLE then applies an eigenvector-based optimization technique that aims at creating a low-dimensional embeddingwhere the linear-combinations are also preserved. LLE has the advantage overIsomap of creating a sparse problem, not requiring to compute a full distance ma-trix.
Stochastic Neighbor Embedding (SNE) [66] is a non-linear dimensionality reduc-tion technique that encodes local similarities between points in a stochastic fash-ion. For each point a Gaussian kernel is found in such a way that only a smallnumber of neighbors are covered. The Gaussian kernel encodes, for each point in

X , the probability that another point is close to it on the manifold. Points are ran-domly placed in the low-dimensional embedding Y and the same computation ofthe similarities is performed. Points in the embedding are optimized with a gradi-ent descent technique that minimizes the divergence between the correspondingprobability distributions in the high-dimensional space and the embedding.
Several other techniques have been introduced over the years such as Lapla-cian Eigenmaps [14], Diffusion Maps [91] and non-linear PCA [153]. However, vander Maaten et al. observed in a comparative review [178] that, while non-linear tech-niques perform well on selected artificial datasets, the good performance does notnecessarily extend to real-world data. In particular, the presented techniques sufferfrom the crowding-effect, i.e., the inability to disentangle manifolds that are oftenintermixed in the resulting embedding. To this end, van der Maaten and Hinton in-troduced the t-Distributed Stochastic Neighbor Embedding (tSNE), an evolution ofthe SNE algorithm which overcomes the crowding-effect while, at the same time,it is easier to optimize. tSNE [176,177] has been accepted as the state of the art fornon-linear dimensionality reduction applied to visual analysis of high-dimensionalspace in several application areas, such as life sciences [6, 12, 73, 90, 102, 107, 157]andmachine learning model understanding and human-driven supervision [83,116,
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137]. This dissertation heavily relies on the tSNE algorithm, for which a detailed de-scription is provided in the next chapter, and provides several new techniques thatimprove on the scalability and insightfulness of the embeddings. The presentedtechniques are general and are already used in novel non-linear dimensionality-reduction algorithms such as LargeVis [168], UMAP [112] and TriMap [5].Finally, it is worth mentioning that the preservation of local and non-linear prop-erties of the mapping does not come without a price. Contrary to linear dimen-sionality reductions, where the new axes are a linear combination of the originaldimensions, in non-linear techniques the axis cannot be interpreted by the user. Toimprove the interpretation of the embeddings, visual analytics systems have beendeveloped to visualize and validate the resulting embeddings [68, 109, 144]. Thesesystems allow us, due to linked visualizations, to understand which dimensions areresponsible for the patterns that are visible in the embedding.
2.5 Progressive Algorithms for Interactive Systems
In the previous sections we introduced dimensionality-reduction techniques for ex-ploratory data analysis. Among dimensionality-reduction techniques, non-linear al-gorithms are at the core of several discoveries, for example, in life sciences [6, 12,107, 157]. The main advantage of using this approach for exploratory data analysisis that they make only limited assumptions on the data at hand, e.g., the presenceof relatively low-dimensional manifolds. Therefore, the user can explore the dataand obtain insights that are then validated by experiments, or are used to createautomatic data-processing tools.However, despite the advantages introducedby this newdata analysis approach,dimensionality reduction, and non-linear techniques in particular, are characterizedby high computational complexity that limits their application for interactive tools.Depending on the size of the data to be analyzed, it may take hours, or even days,before an embedding is computed and ready to be analyzed by the user. Whilethis waiting time may be acceptable for many applications, it is a major obstaclefor introducing dimensionality-reduction techniques in interactive visual analyticstools.In recent years, a novel computational paradigm has been introduced to im-prove the interactivity of visual analytics systems that rely on complex and timecostly algorithms. This paradigm, which takes the name of Progressive Visual An-alytics (PVA), aim at the visualization and analysis of incrementally better partial re-sults. The term Progressive Visual Analytics was introduced by Stolper et al. [165]together with a list of requirements. More specifically, visual analytics systemsshould be designed to:

• Provide increasingly meaningful partial results during the execution of the al-gorithms.
• Allow the user to focus the computations on a subspace of interest [122].
• Allow users to ignore irrelevant subspaces.
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Moreover, visualizations used within these systems must be designed with thefollowing properties in mind:
• Minimize user distraction with abrupt changes.
• Guide the user by providing cues on the subspace of the data that containsnew insights.
• Support an on-demand refresh of the visualizations.
• Provide interfaces to specify on which subspaces the algorithm must focus.
An early examples of the application of PVA in visual analytics systems is sam-

pleAction presented by Fisher et al. [42]. SampleAction performs simple databasequeries on extremely large databases that are refined over time. Mühlbacher [119]provided a list of more advanced data mining algorithms that support the Progres-sive Visual Analytics paradigm, while advocating for a more strict collaboration be-tween algorithm and visualization researchers. Finally, Fekete and Primet [41] for-malize the concept of progressive computations and present ProgressiVis, a toolkitthat enables the implementation of algorithms in a natively progressive environ-ment.In this dissertation, we present novel non-linear dimensionality-reduction tech-niques that fully embrace the Progressive Visual Analytics paradigm. This novelapproach enabled the development of analytical systems, such as Cytosplore [68],DeepEyes [137] and WAOW-Vis [135], that make use of dimensionality reduction forthe analysis of the data in a fully interactive setting.
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3
Background

But in my opinion, all things in nature occur mathematically.

René Descartes

In this chapter, we provide the reader with an in-depth description of the mathematical back-
ground needed to understand the contributions presented in the following chapters. More
specifically, we introduce the t-Distributed Stochastic Neighbor Embedding and the Barnes-
Hut-SNE algorithms. Moreover, we present the MNIST dataset, a widely used benchmark for
validating dimensionality-reduction techniques.



3. Background

3.1 t-distributed Stochastic Neighbor Embedding
As presented in the previous chapter, visual analysis of high dimensional data is achallenging process. Direct visualizations such as parallel coordinates [76] or scat-terplotmatrices [58] work well for a few dimensions but do not scale to hundreds orthousands of dimensions. Typically indirect visualization is used for these cases.First the dimensionality of the data is reduced, usually to two or three dimensions,then the remaining dimensions are used to lay out the data for visual inspection, forexample in a two dimensional scatterplot. A variant of tSNE [177], the Barnes-HutSNE [176] has been accepted as the state of the art for non-linear dimensionalityreduction applied to visual analysis of high-dimensional space in several applica-tion areas, such as life sciences [6, 12, 107, 157]. tSNE is a non-linear dimensionalityreduction algorithm that aims at the preservation of local neighborhoods during thedimensionality reduction.In this section, we provide an introduction to tSNE [177], which is at the baseof several contributions presented in this dissertations. tSNE interprets the overalldistances between data-points in the high-dimensional space as a symmetric joint-probability distribution P . Likewise a joint-probability distribution Q is computed,that describes the similarity in the low-dimensional space. The goal is to achievea representation, referred to as embedding, in the low-dimensional space where
Q faithfully represents P . This is achieved by optimizing the positions in the low-dimensional space to minimize the cost function C given by the Kullback-Leibler(K L) divergence between the joint-probability distributions P and Q :

C (P,Q) = K L(P ||Q) =
N∑

i=1

N∑
j=1, j 6=i

pi j ln

(
pi j

qi j

) (3.1)
Given two data points xi and x j in the dataset X = {x1...xN }, pi j models the prob-ability of finding the two points in close vicinity in the high-dimensional space. Tothis extent, for each point a Gaussian kernel, Pi , is chosen whose variance σi isdefined according to the local density in the high-dimensional space and then pi jis described as follows:

pi j =
pi | j +p j |i

2N
, (3.2)

where p j |i =
exp(−(||xi −x j ||2)/(2σ2

i ))∑N
k 6=i exp(−(||xi −xk ||2)/(2σ2

i ))
(3.3)

p j |i can be seen as a relative measure of similarity based on the local neigh-borhood of a data-point xi . Similarly, pi | j is a measure of similarity based on thedata point x j . The perplexity value µ is a user-defined parameter that describes theeffective number of neighbors considered for each data-point. The value of σi ischosen such that for fixed µ and each i :
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µ= 2
−∑N

j p j |i log2 p j |i (3.4)
A Student’s t-Distribution with one degree of freedom is used to compute thejoint-probability distribution in the low-dimensional space Q , where the positions ofthe data-points should be optimized. Given two low-dimensional points yi and y j ,the probability qi j that describes their similarity is given by:

qi j =
(
(1+||yi −y j ||2)Z

)−1 (3.5)

with Z =
N∑

k=1

N∑
l 6=k

(1+||yk −yl ||2)−1 (3.6)
The gradient of the Kullback-Leibler divergence between P andQ is used tomini-mizeC (see Equation 3.1). It indicates the change in position of the low-dimensionalpoints for each step of the gradient descent and is given by:

δC

δyi
= 4

(
Fattr

i −F rep
i

) (3.7)
= 4

(
N∑

j 6=i
pi j qi j Z (yi −y j )−

N∑
j 6=i

q2
i j Z (yi −y j )

)
(3.8)

The gradient descent can be seen as a N-body simulation [1], where each data-point exerts an attractive and a repulsive force on all the other points (Fattr
i and

F rep
i ). The computational and memory complexity of the tSNE algorithm is O(N 2),where N is the number of points in the dataset. The algorithms computes, for eachpoint, the forces exerted on it by all the other points in the dataset, hence limiting itsapplication to datasets containing less than a thousand points. In the next sectionwe introduce the Barnes-Hut-SNE algorithm, a technique that is designed to scalethe tSNE computation to tens of thousands points.
3.2 Barnes-Hut Stochastic Neighbor Embedding
The Barnes-Hut-SNE (BH-SNE) [176] is an evolution of the tSNE algorithm that in-troduces two different approximations to reduce the computational complexity to
O(N log(N )) and the memory complexity to O(N ).The first approximation aims at scaling the computation of the joint-probabilitydistribution P . It is based on the observation that the probability pi j is infinites-imal if xi and x j are dissimilar. Therefore, the similarities of a data-point xi canbe computed taking into account only the points that belong to the set of nearestneighbors Ni in the high-dimensional space. The cardinality of Ni can be set to
K = b3µc, where µ is the user-selected perplexity and b·c describes a rounding tothe next-lower integer. Without compromising the quality of the embedding [176],
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we can adopt a sparse approximation of the high-dimensional similarities. Equa-tion 3.3 can now be written as follows:
p j |i =


exp(−(||xi−x j ||2)/(2σ2

i ))∑
k∈Ni

exp(−(||xi−xk ||2)/(2σ2
i ))

if j ∈Ni

0 otherwise (3.9)
The computation of the K-Nearest Neighbors is performed using a Vantage-Point Tree (VP-Tree) [190]. A VP-Tree is data structure that computes KNN queriesin a high-dimensionalmetric space, inO(log(N )) time for each data point. Therefore,the complexity of the computation of the joint-probability distribution P becomes

O(N log(N )), since a KNN query is computed for each point in the dataset. It is abinary tree that stores, for each non leaf-node, a hyper-sphere centered on a data-point. The left children of each node contains the points that reside inside the hyper-sphere, whereas the right one contains the points outside it.The second approximation aims at scaling the computation of the optimizationof the tSNE cost function, presented in Equation 3.1, and it makes use of the for-mulation of its gradient as presented in Equation 3.7. As described in the previoussection, tSNE can be seen as a N-body simulation, where attractive and repulsiveforces are applied on each point based on their high-dimensional similarity. TheBarnes-Hut algorithm [10] is used to speed upN-body simulation problemsby jointlycomputing the effects of clusters of distant points. This optimizationmakes use ofa tree structure and reduces the computational complexity of the tSNEoptimizationto O(N log(N )). For further details, please refer to van der Maaten [176].
3.3 The MNIST Dataset
To validate the embeddings generated by the tSNE algorithm and the novel tech-niques introduced in this dissertation, a number of datasets are used. Among thesedatasets, the MNIST dataset is often used as benchmark to validate novel non-linear dimensionality-reduction techniques. In this sectionwe introduce the datasetandwe explainwhy it is considered a good benchmark for non-linear dimensionalityreduction techniques. TheMNIST dataset is a collection of 70 thousands images ofhandwritten digits. The images were obtained by scanning documents created atthe American Census Bureau and documents obtained from American high schoolstudents [95]. The images, for which few examples are presented in Figure 3.1, aresaved in a grayscale format and have a resolution of 28x28 pixels. For each im-age, the corresponding label, i.e., the associated digit, is known. The dataset waswidely used, in particular during the first decade of this century, for training andtesting machine learning models with the goal of identifying the label associatedto an image [95, 140]. In order to train a model, the images are separated in twogroups, 60 thousand images form the so called training set, i.e., a collection of im-ages on which machine learning models are trained to perform the classification.The remaining 10 thousand images are used to test the performance of the trainingmodel, hence they are part of the so called test set.
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Figure 3.1: Examples of the MNIST dataset. The dataset contains images of handwritten digits.

The reader may now wonder what is the relationship between the images pre-sented in Figure 3.1 and high-dimensional data that is at the core of this disserta-tion. As a matter of fact, we can treat each single image as a high-dimensionalpoint; each dimension correspond to a pixel in the image and the correspondingvalue is given by the grayscale value in the pixel of interest. The resulting datasethas therefore 728 dimensions and 60 thousand data points for the training set andthe 10 thousand images for the test set. The MNIST dataset is particularly wellsuited to test visual analysis techniques for high-dimensional data due to the largenumber of dimensions and data points. Moreover, it allows the validation the ob-tained insights as we have a clear understanding of the phenomenon behind thedata. More specifically, we expect to find 10 distinct manifolds, each one corre-sponding to a different digit. Figure 3.2 presents a tSNE embedding of the MNISTdataset, where each image is drawn in the corresponding location in the embed-ding.
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Figure 3.2: tSNE embedding of the MNIST dataset. The embedded data points are visualized as theMNIST images colored according to the digit they represent. Ten manifolds, one for each digit, arevisible.
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4
Approximated and

User-Steerable tSNE for
Progressive Visual Analytics

Science is the belief in the ignorance of experts.

Richard Feynman

In this chapter we present the Approximated-tSNE, an evolution of the tSNE algorithm that im-
proves the computation time of a tSNE embedding by adopting approximated computations of
the k-nearest-neighbor queries. Approximated-tSNE is particularly useful in progressive visual
analytics applications, a claim that is validated by two use cases presented in this chapter.

N. Pezzotti, B. Lelieveldt, L. van der Maaten, T. Höllt, E. Eisemann, and A. Vilanova. Approxi-mated and user steerable tsne for progressive visual analytics. IEEE Transactions on Visu-alization and Computer Graphics, 23(7):1739-1752, 2017 [138].



4. Approximated and User-Steerable tSNE for Progressive Visual Analytics

4.1 Introduction
In Chapters 2 and 3 we introduced the tSNE algorithm [177] and we explained whyit is beneficial for the analysis of high-dimensional dataset. tSNE produces 2D and3D embeddings that are meant to preserve local structure in the high-dimensionaldata. The analyst inspects the embeddings with the goal to identify clusters orpatterns that are used to generate new hypothesis on the data, however, the com-putational complexity of this technique does not allow direct employment in inter-active systems. This limitation makes the analytic process a time consuming taskthat can take hours, or even days, to adjust the parameters and generate the rightembedding to be analyzed.In Chapter 2 we also introduced Progressive Visual Analytics. In ProgressiveVisual Analytics the user is provided with meaningful intermediate results in casecomputation of the final result is too costly. Based on these intermediate resultsthe user can start the analysis process without waiting for algorithm completion.Mühlbacher et al. [119] provided a set of requirements, which an algorithm needs tofulfill in order to be suitable for Progressive Visual Analytics. Based on these require-ments they analyze a series of different algorithms, commonly deployed in visualanalytics systems and conclude that, for example, tSNE fulfills all requirements.The reason being that the minimization in tSNE builds up on the iterative gradientdescent technique [177] and can therefore be used directly for a per-iteration visu-alization, as well as interaction with the intermediate results. However, Mühlbacheret al. ignore the fact that the distances in the high-dimensional space need to beprecomputed to start the minimization process. In fact this initialization process isdominating the overall performance of tSNE for relatively high-dimensional spaces.Even with a per-iteration visualization of the intermediate results [27, 119, 165] theinitialization time will force the user to wait minutes, or even hours, before the firstintermediate result can be generated on a state-of-the-art desktop computer. Everymodification of the data, for example, the addition of data-points or a change in thehigh-dimensional space, will force the user to wait for the full reinitialization of thealgorithm.In this chapter, we present A-tSNE, a novel approach to adapt the completetSNE pipeline, including a distance computation for the Progressive Visual Analyt-ics paradigm. Instead of precomputing precise distances, we propose to approxi-mate the distances using Approximated K-Nearest Neighborhood queries. This al-lows us to start the computation of the iterative minimization nearly instantly afterloading the data. Based on the intermediate results of the tSNE, the user can nowstart the interpretation process of the data immediately. Further, we modified thegradient descent of tSNE such that it allows for the incorporation of updated dataduring the iterative process. This change allows us to continuously refine the ap-proximated neighborhoods in the background, triggering updates of the embeddingwithout restarting the optimization. Eventually, this process arrives at the precisesolution. Furthermore, we allow the user to steer the level of approximation by se-lecting points of interest, such as clusters, which appear in the very early stages
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of the optimization and enable an interactive exploration of the high-dimensionaldata.More specifically, the contributions of this chapter are as follows:
1. We present A-tSNE, a twofold evolution of the tSNE algorithm, which
(a) minimizes initialization time and as such enables immediate inspection of pre-liminary computation results.
(b) allows for interactive modification, removal or addition of high-dimensionaldata, without disrupting the visual analysis process.

2. Using a set of standard benchmark data sets, we show large computational per-formance improvements of A-tSNE compared to the state of the art while main-taining high precision.
3. We developed an interactive system for the visual analysis of high dimensionaldata, allowing the user to inspect and steer the level of approximation. Finally, weillustrate the benefits of exploratory possibilities in a real-world research scenarioand for the real-time analysis of high-dimensional streams.
4.2 Related work
The tSNE [177] algorithm builds the foundation of this work, which is used for visu-alization of high-dimensional data in a wide field of applications, from life sciencesto the analysis of deep-learning algorithms [6,12,44,53,107,117,157]. tSNE is a non-linear dimensionality-reduction algorithm that aims at preserving local structures inthe embedding, whilst showing global information, such as the presence of clustersat several scales. A detailed description of tSNE is presented in Section 3.1. Mostof the user tasks associated with the visualization of high-dimensional data em-beddings are based on identifying relationships between data points. Typical taskscomprises the identification of visual clusters and their verification based on detailvisualization of the high-dimensional data, e.g., using parallel coordinate plots. Fora complete description of such tasks we refer to Brehmer et al. [21].As presented in Chapter 3, tSNE’s computational and memory complexity is
O(N 2), where N is the number of data-points, which constrains the application ofthe technique. An evolution of the algorithm, called Barnes-Hut-SNE (BH-SNE) [176],reduces the computational complexity to O(N log(N )) and the memory complexityto O(N ). This approach was also developed in parallel by Yang et al. [189]. However,despite the increased performance, it still cannot be used to interactively explorethe data in a desktop environment.Interactive performance is at the center of the latest developments in Visual An-alytics. New analytical tools and algorithms, which are able to trade accuracy forspeed and offer the possibility to interactively refine results [40, 42], are needed todealwith the scalability issues of existing analytics algorithms like tSNE.Mühlbacher

4

31



4. Approximated and User-Steerable tSNE for Progressive Visual Analytics

et al. [119] defined different strategies to increase the user involvement in existingalgorithms. They provide an in-depth analysis on how the interconnection betweenthe visualization and the analytic modules can be achieved. Stolper et al. [165] de-fined the term Progressive Visual Analytics, describing techniques that allow theanalyst to directly interact with the analytics process. Visualization of intermediateresults is used to help the user, for example, to find optimal parameter settings or fil-ter the data [165]. Many algorithms are not suited right away for Progressive VisualAnalytics since the production of intermediate results is computationally too inten-sive or they do not generate useful intermediate results at all. tSNE is an exampleof such an algorithm because of its initialization process.
To overcome this problem, we propose to compute an approximation of tSNE’sinitialization stage, followed by a user steerable [122] refinement of the level ofapproximation. To compute the conditional probabilities needed by BH-SNE, a K-Nearest Neighborhood (KNN) search must be evaluated for each point in the high-dimensional space. Under these conditions, a traditional algorithm and data struc-ture, such as a KD-Tree [43], will not perform well. In the BH-SNE [176] algorithm, aVantage-Point Tree [190] is used for the KNN search, but it is slow to query when thedimensionality of the data is high. In this work, we propose to use an approximatedcomputation of the KNN in the initialization stage to start the analysis as soon aspossible. The level of approximation is then refined on the fly during the analyticsprocess.
Other dimensionality-reduction algorithms implement approximation and steer-ability to increase performance as well. For example MDSteer [186] works on asubset of the data and allows the user to control the insertion of points by select-ing areas in the reduced space. Yang et al. [188] present a dimensionality-reductiontechnique using a dissimilarity matrix as input. By means of a divide-and-conquerapproach, the computational complexity of the algorithm is reduced. Other tech-niques provide steerability by means of guiding the dimensionality reduction viauser input. Joja et al. [80] and Paulovich et al. [131] let the user place a small num-ber of control points. In other work, Paulovich et al. [129], propose the use of anon-linear dimensionality-reduction algorithm on a small number of automatically-selected control points. For these techniques the position of the data points is fi-nally obtained by linear-interpolation schemes that make use of the control points.However, they all limit the non-linear dimensionality reduction to a subset of thedataset limiting the insights that can be obtained from the data. In this work, weprovide a way to directly use the complete data allowing the analyst to immediatelystart the analysis on all data points.
Ingram and Munzner’s Q-SNE [74] is based on a similar idea as our approach,using Approximated KNN queries for the computation of the high-dimensional sim-ilarities. However, they use the APQ algorithm [74] that is designed to exploit thesparse structure of high-dimensional spaces obtained from document collections,limiting its application to such a context. A-tSNE improves Q-SNE in the directionof providing a fast but approximated algorithm for the analysis of traditional dense
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high-dimensional spaces. For this reason it can be used right away in contextswhere BH-SNE is applied and Q-SNE would not be applicable. A further distinctionis that A-tSNE incorporates the principles of the Progressive Visual Analytics bymeans of providing a visualization of the level of approximation, the ability to refinethe approximation based on user input, and allowing the manipulation of the high-dimensional data without waiting for the recomputation of the exact similarities.Density-based visualization of the tSNE embedding has been used in severalworks [6, 157, 176], however, they employ slow-to-compute offline techniques. Inour work, we integrate real-time Kernel Density Estimation (KDE) as described byLampe and Hauser [92]. The interaction with the embedding is important to allowthe analyst to explore the high-dimensional data. Selection operations in the em-bedding and the visualization of the data in a coordinatedmultiple-view system arenecessary to enable this exploration. The iVisClassifier system [28] is an exampleof such a solution. In our work, we take a similar approach, providing a coordinatedmultiple-view framework for the visualization of a selection in the embedding.
4.3 Approximated-tSNE in Progressive Visual Analyt-
ics

We now introduce Approximated-tSNE (A-tSNE), an evolution of the BH-SNE algo-rithm, using approximated computations of high-dimensional similarities to gener-ate meaningful intermediate results. The level of approximation can be defined bythe user to allow control on the trade off between speed and quality. The level of ap-proximation can be refined by the analyst in interesting regions of the embedding,making A-tSNE a computational steerable algorithm [122]. tSNE is well suited forthe application in Progressive Visual Analytics: after the initialization of the algo-rithm, the intermediate results generated during the iterative optimization processcan be interpreted by the analyst while they change over time, as shown in previouswork [27,119]. Figure 4.1a shows a typical Progressive Visual Analytics workflow fortSNE.Algorithms that can be used in a Progressive Visual Analytics systemoften havea computational module, e.g. the initialization of the technique, that cannot be im-plemented in an iterative way, creating a speed bump [165] in the user analysis.tSNE is a good example for such an algorithm. It consists of two computationalmodules that are serialized. In the first part of the algorithm, similarities betweenhigh-dimensional points are calculated. In the second module, a minimization ofthe cost function (Equation 3.1) is computed by means of a gradient descent. Thefirst module, depicted in light grey in Figure 4.1a, is slow to compute and does notcreate any meaningful intermediate results.We extend the Progressive Visual Analytics paradigm by introducing approxi-mated computation rather than aiming at exact computations, in the modules thatare not suited for a per-iteration visualization. Figure 4.1b shows the analyticalwork-flow for A-tSNE. While the generation and the inspection of the intermediate results
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(a) Progressive Visual Analytics workflow for tSNE.

(b) Progressive Visual Analytics workflow for A-tSNE.
Figure 4.1: Comparison between the traditional and our tSNE workflow. The eye icon marks moduleswhich produce output for visualization, whereas the hand icon marks modules that allow manipulationby the user. The increased performance of the similarity computation allows the user to seamlesslymanipulate the input data. The level of approximation can be visualized and the user can steer therefinement process to interesting regions.

is not changed, we introduce a refinement module, depicted in red in Figure 4.1b,which can be used to refine the level of the approximation in the embedding in aconcurrent way. Furthermore, the increased performance of the initialization mod-ule and the ability to update the high-dimensional similarities during the gradientdescent minimization, allows the analyst to manipulate the high-dimensional datawithout waiting for the reinitialization of the algorithm.
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We follow the guideline proposed by Stolper et al. [165], focusing on provid-ing increasingly meaningful partial results during the minimization process (pur-ple modules in Figure 4.1). Furthermore, we impose the following requirements tothe modules that compute the approximated similarities (grey and red modules inFigure 4.1):
1. The performance gain due to the approximation must be high enough to enableinteraction.
2. The amount of degradation caused by the approximationmust be controllable. Asmall increase of approximationmust not lead to large degradation of the results.
3. The approximation quality must bemeasured and visualized to avoid misleadingthe user.
4. The approximation can be refined during the evolution. The refinement can besteered by the user.

In the following Sections 4.3.1 to 4.3.4, we describe the A-tSNE algorithm in de-tail using the MNIST [95] dataset for illustration. The dataset, which we introducedin Section 3.3, consists of 60k labeled gray scale images of handwritten digits. Eachimage is represented as a 784 dimensional vector, corresponding to the gray valuesof the pixels in the image.
4.3.1 A-tSNEA-tSNE improves the BH-SNE algorithm, by using fast and Approximated KNN com-putations to build the approximated high-dimensional joint-probability distribution
P A , instead of the exact distribution P . The cost function C (P A ,Q A) is then mini-mized in order to obtain the approximated embedding described by Q A .The similarity between points is computed using the set of approximated neigh-bors N A

i , instead of the exact neighborhood Ni (see Equation 3.9). We define theprecision of the KNN algorithm as ρ. ρ describes the average percentage of pointsin the approximated neighborhood N A
i that belongs to the exact neighborhood Ni :

ρ =
N∑

i=1

ρi

N
ρk = |N A

k ∩Nk |
|Nk |

, (4.1)
where | · | indicates the cardinality of the neighborhood. The cardinality of Nk isindirectly specified by the user as explained in Section 3.2, as three times the valueof the perplexity parameter µ. ρ is an input parameter that can be defined by theuser. The larger the value of ρ the more similar will P A be to P and in turn the moresimilar the approximated embedding will be to the exact one.To better understand the effect of the approximated queries, it is useful to inter-pret the BH-SNE algorithm as a force-directed layout algorithm [45], which acts onan undirected graph created by the KNN relationships. A data point xi is repelled by
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(a) BH-SNE - Time: 3191.8 s (b) ρ = 0.34 - Time: 30.1 s

(c) ρ = 0.23 - Time: 20.4 s (d) ρ = 0.07 - Time: 13.0 s
Figure 4.2: Embeddings of the MNIST dataset using different approximation levels. Each point repre-sents an image of a handwritten digit in the MNIST dataset presented in Section 3.3. Points are coloredaccording to the classification of the image. It can be seen that a reasonable approximation as in (b)and (c) produces nearly identical results, compared to the original BH-SNE (a) two orders of magnitudefaster. Even very low precision (d) produces clearly distinguishable clusters, even though the embeddingvisually differs from (a)-(c). Extensive tests on the quality of the results are provided in Section 4.3.4.

all other data-points but to a subset of the data-points given by its neighborhoodrelationships, where attraction forces are created by a set of springs which connect
xi with all the points in Ni .

When specifying a lower precision ρ, resulting in a coarser approximation, somesprings that connect points, which are close in the high-dimensional space will bemissing and instead distant points will be connected. This will result in a falserepulsion between the points missing a connecting spring. Using P A reduces thequality of the embedding but improves its computation time by several orders of
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magnitude. However, reasonable results can be achieved even with low precision,because each data point is usually connected to a large number of springs and,therefore, the overall structure can be preserved. This observation holds for localas well as global structures. Intuitively, even if two points are no longer connected,they might share a common neighbor, which indirectly connects both.Figure 4.2 shows the embeddings generated using different precision values ρfor the computation of the high-dimension similarities. We use the whole MNISTdataset as the input and we color each data-point accordingly to the digit it rep-resents for validation purposes. Figure 4.2a shows the embedding generated withthe exact neighborhood, whereas Figure 4.2b shows the embedding generatedwitha precision of ρ = 0.34. It can be seen that similar structures are preserved usingapproximated neighborhoods. Figure 4.2d shows the embedding generated with
ρ = 0.07. Even though the embedding visually differs from the exact embedding,depicted in Figure 4.2a, the overall clustering of the data is preserved rather well,whilst the time needed for the computation of the similarities is greatly reduced.Where the original algorithm needs 3191 seconds for the initialization using a pre-cision of ρ = 0.34 we can achieve a speedup of two orders of magnitude, resultingin a computation time of 30 seconds. By using a precision of ρ = 0.07, it is furtherreduced to 13 seconds.
4.3.2 Approximated KNNWe achieve different levels of precision by means of different parameterizationsof an approximated KNN algorithm called Forest of Randomized Kd-Trees. In thissection, we describe this technique and how its parameters can be mapped to theprecision ρ.When the dimensionality of the data is high, there are no exact KNN algorithmsperforming better than linear search [121]. Therefore, the development of approxi-mated KNN algorithms is needed to deal with high-dimensional spaces. A surveyon existing algorithms, including an extensive set of experiments, can be found inthe work of Muja et al. [120]. For our Approximated-tSNE, we use a space partition-ing technique called Forest of Randomized KD-Trees [160] to compute the approxi-mated neighborhoods. This technique has proven to be fast and effective in query-ing of high-dimensional spaces [121]. A KD-Tree [43] is a binary tree used to partitiona k-dimensional space. Each node in the tree is a k − 1 dimensional hyper-plane,orthogonal to one of the initial k-dimensions, that splits the space into two halfspaces. The recursive splitting creates a hierarchical partition of the k-dimensionalspace.In a Forest of Randomized KD-Trees, a number T of KD-Trees are generated.The splitting hyper-planes are selected by splitting along a randomly selected di-mension among the V dimensions characterized by the highest variance. A KNNsearch is computed on all T KD-Trees, while a maximum number of leaves L arevisited. A priority-queue, ordered by increasing distances to the closest splittinghyper-plane, is used to decide which nodes must be visited first across the forest.
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The process is stopped when the necessary number of leaves have been evalu-ated. The parameterization of the Forest of Randomized KD-Trees can overbur-den the typical end user. To hide this complexity, we integrate the work by Muja etal. [121] and expose only the single precision parameter ρ to the user. The parame-ters (T ,V ,L ) used for the creation and querying of the Forest of Randomized KD-
Trees are heuristically chosen, as described by Muja et al. [121], to generate KNNswith a target precision ρ.
4.3.3 Steerability
A-tSNE is computationally steerable [122], in the sense that the user can define thelevel of approximation to specific, interesting areas. In this section, we present thechanges we made to the BH-SNE algorithm to allow for the refining of the approxi-mation.The refinement that we propose is done by computing the exact neighborhoodfor one point at a time. This process leads to a mix of exact and approximatedneighborhoods. For each updated neighborhood, a Gaussian distribution Pi is com-puted and the sparse joint-probability distribution P A must be updated accordingly.This update, however, is not straightforward. First, the symmetrization of P A inEquation 3.2 requires to combine Gaussian distributions enforced by different data-points and, second, the sparse nature of the distribution P A renders fast updateschallenging.We solve these issues by observing that a direct computation of P A can beavoided and the distribution can be indirectly obtained using the Gaussian distri-butions enforced by the K-Nearest Neighbors. Equation 3.2 can be split into twocomponents which correspond only to the Gaussian distributions Pi and P j :

pi j =
p j |i
2N

+ pi | j
2N

. (4.2)
Using this formulation, we only need to store one Gaussian distribution per point.Therefore, points can be handled individually without any performance loss. Thisallows us to execute the refinement of the high-dimensional similarities in paral-lel to the gradient descent, and serves as the base for the manipulation of thehigh-dimensional data. Furthermore, we are not constrained to updating the neigh-borhood of a data-point just once. The analyst can request different levels of ap-proximation for a given area before starting the computation of the exact high-dimensional similarities. For each data-point we store ρi as the requested precisionfor the neighborhood Ni .A change in a neighborhood, however, yields a change in the cost function C ,see Equation 3.1, which we are minimizing. To avoid the risk of getting stuck in alocal minimum during the gradient descent, we introduce an optimization strategycalled Selective Exaggeration with Exponential Decay. Our strategy is inspired bythe optimization strategy called Early Exaggeration presented by van der Maaten etal. [177]. The idea of Early Exaggeration is that, by exaggerating the attractive forces,
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see Equation 3.7, by a factor τ during the first Iτ iterations of the gradient descent,local minima can be avoided. Using the Selective Exaggeration with Exponential
Decay, we apply an exaggeration τ to the attractive forces acting on a data-point xiwhen it is refined. The exaggeration is then smoothly removed on a per-point basisusing an exponential decay of the exaggeration factor. This can be interpreted asa localized reinitialization of the gradient descent triggered by user interaction withthe embedding.
4.3.4 Performance and Accuracy BenchmarkingIn this section, we present a detailed performance analysis of A-tSNE comparedto BH-SNE using several standard benchmark datsets. All performance measure-ments were obtained using a DELL Precision T3600 workstation with a 6-core IntelXeon E5 1650 CPU @ 3.2GHz, 32GB RAM and a NVIDIA GTX 680. We apply thesame preprocessing steps as presented by van der Maaten [176], without applyinga preliminary dimensionality-reduction by means of a Principal Component Analy-sis. We use the MNIST dataset [95] (60k data-points, 784 dimensions), the NORBdataset [96] (24300 data-points, 9216 dimensions) and the TIMIT dataset [156] (1Mdata-points, 39 dimensions). Throughout the experiments we used a parametersetup similar to the one used to benchmark the BH-SNE [176] and a fixed perplex-ity value of µ = 30. First, we evaluate the performance of A-tSNE in relation to theparameters (T ,V ,L ) used in the Forest of Randomized KD-Trees, as described inSection 4.3.2, using three different configurations: T = 4 L = 1024, T = 2 L = 512and T = 1 L = 1. For all configurations we set V to 5 as suggested by Muja etal. [121].The left chart in Figure 4.3 shows the comparison of computation times (in log-arithmic scale) of the high-dimensional similarities on the MNIST dataset obtainedby our technique and by the BH-SNE algorithm. The right chart in Figure 4.3 depictsthe precision ρ of the neighborhoods. The precision is given by Equation 4.1 andit is computed using the exact and the approximated neighborhoods. Generally,our approach generates a good embedding very efficiently for any given datasetwe tested. Figure 4.2(b-e) show the embeddings generated using the describedparameter settings for the MNIST dataset after 1000 iterations. It can be seen thatwe achieve visually comparable results more than two orders of magnitude fastercompared to the BH-SNE implementation.Figure 4.3 shows how the precision decreaseswhen increasing the data size fora fixed parameter setting. The number of leaves (corresponding to data points) tovisit, included in the parameter setting, is fixed independently of the data size. Whenthe data size increases the same number of leaves, corresponding to a smallerfraction of the overall data, is visited, causing the lower precision. In general, we cansee that with a small reduction in precision, the computation time can be greatlyreduced.Finally, we analyze the error introduced by the approximation of the similaritiesin the high-dimensional space using the NORB, MNIST and TIMIT datasets. The
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cost function C (P,Q) is the most direct indication of the quality of the embeddingand we compare minimizing of the cost function C (P,Q A) to C (P,Q). Q A is the joint-probability distribution that describes similarities in the approximated embeddingobtained by the minimization of C (P A ,Q A). Figure 4.4 shows the C (P,Q A)/C (P,Q)
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ratio. Smaller values indicate less error, with a value of 1 meaning that no ap-proximation error is present. The Early Exaggeration of the attractive forces (seeSection 4.3.3) is responsible for the peak in the ratio that is visible during the first250 iterations. By exaggerating the attractive forces the approximation error is in-creased. The absolute value of the cost (not depicted in Figure 4.4) decreases withevery iteration.
The usage of a Forest of Randomized KD-Trees with T = 1 L = 1 generates anembedding with a large error. This configuration is an upper bound of the error anda lower bound in computation time; by visiting only one leaf during the traversal ofthe forest composed by just one tree, the approximated KNN algorithm becomesa greedy algorithm. We can also note that with increased data sizes the approxi-mation error decreases. For the TIMIT dataset we observe that the approximationerrors generated usingT = 2 L = 512 andT = 4 L = 1024, are similar or better, thanthe exact one. By increasing the number of points, the effect of the false repulsiveforces (Section 4.3.1) is compensated by the increasing number of attractive forcesamong data-points. The results clearly show that we can rapidly provide very ac-curate embeddings allowing immediate interaction, without misleading the user.With a large number of data points we effectively generate tSNE embeddings asdemonstrated by the reduced approximation error.

4.4 Interactive Analysis System
UsingA-tSNE, the data analysis is startedwithoutwaiting for the exact computationof the similarities in the high-dimensional space. This operation is the main bottleneck for interactivity, e.g., when data ismodified or tSNEparameters are changed bythe user. However, the embedding is created based on approximated information.Our system supports three different strategies for the refinement of the approxima-tion, leading to the generation of different and more precise, embeddings.

To steer the refinement, the user must be aware of the error in the embedding.Therefore, we present a visualization that shows the level of approximation (Sec-tion 4.4.2). We also take advantage of the steerability of A-tSNE (Section 4.3.3) toallow for direct manipulation of the high-dimensional data, for example, by addingand removing data-points or by changing the dimensions used to represent thedata. Finally, we implemented these techniques in a coordinated multiple-viewsframework that allows for the direct inspection of the data in the embedding.
4.4.1 User Steerable Refinement
The refinement process used to steer the computation of an A-tSNE embeddingworks on a per-point basis, see Section 4.3.3. A naive strategy to refine the em-bedding, is to progressively update the neighborhoods of all the points in X , whilethe gradient descent optimization is computed. However, when computational re-sources are scarce, it makes sense to steer the refinement process to increase pre-cision ρ in areas of the embedding that the analyst finds interesting, e.g., based on
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initial visual clusters appearing in the embedding. Wepropose three different strate-gies that are used to select the data points to be refined: user selection, breadth-first
search and density-based refinement. These strategies are presented in the follow-ing sections.
User SelectionThe user selects a subset of points for immediate refinement, by brushing in theembedding. This strategy is less effective when just a few points are selected forrefinement, as the forces exerted on its neighbors are still approximated, which canlead to an unfaithful description of the high-dimensional data.
Breadth-First SearchIf only a few points are selected for refinement, we extend the process to includetheir neighborhoods. We use a breadth-first visit on the graph created by the KNNrelationships to extend the refinement. When a point is refined, its neighbors arequeued for refinement. We also implemented this strategy using a priority queue,where, e.g., points can be prioritized by their euclidean distance to already refinedpoints. This allows better control on the expansion of the refined area at the costof slower computations introduced by the priority queue.
Density-Based RefinementWhen the user is more interested in gaining a global overview of the exact em-bedding, a density-based refinement strategy is used instead of a local refinement.This strategy is based on the observation that points in the less dense areas of thehigh-dimensional space, are responsible for the creation of the global relationshipin a tSNE embedding [177]. The data-points are refined with an order given by thedensity in the high-dimensional space, where low-density points are refined first.An indication of this density is the variance σi of the Gaussian distribution, as ex-plained in Section 3.1. This strategy works within a user-defined selection or on thewhole dataset.
4.4.2 Visualization and InteractionThe visualization of the tSNE embedding provides an overview on the high dimen-sional data and should be combined with the ability to inspect the data on demand.In our system, the user selects data points by brushing in a point- or density-basedrepresentation of the embedding, the overview. We provide specific visualizationsof the high-dimensional space using linked views, adaptive to the data at hand. Ad-ditionally, we use a magic lens or a full-view overlay to indicate the approximationlevel. A detailed description of such solutions is given in the following sections.
Density-Based VisualizationThe visualization of the embedding, using simple points, is affected by visual clut-ter when the number of points increases. Density-based [162] visualizations arecommonly used to show a tSNE embedding [6, 12, 157, 176] because of their ability
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(a) (b)

(c) (d)
Figure 4.5: A-tSNE embedding of theMNIST dataset. (a) uses a point-based visualization with an alphavalue of 0.25, the points colored in orange correspond to the digit ’2’. (b,c) uses the real-time density-based visualization as described in Section 4.4.2. By changing the bandwidth of the kernel density esit-mation, clusters at different scales are visible. (d) shows the outliers in the data-points representing thedigit ’2’ by means of a combination of the density-based and the point-based visualization. All figuresshow the average image of the selected clusters.

to visualize features at different scales. We apply real-time kernel density estima-tion (KDE) [92] for the creation of an interactive density-based visualization of theembedding. We use changes in the color hue to visualize selections, for exampleto highlight data points that are selected to be analyzed in other views of the co-ordinated multiple-view framework. The KDE is computed by assigning a value foreach pixel p using the kernel density estimator f (p,h) as follows:
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f (p,h) = 1

N

N∑
i=1

G(||p−yi ||,h). (4.3)
G(d ,h) is a zero mean Gaussian distribution with standard deviation h, whichcan be interactively chosen by the user in order to reveal clusters at different scales.Additionally, we introduce a transfer function, mapping f (p,h) to a color, in order tohighlight user-defined selections. Areas with a large percentage of selected pointsare visualized with a different transfer function, and selection outliers are shownas points. To achieve this goal, we introduce a new kernel density estimator s(p,h),which illustrates the density of the user selection in a pixel p. Given a set of selecteddata-points S we use:

s(p,h) = 1

f (p,h)

1

|S|
∑

yi∈S
G(||p−yi ||,h) (4.4)

If s(p,h) is higher than a threshold Sthr esh , a transfer function based on a dif-ferent hue and with a higher luminance is used. We found empirically that a value
Sthr esh = 0.5 performs satisfactorily without compromising the quality of the visu-alization. We also use a point-based visualization of isolated selected data-pointsand, unselected data-points in selected regions. Finally, the user can adjust theopacity of the points and the density-based visualization to the needs of the analy-sis.An example of different visualizations of the embedding is presented in Fig-ure 4.5, using the MNIST dataset. The analyst can change the bandwidth h, thetransfer function, and the opacity interactively in order to show clusters at differentscales and outliers in the selection. For example, Figure 4.5b shows the selectionof a high-level cluster. If a different bandwith is chosen, as in Figure 4.5c, clustersat a different level appear. Finally, if the labels are used to make a selection in theembedding, as in Figure 4.5d, it is possible to see the distribution of the outliers inthe density-based visualization.
Visualization of the ApproximationThe complexity of high-dimensional structures, also known as intrinsic dimension-
ality, usually does not allow for an exact representation of the data in 2D. For thisreason, it is of crucial importance to integrate the visualization of the embeddingwith tools that allow to assess its quality. Such an assessment is challenging andseveral interactive techniques have been developed in recent years [109]. In thiswork, we are not concerned with the quality of the embedding itself, but rather withthe level of approximation introduced by A-tSNE. This information is provided to theuser to focus the attention on specific areas of the embedding for a quality analysis,performed with a separate tool.We enhance our density-based visualization to show the precision ρi . Note that
ρi is different for every data-point and changes during the refinement process, as
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(a) Magic Lens (b) Full View Mode
Figure 4.6: Visualization of the approximation in the embedding by means of a magic lens (a) and thefull view mode (b).

described in Section 4.3.3. For each pixel p we assign a value given by the function
a(p,h) that represents the approximation value given the bandwidth h:

a(p,h) = 1

f (p,h)

1∑N
i=1ρi

N∑
i=1

ρi G(||p−yi ||,h)

a(p,h) is the precision ρi weighted kernel-density divided by the kernel-densityestimator f (p,h). The value a(p,h) is between zero and one and is used directly forencoding of the approximation in the visualization.The value of the function a(p,h) is visualized in two different ways. First, we in-troduce aMagic Lens [171] that shows the approximation with aminimal conceal ofthe data. We use a circular lens that can be overlayed on the density-based visual-ization and a(p,h) is used to define the transparency α of every pixel in the lens. Tobetter highlight the refined areas, we use α= 1−a(p,h)k , where k is a user selectedparameter, to compute α. We provide a default value of k = 2.Figure 4.6a shows the lens over a cluster that is already refined and, therefore,is visible through the lens. The green tone indicates the area where similarities arestill approximated. Contours in approximated areas are preserved to indicate thestructure of the embedding. We color the areas without points in green to put moreemphasis on refined areas. In addition to theMagic Lens, we provide the possibilityto map approximation to the complete view.This view is especially useful when one of the global refinement strategies isselected as it shows an overview on the refinement process. However it also di-minishes the ability to distinguish high-density areas.
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Figure 4.6b shows the approximation in the embedding using this approach. It ispossible to see that two clusters are already refined, relying on exact neighborhoodrelationships. The user selected a Breadth-first search refinement strategy, there-fore, the refinement is spreading through the embedding, leading to some areas inthe top-right corner having the original color. However the perception of clusters isreduced by removing the color information inside the contours.
4.4.3 Data ManipulationIn Section 4.3.3, we show that we are able to update high-dimensional similaritiesbetween data-points during the gradient-descent minimization. In this section, wetake advantage of this possibility, introducing different operations that are used tomanipulate the original data-points in their high-dimensional feature space. Theembedding does not need to be recomputed but evolves dynamically as the datachanges. At the center of an interactive exploration of data is the ability to addor remove data on demand, use different representations of the same dataset oradapt to any changes in the data [40]. For example, the addition and the removalof data points are two fundamental operations that enable us to monitor a high-dimensional stream in real-time.
Inserting PointsFor a point xa , which we want to add to the embedding, its neighborhood Na needsto be computed. We compute the neighborhood with the approximated KNN algo-rithm, as described in Sec 4.3.2. Finally, we check whether xa belongs to the KNNof each point in X . We define dMax

i as the maximum distance between a point xiand the points in its neighborhood Ni . The update of the neighborhoods is writtenas follows:
∀xi ∈ X if ||xa −xi || < dMax

ithen xa ∈Ni and x j 6∈Ni : ||xi −x j || = dMax
i

(4.5)
We cache dMax

i , leading to a complexity for this update of O(N ). A priority queue
is used to efficiently update dMax

i after the insertion of xa in a given neighborhood
Ni . It is important to observe that the insertion of xa in Ni will not reduce the esti-mated precision ρi . The initial position in the embedding ya is given by the averageposition of its neighbors Na weighted by their similarity p j |i : x j ∈Ni . The new point
xa is then added in the Forest of Randomized KD-Trees. This operation is performedin O(log(N )) .
Deleting PointsRemoving a point xr ∈ X is performed by deleting xr from the KNN of every point
xi ∈ X . This operation has a computational complexity of O(N ). By removing xrfrom a neighborhood Ni we reduce the number of xi neighbors to K −1 and a newneighbor must be found to maintain the precision level. However, the new pointin the neighborhood is the most dissimilar of the points in Ni thus its attractive
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force is rather small and we propose to ignore the contribution of themissing point,decreasing the estimated precision ρi by 1/K . To avoid degeneracies, when the sizeof the neighborhood Ni goes below a given threshold, e.g., K /2, the neighborhoodis updated using approximated computations. The Forest of Randomized KD-Treesis updated in O(log(N )).
Data ModificationThe insertion and deletion of data points enables a new way of analyzing datachanges, for example, changes in time. New data points are added to the embed-ding when ready and old ones are removed in real-time. However, data that arealready present in the embedding can change over time and must be updated ac-cordingly. We handle changes in the value of a single high-dimensional data-pointby a combination of removal and addition operations. A different modification ofthe data is performednot by changing the values of single data points, but by chang-ing the dimensions of the data itself. Examples of this operation are the addition orthe removal of dimensions to inspect the influence of a given dimension in the gen-eration of visual clusters. With such a modification, all the data points in X changetheir position in the high-dimensional space. Therefore, all the neighborhoodsmustbe reconsidered and it is more convenient to compute a new approximated joint-probability distribution P A . When the distribution P A is changed, the function thatis to be minimized by the gradient descent also change, see Equation 3.1. To avoidlocal minima, we apply the Selective Exaggeration with Exponential Decay, see Sec-tion 4.3.3, to all the data points. After such an operation, the user expects to seemajor changes in the embedding, where the extent of such modifications gives in-formation about the differences of the new representation to the old one.
4.4.4 Visual Analysis ToolWe implemented A-tSNE as a module in an integrated, interactive, multi-view sys-tem for the analysis of high-dimensional data. Figure 4.7 shows a screenshot ofthe system and its different views. The interface is divided into two main areas. Atthe top, three different views are used to show the intermediate embeddings (7a),the data (7b) and the state of refinement processes (7c), respectively. Controls areat the bottom of the interface: (7d) for the generation of intermediate embeddings,(7e) visualization of the embedding, (7f) data manipulation and (7g) refinement.The data subject to the analysis are visualized in the Data View (7b). Selectionsin the embeddings are reflected in the Data Viewwith strategies that depend on thedata type. We implemented multiple widgets that are used to support the analysisprocess of different data types. Thesewidgets include a heatmap view, a 3D volumeview (7b bottom) and an image view (7b top row). If necessarymultiple and differentviews are combined for the analysis.The Refinement-Status View (7c) is used to give an overview of the progress ofthe refinements started by the user. The user can steer the evolution of the embed-ding by refining areas with strategies as described in Section 4.4.1. A refinement
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Figure 4.7: Screenshot of our integrated system usingmultiple linked views for interaction. The systemcomprises an embedding viewer (a), a data viewer (b) and a refinement viewer (c). Controls on thegradient descent (d), the density-based visualization (e), the data-manipulation (f) and the refinements(g) are at the bottom of the interface.

process is identified by the snapshot of the embedding when the user started therefinement, a user-defined description, and a progress bar that shows the percent-age of the refined data-points over the selected ones.

4.4.5 Implementation

We implemented the system using a combination of C++ and Qt, as well as OpenGLwith custom shaders in GLSL for the visualization of the embedding. Where possi-ble, we usedparallel computationswithOpenMP. The approximated neighborhoodsare computed using the FLANN library [121], which implements KNN algorithms.The density-based visualization is computed on the GPU using OpenGL and GLSLshaders. A precomputed floating-point texture is generated using a Gaussian ker-nel. A geometry shader is used to generate a quad for each point that is coloredusing the precomputed texture, the KDE is obtained by drawing into a Frame BufferObject using an additive blending [92].
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Figure 4.8: Analysis of the gene expression in the mouse brain using A-tSNE. The first embedding (a)is generated in≈ 51 secondswhile 3 hours and 50minutes are required by BH-SNE. The analyst inspectsa cluster and finds that it corresponds to a slice in the data. The cluster does not disappear after theneighborhoods are refined, as shown by the lens in (b). A change in the high-dimensional data revealsthat genetic information can be used to differentiate anatomical regions. (c) shows the final embeddingbased on a small number of Principal Components where three clusters are highlighted and (d) showsthe corresponding regions in the brain.
4.5 Case Study I: Exploratory Analysis of Gene Expres-
sion in the Mouse Brain

In this section, we demonstrate the advantages of using A-tSNE in our visual analy-sis tool for the visual analysis of high-dimensional data. To this extent, we present acase study, based on the work by Mahfouz et al. [107], who use tSNE to explore theAllen Mouse Brain dataset [99]. The dataset is composed by 61164 voxels obtainedby slicing the mouse brain in 68 slices. Each voxel is a 4345-dimensional vector,containing the genetic expression at the corresponding spatial position. tSNE iscomputed using the voxels as data-points and the expression of the genes as high-dimensional space. Mahfouz et al. discuss the hypothesis that genetic informationcan be used to differentiate anatomical structures in the brain. Some regions in thebrain, e.g. the Cerebellum, are known to have a highly different genetic footprintcompared to the rest of the brain. They demonstrate that tSNE is effective in sep-arating different anatomical structures, e.g. white and grey matter, only based onthe genetic footprint.Figure 4.8 depicts the typical analytic workflow using our visual analysis tool.The first goal during the analysis is to validate the input data. The acquisition pro-cess may not be perfect, data can be incomplete or noisy, therefore, it must bere-acquired or preprocessed before interesting results can be generated. Driven bythe need to validate the data as soon as possible, the user selects a reasonably lowvalue for the desired precision, e.g. ρ = 0.2, that will be used to estimate the pa-rameters of the KNN algorithm. With such a parameterization, A-tSNE computesthe high-dimensional similarities in ≈ 51 seconds while 3 hours and 50 minutes arerequired by BH-SNE.The user then analyzes the intermediate embeddings, produced by A-tSNE, inorder to validate the input data. After≈ 170 seconds several clusters become visiblein the embedding as depicted in Figure 4.8a. The clusters are stable for several iter-
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ations indicating that they are not an artifact of the minimization process. The usercan validate this by selecting the clusters in the embedding and can inspect theminmore detail, for example, by highlighting their spatial positions in the feature view,see Fig 4.8a. Points or clusters are selected by brushing in the embedding. During abrushing operation the generation of intermediate embeddings is stopped to makesure the user does not accidentally brush areas as they change. Selected pointsare then highlighted by a change of hue, in this case from blue to orange. Furtherinspection using the Data View in our interactive system, shows that each clustercorresponds to a slice in the dataset. Figure 4.8a shows a cluster, highlighted inorange, and the corresponding slice in the volume.
To make sure the clusters are not an artifact introduced by the approximatedsimilarities, the user refines the selected data-points while the embedding evolves.Figure 4.8b shows the embedding after the refinement is complete. Note that theglobal structure of the embedding does not change during the refinement. Changesare constrained to the selected cluster, giving to the user a sense of stability in theinformation provided as requested by the Progressive Visual Analytics paradigm.The user can inspect the degree of approximation in the embedding using the inter-active lens. The lens is less transparent over approximated areas of the embeddingand transparent on the areas that contain no approximation. After the refinementof the high-dimensional similarities of the selected data points, the clusters do notdisappear, which indicates that clustering is indeed driven by the data, rather thanby the approximation.
Therefore, the user stops the computation of the fully refined embedding. Fur-ther analysis performed by domain experts on the raw data reveals that missingvalues in the input data cause the formation of small clusters in the embedding.Mahfouz et al. removed this effect by using the first 10 components, extracted bya Principal Component Analysis of the raw data, as the high-dimensional space. Inthe traditional analytical workflow, after the high-dimensional data are changed, anew tSNE embedding is computed from scratch. However, in our system the userdirectly changes the high-dimensional space and the current embedding evolvesaccordingly. Given that the gradient descent is minimizing a different function, theuser expects structural changes that can be considerably large, see Section 4.4.3.The extent of these changes provides information about the modification in thehigh-dimensional space. If the embedding is stable, the new high-dimensional rep-resentation preserves relationships between data points, while an abrupt changemeans that new relationships are encoded in the data. In the traditional workflowwithout A-tSNE, any continuity and the encoded information are lost.
Approximately 200 seconds after the change in the high-dimensional data, a sta-ble embedding is obtained. Figure 4.8c shows the final embedding, where three dif-ferent clusters are highlighted. Figure 4.8d depicts the selected voxels in the brain,note how the anatomical structures are now revealed. It is possible to see how theclusters that were present in the first intermediate results disappear, showing thatthe cluster fragmentation is removed.
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Voxels that belong to the same anatomical structure are close together in theembedding. A-tSNE is able to separate anatomical structures based on the gene ex-pression of the 4345 genes. In their work, Mahfouz et al. [107] present embeddingscreated using 2, 3, 5, 10, and 20 principal components as the high-dimensionalspace. Identifying the right number of components is a time consuming task andthe adoption of our analytic workflow helps the user in finding a good compromiseby interactively analyzing the resulting embedding generated changing the numberof components.
4.6 Case Study II: Real-time monitoring
of high-dimensional streams

Improved computation time and the ability to modify data are the key for apply-ing tSNE in new application scenarios, such as the real-time monitoring of high-dimensional data streams. The original tSNE algorithm fails in providing a solutionfor such applications. The computation of a tSNE map imposes a time constraintthat cannot be ignored, when the rate in which new data is generated is higher thanthe time required for the computation of a tSNE map.As proof of concept, we selected a dataset for physical activity monitoring [147]that comprises readings of three Inertial Measurement Units (IMU) and a heart ratemonitor applied to 9 different subjects. Every IMU generates 17 readings every 10ms, while the heart rate monitor generates one reading every 100 ms. Taking allsensors into account, we have a stream of data consisting of 52 readings, wherea new data point is generated every 100 ms for each subject. Every subject alsohas a device to label the physical activity. We use the labeling of every reading tovalidate the insights obtained by the analysis of the embeddings.We analyze the stream of a subject by keeping the readings of the previous Mminutes in the embedding with a fixed approximation level. When a new readingis generated, we add it to the embedding using the technique described in Sec-tion 4.4.3. Similarly, when a reading is older then M minutes, we remove it fromthe embedding. In the test presented in this section, M = 10 is set leading to anembedding composed, in average, by 6000 data-points that is updated every 100ms. We add a point-based visualization to our density-based visualization, whichshows the last points inserted in the embedding. The new points are colored ac-cording to the classification of the activity made by the subject and they will fadeout in F seconds. By showing the new data-points the analyst can identify wherenew points are added, providing at the same time an overview of the embedding inthe last M minutes and the trend of the last F seconds.Figure 4.9a shows an embedding obtained from subject 105, where the color ofthe data-points, green in this specific case, indicates that the subject is lying down.The embedding is composed of a single big cluster that represent the lying down
activity. The cluster is divided in four different sub-clusters that identify differentreadings of the sensors. The readings of the last 30 seconds belong to a single
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(a) (b)

(c) (d)

Figure 4.9: A-tSNE used for the real-time analysis of high-dimensional streams. The embeddings aregenerated using the readings of the last 10 minutes. As new readings arrive they are inserted in theembedding and they are highlighted using a point-based visualization. (a) shows the initial embedding,the color of the data-points indicates that the subject is lying down. The embedding evolves as in (b),a new cluster indicates readings of a different activity. This insight is confirmed by a change in thecolor of the data-points that indicates a new type of label activity. (c) shows an evolution of the embed-ding presented in (a) where new readings are generated from a miscalibrated sensor and, therefore, areclustered together. By removing the features corresponding to the miscalibrated sensor the embeddingevolves as in (d). The cluster that identifies miscalibrated readings is removed.
sub-cluster and can be seen as points on the right side of the embedding. Theembedding evolves based on new readings from the sensors, after few seconds thenew data-points start to be placed further away from the original cluster, leading tothe creation of a new cluster, as depicted in Figure 4.9b. After a few seconds thesubject changes the classification of his activity from lying down to an unclassified
activity, whose corresponding data-points are colored in purple. It is interesting tonote that, simply by looking at the embedding, it is possible to predict a change inthe labeled activity before the subject is able to record the change on his labelingdevice. It can be seen by the fact that few data-points labeled as a lying down
activity, hence colored in green, are in the same cluster as the ones identified as
unclassified activity. In this particular case, we can guess that the subject sat upbefore changing the labeled activity.Finally, we simulated a miscalibration in an inertial measurement unit. Differ-ently from a faulty sensor (not generating any readings), a miscalibrated one gen-erates readings affected by a constant offset that is different for every dimension.We simulate the miscalibration by enforcing a random offset to the readings gen-
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erated by one of the IMUs. A miscalibrated sensor generates readings that aredifferent from the normal one and, therefore, they should be clustered together asfaulty readings. Figure 4.9c shows the evolution of the embedding presented in Fig-ure 4.9a where the miscalibrated readings are grouped by A-tSNE. After the inspec-tion of the readings generated from the IMUs, the analyst can identify that some-thing is wrong with one of the sensors. At this point the sensor may be replacedor, in case this is not possible, the readings from the miscalibrated sensor can beexcluded by removing the corresponding dimensions from the high-dimensionalspace, as presented in Section 4.4.3. Such an update requires a few seconds inwhich the embedding is updated in order to encode the new relationship in thehigh-dimensional space. Figure 4.9d shows how the previous embedding evolveswhen the readings generated by the miscalibrated sensor are removed from thehigh-dimensional space. It is possible to see that the readings affected by the mis-calibration are now close to the cluster that represents the lying down activity. How-ever, differently from the test case presented in Section 4.5, the global structure ofthe embedding is preserved, still showing four different clusters.Liu et al. [104] demonstrate that, when dealing with real-time data, the responsetime of the algorithm is of great importance to the user. In the presented casestudy, we reach real-time performance for a limited data size for the sliding windowof 6000 points. However, it should be noted that when the sampling rate or thewindow size of the stream is much larger, A-tSNE also will not be able to handle thedata in real-time in all cases.
4.7 Discussion and Conclusions
Motivated by the need of interactivity in Visual Analytics, we developed the A-tSNEtechnique. A-tSNE enables the rapid generation of approximate tSNE embeddingsby adopting a fast and approximated computation of the high-dimensional similar-ities. Our algorithm is designed to be used within the Progressive Visual Analyticscontext, allowing the user to have a quick preview of the data. Insight obtainedusing approximated embeddings can be validated by refining the approximation ininteresting areas with different strategies. Therefore, we present different visual-ization techniques for the level of approximation, which are used to guide the userduring the refinement process in Section 4.3.3. It should be noted, that the level ofapproximation is only an indicator for how well the approximated embedding rep-resents the exact embedding. It cannot, however, be used to judge the quality ofthe embedding itself, as even an exact embedding might not represent the orig-inal data perfectly. The quality of the embedding itself can be analyzed, e.g., byinspecting the preservation of k-nearest-neighborhoods [109]. The full precision ofBH-SNE can always be reached by setting the precision parameter accordingly, orrefining the data. Therefore, A-tSNE can effectively replace BH-SNE for the analysisof dense high-dimensional data. However, A-tSNE cannot outperform algorithmssuch as Q-SNE in the analysis of sparse high-dimensional data.The refinement of the approximation itself is a stable process. As demonstrated
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in Section 4.3.4 and Figure 4.2, P A is close to P if a reasonable parameterization ischosen. As a result gradually refining P A will lead to small changes in the embed-ding, only. In addition, we present three different operations for the direct manipu-lation of the high-dimensional data. Addition and removal of data-points are mainlyaimed at the inspection of high-dimensional streams. Data modification is used tovisualize different models of the same data. Different from the refinement process,changing the model might lead to drastic changes in P A (as it would in P ) and assuchmight also create a very different embedding. We chose to start the optimiza-tion with the embedding created before changing the model. As a result points inthe embedding might move drastically during the optimization process. While thismight be confusing and less adequate for Progressive Visual Analytics, the amountof movement is related directly to the strength of the changes and as such is a verygood indicator of the influence of the parts of the data that were modified on thewhole embedding.We presented two case studies to show the effectiveness of A-tSNE.Case Study
I shows a typical analysis of a static dataset. In such a setting it is crucial to allowan interactive feedback loop, betweenmodeling the data (i.e., finding the right num-ber of dimensions for the PCA before embedding) and visualizing the data. Eventhough, we do not achieve real-time performance, we are able to drastically cutcomputation times, i.e., from four hours to less than a minute, allowing such inter-active exploration of the data. Case Study II shows an example for the monitoringand analysis of streaming data. Here it is crucial to achieve real-time performance.We use efficient addition and removal of data points (see Section 4.4.3) to visualizea temporal slidingwindowof the data. As discussed in Section 4.6 even the large in-crease in performance provided byA-tSNEdoes not allow real-time analysis of largedata. We believe that this example illustrates as well, that real-time feedback canbe important for data analysis. While in this chapter we focused on improving thecomputation of the similarities between data points, in the next chapter we focuson the gradient descent computation as presented in Chapter 3. More specifically,we present how the kernel density estimation presented in Section 4.4.2 is adaptedto speed-up the computation of the gradient of tSNE’s objective function.
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5
Linear tSNE Optimization

Hours instead of days! Now we have minutes instead of hours!

James Tiberius Kirk

In this chapter we present a novel approach to the computation of the gradient of the tSNE’s
objective function that takes a fraction of the time requested by the Barnes-Hut-SNE algo-
rithm. Our technique, which makes use of the rendering pipeline to compute the gradient as a
derivation of three scalar fields, is implemented on the GPU and run in the client side of a web
browser.

N. Pezzotti, A. Mordvintsev, T. Höllt, B. P. Lelieveldt, E. Eisemann, and A. Vilanova. Linear tSNEoptimization for the Web. arXiv preprint arXiv:1805.10817, 2018 [139].



5. Linear tSNE Optimization

5.1 Introduction
Given the popularity of the tSNE algorithm [177], research efforts have been spenton improving its O

(
N 2

) computational andmemory complexity. While many worksfocused on the improvement of the similarity computation [112,136,168,176], includ-ing our A-tSNE algorithm presented in the previous chapter [138], only limited efforthas been spent in improving the minimization algorithm employed for the creationof the embedding [87, 112, 176]. The most notable of these improvements is theBarnes-Hut-SNE (BH-SNE) that is presented in Chapter 3. BH-SNEmakes use of an
N -body simulation approach [1] to approximate the repulsive forces between thedata points. Despite the improvements, the minimization requires many minutesusing a highly-optimized C++ implementation.In this chapter we present a novel approach that focus on the minimization ofthe objective function for the creation of the embedding. We observe that the heavytail of the t-Student distribution used by tSNE makes the application of the N -bodysimulation not particularly effective. To address this problem we propose a novelminimization approach that embraces this characteristic and we reformulate thegradient of the objective function as a function of scalar fields and tensor opera-tions. Our technique has linear computational and memory complexity and, moreimportantly, is implemented in a GPGPU fashion. The latter allowed us to imple-ment a version for the browser that minimizes the objective function for standarddatasets in a matter of seconds.The contribution of the technique presented in this chapter is twofold:
• A linear complexity minimization of the tSNE objective function adopts GPGPUcomputations. Specifically, we
– approximate the repulsive forces betweendata points by drawing low-resolutiontextures and
– we adopt a tensor-based computation of the objective function’s gradient.

• An efficient implementation of our algorithm using WebGL and is released aspart of Google’s TensorFlow.js library
The rest of the chapter is structured as follows. In the next section, we presentthe related work, while in Section 5.3 we describe our approach for the minimiza-tion of the objective function. In Section 5.4, we provide the details regarding ourimplementation, released within Google’s TensorFlow.js library.

5.2 Related Work
Wenowpresent thework that has been done to improve the sacalability of the tSNEalgorithm, which was introduced in detail in Section 3.1. In Chapter 3 we introducedthe Barnes-Hut-SNE (BH-SNE) [176], which reduces the complexity of the algorithm
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to O(N log(N )) for both the similarity computations and the objective function min-imization. More specifically, in the BH-SNE approach the similarity computationsare seen as a k-nearest neighborhood graph computation problem, which is ob-tained using a Vantage-Point Tree [190]. The minimization of the objective functionis then seen as an N -body simulation, which is solved by applying the Barnes-Hutalgorithm [10].In the previous chapter of this thesis we observed that the computation of the k-nearest neighborhood graph for high-dimensional spaces using the Vantage-PointTree is affected by the curse of dimensionality, limiting the efficiency of the compu-tation. To overcome this limitation, we proposed the Approximated-tSNE (A-tSNE)algorithm [138], where approximated k-nearest neighborhood graphs are computedusing a forest of randomized KD-trees [120]. A similar observation was later madeby Tang et al. that led to the development of the LargeVis technique [168]. LargeVisuses random projection trees [32] followed by a kNN descent procedure [34] forthe computation of the similarities and a different objective function that is min-imized using a Stochastic Gradient Descent approach [86]. Despite the improve-ments, both the A-tSNE and LargeVis tools require 15 to 20 minutes to optimizethe cost function on the MNIST dataset [95], a 784-dimensional dataset of 60k im-ages of handwritten digits that we introduced in Chapter 3. Better performance isachieved by the UMAP algorithm [112], which provides a different formulation of thedimensionality-reduction problem as a cross-entropy minimization between topo-logical representations. Computationally, UMAP follows very closely LargeVis andadopts a kNN descent procedure [34] and Stochastic Gradient Descent minimiza-tion of the objective function.The techniques presented so far do not take advantage of the target domain inwhich the data is embedded. As amatter of fact, tSNE is mostly used for data visu-alization in 2-dimensional scatterplots, while the previously introduced techniquesare general and can be used for higher dimensional spaces. Based on this obser-vation, Kim et al. introduced the PixelSNE technique [87] that employs a N -bodysimulation approach similar to the BH-SNE, but quantizes the embedding space tothe pixels used for visualizing the embedding. However, PixelSNE requires to scalethe number of used pixels with respect to the size of the dataset in order to achievea good embedding quality due to the quantization of the embedding space.In this chapter, we take advantage of the 2-dimensional domain in which theembedding resides and we propose a more efficient way to minimize the tSNE ob-jective function. Contrary to PixelSNE we observe that, by quantizing only the 2-dimensional space for the computation of the repulsive forces presented in Equa-tion 3.8, embeddings that are hardly distinguishable from those generated by theBH-SNE implementation are computed in a fraction of the time.
5.3 Linear Complexity tSNE Minimization
In this section, we present our approach to minimize the objective function, pre-sented in Equation 3.1, by rewriting its gradient, presented in Equation 3.7. The
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computation of the gradient relies on a scalar field S and a vector field V that arecomputed in linear time on the GPU.
5.3.1 Gradient of the Objective FunctionThe gradient of the objective function has the same form as the one introduced inSection 3.1:

δC

δyi
= 4(F̂attr

i − F̂ rep
i ), (5.1)

with attractive and repulsive forces acting on every point xi ∈ X . We denote theforces with a ∧ to distinguish them from their original counterparts. Our main con-tribution is to rewrite the computation of the gradient as a form of a scalar field Sand a vector field V in the embedding space. We define S and V as

S (p) =
N∑
i

(
1+||yi −p||2)−1

,S :R2 ⇒R, and (5.2)
V (p) =

N∑
i

(
1+||yi −p||2)−2

(yi −p),V :R2 ⇒R2, (5.3)
where p is a location in the embedding space and yi is one of the N points in thedataset. Intuitively, S represents the density of the points in the embedding space,according to the t-Student distribution, and it is used to compute the normalizationof the joint probability distribution Q , as presented in Section 3.1. An example ofthe field S is shown in Figure 5.1b. The vector field V represents the directional re-pulsive force applied to the entire embedding space. An example of V is presentedin Figure 5.1c-d, where the horizontal and vertical components are visualized sep-arately. In the next section, we will present how both S and V are computed witha complexity of O(N ) and sampled in constant time. For now, we assume thesefields given and we present how the gradient of the objective function are derivedfrom these two fields, accelerating hereby their calculation drastically.For the attractive forces, we adopt the restricted neighborhood contribution aspresented in the Barnes-Hut-SNE technique [176]. The rationale of this approach isthat, by imposing a fixed perplexity to the Gaussian kernel, only a limited number ofneighbors effectively apply an attractive force on any given point (see Equation 3.3and 3.4). Therefore we limit the number of contributing points to a multiple of thevalue of perplexity, equal to three times the value of the chosenperplexity, effectivelyreducing the computational and memory complexity to O(N ), since k ¿ N where kis the size of the neighborhood.

F̂attr
i = Ẑ

∑
l∈kNN(i )

pi l qi l (yi −yl ) (5.4)
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(a) (b)

(c) (d)

max

min

Figure 5.1: Overview of our approach. The MNIST dataset contains images of handwritten digits andis embeedded in a 2-dimensional space (a). The minimization of the objective function is computedin linear time by making use of a scalar field (b) and a 2-dimensional vector field (c-d). The fields arecomputed on the GPU by splatting properly designed kernels using the additive blending function of themodern rendering pipeline. The rest of the minimization is treated as a tensor computation pipeline thatis computed on the GPU using TensorFlow.js

The normalization factor Z , as it was presented in Equation 3.6, has complexity
O

(
N 2

). In our approach we compute Ẑ in linear time by sampling the scalar field
S .

Ẑ =
N∑

l=1

(
S (yl )−1

) (5.5)
Note that Z and Ẑ formulation is identical but, since we assume that S is com-puted in linear time while the sampling is done in constant time, computing Ẑ haslinear complexity. Moreover, since Ẑ does not depend on the point yi , for which weare computing the gradient, it needs to be computed only once for all the points.The repulsive force assumes even a simpler form

F̂ rep
i = V (yi )/Ẑ , (5.6)
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being the value of the vector field V in the location identified by the coordinates yinormalized by Ẑ . Similarly as for Ẑ , F̂ rep has an equivalent formulation as F rep butwith computational and memory complexity equal to O(N ). So far, we assumedthat S and V are computed in linear time and queried in constant time. In thenext section we present how we achieve this result by using the WebGL renderingpipeline to compute an approximation of these fields.
5.3.2 Computation of the FieldsIn the previous section, we formulated the gradient of the objective function asdependent from a scalar field S and a vector field V . If the fields are evaluatedindependently, the complexity of the approach is O

(
N 2

) due to the summation inEquations 5.2 and 5.3. We achieve a linear complexity by precomputing and approx-imating the fields on the GPU using textures of appropriate resolution. An exampleof the fields for the MNIST dataset [95] is given in Figure 5.1b-d.A similar approach is used for Kernel Density Estimation [149] that has applica-tions in visualization [92] and non-parametric clustering [68]. In this setting, given anumber of points, the goal is to estimate a 2-dimensional probability density func-tion, from which the points were sampled. This is usually achieved by overlayinga Gaussian kernel, whose σ has to be estimated, on top of every data point. Thisapproach is at the base of the density-based visualization of the embeddings thatis presented in Section 4.4.2 in the previous chapter.Lampe et al. [92] were the first to propose a computation of the kernel densityon the GPU for a visualization purpose. They observed that the Gaussian kernelused for estimating the density has a limited support, i.e., having value almost equalto zero if they are sufficiently far away from the origin. A good approximation ofthe density function is then achieved by drawing, instead of the points, little quadsthat are textured with a precomputed Gaussian kernel. By using additive blendingavailable in OpenGL, i.e., by summing the values in every pixel, the resulting drawingcorresponds to the desired density function.If we analyze Equations 5.2 and 5.3, we can observe that every element in thesummations for both S and V have a limited support, making it indeed very sim-ilar to the Kernel Density Estimation case discussed before. The drawn functions,however, are different and Figure 5.2 shows them for S and V . Therefore, we cancompute the fields by drawing over a texture with a single additive drawing opera-tion. Each point is drawn as a quad and colored with a floating-point RGB texturewhere each channel encodes one of the functions shown in Figure 5.2.Contrary to the Kernel Density Estimation case, where the size of the quadschanges according to the σ chosen for the Gaussian kernel, our functions have afixed support in the embedding space. Therefore, given a certain embedding Y ,the resolution of the texture influences the quality of the approximation but not theoverall shape of the fields. To achieve linear complexity, we define the resolutionof the target texture according to the size of the embedding. In this way, everydata point updates the value of a constant number of pixels in the target texture,
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(a) (b) (c)

0 1 +1
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Figure 5.2: Functions drawn over each embedding point to approximate the scalar field S and the 2-dimensional vector field V .
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Figure 5.3: Computational worklow of our approach. On the lower side the of the chart, the computationof the repulsive forces is presented. The fields texture is generated by the additive texture splattingpresented in Section 5.3.2. The value of S and V are obtained through a texture interpolation and areused to compute the repulsive forces. The attractive forces are computed in a custom WebGL shaderthat takes as input the similarities P and the embedding. The gradient of the objective function is thencomputed and used to update the embedding.
effectively leading to O(N ) complexity for the computation of the fields.Computing the value of S and V for a point yi corresponds to extracting theinterpolated value in the textures that represents the fields. This operation is ex-tremely fast on the GPU, as WebGL natively supports the bilinear interpolation oftexture values. In the next section, we provide amore detailed overview of the com-putational pipeline as a number of tensor operations and custom drawing opera-tions.
5.4 Implementation
In this section, we present how the ideas presented in the previous section are con-cretely implemented in a JavaScript library that can be used to execute an efficienttSNE computation directly in the user’s browser. Figure 5.3 shows an overview of
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the overall approach. We rely on TensorFlow.js, a WebGL accelerated, browser-based JavaScript library for training and deploying machine-learning models. Ten-sorFlow.js has extensive support for tensor operations that we integrate with cus-tom shader computations to derive the tSNE embeddings.The randomly initialized tSNE embedding is stored in a 2-dimensional tensor.We then proceed to compute the repulsive forces F̂ rep and attractive forces F̂attr,shown respectively in the lower and upper side of Figure 5.3. The attractive forces
F̂attr are computed in a custom shader that measures the sum of the contribu-tion of every neighboring point in the high-dimensional space. The neighborhoodsare encoded in the joint probability distribution P that is stored in a WebGL tex-ture. P can be computed server-side, for example using an approximated k-nearest-neighborhood algorithm [32,34,120] as presented in the previous chapter. However,we provide a WebGL implementation of the kNN-Descent algorithm [34] and thecomputation of P directly in the browser to enable a client-side only computationalworkflow.The repulsive forces F̂ rep are computed using the approach presented in previ-ous sections. In a custom shader, we draw for each point, whose location is definedby the value in the embedding tensor, a quad that is textured with the functionspresented in Figure 5.2. The resulting 3-channel texture, an example of which ispresented in Figure 5.1b-d, represents the scalar field S and the vector field V . Foreach embedding point yi , the values of S (yi ) and V (yi ) are stored in tensors andare computed by a customWebGL shader that interpolates the value of the texturein the corresponding channel. The normalization factor Ẑ is then obtained by sum-ming all the elements in the tensor with the interpolated values of S , an operationthat is efficiently performed on the GPU by TensorFlow.js.The remaining computational steps are computed as tensor operations. F̂ rep isobtained by dividing the interpolated values of V by Ẑ , and, by adding the attractiveforces F̂attr, the gradient of the objective function is obtained. The gradient is thenadded to the embedding, hence, modifying the position of the points according totheir similarities. Our work is released as part of the TensorFlow.js library and canbe found on GitHub at the following address: https://github.com/tensorflow/
tfjs-tsne

5.5 Conclusion
In this chapter, we presented a novel approach for the optimization of the objec-tive function of the tSNE algorithm that scales to large datasets in the client sideof the browser. Our approach relies on modern graphics hardware to efficientlycompute the gradient of the objective function from a scalar field that representsthe point density and the directional repulsive forces in the embedding space. Theimplementation of the technique is based on the TensorFlow.js library and canbe found on GitHub at the following address: https://github.com/tensorflow/
tfjs-tsne. Examples that validate our approach can also be found on GitHub
https://github.com/tensorflow/tfjs-tsne-examples.
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5.5. Conclusion

In this chapter and in Chapter 4 we presented two techniques that improve onthe scalability of the computation of the tSNE algorithm. These improvements areparticularly needed in a Progressive Visual Analytics context, where the user cannotwait hours, or even days, before the 2-dimensional embedding is computed. How-ever, after extensive use of the Approximated-tSNE technique, we came to realizethat the user is confronted with a different kind of scalabity issue. When millionsof data points are embedded and visualized on a computer screen, it becomes in-creasingly difficult to identify sub-clusters within tSNE embeddings. This limitationhinders the ability of the user of effectively explore and collect insights on the dataat hand. In the next chapter we introduce the Hierarchical Stochastic Neighbor Em-bedding [136] technique, a multiscale approach for dimensionality reduction that isdesigned to address this problem.
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6
Hierarchical Stochastic

Neighbor Embedding
There is grandeur in this view of life, with its several powers, having been originally breathed into

a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law

of gravity, from so simple a beginning endless forms most beautiful and most wonderful have

been, and are being, evolved.

Charles Darwin

In this chapter we present the Hierarchical Stochastic Neighbor Embedding algorithm (HSNE).
HSNE builds a hierarchical representation of the data that is then explored using non-linear
dimensionality-reduction embeddings. The exploration follows the overview-first and details-
on-demandmantra, enabling the interactive exploration of extremely large datasets. Wedemon-
strate HSNE on several datasets and we show the application potential in the visualization of
Deep-Learning architectures and the analysis of hyperspectral images.

N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, andA. Vilanova. Hierarchical StochasticNeigh-bor Embedding. In Computer Graphics Forum, volume 35, pages 21–30, 2016 [139].



6. Hierarchical Stochastic Neighbor Embedding

6.1 Introduction
In Exploratory Data Analysis, a number of visualization techniques are used to sup-port the hypothesis-generation process. Among its goals are the extraction of im-portant variables, the detection of outliers or the identification of underlying non-convex structures [172]. As seen in the previous chapters, Non-linear dimensional-
ity reduction techniques such as tSNE play a key role in the understanding of high-dimensional data [22, 155]. A simple example is presented in Figure 6.1a, where anon-convex 1D manifold structure is defined in a 2D space. Non-linear dimension-ality reduction is used to generate a 1D embedding (Figure 6.1b). Note that a lineartransformation cannot project the manifold on such a 1D space.As presented in Chaper 2, in recent years the application of non-linear dimen-sionality reduction techniques on real-world data led to new findings as complexreal-world phenomena lead to non-convex structures that resides in a high dimen-sional space [6,12]. Algorithmssuch asSammonMapping [152], LLE [150], ISOMAP [169]or tSNE [177] help during Exploratory Data Analysis by giving a meaningful repre-sentation of these high-dimensional spaces. Broadly, two different approacheshave been developed by the Machine-Learning and the Visualization community.The Machine-Learning approach tends to focus on accurate but computationally-expensive techniques, whereas the Visualization approach often trades accuracyand non-convex structure preservation for interactivity. Consequently, the first typeis often too slow for interactive interfaces, limiting the ability to support the hypoth-esis generation process. The second type is less accurate and can generate non-existing structures. For example, hybrid approaches use a set of landmarks, alsocalled pivotsor control points, which are embedded using non-linear dimensionality-reduction techniques. The remaining points are placed by interpolating their posi-tions. Due to the sparse amount of landmarks, this process may not reflect theunderlying manifold. An example is given in Figure 6.1c. The landmarks are placedin the wrong order according to the manifold, if the rest of the data is not taken intoaccount. This problem can be partly remedied by letting the user manipulate thelandmark positions in the embedding. However, this interaction cannot avoid thecreation of non-existing structures and requires prior knowledge of the user aboutthe data, which is usually not available.In this chapter we present the Hierarchical Stochastic Neighbor Embedding al-

Non-linear techniques

1 2 3 4 5

Hybrid techniques

1 3 5 4 2
1 23 45

(a) (b) (c)

Figure 6.1: Dimensionality reduction with landmarks. In non-linear embedding techniques the underly-ing manifold (a) is respected (b). In hybrid approaches, landmarks are placed without considering theunderlying manifold (c) and data points are placed by interpolating the landmark positions (grey line inc). The layout quality thus relates to the used number of landmarks.
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gorithm (HSNE), a non-linear dimensionality reduction technique that aims at bridg-ing the gap between accuracy and interactivity. It is motivated by the good resultsthat SNE techniques show in user studies [155] and is as fast as the state-of-the-art hybrid techniques. While our approach also involves landmarks, it differs sig-nificantly from previous work. Our landmarks are enriched by a smooth and non-convex area of influence on the data and the landmarks are chosen by analyzing thedata points and their k-nearest neighbor graph, while avoiding outliers. Overlaps inthe areas of influence are used to encode similarities between landmarks. Our pro-cess is hierarchical and landmarks at a higher scale are always a subset of theprevious scale. This hierarchy allows us to keep the memory footprint small, whileenabling a new way of analyzing the data. We follow the Overview-first, Details-
on-Demand paradigm [158] for the analysis of non-linear embeddings. Dominantstructures that appear in the Overview can be analyzed by generating an embed-ding of the related landmarks in the subsequent lower scale. In this way, the usercan drill down in the data and search for structures at finer scales. It is an approachthat scales very well to big datasets and we illustrate its application potential in twodifferent use cases in this chapter. The success of this technique are also shownif Chapter 7, 8 and 9.The remainder of the chapter is structured as follows. After an overview of therelated work, Section 8.4.3 presents the HSNE algorithm with a focus on the con-struction of the hierarchy, while the hierarchical analysis is presented in Section 6.4.Finally, Section 6.5 contains two use cases showing the potential of our method,while experiments on well known datasets are presented in Section 6.6.
6.2 Related Work
Linear dimensionality-reduction techniques try to preserve global distances betweendata points in the embedding as in the high-dimensional space. Hierarchical imple-mentations of these techniques have been developed to reduce calculations. No-table examples are Glimmer [75], Steerable MDS [186] and HiPP [128] that linearlyseparate the space with a top-down approach.Differently from linear algorithms, non-linear dimensionality reduction techniquestry to preserve geodesic distances on manifolds between data points. However, asimple case as in Figure 6.1a is rarely met in practice, and the definition of geodesicdistances is a challenging task. In real-world data, data points form manifolds de-fined by sets of points varying in size, density, shape and intrinsic dimensional-ity. A class of techniques known as Stochastic Neighbor Embedding (SNE) [66]is accepted as the state of the art for non-linear dimensionality reduction for theexploratory analysis of high-dimensional data. Intuitively, SNE techniques encodesmall-neighborhood relationships in the high-dimensional space and in the em-bedding as probability distributions. These techniques aim at preserving neigh-borhoods of small size for each data point. The embeddings are defined via aniterative minimization of the loss of information when placing the point in the em-bedding. Besides the discoveries made using algorithms like tSNE [6,12], the ability
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to reveal interesting structures is demonstrated by extensive user studies on real-world and synthetic data [155]. Unfortunately, the application of SNE techniques tolarge datasets is problematic, as the computational complexity is usuallyO(n2). Us-ing approximations it can be reduced to O(n log(n)) [138, 176]. Furthermore, small-neighborhood preservationmightmiss structures at different sizes. Our HSNE is anSNE technique, which overcomes the computational complexity and shows struc-tures at different scales by creating a hierarchical representation of the dataset.Differently from other hierarchical techniques [75,128,186], we use a bottom-up ap-proach in the creation of the hierarchy. Our key insight is to use landmarks thatrepresent increasingly large portion of the data.The usage of landmarks is not new and can be separated in two categories,which we refer to as the non-linear and hybrid landmark techniques (see Figure 6.1).Both select a set of landmarks from the original dataset. Non-linear landmark tech-niques embed themusingmetrics that estimate geodesic distances betweenpoints[161, 177]. Figure 6.1b shows a simple example, where the neigborhood relation-ship are extracted using the geodesic distances on the manifold. For example,Landmark-tSNE creates the K-Nearest Neighbor (KNN) Graph between the origi-nal data point and computes for each landmark the probability of reaching otherlandmarks with a random-walk on the KNN-Graph [177]. Non-linear landmark tech-niques can discover non-convex structures, but their scale is directly related to thenumber of selected landmarks. Further, the user is limited to the visualization oflandmarks and not the complete dataset, limiting the insights that can be extractedfrom the data. Hybrid landmark techniques embed landmarks with non-linear di-mensionality reduction techniques based on high-dimensional descriptors of thelandmarks derived from the original data. The complete dataset is then embeddedusing different interpolation schemes [33, 39, 80, 127, 129, 131, 132]. This approachis widely used by the visualization community due to its fast computation, makingit ideal for interactive systems. However, non-convex structures are not preserved(unless the sampling is dense enough) because the underlyingmanifold is ignored.Figure 6.1c illustrates the problem: the selected landmarks are seen as a straightline even by a non-linear technique.HSNE is a non-linear landmark technique, but supports the exploration of non-convex structures at different scales, while sharing the performance of hybrid tech-niques and supporting interaction to gain insights into the data. In particular, ournovel hierarchical approach using an Overview-first, Details-on-Demand paradigmhelps in this context.
6.3 Hierarchical Stochastic Neighbor Embedding
Here, we present our HSNE technique with a focus on the creation of the hierarchi-cal data representation. An overview is given in Figure 6.2. Throughout the chapter,calligraphic notations indicate sets, for example, D is the set of high-dimensionaldata points. Our representation is composed of different scales, or levels, orga-nized hierarchically. We use superscripts to indicate this scale. Elements in sets
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Figure 6.2: Overview of the hierarchy construction. A Finite Markov Chain (FMC) is built from the k-nearest neighbor graph. The FMC encodes the similarities between landmarks and it is used for select-ing landmarks in the next scale. The FMC is also used to compute the area of influence of the selectedlandmarks on the landmarks in the lower scale. The overlap between the areas of influence is used tobuild a new FMC that encodes similarities in the new scale.

are identified using subscripts. We denote L s the set of landmarks representingthe dataset at scale s. L 1 represents the first scale, which is the input dataset D.Higher scales are always subsets of previous scales (L s ⊂L s−1).
Our algorithmworks as follows. StartingwithL 1, we build a FiniteMarkovChain(FMC) from a k-nearest-neighbor graph to encode similarities between landmarks(Section 6.3.1). It is used to guide the selection process of a landmark subset forthe next scale (Section 6.3.2) and, then, to compute an area of influence for eachselected landmark (Section 6.3.3). The overlap between these areas indicates sim-ilarity and forms the basis for a new FMC encoding (Section 6.3.4), which is thenused to compute the next scale. After preprocessing the different scales, we canperform a multi-scale analysis by computing an embedding of landmarks usingtheir scale-dependent information (Section 6.3.5).

6.3.1 From data points to a Finite Markov Chain
A Finite Markov Chain is a random process that undergoes transitions from onestate to another in a state space. Our Finite Markov Chain is used to model the ran-dommovement of a hypothetical particle on the manifold, and the states are givenby the landmarks in L s . The transitions are encoded in a square transition matrix
T s of size |L s |× |L s |. T s (i , j ) represents the probability that the landmark L s

j be-
longs to the neighborhood of the landmark L s

i in the scale s. It is important to notethat HSNE aims at encoding small neighborhoods of fixed size for every landmark.
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Therefore T s is sparse by construction, and its memory complexity grows linearlywith the size of the dataset.For the Finite Markov Chain described by the transition matrix T 1, each datapoint Di is only allowed to transition to a data point D j , if D j belongs to the k-nearest-neighborhoodN (i ) ofDi . The probability assigned to the transition is givenby the following equation:
T 1(i , j ) = exp(d(i , j )2/σi )∑

k exp(d(i ,k)2/σi )
with j ,k ∈N (i ), (6.1)

where d(i , j ) are the Euclidean distances between data points, and σi is chosensuch that T 1(i ,−) has perplexity of |N (i )|/3 [176]. The exponential falloff is usedto reduce the problem caused by the presence of outliers, that act as shortcutsacross manifolds. SNE techniques focus on the preservation of small neighbor-hoods for each data point. Thus, a small value of K is usually selected, where 100is a common choice [176, 177]. To improve performance, we adopt the approxi-mated algorithm for the computation of the k-nearest-neighborhoods proposed inthe Approximated-tSNE introduced in Chapter 4. Experimentally, we see that suchan algorithm does not compromise the quality of the embeddings generated byHSNEwhile improving the computation time by two orders ofmagnitude. The com-putational complexity of this first step is O(|D| log(|D|))

6.3.2 Landmark selection and outliers identificationWe use the transition matrix to carefully select meaningful landmarks in order toreduce the size of the dataset. This step is of crucial importance, e.g., in order toavoid choosing outliers as landmarks. So far, we have only given the definition of thetransition matrix for the lowest scale. We define it for other scales in Section 6.3.4.Nonetheless, the process described here is valid at all scales, which is why we usethe superscript s to indicate its generality. Before we explain our sampling solution,we introduce the concept of equilibrium distribution of a Finite Markov Chain. Avector π is called equilibrium distribution of the Finite Markov Chain, described bythe transitionmatrix T s , if it represents a probability distribution that is not changedby a transition in the state space:
π=πT s and ∑

i
πi = 1 (6.2)

Intuitively, the equilibrium distribution π represents the probability of being in a stateafter an infinite number of transitions in the state space. These transitions are oftencalled randomwalks in the state space. Given the transition probabilities defined byEquation 6.1, the equilibrium distribution of our Finite Markov Chain assigns higherprobability to data points that reside in high-density regions in the original space.Figure 6.3 shows an example, where the landmarks L s are color coded accordingto the equilibrium distribution of the Finite Markov Chain that encodes their sim-ilarities. Landmarks in dense regions of the space, have high value of π and are
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Figure 6.3: Selection of landmarks and outliers using the equilibrium distribution π of the Finite MarkovChain (see Equation 6.2). Points are color coded from black to red according to their π-value. Selectedlandmarks are circled in green, while potential outliers are circled in blue.
selected to be in L s+1 (green circles in Figure 6.3). Landmarks with a low value of
π are considered outliers in scale s +1 (blue circles in Figure 6.3).Landmarks in L s+1 are selected by sampling the equilibrium distribution π, thatis computed using a simple Markov Chain Monte Carlo technique [50]. For eachlandmark in L s , we start β random walks of fixed length θ. Every landmark thatis the endpoint of at least βtreshold ∗β random walks is selected as a landmark in
L s+1, if no random walks reach a given landmark, it is detected as outlier. We ex-perimented with different values of β and θ, finding that β = 100 and θ = 50 is agood compromise between speed and accuracy for the data we have been ana-lyzing. Notice that the computation of random walks is not costly, and thousandscan be performed every millisecond on a state-of-the-art desktop computer. Weprovide a default value of βtreshold = 1.5, that we found is conservative enough tocreate a hierarchical representation for all the dataset that we tested. The compu-tation complexity of this step is O(|L s |). However, the user can change this valueto control the number of landmarks to be selected.
6.3.3 Area of influenceThe process of choosing landmarks cannot be simply relaunched, as we wouldthen loose important information from previous scales. In consequence, we willextend the definition of the transition matrix to all scales beyond the first. To thisextent, we introduce the area of influence for each landmark, which keeps trackof a landmark’s impact on previous scales. The influence exercised by landmarksin L s on those in L s−1, is encoded in an influence matrix I s . Matrix I s has size
|L s−1|×|L s |, where I s (i , j ) is the probability that the landmark L s−1

i in the previousscale is well represented by L s
j . Specifically, each row i is a probability distribution

that denotes the probability that the landmark L s−1
i is in the area of influence oflandmarks in L s . Consequently, the influence of a scale s on scale r is defined bya chain of sparse matrix multiplications:

I r←s =
[

r∏
i=s

(
I i

)t
]t with r < s (6.3)

It is important to note that the area of influence is localized, implying that I s issparse. Therefore, the memory complexity grows only linearly with the set of land-marks. To compute I s , we start a number of random walks in the Finite Markov
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Figure 6.4: The area of influence can be seen as flow converging in landmarks of the higher scale.The area of influence of the landmarks selected in Figure 6.3 is shown here. The overlap in the area ofinfluence is used to compute similarities between landmarks (see Equation 6.5).
Chain described by T s−1 for each landmark L s−1, leading to a computational com-plexity of O(|L s−1|). The random walk stops when a landmark in L s is reached.The percentage of randomwalks reaching every landmarks in L s is then used as arow for I s (i ,−). Figure 6.4 shows the area of influence of the selected landmarks inFigure 6.3 as a flow, converging in landmarks of the higher scale. Depending on thedata distribution in the high-dimensional space, landmarks can exercise influenceon regions of different size. We define the weight of a landmark as the size of theregion that it represents. The vector W s encodes the weights of the landmarks atscale s, and it is defined by the following equation:

W s =W s−1 ∗ I s with W 1 = 1 (6.4)
The width of the landmarks in Figure 6.4 represents these weights W s .
6.3.4 From areas of influence to Finite Markov ChainsSimilarities between landmarks in scale s are computed using the overlaps in their
areas of influence on scale s − 1. Intuitively, if the areas of influence of two land-marks overlap, it means that they are close on the manifold, therefore their similar-ity is high. We use the influence matrix I s to create the FMC, encoding similaritiesbetween landmarks in L s . The transition matrix T s is given by the following equa-tion:

T s (i , j ) =
∑|L s−1|

k=1 I s (k, i )I s (k, j )W s−1(k)∑|L s−1|
k=1

∑|L s |
l=1 I s (k, i )I s (k, l )W s−1(k)

(6.5)
where I s (k, i )I s (k, j )W s−1(k) is the overlap of the area of influence of L s

j and L s
ion landmark L s−1

k . Figure 6.4 depicts overlaps between the areas of interest of thelandmarks selected in Figure 6.3. The overlap between L0 and L1 is higher than theoverlap between L1 and L2, as expected because L1 is more similar to L0 than L2.
6.3.5 Generation of the embeddingSNE methods rely on a probability distribution P , that encodes neighborhood re-lationships. In practice, we rely on tSNE because of its ability to overcome the socalled crowding problem [177]. tSNE interprets similarities between data points as
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a symmetric joint-probability distribution P . Likewise a joint-probability distribution
Q is computed, that describes the similarities in the low-dimensional space. Thegoal is that the position of the data points in the embedding faithfully represent thesimilarities in the original space. The iterative minimization of the Kullback-Leiblerdivergence is used to reduce the information loss when Q is used to represent P .An in depth explanation on how tSNE computes Q and minimizes the divergencefunction is presented in Section 3.1. In our HSNE, P is computed from the transitionmatrix T s :

P (i , j ) = T s (i , j )+T s ( j , i )

2 |L s | where ∑
i , j

P (i , j ) = 1 (6.6)
With this definition, an embedding can be computed even for a subset of the land-marks, the only requirement is that their similarities are encoded in a Finite MarkovChain. This observation is important as it enables the Overview-First, Details-on-
Demand analysis presented in the next section. However, if the user is interested ingenerating a complete embedding (as in hybrid techniques), it can be achieved byinterpolating the position of the landmarks in the top scale o:

Y 1
i =

L o∑
j

Y o
j I 1←o(i , j ) (6.7)

where I 1←o(i , j ) is the influence exercised on the data points, as shown in Equa-tion 6.3.
6.4 Hierarchical Analysis
In this section, we describe how the hierarchical analysis is performed by present-ing how the detailed embeddings are generated by filtering and drilling-down in thedata. Before addressing the algorithmic solution, we will motivate the usefulnessof such a tool with an example.
6.4.1 Example of a hierarchical analysisStandard dimensionality reduction techniques are often used to enable a user to vi-sually identify groups of similar data points. This possibility is useful, as it enablestasks, such as verification, naming or matching [22]. Figure 6.5a, shows a simple
naming task using readings from atmospheric sensors as high-dimensional data.Figure 6.5b shows another example, in the context of traditional analysis. In a nam-ing task, the analysis of the given data might lead to a set of different clusters. Auser could inspect these clusters by selecting one and seeing the correspondingregion highlighted on the map. Using prior knowledge for a few locations, it be-comes possible to attribute conditions, such as sunny, cloudy and rainy weather,on the entire map. Nonetheless, such an analysis assumes that the scale of theclustering was sufficiently precise and not overly precise.The hierarchical nature of our approach enables a newmulti-scale analysis basedon the Overview-First, and Details-on-Demand mantra [158]. An example is given in
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Figure 6.5: Traditional vs Hierarchical analysis. (a) High-dimensional readings from sensors locatedon amap and prior knowledge on the phenomenon of interest are available to the user. In the traditionalanalysis (b) a single embedding is generated and analyzed. In our hierarchical analysis (c), an overviewshows dominant structures in the dataset. Detailed embedding of the structures are created by filteringand drilling into the data.

Figure 6.5c. Instead of showing an embedding of all data points, the analysis startswith the highest-scale landmarks. The resulting clusters will represent very coarsedominant structures, for example, good and bad weather zones. Additionally, thearea of influence encoded in the size of the embeddedpoints gives feedback regard-ing the complexity of the original underlying data. If a user now wishes to exploremore detailed information, a cluster can be selected and a lower scale embeddingis produced. The heterogeneous data on the lower level then becomes visible, forexample, bad weather transforms into cloudy and rainy regions. Our approach isparticularly suited for heterogeneity at different scales, which is common in largedatasets.
6.4.2 Filtering and drill downTo enable the investigation of details, we start from a selected subset O of land-marks at scale s: O ⊂L s . We drill in the data by selecting a subset G of landmarksat scale s − 1: G ⊂ L s−1, using the influence matrix I s to connect the two scales.As explained in Section 6.3.3, a row i in I s represents for L s−1

i the influence of thelandmarks L s at scale s. We define Fi as the probability that landmark L s−1
i is inthe area of influence of the landmarks in O :

Fi =
∑

L s
j ∈O

I s (i , j ) (6.8)
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If all the landmarks influencing L s−1
i are in O , then Fi = 1. If no influence from Ois exercised on L s−1

i then Fi = 0. A landmark L s−1
i is selected to be in G if Fi > γ,where γ is a user-defined threshold. However, it should be noted that a low value of

γ is not desirable, as it will add landmarks, which are only slightly influenced by O .A high value of γ is also not desirable, leading to the exclusion of regions that arehighly influenced by O . While it remains a parameter, we found experimentally that
γ= 0.5 allows for effective drilling in the data. The transition matrix T s−1

G
, represent-ing the similarities in G , is derived from T s−1 by removing the rows and columnsof landmarks in Ls−1, which are absent from G . Given the transition matrix, theembedding is computed as before (Section 6.3.5).

6.5 Use cases
Here, we show examples for our hierarchical analysis on real-world data, to illus-trate our contributions and potential application areas of our HSNE. Besides high-resolution hyperspectral images of the Sun and remote-sensing data, we visualizethe training set of a well-known Deep Learning model, showing how it interpretsthe input images. We demonstrate the HSNE’s ability to show dominant structuresin the Overview and to explore them in detailed embeddings to reveal finer-grainedstructures. We test our C++ implementation of HSNE on a DELL Precision T3600workstation with a 6-core Intel Xeon E5 1650 CPU @ 3.2GHz and 32GB RAM.
6.5.1 Hyperspectral imagesThe visible light spectrum is only a tiny part of the electromagnetic spectrum andsome phenomena can only be understood by considering the complete spectrum.Figure 6.6a, shows hyperspectral images of the sun. Different wavelengths of theelectromagnetic spectrum reveal different observations, such as solar flares or thecorona. The image resolution is 1024×1024, leading to a dataset composed of≈ 1Mdata points (pixels). Each pixel is described by 12 dimensions corresponding to theintensity readings. We downloaded the data from the Solar Dynamics Observatory1on November 13th 2015. In an Exploratory Data Analysis the user needs to analyzeall pictures of all wavelengths in parallel. However, with an increasing number ofimages, the data complexity complicates the generation of a hypothesis or the dif-ferentiation of different regions. Here, we show how HSNE supports such analysis.The hierarchical representation of the data is precomputed in 2’13" minutes andonly needs to be processed once. From this representation the overview and de-tailed embeddings require only a few seconds and can be visualized using a Pro-gressive Visual Analytics approach [138]. Figure 6.6b shows the Overview gener-ated by HSNE. The Overview is composed of 352 landmarks in two clusters (T0and T1). Every landmark is drawn using semi-transparent circles, while the size ofa landmark encodes its weight as defined in Equation 6.4. The clusters correspondto two dominant structures in the data, the Sun surface (T1) and the Space in the
1http://sdo.gsfc.nasa.gov/

6

75



6. Hierarchical Stochastic Neighbor Embedding

Figure 6.6: Hierarchical analysis of hyperspectral images. Hyperspectral images of the Sun and thearea surronding the city of Los Angeles are analyzed using HSNE. Dominant structures are revealed atdifferent scales and can further inspected by creating detailed embeddings.

background (T0). Their areas of influence is visualized in the linked view. Here, animage of size 1024×1024, where a greyscale colormap is used to represent the prob-ability of a pixel to belong to the area of influence of the selection. The user drillsin the data by requesting detailed visualizations of the two dominant structures. Adetailed embedding of T0 (Figure 6.6c) describes different regions of the Corona.S0 represents the area close to the surface, while S1 represents the background.S2 and S3 represent the external area of the Corona, where S3 is an area with lowreadings in the AIA 211 channel (pink in Figure 6.6a). S4 is an interesting cluster,representing the overlayed logo, present in all images. S4 is considered an outlierin the overview and, therefore, was not represented as a separate cluster. However,upon refinement, this cluster would appear, as it will be a dominant structure at thisscale. A detailed embedding of T1 leads to three clusters (Figure 6.6c). Althoughnot as well separated, they clearly represent different regions on the Sun surface.R0 are hotter regions, or where solar flares are visible, while R1 and R2 representcolder regions separated in one of the input images, namely the Magn image (Fig-ure 6.6d).We performed a similar analysis on hyperspectral images for remote sensing.These data are captured by the LandSat satellites 2, and we present an exampleof the area surrounding the city of Los Angeles. The data are composed of 11 im-ages, representing different bands of the electromagnetic spectrum. Figure 6.6eshows three of such images, and a reference image. Similarly to the previous ex-
2http://landsat.usgs.gov/
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Figure 6.7: Deep Learning models. Features are extracted from 100k images using a Deep Neural Net-work (DNN) [88] and the hierarchical analysis is performed using HSNE. Starting from the overview,dominant structures at different levels are revealed. The user can inspect the embeddings and requestdetailed visualization. This is achieved through filtering of the landmarks and by drilling down in thehierarchy. A high-resolution version of the figure is provided in the supplemental materials.

ample, we analyzed the images at a resolution of 1024× 1024. Figure 6.6f showsthe dominant structures in the highest scale, namely ocean, clouds and the main
land, that are identified by the user by looking at the reference image and using itsprior knowledge on the phenomenon. A detailed embedding representing the main
land is shown in Figure 6.6g. It is possible to identify different parts of the detailedembeddings related to mountains, urban and desert areas. Drilling in, detailed em-beddings are generated, such as the one representing desert areas, as depicted inFigure 6.6h. More heterogeneity is revealed at this scale. For instance dry lakes,
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such as the Rogers Dry Lake, are located in the cluster of desert areas.
6.5.2 Visualization of Deep Learning datasets
Deep Learning builds upon neural networks composed of many (hence, the name
deep) layers. Deep Neural Networks (DNN) achieved impressive results in imagerecognition, sentiment analysis and language translation. For an overview of thefield, we refer to [94]. However, it is difficult to visualize how a DNN works. An ap-proach that was used recently, is to select some potential inputs that are processesby the DNN [82, 116]. For each input, the values computed by the last layer of thenetwork are used as high-dimensional descriptor. Once that the descriptor are as-signed to each data point, they are embedded in a 2D space using non-linear dimen-sionality reduction techniques. tSNE is usually selected for such a task [82,116]. Thelimitation of this approach is that only small subsets can be visualized at a giventime, limiting the ability to evaluate and inspect how the network is trained. Weextract features from the test set of a well known DNN [88], leading to a datasetconsisting of 100k images and 4096 dimensions. The hierarchical representationof the data is computed in 92 seconds, while every embedding requires only fewseconds to be computed. Our approach shows the hierarchical nature of the learn-ing process, as depicted in Figure 6.7. In the overview two clusters are visible. Welabel them as Man-made and Nature, based on the inspection of the images repre-sented by the landmarks. Detailed embeddings of the clusters are produced andconfirm the previous labeling. In the Nature cluster new dominant structures arerevealed, such as images of Aquatic animals, Insects or Dogs. Similarly, a detailedvisualization of the landmarks labeled as Man-made reveal more heterogeneity inthe data. The user can drill deeper in the data, for example by requesting detailedvisualization of landmarks identified as Ships, Vehicles and Underwater scenes Ac-
quatic animals.
6.6 Evaluation
In this section we provide experimental evidence that HSNE outperforms hybridand non-linear dimensionality reduction techniques. In our evaluation, we use theMNIST dataset 3 (60k points, 784 dimensions), the CIFAR-10 dataset 4 (50k points,1024 dimensions) and the TIMIT dataset 5 (1M points, 39 dimensions).Figure 9.8 shows the embeddings of the MNIST dataset produced with our ap-proach compared to those created by non-linear techniques (tSNE and L-SNE [177])and hybrid techniques (LSP [129], Piecewise-LSP [127], created by the Projection Ex-plorer tool [130], and LAMP [80] created by the Projection Analyzer tool 6). Our HSNEembedding is computed for three scales, resulting in the highest-level embedding
3http://yann.lecun.com/exdb/mnist/4https://www.cs.toronto.edu/ kriz/cifar.html5https://catalog.ldc.upenn.edu/LDC93S16https://code.google.com/archive/p/projection-analyzer/
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Figure 6.8: Embeddings of the MNIST dataset created by non-linear dimensionality reduction tech-niques (tSNE and Landmark-SNE) and by hybrid techniques (LSP, P-LSP and LAMP). Differently from
hybrid techniques, HSNE preserves the manifold in the landmark embedding, creating compact clus-ters in the complete embedding.

containing 1431 landmarks. The tSNE embedding is computed using approximatedcomputations [138, 176] to reduce the computational complexity to O(n logn). Forthe L-SNE algorithm, we randomly selected 1431 landmarks and we use approxi-mated k-nearest-neighbor computations (see Section 6.3.1), making it comparableto the setting for the HSNE. We were not able to generate a LSP embedding of theMNIST dataset due to its size and present an embedding of 5k randomly selecteddata points instead. We use the default parameters for the selection of the land-marks, leading to 500 landmarks in LSP, 3714 in P-LSP and 734 in LAMP. For eachtechnique we present, where available, the embedding containing only the land-marks, as well as the complete embedding. Our HSNE is much faster than tSNEand comparable to hybrid techniques.
We base our quantitative assessement of the quality of the embedding on the

Nearest-Neighbor Preservation metric (NNP) as proposed by Venna et al. [181] andimplemented by Ingram and Munzner [74]. For each data point, the K-Nearest-Neighborhood (KNN) in the high-dimensional space is compared with the KNN inthe embedding. Average precision/recall curves are generated by taking into ac-count high-dimensional neighborhoods of size Khi g h = 30 [74]. The precision/recallcurves are computed by selecting Kemb -neighborhoods in the embedding, iterating
Kemb from 1 to Khi g h and computing the true positive T P in the Kemb -neighborhood.The precision is set as T P/Kemb and the recall as T P/Khi g h . The curve is obtainedby connecting the points in the precision/recall space for each value of Kemb [74].However, NNP fails tomeasure the preservation of high-level information, e.g. neigh-borhood preservation in a geodesic sense and, to the best of our knowledge, nosuch metric exists. Therefore, we assess the high-level structure preservation bothby a visual inspection of the labeled data and by the evaluation of the NNP during
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the drill-down in the data. Intuitively, if HSNE does not have the ability to preservehigh-level structures, during a drill-down part of the data will be left out, leading togaps in the lowest-level embedding and, consequently, to bad NNP.Even if a validation of the visual cluster cannot be performed, given its non-convex nature [9], the MNIST dataset contains compact manifolds [177] that repre-sent handwritten digits (see examples in Figure 9.8). Therefore, based on the visualseparation of the labeled landmarks, we can conclude that HSNE preserves mani-folds similar to non-linear dimensionality-reduction algorithms. Hybrid techniquesare incapable of well separating the manifolds in this example. Due to the fact thatthe underlying manifold is not respected, the landmark positions in the embeddingignores local structures in the data, leading to problems similar to the one depictedin Figure 6.1c.HSNE separates the manifolds even better than tSNE, see orange cluster in thetSNE embedding compared to orange landmarks in the HSNE embedding. Thisresult is a consequence of tSNE focusing only on the preservation of small neigh-borhoods. When the size of the data increases, we experimentally found that mini-mization performed by tSNE will often incur in local minima that disrupt the visualrepresentation of high-level manifolds.tSNE’s ability to preserve small neighborhoods is confirmed by the NNP preci-sion/recall curves presented in Figure 6.9a. ForHSNEwecompute a precision/recallcurve for each scale by linearly interpolating the data points using landmarks in thecorresponding scale, as in Equation 6.7. In the highest scale, HSNE outperformsthe other hybrid techniques but it performs worse than tSNE. This is expected asthe information preserved by HSNE at this scale is not measured by NNP. When thelowest scale is considered, the precision/recall curve of HSNE and tSNE are similar.However, HSNE is designed to filter the data during the hierarchical analysis. Fig-ure 6.9b shows the analysis performed by selecting landmarks that belong to thedigit ‘7’ (green points in Figure 9.8) and computing the the precision/recall curvesusing the points selected to be in the lowest scale. HSNE outperforms tSNE in thelowest scale: by reducing the number of data points to embed, HSNE is less influ-enced by local minima during their placement, leading to a better NNP. This resultalso confirms that in the higher scales of the hierarchy, manifolds are consistentlyrepresented, avoiding the creation of gaps in the lowest level embedding during theanalysis. We obtained similar results for different analysis performed on the threedatasets.
6.7 Conclusions
We presented Hierachical Stochastic Neighbor Embedding (HSNE). HSNE intro-duces the well-known mantra Overview-First, Details-on-Demand in non-linear di-mensionality reduction techniques. Our technique preserves non-convex structures,similarly or better than the state-of-the-art methods, but can be employed in inter-active software for the Exploratory Analysis of high-dimensional data. Even thoughcomplete embeddings (similar to hybrid techniques) are possible, a key strength
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Figure 6.9: Nearest Neighborhood Preservation (NNP) on the MNIST dataset. HSNE outperforms hy-brid techniques and it is comparable to tSNE on a full scale analysis. When the user filters the dataduring the drill-in, HSNE outperforms tSNE.

is the interactive hierarchical analysis to reveal dominant structures at differentscales, which is useful in various applications, as evidenced by our use cases.The various results indicate that HSNE is a beneficial replacement for non-linearand hybrid algorithms in Visual Analytics solutions. The use of the area of influ-ence, is an important visualization element and delivers additional information, al-though new strategies would have to be developed to effectively exploit this infor-mation. Nonetheless, this aspect is important when considering systems to assessthe quality of embeddings [109]. These mainly focus on visualizing and inspectingmissing and false neighborhood relationships between data points. The investi-gation of neighborhood encoding remain an open problem, in particular for HSNEwhere these relationships are stochastic by nature. Themulti-scale nature of manyreal-world phenomena leads us to the conclusion that HSNEmay give new insightsinto a number of problem domains. The next chapters are focused on the applica-tion and successes of HSNE in several application areas. We start with the applica-tion of HSNE for the exploratory analysis of biomedical data. Then, we present theapplication and extensions of HSNE for analyzing extremely large bipartite graphsand, finally, we present a system the supports the design of deep neural-networkarchitectures.
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7
Applications in Life Sciences

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

In this chapter, we present several applications of the A-tSNE [138] and HSNE [136] algorithms
with a focus on life sciences. We present Cytosplore, a tool developed for the exploratory anal-
ysis of single-cell data. Cytosplore is the enabler of several findings, ranging from the discovery
of new immune-system cell types to cell differentiation pathways. Moreover, we introduce a
tool for the analysis of 3D hyperspectral data which is based on the HSNE algorithm. This
work has been done in a close collaboration with Thomas Höllt and researchers at the Leiden
University Medical Center.



7. Applications in Life Sciences

7.1 Single Cell Data Analysis
In recent years, novel data acquisition technologies, e.g., mass cytometry [126](CyTOF), allowed to determine the properties of single-cells with unprecedented de-tail. This amount of detail allows for much finer cell differentiation, but also comesat the cost of more complex analysis. As a matter of fact, datasets comprise mil-lions of cells, each represented as a high-dimensional data point, where each di-mension represents the quantity, or expression, of a given protein per cell. Theanalysis aims at identifying groups of similar cells with respect to their protein ex-pression, i.e., with a similar high-dimensional profile. However, most of the time, theuser has limited prior knowledge on the cell types to be found in the data and theuse of an exploratory analysis tool for high-dimensional data would be beneficialand, as presented in this chapter, will enable the discovery of previously unknowncell-types.In this section, wepresent how the application of theA-tSNE [138] andHSNE [136]algorithms empowered the analysis of single-cell data and led to novel findings [90,102,179]. We first provide themotivation of our work, and the biological backgroundfor single-cell data analysis. Then, we introduce the Cytosplore [68] application andits CyteGuide extension [69]. Finally, we present two immunology findings enabledby Cytosplore in combination with A-tSNE and HSNE.
7.1.1 MotivationThe immune system primarily protects our body against bacterial, viral and para-sitic infections. However, it may also respond to harmless antigens, leading to auto-immune diseases, e.g., type-1 diabetes or rheumatoid arthritis. Detailed knowledgeof the immune system’s functioning is required to understand the cause of immune-mediated disease, which is an important step towards preventive or therapeuticmeasures. The cellular immune compartment consists of a variety of cellular sub-sets, each with a distinct function and associated phenotype. The phenotype de-scribes “the observable physical or biochemical characteristics of an organism, asdetermined by both genetic makeup and environmental influences” [113]. In the lastdecades a large number of phenotypically and functionally distinct subsets havebeen defined and, for some, a major role in disease processes has been found. Forimmune cells, the functionality mostly relates to a set of proteins expressed on thecells surface.Recently introduced mass cytometry [126], at the moment allows the observa-tion of around 50 of these proteins at the same time, four times as many as theclinical standard. However, this number is still orders ofmagnitude smaller than theestimated 10,000 immune-system-wide available proteins, providing phenotypic in-formation. Hence, specific panels of markers, corresponding to proteins of inter-est, need to be designed for each study. The composition of these panels is oftenunique to a study and it is not known beforehand, which combinations of proteinscan be expected. Therefore, the identification of different phenotypes largely needsto be carried out in a data-driven fashion by studying data heterogeneity rather than
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applying prior knowledge.
7.1.2 Biological BackgroundTo analyze heterogeneity of immune cell subsets, multiparameter analysis of im-mune cells at single-cell level is required. Flow cytometry has been the method ofchoice for this purpose, however, suffers from a limitation; it is restricted by thenumber of cellular markers that can be simultaneously analyzed, usually 10 to 12.Therefore studies employing flow cytometry are usually focused on very specific,known cell types. This limitation has been overcomeby the introduction ofmass cy-tometry. Mass cytometry is a novel, mass spectrometry-based, technique for char-acterizing protein expression on cells (cytometry) at single-cell resolution. In short,antibodies, selected to bind to specific proteins of interest on the cell membrane,are conjugated with heavy metal reporters. After staining, the cells are vaporized,atomized and ionized one by one and the remaining metals in the ion cloud can bemeasured in a mass spectrometer to quantify the selected proteins on a per-cellbasis. Mass cytometry currently allows the simultaneous analysis of around 50markers, a number which is expected to rise to 100 in the near future. This allowsmuch broader studies, for example to compare different diseases. Furthermoreit allows the inclusion of markers that usually would not be expected in a certaingroup, possibly allowing the discovery of unknown cell types.
7.1.3 CytosploreCytosplore is an interactive visual analysis system for understanding how the im-mune systemworks. The goal of the analysis framework is to provide a clear pictureof the immune systems cellular composition and the cells’ corresponding proper-ties and functionality. Cytosplore is targeted at the analysis of mass cytometry(CyTOF) data. It provides multiple linked views, showing different levels of detailand enabling the rapid definition of known and unknown cell types. Thanks toA-tSNE and HSNE, the tool handles millions of cells, each represented as a high-dimensional data point, facilitates hypothesis generation and confirmation, andprovides a significant speed up of the analytical workow.Figure 7.1 presents an example of the application, where a HSNE analysis ispreformed. On the left side of the user interface, see Figure 7.1a, a control panelis available. On this panel, the user selects the dimensions of interests, i.e., theproteins that will be used to differentiate the cell types. Once that the dimensionsare chosen, the user starts analyzing the data by creating A-tSNE or HSNE embed-dings. Cytosplore supports progressive computations [41] and the intermediateresults are immediately visualized in linked views. In the example, a HSNE analysisis performed. Figure 7.1b shows the overview embedding, where the landmarks arecolor coded according to the value of one of the chosen dimensions, showing thatthe corresponding protein is partially responsible for the separations of some ofthe clusters of landmarks.The user can manually select a cluster in the overview, either manually or with

7

85



7. Applications in Life Sciences
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Figure7.1:Cytosplore[68]isaninteractivevisualanalysissystemforunderstandinghowtheimmunesystemworks.Eachcellisrepresentedasa
high-dimensionalpoint,wherethedimensionsrepresentsthefrequencyofproteininteractions.Cytosploreoffersseverallinkedviewstoenablethe
definitionofcellsdifferentiation.Theusercaninteractivelydefinewhichdimensionsoughttobeconsideredintheanalysis(a).Embeddingsofthe
datasetarecreatedbyA-tSNE[138]orHSNE[136].InthisexampleaHSNEanalysisispresented,withanoverviewembedding(b)andadetailedview
(c).Inthedetailedembeddingtheuserselectedacluster.Thecorrespondinghigh-dimensionalprofileisvisualizedinaheatmapvisualization,enabling
theverificationofwhichdimensionsareresponsibleofthepresentedcluster.
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the help of a non-parametric clustering algorithm [46]. The selection is then usedto and create a detailed view by drilling in the HSNE hierarchy, en example of whichis presented in Figure 7.1b. In the detailed view, heterogeneity within the clusters isrevealed. The user can select a cluster of points in the embedding and analyze thecorresponding profile in a linked heatmap view, see Figure 7.1c.Cytosplore has been developed in collaboration with immunologists at the Lei-den University Medical Center, with the specific goal of empowering their analyticalcapabilities. Before the introduction of Cytosplore, the analysis of a single datasetcould take several months, often relying on printouts of tSNE [177] embeddings onsubsets of the data. With Cytosplore, the same analyses are performed in only fewhours, while avoiding any subsampling of the data thanks to the adoption of ourHSNE algorithm. In particular, Cytosplore and HSNE allowed our research partnersto discover new immune-system cell-types as we will present in Section 7.1.4.
CyteGuideTo facilitate the exploration of the HSNE hierarchy, we introduced the CyteGuideextension to cytosplore. In the basic HSNE implementation in Cytosplore, the userwould start with a high level embedding, showing only themost representative land-marks, as presented in Chapter 6. Each of these landmarks represents a group ofcells of the next, more detailed level. This approach tackles scalability issues oftechniques like tSNE in terms of data size and computational performance, how-ever, at the cost of increased user interaction. By looking just at the unorderedembeddings, the user can easily lose the overview of the state of the exploration,see the example in Figure 7.2a.

(a) (b)

Figure 7.2: Cyteguide facilitates the exploration of the HSNE hierarchy. Embeddings are organized in asunburst diagram, with the overview embedding at the center. Each embedding is automatically clus-tered using the Mean Shift algorithm [46]. Different clustes are characterized by a different color and,upon user request, a more detailed embedding of a corresponding cluster is created and arranged in thesunburst diagram. For each embedding, a heatmap is used to show the variability of each feature in thecluster. Clusters with higher variance are more interesting to be explored by the user.
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(a)

(b)

Figure 7.3: Adaptive layout of CyteGuide. Detailed embeddings can be placed at the center to reduceclutter (a). A thumbnail and breadcrumb visualization is used to keep track of the interaction (b).

Furthermore, HSNE does not provide any guidance for exploration, or overviewof the state of the exploration beyond a set of unordered embeddings. Comput-ing the embeddings is costly and can be unnecessary, if a higher level embeddingalready shows all features of interest. Therefore, guiding the user to regions of inter-est can save computation time. While our partners were able to create meaningfulinsight with HSNE, especially due to its scalability, the exploration of the hierarchybecame a challenging task. The goal of Cyteguide is to ease the process of explor-ing the hierarchy by providing an overview of the current state of the exploration,but also by pointing the user to unexplored parts that could provide deeper insightin lower levels of the hierarchy.
Figure 7.2 presents an example of Cyteguide for the analysis of a single-cellsdataset. The embedding representing the overview, i.e., containing landmarks fromthe highest HSNE scale, is presented at the center of the Cyteguide visualization inFigure 7.2b. The landmarks are colored according to the result of a Mean Shift [46]clustering that is directly controlled by the user. In the example of Figure 7.2b, 5clusters are identified. The circle surrounding the embedding is then divided in 5equal-sized sectors, one for each cluster. These sectors are identified by using aline with the same color of the corresponding cluster. On top of that, a heatmapvisualization is used to guide the user towards clusters that are interesting to beinvestigated further. In the heatmap, each feature is colored according to the stan-dard deviation of the feature in the cluster. Intuitively, if a cluster presents highvariance in one of the features, it may reveal higher heterogeneity at a lower level inthe HSNE hierarchy. The user decides to create more detailed embeddings for allthe five clusters. The embeddings are created in a progressive fashion, while theCyteGuide visualization is extended by placing the corresponding embeddings in
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the sunburst diagram. The process can then be iterated, and the CyteGuide visual-ization is adapted according to the user interaction.CyteGuide adopts several design choices to deal with the ever decreasing visualspace available for more detailed embeddings. Among the others, the heatmap vi-sualization shows only the feature with the highest standard deviation in a clusterif not enough space is available. Moreover, detailed embeddings can be placed atthe center of the visualization in order to reduce clutter, see Figure 7.3a. A thumb-nail and breadcrumb visualization is used to keep track of the interaction, see Fig-ure 7.3b.
7.1.4 Discovery of Unknown Cell-Types
In a previous study performed by our partners [180], a mass cytometry data seton 5.2 million cells derived from intestinal biopsies and paired blood samples wasanalyzed using a pipeline consisting of several algorithms. The goal of the studywas the identification of rare cell-types, possibly related to autoimmune diseases.These cell-types are identified by different type of interactionwith proteins, resultingin a different high-dimensional profile as presented in Section 7.1.2.In their study, Van Unen et al. [180] proposed a computational pipeline that hav-ily relies on downsampling. The data was subsampled to 2.2 million cells, hencediscarding almost 57% of the entire dataset. This choice is motivated by the limitedscalability of the algorithms comprising the pipeline, hence the subsapling of thedata is paramount for the feasibility of the computation.The downsampled dataset was then processed with SPADE [142], a techniquethat creates a tree of cell clusters. Subsets of the SPADE tree, i.e. clusters of cells,were then used to create tSNE embeddings that are then processed by the AC-CENSE algorithm [157]. ACCENSE performs a density-based subsampling and clus-tering in the tSNE space, allowing for the extraction of high-dimensional profiles as-sociated to the clusters visible in the embedding. After this final subsampling, only1.1 million cells are analyzed by the experts, effectively discarding approximately80% of the complete dataset. This pipeline is fully implemented in Cytosplore, andwe refer the interested reader to the work of Van Unen et al. [180] for more detail.Despite the insight achieved by adopting the computational pipeline, it has sev-eral limitations. First, it heavily relies on subsampling of the data to make the com-putation feasible. By discarding almost 80% of the data, rare cell subsets, e.g., con-taining less than 0.5% of the available cells, are not found during the analysis. Fi-nally, despite the subsampling, the presented pipeline requires a lot of computationtime for each step of the pipeline. Several weeks of analysis are required to processsingle-cell datasets containing millions of cells [68, 180].We proposed to substitute the complete pipeline with our Hierarchical Stochas-tic Neighbor Embedding algorithm, as presented in Chapter 6. This approach hasseveral advantages. First, it does not require a combination of several algorithms,i.e. SPADE-tSNE-ACCENSE, but provide a common framework for the analysis. Sec-ond, it does not require to subsample the data. HSNE easily scales to several mil-
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(a)

(b)

(c)(d)

Figure 7.4: Rare cell-type identification out of 5.2 million cells. At the top of the figure, a detailed HSNEembedding is shown (a). The embedding contains 1.9 million cells, corresponding to the 36.9% of theentire dataset. The embeddings are color-codedwith the expressions of differentmarkers, e.g. CD45RA,CCR7 or CD28. A small cluster is then selected and analyzed in a more detailed embdedding (b). Only0.5% of the entire dataset are present in this embedding. A cluster of cells, here at the top left of theembedding, was not known before due to the subsampling required by other computational tools (c).The cells show an association with the RCDII disease (d).

lion data points, hence it allows for the analysis of all the 5.2 million cells withoutrequiring to subsample the data. Finally, despite no data being discarded duringthe analysis, HSNE is much faster than the previously proposed pipeline, requiringonly few hours to process the data. Figure 7.4 shows an example of the analysisperformed. At the top of the figure, a detailed HSNE embedding is shown. The em-bedding contains 1.9 million cells, which correspond to 36.9% of number of cellsavailable in the dataset. The embeddings are color-coded with the expressions ofdifferent markers, e.g. CD45RA, CCR7 or CD28. A small cluster, having low valuefor the marker CD28, is selected and analyzed in a more detailed embdedding, aspresented in Figure 7.4b. The new detailed embedding, contains only 0.5% of theentire dataset. A cluster of cells, here at the top left of the embedding, was notknown before due to the subsampling required by other computational tools. Asa matter of fact, all the points in black and gray in Figure 7.4c, were not analyzedin previous study due to the subsampling. Figure 7.4d shows that the subsampledcells show an association with the RCDII disease.
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7.1.5 Discovery of Cell-Differentiation Pathways
A different discovery was made thanks to the adoption of the Progressive VisualAnalytics paradigm for single-cell analysis enabled by A-tSNE. As we presented inChapter 4, A-tSNE fully support progressive computations, hence the intermedi-ate results of the optimization are presented to the user that decides on the con-vergence of the algorithm. Our research partners at the Leiden University MedicalCenter, were early adopters of the A-tSNE as implemented in Cytosplore. While ob-serving the evolution of a single-cell data embedding, as presented in Figure 7.5a,they observed that in the early stage of the optimization, cells were creating a lin-ear structure of points [102]. This observation was particularly interesting, sincethe dataset they were analyzing potentially contains precursor cells, colored in red

(a)

(b) (c)

Figure 7.5: Cell pathways identitification. A-tSNE is used to visualize the intermediate results of thetSNE optimization (a). Our research partners observed that the embedding presents a dominating linearstructure during the early stages of its evolution (a3). They hypothesized that this structure representsthe differentiation pathways from precursor cells, colored in red, to two different cell types (b). The high-dimensional profile of the cells on the pathway is then extracted (c) and used to verify the hypothesiswith experiments in the laboratory [102].

7

91



7. Applications in Life Sciences

in Figure 7.5a, and these cells were visible at the center of the structure. Precur-sor cells play a crucial role in several biological phenomena since they behave as“building blocks” for other immune-system cells, as they can differentiate into mul-tiple types of more specialized cell types. The transformation of a precursor cell toa specialized cell type takes the name of differentiation pathway, and remain largelyunclear [102].Our partners hypothesized that the linear structure was showing two differenti-ation pathways from the precursor cells, to two different types of specialized cell-types, see Figure 7.5b. Cells along the structure represents the different stages ofthe differentiation, fromwhich a high-dimensional evolution profile is extracted andpresented in Figure 7.5c. This profile, represents the different protein interactionsduring cell differentiation. This information was used by our partners to validatetheir hypothesis. In laboratory experiments, they managed to induce the differenti-ation of the precursor cells by exposing them with the proper combination of pro-teins [102], hence validating the original insight.The readermay nowwonder, how reliable is an insight obtained by looking at theoptimization of the embedding. This is a legitimate consideration, as a matter offact, the tSNE cost function is very far from being optimized during the early stageof the embedding evolution. However, if we consider carefully how the optimiza-tion is performed, we may observe that there is a reason why the linear structureappears. As introduced in Section 4.3.3, an optimization strategy called early exag-
geration is used. To avoid local minima, during the early stage of the embeddingcomputation, attractive forces between points are exaggerated, hence the name ofearly exaggeration. This result in better representation of major structures in thehigh-dimensional data during the first iterations, since the repulsive forces are lesseffective in spreading the points in the embedding. We believe that this is an inter-esting example in which, progressive computations may provide additional insightnot only on the data that is studied, but also on the adopted algorithm.
7.1.6 Cytosplore ViewerIn the previous sections, we presented applications of the techniques developedin this thesis for single-cell analysis. The applications are aimed at the analysison mass cytometry data, with a specific focus on the understanding of how theimmune system works. Mass cytometry is just one of the acquisition techniquesthat, in recent years, enabled the acquisition of large single cell datasets. Anothernotable example, is given by the Allen Institute for Brain Science1. In their recentwork [67], the Allen Institute acquired data from 15 thousand cells, i.e., neurons, lo-cated in a human brain region called the “Middle Temporal Gyrus”. For each cell, theamount of activity ofmore than 20 thousand geneswasmeasuredwith a techniquecalled RNA-sequencing. The data was then used to define a hierarchy of differentcortical cell types that are found in the human brain. Among the findings, the sci-entist discovered dramatic differences between homologous cells in the human
1http://www.brain-map.org/
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Figure 7.6: Cytosplore Viewer is the accompanying visualization tool to the “Middle Temporal Gyrus”dataset. The tools is an evolution of Cytosplore that is specifically designed to facilitate the explorationof the hierarchy of neuron types found by the Allen Institute for Brain Science. In this figure, a Cyteguidelayout is used to organize tSNE mapping of the cells. Note that, differently from the original Cyteguideimplementation, in Cytosplore Viewer the hierarchy is pre-defined by the scientists at the Allen Institute.

and mouse, hence revealing the importance of studying directly the human braindirectly [67].The Middle Temporal Gyrus dataset is openly available to anyone interested instudying it2. In order to facilitate the exploration of the data, together with the AllenBrain Institute we developed a visualization tool called “Cytosplore Viewer”3. Cy-tosplore Viewer is based on the techniques and applications presented in this dis-sertation. It is an evolution of Cytosplore [68] and is developed as a collaborationbetween the Allen Institute for Brain Science, the Leiden University Medical Cen-ter and the Delft University of Technology. Figure 7.6 shows how the hierarchy ofcortical cell types is visualized in Cytosplore Viewer by adopting the Cyteguide [69]visualization. Moreover, the tool allows for the recomputation of the tSNE mapsthat are provided by the Allen Institute by selecting a reduced set of genes, i.e., di-mensions. The embeddings are computed in a matter of seconds by using theA-tSNE [138] algorithm presented in Chapter 5.
2http://celltypes.brain-map.org/rnaseq3https://viewer.cytosplore.org/
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7.2 Hyperspectral Volume Data
In Chapter 6, we introduced the Hierarchical Stochastic Neighbor Embedding algo-rithm (HSNE). As a test case for HSNE, in Section 6.5.1 we presented the analysisof hyperspectral images of the Sun surface and the area surrounding the city of LosAngeles. HSNE is well suited for the analysis of this type of data. While each pixelin the image represents a high-dimensional vector encoding the intensity of dif-ferent wavelengths, making the application of non-linear dimensionality-reductioncompelling, the image high resolution poses challenges in the scalability of thechosen approach. The same analytical pipeline can be adopted for biomedical-imaging data. Examples of possible acquisition techniques that generates high-dimensional images are mass-spectrometry imaging [111], functional MRI [17] andperfusion imaging [93].In collaboration with the Leiden University Medical Center, we demonstratedthe effectiveness of HSNE applied to hyperspectral-volume data [3]. Thanks to thescalability of HSNE, we were able to analyze stacks of hyperspectral images repre-senting a volume. Figure 7.7 shows an example of a mass-spectrometry volumecontaining a tumor. The overview embedding is used to quickly identify the re-gion of interest, i.e., the tissue foreground. Detailed embeddings are then generatedand reveal the tumor and the connective tissue. In our study, we analyzed severaldatasets, ranging from 10 thousand voxels, i.e., cells in the volume, to 1.3 million.We demonstrated that HSNE reveals, relatively fast and in an interactive data-drivenmanner, multiscale molecular structures that might hold biological interest. Thesestructures are otherwise very computationally difficult to identify using alternativepipelines.

Figure 7.7: HSNE for hyperspectral volume data. A mass-spectroscopy volume consisting of 150 thou-sand voxel, i.e., cells, each described by 8 thousand dimensions is analyzed. By exploring the hierarchy,tumor and connective tissue are easily identified [3].
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8
Multiscale Visualization
and Exploration of Large

Bipartite Graphs
The web is more a social creation than a technical one.

Tim Berners-Lee

In this chapter, we present a novel approach for the visualization of large bipartite graph. Our
analytics tool, which takes the name of WAOW-Vis, relies on the HSNE algorithm to create two
hierarchical representation of the sets of nodes in the bipartite graph. We enable a multiscale
exploration of communities created by connected nodes and we demonstrate the application
potential in the exploration of social-network data. In particular, we show howWAOW-Vis high-
lights communities of Twitter users that follows only polarized sources of information.

N. Pezzotti, J.-D. Fekete, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Multiscale visu-alization and exploration of large bipartite graphs. In Computer Graphics Forum, volume 37,page 12, 2018 [135].



8. Multiscale Visualization and Exploration of Large Bipartite Graphs

8.1 Introduction
The previous chapters focused mainly on the analysis of high-dimensional datausing non-linear dimensionality-reduction techniques. In this chapter we exploreand present extensions to our Hierarchical Stochastic Neighbor Embedding algo-rithm to enable the analysis of very large bipartite graph. Our results demonstratethat dimensionality-reduction can be used to solve analytical problems beyond theanalysis of high-dimensional data.The bipartite graph is an important abstraction in computer science; verticesin the graph are divided into two disjoint and independent collections of items Uand V . The edges in the graph represent the relationships between the elementsin the two collections and, therefore, only connect elements in U to elements in V .Several problems can be modeled as a bipartite graph analysis, for example, thetwo collections may be software developers and source files, gene mutations andpatients in a cohort study or social media users and the news outlets they followon social media. Previous work [65,185] has identified the following analytical tasksfor the exploratory analysis of bipartite graphs.
(T1) Identifying clusters of similar elements in U with regard to their connectionsto elements in V and vice versa.
(T2) Understanding the interrelationships between the clusters in the two collec-tions U and V .

A widely used approach for performing these tasks is to visualize the bipar-tite graph using a node-link visualization. A commonly used approach separatesthe two collections of items on screen. Vertices are displayed as points arrangedalong two parallel axes, i.e., corresponding to U and V , and the edges are visualizedas lines connecting the vertices [65, 185], see Figure 8.2a. By using matrix reorder-ing algorithms on the adjacency matrix of the graph [13, 185], vertices that share asimilar connection pattern with respect to the other collection can be placed closetogether along the axis, allowing for identification of vertices with similar connec-tions (T1) and their mutual relationships (T2). However, node-link visualizations donot scale for the analysis of bipartite graphs containing more than a few hundredsvertices due to the resulting visual clutter [52]. To overcome this limitation, algo-rithmic graph preprocessing techniques are often used to reduce the complexityof the graph to be drawn [185]. For bipartite graphs, biclustering algorithms, alsoknown as co-clustering techniques, become the standard for the identification ofsub-clusters in U and V that share a similar connection pattern to the other col-lection [61, 105, 125, 141]. Clusters are then visualized as aggregated vertices in thenode-link diagram. Nonetheless, such an approach assumes that there is no vari-ability within a cluster, which is problematic when the data is large and containsa hierarchy of sub-clusters. For example, communities of social media users mayshare similar connections to a set of news feeds, but they may also contain subcommunities where the connections are slightly different.
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(a) (b) (c) (d) (e)

U V
Overview

Detailed

(f)

Filter & 
Drill-in

Figure 8.1: Example of WAOW-Vis for a bipartite graph containing a collection U of 9.4M Twitter usersis linked to a collection of 228 V of Twitter feeds associated to programming languages and US’ newsoutlets. The bipartite graph is preprocessed by the HSNE algorithm that extracts a hierarchy of land-marks, i.e., sets of vertices. In the overview, landmarks in the highest scale for the two collections areplaced in (b,d) 1- and (a,e) 2-dimensional embeddings that reveal major clusters of similarly connectedvertices (c). The hierarchy is explored with an overview-first and details-on-demand approach that re-veals hierarchies of sub-clusters (f).

Toaddress this problemwepresentWho’s-Active-On-What-Visualization (WAOW-Vis), a technique designed to reveal hierarchies of clusters in bipartite graphs. Tothis end, we adapt our multiscale dimensionality-reduction algorithm, the “Hierar-chical Stochastic Neighbor Embedding” (HSNE) [136] that is presented in Chapter 6,for extracting and visualizing clusters of similarly connected vertices. Figure 8.1b-dshows the resulting layout of WAOW-Vis, where two 1-dimensional embeddings areused to visualize the vertices in a layout that mimic node-link visualizations for bi-partite graphs (T1). Moreover, we show that, by adding 2-dimensional embeddingsof the same vertices, we obtain more detailed insight on the interrelationships be-tween the clusters (T2). As an illustration of our results and goal, in Figure 8.1a wecan identify clusters and see the internal structure much easier than in Figure 8.1b.However, Figure 8.1a-e, shows only one scale of the hierarchy computed by HSNE.As we presented in Chapter 6, HSNE does not embed the dataset in its entirety butit selects representative vertices at different scales. i.e., landmarks. The visualiza-tion of the landmarks in the highest scale shows an overview of the main clustersof connected vertices in the graph. The user can then select these clusters and askfor a detailed visualization that reveals more sub-clusters for the landmarks in the
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lower scale, as shown in Figure 8.1f.Several challenges need to be overcome to achieve our goals using HSNE. Di-mensionality reduction algorithms rely on a dense representation of the data for thecomputation of the similarities between points. This fact constitutes a problem ifthe dimensionality-reduction is applied to a large adjacency matrix that is saved ina dense format, as it will not fit in memory. Consider for example a dataset thatwe mined from Twitter, which we will present in Section 8.7. It comprises of 19Musers linked to 329 user interests. The dense representation of the biadjacencymatrix would occupy 23 GB in memory if organized as required by dimensionality-reduction algorithms such asHSNE. Thenwe adopt the Jaccard similarities, a com-pelling metric that measure the amount of shared links, to compute similaritiesbetween vertices. Figure 8.2 shows an example of how the similarities for the col-lection U are computed. The vertices in U are seen as sets of elements in V . TheJaccard similarities are computed as the number of shared elements between setsdivided by the size of their union. A similar computation is done for the vertices in V .Scalable computations and memory usage are enabled by the use of compressedbitmaps [100] to represent the sets and by a novel tree-based data structure, theSets Intersection Tree (SIT), to efficiently compute the Jaccard similarities. More-over, we show that by combining the k-nearest neighborhood graph, computed asinput for HSNE, the resulting embeddings reveal clusters of vertices at differentscales (T1) and their interrelationships (T2). Finally, since the user can be con-fused by the fact that same vertices may appear in different locations in the 1- and2-dimensional embeddings, we present a technique that enforces similar positionson the vertical axis for the same vertices to facilitate the creation of a mental map.The contribution of this chapter is the WAOW-Vis framework, that allows foranalyzing bipartite graphs on a social-network scale at different levels of detail. Thedevelopment of WAOW-Vis is made possible by a set of additional contributionsdescribed in the chapter:
• The usage of compressed bitmaps as high-dimensional data representation forbipartite-graphs.
• A data structure for the efficient computations of similarities between compressedbitmaps in the Jaccard space; the Sets Intersection Tree.
• A modification of the tSNE [177] algorithm for the creation of consistent and in-terrelated embeddings.

The rest of the chapter is organized as follows. In the next section we presentthe relatedwork. An overview ofWAOW-Vis is given in Section 8.3. Section 8.4 high-lights the generation of the hierarchical representation of the data. In Section 8.5we present the interactive exploration using WAOW-Vis. Finally, in Section 8.7 wevalidateWAOW-Vis via several test cases based on three datasets that we obtainedby mining Twitter. We demonstrate how WAOW-Vis is particularly effective in high-lighting communities of users that shares similar interests.
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Figure 8.2: Computation of the similarities between the vertices in U . Vertices in U are seen as sets ofelements in V (b). The Jaccard similarities are computed as the cardinality of the intersection dividedby the cardinality of the union (c).

8.2 Related Work
A Bipartite graph (U ,V ,E) is a particular type of multifaceted graph [55] where ver-tices form two disjoint sets U and V , and edges E = (u, v) ∈ U × V connect ele-ments from each sets. Bipartite graphs can be displayed using traditional visualencodings for graphs such as node-link diagrams and adjacency matrices [185].In a node-link diagram vertices are placed in a 2-dimensional space using a lay-out algorithm [167]. Adjacency-matrix visualizations rely on matrix reordering tech-niques for highlighting connectivity patterns, e.g., cliques of strongly connectednodes [13, 185]. Empirical studies show that node-link visualizations are usuallymore intuitive for understanding the graph but, for dense graphs, adjacency matrixvisualizations outperform node-link visualizations due to the reduced visual clut-ter [52]. Node-link diagrams relying on dimensionality reduction techniques havealso been presented [108], but they do not scale beyond few thousand vertices. Tocombine the advantages of both worlds, hybrid techniques had been developed.The MatrixExplorer [63] and the NodeTrix [64] visualization systems are just twoexamples that combine node-links and adjacency matrix visualization in order toprovide greater insights. WAOW-Vis is a hybrid technique that scales to bipartite-graphs with several millions vertices and edges. Similarly tomatrix reordering tech-niques, it allows for identifying clusters of similarly connected vertices as clustersof points in the dimensionality reduction layouts (T1), i.e., embeddings (see Fig-ure 8.1a). Then, thanks to a visual design similar to node-link diagrams, WAOW-Visprovides a better interpretability of the results by showing 1-dimensional embed-
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dings and their interrelationships (T2) (see Figure 8.1b-d).In order to enforce a distinction between the collections U and V , different ap-proaches allocate separated visual spaces to the two collections, which can beparallel axes, interleaved axes [16], or concentric circles [36]. Edges connecting thevertices in the two collections are then visualized as links. A subset of the linksmaybe drawn based on the user’s current focus or, to give a complete picture of the data,all the links can be drawn. Lines may be bundled in order to reduce the resultingvisual clutter [195]. This approach is used in several visual analytics systems suchas VisLink [29], PivotPath [35], PNLBs [51] and Jigsaw [164].In this chapter we focus on the analysis of large graphs, i.e., containing tens ofmillions of vertices and edges. Gaining insight fromadirect visualization of the datawith one of the previously described techniques is not possible due to the resultingvisual clutter. Algorithmic graph preprocessing [185] is therefore of major impor-tance in order to create meaningful visualizations. Graph filtering algorithms areused for reducing the number of the visualized vertices [20, 101]. Jia et al. [78], forexample, remove vertices that are not considered important according to a notionof graph centrality. In graph aggregation techniques, the vertices are not simplyremoved, but multiple vertices are merged into a single one, hence reducing thesize of the resulting graph. Vertices can be merged according to different crite-ria, e.g., by treating cliques of strongly connected vertices as a single node in thevisualization [11, 37]. For bipartite graphs, aggregation is usually performed usingbiclustering algorithms [105] which create clusters in the two collections U and
V based on their mutual relationships. Biclustering algorithms are often used inbioinformatic [61, 125, 141] and for the analysis of deep neural networks [115]. Ifthe graph simplification is repeated multiple times, a hierarchical graph, also called
compound graph, is created. The hierarchical graph is then analyzed with visual-izations that allow for the exploration of the data at different scales [63,64,70,187].Existing techniques, however, are limited in the analysis of large graphs. The pre-processing represents a bottleneck that requiresmany hours, or even days, to com-plete, hence limiting the interactive analysis of the data. Our goal is to tackle bipar-tite graphswith tens ofmillions of vertices and edges at interactive speed on regularhardware.
8.3 WAOW-Vis overview
Figure 8.3 shows the overview of the generation of WAOW-Vis and its interactiveexploration. WAOW-Vis uses separated visual spaces for visualizing the two collec-tions, and creates a layout similar to the traditional and easy to interpret node-linkvisualization for bipartite graphs, as shown in Figure 8.1b-d. However, we proposeto enrich the visualization with 2-dimensional embeddings, see Figure 8.1a and e.This solution reveals more clusters and richer information about their interrelation-ships, as vertices havemore visual space to be layed in (T2). We considered addinglinks between the 2D and 1D embeddings to make the identification of the samevertices easier. However, we quickly realized it would introduce excessive clutter
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Figure 8.3: Overview of WAOW-Vis. Two hierarchical representations of the collections U and V arecomputed. The elements in the collections are encoded via compressed bitmaps (a). The k-nearestneighborhood graph are computed for the non-duplicated bitmaps (b) and the hierarchy is computedby HSNE (c). In WAOW-Vis, we first present an overview of the data (d). The user may focus on specificregions of interest and generate more detailed visualizations (e).

and, instead, we developed a novel embedding computation technique keeps cor-responding vertices roughly aligned (Section 8.5.2).Themain contribution of WAOW-Vis is it scalability to graphs that, to the best ofour knowledge, cannot be handled by existing techniques. This result is achievedthanks to a novel algorithmic graph preprocessing that take advantage of the re-cent advancements in the field of large high-dimensional data analysis [136, 168].Our approach can be separated in two steps, the hierarchy computation and the
exploratory analysis of the so computed hierarchies of vertices.In the hierarchy computation step, two identical computational pipelines areapplied to the collections U and V separately (Figure 8.3a-c). First, the biadjacencymatrices of the bipartite graph are transformed into two collections of compressedbitmaps. A bitmap associated with a vertex in u ∈ U contains the set of verticesin V that are connected to u and vice versa (Section 8.4.1). Then, the compressedbitmaps are organized in a novel data structure, the Set Intersection Tree (SIT), pre-
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sented in Section 8.4.2. The SIT allows for the efficient computation of Jaccardsimilarities between vertices, leading to a scalable approach for the creation of the
k-nearest neighborhoods graph. The k-nearest neighborhoods graph is then usedas the input for the Hierarchical Stochastic Neighbor Embedding (HSNE) [136] al-gorithm that generates a hierarchical representation of the collections U and V(Section 8.4.3). Intuitively, the resulting hierarchies contain a number of scales.Each scale contains a number of landmarks that can be seen as a collection ofelements in the two collection of vertices U and V .

The exploratory analysis starts from an overview visualization, an example ofwhich is presented in Figure 8.1a-e. The visualization contains embeddings of thelandmarks at the highest scale of the HSNE hierarchy for each collection U and
V that reveal similarly connected clusters of vertices (Sections 8.5.1 and 8.5.2).Furthermore, the user can request more detailed visualizations by filtering uninter-esting clusters of vertices and by drilling into the hierarchies (Section 8.5.3), hencegenerating novel layouts containing data points from a more detailed HSNE scale(Figure 8.1f).

With this approach, the user can reveal more heterogeneity within one of thepreviously identified cluster of vertices (T1). WAOW-Vis is designed to explore thestructure of bipartite graphs and the relations between the structures of the twosets of vertices. From the perspective of the task taxonomy of graph visualizationby Lee et al. [98], WAOW-Vissupports group-level and cluster-level tasks, but notpath-level tasks. The node-level and link-level tasks can be supported with varyinglevels or precision depending on the visualized scale.
8.4 Hierarchy computation
In this section we present how the bipartite graph is transformed in the two hier-archical data representations that are used for the creation of WAOW-Vis. In eachsubsection we present a singlemodule of computational pipeline that is introducedin Figure 8.3a-c.
8.4.1 Compressed bitmaps as high-dimensional data
Figure 8.4 shows an example of how the data is transformed in a collection of com-pressed bitmaps that are used for the efficient computation of the similarities, bothin terms of memory and computations. The corresponding adjacency matrix forthis data is presented in Figure 8.4b. The matrix can be seen as a composition oftwo disjoint and symmetric regions called biadjacency matrices, one of which isshown in Figure 8.4c. Biadjacency matrices encode the relationships between theset U and V and vice versa.

We propose to treat the biadjacencymatrices as high-dimensional datasets andtomeasure similarities between the vertices using the Jaccard similarities as intro-duced in Figure 8.2. Given two indices i and j , the Jaccard similarity of the corre-
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Figure 8.4: Bipartite graphs as high-dimensional data. A bipartite graph connects a collection of users
U with a collection of Twitter feeds V . To avoid clutter, here we show only the links connecting u2 and
v3 (a). The bipartite graph is represented by an adjacency matrix (b). The adjacency matrix containstwo symmetric biadjacency matrices (c). The elements in U and V are seen as two high-dimensionaldatasets. To reduce the memory occupation and speed up the similarities computation, the data pointsare saved as compressed bitmaps using, for example, a Run-Length Encoding [148](d).

sponding vertices is defined as follows:
J
(
vi ,v j

)= ∑
b
(
vi [b]∧v j [b]

)∑
b
(
vi [b]∨v j [b]

) , (8.1)
where vi [b] is the b-th element in the i -th rowof the biadjacencymatrixwhere vi ,v j ∈
U . The numerator computes the number of shared elements in U for vi and v j ,while the denominator counts the number of elements in the union of the two.Dimensionality-reduction techniques requires the data to be in the formof densematrices, i.e., losing the advantage of a sparse representation of the biadjacencymatrices. Moreover, the resulting datamatrix will not fit inmemory for large graphs,e.g., containing tens of millions of vertices. To overcome this limitation, we pro-pose to treat the bipartite graph as a collection of compressed bitmaps, also calledbitsets, where every row in the biadjacency matrices is saved as a compressedbitmap. A bitmap is a data representation in which every element in the set isrepresented by a bit. Bitmaps permit the extremely fast computation of the Jac-card similarity, see Equation 8.1. The numerator is computed with a bitwise-AND
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between the two bitmaps and the denominator with a bitwise-OR. However, thememory occupation of the bitmap corresponds to the maximum number of ele-ments in the set, i.e., the number of columns in our setting, making it identical toa dense representation. Compression techniques are used to address this prob-lem and to dramatically reduce the memory occupation of data. A straightforwardapproach is to use run-length encoding (RLE) [148], in which repetitions of consec-utive bits are stored as a single value as well as the number of times it occurs.In this way, the biadjacency matrices are transformed in two collections of com-pressed bitmaps representing the vertices, see Figure 8.4d. In WAOW-Vis we usethe Roaring Bitmaps [100], which are a hybrid data structure that combines differ-ent compression schemes on chunks of the bitmap based on their characteristics,e.g. their sparsity. Roaring Bitmaps are up to two orders of magnitude faster thantraditional set implementations and are used by several Big-Data processing en-gines such as Apache-Lucene [110] and -Spark [193]. In the next section we presenthow the k-nearest neighborhood graph, which is needed for the computation of theHSNE hierarchies, is built from a large collection of compressed bitmaps.
8.4.2 Sets Intersection Tree
Once the biadjacency matrices are converted into two collections of bitmaps, Uand V , we compute the k-nearest neighborhood graph for each collection. As theprocedure is the same for both, wewill concentrate on the case of U . To the best ofour knowledge, no data structure exists to efficiently compute the k-nearest neigh-bors among compressed bitmaps. To address this problem we propose a noveltree-based data structure; the Sets Intersection Tree (SIT). Each node in this treerepresents an element in U and the SIT will support an efficient algorithm to calcu-late the k-nearest neighbors of a given query element q , represented by its bitmap,by using a special traversal algorithm. The efficiency of this traversal results fromthe possibility for an early termination, which enables us to skip testing many ele-ments in U . The early termination will be enabled by two criteria. First, each nodecontains a union of all bitmaps of its subtree, enabling a quick test to determine if qshares any common element with any node in the subtree by using a bitwise ANDoperation. Second, the special construction of the tree will enable us to evaluate abound on the Jaccard similarities of all elements in a subtree using only the bitmapof this subtree’s root node, the pivot. Before describing the traversal algorithm, wefirst detail the construction, as it will facilitate deriving the bound on the Jaccardsimilarity.

The actual construction of the tree works as follows. We select the element uwith the lowest cardinality to be the root node of our binary tree. Its bitmap will beused as a pivot, hence the name, to partition the remaining elements in U , into aset U1, which contains all elements intersecting u (an AND operation between thebitmaps will not result in a zero), and the rest U2. The set U1 will form the left, U2the right subtree of u. The subtrees are build up recursively in the same manner,choosing a pivot of lowest cardinality and building the subtrees. A special case
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Figure 8.5: Sets IntersectionTreeBitmaps are organized in a number of subtrees. (a) Every tree containsbitmaps that are intersectingwith the pivot, p0
0 and p0

1 in this case. Every sub tree is recursively divided insubtrees. (b) The SIT is implemented with a left-child right-sibling binary-tree. Bitmaps are not actuallyinserted in the tree but every node references to a linear array of indices. (c) The query for a set q startsfrom the root, i.e., p0
0 . All the siblings of a visited node are traversed, i.e., p0

1 . Children of a node are visited
if the union of the sets in the subtree are intersecting q . Both p1

0 and p0
0 are visited in the example.

are identical elements, which do not appear multiple times in the tree, instead eachnode will contain the indices of the corresponding elements in U . Additionally, wecompute the union of the bitmaps in each subtree, which will be used for the earlytermination. We use a bottom-up method by performing an OR operation betweenthe bitmaps of the children of each node.
The querying of k-nearest neighborhoods in the SIT works as follows. Given q ∈

U for which we want to find the k-nearest neighbors, we start a recursive visit fromthe root of the SIT, p0
0 in Figure 8.5. During the traversal, we maintain a min-heapdata structure of size k that keeps track of the closest neighbors found so far; eachvisited node is compared against the minimal element in the heap and replaces it ifits Jaccard similarity (Equation 8.1; the intersection divided by the union) is larger.At the end of the traversal, the heap will contain the k-nearest neighbors.

For each node, we test q ’s bitmap against the precomputed union of the sets inits subtree M 0
0 .If J

(
q, M 0

0

) 6= 0, then the traversal continues with the children, other-wise, they have no overlap and cannot be similar (Jaccard similarity is zero). It isinsufficient to test only against the bitmap of a node, as illustrated in Figure 8.5c; p0
0is not intersecting q (Jaccard similarity is 0), however, q intersects p1

0 in the subtree,which has J
(
q, p1

0

)= 0.5.
An additional early termination criterion stems from theway that the SIT is con-structed. By selecting the smallest set to be the pivot of a subtree, we are inherentlyintroducing an ordering for the sets, i.e., the deeper a pivot, the larger it is. Becausethe denominator of the Jaccard similarity contains the union of the two sets, wecan compute an upper bound for the similarities that we may find in a given subtree. If the upper bound is lower than minimal element in the heap, we can avoidvisiting the subtree.
Finally, for high efficiency, we propose a fewoptimizations, whichwedetail here.First, our tree does not actually store the bitmaps in the nodes, as this would lead tomany copy operations of the data during the construction process. Instead, eachnode contains pointers to a large linear array of indices that contains all bitmaps
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in sequential order. The partitioning is then only affecting the indices, but not thebitmaps. Second, the construction of a subtree is stopped when only a few ele-ments (typically 20) are left, as then the traversal cost actually exceeds the costfor testing all elements individually. This strategy follows bucket KD-Trees [120],where the final elements are stored in a list. This solution, together with the efficientcomputation of bitwise-AND and -OR granted by the RoaringBitmaps, enables us tocompute the k-nearest neighborhood graphs containing several millions of nodes.
8.4.3 Hierarchical representationThe hierarchical representation of the biparite graph is generated by computingthe Hierarchical Stochastic Neighbor Embedding (HSNE) [136]. We differ from theoriginal HSNE algorithm, which is openly available as parte of the HDI library [134],as we compute the hierarchies starting from the k-nearest neighborhoods graphcomputed using the Jaccard similarities (Equation 8.1). This HSNE result allowsus to create visual clusters of vertices in U that share connections to the othercollection V in amultiscale approach (T1). Furthermore, by combining compressedbitmaps, the SIT tree, and theHSNE algorithm, we are able to scale the computationto extremely large biadjacency matrices, making it possible to analyze dataset of asocial-network scale.More specifically, HSNE organizes the high-dimensional points or, in our case,the vertices, in a number of scales that are organized hierarchically. Each scale con-tains a number of landmarks that represent the complete data at the level of detailidentified by the scale. Intuitively, a landmark is a collection of similarly connectedvertices, where the degree of similarity is given by the position in the hierarchy. Forlower scales, only vertices that shares very similar connections belong to the samelandmark, while this constraint is relaxed the higher the scale in the hierarchy.We denote the set of landmarks extracted from U at scale s as the collection
U s . U 1 represents the first scale, which is the input dataset U . Higher scales arealways subsets of previous scales, hence U s ⊂ U s−1. Inside a scale, the similaritybetween the landmarks is encoded by a transitionmatrix T s

U
. For the first scale, T 1

Uis given by the k-nearest neighborhood graph that is weighted by the similarities.Landmarks in the next scale are selected among those that have higher central-ity in the graph. The centrality is computed by using the transition matrix T 1
U

as aMarkov Chain and by computing its stationary distribution with a Monte Carlo ap-proach [50]. Vertices with value in the stationary distribution higher than a giventhreshold are selected to be landmarks in the higher scale U 2.A link between landmarks U 2 to the landmarks in the lower scale U 1 is thencomputed. More generally, it is defined as area of influence of U s over U s−1 and isencoded in thematrix I s
U
. I s

U
has size |U s−1|×|U s |, where I s (i , j )U is the probabilitythat the landmark U s−1

i in the previous scale is well represented, i.e., close in the k-nearest neighborhood graph, by U s
j . The similarity matrix T s

U
for landmarks in the

new scale s encodes the overlap of the area of influence of the landmarks U s . Theprocess is iterated until only a limited number of landmarks, i.e., less then a thou-
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sand, remain in the highest scale. A similar hierarchical representation is derivedfor the collection V . In the next section we present how the hierarchy is visualizedand explored.
8.5 Exploratory analysis
In this section we present the design of the visualizations used to interactively ex-plore the hierarchical data representation of the graph. First we present the layoutof a single visualization (Section 8.5.1). Then we present how the dimensionalityreduction is performed for every collection (Section 8.5.2). Finally, we explain howmore detailed visualizations are generated from a subset of user-selected land-marks (Section 8.5.3).
8.5.1 Visual designFigure 8.1 shows an instance of WAOW-Vis. The visualization consist of four em-beddings. Every point in the embeddings represent a landmark in the correspondingHSNE scale. Landmarks are placed close together if they are similar according totheir Jaccard similarities at the given scale. This allows us to identify groups ofelements in the collection U that have similar connections to V , and vice versa.Moreover, a landmark corresponds to a set of vertices in the original collection, aspresented in Section 8.4.3. The size of points in the visualization encodes the num-ber of vertices represented by the corresponding landmark [136].At the center of the visualization two 1-dimensional embeddings, one for U andone for V , are used to create a layout that is similar to a traditional node-link dia-gram for bipartite graphs. We adopt this layout because it is reported that node-linkdiagrams are more intuitive for understanding the graph [52]. By brushing on oneof the embeddings, the vertices are selected and the links to the other collectionare visualized as lines. These lines are then bundled with a real-time implementa-tion of the force-directed bundling algorithm proposed by Holten and van Wijk [71].Each collection U and V is also shown in a 2-dimensional embedding, as shownin Figure 8.1a and e. The rationale behind this choice is that, the more visual spaceis available for the landmarks, the more interrelationships between the clusters be-come apparent as it can be seen by comparing Figure 8.1a to Figure 8.1b (T2).Finally, we found that, if attributes are available for the element in the collection,it is useful for the understanding of the interrelationships between the clusters toadd this information using, e.g., a word-cloud visualization. This feature leads to theidentification and labeling of clusters of landmarks. In the WAOW-Vis presented inFigure 8.1, the two clusters in the collection V consists of Twitter feeds associatedto two different domains, i.e., computer science and United States’ news outlets.
8.5.2 Embedding computation and alignmentWithout any additional constraint, the sameclusters in the 1- and 2-dimensional em-beddingsmight be placed in different positions along the vertical axis, whichmakes
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(b) (c)

(a)

Figure 8.6: Possible problems that arise if the embeddings are generated independently from eachother. Here, the samedata presented in Figure 8.1a-e is embeddedwith a tSNEminimization [177] insteadof our approach as presented in Section 8.5.2. Elements in U and V are badly aligned, hence clutteringthe visualization of the links between the two collections. Moreover, the same cluster of landmarks mayappear in different positions along the vertical axis (a). Bundling the lines reduces clutter but does notproduce a neat layout as in Figure 8.1a-e (b,c).

associations between the related embeddings a difficult task. Example of possibleproblems are shown in Figure 8.6 for the same data presented in Figure 8.1a-e.The two clusters highlighted in red are in different positions along the vertical axis.Furthermore, the two collections are not properly aligned, hence creating a clut-tered visualization of the links. By bundling the lines, as shown in Figure 8.6b-c, theproblem is mitigated but it is not removed. To address this issue, we implementeda modified version of the tSNE algorithm [177] enforces similar positions on thevertical axis for all landmarks of the same collection and for similarly connectedlandmarks in U and V .
A single embedding is computed by randomly placing the landmarks in a 1- or2-dimensional space. With an iterative gradient-descent minimization, landmarksare then moved in the embeddings in such a way that, after a number of iterations,they are close to similar landmarks according to the transition matrix T s

U
. In thisway, clusters of landmarks in the embedding represent groups of similar elements.More specifically, we minimize the original tSNE’s cost function C tSNE

e to generate
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the embedding e which is defined as follows:
C tSNE

e = K L(T s
U ||Qe ), (8.2)

whereK L(T s
U
||Qe ) is theKullback-Leibler divergence between the joint-probabilitydistributions defined by the transitionmatrix T s

U
andQe . Qe is a joint-probability dis-tribution that is obtained by weighting the distances between the landmarks in theembedding e with the Student’s t-distribution [177]. The points are then iterativelymoved in the embedding along the negative gradient of the cost function C tSNE

e ,until their positions reflect the similarities in T s
U
. We refer the interested reader toChapter 3 for the detail on how Qe is computed and how the gradient-descent pa-rameters for C tSNE

e are chosen.In order to take into consideration the position of landmarks in a set of embed-dings F , hence enforcing the alignment between the same landmarks, we modifythe cost function Ce as follows:
Ce = (1−α)C tSNE

e +αCalign
e

= (1−α)K L(T s
U ||Qe ) +α ∑

f ∈F

∑
i∈U s

||ye
i − y f

i ||2,
(8.3)

where ye
i is the vertical position of the landmark i in the embedding e that isiteratively optimized. For an embedding f ∈ F containing landmarks from the same

collection U s , y f
i is the vertical position of i in f . For inter-collection embeddings,

i.e., optimization of U s from V s , y f
i is computed as the mean position of the land-marks in f that are connected by an edge to the landmark i in e. Ce is the com-

position of two different costs, the C tSNE
e , as presented in Equation 8.2, and Calign

e ,which minimizes the squared distances between the position of a landmarks in theembedding e and in the embedding f . The parameter α controls the weight that isgiven to the two terms. For α= 0 the cost function is the same as a traditional tSNEminimization, while for α= 1, only the squared distances along the vertical axes areminimized.As before, the embeddings are generated by moving the points in the oppositedirection of the gradient of Ce . We found that good results are obtained if we op-timize all embeddings for U and V simultaneously, letting each one influence theother during the minimization. Regarding the parameter α, we found that for ourtest cases it works well to start with a relatively high value, e.g., α = 0.5. In thisway, the landmarks are iteratively placed in similar positions along the vertical axesright from the start. However, we believe that the preservation of the similaritiesbetween similar vertices as computed by C tSNE
e is of greater importance as it is themain insight that the user aims at achieving (T1). For this reason we linearly reducethe value of α down to 0 after a number of iterations. Empirically, we found that alinear reduction of α to 0 in 500 iterations is a good strategy for all test cases.
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8.5.3 Hierarchy explorationThe data exploration is implementedwith a filter and drill-in strategy that starts fromthe highest scale in the HSNE hierarchy for both collections U and V . Landmarksat this level of abstraction represent the main clusters. WAOW-Vis provides a mul-tiscale exploration of the clusters, which is performed by letting the user select aset of landmarks in either of the two collections with a brushing interaction. Theselection leads to a refined visualization that contains the influenced landmarks inthe lower scale for the corresponding collection.We now provide the details on the creation of embeddings that contain land-marks in lower scales of the hierarchy starting from a selection in a higher scalefor one of the collection, e.g., U . A similar approach is performed if the selection iswithin V . Given landmarks U s at scale s and a set of indices of selected landmarks
A, the new visualization contains a subset of landmarks in U s−1, which are underthe area of influence of the selection in s. As defined in Section 8.4.3, the area ofinfluence of the landmarks associated to a scale s is defined by thematrix I s (i , j )U .
I s
U

has size |U s−1|× |U s |, where I s (i , j )U is the probability that the landmark U s−1
iin the previous scale is well represented by U s

j . The new embedding contains all
landmarks U s−1

k at scale s −1 for which the following is true:
∑

a∈A
I s (k, a) > θ, (8.4)

where 0 < θ ≤ 1 is a user defined threshold. Intuitively, ∑a∈A I s (k, a) representsthe probability for the landmark U s−1
k to be influence by the selection A of land-marks in U s . We experimentally found that a default value of θ = 0.5, allows forthe effective exploration of the clusters of vertices. Figure 8.1 shows an example.Once a cluster is selected, its detailed information at the lower scale can be visu-alized upon the user’s request. In the next section, we provide further examples ofhow the hierarchical exploration of the data give richer insight on the hierarchy ofclusters in the graph.

8.6 Implementation
WAOW-Vis is implemented in C++ for performance reasons and, when possible,heavily uses OpenMP [31] to parallelize computations. It fully supports the Progres-sive Visual Analytics paradigm [41, 119], allowing for the visualization of the evolu-tions of the embeddings, while the embeddings are iteratively generated. Therefore,the user does not have to wait a fixed number of iterations and can autonomouslydecide on the convergence of the embedding by evaluating their visual stability [138].The compressed bitmaps are implemented using the C++ version of the RoaringBitmaps library [100]. The modified version of the HSNE algorithm [136], presentedin this chapter, is derived from the original C++ implementation available in theHigh-Dimensional-Inspector library [134]. The embeddings are implemented in OpenGL.The word-clouds are implemented in Javascript using D3 and are integrated in the
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Figure 8.7: Analysis of the United States’ politics and news datasets. The News dataset comprises acollection V of Twitter accounts of journalists from two of the United States’ major news outlets, CNNand Fox News. Users that follows the feeds in V are in the collection U . Two echo chambers [47] areidentified in the dataset (a,b). Users in the top cluster are following only journalists from Fox News (a),while the ones at the bottom are following only CNN’s journalists (b). In the two visualizations (a,b)only the edges linked to the selection are shown. In the right embedding, landmarks are visualized witha green-to-orange color scale that shows the percentage of incoming edges in the current selection.The clusters of orange-colored landmarks in V confirms the strong association for the selection in U .By drilling into the CNN cluster, a sub community that follows Fox News accounts is identified (c) Theanalysis of the politics datasets does not show strong evidence of a polarized audience (d). A clustercontaining users that follow all the senators is highlighted in purple (d,e). The cluster in gray containsusers following the senators with the largest audience, while users in the red cluster follow senators withnot so many followers (d,e). A detailed visualization of the red cluster reveal that a polarized audienceexists for these senators (f).

C++ application using the QtWebKit Bridge. Finally, WAOW-Vis is released as partof the High-Dimensional-Inspector library [134].
8.7 Test cases
To evaluate WAOW-Vis we present real-world examples of the analysis of bipartitegraphs of social-network scale. We identified three domains to analyze: computerscience, news, and politics. For each one of these domains, we chose as elementsof the collection V a number of Twitter-feeds, i.e., Twitter users that post mainly inthe chosen domain. The collectionU contains all the followers for the element in V .
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Therefore, the resulting bipartite graph encodes the follower relationships betweenthe users and the Twitter-streams in the specific domain. In WAOW-Vis, clusters ofsimilar users are communities that share similar interests in the specific domain,while clusters of similar feeds, share similar groups of followers.We decided to focus on the analysis on the relationship between users andfeeds in Twitter as we are interested in exploring the presence of echo-chambers,or filter bubble, in social networks. An echo chamber is a community of users thatreceives only polarized information concerning a specific domain, e.g., politics. Thepresence of echo chambers in social networks is deemed responsible for the po-larization of the public discourse in recent years [47]. Contrary to other social net-works like Facebook, follower relationships on Twitter are openly available throughthe Twitter-API, allowing us to test WAOW-Vis on real-world data.Table 8.1 presents the overview on the datasets that we collected and analyzed.Every column corresponds to a bipartite graph associated with a specific domain.The computer science dataset contains Twitter-feeds associated with several pro-gramming languages, e.g., Java, C++, PHP andOpenGL. The news dataset containsjournalists and presenters of two of themajor United States’ news outlets, i.e., CNNand Fox News. The politics datasets contains the Twitter accounts of every UnitedStates’ senator. The last column presents an additional dataset which is the unionof the previously introduced ones. The first three rows present the number of ver-tices in the collections and the edges connecting them. Note that, for the presenteddatasets, |U |À |V | due to scalability issues of the Twitter mining. Twitter imposesa limitation in the number of user-followers relationships, i.e., edges in our graph,that can be obtained per minute. This limit is of 5000 links per minute, hence itrequired approximately 9 effective days of mining for gathering the datasets.In Table 8.1, we present the computation time in seconds for the three process-ing steps presented in Section 8.4, together with themaximummemory occupationof WAOW-Vis for each dataset. The results are generated on a workstation with an3.40GHz Intel i7-2600 CPU and 20 GB of memory. The computation of the hierar-chies needed for the analysis of the largest dataset, which contains 19.7M users,takes less than one hour. To give a perspective on size, Twitter has an estimatednumber of 340M active daily users. We performed a comparison with the tradi-tional HSNE hierarchy computation, which relies on the FLANN library [120] for thesimilarity computation, using the dense representation of the graph. However, thecomputation of the HSNE hierarchy is impossible to perform for all the datasetsdue to the heavy memory requirements, hence demonstrating the need for a novelapproach as presented in this work.
8.7.1 News datasetFigure 8.7a-b shows the exploratory analysis of the news dataset performed usingWAOW-Vis. Two separated clusters of Twitter feeds are visible in the right embed-ding, i.e., V . By visualizing the owners of the Twitter feeds in the word cloud, we re-alize that they belong to Fox News journalists for the cluster at the top and to CNN
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Table 8.1: Datasets information are presented in the columns. The first three rows present the size ofthe biparite graph, where (M) means millions of elements. Computation time in seconds for the SITcreation, kNN and HSNE computation are presented. Finally, peak memory occupation of WAOW-Vis isgiven.
Computer S. News Politics Combined

|U | 1.97M 7.67M 12.42M 19.7M
|V | 145 83 100 329#Edges 4.4M 10.8M 24.5M 38.9MSIT (s) 13 34 63 283
kNN (s) 50 59 430 1960HSNE (s) 13 11 60 202Mem. (GB) 1.6 2.1 3.7 10.6

journalists for the one at the bottom. This insight is confirmed by the visualizationof the edges connecting the two collections. Contrary to the visualizations that wepresented so far, in Figure 8.7a-b we show the edges related to a user-defined se-lection of landmarks. Selected landmarks in the left embedding are rendered with ashade of orange, and only edges connected to these landmarks are shown. Most ofthese edges are connected to the top cluster in the embedding on the right. Here,landmark colors encode the percentage of incoming edges that are currently se-lected by the user with a green-to-orange color scale. The top cluster in the rightembedding of Figure 8.7a has the same shade of orange of the selection in the leftembedding. This means that the current user selection among U is mainly con-nected to the top cluster in V . The same observation can be done for the cluster atthe bottom of the visualization, as shown in Figure 8.7b.
For both selections, only a small number of edges are connected to the oppo-site cluster. This insight leads to the conclusion that two echo chambers [47] existfor the two news outlets. However, in Figure 8.7b, we can observe that a more con-sistent stream of edges is connecting CNN followers to the Fox News feeds. Inorder to reveal more sub-communities within the cluster, a detailed visualization isgenerated by drilling into the hierarchy. Figure 8.7c shows the resulting embedding.The selection in the embedding contains all the landmarks (i.e., group of users)that follow Fox News’ accounts. Finally, by selecting the small cluster which is en-circled in Figure 8.7, followers of international CNN reporters, such as Kyung Lahand Frederik Pleitgen, are identified.

8.7.2 Politics dataset
Figure 8.7d-f shows the exploratory analysis of the politics dataset. In this testcase, we expected to see an echo chamber for users connected to the Republi-can senators and one for those connected to the Democratic senators. However,a clear separation for the collection V is not visible in the visualization shown inFigure 8.7d. To better understand the interrelationships between the two collec-
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tions, the user interacts with WAOW-Vis in order to get a more detailed insight onthe visible clusters. The cluster 1 in Figure 8.7d is the most distinct one. To un-derstand the connections of the clusters 1 to the collection V , the edges linkedto it are visualized. Figure 8.7e shows that the selected landmarks are connectedto the accounts of every senators. We conclude that this clusters contain politicalenthusiasts or, more likely, software-controlled Twitter accounts. These accounts,also known as Twitter-bots, work as tweet aggregators for a specific domain, forexample, by automatically reposting the senators’ tweets.
The cluster 2 is then selected by the user. A visualization of the percentageof the incoming edges in the right embedding is visualized in Figure 8.7e. Only thelarge points in the embedding are coloredwith a shade of orange. These points cor-respond to the senatorswith the largest user base, such a senator ElisabethWarrenand Marco Rubio. This result shows that the cluster 2 identifies the community ofuserswhoare followingmainly themost famous politicians. Finally, the cluster 3 inFigure 8.7d corresponds to users following senatorswith amuch smaller user base,as can be seen by the result of the selection in Figure 8.7e. In the overview, cluster

3 already shows a separation in two sub clusters. A detailed visualization, which isgenerated by drilling in the hierarchical representation, shows a better separation ofthese clusters. The resulting embedding, which is presented in Figure 8.7f, showsthat a polarization of the users exists for Republicans and Democrats in this subcommunity.
8.8 Conclusions and Future Work
In this chapterwehave presentedWho’s-Active-On-What-Visualization (WAOW-Vis),a visual analytics system for the exploratory analysis of large bipartite graphs. Wepresented a novel graph preprocessing pipeline that is inspired by the recent devel-opments in the analysis of large high-dimensional data. The scalability of WAOW-Vis is enabled by three main contributions. The adoption of compressed bitmapsfor representing the graph and the novel Sets Intersection Tree (SIT) for efficientlycomputing Jaccard similarities between the bitmaps. The similarities are then usedto generate a hierarchical representation of the graph with amodified version of theHierarchical Stochastic Neighbor Embedding (HSNE). Moreover, we presented sev-eral insights obtained by the exploratory analysis of large datasets that we minedfrom Twitter.WAOW-Vis, however, does not come without limitations. First, while WAOW-Viscan handle very large bipartite graphs, it can only handle undirected and unweightedgraphs. Extending our technique to handleweighted and directed graphs is an inter-esting future work. Furthermore, in the exploratory analysis of the data, the severalvisualizations that are generated make it difficult to keep a mental mapping of theexploration process. Höllt et al. recently proposed CyteGuide [69] for guiding theuser in the exploration of a single HSNE hierarchy. An interesting future work is thedevelopment of a similar approach for guiding the data exploration in WAOW-Vis.
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Moreover, the visualizations of the links between the two collections is limited tothe 1-dimensional embeddings. This may be a limitation as most of the insightsare obtained through the analysis of the 2-dimensional embeddings. Finally, in thetest cases we analyzed datasets where the two collections are very different insize, due to the query limit imposed by Twitter. Because we are not limited to thiskind of datasets, it would be interesting to experiment with more balanced bipar-tite graphs. Finally, bipartite graphs are widely used in biomedical research [61] andfor the visualization of deep neural networks [115]. An interesting research direc-tion is the application of WAOW-Vis in the biomedical research field as presentedin Chapter 7.
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9
DeepEyes: Progressive Visual

Analytics for Designing
Deep Neural Networks

A robot may not injure a human being, or, through inaction,

allow a human being to come to harm.

Asimov’s first law of robotics

In this chapter we present DeepEyes, a Progressive Visual Analytics system that supports the
design of neural networks during training. We present novel visualizations, supporting the
identification of layers that learned a stable set of patterns and, therefore, are of interest for a
detailed analysis. The system facilitates the identification of problems, such as superfluous
filters or layers, and information that is not being captured by the network. We demonstrate
the effectiveness of our system through multiple use cases, showing how a trained network
can be compressed, reshaped and adapted to different problems.

N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and A. Vilanova. Deepeyes:Progressive visual analytics for designing deep neural networks. IEEE transactions on visu-alization and computer graphics, 24(1):98–108, 2018 [137].



9. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks

9.1 Introduction
In this chapter we present how high-dimensional data analysis, and in particular theHSNE algorithm presented in Chapter 6, is beneficial for the analysis of DeepNeuralNetworks (DNNs), a class of algorithms that have shown outstanding performancein various problems, like image and speech recognition [94]. DNNs consist of var-ious interconnected layers. In each layer, a number of filters detect increasinglycomplex patterns. For example, in networks trained to recognize objects in an im-age, the first layer generally contains filters that are trained to detect colors andedges. This information is aggregated by other layers to detect complex patterns,e.g., grids or stripes. By using hundreds or thousands of filters in each layer, DNNsallow for more complex patterns to be learned. Only recently the training of largeDNNs was made possible by the development of fast parallel hardware, i.e., GPUs,and the creation of large training sets [88].

While the results that DNNs can achieve are impressive, they essentially remaina black box. An increasing research effort is spent on making the visualization andthe analysis of these models feasible. While both, the machine learning and the vi-sualization community, invested considerable effort in understanding howa trainednetwork behaves [103, 145, 194], e.g., by showing the patterns learned by the filters,little effort has been spent on the creation of tools that support design decisionsgiven the pattern recognition problem at hand. Even though basic design guidelines

a

b c

d e

Figure 9.1: DeepEyes is a Progressive Visual Analytics system for the analysis of deep neural networksduring training. The overview on the training is given by the commonly used loss- and accuracy-curves(a) and the Perplexity Histograms (b) a novel visualization that allows the detection of stable layers.A detailed analysis per layer is performed in three tightly linked visualizations. Degenerated filters aredetected in the Activation Heatmap (c), and filter activations are visualized on the Input Map (d). Finally,in the Filter Map (e), relationships among the filters in a layer are visualized.
9

118
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exist, the process of designing a neural network is an iterative trial-and-error pro-cess [4]. For example, experts can change the number of layers or filters per layerbut the effect of a modification only becomes obvious after hours, days or weeks,as the network needs to be retrained, a lengthy task given the size of the datasetsinvolved. A visual analytics approach for the analysis of a deep network thereforeseems necessary [85]. As mentioned in Chapter 2, a recent paradigm called Pro-gressive Visual Analytics, aims at improving the interaction with complex machinelearning algorithms [41, 119, 138, 165]. This interaction is achieved by providing theuser with visualizations of the intermediate results while the algorithm evolves, thetraining of the network in this setting. However, the size of DNNs makes the ap-plication of the Progressive Visual Analytics paradigm challenging, requiring thedevelopment of visualizations that heavily rely on data aggregation at interactiverates [42, 136, 138, 174].In this chapter, we present DeepEyes, a Progressive Visual Analytics systemthat supports the design of DNNs directly during training. After discussing withmachine learning experts that collaborated in the design of DeepEyes, we cameto realize that the existing work provides limited feedback on how a DNN can beimproved by the designer. To overcome this limitation, we identified the followinganalytical tasks as critical to make informed design-decisions while the network istrained:
(T1) Identification of stable layers which can be analyzed in more detail, effec-tively facilitating the detailed analysis while the network is trained
(T2) Identification of degenerated filters that do not contribute to the solutionof the problem at hand and, therefore, can be eliminated
(T3) Identification of patterns undetected by the network, which may indicatethat more filters or layers are needed
(T4) Identification of oversized layers that contain unused filters and, therefore,can be reduced in size
(T5) Identification of unnecessary layers or the need of additional layers, allow-ing for the identification of an efficient architecture for the problem at hand

The main contribution presented in this chapter is the DeepEyes framework itself.For the first time, DeepEyes integrates mechanisms to tackle all presented tasks toanalyze DNNs during training into a single, progressive visual analytics framework.The development of DeepEyes is enabled by a set of further contributions presentedin this chapter:
• a new, data-driven analysis model, based on the sampling of sub-regions of theinput space, that enables progressive analysis of the DNN during training
• Perplexity Histograms, a novel overview-visualization that allows the identifica-tion of stable layers of the DNN for further exploration
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Figure 9.2: Overview of a DNN (a). Filter functions are computed by neurons in convolutional layersby applying a kernel or convolution matrix on a subsets of the input (b), called Receptive Field, whoseinstances are image patches (c). Filter functions are trained to detect different receptive field instances(d) and they are organized in a 3D grid (e) according to the spatial relationships of the receptive fieldsthey compute.

• a set of existing visualizations have been extended or adapted for our data-drivenapproach to allow detailed analysis: Activation Heatmap, Input Map, and FilterMap.
In the next section, we provide the reader with a primer on DNNs, with the essen-tial components to understand our contributions and the related work, presentedin Section 9.3. In Section 9.4, we present DeepEyes, describing our visualizationdesign based on the insights and support we want to provide to the DNN designer.Furthermore we provide a first example of a DNN for the classification of handwrit-ten digits. Two different use cases are provided in Section 9.5, while implementa-tion details are given in Section 9.6.

9.2 Deep Learning Primer
Deep artificial neural networks are trained on a specific pattern recognition problem,such as image classification. The goal is to predict a class of an unseen sample.
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9.2. Deep Learning Primer

A training set consists of a set of high-dimensional inputs x ∈ Rn together with anassociated vector y ∈ {0,1}d with ∑
i yi = 1, where d is the total number of labels. Theonly non-zero component indicates the associated label. The goal of a DNN is topredict the label ỹ ∈ [0,1]d for an unseen input x̃ ∈Rn . The prediction is usually in theform of a discrete probability distribution over the possible labels, hence ∑

i ỹi = 1.
A DNN consists of a set of layers L . An example of a DNN that comprisesfive layers, more specifically one data layer, two convolutional layers and two fully-connected layers, is presented in Figure 9.2a. Independently from the nature ofthe layer, every layer l ∈ L contains a set of neurons that computes filter func-

tions f l
i ∈ F l , or, more concisely, filters. However, exactly the same filter can becomputed by many neurons in the same layer. In the example in Figure 9.2b-e theinput consist of images, where each pixel is a dimension in our input space Rn . Fil-ter functions in Layer1 do not take the full dimensionality Rn as input, but rather a

subsets Rk l ⊂ Rn , the receptive fields where k l represents the size for layer l . Forimages, these subsets are patches and a few instance of these patches are pre-sented in Figure 9.2c. Mathematically, a specific receptive field δl
r ∈∆l for layer l is

a set of indices δl
r := {i j }k l

j=0 ⊂ {0 . . .n} that defines a corresponding projection func-
tion π(δl

r ) :Rn →Rk l
, (x0, . . . xn) → (xi0 , . . . , xi

kl ). We now focus on the relationship be-tween filters and neurons given an instance of a receptive field, i.e., a specific patchfor a specific input image x identified by the projection function π(δl
r )(x). In Fig-ure 9.2d a heatmap is shown to illustrate the output of filter functions f l

i (π(δl
r )(x)),also called filter activations, given specific instances of receptive fields π(δl
r )(x).In the first layer, the filter function is usually a weighted sum of the pixel values onthe receptive field. These weights are the learnable parameters that are trained todetect specific patterns in the data. Further, the weights define the filter functionand are the same for all neurons computing this filter. In the example, f 1

4 detects, having high filter activation, while f 1
2 detects .

Given a single instance of a receptive field, as or in Figure 9.2d, a 1-to-1
correspondence exists between filters and neurons (represented as points in Fig-ure 9.2). However, when the full input is considered, neurons that share the samefilter function but process a different location in the image, i.e. receptive field, areorganized in a grid-like layout that mimic the input shape. The layout for Layer1 isillustrated in Figure 9.2e, where neurons that compute the same filter function areplaced on planes. By stacking these planes, the resulting layout is a 3D grid of neu-rons. Filter functions give better information on the detected patterns than singleneurons, as they are pattern detectors learned by the layer independently of the po-sition in the input. Note how, in Figure 9.2e, is detected by the filter f 1

2 which iscomputed by different neurons, i.e., where eyes and portholes are located.
The same description holds for any layer, as shown in Figure 9.3a. Here, thereceptive fields are larger in deeper layers and the filter functions are trained to de-tect more complex patterns. For example, is detected by the filter f 2

1 as it hasa high activation. The main difference from Layer1 is that, the filter functions are
9
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(a) Convolutional layer acting on a Neuronal Receptive Field

(b) Fully-connected layer acting on a Neuronal Receptive Field
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Figure 9.3: In deeper layers, filter functions are trained to detect more complex patterns in larger recep-tive fields. In convolutional layers a subset of the neurons in the previous layer, the neuronal receptivefield, is the input to the filter functions rather than the receptive field instance (a). The same descriptionholds for a fully-connected layer, however, it differs from convolutional layers as the receptive field of aneuron corresponds to the complete input and the neuronal receptive field contains all the neurons inthe previous layer (b).9
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Layer 2 - Shown activation of f2
1

Min Max
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Figure 9.4: DeepEyes approach to filter analysis. Instances of receptive fields are sampled and embed-ded in a 2-dimensional space based on the similarity of the activation in the neuronal receptive-field.Activation of filters is highlighted in the resulting scatterplot and the instances of the receptive fields arevisualized in a linked view.

not a direct expression of the dimensions in the receptive field in Layer2. In thislayer, the filter functions consider as input a subset of the neurons in the previouslayer, whose receptive fields are fully contained in the receptive field for Layer3.We define the region in the 3D grid of neurons in the previous layer as the neu-
ronal receptive field of the neuron in the considered layer. The filter activation isobtained by weighting the activation of the neurons in the neuronal receptive field.The neurons in Layer2 are also organized in a 3D grid according to the relationshipsbetween the receptive fields and the filters. In Figure 9.3b, the computation for thefully-connected Layer3 is presented. Similarly to Layer2, Layer3 takes the neuronalreceptive field in the previous layer as input. The receptive fields of filters in fully-connected layers correspond to the complete input, hence there is no need for a3D grid of neurons. For this reason, a 1-to-1 correspondence between filters andneurons exists, meaning that a filter function is computed by just one neuron.

In this section, we provided an overview of the relationships between relevant el-ements of theDNN.Weonly briefly introduced the learnable parameters, orweights,involved in the convolutional or fully-connected layers. These parameters are learnedby optimization given the training set. Inmodern architecturesmany different layersare used to define the filter functions, e.g., max-pooling and normalization layers.The concepts introduced so far hold, as filters are defined as a composition of theoperations performed by different types of layers. For the intereseted reader werefer to LeCun et al. [94] for a more broad overview.
In DeepEyes we rely on the idea that, independently from the chosen layers,input data or receptive field instances are usually interpretable by humans, whileabstract weights and relationships between neurons are not [106, 194]. Figure 9.4provides an intuition of the central approach that we take in DeepEyes for analyzingwhat patterns a layer is trained to detect. The user creates a 2-dimensional repre-sentation of the instances of receptive fields used in the training. Instances thatare perceived as similar by the layer, i.e. have similar activation in the neuronal re-
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9. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks

ceptive field, are close in the 2-dimensional visualization. Specific filter activationis then highlighted on demand, allowing for the understanding of the response ofthe filter to the input. For example, in Figure 9.4 we see that a separation of thereceptive fields according to the input label, i.e., cat and rocket which are visualizedin linked views, is available and the visualized activation of filter f 2
1 , is strongly cor-related with the cat label. Note that, despite the focus on the analysis of DNNs forimage classification, the proposed approach is general as it focuses on filter activa-tions and can be extended to different types of data, e.g., text or video, if appropriatelinked views are used [84].

9.3 Related Work
Existing visualization techniques for DNNscanbedivided inweight-centric, dataset-
centric and filter-centric techniques.

Weight-centric techniques aim at visualizing the relationships between filtersin different layers through the visualization of the learnable parameters, or weights,introduced in Section 9.2. A straightforward visualization for the weights are node-link diagrams [146], similar to the one presented in Figure 9.2a for the connection ofLayer3 to Layer4. Here weights can be encoded in the edges, e.g., as line thickness.However, this approach does not scale to state-of-the-art networks that comprisemillions of connections, limiting the application ofweight-centric techniquesmainlyto didactic purposes [56]. To reduce the clutter generated on such networks, Liu etal. recently proposed a biclustering-based edge bundling approach [103] that ag-gregates neurons and bundles edges. Neurons are aggregated if they are activatedby data that share the same label, while edges are bundled if they have similar andlarge absolute weights. However, in DNNs, neurons are trained to separate labelsonly in the last layers, therefore this clustering is not informative in early layers. Forexample, in Figure 9.2e the filter f 1
2 activates both on and , an information thatdoes not reveal the pattern that the filter is trained to detect. Moreover, while thesystem allows a real-time exploration of the network, the creation of the visualiza-tions requires hours of preprocessing, making the analysis of the network duringtraining unfeasible. DeepEyes does not provide a weight-based visualization. Afterdiscussing with the machine learning experts involved in the development, we real-ized that it is more important to focus on the analysis of filters as pattern detectors,rather than on individual neurons and their connections [194].The goal of dataset-centric techniques is to provide a holistic view on how theinput data are processed by the network rather than providing a solution to thepreviously introduced tasks (T1,T2,T3,T4,T5). The training- or the test-set is pro-cessed by the DNN and the activations of neurons in the last fully-connected layerare collected as high-dimensional feature vectors. Using non-linear dimensionality-reduction techniques, the dimensionality of the feature vectors is reduced to twodimensions and visualized in a scatterplot [2,82,116]. Two data points that are closein the 2-dimensional space are also close in the feature space, meaning that thenetwork perceives them as similar. Recently, Rauber et al. [145] showed the evolu-
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tion of this representation during training, in Chapter 6 we showed that hierarchicalinformation is learnt by DNNs even though this information is not encoded in thetraining set. While these techniques provide insight on how the network reacts asa whole, they are limited to the analysis of the last fully-connected layer of the net-work. The only work in the analysis of hidden layers, i.e., not the input- or last-layer,is from Rauber et al. [145] where 2D embeddings are generated for hidden and fully-connected layers. This approach suffers from a severe limitation, being restrictedto the analysis of layers where a 1-to-1 correspondence between neurons and filterfunctions exists, i.e., fully-connected layers. We extend their work such that it canbe used for convolutional layers which are the most widely used layers in modernday architectures [60,88,94, 163, 166].
Filter-centric techniques aim at giving an intuition on the pattern that a filter

f l
i is trained to detect. A straightforward approach presented by Girshick et al. [54]identifies for each filter f l

i the instance of a receptive field π(δl
r )(x) with the highestactivation f l

i (π(δl
r )(x)). The instance of a receptive field π(δl

r )(x) is then presentedto the user, e.g., as an image patch. A more complex approach aims at invertingthe filter function f l
i by defining ( f l

i )−1, allowing for the reconstruction of the recep-tive field π(δl
r )(x) that produces the highest activation for f l

i [38, 106, 124, 192, 194].However, the explicit definition of ( f l
i )−1 is not possible and it is approximated us-ing deconvolutional neural networks [194]. This approach generates images thatcan give the intuition of the patterns detected by the filters, as demonstrated byGoogle’s Deep Dream [118], and can be further extended for different tasks, such asstyle transfer [48]. However, according to the feedback provided by machine learn-ing experts, the reconstructed receptive fields can be difficult to interpret for com-plex patterns, i.e., for late-layers in the network, and do not allow for a reasoningon architectural decisions (T4,T5). Moreover, the reconstruction of the receptivefield is a minimization process itself that is time consuming, requires complex reg-ularization techniques and may produce misleading results [106, 192] Filter-centrictechniques are powerful tools but are generally limited to the analysis of a singleand well-behaving filter, making their application for the analysis of a neural net-work during training difficult. DeepEyes includes novel filter-centric techniques forthe identification of badly trained filters (T2) and provides a holistic view on filteractivations given instances of receptive fields.

Finally, a recently proposed filter technique visualizes relationships between fil-ters, i.e., how similarly they activate on the input and which label they are moststrongly associated with [145]. Filters are represented as points and placed in ascatterplot by amulti-dimensional scaling algorithm [19]. Filter-to-label associationis then highlighted by coloring every point with the color of the most correlatedlabel. While this filter-centric technique allows for newer insights (T3), it has twolimitations that we overcome with a novel approach. First it requires the analysisof the complete dataset and, second, it cannot be applied to convolutional layers.
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Figure 9.5: Overview of the DeepEyes system. The network training overview provided by the loss- andaccuracy-curves is integrated with the Perplexity Histograms that allow for the identification of stablelayers in the network (blue background). The user focuses on stable layers that are analyzed in detailwith three tightly linked visualizations, namely the Activation Heatmap, the Input Map and the Filter Map(red background).

9.4 Deep Eyes
In this section, we introduce DeepEyes, a Progressive Visual Analytics system forthe analysis of DNNs during training that combines novel data- and filter-centric vi-sualization techniques. We start with an overview of DeepEyes in relation to thesetasks in Section 9.4.1. A detailed description is provided in Sections 9.4.2 to 9.4.5.As a running example throughout this section we use theMNIST dataset [95] whichconsists of a training set of 60K images and 10K validation images. We train withtheStochasticGradient Descent [97] theMNIST-Network that is provided inCaffe [79],a commonly used deep learning library which provides the deep-learning frame-work for DeepEyes. The network comprises two convolutional layers, with 20 and50 filters respectively, and two fully connected layers with 500 and 10 filters re-spectively. Note that we use the MNIST-Network as proof of concept of our imple-
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mentation and, for the sake of reproducibility, we use the architecture and trainingparameters provided by Caffe even if they do not achieve state-of-the-art results inclassification performance.
9.4.1 OverviewFigure 9.5 shows an overview of our system. A DNN is trained by computing the fil-ter activations on subsets of the training set, calledmini-batches. The loss function,which measures how close the prediction matches the ground truth, is computedand the error is back propagated through the network. The learnable parametersof the network are then updated in the opposite direction of the gradient of the lossfunction [94, 97]. DeepEyes builds on the notion that the understanding of the re-lationships between instances of receptive fields π(δl

r )(x), which can be visualizedand understood by humans, and the activation of filter functions f l
i (π(δl

r )(x)) is cru-cial for understanding the patterns detected by the network in every layer.For every mini-batch that is used to train the network, we sample instances ofthe receptive fields for every layer and the corresponding filter activations. Unlessthe user specifies otherwise, we sample a number of instances that grants a cover-age of at least 50% of each input. This information is used to create a continuously-updated dashboard that provides insights into which patterns are detected by thelayers in the DNN. In the Training Overview, loss and accuracy over time are pre-sented. We complement this standard visualization, with a novel visualization, the
Perplexity Histograms (Section 9.4.2), which allows for identifying when a layerlearned to detect a stable set of patterns (T1). The detailed analysis of stable lay-ers is performed using three tightly-connected visualizations, highlighted in red inFigure 9.5. The Activation Heatmap (Section 9.4.3) allows for the identification ofdegenerated filters (T2), while the Input Map (Sec 9.4.4) shows the relation of fil-ter activations on instances of receptive fields for a given layer (T3). Finally, the
Filter Map shows how similar the filters activate on the input. Interaction with theInput- and Filter-Map support the identification of oversized and unnecessary layers
(T4,T5).
9.4.2 Perplexity histograms as layer overviewThe evolution of the loss- and accuracy-curve presented in the Training Overview,is the de-facto standard way to visualize the evolution of the network during train-ing. However, this visualization only provides information about the global trendof the training and fails to give a per-layer visualization of the changes. Given thesize of the network, it is important to guide the user [23] towards layers that canbe analyzed in detail while the training progresses, i.e., layers that learned a sta-ble set of patterns (T1). Our solution is based on the notion that every filter in alayer is trained to identify a certain pattern for a specific receptive-field size [194].Therefore, we propose to treat every layer as a classifier designed to detect pat-terns, which are unknown at this moment, and we analyze its performance overtime. More specifically, we want to know if the classifiers’ ability to detect patterns
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Figure 9.6: Perplexity Histograms and their creation. Receptive fields are sampled for every input data(a). The activation of the neurons that correspond to the receptive fields are collected, i.e., the receptivefield’s depth column (b). The depth columns are transformed in probability vectors (c) whose perplex-ity is computed (d) and used to populate the perplexity histogram (e). (f) shows the evolution of theperplexity histograms for the layer Conv1 and Conv2 in the MNIST-Network. Changes in the histogramover time are presented in a second histogram, highlighting the changes with red and green bars, fordecreasing and increasing numbers, respectively.

is stable, increasing, or decreasing during training. If it is stable, it means that thelayer learned what it was able to learn. If it decreases, the knowledge that this layerprovides to the network is decreasing, and inversely when increasing.We encode the layer stability as follows. For every input in a mini-batch, we ran-domly sample a number of instances of receptive fields (Figure 9.6a) and the cor-responding filter activations (Figure 9.6b). We transform the activations in a proba-
bility vector p ∈R|F l |, where |F l | is the number of filters in the layer l , by applying aL1-normalization (Figure 9.6c). Then, we compute for every receptive field instancethe value of perplexity of the corresponding probability vector p (Figure 9.6d). Theperplexity, a concept from information theory [89] that, in this setting, measureshow well a pattern is detected by the layer under consideration.The perplexity of the distribution p is equal to 1 if only one filter is activated by theinstance of the receptive field. An example is given by the activations marked with
1 in Figure 9.6a. On the contrary, the perplexity of p is equal to the number of filters
|F l |, if the activations of every filter are equal, as shown for the activations markedwith 2 in Figure 9.6a. The Perplexity Histogram accumulates the sampled inputbased on the corresponding perplexity value in the range [1, |F l |] for every layer l(Figure 9.6e). Changes in the histograms during training are visualized in a second
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histogram. Here, green bars represent an increase in the corresponding bin, whilered bars represent a decrease (Figure 9.6f). A shift to the left in the histogram, i.e.,to lower values of perplexity, means that the ability to detect patterns for this layeris increasing and vice-versa. Note that, because the computed perplexity assumescontinuous value, the number of bins in the histogram has no link with the numberof filters in the layer. We provide a default of 30 bins, that we empirically found to bevisually pleasing and does not hamper the ability to detect shifts in the histograms.Figure 9.6f shows the evolution of the perplexity histogramsof the convolutionallayers for the MNIST-Network, i.e., Conv1 and Conv2. After 10 iterations a shift tolow values of perplexity in the first layer is visible. The peak in the histogram for
Conv1 corresponds to patches that are not detected by any filter (T3). While thehistogram of the first layer is shifting to the left, i.e, decreasing the perplexity, thehistogram of the second layer is shifting to the right. This behavior shows that thesecond layer is responding to a change in the filter functions computed in the firstlayer by becoming less specific, i.e., increasing the resulting perplexity. The his-tograms are updated at every iteration and the user monitors the stability of thelayers. Figure 9.6f shows how the histograms evolved after 80 iterations. Com-pared to iteration 10, the first layer is still unstable and the second layer is nowmore specific. After 300 iterations, the first layer is stable, while the second layershows a shift to lower values of perplexity. This shift is limited, showing that thelayer is currently affected by minor changes, allowing the user to start its detailedanalysis.
9.4.3 Activation HeatmapGuided by the Perplexity Histograms, the user focuses on the detailed analysis of astable layer starting from the Activation Heatmap, where every filter is visualized asa cell in a heatmap visualization (Figure 9.7a). The Activation Heatmap is designedfor the quick identification of degenerated filters (T2). We aim at the identificationof dead filters, i.e., filters that are not activating to any instance of a receptive field,and filters that are activating to all instances. In both cases these filters are notproviding any additional information to the network. These filters are detected in aheatmap visualization that shows the maximum- and the frequency-of-activation.For creating the heatmaps, we randomly sample instances of receptive fieldsand we compute the maximum activation µl

i for every filter f l
i in layer l

µl
i = max( f l

i (π(δl
r )(x))),

where π(δl
r )(x) is the sampled instance of the receptive field. For each filter f l

i ,the corresponding µl
i is visualized in the heatmap in the range [0,max(µl

i ,∀i )]. Weuse a similar approach for the identification of filters that have high activation onevery input. For every filter, we keep track of how frequently they activate on thesampled data, and we display these frequencies in the heatmap. We consider afilter to be active on a given patch if its activation is greater than a percentage βof the maximum activation max(µl
i ,∀i ), where a default value of β = 0.5 is used.
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Figure 9.7: Detailed analysis performed in DeepEyes. Degenerated filters are detected in the ActivationHeatmap (a). The InputMap (b) showsa representation of the input space of a specific layer. By brushingon the Input Map receptive fields are visualized in linked views (insets in (b)). Specific filter activations(c) or themaximumactivation of every filter (d) are visualized on the InputMap. The FilterMap (e) allowsfor the understanding of the relationships between filters that are further investigated in the Input Map.Specific filters are selected by clicking on the activation heatmap or by brushing on the Filter Map.
The user can choose if the maximum- or the frequency-of-activation is visualizedin the heatmap and we distinguish between the two by using two different colorscales. A green-to-yellow color scale is used for the maximum activation, while ayellow-to-blue color scale is used for the frequency of activation [57]. At this level ofdetail, we are interested in giving an intuition of the response of the layer as awhole,hence we provide the option to keep the filters sorted according to the currentlyvisualized information. At this level of detail, we are interested in giving an intuitionof the response of the layer as a whole, making the identification of uninformativefilters easier. Therefore, we provide the option to keep the filters sorted accordingto the information that is currently visualized. Because the learnable parametersare changing during training, visualizing the maximum activation for a filter may bemisleading. For example, a filter that was active in the early phase of training can
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“die” in later steps [94]. Therefore, we compute a measure for the reliability of theinformation contained in the heatmap. We keep track of the last iteration where afilter f l
i reached an activation higher than a percentage θ of itsmaximumactivation

µl
i , where θ = 0.8 by default. We visually encode the distance between the currentiteration and the last one that reached the maximum activation threshold θ as thesize of the cell that we draw in the heatmap [68] and we allow the reinitialization ofthe computed maximum in a layer.An example of the proposed visualization is presented in Figure 9.7a. The max-imum activation of the filters in the first convolutional layer of the MNIST-Networkafter 100 iterations is presented. Ten filters, highlighted in red, out of 20 have a verylow activation and do not provide additional information (T2). The smaller size ofthe cell in the heatmap for the filter identified by a purple arrow means that themaximum activation visualized is not reached in several iterations, leading to theconclusion that at the current iteration its activation is even lower. By visualizing thefrequency of activation the user identifies several filters, here highlighted in orange,that have high activation on every input (T2). These insights lead to the conclusionthe layer is oversized given the problem at hand (T4) and can be removed by theuser before continuing the training, making it faster and the final network smaller.Our visual encoding is scalable in the number of visualized filters. One of the layerswith most filters in state-of-the-art architectures is the last fully-connected layer inthe AlexNet network [88], consisting of 4096 filters. If every filter is encoded, usinga 5x5 rectangle, the heatmap results in an image of 320x320 pixels, that easily fitsinto our user interface.

9.4.4 Input MapThe Input Map is a cornerstone of DeepEyes. It provides the tools to solve severalanalytical tasks (T2,T3,T4,T5) and is based on the idea presented in Figure 9.4. Themap is generated upon user’s request when a stable layer is identified. An exampleis given in Figure 9.7b where the first convolutional layer of the MNIST-Network isanalyzed in detail. Instances of receptive fields are visualized as points in a scat-terplot and colored according to the label of the input they are obtained from. Twoinstances are close in the scatterplot if they have similar activation for the neuronswithin the neuronal receptive field and, therefore, are similar input for the currentlayer (see Section 9.2). The layout is obtained by reducing the dimensionality of theactivation of neurons in the neuronal receptive field to 2 dimensions, while preserv-ing neighborhood relationships [136]. By brushing on the scatterplot, the user se-lects instances of receptive fields of interest that are visualized in a linked view, hereabstracted as arrows pointing to image patches. The mix of colors correspondingto the input labels indicates that a separation between the classes is not possibleat this level (T5), also showing that a clustering of the neurons based on labels asproposed by Liu et al. [103] is not meaningful for early-layers.The activation of a user-selected filter is visualized on top of the Input Map, asshown in Figure 9.7c where four filter activations are shown. We keep the Input
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Figure 9.8: Analysis of the MNIST network. For each layer the Input- and Filter-Maps are presentedalongside their corresponding Activation Heatmaps. We highlight activations for different filters in thedifferent layers. A detailed description of the conclusions, drawn from these visualizations is presentedin Section 9.4.6.9
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Map in the background as a reference, drawing the data points as larger and semi-transparent circles. On top, we draw a new set of semi-transparent black circles,whose size is encoding the intensity of the filter activation on the corresponding in-put. The user can switch between the two visualization modes, allowing to reasonon where the activations are localized in the Input Map, therefore giving a detailedunderstanding of which input is detected by a filter. For example, we can validatethe insights previously obtained through the Activation Heatmap. By clicking ona cell in the heatmap, the corresponding filter activation is visualized in the InputMap, showing that the dead filters are not activating on any input (T2). Moreover,single filters are activating on large portions of the input. Together with the pres-ence of many dead filters, this signals that the current layer contains more filtersthan needed (T4). By visualizing the maximum activation of the filters on eachdata point, as presented in Figure 9.7d, we allow for the identification of data thatare scarcely or not at all detected by the network. In the example, the outer regionof the Input Map contains points that do not produce a strong activation (T3). Theinspection of the instances of the corresponding receptive fields reveals that theycorrespond to background patches and, therefore, are not informative for the prob-lem at hand.
The Input Map is a dataset-centric technique (see Section 9.3), whose improve-ments over the state-of-the-art are twofold. First, it is built by sampling instancesof receptive fields, allowing for the creation of a dataset-centric visualization evenif a 1-to-1 correspondence between filters and neurons does not exist, such as forconvolutional layers. Second, differently from existing techniques that focus onthe activation of the filters in the current layer, the Input Map reduces the dimen-sionality based on the activations of the filters in the neuronal receptive field ratherthan the activation of filters in the layer under analysis. This feature allows forthe analysis of the relationship between input and output of a layer, an approachthat was not possible before. While these two features allow for new insights, theypose computational challenges in the creation of the 2-dimensional layout in theinteractive system. Tens of thousands of receptive field instances are sampledduring training and ought to be placed in the Input Map. Further, the dimension-ality of the feature vector considered is higher than in existing techniques as wedo not just consider the activations in the current layer but the whole neuronal re-ceptive field. We considered several dimensionality-reduction techniques for thegeneration of the scatterplot [178]. The t-distributed Stochastic Neighbor Embed-ding (tSNE) algorithm is often used [177] in dataset-centric techniques. However, asreported by Rauber et al. [145] for their proposed approach, several dozens of min-utes are required for the creation of embeddings containing 70K points describedby 50 dimensions, limiting its application in a Progressive Visual Analytics systemlike DeepEyes. Therefore we use the recently-developed Hierarchical StochasticNeighbor Embedding (HSNE) [136], as it creates visual representations of tens ofthousands of data points, described by several thousand dimensions, in seconds.HSNE enables the analysis of such large data in an interactive system by building
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a hierarchical representation of the data and by generating Input Maps with onlya few hundreds data points sampled from the input data. The exploration of thecomplete dataset is then performed with a filter and drill-in paradigm as presentedin Chapter 6.
9.4.5 Filter MapThe Filter Map provides a view on how similarly filters in a layer respond to the inputas awhole. of oversized layers or the need formore layers (T4,T5). We visualize thefilters as points in a scatterplot. Filters with a similar activation pattern are placedcloser in the scatterplot (Figure 9.7e). If many filters activate in the sameway on theinput it is an indications that the layer contains too many filters (T4). Here, we areinterested in visualizing the relationships between filters and labels y. Hence, pointsare colored according to the training label that activates a filter the most, while thesize of the point shows how strongly the filter is correlated to that label. We choosethis encoding for the sake of simplicity, but different visual encodings can be used,e.g., by encoding the correlation with color brightness or saturation [30, 145]. Thepresence of a cluster composed by large and similarly colored points in the FilterMap is an indication that a classification can be performed at this stage (T5). Tothe best of our knowledge, the only existing work in this direction is from Rauberet al. [145]. In their work, the Pearson correlation between filter activations is com-puted and the filters are visualized using a multi-dimensional scaling algorithm.This approach requires the receptive field of the analyzed filters to cover the com-plete input and it cannot be used for the analysis of convolutional layers, a severelimitation if state-of-the-art architectures ought to be analyzed (see Section 9.2).We propose to overcome this limitations by computing similarities in a progres-sive way, using instances of receptive fields instead of the complete input. Thesimilarity between two filters is computed as a weighted Jaccard similarity [77].This gives a measure of common amount of activation divided by the maximumactivation of both filters. If the filters activate equally for the same instances of re-ceptive fields the value will be 1. The more they differ the smaller the similarity willbe. For two filters i and j on layer l , their similarity φi , j is computed as:

φi , j =
∑

r,x min( f l
i (π(δl

r )(x)), f l
j (π(δl

r )(x)))∑
r,x max( f l

i (π(δl
r )(x)), f l

j (π(δl
r )(x)))

, (9.1)
where f l

i (π(δl
z )(x)) is the activation of the filter f l

i , given the sampled receptivefield for input x. The similarities are updated for every training iteration and, whenrequested by the user, the filters are embedded in a 2D space with tSNE [177]. InFigure 9.7e, the Filter Map for the first layer of the MNIST-Network is presented. Bybrushing on the scatterplot the user selects filters whose activation is then visual-ized in the Input Map. In the example of Figure 9.7, it can be seen that two filtersthat are close in the Filter Map (e) also have a similar activation pattern on the input(c). We also keep track of which label is most associated with a filter. For each filter
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f l
i , we compute the vector tl

i ∈Rd , where d is the number of labels in the dataset. Itcontains the cumulative activation f l
i on the sampled receptive fields of instancesof objects belonging to the same label:

tl
i (argmax(y)) =∑

r,x
f l

i (π(δl
r )(x)), (9.2)

where x is an input with associated label vector y. For every filter f l
i , the corre-sponding point in the Filter Map is drawn with the color associated with the labelargmax(tl

i ). The point size in the Filter Map encodes the strength of the associa-tion with a label. This association is computed as the perplexity of the probabilities,obtained by normalizing the vector tl
i with L1-norm (see Section 9.4.2). The pointssize encodes the inverse value of the perplexity, where a low value of perplexitymeans a strong association with the label. Filters in Figure 9.7e are small in size,showing a low association with the corresponding label, i.e. a large value of per-plexity. Also, not all the label colors present in Figure 9.7b are represented in theFilter Map, showing that filters in this layer are not specialized to perform a properclassification.

9.4.6 From insights to network designHere, we illustrate how insights obtained in DeepEyes support network design de-cisions. Figure 9.8 shows the analysis of the MNIST-Network introduced in Sec-tion 9.4. Driven by the stability of the perplexity histograms, the user is guided tothe detailed analysis of layers whose filters are stable. Conv1 is analyzed first, then
Conv2, FC1 and finally FC2. In the Input Map of Conv1, a separation of the labelswith respect to the input is not visible, since all label colors are mixed in the scatter-plot (Figure 9.8a). Further, filters are active on large regions of the Input Map, seefilter activations in Figure 9.8a for the selected filter in the filter map. Many deadfilters are identified (T2) by selecting filters with lowmaximum activation in the Ac-tivation Heatmap (Figure 9.8a). The layer is oversized (T4) as overly-redundant ornon-existent patterns are learnt by the filters. Conv2 is analyzed next. Here datapoints in the Input Map start to cluster according to the labels (Figure 9.8b). Noticethat the shown instances of the receptive field are larger than for Conv1, as Conv2processes a larger region of the input images. Differently from the previous layer,filter activations are localized in the Input Map, leading to the conclusion that morefilters are needed in Conv2 than in Conv1. Similarly as for Figure 9.7d, points withlow maximum activation in Figure 9.8b correspond to background patches (T3).In FC1 (Figure 9.8c), inputs cluster in the Input Map according to the associatedlabel. The visualization of the Maximum Activation in Figure 9.8c shows that everydata point is activating at least one filter in the current layer, hence every input isidentified by the network at this level (T3). Before we can conclude that a classifi-cation is feasible at this stage (T5), the Filter Map is analyzed. In the Filter Map, wesee that the filters form visual clusters that are associated with labels. However,there is no visible red cluster, associated with the label “digit-5”. The activation of a
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“digit-5” associated filter is visualized on the Input Map, showing a strong activationalso on points in green, i.e., “digit-3”. This insight shows that a perfect separation isnot possible in this layer, and that the second fully-connected layer is needed (T5).The presence of duplicated filters and dead filters, as in FC1, shows that this layeris oversized and fewer filters can be used (T4).
Finally, in the last layer, which performs the prediction (Figure 9.8d), every filter iscolored with colors of different labels, showing that a correlation between filter andlabel exists and the network is correctly classifying the input. By showing the acti-vation of the filters on the Input Map, the user also gets an intuition of which labelsare confused by the network, e.g., points that correspond to the “digit-0” and “digit-6”, as shown in the filter activation in Figure 9.8d. Based on the insights obtainedfromDeepEyes, wemodified the network reducing the first convolutional layer from20 to 10 filters, and the first fully-connected layer from 500 to 100. This reductionallows for a smaller network which is faster to be trained and makes predictionswithout any visible loss in the accuracy of the classification that is stable for botharchitectures at 98.2% after 2000 iterations. Note that for the sake of reproducibilitywe used the parameters defined by Caffe in the “lenet_train_test.prototxt” trainingprotocol.

9.5 Test cases
In this section, we provide further examples of analysis performed with DeepEyes.In recent years a great number of different architectures have been presented. Forour test caseswedecided to focus onwidely used architectures derived fromAlexNet[88] that are often modified and adapted to solve different problems, a setting inwhich the insights provided by DeepEyes are greatly needed. AlexNet [88] consistsof 5 convolutional layers, with 96-256-384-384-256 filters, and 3 fully-connected lay-ers, with 4096-4096-1000 filters, leading to more than 16 million trainable parame-ters. Note that AlexNet is among the largest neural networks in terms of computedfilter functions, where a trend in reducing the number of filters exists [60, 72]. Thisanalysis demonstrates the scalability of our progressive system in a general setting.In the first test case, we show how DeepEyes allows for a better understanding ofthe fine-tuning of DNNs, while in the second test case, we show how a better archi-tecture for the medical imaging domain is derived from insights obtained throughDeepEyes.
9.5.1 Fine tuning of a deep neural network
Training a large DNN from scratch requires a very large training set, computationalpower, and time. To overcome this limitation, a common approach is to fine-tunean already trained network for a different pattern recognition problem [15]. The ra-tionale behind this approach is that low-level filters, like color- and edge-detectors,could be reused. To which degree filters can be reused is crucial but not clear a-priori [191]. In this test case, we show how DeepEyes helps in the identification
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Figure 9.9: Fine tuning of a pretrained neural network. Deep eyes allows for the identification of layersthat do not need retraining, e.g. Conv1. Unrecognized input data are highlighted in the Perplexity His-tograms and in the Maximum Activation visualization of the Input Map, here highlighting data that islabeled as Geometric Compositions which are not recognized by the original network. Furthermore, afilter trained to detect faces is not discriminative given the Romantic and Vintage labels.

of which layers contain useful filters that can be reused and filters that are notneeded and must be retrained. We used the fine-tuning example provided in Caffe,where AlexNet, which was trained for image-classification, is retrained for image-style recognition [79]. In this example, the prediction layer of the network is changedfrom 1000 filters, used to detect 1000 objects, to 20 filters that are retrained to de-tect 20 styles of images, e.g. “Romantic”, “Vintage” or “Geometric Composition”(Figure 9.9a). The network requires 100.000 iterations and more than 7 hours to beretrained with a K40 GPU and achieves an accuracy on the test set of 34.5% [79].
The hypothesis that color and edge detectors are useful filters for the problemat hand is confirmed in the first convolutional layer, i.e., Conv1 in Figure 9.9b, asthey present a localized and consistent activation pattern, e.g., blue- and vertical-edge-detectors are found. While the first layer is stable, the Perplexity Histogram ofthe fifth convolutional layers, i.e., Conv5, shows that an increasingly large number
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of input patches are not activating any filter, hinting at a problem in the filter func-tions for this layer. The detailed analysis of Conv5 shown in Figure 9.9c reveals thatdata labeled as “Geometric Composition” are in the region of the Input Map that ishardly activating any filters (max activation in Figure 9.9c). Images labeled as “Ge-ometric Composition”, i.e., with large and uniform color surface, were not includedin the “image-classification” training set, therefore the network has not learnt use-ful filters for discriminating such images. Another interesting insight is obtainedby visualizing the activation of other filters on the Input Map. For example, a filterthat detects human faces is found, see Figure 9.9c. While this filter is useful for theimage-classification problem, it is not discriminative for style-recognition becausehuman faces are associated with many different styles (Figure 9.9a). This insightshows that the analyzed layer needs to learn new patterns from the input. The fine-tuning of a network or, in general, the reusability of the learned filters, is an activeresearch topic under the name of transfer learning [191]. Insights obtained fromDeepEyes can help to improve the fine-tuning of networks by placing the user in theloop.
9.5.2 Mitotic figures detection
We present a different test case from the application of DNNs in the medical imag-ing domain. In this context, DNNs developed by the machine learning communityare applied to different recognition problems. DeepEyes helps in filling the exper-tise gap, by providing insight on how the network behaves given the problem athand. The number of nuclei separations in tumor tissue is a measurement for tu-mor aggressiveness. In radiotherapy treatment planning, histological images of tu-mor tissue are analyzed by pathologists. Nuclei separations, also known asmitoticfigures, are counted. Examples of images with “mitotic figure” label are presentedin Figure 9.10a, together with images labeled as “negative”. The counting of mitoticfigures helps in deciding the dose of radiation used to treat a tumor, leading to amore personalized treatment. However, it is a tedious task and DNNs have been re-cently proposed to automatize the process. In this test case, we analyze the DNNdeveloped by Veta et al. [182] that is trained on the AMIDA dataset [183] to detectmitotic figures in histological images. The network comprises 4 convolutional lay-ers with 8,16,16 and 32 filters respectively, and 2 fully-connected layers, containing100 and 2 filters respectively.

After a few training iterations, the first layer stabilizes and is analyzed in detail.Figure 9.10b shows the detailed analysis of the first convolutional layer after 40 it-erations. The Input Map shows a cluster of red points, corresponding to instancesof the receptive fields sampled from images labeled as mitotic figures. By visualiz-ing the activation of the filters we see that filters are trained to detect dark regionsversus bright regions, as they are an important feature at this level. Similar InputMaps are obtained in the other convolutional layers, where the patches processedby the layers are larger.
An interesting observation is made in the first fully-connected layer of the net-
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work. The Input Map and the Filter Map for this layer are presented in Figure 9.10c.A separation of the labeled input is visible in the Input Map, showing that the classi-fication is feasible at this level. This is confirmed by the fact that filters are dividedin the Filter Map according to the most strongly associated label. Thus, anotherlayer, as is present in the network, is not needed in order to perform a predictionon the problem at hand (T5). Therefore, we change the design by dropping thefully-connected layer and by connecting the prediction layer directly to the last con-volutional layer. The analysis of the prediction layer after retraining is provided inFigure 9.10d. The new network reaches an accuracy of 95.9% on the test set, which
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Figure 9.10: Mitotic Figures detection. A DNN is trained to detect mitotic figures in histological images(a). Filters in the first convolutional layer Conv1 are highly associated with mitotic figures (b). Labeleddata are separated in the Input Map of the first fully-connected layer FC1 (c). After removing FC1 theprediction layer (d) still shows very strong separation, indicating that FC1 is indeed not needed for clas-sification.
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is identical to the accuracy obtained with the previous architecture, while it is muchfaster to compute a prediction.We contacted Veta et al. [182], presenting DeepEyes and providing our findings.They informed us that they had come to the same conclusions after several blindmodifications of their network, commenting that a system like DeepEyes is benefi-cial in the definition of networks for a specific medical imaging problem. Further-more, they showed it particular interest in visualizing the instances of the receptivefields and the corresponding filter activation directly in the system. They also ac-knowledged that inputswhich are difficult to classify are easily identified by the userin the Input Map (Figure 9.10d). Hence, they commented that DeepEyes also givesinsights on how the training set can be modified in order to improve the classifica-tion as it shows which kind of input must be added to the training set.
9.6 Implementation
DeepEyes is developed to complementCaffe, awidely-useddeep-learning library [79].DeepEyes, requires Caffe files that describe the network and the parameters of thesolver as input. DeepEyes trains the network using Caffe, but seamlessly builds theProgressive Visual Analytics system presented in this chapter on top of it.For optimal performance, we implemented DeepEyes in C++. The interface isimplemented with Qt. Perplexity Histograms and the Activation Heatmaps are im-plemented in JavaScript using D3 and are integrated in the application with QtWe-bKit Bridge. The Input- and Filter-Maps, are rendered with OpenGL. DeepEyes isimplemented using a Model-View-Controller design pattern, allowing for the futureextension to different deep-learning libraries, such as Google’s TensorFlow [2] orTheano [170].
9.7 Conclusions
In this chapter, we presented DeepEyes, a Progressive Visual Analytics systemsthat supports the design of DNNs by showing the link between the filters and thepatterns they detect directly during training. The user detects stable layers (T1)that are analyzed in detail in three tightly-linked visualizations. DeepEyes is the onlysystemwe are aware of that supports DNN design decisions during training. UsingDeepEyes the user detects degenerated filters (T2), inputs that are not activatingany filter in the network (T3), and reasons on the size of a layer (T4). By visualizingthe activation of filters and the separation of the input with respect to the labels, theuser decides whether more layers are needed given the pattern-recognition prob-lem at hand (T5). We used DeepEyes to analyze three DNNs, demonstrating howthe insights obtained from our system help in making decisions about the networkdesign.A limitation of DeepEyes is that it relies on qualitative color palettes for the visu-alization of labels in the Input- and Filter-Maps. This solution does not scale whenthe number of labels is large, therefore wewant to address this issue in future work.
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Further, the Input- and Filter-Map are created with dimensionality-reduction tech-niques, which may be affected by projection errors. Hence, adding interactive val-idation of the projections [109] is an interesting future work. Another interestingfuture work is the development of linked views that allows for the analysis of dif-ferent type of data, such as text or video. An interesting development would be tointegrate in DeepEyes different deep-learning libraries, such as TensorFlow [2] orTheano [170], and to the analysis of different and other types of network architec-tures, such as Recurrent Neural Networks [114] and Deep Residual Networks [60].Finally, it would be interesting to apply DeepEyes for the analysis of DNNs in severalapplication contexts.
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10
Conclusions

The known is finite, the unknown infinite;
intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability.

Our business in every generation is to reclaim a little more land.

Thomas Henry Huxley



10. Conclusions

The effective analysis of high-dimensional data has been proven to be an im-portant driver for new knowledge discovery in many different fields, from life sci-encess [6, 12, 102] to artificial intelligence [83, 116, 137]. For a human, direct under-standing of high-dimensional data is challenging, since it is far removed from ourdaily experience. To overcome this limitation, visual analytics techniques and toolscombine visualizations, statistical analysis and mining algorithms in order to ex-tract knowledge from data.
In this dissertation we focused on a class of algorithms that, in recent years,achieved impressive results in supporting the hypothesis generation from data inmanydifferent fields. Non-linear dimensionality-reduction algorithms, and tSNE [177]in particular, are now widely adopted by biomedical researchers for the explorationof their data, and by machine learning researchers for validation of their models.Among the advantages of these techniques, is the ability to remove redundancybetween dimensions by extracting low-dimensional and non-linear structures thatare embedded in the high dimensional space.
However, at the time when this work started, non-linear dimensionality tech-niques were limited in their scalability, limiting the analysis to small datasets. Thisfact posed a limitation to the applicability of the algorithms to an always increasingdataset size. The work presented in this dissertation aimed specifically at this limi-tation, proposing new algorithmic solutions that enabled the development of visualanalytics applications that are specifically designed for a given domain.
More specifically, in Chapter 4 we introduced the Approximated-tSNE (A-tSNE),which proposes to build dimensionality-reduction embeddings on approximated in-formation. We proposed to adopt approximated k-nearest-neighborhood search al-gorithms to encode the local similarities between the data points. Thanks to thisinnovation, a lengthy preprocessing of the data is avoided while, at the same time,high-neighborhood preservation is achieved. Moreover, we provided the user withthe ability to locally refine the approximated information while the embedding iscomputed, hence converging to non-approximated embeddings. Since our workwas presented in 2016, almost all the newly introduced non-linear dimensionality-reduction algorithms make use of the approximated computation of the k-nearest-neighborhood graph [25, 87, 112, 168]. This work was further improved by adoptinga GPU-based computation of the embedding optimization which is presented inChapter 5. This technique, which makes use of the rendering pipeline to computethe gradient as a derivation of three scalar fields, is implemented on the GPU andruns in the client side of a web browser and it is openly available in the Google’sTensorFlow.js library.
Despite the improved interactivity of systems based on the Approximated-tSNE,we observed that the optimization process becomes increasingly difficult to opti-mize as the size of the dataset grows. To overcome this limitation, we presenteda novel algorithm that is the first to introduce a hierarchical exploration of non-linear data; the Hierarchical Stochastic Neighbor Embedding (HSNE). HSNE, whichis presented in Chapter 6, extracts a hierarchy of data points, also known as land-

10
144



marks, that represent the data at different scales. A hierarchical analysis is thenperformed by the user. First the embedding representing the overview of the data,i.e., the major high-dimensional structures, is generated. The user can select clus-ters of landmarks that are of interest, a decision made by looking at some linkedviews depicting the selection in the data-point space. New embeddings are thengenerated by using the landmarks associated with the selection at a lower level inthe hierarchy. We demonstrated the relevance of HSNE and its applications in theanalysis of single cell data where we were able to identify rare cell-types in the im-mune system that were previously unknown. Other insights obtained by applyingthe techniques presented in this dissertation to biomedical data are presented inChapter 7.We also presented a novel system for the analysis of bipartite graph that isbuilt on top of the HSNE algorithm. Thanks to new data structures we are ableto compute HSNE hierarchies of containing tens of million data points. This workis motivated by the growing partisanship that social network creates online, a phe-nomenon known as Filter-Bubbles or Echo-Chambers. Our WAOW-Vis system al-lows to analyze this phenomenon on a desktop computer in only few minutes ofcomputation time. HSNE is also the cornerstone used for applying visual analyticsfor the understanding and improvement of Deep Neural Networks. More specifi-cally we present DeepEyes, a Progressive Visual Analytics system that supports thedesign of neural networks directly during training. We showed how the system fa-cilitates the identification of problematic design choices and information that is notbeing captured by the network. We demonstrate the effectiveness of our systemthrough multiple use cases, showing how a trained network can be compressed,reshaped and adapted to different problems.The work presented in this thesis, provides solutions to the scalability issuesof non-linear dimensionality reduction techniques for visual data analysis. Despitethe results that we have reported and the increased capabilities of our algorithms,several challenges remain to be tackled. First, the computation of the k-nearestneighbors is a critical step of all the recently developed non-linear dimensionality-reduction algorithms. Faster algorithms for kNN computations will be of great ben-efit, while a change in the computational paradigm, for example by adopting a dif-ferentiable programming approach, may open the door to novel and more efficienttechniques. Finally, we believe that the development of progressive data analyticstechniques will be of major importance in the near future. As Data Science requirestime-consuming and iterativemanual activities, the extension of Progressive VisualAnalytics would be beneficial if applied in different computational modules, e.g.,data cleaning, transformation and modeling. Therefore, the development of a Pro-gressive Data Science [175] pipeline will make the data processing more efficient,as any change of parameters and algorithms will be immediately and progressivelyreflected to the user, allowing for a quick evaluation of the choices.
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