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Summary

Visual analysis of high dimensional data is a challenging process. Direct visual-
izations work well for a few dimensions but do not scale to the hundreds or thou-
sands of dimensions that have become increasingly common in current data an-
alytics problems. Visual analytics is the science of analytical reasoning facilitated
by interactive visual interfaces, and it has been proven as an effective tool for high-
dimensional data analysis. In visual analytics systems, several visualizations are
jointly analyzed in order to discover patterns in the data.

One of the fundamental tools that has been integrated in visual analytics, is non-
linear dimensionality-reduction; a tool for the indirect visualization aimed at the dis-
covery and analysis of non-linear patterns in the high-dimensional data. However,
the computational complexity of non-linear dimensionality-reduction techniques
does not allow direct employment in interactive systems. This limitation makes the
analytic process a time-consuming task that can take hours, days or even weeks
to be performed.

In this thesis, we present novel algorithmic solutions that enable integration
of non-linear dimensionality-reduction techniques in visual analytics systems. Our
proposed algorithms are, not only much faster than existing solutions, but provide
richer insights into the data at hand. This result, is achieved by introducing new data
processing and optimization techniques and by embracing the recently introduced
concept of Progressive Visual Analytics; a computational paradigm that enables
the interactivity of complex analytics techniques by means of visualization as well
as interaction with intermediate results.

Moreover, we present several applications that are designed to provide unprece-
dented analytical capabilities in several domains. These applications are powered
by the algorithms introduced in this dissertation and led to several discoveries in
areas ranging from the biomedical research field, to social-network data analysis
and machine-learning models interpretability.






Samenvatting

Visuele analyse van hoog-dimensionale gegevens is een uitdagend proces. Directe
visualisaties werken goed voor een klein aantal dimensies, maar schalen niet naar
honderden of duizenden dimensies zoals steeds vaker het geval in huidige data-
analyse problemen. Visuele analyse is de wetenschap van het analytisch redeneren
gefaciliteerd door interactieve visuele interfaces, en het is bewezen als een effectief
hulpmiddel voor hoog-dimensionale data-analyse. In visuele analysesystemen wor-
den verschillende visualisaties gezamenlijk geanalyseerd om patronen in de data
te ontdekken.

Een van de fundamentele tools die in visuele analyse is geintegreerd, is niet-
lineaire dimensionaliteitsreductie; een tool voor de indirecte visualisatie gericht op
het ontdekken en analyseren van niet-lineaire patronen in de hoog-dimensionale
data. De computationele complexiteit van niet-lineaire dimensie-reductie technieken
laat echter geen directe tewerkstelling in interactieve systemen toe. Deze beperking
maakt het analyseproces tot een tijdrovende taak die uren, dagen of zelfs weken in
beslag kan nemen.

In dit proefschrift presenteren we nieuwe algoritmische oplossingen die het mo-
gelijk maken om niet-lineaire dimensie-reductie technieken te integreren in visueel-
analytische systemen. Onze voorgestelde algoritmes zijn niet alleen veel sneller
dan bestaande oplossingen, maar geven ook een rijker inzicht in de data. Dit resul-
taat wordt bereikt door de introductie van nieuwe technieken voor gegevensverw-
erking en -optimalisatie en door het recent geintroduceerde concept van Progres-
sive Visual Analytics; een computationeel paradigma dat de interactiviteit van com-
plexe analysetechnieken mogelijk maakt door middel van visualisatie en interactie
met tussenresultaten.

Bovendien presenteren we verschillende toepassingen die ontworpen zijn om
ongekende analytische mogelijkheden te bieden in verscheidene vakgebieden. Deze
toepassingen worden aangedreven door de algoritmes die in dit proefschrift wor-
den geintroduceerd en hebben geleid tot meerdere ontdekkingen in gebieden var-
iérend van biomedisch onderzoek tot sociale netwerkdata-analyse en interpretatie
van machine-learningmodellen.






Introduction

And yet it moves!

Galileo Galilei



1. Introduction

1.1 Motivation

In the 17th century, mainly thanks to the work of Galileo Galilei, what was known as
natural philosophy became Science as we know today. This revolution was driven
by the widespread adoption of the Scientific Method. The Scientific Method con-
sists in a body of techniques that allowed humankind to understand the laws gov-
erning our world and, consequently, to manipulate it to our advantage. At its core,
the Scientific Method is a tool for data-driven hypothesis generation and valida-
tion. In order to understand a natural phenomenon, scientists carefully design ex-
periments and collect numerical data. Hypothesis on the laws governing the phe-
nomenon are then formulated and are tested through a new set of experiments.
The process is iterated until a law is found that is not disproved by new experi-
ments.

Since the early days of Science, data visualization, i.e., the discipline focused on
visual representation of data, played a crucial role in understanding the natural phe-
nomena. A good example of this can be found in the early work of Galileo, more
specifically, on his observation of the sun thanks to the then recently introduced
telescope. Galileo observed and recorded the position of the “Sunspots”, dark re-
gions on the sun surface over a period of several days. By observing the evolution
of the position of the Sunspots over time, an example of which is presented in Fig-
ure 1.1, Galileo observed that their movement could be partially explained by making
the hypothesis that the sun is an imperfect and rotating sphere; an observation that
went against the Aristotelian tradition that thought the Sun as unflawed and unmov-
ing. Another seminal example of data visualization for hypothesis generation is the
work of Dr. John Snow in the identification of the cause of Cholera outbreaks. In
the 19th century it was thought that Cholera was caused by pollution and “bad air”,
generally identified with the term Miasma. Dr. Snow was skeptic of the Miasma the-
ory and, therefore, performed a methodical data collection of Cholera cases during
the outbreak in London of 1854. By plotting the location and the number of Cholera
cases on the map presented in Figure 1.2, Dr. Snow hypothesized that the source
of the disease was a water pump at the center of the map. This hypothesis, which
originated from the visual analysis of the data, had to be empirically verified. Since
no chemical nor microscopic examination of the water was able to confirm the hy-
pothesis, the pump was made not functional by removing the rod that was activat-
ing it. Following this action, the Cholera outbreak ended, reinforcing the hypothesis
that will be proven 30 years later by direct microscopical analysis.

These two results are just examples of the many successes of a data visual-
ization approach in an Exploratory Data Analysis setting. Exploratory Data Analysis
was formally introduced by Tukey in 1961 as a set of '[PJrocedures for analyzing
data, techniques for interpreting the results of such procedures, ways of planning
the gathering of data to make its analysis easier, more precise or more accurate, and
all the machinery and results of (mathematical) statistics which apply to analyzing
data" [172]. More specifically, data visualization helps in forming hypothesis of the
underlying phenomenon that is currently investigated. After the data is gathered,
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Figure 1.1: Maculae in Sole Apparentes is the first example of visual analytics for hypothesis generation.
By observing the position of the sunspots, i.e., dark points area on the surface of the sun for several days,
Galileo Galilei inferred that the sun must be a rotating sphere, a notion against the Aristotelian tradition
that thought the Sun as unflawed and unmoving.

the scientist creates visual representations that aim at discovering important pat-
terns that would have been impossible to extract by a direct analysis of the data.
These visual representations are then used to assist the scientist in phrasing a hy-
pothesis on the phenomenon under analysis, and consequently, in supporting the
design of experiments that can confirm or disprove the developed model.

Visual Analytics [85] is the research field that integrates human and machine
analysis to provide solutions to problems whose size and complexity would make
them otherwise intractable. Interactive interfaces and visualizations are comple-
mented, in a visual analytics system, with computational tools to support the ex-
traction of knowledge from the data. However, despite the successful application
of visual analytics to support the hypothesis generation, recent years are character-
ized by new challenges that limit their application. New data acquisition techniques
in the digital era, allow to collect and store data beyond any previously imaginable
level. Scientists are not only faced with the problem of effectively analyzing mil-
lions of acquired data points, but also to deal with the inherent complexity of the
acquired data due to the number of readings, i.e., dimensions, associated to each
single data point.
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Figure 1.2: Dr. John Snow’s map of Cholera cases during the outbreaks of 1854 in London. A visual
analysis of the data allowed for the identification of the source of the outbreak as a water pump located
in Broad Street, epicenter of the reported cases.

High-dimensional data are, in particular, inherently challenging to visualize and
analyze. As humans, we learn to understand the world surrounding us trough our
sensory input. Hence, we are naturally designed to be able to navigate in a 3-
dimensional world and to interpret other sensory input such as sound and smell.
It is extremely difficult for us to make sense of a higher number of dimensions, a
setting that seldom has to do with our day-to-day experience. This problem is fur-
ther aggravated by the size of the datasets that are often analyzed in an exploratory
data analysis settings. These datasets are not just high-dimensional, but may also
contain millions of data points that ought to be analyzed. This work is motivated
by the need for the development of scalable algorithmic solutions that enables the
analysis of extremely large and high-dimensional data. We explore the intersection
of visualization and machine learning techniques, while providing new algorithms
and applications that are specifically designed to empower users during the ana-
lytical process.
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1.2 Contribution and Outline

In this dissertation, we focus on a body of techniques for analyzing high-dimensional
data that rely on dimensionality reduction. Dimensionality reduction techniques
aim at reducing high-dimensional data in a low-dimensional space, i.e. two or three
dimensional, that is easily visualized with traditional visualization techniques such
as scatterplots. While the dimensionality is reduced and the information the data
contains, some characteristic of the high-dimensional data are preserved. Depend-
ing on the characteristic that is preserved, different insights on the data are ob-
tained. For example, linear-dimensionality reduction techniques preserve large pair-
wise distances between data points and give an intuition on the major trends in the
data.

Recent years have seen the widespread adoption of new types of dimensional-
ity reduction that have been proven to be beneficial in several analytical tasks [151].
Non-linear dimensionality reduction, also known as manifold learning techniques,
aim at the discovery, preservation and visualization of non-linear structures of points.
The development of these techniques is motivated by the “Manifold Assumption”,
i.e., the idea that redundancy exists among the dimensions and the data lay on mul-
tiple non-linear manifolds that are embedded in the high-dimensional space. The
manifold assumption has been empirically verified in many settings and it is at the
core of many unsupervised learning algorithms [26].

While non-linear dimensionality reduction techniques allow for the discovery, vi-
sualization and analysis of the manifolds, they are usually costly to compute and
do not scale well in the number of data points to be analyzed. This dissertation
presents several techniques that improve the scalability of non-linear dimensionality-
reduction algorithms, allowing to push the analytical capabilities to a whole new
level. The proposed techniques power several application, that are also presented
in this dissertation, that provide novel insights in several fields such as biomedical
data analysis, deep neural network interpretability and social-network analysis.

More specifically, the contributions of this dissertation are as follows:

- In Chapter 4, we demonstrate that approximated computations of a widely
used non-linear dimensionality-reduction algorithm, the t-distributed Stochas-
tic Neighbor Embedding (tSNE), allows for a much scalable visual data anal-
ysis pipeline with negligible reduction in the quality of the generated embed-
ding. Following this insight, we present the Approximated-tSNE [138] and we
describe how itis used in a Progressive Visual Analytics (PVA) computational
paradigm. PVA is a recent analytical approach that present the user with par-
tial results of complex algorithms without waiting for their completion.

- In Chapter 5, we present a novel approach to the computation of the gradient
descent of the tSNE algorithm [139]. Thanks to a reformulation of the gradi-
ent, our technique makes heavy use on the GPU rendering pipeline, speeding
up computations by several orders of magnitude while, at the same time, is
computed in the client side of a web browser.
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+ Anovel hierarchical approach for the exploration of high-dimensional datasets;

the Hierarchical Stochastic Neighbor Embedding (HSNE) [136] is presented in
Chapter 6. HSNE creates a hierarchical representation of the data that is in-
teractively explored by the user. During the exploration, clusters at different
scales are revealed.

- The algorithm presented in this thesis are used in different applications devel-

oped for different fields. We present how our algorithms power several tools
that support the exploratory analysis in biomedical research. In particular, in
Chapter 7 we present how the HSNE algorithm was used in the Cytosplore
application for the analysis of large single-cell datasets for new cell-type dis-
covery [68,73,90,102,179].

- We introduce the "Who's Acting On What-Visualization” (WAOW-Vis), a novel

technique for the multiscale visual exploration of large bipartite graphs [135].
WAOW-Vis is developed with the specific goal of analyzing datasets of social-
network scale, i.e. containing millions of users, and it is introduced in Chap-
ter 8. We show how our technique allows to discover “filter bubbles” on Twit-
ter, i.e., groups of users that follow only polarized source of information.

+ In Chapter 9, we present DeepEyes [137], an analytical tool that permits a

visual analysis of deep neural networks directly during training. DeepEyes
makes use of our non-linear dimensionality-reduction techniques in order to
highlight how networks behave with respect to their input. The insights ob-
tained trough DeepEyes allow the user to make informed decisions about the
design of the network.

In order to contextualize our work with regard to the existing literature, the next

chapter presents the related work, introducing visual analytics techniques for large
and high-dimensional data analysis, while Chapter 3 establishes the technical back-
ground of this work. The chapters from 4 to 9 present the contributions of the dis-
sertation as stated above. Finally, Chapter 10 concludes the dissertation with an
overview of the results achieved and reflections on future work.

10



Related Work

If I have seen further, it is by standing on the shoulders of giants.

Isaac Newton

In this chapter we present an overview of the research field to which this dissertation belongs.
We introduce the reader with the concept of Exploratory Data Analysis and high-dimensional
data analysis. Then we present visualization techniques for exploring and analyzing high-
dimensional, with a focus on dimensionality-reduction algorithms and, finally, we introduce
the concept of Progressive Visual Analytics. Other related work, that are more specific to the
techniques and applications presented in this dissertation, will be discussed in each one of
the following chapters.



2. Related Work

2.1 Exploratory Data Analysis

When faced with novel data, the user performing an analysis does not have a clear
picture of which model can be fitted on it. Therefore, a first analysis is usually
performed to understand the main characteristics of the acquired dataset. This
analysis takes the name of Exploratory Data Analysis and, among its goals, are the
extraction of important variables, the detection of outliers or the identification of
underlying non-convex structures [172]. By exploring the data, the user can form
hypothesis on the underlying phenomenon that is at the base of the acquired data.
This knowledge is then used to devise novel experiments or to define statistical
models to fit and automatize the data analysis for a specific task at hand.

Due to its exploratory nature, the data is analyzed by the user without impos-
ing much prior knowledge on the patterns that ought to be found in the data. For
this reason, Exploratory Data Analysis heavily relies on a number of visualization
techniques that are used to support the understanding of the data for a hypothesis-
generation process. A simple, yet powerful, example of why it is important to per-
form an Exploratory Data Analysis of the data is given by the “Anscombe’s Quar-
tet” [8] which is presented in Figure 2.1. The quartet consists of four 2-dimensional
datasets that have nearly identical descriptive statistics. The four datasets have
similar mean and standard deviation on the x and y axis and they also have a sim-
ilar correlation between the two variables, identified by the linear regression line
drawn on the plot. However it is clear that, after visual inspection of the data, the
descriptive statistics are not enough to reveal important trends captured by the
data.

The two datasets in the top row do not contain outliers. However, while the
dataset on the left has a noisy but linear relationships between the values in x;
and y1, the dataset on the right is characterized by an exact parabolic relationships
between x, and y»,, a trend that would be unnoticed without a direct visual inspec-
tion of the data. Other interesting observations can be made on the remaining two
datasets. More specifically, these two examples highlight how the presence of out-
liers, i.e., data points that are distant from the other observations, can derail the
statistical analysis. While for the dataset at the bottom left the regression line de-
scribing the data is only marginally modified by the outlier, for the dataset on the
right, a single data point can completely ruin the line fitted to the data.

The Anscombe’s quartet is a great example that motivates the need for a qual-
itative understanding of the data in order to form hypothesis. These hypothesis
are then validate through proper quantitative analysis with statistical techniques.
However, data seldom comes in the simple form of a 2-dimensional dataset. In or-
der to describe complex phenomena, a higher number of dimensions are required
and, to this end, more advanced Exploratory Analysis techniques and visualizations
are needed. In the remainder of this chapter, we present related work in the visual
data analysis for hypothesis generation for high-dimensional data and how this dis-
sertation provides novel techniques for the visual exploration of high-dimensional
data.

12
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Figure 2.1: The Anscombe’s Quartet consists of four 2-dimensional datasets with nearly identical de-
scriptive statistics. However, upon visualization important characteristics and differences are revealed,
i.e., the presence of outliers or non-linear relationships between the dimensions. The Anscombe’s Quar-
tet is the simplest and yet a clear example of the benefits of adopting an Exploratory Data Analysis
approach to the understanding of data.

2.2 Visualization of High-Dimensional Data

Inthe previous section, we presented the motivation to adopt a visual inspection ap-
proach for data analysis. However, in a real-world setting data is described by many
variables, i.e., dimensions, and a scatterplot visualization as presented in Figure 2.1
is not enough to reveal patterns in the data. Therefore, visualization techniques
specifically designed for high-dimensional data analysis have been developed with
the goal of analyzing a number of dimensions that is higher than 2- or 3-dimensions.
In the remainder of this Section we introduce the most commonly used visualiza-
tions of high-dimensional data.

A familiar setting for displaying high-dimensional data is to organize it in a tab-
ular form, where each reading, or data point is a row in the table. Each column of
the table correspond to a dimension in the high-dimensional data. Microsoft's Ex-
cel or LibreOffice’s Calc are just two examples of possible software that save the
data in this form. However, without enriching the table with some visual feedback,
itis in general impossible, if not for limited test cases, to find interesting insights by
looking directly at the numbers in the table. A possible improvement is to enrich the
table by a heatmap visualization. Here, the cells in the table are colored according to
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Figure 2.2: Heatmap visualization of high-dimensional data. Reordering of the data points and dimen-
sions is used to show clusters of similar entities. Two clusters of data points, i.e., rows, are visible as
they share low values for the first group of dimensions. At the same time, groups of similar dimensions,
i.e., columns, are identified as share similar values in the dataset.

the value they contain allowing for a better identification of similar rows. However,
in order to identify patterns of similar data points, the order of the table is of major
importance [7,13,49,133,184]. It is indeed much easier to identify groups of similar
points if those points are close together. Figure 2.2 shows an example of heatmap
visualization for high-dimensional data with rearranged columns and rows. Two
clusters of data points, i.e., rows, are visible as they share similar values in almost
all dimensions. At the same time, groups of similar dimensions, i.e., columns, are
identified. A heatmap scalability is, however, limited by the resolution of the screen.
Furthermore, not all the relationships become easily identifiable in this encoding.

A scatterplot matrix, or SPIoM, is an alternative visualization for high dimen-
sional data [24,173]. Scatterplot matrices consists of all pairwise scatterplots orga-
nized in a matrix layout, where each scatterplot shows the relationships between
a pair of dimensions. Figure 2.3a shows a scatterplot matrix for the Iris dataset,
which is a 4-dimensional dataset containing three different classes of objects. While
a SPIoM scales better than a heatmap visualization in the number of data points
visualized, it does not scale as well to a larger number of dimensions. As a matter
of fact, by increasing the number of dimensions, the occupied visual space grows
quadratically. Therefore, SPloMs are adequate for datasets containing less than,
approximately, 30 dimensions [123]. Moreover, SPloMs require also a significant
cognitive load from the user when relations beyond two values are of interest. This
can be improved by making use of brushing and linked selections, for example by
highlighting the selection of one scatterplot in all the others in the matrix.

Another widely used visualization for high-dimensional data analysis is the par-
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Figure 2.3: Scatterplot Matrix and Parallel Coordinates Plot of a 4-dimensional dataset. In a SPloM (a),
2-dimensional scatterplots are arranged in a grid. Each scatterplot shows the correlation between two
dimensions. In the parallel coordinates plot (b) each dimension is represented by a vertical axis. Data
point are polylines intersecting the vertical axes according to their values in each dimension. These
visual representations do not scale well with the number of dimensions.

allal coordinates plot (PCP) [76]. In a parallel coordinates plot, each dimension is
represented by a vertical axis. A data point is visualized by a polyline intersecting
the axes according to the values of the point in the corresponding axis. PCPs allow
for the detection of patterns in the data, where similar data points create similar
line bundles. Obtaining these insights is facilitated by interactions [62,159] such as
brushing [59, 143] and reordering of the axis [7,133]. An example of a parallel co-
ordinates plot for the Iris dataset is presented in Figure 2.3b. Parallel coordinates
plots also become ineffective when the number of dimensions increases. The vi-
sual space needed to visualize more than a dozen of dimensions makes the gener-
ation of the plot infeasible on a computer screen. Furthermore, the trends can be
identified just between neighboring elements, i.e., dimensions.

The visualizations presented in this section are indeed powerful tools for an
exploratory data analysis task. However, when the dimensionality of the data is
high, e.g., hundreds or thousands of dimensions, direct visual representations fail
to highlight complex patterns in the data. In the remainder of this chapter, we
present algorithmic solutions that can be adopted to extract these complex pat-
terns from the data for a visualization purpose. These algorithmic solutions take
the name of dimensionality-reduction techniques. They aim at reducing the dimen-
sionality of the data to a number of dimensions that can be easily visualized, e.g.,
in a 2-dimensional scatterplot. Despite the inevitable loss of information due to
the dimensionality reduction, these algorithms preserve some characteristic of the
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original data that is of user interest, hence enabling an effective data exploration.

2.3 Dimensionality-Reduction for Visualization

The visualizations presented in the previous overload the user with too much in-
formation if used to analyze very high-dimensional data. This information overload
leads to two problems during the exploratory analysis. First, it translates to a cog-
nitive overload for the user exploring the visualization. The more information is
presented to the user, the more difficult is to effectively discover patterns in the
data and finding the underlying rules governing the phenomenon [123]. Second, the
visualization of all the dimensions for every data point may be infeasible due to
technical limitations, e.g., due to the limited number of pixels on screen or to the
amount of clutter in the resulting visualization.

Dimensionality-reduction techniques adopt a different approach for the analysis
of high-dimensional data. Instead of the direct visualization of the dataset, they aim
at finding a low-dimensional representation that preserves some important char-
acteristic of the data. This low-dimensional representation, also called embedding,
is then visualized and analyzed by the user. We define a high-dimensional data as
X = {x;...xy}, N being the number of data points x; € R” residing in a h-dimensional
space. Dimensionality-reduction techniques find a mapping function DR : R" = R
that embeds the high-dimensional points in an I-dimensional space, where [ in vi-
sualization is usually chosen to be 2 or 3. By applying the mapping function to the
original dataset:

inEX:yl' = DR (x;) (21)

The mapped points are collected in a derived dataset Y = {y; ...yn} Which is usu-
ally referred as embedding. Sincey; € R? or R?, known visualization techniques such
as scatterplots are used to effectively analyze the embedding Y. How the mapping
function DR is defined is crucial for the correct understanding of the data during
the exploratory phase. As a matter of fact, since the user explores the dataset in,
for example, a 2D scatterplot, the understanding of the phenomenon is mediated
by the the mapping generated by DR. Moreover, the creation of the mapping must
not only be informative, but also computationally feasible due to the size and di-
mensionality of the data at hand.

A dimensionality reduction techniqgue that is extensively used is the Principal
Component Analysis (PCA) [81]. PCA aims at finding a orthogonal linear transfor-
mation of the data such that the greatest variance in the data is explained by the
first coordinates in the transformed space. PCA defines a square transformation
matrix W that, when multiplied to an element in X, expresses this point in a new or-
thogonal basis, whose axes are ordered by decreasing variance with respect to the
original dataset. By taking only the first columns of W, we create a dimensionality-
reduction transformation W' that, when multiplied to the data point x;

16



2.3. Dimensionality-Reduction for Visualization
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Figure 2.4: Principal Component Analysis of the Iris dataset presented in Figure 2.3. On the left, 3
dimensions of the dataset are used to create a 3D scatterplot. On the right, the first two principal com-
ponents are used to visualize the data on a 2D scatterplot. On the first dimension, PCA-1, the dataset
presents the highest variance.

Vx; e X 'yi =Xl'W,, (22)

where y; is the low dimensional representation of x;. The dimensionality of the
resulting dataset Y correspond to the number of columns chosen to be in W’. For
visualization purposes, the dimensionality of Y is usually 2 or 3, hence enabling the
visualization of the data in a scatterplot. An example of a PCA transformation for a
3D dataset to a 2D representation is shown in Figure 2.4.

The principal components are obtained by a Single Value Decomposition (SVD)
of the covariance matrix of the dataset [81]. This leads to a computational com-
plexity of the dimensionality reduction of O(h?N + h3), where h is the number of
dimensions and N is the number of data points and it has a memory complexity of
O(N?) due to the need of storing the covariance matrix. While the approach scales
linearly in the number of data points, increasing the dimensionality of the dataset
makes the exploratory analysis of the data prohibitive, or even impossible, due to
the computation time.

A different approach that, instead of focusing on the variance of the data is
focused on the distances between points is the Classic, or Metric Multidimensional
Scaling (MDS) [18]. In the multidimensional scaling the mapping function DR is
chosen to preserve in least-square sense the pairwise distances between the data
points. Therefore, a pairwise distance matrix D is computed from the points in
the dataset and a linear transformation of the dataset is computed such as the
distances between the pointsin Y reflects as closely as possible the distances in D.
Note that, if the distance metric chosen to populate D is L2, then MDS is equivalent
to a PCA reduction.

The computational and memory complexity of metric MDS is O(N®) since in-

17




2. Related Work

volves a singular value decomposition of a matrix derived from D. Since the com-
plexity of the technique is prohibitive for large datasets, several techniques have
been developed in the past in order to be able to deal with larger datasets. Silva et
al. [33] introduced the Landmark-MDS, where the dimensionality reduction is per-
formed only on a subset of points that are called landmarks. The location of the
rest of the points in the embedding is then obtained through a linear interpolation
of the position of the landmarks in the embedding. Ingram et al. [75] propose Glim-
mer, a multilevel MDS approach that uses multiple level of landmark to guide the
creation of the embedding.

In this section, we presented the generic framework for visualizing high dimen-
sional data through dimensionality reduction. The introduced techniques, namely
the Principal Component Analysis and the Metric Multidimensional Scaling are char-
acterized by a linear mapping function DR. This characteristic impose a transfor-
mation a global transformation on that is shared by each point in X. In the next sec-
tion we introduce a different set of technigues known as non-linear dimensionality-
reduction, or manifold learning, where DR is a non-linear mapping and the transfor-
mation is local in nature.

2.4 Non-Linear Dimensionality-Reduction

for Data Visualization

In recent years, a better understanding of high-dimensional data obtained from real
world phenomena, lead to the formulation of the so-called “Manifold Hypothesis”.
The manifold hypothesis states that high-dimensional data often lay in low dimen-
sional manifolds embedded in the high-dimensional space at hand. In this context,
it is more interesting to understand the local characteristics of the manifolds than
achieving a global mapping of the data introduced by a linear transformation as
presented in the previous section. Examples of the insights that we aim at obtain-
ing are the number of disconnected manifolds in the data, their interrelationships
and their local dimensionality, also known as intrinsic dimensionality.

Non-linear dimensionality-reduction techniques, also known as manifold learn-
ing, have been developed in recent years with the focus on the unsupervised dis-
covery and analysis of manifolds in high-dimensional data. The mapping function
DR obtained from these techniques is characterized by a non-linear mapping with
local properties. More specifically, the mapping DR behaves differently in differ-
ent regions of the high dimensional space. Whereas linear-techniques imposes a
global transformation to the data, non-linear techniques often adopt a bottom-up
approach, where the mapping is defined by fitting a local model on each data point
in X.

The Sammon-Mapping techique [152], introduced in 1969, is the first example of
non-linear mapping, i.e., where the resulting dimensions of the embedding have no
relationships with the original dimensions of the dataset X. The Sammon-Mapping
minimizes the Sammon'’s stress function, a measure of the mismatch between the
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localized distances between pairs of points in X and in the embedding Y. The map-
ping is created by gradient descent minimization or other iterative minimization
techniques. Despite the approach chosen for the minimization, the embedding is
created by randomly placing the points in the embedding Y which are then moved
in the low dimensional space to minimize the chosen cost function.

Isomap [169] treats the high-dimensional data as a graph. Data points are con-
sidered vertices in the graph which are connected to only a subset of neighbors,
where the edges are weighted by the euclidean distances between the correspond-
ing points. The shortest pairwise distances between all the points are then com-
puted using the Floyd-Warshall algorithm [154]. The resulting distance matrix en-
codes the geodesic length between the points, i.e., the distance that are traversed
from one point to another while remaining on the data manifold. The points are then
embedded by preserving the distances with a Multidimensional Scaling approach,
where the distances are the geodesic length.

The Locally-linear embedding (LLE) [150] also relies on the search of a set of
neighboring points for each point in X. Each point is expressed as a linear combina-
tion of its neighbors in the high-dimensional space. LLE then applies an eigenvector-
based optimization technique that aims at creating a low-dimensional embedding
where the linear-combinations are also preserved. LLE has the advantage over
Isomap of creating a sparse problem, not requiring to compute a full distance ma-
trix.

Stochastic Neighbor Embedding (SNE) [66] is a non-linear dimensionality reduc-
tion technique that encodes local similarities between points in a stochastic fash-
ion. For each point a Gaussian kernel is found in such a way that only a small
number of neighbors are covered. The Gaussian kernel encodes, for each point in
X, the probability that another point is close to it on the manifold. Points are ran-
domly placed in the low-dimensional embedding Y and the same computation of
the similarities is performed. Points in the embedding are optimized with a gradi-
ent descent technique that minimizes the divergence between the corresponding
probability distributions in the high-dimensional space and the embedding.

Several other techniques have been introduced over the years such as Lapla-
cian Eigenmaps [14], Diffusion Maps [91] and non-linear PCA [153]. However, van
der Maaten et al. observed in a comparative review [178] that, while non-linear tech-
nigues perform well on selected artificial datasets, the good performance does not
necessarily extend to real-world data. In particular, the presented techniques suffer
from the crowding-effect, i.e., the inability to disentangle manifolds that are often
intermixed in the resulting embedding. To this end, van der Maaten and Hinton in-
troduced the t-Distributed Stochastic Neighbor Embedding (tSNE), an evolution of
the SNE algorithm which overcomes the crowding-effect while, at the same time,
it is easier to optimize. tSNE [176,177] has been accepted as the state of the art for
non-linear dimensionality reduction applied to visual analysis of high-dimensional
space in several application areas, such as life sciences [6,12,73,90,102,107,157]
and machine learning model understanding and human-driven supervision [83,116,
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137]. This dissertation heavily relies on the tSNE algorithm, for which a detailed de-
scription is provided in the next chapter, and provides several new techniques that
improve on the scalability and insightfulness of the embeddings. The presented
techniques are general and are already used in novel non-linear dimensionality-
reduction algorithms such as LargeVis [168], UMAP [112] and TriMap [5].

Finally, it is worth mentioning that the preservation of local and non-linear prop-
erties of the mapping does not come without a price. Contrary to linear dimen-
sionality reductions, where the new axes are a linear combination of the original
dimensions, in non-linear techniques the axis cannot be interpreted by the user. To
improve the interpretation of the embeddings, visual analytics systems have been
developed to visualize and validate the resulting embeddings [68,109,144]. These
systems allow us, due to linked visualizations, to understand which dimensions are
responsible for the patterns that are visible in the embedding.

2.5 Progressive Algorithms for Interactive Systems

In the previous sections we introduced dimensionality-reduction techniques for ex-
ploratory data analysis. Among dimensionality-reduction techniques, non-linear al-
gorithms are at the core of several discoveries, for example, in life sciences [6, 12,
107,157]. The main advantage of using this approach for exploratory data analysis
is that they make only limited assumptions on the data at hand, e.g., the presence
of relatively low-dimensional manifolds. Therefore, the user can explore the data
and obtain insights that are then validated by experiments, or are used to create
automatic data-processing tools.

However, despite the advantages introduced by this new data analysis approach,
dimensionality reduction, and non-linear techniques in particular, are characterized
by high computational complexity that limits their application for interactive tools.
Depending on the size of the data to be analyzed, it may take hours, or even days,
before an embedding is computed and ready to be analyzed by the user. While
this waiting time may be acceptable for many applications, it is a major obstacle
for introducing dimensionality-reduction technigues in interactive visual analytics
tools.

In recent years, a novel computational paradigm has been introduced to im-
prove the interactivity of visual analytics systems that rely on complex and time
costly algorithms. This paradigm, which takes the name of Progressive Visual An-
alytics (PVA), aim at the visualization and analysis of incrementally better partial re-
sults. The term Progressive Visual Analytics was introduced by Stolper et al. [165]
together with a list of requirements. More specifically, visual analytics systems
should be designed to:

+ Provide increasingly meaningful partial results during the execution of the al-
gorithms.

- Allow the user to focus the computations on a subspace of interest [122].
+ Allow users to ignore irrelevant subspaces.
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Moreover, visualizations used within these systems must be designed with the
following properties in mind:

+ Minimize user distraction with abrupt changes.

+ Guide the user by providing cues on the subspace of the data that contains
new insights.

+ Support an on-demand refresh of the visualizations.
+ Provide interfaces to specify on which subspaces the algorithm must focus.

An early examples of the application of PVA in visual analytics systems is sam-
pleAction presented by Fisher et al. [42]. SampleAction performs simple database
queries on extremely large databases that are refined over time. Muhlbacher [119]
provided a list of more advanced data mining algorithms that support the Progres-
sive Visual Analytics paradigm, while advocating for a more strict collaboration be-
tween algorithm and visualization researchers. Finally, Fekete and Primet [41] for-
malize the concept of progressive computations and present ProgressiVis, a toolkit
that enables the implementation of algorithms in a natively progressive environ-
ment.

In this dissertation, we present novel non-linear dimensionality-reduction tech-
niques that fully embrace the Progressive Visual Analytics paradigm. This novel
approach enabled the development of analytical systems, such as Cytosplore [68],
DeepEyes [137] and WAOW-Vis [135], that make use of dimensionality reduction for
the analysis of the data in a fully interactive setting.
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Background

But in my opinion, all things in nature occur mathematically.

René Descartes

In this chapter, we provide the reader with an in-depth description of the mathematical back-
ground needed to understand the contributions presented in the following chapters. More
specifically, we introduce the t-Distributed Stochastic Neighbor Embedding and the Barnes-
Hut-SNE algorithms. Moreover, we present the MNIST dataset, a widely used benchmark for
validating dimensionality-reduction techniques.



3. Background

3.1 t-distributed Stochastic Neighbor Embedding

As presented in the previous chapter, visual analysis of high dimensional data is a
challenging process. Direct visualizations such as parallel coordinates [76] or scat-
terplot matrices [58] work well for a few dimensions but do not scale to hundreds or
thousands of dimensions. Typically indirect visualization is used for these cases.
First the dimensionality of the data is reduced, usually to two or three dimensions,
then the remaining dimensions are used to lay out the data for visual inspection, for
example in a two dimensional scatterplot. A variant of tSNE [177], the Barnes-Hut
SNE [176] has been accepted as the state of the art for non-linear dimensionality
reduction applied to visual analysis of high-dimensional space in several applica-
tion areas, such as life sciences [6,12,107,157]. tSNE is a non-linear dimensionality
reduction algorithm that aims at the preservation of local neighborhoods during the
dimensionality reduction.

In this section, we provide an introduction to tSNE [177], which is at the base
of several contributions presented in this dissertations. tSNE interprets the overall
distances between data-points in the high-dimensional space as a symmetric joint-
probability distribution P. Likewise a joint-probability distribution Q is computed,
that describes the similarity in the low-dimensional space. The goal is to achieve
a representation, referred to as embedding, in the low-dimensional space where
Q faithfully represents P. This is achieved by optimizing the positions in the low-
dimensional space to minimize the cost function C given by the Kullback-Leibler
(KL) divergence between the joint-probability distributions P and Q:

1

N N Pij
C(RQ =KLPIQ=)Y pijln(_) (3.1)
=1j=1,j#i

qij

Given two data points x; and x; in the dataset X = {x;...xy}, p;; models the prob-
ability of finding the two points in close vicinity in the high-dimensional space. To
this extent, for each point a Gaussian kernel, P;, is chosen whose variance o; is
defined according to the local density in the high-dimensional space and then p;;
is described as follows:

ij=—l]2N =, (3.2)

exp(—(I1x; —x;11%)/(209)

3.3
Z]k\;ieXp(—(HXi —Xkllz)/(Zai)) (33)

where pjli =

pjii can be seen as a relative measure of similarity based on the local neigh-
borhood of a data-point x;. Similarly, p;; is a measure of similarity based on the
data pointx;. The perplexity value p is a user-defined parameter that describes the
effective number of neighbors considered for each data-point. The value of g; is
chosen such that for fixed u and each i:
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=2 X Piitogz i (3.4)

A Student’s t-Distribution with one degree of freedom is used to compute the
joint-probability distribution in the low-dimensional space Q, where the positions of
the data-points should be optimized. Given two low-dimensional points y; and y;,
the probability g;; that describes their similarity is given by:

1

qij = (+1lyi - ;15 2)” (3.5)

N N
with Z=Y Y (0 +llye-yillH™ (3.6)
k=11#k
The gradient of the Kullback-Leibler divergence between P and Q is used to mini-
mize C (see Equation 3.1). It indicates the change in position of the low-dimensional
points for each step of the gradient descent and is given by:

6C _ attr rep
5—Yi_4(Fl. ~F| ) (3.7)
N N
=4 ZpijqijZ(Yi—Yj)—ZqijZ(Yi_Yj) (3.8)
j#i j#i

The gradient descent can be seen as a N-body simulation [1], where each data-
point exerts an attractive and a repulsive force on all the other points (Fl?"ttr and
F;*P). The computational and memory complexity of the tSNE algorithm is O(N?),
where N is the number of points in the dataset. The algorithms computes, for each
point, the forces exerted on it by all the other points in the dataset, hence limiting its
application to datasets containing less than a thousand points. In the next section
we introduce the Barnes-Hut-SNE algorithm, a technique that is designed to scale
the tSNE computation to tens of thousands points.

3.2 Barnes-Hut Stochastic Neighbor Embedding

The Barnes-Hut-SNE (BH-SNE) [176] is an evolution of the tSNE algorithm that in-
troduces two different approximations to reduce the computational complexity to
O(Nlog(N)) and the memory complexity to O(N).

The first approximation aims at scaling the computation of the joint-probability
distribution P. It is based on the observation that the probability p;; is infinites-
imal if x; and x; are dissimilar. Therefore, the similarities of a data-point x; can
be computed taking into account only the points that belong to the set of nearest
neighbors .4; in the high-dimensional space. The cardinality of .4; can be set to
K = [3u], where u is the user-selected perplexity and |-] describes a rounding to
the next-lower integer. Without compromising the quality of the embedding [176),
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we can adopt a sparse approximation of the high-dimensional similarities. Equa-
tion 3.3 can now be written as follows:

exp(=(Ilx;=x; %)/ 209) if je;
pjii =

T ken; exp(=(IIxi—xl2)/ (20))
otherwise

(3.9)

The computation of the K-Nearest Neighbors is performed using a Vantage-
Point Tree (VP-Tree) [190]. A VP-Tree is data structure that computes KNN queries
in a high-dimensional metric space, in O(log(IV)) time for each data point. Therefore,
the complexity of the computation of the joint-probability distribution P becomes
O(Nlog(N)), since a KNN query is computed for each point in the dataset. It is a
binary tree that stores, for each non leaf-node, a hyper-sphere centered on a data-
point. The left children of each node contains the points that reside inside the hyper-
sphere, whereas the right one contains the points outside it.

The second approximation aims at scaling the computation of the optimization
of the tSNE cost function, presented in Equation 3.1, and it makes use of the for-
mulation of its gradient as presented in Equation 3.7. As described in the previous
section, tSNE can be seen as a N-body simulation, where attractive and repulsive
forces are applied on each point based on their high-dimensional similarity. The
Barnes-Hut algorithm [10] is used to speed up N-body simulation problems by jointly
computing the effects of clusters of distant points. This optimization makes use of
atree structure and reduces the computational complexity of the tSNE optimization
to O(Nlog(N)). For further details, please refer to van der Maaten [176].

3.3 The MNIST Dataset

To validate the embeddings generated by the tSNE algorithm and the novel tech-
niques introduced in this dissertation, a number of datasets are used. Among these
datasets, the MNIST dataset is often used as benchmark to validate novel non-
linear dimensionality-reduction techniques. In this section we introduce the dataset
and we explain why it is considered a good benchmark for non-linear dimensionality
reduction techniques. The MNIST dataset is a collection of 70 thousands images of
handwritten digits. The images were obtained by scanning documents created at
the American Census Bureau and documents obtained from American high school
students [95]. The images, for which few examples are presented in Figure 3.1, are
saved in a grayscale format and have a resolution of 28x28 pixels. For each im-
age, the corresponding label, i.e., the associated digit, is known. The dataset was
widely used, in particular during the first decade of this century, for training and
testing machine learning models with the goal of identifying the label associated
to an image [95,140]. In order to train a model, the images are separated in two
groups, 60 thousand images form the so called training set, i.e., a collection of im-
ages on which machine learning models are trained to perform the classification.
The remaining 10 thousand images are used to test the performance of the training
model, hence they are part of the so called test set.
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Figure 3.1: Examples of the MNIST dataset. The dataset contains images of handwritten digits.

The reader may now wonder what is the relationship between the images pre-
sented in Figure 3.1 and high-dimensional data that is at the core of this disserta-
tion. As a matter of fact, we can treat each single image as a high-dimensional
point; each dimension correspond to a pixel in the image and the corresponding
value is given by the grayscale value in the pixel of interest. The resulting dataset
has therefore 728 dimensions and 60 thousand data points for the training set and
the 10 thousand images for the test set. The MNIST dataset is particularly well
suited to test visual analysis technigues for high-dimensional data due to the large
number of dimensions and data points. Moreover, it allows the validation the ob-
tained insights as we have a clear understanding of the phenomenon behind the
data. More specifically, we expect to find 10 distinct manifolds, each one corre-
sponding to a different digit. Figure 3.2 presents a tSNE embedding of the MNIST
dataset, where each image is drawn in the corresponding location in the embed-
ding.
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Figure 3.2: tSNE embedding of the MNIST dataset. The embedded data points are visualized as the
MNIST images colored according to the digit they represent. Ten manifolds, one for each digit, are
visible.
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Approximated and
User-Steerable tSNE for
Progressive Visual Analytics

Science is the belief in the ignorance of experts.

Richard Feynman

In this chapter we present the Approximated-tSNE, an evolution of the tSNE algorithm that im-
proves the computation time of a tSNE embedding by adopting approximated computations of
the k-nearest-neighbor queries. Approximated-tSNE is particularly useful in progressive visual
analytics applications, a claim that is validated by two use cases presented in this chapter.

N. Pezzotti, B. Lelieveldt, L. van der Maaten, T. Hollt, E. Eisemann, and A. Vilanova. Approxi-
mated and user steerable tsne for progressive visual analytics. I[EEE Transactions on Visu-
alization and Computer Graphics, 23(7):1739-1752, 2017 [138].
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4.1 Introduction

In Chapters 2 and 3 we introduced the tSNE algorithm [177] and we explained why
it is beneficial for the analysis of high-dimensional dataset. tSNE produces 2D and
3D embeddings that are meant to preserve local structure in the high-dimensional
data. The analyst inspects the embeddings with the goal to identify clusters or
patterns that are used to generate new hypothesis on the data, however, the com-
putational complexity of this technique does not allow direct employment in inter-
active systems. This limitation makes the analytic process a time consuming task
that can take hours, or even days, to adjust the parameters and generate the right
embedding to be analyzed.

In Chapter 2 we also introduced Progressive Visual Analytics. In Progressive
Visual Analytics the user is provided with meaningful intermediate results in case
computation of the final result is too costly. Based on these intermediate results
the user can start the analysis process without waiting for algorithm completion.
Mihlbacher et al. [119] provided a set of requirements, which an algorithm needs to
fulfillin order to be suitable for Progressive Visual Analytics. Based onthese require-
ments they analyze a series of different algorithms, commonly deployed in visual
analytics systems and conclude that, for example, tSNE fulfills all requirements.
The reason being that the minimization in tSNE builds up on the iterative gradient
descent technique [177] and can therefore be used directly for a per-iteration visu-
alization, as well as interaction with the intermediate results. However, Mihlbacher
et al. ignore the fact that the distances in the high-dimensional space need to be
precomputed to start the minimization process. In fact this initialization process is
dominating the overall performance of tSNE for relatively high-dimensional spaces.
Even with a per-iteration visualization of the intermediate results [27,119, 165] the
initialization time will force the user to wait minutes, or even hours, before the first
intermediate result can be generated on a state-of-the-art desktop computer. Every
modification of the data, for example, the addition of data-points or a change in the
high-dimensional space, will force the user to wait for the full reinitialization of the
algorithm.

In this chapter, we present A-tSNE, a novel approach to adapt the complete
tSNE pipeline, including a distance computation for the Progressive Visual Analyt-
ics paradigm. Instead of precomputing precise distances, we propose to approxi-
mate the distances using Approximated K-Nearest Neighborhood queries. This al-
lows us to start the computation of the iterative minimization nearly instantly after
loading the data. Based on the intermediate results of the tSNE, the user can now
start the interpretation process of the data immediately. Further, we modified the
gradient descent of tSNE such that it allows for the incorporation of updated data
during the iterative process. This change allows us to continuously refine the ap-
proximated neighborhoods in the background, triggering updates of the embedding
without restarting the optimization. Eventually, this process arrives at the precise
solution. Furthermore, we allow the user to steer the level of approximation by se-
lecting points of interest, such as clusters, which appear in the very early stages
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of the optimization and enable an interactive exploration of the high-dimensional
data.
More specifically, the contributions of this chapter are as follows:

1. We present A-tSNE, a twofold evolution of the tSNE algorithm, which

(a) minimizes initialization time and as such enables immediate inspection of pre-
liminary computation results.

(b) allows for interactive modification, removal or addition of high-dimensional
data, without disrupting the visual analysis process.

2. Using a set of standard benchmark data sets, we show large computational per-
formance improvements of A-tSNE compared to the state of the art while main-
taining high precision.

3. We developed an interactive system for the visual analysis of high dimensional
data, allowing the user to inspect and steer the level of approximation. Finally, we
illustrate the benefits of exploratory possibilities in a real-world research scenario
and for the real-time analysis of high-dimensional streams.

4.2 Related work

The tSNE [177] algorithm builds the foundation of this work, which is used for visu-
alization of high-dimensional data in a wide field of applications, from life sciences
to the analysis of deep-learning algorithms [6,12,44,53,107,117,157]. tSNE is a non-
linear dimensionality-reduction algorithm that aims at preserving local structures in
the embedding, whilst showing global information, such as the presence of clusters
at several scales. A detailed description of tSNE is presented in Section 3.1. Most
of the user tasks associated with the visualization of high-dimensional data em-
beddings are based on identifying relationships between data points. Typical tasks
comprises the identification of visual clusters and their verification based on detail
visualization of the high-dimensional data, e.g., using parallel coordinate plots. For
a complete description of such tasks we refer to Brehmer et al. [271].

As presented in Chapter 3, tSNE's computational and memory complexity is
O(N?), where N is the number of data-points, which constrains the application of
the technique. An evolution of the algorithm, called Barnes-Hut-SNE (BH-SNE) [176],
reduces the computational complexity to O(Nlog(NN)) and the memory complexity
to O(IN). This approach was also developed in parallel by Yang et al. [189]. However,
despite the increased performance, it still cannot be used to interactively explore
the data in a desktop environment.

Interactive performance is at the center of the latest developments in Visual An-
alytics. New analytical tools and algorithms, which are able to trade accuracy for
speed and offer the possibility to interactively refine results [40, 42], are needed to
deal with the scalability issues of existing analytics algorithms like tSNE. Mihlbacher
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et al. [119] defined different strategies to increase the user involvement in existing
algorithms. They provide an in-depth analysis on how the interconnection between
the visualization and the analytic modules can be achieved. Stolper et al. [165] de-
fined the term Progressive Visual Analytics, describing techniques that allow the
analyst to directly interact with the analytics process. Visualization of intermediate
results is used to help the user, for example, to find optimal parameter settings or fil-
ter the data [165]. Many algorithms are not suited right away for Progressive Visual
Analytics since the production of intermediate results is computationally too inten-
sive or they do not generate useful intermediate results at all. tSNE is an example
of such an algorithm because of its initialization process.

To overcome this problem, we propose to compute an approximation of tSNE's
initialization stage, followed by a user steerable [122] refinement of the level of
approximation. To compute the conditional probabilities needed by BH-SNE, a K-
Nearest Neighborhood (KNN) search must be evaluated for each point in the high-
dimensional space. Under these conditions, a traditional algorithm and data struc-
ture, such as a KD-Tree [43], will not perform well. In the BH-SNE [176] algorithm, a
Vantage-Point Tree [190] is used for the KNN search, but it is slow to query when the
dimensionality of the data is high. In this work, we propose to use an approximated
computation of the KNN in the initialization stage to start the analysis as soon as
possible. The level of approximation is then refined on the fly during the analytics
process.

Other dimensionality-reduction algorithms implement approximation and steer-
ability to increase performance as well. For example MDSteer [186] works on a
subset of the data and allows the user to control the insertion of points by select-
ing areas in the reduced space. Yang et al. [188] present a dimensionality-reduction
technique using a dissimilarity matrix as input. By means of a divide-and-conquer
approach, the computational complexity of the algorithm is reduced. Other tech-
nigues provide steerability by means of guiding the dimensionality reduction via
user input. Joja et al. [80] and Paulovich et al. [1317] let the user place a small num-
ber of control points. In other work, Paulovich et al. [129], propose the use of a
non-linear dimensionality-reduction algorithm on a small number of automatically-
selected control points. For these techniques the position of the data points is fi-
nally obtained by linear-interpolation schemes that make use of the control points.
However, they all limit the non-linear dimensionality reduction to a subset of the
dataset limiting the insights that can be obtained from the data. In this work, we
provide a way to directly use the complete data allowing the analyst to immediately
start the analysis on all data points.

Ingram and Munzner's Q-SNE [74] is based on a similar idea as our approach,
using Approximated KNN queries for the computation of the high-dimensional sim-
ilarities. However, they use the APQ algorithm [74] that is designed to exploit the
sparse structure of high-dimensional spaces obtained from document collections,
limiting its application to such a context. A-tSNE improves Q-SNE in the direction
of providing a fast but approximated algorithm for the analysis of traditional dense
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high-dimensional spaces. For this reason it can be used right away in contexts
where BH-SNE is applied and Q-SNE would not be applicable. A further distinction
is that A-tSNE incorporates the principles of the Progressive Visual Analytics by
means of providing a visualization of the level of approximation, the ability to refine
the approximation based on user input, and allowing the manipulation of the high-
dimensional data without waiting for the recomputation of the exact similarities.
Density-based visualization of the tSNE embedding has been used in several
works [6, 157, 176], however, they employ slow-to-compute offline techniques. In
our work, we integrate real-time Kernel Density Estimation (KDE) as described by
Lampe and Hauser [92]. The interaction with the embedding is important to allow
the analyst to explore the high-dimensional data. Selection operations in the em-
bedding and the visualization of the data in a coordinated multiple-view system are
necessary to enable this exploration. The iVisClassifier system [28] is an example
of such a solution. In our work, we take a similar approach, providing a coordinated
multiple-view framework for the visualization of a selection in the embedding.

4.3 Approximated-tSNE in Progressive Visual Analyt-
ics

We now introduce Approximated-tSNE (A-tSNE), an evolution of the BH-SNE algo-
rithm, using approximated computations of high-dimensional similarities to gener-
ate meaningful intermediate results. The level of approximation can be defined by
the user to allow control on the trade off between speed and quality. The level of ap-
proximation can be refined by the analyst in interesting regions of the embedding,
making A-tSNE a computational steerable algorithm [122]. tSNE is well suited for
the application in Progressive Visual Analytics: after the initialization of the algo-
rithm, the intermediate results generated during the iterative optimization process
can be interpreted by the analyst while they change over time, as shown in previous
work [27,119]. Figure 4.1a shows a typical Progressive Visual Analytics workflow for
tSNE.

Algorithms that can be used in a Progressive Visual Analytics system often have
a computational module, e.g. the initialization of the technique, that cannot be im-
plemented in an iterative way, creating a speed bump [165] in the user analysis.
tSNE is a good example for such an algorithm. It consists of two computational
modules that are serialized. In the first part of the algorithm, similarities between
high-dimensional points are calculated. In the second module, a minimization of
the cost function (Equation 3.1) is computed by means of a gradient descent. The
first module, depicted in light grey in Figure 4.1a, is slow to compute and does not
create any meaningful intermediate results.

We extend the Progressive Visual Analytics paradigm by introducing approxi-
mated computation rather than aiming at exact computations, in the modules that
are not suited for a per-iteration visualization. Figure 4.1b shows the analytical work-
flow for A-tSNE. While the generation and the inspection of the intermediate results
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(a) Progressive Visual Analytics workflow for tSNE.
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(b) Progressive Visual Analytics workflow for A-tSNE.

Figure 4.1: Comparison between the traditional and our tSNE workflow. The eye icon marks modules
which produce output for visualization, whereas the hand icon marks modules that allow manipulation
by the user. The increased performance of the similarity computation allows the user to seamlessly
manipulate the input data. The level of approximation can be visualized and the user can steer the
refinement process to interesting regions.

is not changed, we introduce a refinement module, depicted in red in Figure 4.1b,
which can be used to refine the level of the approximation in the embedding in a
concurrent way. Furthermore, the increased performance of the initialization mod-
ule and the ability to update the high-dimensional similarities during the gradient
descent minimization, allows the analyst to manipulate the high-dimensional data
without waiting for the reinitialization of the algorithm.

34



4.3. Approximated-tSNE in Progressive Visual Analytics

We follow the guideline proposed by Stolper et al. [165], focusing on provid-
ing increasingly meaningful partial results during the minimization process (pur-
ple modules in Figure 4.1). Furthermore, we impose the following requirements to
the modules that compute the approximated similarities (grey and red modules in
Figure 4.7):

1. The performance gain due to the approximation must be high enough to enable
interaction.

2. The amount of degradation caused by the approximation must be controllable. A
smallincrease of approximation must not lead to large degradation of the results.

3. The approximation quality must be measured and visualized to avoid misleading
the user.

4. The approximation can be refined during the evolution. The refinement can be
steered by the user.

In the following Sections 4.3.1 to 4.3.4, we describe the A-tSNE algorithm in de-
tail using the MNIST [95] dataset for illustration. The dataset, which we introduced
in Section 3.3, consists of 60k labeled gray scale images of handwritten digits. Each
image is represented as a 784 dimensional vector, corresponding to the gray values
of the pixels in the image.

4.3.1 A-tSNE

A-tSNE improves the BH-SNE algorithm, by using fast and Approximated KNN com-
putations to build the approximated high-dimensional joint-probability distribution
P4 instead of the exact distribution P. The cost function C(P4,Q4) is then mini-
mized in order to obtain the approximated embedding described by Q4.

The similarity between points is computed using the set of approximated neigh-
bors .44, instead of the exact neighborhood .4; (see Equation 3.9). We define the
precision of the KNN algorithm as p. p describes the average percentage of points
in the approximated neighborhood ﬂiA that belongs to the exact neighborhood A4;:

N 5 |A AN AN
Zpt k k
= — = 41
p o N Pk [ A% ( )

where | -] indicates the cardinality of the neighborhood. The cardinality of A4 is
indirectly specified by the user as explained in Section 3.2, as three times the value
of the perplexity parameter u. p is an input parameter that can be defined by the
user. The larger the value of p the more similar will P4 be to P and in turn the more
similar the approximated embedding will be to the exact one.

To better understand the effect of the approximated queries, it is useful to inter-
pret the BH-SNE algorithm as a force-directed layout algorithm [45], which acts on
an undirected graph created by the KNN relationships. A data point x; is repelled by
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(a) BH-SNE - Time: 3191.8 s (b) p=0.34-Time: 30.7s

(c) p=0.23-Time: 20.4 s (d) p=0.07-Time: 13.0 s

Figure 4.2: Embeddings of the MNIST dataset using different approximation levels. Each point repre-
sents an image of a handwritten digit in the MNIST dataset presented in Section 3.3. Points are colored
according to the classification of the image. It can be seen that a reasonable approximation as in (b)
and (c) produces nearly identical results, compared to the original BH-SNE (a) two orders of magnitude
faster. Even very low precision (d) produces clearly distinguishable clusters, even though the embedding
visually differs from (a)-(c). Extensive tests on the quality of the results are provided in Section 4.3.4.

all other data-points but to a subset of the data-points given by its neighborhood
relationships, where attraction forces are created by a set of springs which connect
x; with all the points in ;.

When specifying a lower precision p, resulting in a coarser approximation, some
springs that connect points, which are close in the high-dimensional space will be
missing and instead distant points will be connected. This will result in a false
repulsion between the points missing a connecting spring. Using P4 reduces the
quality of the embedding but improves its computation time by several orders of
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magnitude. However, reasonable results can be achieved even with low precision,
because each data point is usually connected to a large number of springs and,
therefore, the overall structure can be preserved. This observation holds for local
as well as global structures. Intuitively, even if two points are no longer connected,
they might share a common neighbor, which indirectly connects both.

Figure 4.2 shows the embeddings generated using different precision values p
for the computation of the high-dimension similarities. We use the whole MNIST
dataset as the input and we color each data-point accordingly to the digit it rep-
resents for validation purposes. Figure 4.2a shows the embedding generated with
the exact neighborhood, whereas Figure 4.2b shows the embedding generated with
a precision of p = 0.34. It can be seen that similar structures are preserved using
approximated neighborhoods. Figure 4.2d shows the embedding generated with
p =0.07. Even though the embedding visually differs from the exact embedding,
depicted in Figure 4.2a, the overall clustering of the data is preserved rather well,
whilst the time needed for the computation of the similarities is greatly reduced.
Where the original algorithm needs 3191 seconds for the initialization using a pre-
cision of p =0.34 we can achieve a speedup of two orders of magnitude, resulting
in a computation time of 30 seconds. By using a precision of p =0.07, it is further
reduced to 13 seconds.

4.3.2 Approximated KNN

We achieve different levels of precision by means of different parameterizations
of an approximated KNN algorithm called Forest of Randomized Kd-Trees. In this
section, we describe this technique and how its parameters can be mapped to the
precision p.

When the dimensionality of the data is high, there are no exact KNN algorithms
performing better than linear search [121]. Therefore, the development of approxi-
mated KNN algorithms is needed to deal with high-dimensional spaces. A survey
on existing algorithms, including an extensive set of experiments, can be found in
the work of Muja et al. [120]. For our Approximated-tSNE, we use a space partition-
ing technique called Forest of Randomized KD-Trees [160] to compute the approxi-
mated neighborhoods. This technique has proven to be fast and effective in query-
ing of high-dimensional spaces [121]. AKD-Tree [43] is a binary tree used to partition
a k-dimensional space. Each node in the tree is a k — 1 dimensional hyper-plane,
orthogonal to one of the initial k-dimensions, that splits the space into two half
spaces. The recursive splitting creates a hierarchical partition of the k-dimensional
space.

In a Forest of Randomized KD-Trees, a number 9~ of KD-Trees are generated.
The splitting hyper-planes are selected by splitting along a randomly selected di-
mension among the 7 dimensions characterized by the highest variance. A KNN
search is computed on all 9~ KD-Trees, while a maximum number of leaves & are
visited. A priority-queue, ordered by increasing distances to the closest splitting
hyper-plane, is used to decide which nodes must be visited first across the forest.
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The process is stopped when the necessary number of leaves have been evalu-
ated. The parameterization of the Forest of Randomized KD-Trees can overbur-
den the typical end user. To hide this complexity, we integrate the work by Muja et
al. [121] and expose only the single precision parameter p to the user. The parame-
ters (97,7, %) used for the creation and querying of the Forest of Randomized KD-
Trees are heuristically chosen, as described by Muja et al. [121], to generate KNNs
with a target precision p.

4.3.3 Steerability

A-tSNE is computationally steerable [122], in the sense that the user can define the
level of approximation to specific, interesting areas. In this section, we present the
changes we made to the BH-SNE algorithm to allow for the refining of the approxi-
mation.

The refinement that we propose is done by computing the exact neighborhood
for one point at a time. This process leads to a mix of exact and approximated
neighborhoods. For each updated neighborhood, a Gaussian distribution P; is com-
puted and the sparse joint-probability distribution P4 must be updated accordingly.
This update, however, is not straightforward. First, the symmetrization of P4 in
Equation 3.2 requires to combine Gaussian distributions enforced by different data-
points and, second, the sparse nature of the distribution P4 renders fast updates
challenging.

We solve these issues by observing that a direct computation of P4 can be
avoided and the distribution can be indirectly obtained using the Gaussian distri-
butions enforced by the K-Nearest Neighbors. Equation 3.2 can be split into two
components which correspond only to the Gaussian distributions P; and P;:

Pjli = pilj
p”—ﬁ'f'm. (42)
Using this formulation, we only need to store one Gaussian distribution per point.
Therefore, points can be handled individually without any performance loss. This
allows us to execute the refinement of the high-dimensional similarities in paral-
lel to the gradient descent, and serves as the base for the manipulation of the
high-dimensional data. Furthermore, we are not constrained to updating the neigh-
borhood of a data-point just once. The analyst can request different levels of ap-
proximation for a given area before starting the computation of the exact high-
dimensional similarities. For each data-point we store p; as the requested precision
for the neighborhood A4;.

A change in a neighborhood, however, yields a change in the cost function C,
see Equation 3.1, which we are minimizing. To avoid the risk of getting stuck in a
local minimum during the gradient descent, we introduce an optimization strategy
called Selective Exaggeration with Exponential Decay. Our strategy is inspired by
the optimization strategy called Early Exaggeration presented by van der Maaten et
al. [177). The idea of Early Exaggeration is that, by exaggerating the attractive forces,
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see Equation 3.7, by a factor r during the first I, iterations of the gradient descent,
local minima can be avoided. Using the Selective Exaggeration with Exponential
Decay, we apply an exaggeration 7 to the attractive forces acting on a data-point x;
when it is refined. The exaggeration is then smoothly removed on a per-point basis
using an exponential decay of the exaggeration factor. This can be interpreted as
a localized reinitialization of the gradient descent triggered by user interaction with
the embedding.

4.3.4 Performance and Accuracy Benchmarking

In this section, we present a detailed performance analysis of A-tSNE compared
to BH-SNE using several standard benchmark datsets. All performance measure-
ments were obtained using a DELL Precision T3600 workstation with a 6-core Intel
Xeon E5 1650 CPU @ 3.2GHz, 32GB RAM and a NVIDIA GTX 680. We apply the
same preprocessing steps as presented by van der Maaten [176], without applying
a preliminary dimensionality-reduction by means of a Principal Component Analy-
sis. We use the MNIST dataset [95] (60k data-points, 784 dimensions), the NORB
dataset [96] (24300 data-points, 9216 dimensions) and the TIMIT dataset [156] (1M
data-points, 39 dimensions). Throughout the experiments we used a parameter
setup similar to the one used to benchmark the BH-SNE [176] and a fixed perplex-
ity value of u=30. First, we evaluate the performance of A-tSNE in relation to the
parameters (7,7, %) used in the Forest of Randomized KD-Trees, as described in
Section 4.3.2, using three different configurations: § =4 ¥ =1024, 9 =2 ¥ =512
and 9 =1 %2 =1. For all configurations we set ¥ to 5 as suggested by Muja et
al. [121].

The left chart in Figure 4.3 shows the comparison of computation times (in log-
arithmic scale) of the high-dimensional similarities on the MNIST dataset obtained
by our technique and by the BH-SNE algorithm. The right chart in Figure 4.3 depicts
the precision p of the neighborhoods. The precision is given by Equation 4.1 and
it is computed using the exact and the approximated neighborhoods. Generally,
our approach generates a good embedding very efficiently for any given dataset
we tested. Figure 4.2(b-e) show the embeddings generated using the described
parameter settings for the MNIST dataset after 1000 iterations. It can be seen that
we achieve visually comparable results more than two orders of magnitude faster
compared to the BH-SNE implementation.

Figure 4.3 shows how the precision decreases when increasing the data size for
a fixed parameter setting. The number of leaves (corresponding to data points) to
visit, included in the parameter setting, is fixed independently of the data size. When
the data size increases the same number of leaves, corresponding to a smaller
fraction of the overall data, is visited, causing the lower precision. In general, we can
see that with a small reduction in precision, the computation time can be greatly
reduced.

Finally, we analyze the error introduced by the approximation of the similarities
in the high-dimensional space using the NORB, MNIST and TIMIT datasets. The
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Figure 4.3: Computation time for the high-dimensional similarities using the MNIST dataset, with BH-
SNE and A-tSNE with different parameters (left) and precision with different parameter settings (right).
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Figure 4.4: Approximated to exact cost ratio on different datasets of increasing size. When the size
of the data increases, the ratio of the approximated cost divided by the exact cost is reduced given the

same set of parameters.

cost function C(P,Q) is the most direct indication of the quality of the embedding
and we compare minimizing of the cost function C(B,Q4) to C(P,Q). Q4 is the joint-
probability distribution that describes similarities in the approximated embedding
obtained by the minimization of C(P4,Q%4). Figure 4.4 shows the C(P,Q%)/C(P,Q)
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ratio. Smaller values indicate less error, with a value of 1 meaning that no ap-
proximation error is present. The Early Exaggeration of the attractive forces (see
Section 4.3.3) is responsible for the peak in the ratio that is visible during the first
250 iterations. By exaggerating the attractive forces the approximation error is in-
creased. The absolute value of the cost (not depicted in Figure 4.4) decreases with
every iteration.

The usage of a Forest of Randomized KD-Trees with 9 =1 % =1 generates an
embedding with a large error. This configuration is an upper bound of the error and
a lower bound in computation time; by visiting only one leaf during the traversal of
the forest composed by just one tree, the approximated KNN algorithm becomes
a greedy algorithm. We can also note that with increased data sizes the approxi-
mation error decreases. For the TIMIT dataset we observe that the approximation
errors generatedusingg =2 ¥ =512and 9 =4 % = 1024, are similar or better, than
the exact one. By increasing the number of points, the effect of the false repulsive
forces (Section 4.3.1) is compensated by the increasing number of attractive forces
among data-points. The results clearly show that we can rapidly provide very ac-
curate embeddings allowing immediate interaction, without misleading the user.
With a large number of data points we effectively generate tSNE embeddings as
demonstrated by the reduced approximation error.

4.4 Interactive Analysis System

Using A-tSNE, the data analysis is started without waiting for the exact computation
of the similarities in the high-dimensional space. This operation is the main bottle
neck for interactivity, e.g., when data is modified or tSNE parameters are changed by
the user. However, the embedding is created based on approximated information.
Our system supports three different strategies for the refinement of the approxima-
tion, leading to the generation of different and more precise, embeddings.

To steer the refinement, the user must be aware of the error in the embedding.
Therefore, we present a visualization that shows the level of approximation (Sec-
tion 4.4.2). We also take advantage of the steerability of A-tSNE (Section 4.3.3) to
allow for direct manipulation of the high-dimensional data, for example, by adding
and removing data-points or by changing the dimensions used to represent the
data. Finally, we implemented these techniques in a coordinated multiple-views
framework that allows for the direct inspection of the data in the embedding.

4.4.1 User Steerable Refinement

The refinement process used to steer the computation of an A-tSNE embedding
works on a per-point basis, see Section 4.3.3. A naive strategy to refine the em-
bedding, is to progressively update the neighborhoods of all the points in X, while
the gradient descent optimization is computed. However, when computational re-
sources are scarce, it makes sense to steer the refinement process to increase pre-
cision p in areas of the embedding that the analyst finds interesting, e.g., based on
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initial visual clusters appearing in the embedding. We propose three different strate-
gies that are used to select the data points to be refined: user selection, breadth-first
search and density-based refinement. These strategies are presented in the follow-
ing sections.

User Selection

The user selects a subset of points for immediate refinement, by brushing in the
embedding. This strategy is less effective when just a few points are selected for
refinement, as the forces exerted on its neighbors are still approximated, which can
lead to an unfaithful description of the high-dimensional data.

Breadth-First Search

If only a few points are selected for refinement, we extend the process to include
their neighborhoods. We use a breadth-first visit on the graph created by the KNN
relationships to extend the refinement. When a point is refined, its neighbors are
queued for refinement. We also implemented this strategy using a priority queue,
where, e.g., points can be prioritized by their euclidean distance to already refined
points. This allows better control on the expansion of the refined area at the cost
of slower computations introduced by the priority queue.

Density-Based Refinement

When the user is more interested in gaining a global overview of the exact em-
bedding, a density-based refinement strategy is used instead of a local refinement.
This strategy is based on the observation that points in the less dense areas of the
high-dimensional space, are responsible for the creation of the global relationship
in a tSNE embedding [177]. The data-points are refined with an order given by the
density in the high-dimensional space, where low-density points are refined first.
An indication of this density is the variance o; of the Gaussian distribution, as ex-
plained in Section 3.1. This strategy works within a user-defined selection or on the
whole dataset.

4.4.2 Visualization and Interaction

The visualization of the tSNE embedding provides an overview on the high dimen-
sional data and should be combined with the ability to inspect the data on demand.
In our system, the user selects data points by brushing in a point- or density-based
representation of the embedding, the overview. We provide specific visualizations
of the high-dimensional space using linked views, adaptive to the data at hand. Ad-
ditionally, we use a magic lens or a full-view overlay to indicate the approximation
level. A detailed description of such solutions is given in the following sections.

Density-Based Visualization

The visualization of the embedding, using simple points, is affected by visual clut-
ter when the number of points increases. Density-based [162] visualizations are
commonly used to show a tSNE embedding [6,12,157,176] because of their ability
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Figure 4.5: A-tSNE embedding of the MNIST dataset. (a) uses a point-based visualization with an alpha
value of 0.25, the points colored in orange correspond to the digit '2". (b,c) uses the real-time density-
based visualization as described in Section 4.4.2. By changing the bandwidth of the kernel density esit-
mation, clusters at different scales are visible. (d) shows the outliers in the data-points representing the
digit "2’ by means of a combination of the density-based and the point-based visualization. All figures
show the average image of the selected clusters.

to visualize features at different scales. We apply real-time kernel density estima-
tion (KDE) [92] for the creation of an interactive density-based visualization of the
embedding. We use changes in the color hue to visualize selections, for example
to highlight data points that are selected to be analyzed in other views of the co-
ordinated multiple-view framework. The KDE is computed by assigning a value for
each pixel p using the kernel density estimator f(p, h) as follows:
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1 N
fp.h==3 Gllp-vill h). (4.3)

Nl—l

G(d, h) is a zero mean Gaussian distribution with standard deviation h, which
can be interactively chosen by the user in order to reveal clusters at different scales.
Additionally, we introduce a transfer function, mapping f(p, ) to a color, in order to
highlight user-defined selections. Areas with a large percentage of selected points
are visualized with a different transfer function, and selection outliers are shown
as points. To achieve this goal, we introduce a new kernel density estimator s(p, h),
which illustrates the density of the user selection in a pixel p. Given a set of selected
data-points S we use:

s(p,h) =

1
TYIE] Y. G(lp-yill,h (4.4)
’ Vi€S

If s(p, k) is higher than a threshold S;j,esn, @ transfer function based on a dif-
ferent hue and with a higher luminance is used. We found empirically that a value
S:nresh = 0.5 performs satisfactorily without compromising the quality of the visu-
alization. We also use a point-based visualization of isolated selected data-points
and, unselected data-points in selected regions. Finally, the user can adjust the
opacity of the points and the density-based visualization to the needs of the analy-
sis.

An example of different visualizations of the embedding is presented in Fig-
ure 4.5, using the MNIST dataset. The analyst can change the bandwidth &, the
transfer function, and the opacity interactively in order to show clusters at different
scales and outliers in the selection. For example, Figure 4.5b shows the selection
of a high-level cluster. If a different bandwith is chosen, as in Figure 4.5¢, clusters
at a different level appear. Finally, if the labels are used to make a selection in the
embedding, as in Figure 4.5d, it is possible to see the distribution of the outliers in
the density-based visualization.

Visualization of the Approximation
The complexity of high-dimensional structures, also known as intrinsic dimension-
ality, usually does not allow for an exact representation of the data in 2D. For this
reason, it is of crucial importance to integrate the visualization of the embedding
with tools that allow to assess its quality. Such an assessment is challenging and
several interactive techniques have been developed in recent years [109]. In this
work, we are not concerned with the quality of the embedding itself, but rather with
the level of approximation introduced by A-tSNE. This information is provided to the
user to focus the attention on specific areas of the embedding for a quality analysis,
performed with a separate tool.

We enhance our density-based visualization to show the precision p;. Note that
p; is different for every data-point and changes during the refinement process, as
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(a) Magic Lens (b) Full View Mode

Figure 4.6: Visualization of the approximation in the embedding by means of a magic lens (a) and the
full view mode (b).

described in Section 4.3.3. For each pixel p we assign a value given by the function
a(p, h) that represents the approximation value given the bandwidth h:

1 J
a(p, h) f(p'h)zﬁvzlpiizzlplc(|lp yill, 1)

a(p, h) is the precision p; weighted kernel-density divided by the kernel-density
estimator f(p, h). The value a(p, h) is between zero and one and is used directly for
encoding of the approximation in the visualization.

The value of the function a(p, h) is visualized in two different ways. First, we in-
troduce a Magic Lens [177] that shows the approximation with a minimal conceal of
the data. We use a circular lens that can be overlayed on the density-based visual-
ization and a(p, h) is used to define the transparency a of every pixel in the lens. To
better highlight the refined areas, we use a = 1 - a(p, h)¥, where k is a user selected
parameter, to compute a. We provide a default value of k=2.

Figure 4.6a shows the lens over a cluster that is already refined and, therefore,
is visible through the lens. The green tone indicates the area where similarities are
still approximated. Contours in approximated areas are preserved to indicate the
structure of the embedding. We color the areas without points in green to put more
emphasis on refined areas. In addition to the Magic Lens, we provide the possibility
to map approximation to the complete view.

This view is especially useful when one of the global refinement strategies is
selected as it shows an overview on the refinement process. However it also di-
minishes the ability to distinguish high-density areas.
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Figure 4.6b shows the approximation in the embedding using this approach. Itis
possible to see that two clusters are already refined, relying on exact neighborhood
relationships. The user selected a Breadth-first search refinement strategy, there-
fore, the refinement is spreading through the embedding, leading to some areas in
the top-right corner having the original color. However the perception of clusters is
reduced by removing the color information inside the contours.

4.4.3 Data Manipulation

In Section 4.3.3, we show that we are able to update high-dimensional similarities
between data-points during the gradient-descent minimization. In this section, we
take advantage of this possibility, introducing different operations that are used to
manipulate the original data-points in their high-dimensional feature space. The
embedding does not need to be recomputed but evolves dynamically as the data
changes. At the center of an interactive exploration of data is the ability to add
or remove data on demand, use different representations of the same dataset or
adapt to any changes in the data [40]. For example, the addition and the removal
of data points are two fundamental operations that enable us to monitor a high-
dimensional stream in real-time.

Inserting Points

For a point x4, which we want to add to the embedding, its neighborhood A, needs
to be computed. We compute the neighborhood with the approximated KNN algo-
rithm, as described in Sec 4.3.2. Finally, we check whether x, belongs to the KNN
of each point in X. We define dl.v'ax as the maximum distance between a point x;
and the points in its neighborhood .4;. The update of the neighborhoods is written
as follows:

Vx; € X if [1xg — x| < dMe

4.5
then x, € N; andij’m:lei—ijI:dl.\Aax (4.5)

We cache d!.\/'ax, leading to a complexity for this update of O(IV). A priority queue
is used to efficiently update dMe* after the insertion of x, in a given neighborhood
;. Itis important to observe that the insertion of x, in A4; will not reduce the esti-
mated precision p;. The initial position in the embedding y, is given by the average
position of its neighbors .4, weighted by their similarity p; : x; € .4;. The new point
X, is then added in the Forest of Randomized KD-Trees. This operation is performed
in O(log(N)) .

Deleting Points

Removing a point x, € X is performed by deleting x, from the KNN of every point
x; € X. This operation has a computational complexity of O(NV). By removing x;
from a neighborhood .4; we reduce the number of x; neighbors to K—1 and a new
neighbor must be found to maintain the precision level. However, the new point
in the neighborhood is the most dissimilar of the points in 4; thus its attractive
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force is rather small and we propose to ignore the contribution of the missing point,
decreasing the estimated precision p; by 1/K. To avoid degeneracies, when the size
of the neighborhood .4; goes below a given threshold, e.g., K/2, the neighborhood
is updated using approximated computations. The Forest of Randomized KD-Trees
is updated in O(log(IV)).

Data Modification

The insertion and deletion of data points enables a new way of analyzing data
changes, for example, changes in time. New data points are added to the embed-
ding when ready and old ones are removed in real-time. However, data that are
already present in the embedding can change over time and must be updated ac-
cordingly. We handle changes in the value of a single high-dimensional data-point
by a combination of removal and addition operations. A different modification of
the datais performed not by changing the values of single data points, but by chang-
ing the dimensions of the data itself. Examples of this operation are the addition or
the removal of dimensions to inspect the influence of a given dimension in the gen-
eration of visual clusters. With such a modification, all the data points in X change
their position in the high-dimensional space. Therefore, all the neighborhoods must
be reconsidered and it is more convenient to compute a new approximated joint-
probability distribution PA. When the distribution P4 is changed, the function that
is to be minimized by the gradient descent also change, see Equation 3.1. To avoid
local minima, we apply the Selective Exaggeration with Exponential Decay, see Sec-
tion 4.3.3, to all the data points. After such an operation, the user expects to see
major changes in the embedding, where the extent of such modifications gives in-
formation about the differences of the new representation to the old one.

4.4.4 Visual Analysis Tool
We implemented A-tSNE as a module in an integrated, interactive, multi-view sys-
tem for the analysis of high-dimensional data. Figure 4.7 shows a screenshot of
the system and its different views. The interface is divided into two main areas. At
the top, three different views are used to show the intermediate embeddings (7a),
the data (7b) and the state of refinement processes (7c), respectively. Controls are
at the bottom of the interface: (7d) for the generation of intermediate embeddings,
(7e) visualization of the embedding, (7f) data manipulation and (7g) refinement.

The data subject to the analysis are visualized in the Data View (7b). Selections
in the embeddings are reflected in the Data View with strategies that depend on the
data type. We implemented multiple widgets that are used to support the analysis
process of different data types. These widgets include a heatmap view, a 3D volume
view (7b bottom) and animage view (7b top row). If necessary multiple and different
views are combined for the analysis.

The Refinement-Status View (7¢) is used to give an overview of the progress of
the refinements started by the user. The user can steer the evolution of the embed-
ding by refining areas with strategies as described in Section 4.4.1. A refinement
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Figure 4.7: Screenshot of our integrated system using multiple linked views for interaction. The system
comprises an embedding viewer (a), a data viewer (b) and a refinement viewer (c). Controls on the
gradient descent (d), the density-based visualization (e), the data-manipulation (f) and the refinements
(g) are at the bottom of the interface.

process is identified by the snapshot of the embedding when the user started the
refinement, a user-defined description, and a progress bar that shows the percent-
age of the refined data-points over the selected ones.

4.4.5 Implementation

We implemented the system using a combination of C++and Qt, as well as OpenGL
with custom shaders in GLSL for the visualization of the embedding. Where possi-
ble, we used parallel computations with OpenMP. The approximated neighborhoods
are computed using the FLANN library [121], which implements KNN algorithms.
The density-based visualization is computed on the GPU using OpenGL and GLSL
shaders. A precomputed floating-point texture is generated using a Gaussian ker-
nel. A geometry shader is used to generate a quad for each point that is colored
using the precomputed texture, the KDE is obtained by drawing into a Frame Buffer
Object using an additive blending [92].
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Figure 4.8: Analysis of the gene expression in the mouse brain using A-tSNE. The first embedding (a)
is generated in =~ 51 seconds while 3 hours and 50 minutes are required by BH-SNE. The analyst inspects
a cluster and finds that it corresponds to a slice in the data. The cluster does not disappear after the
neighborhoods are refined, as shown by the lens in (b). A change in the high-dimensional data reveals
that genetic information can be used to differentiate anatomical regions. (c) shows the final embedding
based on a small number of Principal Components where three clusters are highlighted and (d) shows
the corresponding regions in the brain.

4.5 Case Study I: Exploratory Analysis of Gene Expres-

sion in the Mouse Brain

In this section, we demonstrate the advantages of using A-tSNE in our visual analy-
sis tool for the visual analysis of high-dimensional data. To this extent, we present a
case study, based on the work by Mahfouz et al. [107], who use tSNE to explore the
Allen Mouse Brain dataset [99]. The dataset is composed by 61164 voxels obtained
by slicing the mouse brain in 68 slices. Each voxel is a 4345-dimensional vector,
containing the genetic expression at the corresponding spatial position. tSNE is
computed using the voxels as data-points and the expression of the genes as high-
dimensional space. Mahfouz et al. discuss the hypothesis that genetic information
can be used to differentiate anatomical structures in the brain. Some regions in the
brain, e.g. the Cerebellum, are known to have a highly different genetic footprint
compared to the rest of the brain. They demonstrate that tSNE is effective in sep-
arating different anatomical structures, e.g. white and grey matter, only based on
the genetic footprint.

Figure 4.8 depicts the typical analytic workflow using our visual analysis tool.
The first goal during the analysis is to validate the input data. The acquisition pro-
cess may not be perfect, data can be incomplete or noisy, therefore, it must be
re-acquired or preprocessed before interesting results can be generated. Driven by
the need to validate the data as soon as possible, the user selects a reasonably low
value for the desired precision, e.g. p = 0.2, that will be used to estimate the pa-
rameters of the KNN algorithm. With such a parameterization, A-tSNE computes
the high-dimensional similarities in = 51 seconds while 3 hours and 50 minutes are
required by BH-SNE.

The user then analyzes the intermediate embeddings, produced by A-tSNE, in
order to validate the input data. After ~ 170 seconds several clusters become visible
in the embedding as depicted in Figure 4.8a. The clusters are stable for several iter-
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ations indicating that they are not an artifact of the minimization process. The user
can validate this by selecting the clusters in the embedding and can inspect them
in more detail, for example, by highlighting their spatial positions in the feature view,
see Fig 4.8a. Points or clusters are selected by brushing in the embedding. During a
brushing operation the generation of intermediate embeddings is stopped to make
sure the user does not accidentally brush areas as they change. Selected points
are then highlighted by a change of hue, in this case from blue to orange. Further
inspection using the Data View in our interactive system, shows that each cluster
corresponds to a slice in the dataset. Figure 4.8a shows a cluster, highlighted in
orange, and the corresponding slice in the volume.

To make sure the clusters are not an artifact introduced by the approximated
similarities, the user refines the selected data-points while the embedding evolves.
Figure 4.8b shows the embedding after the refinement is complete. Note that the
global structure of the embedding does not change during the refinement. Changes
are constrained to the selected cluster, giving to the user a sense of stability in the
information provided as requested by the Progressive Visual Analytics paradigm.
The user can inspect the degree of approximation in the embedding using the inter-
active lens. The lens is less transparent over approximated areas of the embedding
and transparent on the areas that contain no approximation. After the refinement
of the high-dimensional similarities of the selected data points, the clusters do not
disappear, which indicates that clustering is indeed driven by the data, rather than
by the approximation.

Therefore, the user stops the computation of the fully refined embedding. Fur-
ther analysis performed by domain experts on the raw data reveals that missing
values in the input data cause the formation of small clusters in the embedding.
Mahfouz et al. removed this effect by using the first 10 components, extracted by
a Principal Component Analysis of the raw data, as the high-dimensional space. In
the traditional analytical workflow, after the high-dimensional data are changed, a
new tSNE embedding is computed from scratch. However, in our system the user
directly changes the high-dimensional space and the current embedding evolves
accordingly. Given that the gradient descent is minimizing a different function, the
user expects structural changes that can be considerably large, see Section 4.4.3.
The extent of these changes provides information about the modification in the
high-dimensional space. If the embedding is stable, the new high-dimensional rep-
resentation preserves relationships between data points, while an abrupt change
means that new relationships are encoded in the data. In the traditional workflow
without A-tSNE, any continuity and the encoded information are lost.

Approximately 200 seconds after the change in the high-dimensional data, a sta-
ble embedding is obtained. Figure 4.8c shows the final embedding, where three dif-
ferent clusters are highlighted. Figure 4.8d depicts the selected voxels in the brain,
note how the anatomical structures are now revealed. It is possible to see how the
clusters that were present in the first intermediate results disappear, showing that
the cluster fragmentation is removed.
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Voxels that belong to the same anatomical structure are close together in the
embedding. A-tSNE is able to separate anatomical structures based on the gene ex-
pression of the 4345 genes. In their work, Mahfouz et al. [107] present embeddings
created using 2, 3, 5, 10, and 20 principal components as the high-dimensional
space. Identifying the right number of components is a time consuming task and
the adoption of our analytic workflow helps the user in finding a good compromise
by interactively analyzing the resulting embedding generated changing the number
of components.

4.6 Case Study lI: Real-time monitoring

of high-dimensional streams

Improved computation time and the ability to modify data are the key for apply-
ing tSNE in new application scenarios, such as the real-time monitoring of high-
dimensional data streams. The original tSNE algorithm fails in providing a solution
for such applications. The computation of a tSNE map imposes a time constraint
that cannot be ignored, when the rate in which new data is generated is higher than
the time required for the computation of a tSNE map.

As proof of concept, we selected a dataset for physical activity monitoring [147]
that comprises readings of three Inertial Measurement Units (IMU) and a heart rate
monitor applied to 9 different subjects. Every IMU generates 17 readings every 10
ms, while the heart rate monitor generates one reading every 100 ms. Taking all
sensors into account, we have a stream of data consisting of 52 readings, where
a new data point is generated every 100 ms for each subject. Every subject also
has a device to label the physical activity. We use the labeling of every reading to
validate the insights obtained by the analysis of the embeddings.

We analyze the stream of a subject by keeping the readings of the previous .4
minutes in the embedding with a fixed approximation level. When a new reading
is generated, we add it to the embedding using the technique described in Sec-
tion 4.4.3. Similarly, when a reading is older then .# minutes, we remove it from
the embedding. In the test presented in this section, .# = 10 is set leading to an
embedding composed, in average, by 6000 data-points that is updated every 100
ms. We add a point-based visualization to our density-based visualization, which
shows the last points inserted in the embedding. The new points are colored ac-
cording to the classification of the activity made by the subject and they will fade
out in & seconds. By showing the new data-points the analyst can identify where
new points are added, providing at the same time an overview of the embedding in
the last .« minutes and the trend of the last & seconds.

Figure 4.9a shows an embedding obtained from subject 105, where the color of
the data-points, green in this specific case, indicates that the subject is lying down.
The embedding is composed of a single big cluster that represent the lying down
activity. The cluster is divided in four different sub-clusters that identify different
readings of the sensors. The readings of the last 30 seconds belong to a single
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Figure 4.9: A-tSNE used for the real-time analysis of high-dimensional streams. The embeddings are
generated using the readings of the last 10 minutes. As new readings arrive they are inserted in the
embedding and they are highlighted using a point-based visualization. (a) shows the initial embedding,
the color of the data-points indicates that the subject is lying down. The embedding evolves as in (b),
a new cluster indicates readings of a different activity. This insight is confirmed by a change in the
color of the data-points that indicates a new type of label activity. (c) shows an evolution of the embed-
ding presented in (a) where new readings are generated from a miscalibrated sensor and, therefore, are
clustered together. By removing the features corresponding to the miscalibrated sensor the embedding
evolves as in (d). The cluster that identifies miscalibrated readings is removed.

sub-cluster and can be seen as points on the right side of the embedding. The
embedding evolves based on new readings from the sensors, after few seconds the
new data-points start to be placed further away from the original cluster, leading to
the creation of a new cluster, as depicted in Figure 4.9b. After a few seconds the
subject changes the classification of his activity from lying down to an unclassified
activity, whose corresponding data-points are colored in purple. It is interesting to
note that, simply by looking at the embedding, it is possible to predict a change in
the labeled activity before the subject is able to record the change on his labeling
device. It can be seen by the fact that few data-points labeled as a lying down
activity, hence colored in green, are in the same cluster as the ones identified as
unclassified activity. In this particular case, we can guess that the subject sat up
before changing the labeled activity.

Finally, we simulated a miscalibration in an inertial measurement unit. Differ-
ently from a faulty sensor (not generating any readings), a miscalibrated one gen-
erates readings affected by a constant offset that is different for every dimension.
We simulate the miscalibration by enforcing a random offset to the readings gen-
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erated by one of the IMUs. A miscalibrated sensor generates readings that are
different from the normal one and, therefore, they should be clustered together as
faulty readings. Figure 4.9c shows the evolution of the embedding presented in Fig-
ure 4.9a where the miscalibrated readings are grouped by A-tSNE. After the inspec-
tion of the readings generated from the IMUs, the analyst can identify that some-
thing is wrong with one of the sensors. At this point the sensor may be replaced
or, in case this is not possible, the readings from the miscalibrated sensor can be
excluded by removing the corresponding dimensions from the high-dimensional
space, as presented in Section 4.4.3. Such an update requires a few seconds in
which the embedding is updated in order to encode the new relationship in the
high-dimensional space. Figure 4.9d shows how the previous embedding evolves
when the readings generated by the miscalibrated sensor are removed from the
high-dimensional space. It is possible to see that the readings affected by the mis-
calibration are now close to the cluster that represents the lying down activity. How-
ever, differently from the test case presented in Section 4.5, the global structure of
the embedding is preserved, still showing four different clusters.

Liu et al. [104] demonstrate that, when dealing with real-time data, the response
time of the algorithm is of great importance to the user. In the presented case
study, we reach real-time performance for a limited data size for the sliding window
of 6000 points. However, it should be noted that when the sampling rate or the
window size of the stream is much larger, A-tSNE also will not be able to handle the
data in real-time in all cases.

4.7 Discussion and Conclusions

Motivated by the need of interactivity in Visual Analytics, we developed the A-tSNE
technique. A-tSNE enables the rapid generation of approximate tSNE embeddings
by adopting a fast and approximated computation of the high-dimensional similar-
ities. Our algorithm is designed to be used within the Progressive Visual Analytics
context, allowing the user to have a quick preview of the data. Insight obtained
using approximated embeddings can be validated by refining the approximation in
interesting areas with different strategies. Therefore, we present different visual-
ization techniques for the level of approximation, which are used to guide the user
during the refinement process in Section 4.3.3. It should be noted, that the level of
approximation is only an indicator for how well the approximated embedding rep-
resents the exact embedding. It cannot, however, be used to judge the quality of
the embedding itself, as even an exact embedding might not represent the orig-
inal data perfectly. The quality of the embedding itself can be analyzed, e.g., by
inspecting the preservation of k-nearest-neighborhoods [109]. The full precision of
BH-SNE can always be reached by setting the precision parameter accordingly, or
refining the data. Therefore, A-tSNE can effectively replace BH-SNE for the analysis
of dense high-dimensional data. However, A-tSNE cannot outperform algorithms
such as Q-SNE in the analysis of sparse high-dimensional data.

The refinement of the approximation itself is a stable process. As demonstrated
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in Section 4.3.4 and Figure 4.2, P4 is close to P if a reasonable parameterization is
chosen. As a result gradually refining P4 will lead to small changes in the embed-
ding, only. In addition, we present three different operations for the direct manipu-
lation of the high-dimensional data. Addition and removal of data-points are mainly
aimed at the inspection of high-dimensional streams. Data modification is used to
visualize different models of the same data. Different from the refinement process,
changing the model might lead to drastic changes in P4 (as it would in P) and as
such might also create a very different embedding. We chose to start the optimiza-
tion with the embedding created before changing the model. As a result points in
the embedding might move drastically during the optimization process. While this
might be confusing and less adequate for Progressive Visual Analytics, the amount
of movement is related directly to the strength of the changes and as such is a very
good indicator of the influence of the parts of the data that were modified on the
whole embedding.

We presented two case studies to show the effectiveness of A-tSNE. Case Study
I shows a typical analysis of a static dataset. In such a setting it is crucial to allow
an interactive feedback loop, between modeling the data (i.e., finding the right num-
ber of dimensions for the PCA before embedding) and visualizing the data. Even
though, we do not achieve real-time performance, we are able to drastically cut
computation times, i.e., from four hours to less than a minute, allowing such inter-
active exploration of the data. Case Study Il shows an example for the monitoring
and analysis of streaming data. Here it is crucial to achieve real-time performance.
We use efficient addition and removal of data points (see Section 4.4.3) to visualize
atemporal sliding window of the data. As discussed in Section 4.6 even the large in-
crease in performance provided by A-tSNE does not allow real-time analysis of large
data. We believe that this example illustrates as well, that real-time feedback can
be important for data analysis. While in this chapter we focused on improving the
computation of the similarities between data points, in the next chapter we focus
on the gradient descent computation as presented in Chapter 3. More specifically,
we present how the kernel density estimation presented in Section 4.4.2 is adapted
to speed-up the computation of the gradient of tSNE’s objective function.
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Hours instead of days! Now we have minutes instead of hours!

James Tiberius Kirk

In this chapter we present a novel approach to the computation of the gradient of the tSNE's
objective function that takes a fraction of the time requested by the Barnes-Hut-SNE algo-
rithm. Our technique, which makes use of the rendering pipeline to compute the gradient as a
derivation of three scalar fields, is implemented on the GPU and run in the client side of a web
browser.

N. Pezzotti, A. Mordvintsev, T. HOIlt, B. P. Lelieveldt, E. Eisemann, and A. Vilanova. Linear tSNE
optimization for the Web. arXiv preprint arXiv:1805.10817, 2018 [139].



5. Linear tSNE Optimization

5.1 Introduction

Given the popularity of the tSNE algorithm [177], research efforts have been spent
on improving its O (N?) computational and memory complexity. While many works
focused on the improvement of the similarity computation [112,136,168,176], includ-
ing our A-tSNE algorithm presented in the previous chapter [138], only limited effort
has been spent in improving the minimization algorithm employed for the creation
of the embedding [87,112,176]. The most notable of these improvements is the
Barnes-Hut-SNE (BH-SNE) that is presented in Chapter 3. BH-SNE makes use of an
N-body simulation approach [1] to approximate the repulsive forces between the
data points. Despite the improvements, the minimization requires many minutes
using a highly-optimized C++ implementation.

In this chapter we present a novel approach that focus on the minimization of
the objective function for the creation of the embedding. We observe that the heavy
tail of the t-Student distribution used by tSNE makes the application of the N-body
simulation not particularly effective. To address this problem we propose a novel
minimization approach that embraces this characteristic and we reformulate the
gradient of the objective function as a function of scalar fields and tensor opera-
tions. Our techniqgue has linear computational and memory complexity and, more
importantly, is implemented in a GPGPU fashion. The latter allowed us to imple-
ment a version for the browser that minimizes the objective function for standard
datasets in a matter of seconds.

The contribution of the technique presented in this chapter is twofold:

+ A linear complexity minimization of the tSNE objective function adopts GPGPU
computations. Specifically, we

— approximate the repulsive forces between data points by drawing low-resolution
textures and

— we adopt a tensor-based computation of the objective function’s gradient.

- An efficient implementation of our algorithm using WebGL and is released as
part of Google's TensorFlow.js library

The rest of the chapter is structured as follows. In the next section, we present
the related work, while in Section 5.3 we describe our approach for the minimiza-
tion of the objective function. In Section 5.4, we provide the details regarding our
implementation, released within Google’'s TensorFlow.js library.

5.2 Related Work

We now present the work that has been done to improve the sacalability of the tSNE
algorithm, which was introduced in detail in Section 3.1. In Chapter 3 we introduced
the Barnes-Hut-SNE (BH-SNE) [176], which reduces the complexity of the algorithm
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to O(Nlog(N\)) for both the similarity computations and the objective function min-
imization. More specifically, in the BH-SNE approach the similarity computations
are seen as a k-nearest neighborhood graph computation problem, which is ob-
tained using a Vantage-Point Tree [190]. The minimization of the objective function
is then seen as an N-body simulation, which is solved by applying the Barnes-Hut
algorithm [10].

In the previous chapter of this thesis we observed that the computation of the k-
nearest neighborhood graph for high-dimensional spaces using the Vantage-Point
Tree is affected by the curse of dimensionality, limiting the efficiency of the compu-
tation. To overcome this limitation, we proposed the Approximated-tSNE (A-tSNE)
algorithm [138], where approximated k-nearest neighborhood graphs are computed
using a forest of randomized KD-trees [120]. A similar observation was later made
by Tang et al. that led to the development of the LargeVis technique [168]. LargeVis
uses random projection trees [32] followed by a kNN descent procedure [34] for
the computation of the similarities and a different objective function that is min-
imized using a Stochastic Gradient Descent approach [86]. Despite the improve-
ments, both the A-tSNE and LargeVis tools require 15 to 20 minutes to optimize
the cost function on the MNIST dataset [95], a 784-dimensional dataset of 60k im-
ages of handwritten digits that we introduced in Chapter 3. Better performance is
achieved by the UMAP algorithm [112], which provides a different formulation of the
dimensionality-reduction problem as a cross-entropy minimization between topo-
logical representations. Computationally, UMAP follows very closely LargeVis and
adopts a kNN descent procedure [34] and Stochastic Gradient Descent minimiza-
tion of the objective function.

The techniques presented so far do not take advantage of the target domain in
which the data is embedded. As a matter of fact, tSNE is mostly used for data visu-
alization in 2-dimensional scatterplots, while the previously introduced techniques
are general and can be used for higher dimensional spaces. Based on this obser-
vation, Kim et al. introduced the PixelSNE technique [87] that employs a N-body
simulation approach similar to the BH-SNE, but quantizes the embedding space to
the pixels used for visualizing the embedding. However, PixelSNE requires to scale
the number of used pixels with respect to the size of the dataset in order to achieve
a good embedding quality due to the quantization of the embedding space.

In this chapter, we take advantage of the 2-dimensional domain in which the
embedding resides and we propose a more efficient way to minimize the tSNE ob-
jective function. Contrary to PixelSNE we observe that, by quantizing only the 2-
dimensional space for the computation of the repulsive forces presented in Equa-
tion 3.8, embeddings that are hardly distinguishable from those generated by the
BH-SNE implementation are computed in a fraction of the time.

5.3 Linear Complexity tSNE Minimization

In this section, we present our approach to minimize the objective function, pre-
sented in Equation 3.1, by rewriting its gradient, presented in Equation 3.7. The
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computation of the gradient relies on a scalar field &# and a vector field ¥ that are
computed in linear time on the GPU.

5.3.1 Gradient of the Objective Function
The gradient of the objective function has the same form as the one introduced in
Section 3.1

6C N A

— = (FAN _ fTOPy 5.1
Oyi i i) S
with attractive and repulsive forces acting on every point x; € X. We denote the
forces with a A to distinguish them from their original counterparts. Our main con-
tribution is to rewrite the computation of the gradient as a form of a scalar field &#
and a vector field 7 in the embedding space. We define Sand V as

N
FP =Y (1+lyi-pl?)”", & : R >R and (5.2)

l
N
Y =Y (1+llyi-pl?) " (yi-p), 7 :R2 > R?, (5.3)
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where p is a location in the embedding space andy; is one of the N points in the
dataset. Intuitively, .# represents the density of the points in the embedding space,
according to the t-Student distribution, and it is used to compute the normalization
of the joint probability distribution Q, as presented in Section 3.1. An example of
the field & is shown in Figure 5.1b. The vector field 7 represents the directional re-
pulsive force applied to the entire embedding space. An example of 7 is presented
in Figure 5.7c-d, where the horizontal and vertical components are visualized sep-
arately. In the next section, we will present how both . and 7 are computed with
a complexity of O(N) and sampled in constant time. For now, we assume these
flelds given and we present how the gradient of the objective function are derived
from these two fields, accelerating hereby their calculation drastically.

For the attractive forces, we adopt the restricted neighborhood contribution as
presented in the Barnes-Hut-SNE technique [176]. The rationale of this approach is
that, by imposing a fixed perplexity to the Gaussian kernel, only a limited number of
neighbors effectively apply an attractive force on any given point (see Equation 3.3
and 3.4). Therefore we limit the number of contributing points to a multiple of the
value of perplexity, equal to three times the value of the chosen perplexity, effectively
reducing the computational and memory complexity to O(N), since k < N where k
is the size of the neighborhood.

EY=2 % puqalyi-yp (5.4)
1ekNN(i)
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Figure 5.1: Overview of our approach. The MNIST dataset contains images of handwritten digits and
is embeedded in a 2-dimensional space (a). The minimization of the objective function is computed
in linear time by making use of a scalar field (b) and a 2-dimensional vector field (c-d). The fields are
computed on the GPU by splatting properly designed kernels using the additive blending function of the
modern rendering pipeline. The rest of the minimization is treated as a tensor computation pipeline that
is computed on the GPU using TensorFlow.js

The normalization factor Z, as it was presented in Equation 3.6, has complexity
O(N?). In our approach we compute Z in linear time by sampling the scalar field
£

7=

M=

(Zyn-1) (5.5)
!

I
—

Note that Z and Z formulation is identical but, since we assume that . is com-
puted in linear time while the sampling is done in constant time, computing Z has
linear complexity. Moreover, since Z does not depend on the point y;, for which we
are computing the gradient, it needs to be computed only once for all the points.

The repulsive force assumes even a simpler form

EP=vy)iZ, (5.6)
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being the value of the vector field 7 in the location identified by the coordinates y;
normalized by Z. Similarly as for Z, E"P has an equivalent formulation as F'P but
with computational and memory complexity equal to O(N). So far, we assumed
that ¥ and ¥ are computed in linear time and queried in constant time. In the
next section we present how we achieve this result by using the WebGL rendering
pipeline to compute an approximation of these fields.

5.3.2 Computation of the Fields

In the previous section, we formulated the gradient of the objective function as
dependent from a scalar field . and a vector field 7. If the fields are evaluated
independently, the complexity of the approach is O(N?) due to the summation in
Equations 5.2 and 5.3. We achieve a linear complexity by precomputing and approx-
imating the fields on the GPU using textures of appropriate resolution. An example
of the fields for the MNIST dataset [95] is given in Figure 5.1b-d.

A similar approach is used for Kernel Density Estimation [149] that has applica-
tions in visualization [92] and non-parametric clustering [68]. In this setting, given a
number of points, the goal is to estimate a 2-dimensional probability density func-
tion, from which the points were sampled. This is usually achieved by overlaying
a Gaussian kernel, whose ¢ has to be estimated, on top of every data point. This
approach is at the base of the density-based visualization of the embeddings that
is presented in Section 4.4.2 in the previous chapter.

Lampe et al. [92] were the first to propose a computation of the kernel density
on the GPU for a visualization purpose. They observed that the Gaussian kernel
used for estimating the density has a limited support, i.e., having value almost equal
to zero if they are sufficiently far away from the origin. A good approximation of
the density function is then achieved by drawing, instead of the points, little quads
that are textured with a precomputed Gaussian kernel. By using additive blending
available in OpenGL, i.e., by summing the values in every pixel, the resulting drawing
corresponds to the desired density function.

If we analyze Equations 5.2 and 5.3, we can observe that every element in the
summations for both . and ¥ have a limited support, making it indeed very sim-
ilar to the Kernel Density Estimation case discussed before. The drawn functions,
however, are different and Figure 5.2 shows them for . and ¥. Therefore, we can
compute the fields by drawing over a texture with a single additive drawing opera-
tion. Each point is drawn as a quad and colored with a floating-point RGB texture
where each channel encodes one of the functions shown in Figure 5.2.

Contrary to the Kernel Density Estimation case, where the size of the quads
changes according to the ¢ chosen for the Gaussian kernel, our functions have a
fixed support in the embedding space. Therefore, given a certain embedding Y,
the resolution of the texture influences the quality of the approximation but not the
overall shape of the fields. To achieve linear complexity, we define the resolution
of the target texture according to the size of the embedding. In this way, every
data point updates the value of a constant number of pixels in the target texture,
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Figure 5.2: Functions drawn over each embedding point to approximate the scalar field .## and the 2-
dimensional vector field 7.
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Figure 5.3: Computational worklow of our approach. On the lower side the of the chart, the computation
of the repulsive forces is presented. The fields texture is generated by the additive texture splatting
presented in Section 5.3.2. The value of . and 7 are obtained through a texture interpolation and are
used to compute the repulsive forces. The attractive forces are computed in a custom WebGL shader
that takes as input the similarities P and the embedding. The gradient of the objective function is then
computed and used to update the embedding.

effectively leading to O(IV) complexity for the computation of the fields.

Computing the value of & and ¥ for a point y; corresponds to extracting the
interpolated value in the textures that represents the fields. This operation is ex-
tremely fast on the GPU, as WebGL natively supports the bilinear interpolation of
texture values. In the next section, we provide a more detailed overview of the com-
putational pipeline as a number of tensor operations and custom drawing opera-
tions.

5.4 Implementation

In this section, we present how the ideas presented in the previous section are con-
cretely implemented in a JavaScript library that can be used to execute an efficient
tSNE computation directly in the user’s browser. Figure 5.3 shows an overview of
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the overall approach. We rely on TensorFlow.js, a WebGL accelerated, browser-
based JavaScript library for training and deploying machine-learning models. Ten-
sorFlow.js has extensive support for tensor operations that we integrate with cus-
tom shader computations to derive the tSNE embeddings.

The randomly initialized tSNE embedding is stored in a 2-dimensional tensor.
We then proceed to compute the repulsive forces £ and attractive forces Fat,
shown respectively in the lower and upper side of Figure 5.3. The attractive forces
F3% are computed in a custom shader that measures the sum of the contribu-
tion of every neighboring point in the high-dimensional space. The neighborhoods
are encoded in the joint probability distribution P that is stored in a WebGL tex-
ture. P canbe computed server-side, for example using an approximated k-nearest-
neighborhood algorithm [32,34,120] as presented in the previous chapter. However,
we provide a WebGL implementation of the kNN-Descent algorithm [34] and the
computation of P directly in the browser to enable a client-side only computational
workflow.

The repulsive forces E™P are computed using the approach presented in previ-
ous sections. In a custom shader, we draw for each point, whose location is defined
by the value in the embedding tensor, a quad that is textured with the functions
presented in Figure 5.2. The resulting 3-channel texture, an example of which is
presented in Figure 5.1b-d, represents the scalar field ¥ and the vector field 7. For
each embedding point yi, the values of #(yi) and ¥ (yi) are stored in tensors and
are computed by a custom WebGL shader that interpolates the value of the texture
in the corresponding channel. The normalization factor Z is then obtained by sum-
ming all the elements in the tensor with the interpolated values of .#, an operation
that is efficiently performed on the GPU by TensorFlow.js.

The remaining computational steps are computed as tensor operations. F™P is
obtained by dividing the interpolated values of ¥ by Z, and, by adding the attractive
forces 2 the gradient of the objective function is obtained. The gradient is then
added to the embedding, hence, modifying the position of the points according to
their similarities. Our work is released as part of the TensorFlow.js library and can
be found on GitHub at the following address: https://github.com/tensorflow/
tfjs-tsne

5.5 Conclusion

In this chapter, we presented a novel approach for the optimization of the objec-
tive function of the tSNE algorithm that scales to large datasets in the client side
of the browser. Our approach relies on modern graphics hardware to efficiently
compute the gradient of the objective function from a scalar field that represents
the point density and the directional repulsive forces in the embedding space. The
implementation of the technique is based on the TensorFlow.js library and can
be found on GitHub at the following address: https://github.com/tensorflow/
tfjs-tsne. Examples that validate our approach can also be found on GitHub
https://github.com/tensorflow/tfjs-tsne-examples
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5.5. Conclusion

In this chapter and in Chapter 4 we presented two techniques that improve on
the scalability of the computation of the tSNE algorithm. These improvements are
particularly needed in a Progressive Visual Analytics context, where the user cannot
wait hours, or even days, before the 2-dimensional embedding is computed. How-
ever, after extensive use of the Approximated-tSNE technique, we came to realize
that the user is confronted with a different kind of scalabity issue. When millions
of data points are embedded and visualized on a computer screen, it becomes in-
creasingly difficult to identify sub-clusters within tSNE embeddings. This limitation
hinders the ability of the user of effectively explore and collect insights on the data
at hand. In the next chapter we introduce the Hierarchical Stochastic Neighbor Em-
bedding [136] technique, a multiscale approach for dimensionality reduction that is
designed to address this problem.
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Hierarchical Stochastic
Neighbor Embedding

There is grandeur in this view of life, with its several powers, having been originally breathed into
a few forms or into one; and that, whilst this planet has gone cycling on according to the fixed law
of gravity, from so simple a beginning endless forms most beautiful and most wonderful have
been, and are being, evolved.

Charles Darwin

In this chapter we present the Hierarchical Stochastic Neighbor Embedding algorithm (HSNE).
HSNE builds a hierarchical representation of the data that is then explored using non-linear
dimensionality-reduction embeddings. The exploration follows the overview-first and details-
on-demand mantra, enabling the interactive exploration of extremely large datasets. We demon-
strate HSNE on several datasets and we show the application potential in the visualization of
Deep-Learning architectures and the analysis of hyperspectral images.

N. Pezzotti, T. Hollt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Hierarchical Stochastic Neigh-
bor Embedding. In Computer Graphics Forum, volume 35, pages 21-30, 2016 [139].



6. Hierarchical Stochastic Neighbor Embedding

6.1 Introduction

In Exploratory Data Analysis, a number of visualization techniques are used to sup-
port the hypothesis-generation process. Among its goals are the extraction of im-
portant variables, the detection of outliers or the identification of underlying non-
convex structures [172]. As seen in the previous chapters, Non-linear dimensional-
ity reduction techniques such as tSNE play a key role in the understanding of high-
dimensional data [22,155]. A simple example is presented in Figure 6.1a, where a
non-convex 1D manifold structure is defined in a 2D space. Non-linear dimension-
ality reduction is used to generate a 1D embedding (Figure 6.1b). Note that a linear
transformation cannot project the manifold on such a 1D space.

As presented in Chaper 2, in recent years the application of non-linear dimen-
sionality reduction techniques on real-world data led to new findings as complex
real-world phenomena lead to non-convex structures that resides in a high dimen-
sional space[6,12]. Algorithms such as Sammon Mapping [152], LLE [150], ISOMAP [169]
or tSNE [177] help during Exploratory Data Analysis by giving a meaningful repre-
sentation of these high-dimensional spaces. Broadly, two different approaches
have been developed by the Machine-Learning and the Visualization community.
The Machine-Learning approach tends to focus on accurate but computationally-
expensive techniques, whereas the Visualization approach often trades accuracy
and non-convex structure preservation for interactivity. Consequently, the first type
is often too slow for interactive interfaces, limiting the ability to support the hypoth-
esis generation process. The second type is less accurate and can generate non-
existing structures. For example, hybrid approaches use a set of landmarks, also
called pivots or control points, which are embedded using non-linear dimensionality-
reduction techniques. The remaining points are placed by interpolating their posi-
tions. Due to the sparse amount of landmarks, this process may not reflect the
underlying manifold. An example is given in Figure 6.1c. The landmarks are placed
in the wrong order according to the manifold, if the rest of the data is not taken into
account. This problem can be partly remedied by letting the user manipulate the
landmark positions in the embedding. However, this interaction cannot avoid the
creation of non-existing structures and requires prior knowledge of the user about
the data, which is usually not available.

In this chapter we present the Hierarchical Stochastic Neighbor Embedding al-

0101601010 Non-linear techniques Hybrid techniques

(a) (b) 0JOJOXORE, (c)

Figure 6.1: Dimensionality reduction with landmarks. In non-linear embedding techniques the underly-
ing manifold (a) is respected (b). In hybrid approaches, landmarks are placed without considering the
underlying manifold (c) and data points are placed by interpolating the landmark positions (grey line in
c). The layout quality thus relates to the used number of landmarks.
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gorithm (HSNE), a non-linear dimensionality reduction technique that aims at bridg-
ing the gap between accuracy and interactivity. It is motivated by the good results
that SNE techniques show in user studies [155] and is as fast as the state-of-the-
art hybrid techniques. While our approach also involves landmarks, it differs sig-
nificantly from previous work. Our landmarks are enriched by a smooth and non-
convex area of influence on the data and the landmarks are chosen by analyzing the
data points and their k-nearest neighbor graph, while avoiding outliers. Overlaps in
the areas of influence are used to encode similarities between landmarks. Our pro-
cess is hierarchical and landmarks at a higher scale are always a subset of the
previous scale. This hierarchy allows us to keep the memory footprint small, while
enabling a new way of analyzing the data. We follow the Overview-first, Details-
on-Demand paradigm [158] for the analysis of non-linear embeddings. Dominant
structures that appear in the Overview can be analyzed by generating an embed-
ding of the related landmarks in the subsequent lower scale. In this way, the user
can drill down in the data and search for structures at finer scales. Itis an approach
that scales very well to big datasets and we illustrate its application potential in two
different use cases in this chapter. The success of this technique are also shown
if Chapter 7, 8 and 9.

The remainder of the chapter is structured as follows. After an overview of the
related work, Section 8.4.3 presents the HSNE algorithm with a focus on the con-
struction of the hierarchy, while the hierarchical analysis is presented in Section 6.4.
Finally, Section 6.5 contains two use cases showing the potential of our method,
while experiments on well known datasets are presented in Section 6.6.

6.2 Related Work

Linear dimensionality-reduction techniques try to preserve global distances between
data points in the embedding as in the high-dimensional space. Hierarchical imple-
mentations of these techniques have been developed to reduce calculations. No-
table examples are Glimmer [75], Steerable MDS [186] and HiPP [128] that linearly
separate the space with a top-down approach.

Differently from linear algorithms, non-linear dimensionality reduction techniques
try to preserve geodesic distances on manifolds between data points. However, a
simple case as in Figure 6.1a is rarely met in practice, and the definition of geodesic
distances is a challenging task. In real-world data, data points form manifolds de-
fined by sets of points varying in size, density, shape and intrinsic dimensional-
ity. A class of techniques known as Stochastic Neighbor Embedding (SNE) [66]
is accepted as the state of the art for non-linear dimensionality reduction for the
exploratory analysis of high-dimensional data. Intuitively, SNE techniques encode
small-neighborhood relationships in the high-dimensional space and in the em-
bedding as probability distributions. These techniques aim at preserving neigh-
borhoods of small size for each data point. The embeddings are defined via an
iterative minimization of the loss of information when placing the point in the em-
bedding. Besides the discoveries made using algorithms like tSNE [6,12], the ability
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to reveal interesting structures is demonstrated by extensive user studies on real-
world and synthetic data [155). Unfortunately, the application of SNE techniques to
large datasets is problematic, as the computational complexity is usually O(n?). Us-
ing approximations it can be reduced to O(nlog(n)) [138,176]. Furthermore, small-
neighborhood preservation might miss structures at different sizes. Our HSNE is an
SNE technique, which overcomes the computational complexity and shows struc-
tures at different scales by creating a hierarchical representation of the dataset.
Differently from other hierarchical techniques [75,128,186], we use a bottom-up ap-
proach in the creation of the hierarchy. Our key insight is to use landmarks that
represent increasingly large portion of the data.

The usage of landmarks is not new and can be separated in two categories,
which we refer to as the non-linear and hybrid landmark techniques (see Figure 6.1).
Both select a set of landmarks from the original dataset. Non-linear landmark tech-
nigues embed them using metrics that estimate geodesic distances between points
[161,177). Figure 6.1b shows a simple example, where the neigborhood relation-
ship are extracted using the geodesic distances on the manifold. For example,
Landmark-tSNE creates the K-Nearest Neighbor (KNN) Graph between the origi-
nal data point and computes for each landmark the probability of reaching other
landmarks with a random-walk on the KNN-Graph [177]. Non-linear landmark tech-
niques can discover non-convex structures, but their scale is directly related to the
number of selected landmarks. Further, the user is limited to the visualization of
landmarks and not the complete dataset, limiting the insights that can be extracted
from the data. Hybrid landmark techniques embed landmarks with non-linear di-
mensionality reduction techniques based on high-dimensional descriptors of the
landmarks derived from the original data. The complete dataset is then embedded
using different interpolation schemes [33, 39, 80,127,129,131,132]. This approach
is widely used by the visualization community due to its fast computation, making
it ideal for interactive systems. However, non-convex structures are not preserved
(unless the sampling is dense enough) because the underlying manifold is ignored.
Figure 6.1c illustrates the problem: the selected landmarks are seen as a straight
line even by a non-linear technique.

HSNE is a non-linear landmark technique, but supports the exploration of non-
convex structures at different scales, while sharing the performance of hybrid tech-
niques and supporting interaction to gain insights into the data. In particular, our
novel hierarchical approach using an Overview-first, Details-on-Demand paradigm
helps in this context.

6.3 Hierarchical Stochastic Neighbor Embedding

Here, we present our HSNE techniqgue with a focus on the creation of the hierarchi-
cal data representation. An overview is given in Figure 6.2. Throughout the chapter,
calligraphic notations indicate sets, for example, 2 is the set of high-dimensional
data points. Our representation is composed of different scales, or levels, orga-
nized hierarchically. We use superscripts to indicate this scale. Elements in sets
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Figure 6.2: Overview of the hierarchy construction. A Finite Markov Chain (FMC) is built from the k-
nearest neighbor graph. The FMC encodes the similarities between landmarks and it is used for select-
ing landmarks in the next scale. The FMC is also used to compute the area of influence of the selected
landmarks on the landmarks in the lower scale. The overlap between the areas of influence is used to
build a new FMC that encodes similarities in the new scale.

are identified using subscripts. We denote £° the set of landmarks representing
the dataset at scale s. £! represents the first scale, which is the input dataset 2.
Higher scales are always subsets of previous scales (£° c £™1).

Our algorithm works as follows. Starting with £, we build a Finite Markov Chain
(FMC) from a k-nearest-neighbor graph to encode similarities between landmarks
(Section 6.3.1). It is used to guide the selection process of a landmark subset for
the next scale (Section 6.3.2) and, then, to compute an area of influence for each
selected landmark (Section 6.3.3). The overlap between these areas indicates sim-
ilarity and forms the basis for a new FMC encoding (Section 6.3.4), which is then
used to compute the next scale. After preprocessing the different scales, we can
perform a multi-scale analysis by computing an embedding of landmarks using
their scale-dependent information (Section 6.3.5).

6.3.1 From data points to a Finite Markov Chain

A Finite Markov Chain is a random process that undergoes transitions from one
state to another in a state space. Our Finite Markov Chain is used to model the ran-
dom movement of a hypothetical particle on the manifold, and the states are given
by the landmarks in £S. The transitions are encoded in a square transition matrix
TS of size | L% x | £5|. T*(i, j) represents the probability that the landmark ffjs be-
longs to the neighborhood of the landmark £} in the scale s. It is important to note
that HSNE aims at encoding small neighborhoods of fixed size for every landmark.
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Therefore T* is sparse by construction, and its memory complexity grows linearly
with the size of the dataset.

For the Finite Markov Chain described by the transition matrix T, each data
point 9; is only allowed to transition to a data point 2;, if 2; belongs to the k-
nearest-neighborhood 4 (i) of ;. The probability assigned to the transition is given
by the following equation:

exp(d(i, j)?/o;)
Yrexp(d(i, k)?/o;)

where d(i, j) are the Euclidean distances between data points, and ¢; is chosen
such that T'(i,-) has perplexity of |.4(i)|/3 [176]. The exponential falloff is used
to reduce the problem caused by the presence of outliers, that act as shortcuts
across manifolds. SNE techniques focus on the preservation of small neighbor-
hoods for each data point. Thus, a small value of K is usually selected, where 100
is a common choice [176,177]. To improve performance, we adopt the approxi-
mated algorithm for the computation of the k-nearest-neighborhoods proposed in
the Approximated-tSNE introduced in Chapter 4. Experimentally, we see that such
an algorithm does not compromise the quality of the embeddings generated by
HSNE while improving the computation time by two orders of magnitude. The com-
putational complexity of this first step is O(12|10g(121))

TV, j) = with j, ke A (i), (6.1)

6.3.2 Landmark selection and outliers identification

We use the transition matrix to carefully select meaningful landmarks in order to
reduce the size of the dataset. This step is of crucial importance, e.g., in order to
avoid choosing outliers as landmarks. So far, we have only given the definition of the
transition matrix for the lowest scale. We define it for other scales in Section 6.3.4.
Nonetheless, the process described here is valid at all scales, which is why we use
the superscript s to indicate its generality. Before we explain our sampling solution,
we introduce the concept of equilibrium distribution of a Finite Markov Chain. A
vector x is called equilibrium distribution of the Finite Markov Chain, described by
the transition matrix T, if it represents a probability distribution that is not changed
by a transition in the state space:

n=nT*and ) m;=1 (6.2)

Intuitively, the equilibrium distribution & represents the probability of being in a state
after aninfinite number of transitions in the state space. These transitions are often
called random walks in the state space. Given the transition probabilities defined by
Equation 6.1, the equilibrium distribution of our Finite Markov Chain assigns higher
probability to data points that reside in high-density regions in the original space.
Figure 6.3 shows an example, where the landmarks £ are color coded according
to the equilibrium distribution of the Finite Markov Chain that encodes their sim-
ilarities. Landmarks in dense regions of the space, have high value of = and are
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Figure 6.3: Selection of landmarks and outliers using the equilibrium distribution = of the Finite Markov
Chain (see Equation 6.2). Points are color coded from black to red according to their z-value. Selected
landmarks are circled in green, while potential outliers are circled in blue.

selected to be in 2! (green circles in Figure 6.3). Landmarks with a low value of
7 are considered outliers in scale s+ 1 (blue circles in Figure 6.3).

Landmarks in 2! are selected by sampling the equilibrium distribution , that
is computed using a simple Markov Chain Monte Carlo technique [50]. For each
landmark in £, we start § random walks of fixed length 8. Every landmark that
is the endpoint of at least Bireshold * B random walks is selected as a landmark in
£5*1 if no random walks reach a given landmark, it is detected as outlier. We ex-
perimented with different values of g and 0, finding that g =100 and 6 =50 is a
good compromise between speed and accuracy for the data we have been ana-
lyzing. Notice that the computation of random walks is not costly, and thousands
can be performed every millisecond on a state-of-the-art desktop computer. We
provide a default value of Byeshold = 1.5, that we found is conservative enough to
create a hierarchical representation for all the dataset that we tested. The compu-
tation complexity of this step is O(%¢]). However, the user can change this value
to control the number of landmarks to be selected.

6.3.3 Area of influence

The process of choosing landmarks cannot be simply relaunched, as we would
then loose important information from previous scales. In consequence, we will
extend the definition of the transition matrix to all scales beyond the first. To this
extent, we introduce the area of influence for each landmark, which keeps track
of a landmark’s impact on previous scales. The influence exercised by landmarks
in %% on those in %71, is encoded in an influence matrix I¥. Matrix I* has size
|27 x1.£%), where I*(i, j) is the probability that the landmark ;=1 in the previous
scale is well represented by ff}f Specifically, each row i is a probability distribution
that denotes the probability that the landmark £;~! is in the area of influence of
landmarks in &#°. Consequently, the influence of a scale s on scale r is defined by
a chain of sparse matrix multiplications:

17"—3:

f[(z")t]t with r < s (6.3)

It is important to note that the area of influence is localized, implying that I® is
sparse. Therefore, the memory complexity grows only linearly with the set of land-
marks. To compute I’, we start a number of random walks in the Finite Markov
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Figure 6.4: The area of influence can be seen as flow converging in landmarks of the higher scale.
The area of influence of the landmarks selected in Figure 6.3 is shown here. The overlap in the area of
influence is used to compute similarities between landmarks (see Equation 6.5).

Chain described by 757! for each landmark 257!, leading to a computational com-
plexity of 0(£*71)). The random walk stops when a landmark in £* is reached.
The percentage of random walks reaching every landmarks in £ is then used as a
row for I*(i,—). Figure 6.4 shows the area of influence of the selected landmarks in
Figure 6.3 as a flow, converging in landmarks of the higher scale. Depending on the
data distribution in the high-dimensional space, landmarks can exercise influence
on regions of different size. We define the weight of a landmark as the size of the
region that it represents. The vector W$ encodes the weights of the landmarks at
scale s, and it is defined by the following equation:

WS=wWS xS with w!=1 (6.4)

The width of the landmarks in Figure 6.4 represents these weights W*.

6.3.4 From areas of influence to Finite Markov Chains
Similarities between landmarks in scale s are computed using the overlaps in their
areas of influence on scale s—1. Intuitively, if the areas of influence of two land-
marks overlap, it means that they are close on the manifold, therefore their similar-
ity is high. We use the influence matrix I° to create the FMC, encoding similarities
between landmarks in £°. The transition matrix T* is given by the following equa-
tion: :

S Pk DU HW )

SIS I (kD Ik, DW= (k)

T5(i, j) = (6.5)

where I8 (k, i)I* (k, j)yW*~1(k) is the overlap of the area of influence of 55; and &/

on landmark .,%;‘1. Figure 6.4 depicts overlaps between the areas of interest of the
landmarks selected in Figure 6.3. The overlap between LO and L1 is higher than the
overlap between L1 and L2, as expected because L1 is more similar to LO than L2.

6.3.5 Generation of the embedding

SNE methods rely on a probability distribution P, that encodes neighborhood re-
lationships. In practice, we rely on tSNE because of its ability to overcome the so
called crowding problem [177]. tSNE interprets similarities between data points as
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a symmetric joint-probability distribution P. Likewise a joint-probability distribution
Q is computed, that describes the similarities in the low-dimensional space. The
goal is that the position of the data points in the embedding faithfully represent the
similarities in the original space. The iterative minimization of the Kullback-Leibler
divergence is used to reduce the information loss when Q is used to represent P.
An in depth explanation on how tSNE computes Q and minimizes the divergence
function is presented in Section 3.1. In our HSNE, P is computed from the transition
matrix T*: TG i)+ TG, )
P(i, ) 212 where %P(l,]) 1 (6.6)
With this definition, an embedding can be computed even for a subset of the land-
marks, the only requirement is that their similarities are encoded in a Finite Markov
Chain. This observation is important as it enables the Overview-First, Details-on-
Demand analysis presented in the next section. However, if the user is interested in
generating a complete embedding (as in hybrid techniques), it can be achieved by
interpolating the position of the landmarks in the top scale o:

370
1_ l—0,: =
. _;@;’1 °(i, ) (6.7)

where 1'°(i, j) is the influence exercised on the data points, as shown in Equa-
tion 6.3.

6.4 Hierarchical Analysis

In this section, we describe how the hierarchical analysis is performed by present-
ing how the detailed embeddings are generated by filtering and drilling-down in the
data. Before addressing the algorithmic solution, we will motivate the usefulness
of such a tool with an example.

6.4.1 Example of a hierarchical analysis
Standard dimensionality reduction techniques are often used to enable a user to vi-
sually identify groups of similar data points. This possibility is useful, as it enables
tasks, such as verification, naming or matching [22]. Figure 6.5a, shows a simple
naming task using readings from atmospheric sensors as high-dimensional data.
Figure 6.5b shows another example, in the context of traditional analysis. In a nam-
ing task, the analysis of the given data might lead to a set of different clusters. A
user could inspect these clusters by selecting one and seeing the corresponding
region highlighted on the map. Using prior knowledge for a few locations, it be-
comes possible to attribute conditions, such as sunny, cloudy and rainy weather,
on the entire map. Nonetheless, such an analysis assumes that the scale of the
clustering was sufficiently precise and not overly precise.

The hierarchical nature of our approach enables a new multi-scale analysis based
on the Overview-First, and Details-on-Demand mantra [158]. An example is given in
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Figure 6.5: Traditional vs Hierarchical analysis. (a) High-dimensional readings from sensors located
on a map and prior knowledge on the phenomenon of interest are available to the user. In the traditional
analysis (b) a single embedding is generated and analyzed. In our hierarchical analysis (c), an overview
shows dominant structures in the dataset. Detailed embedding of the structures are created by filtering
and drilling into the data.

Figure 6.5c. Instead of showing an embedding of all data points, the analysis starts
with the highest-scale landmarks. The resulting clusters will represent very coarse
dominant structures, for example, good and bad weather zones. Additionally, the
area of influence encoded in the size of the embedded points gives feedback regard-
ing the complexity of the original underlying data. If a user now wishes to explore
more detailed information, a cluster can be selected and a lower scale embedding
is produced. The heterogeneous data on the lower level then becomes visible, for
example, bad weather transforms into cloudy and rainy regions. Our approach is
particularly suited for heterogeneity at different scales, which is common in large
datasets.

6.4.2 Filtering and drill down

To enable the investigation of details, we start from a selected subset @ of land-
marks at scale s: © « £°. We drill in the data by selecting a subset ¢ of landmarks
at scale s—1: ¢ < %71, using the influence matrix I to connect the two scales.
As explained in Section 6.3.3, a row i in I° represents for £~ the influence of the
landmarks #¢ at scale s. We define F; as the probability that landmark gg—l isin
the area of influence of the landmarks in &:

Fi= ) I°G,)) (6.8)
.,%jse@
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If all the landmarks influencing zis‘l are in @, then F; = 1. If no influence from &
is exercised on fl?‘l then F; = 0. A landmark z;—l is selectedtobe in 9 if F; >,
where y is a user-defined threshold. However, it should be noted that a low value of
vy is not desirable, as it will add landmarks, which are only slightly influenced by @.
A high value of y is also not desirable, leading to the exclusion of regions that are
highly influenced by @. While it remains a parameter, we found experimentally that
v = 0.5 allows for effective drilling in the data. The transition matrix T(;‘l, represent-
ing the similarities in ¢, is derived from T~! by removing the rows and columns
of landmarks in L*~!, which are absent from ¢. Given the transition matrix, the
embedding is computed as before (Section 6.3.5).

6.5 Use cases

Here, we show examples for our hierarchical analysis on real-world data, to illus-
trate our contributions and potential application areas of our HSNE. Besides high-
resolution hyperspectral images of the Sun and remote-sensing data, we visualize
the training set of a well-known Deep Learning model, showing how it interprets
the input images. We demonstrate the HSNE's ability to show dominant structures
in the Overview and to explore them in detailed embeddings to reveal finer-grained
structures. We test our C++ implementation of HSNE on a DELL Precision T3600
workstation with a 6-core Intel Xeon E5 1650 CPU @ 3.2GHz and 32GB RAM.

6.5.1 Hyperspectral images
The visible light spectrum is only a tiny part of the electromagnetic spectrum and
some phenomena can only be understood by considering the complete spectrum.
Figure 6.6a, shows hyperspectral images of the sun. Different wavelengths of the
electromagnetic spectrum reveal different observations, such as solar flares or the
corona. The image resolution is 1024 x 1024, leading to a dataset composed of = 1M
data points (pixels). Each pixel is described by 12 dimensions corresponding to the
intensity readings. We downloaded the data from the Solar Dynamics Observatory'
on November 13th 2015. In an Exploratory Data Analysis the user needs to analyze
all pictures of all wavelengths in parallel. However, with an increasing number of
images, the data complexity complicates the generation of a hypothesis or the dif-
ferentiation of different regions. Here, we show how HSNE supports such analysis.
The hierarchical representation of the data is precomputed in 2'13" minutes and
only needs to be processed once. From this representation the overview and de-
tailed embeddings require only a few seconds and can be visualized using a Pro-
gressive Visual Analytics approach [138]. Figure 6.6b shows the Overview gener-
ated by HSNE. The Overview is composed of 352 landmarks in two clusters (TO
and T1). Every landmark is drawn using semi-transparent circles, while the size of
a landmark encodes its weight as defined in Equation 6.4. The clusters correspond
to two dominant structures in the data, the Sun surface (T1) and the Space in the

Thttp://sdo.gsfc.nasa.gov/
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Figure 6.6: Hierarchical analysis of hyperspectral images. Hyperspectral images of the Sun and the
area surronding the city of Los Angeles are analyzed using HSNE. Dominant structures are revealed at
different scales and can further inspected by creating detailed embeddings.

background (T0). Their areas of influence is visualized in the linked view. Here, an
image of size 1024 x 1024, where a greyscale colormap is used to represent the prob-
ability of a pixel to belong to the area of influence of the selection. The user drills
in the data by requesting detailed visualizations of the two dominant structures. A
detailed embedding of TO (Figure 6.6¢) describes different regions of the Corona.
SO represents the area close to the surface, while S1 represents the background.
S2 and S3 represent the external area of the Corona, where S3 is an area with low
readings in the AIA 211 channel (pink in Figure 6.6a). S4 is an interesting cluster,
representing the overlayed logo, present in all images. S4 is considered an outlier
in the overview and, therefore, was not represented as a separate cluster. However,
upon refinement, this cluster would appear, as it will be a dominant structure at this
scale. A detailed embedding of T1 leads to three clusters (Figure 6.6¢). Although
not as well separated, they clearly represent different regions on the Sun surface.
RO are hotter regions, or where solar flares are visible, while R1 and R2 represent
colder regions separated in one of the input images, namely the Magn image (Fig-
ure 6.6d).

We performed a similar analysis on hyperspectral images for remote sensing.
These data are captured by the LandSat satellites 2, and we present an example
of the area surrounding the city of Los Angeles. The data are composed of 11 im-
ages, representing different bands of the electromagnetic spectrum. Figure 6.6e
shows three of such images, and a reference image. Similarly to the previous ex-

2http://landsat.usgs.gov/
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Figure 6.7: Deep Learning models. Features are extracted from 100k images using a Deep Neural Net-
work (DNN) [88] and the hierarchical analysis is performed using HSNE. Starting from the overview,
dominant structures at different levels are revealed. The user can inspect the embeddings and request
detailed visualization. This is achieved through filtering of the landmarks and by drilling down in the
hierarchy. A high-resolution version of the figure is provided in the supplemental materials.

ample, we analyzed the images at a resolution of 1024 x 1024. Figure 6.6f shows
the dominant structures in the highest scale, namely ocean, clouds and the main
land, that are identified by the user by looking at the reference image and using its
prior knowledge on the phenomenon. A detailed embedding representing the main
land is shown in Figure 6.6g. It is possible to identify different parts of the detailed
embeddings related to mountains, urban and desert areas. Drilling in, detailed em-
beddings are generated, such as the one representing desert areas, as depicted in
Figure 6.6h. More heterogeneity is revealed at this scale. For instance dry lakes,
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such as the Rogers Dry Lake, are located in the cluster of desert areas.

6.5.2 Visualization of Deep Learning datasets

Deep Learning builds upon neural networks composed of many (hence, the name
deep) layers. Deep Neural Networks (DNN) achieved impressive results in image
recognition, sentiment analysis and language translation. For an overview of the
field, we refer to [94]. However, it is difficult to visualize how a DNN works. An ap-
proach that was used recently, is to select some potential inputs that are processes
by the DNN [82,116]. For each input, the values computed by the last layer of the
network are used as high-dimensional descriptor. Once that the descriptor are as-
signed to each data point, they are embedded in a 2D space using non-linear dimen-
sionality reduction techniques. tSNE is usually selected for such a task [82,116]. The
limitation of this approach is that only small subsets can be visualized at a given
time, limiting the ability to evaluate and inspect how the network is trained. We
extract features from the test set of a well known DNN [88], leading to a dataset
consisting of 100k images and 4096 dimensions. The hierarchical representation
of the data is computed in 92 seconds, while every embedding requires only few
seconds to be computed. Qur approach shows the hierarchical nature of the learn-
ing process, as depicted in Figure 6.7. In the overview two clusters are visible. We
label them as Man-made and Nature, based on the inspection of the images repre-
sented by the landmarks. Detailed embeddings of the clusters are produced and
confirm the previous labeling. In the Nature cluster new dominant structures are
revealed, such as images of Aquatic animals, Insects or Dogs. Similarly, a detailed
visualization of the landmarks labeled as Man-made reveal more heterogeneity in
the data. The user can drill deeper in the data, for example by requesting detailed
visualization of landmarks identified as Ships, Vehicles and Underwater scenes Ac-
quatic animals.

6.6 Evaluation

In this section we provide experimental evidence that HSNE outperforms hybrid
and non-linear dimensionality reduction techniques. In our evaluation, we use the
MNIST dataset 3 (60k points, 784 dimensions), the CIFAR-10 dataset 4 (50k points,
1024 dimensions) and the TIMIT dataset ° (1M points, 39 dimensions).

Figure 9.8 shows the embeddings of the MNIST dataset produced with our ap-
proach compared to those created by non-linear techniques (tSNE and L-SNE [177])
and hybrid techniques (LSP [129], Piecewise-LSP [127], created by the Projection Ex-
plorer tool [130], and LAMP [80] created by the Projection Analyzer tool ©). Our HSNE
embedding is computed for three scales, resulting in the highest-level embedding

Shttp://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/ kriz/cifar.html
5https://catalog.|dc.upenn.edu/LD09381
Shttps://code.google.com/archive/p/projection-analyzer/

78



6.6. Evaluation

tSNE L-SNE LSP * P-LSP LAMP Hierarchical SNE

Landmarks

=)

£ \

T i ,.

£ ‘ ) :

w : "

[

E 23'57" 113" non comp 5 22¢ 5' 03" 10 27m

Figure 6.8: Embeddings of the MNIST dataset created by non-linear dimensionality reduction tech-
niques (tSNE and Landmark-SNE) and by hybrid techniques (LSP, P-LSP and LAMP). Differently from
hybrid techniques, HSNE preserves the manifold in the landmark embedding, creating compact clus-
ters in the complete embedding.

containing 1431landmarks. The tSNE embedding is computed using approximated
computations [138,176] to reduce the computational complexity to O(nlogn). For
the L-SNE algorithm, we randomly selected 1431 landmarks and we use approxi-
mated k-nearest-neighbor computations (see Section 6.3.1), making it comparable
to the setting for the HSNE. We were not able to generate a LSP embedding of the
MNIST dataset due to its size and present an embedding of 5k randomly selected
data points instead. We use the default parameters for the selection of the land-
marks, leading to 500 landmarks in LSP, 3714 in P-LSP and 734 in LAMP. For each
technique we present, where available, the embedding containing only the land-
marks, as well as the complete embedding. Our HSNE is much faster than tSNE
and comparable to hybrid techniques.

We base our quantitative assessement of the quality of the embedding on the
Nearest-Neighbor Preservation metric (NNP) as proposed by Venna et al. [181] and
implemented by Ingram and Munzner [74]. For each data point, the K-Nearest-
Neighborhood (KNN) in the high-dimensional space is compared with the KNN in
the embedding. Average precision/recall curves are generated by taking into ac-
count high-dimensional neighborhoods of size Kj;gp, = 30 [74]. The precision/recall
curves are computed by selecting K,,,,-neighborhoods in the embedding, iterating
Kemp, from 110 Ky, g, and computing the true positive TP in the K,,,,-neighborhood.
The precision is set as TP/ K.y, and the recall as TP/Ky;gp. The curve is obtained
by connecting the points in the precision/recall space for each value of K,,,;, [74].
However, NNP fails to measure the preservation of high-level information, e.g. neigh-
borhood preservation in a geodesic sense and, to the best of our knowledge, no
such metric exists. Therefore, we assess the high-level structure preservation both
by a visual inspection of the labeled data and by the evaluation of the NNP during
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the drill-down in the data. Intuitively, if HSNE does not have the ability to preserve
high-level structures, during a drill-down part of the data will be left out, leading to
gaps in the lowest-level embedding and, consequently, to bad NNP.

Even if a validation of the visual cluster cannot be performed, given its non-
convex nature [9], the MNIST dataset contains compact manifolds [177] that repre-
sent handwritten digits (see examples in Figure 9.8). Therefore, based on the visual
separation of the labeled landmarks, we can conclude that HSNE preserves mani-
folds similar to non-linear dimensionality-reduction algorithms. Hybrid techniques
are incapable of well separating the manifolds in this example. Due to the fact that
the underlying manifold is not respected, the landmark positions in the embedding
ignores local structures in the data, leading to problems similar to the one depicted
in Figure 6.1c.

HSNE separates the manifolds even better than tSNE, see orange cluster in the
tSNE embedding compared to orange landmarks in the HSNE embedding. This
result is a consequence of tSNE focusing only on the preservation of small neigh-
borhoods. When the size of the data increases, we experimentally found that mini-
mization performed by tSNE will often incur in local minima that disrupt the visual
representation of high-level manifolds.

tSNE'’s ability to preserve small neighborhoods is confirmed by the NNP preci-
sion/recall curves presented in Figure 6.9a. For HSNE we compute a precision/recall
curve for each scale by linearly interpolating the data points using landmarks in the
corresponding scale, as in Equation 6.7. In the highest scale, HSNE outperforms
the other hybrid techniques but it performs worse than tSNE. This is expected as
the information preserved by HSNE at this scale is not measured by NNP. When the
lowest scale is considered, the precision/recall curve of HSNE and tSNE are similar.
However, HSNE is designed to filter the data during the hierarchical analysis. Fig-
ure 6.9b shows the analysis performed by selecting landmarks that belong to the
digit 7' (green points in Figure 9.8) and computing the the precision/recall curves
using the points selected to be in the lowest scale. HSNE outperforms tSNE in the
lowest scale: by reducing the number of data points to embed, HSNE is less influ-
enced by local minima during their placement, leading to a better NNP. This result
also confirms that in the higher scales of the hierarchy, manifolds are consistently
represented, avoiding the creation of gaps in the lowest level embedding during the
analysis. We obtained similar results for different analysis performed on the three
datasets.

6.7 Conclusions

We presented Hierachical Stochastic Neighbor Embedding (HSNE). HSNE intro-
duces the well-known mantra Overview-First, Details-on-Demand in non-linear di-
mensionality reduction techniques. Our technique preserves non-convex structures,
similarly or better than the state-of-the-art methods, but can be employed in inter-
active software for the Exploratory Analysis of high-dimensional data. Even though
complete embeddings (similar to hybrid techniques) are possible, a key strength
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Figure 6.9: Nearest Neighborhood Preservation (NNP) on the MNIST dataset. HSNE outperforms hy-
brid techniques and it is comparable to tSNE on a full scale analysis. When the user filters the data
during the drill-in, HSNE outperforms tSNE.

is the interactive hierarchical analysis to reveal dominant structures at different
scales, which is useful in various applications, as evidenced by our use cases.

The various results indicate that HSNE is a beneficial replacement for non-linear
and hybrid algorithms in Visual Analytics solutions. The use of the area of influ-
ence, is an important visualization element and delivers additional information, al-
though new strategies would have to be developed to effectively exploit this infor-
mation. Nonetheless, this aspect is important when considering systems to assess
the quality of embeddings [109]. These mainly focus on visualizing and inspecting
missing and false neighborhood relationships between data points. The investi-
gation of neighborhood encoding remain an open problem, in particular for HSNE
where these relationships are stochastic by nature. The multi-scale nature of many
real-world phenomena leads us to the conclusion that HSNE may give new insights
into a number of problem domains. The next chapters are focused on the applica-
tion and successes of HSNE in several application areas. We start with the applica-
tion of HSNE for the exploratory analysis of biomedical data. Then, we present the
application and extensions of HSNE for analyzing extremely large bipartite graphs
and, finally, we present a system the supports the design of deep neural-network
architectures.
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Applications in Life Sciences

Any sufficiently advanced technology is indistinguishable from magic.

Arthur C. Clarke

In this chapter, we present several applications of the A-tSNE [138] and HSNE [136] algorithms
with a focus on life sciences. We present Cytosplore, a tool developed for the exploratory anal-
ysis of single-cell data. Cytosplore is the enabler of several findings, ranging from the discovery
of new immune-system cell types to cell differentiation pathways. Moreover, we introduce a
tool for the analysis of 3D hyperspectral data which is based on the HSNE algorithm. This
work has been done in a close collaboration with Thomas Héllt and researchers at the Leiden
University Medical Center.



7. Applications in Life Sciences

7.1 Single Cell Data Analysis

In recent years, novel data acquisition technologies, e.g., mass cytometry [126]
(CyTOF), allowed to determine the properties of single-cells with unprecedented de-
tail. This amount of detail allows for much finer cell differentiation, but also comes
at the cost of more complex analysis. As a matter of fact, datasets comprise mil-
lions of cells, each represented as a high-dimensional data point, where each di-
mension represents the quantity, or expression, of a given protein per cell. The
analysis aims at identifying groups of similar cells with respect to their protein ex-
pression, i.e., with a similar high-dimensional profile. However, most of the time, the
user has limited prior knowledge on the cell types to be found in the data and the
use of an exploratory analysis tool for high-dimensional data would be beneficial
and, as presented in this chapter, will enable the discovery of previously unknown
cell-types.

Inthis section, we present how the application of the A-tSNE [138] and HSNE [136]
algorithms empowered the analysis of single-cell data and led to novel findings [90,
102,179]. We first provide the motivation of our work, and the biological background
for single-cell data analysis. Then, we introduce the Cytosplore [68] application and
its CyteGuide extension [69]. Finally, we present two immunology findings enabled
by Cytosplore in combination with A-tSNE and HSNE.

7.1.1 Motivation

The immune system primarily protects our body against bacterial, viral and para-
sitic infections. However, it may also respond to harmless antigens, leading to auto-
immune diseases, e.g., type-1 diabetes or rheumatoid arthritis. Detailed knowledge
of theimmune system'’s functioning is required to understand the cause of immune-
mediated disease, which is an important step towards preventive or therapeutic
measures. The cellular immune compartment consists of a variety of cellular sub-
sets, each with a distinct function and associated phenotype. The phenotype de-
scribes “the observable physical or biochemical characteristics of an organism, as
determined by both genetic makeup and environmental influences” [113]. In the last
decades a large number of phenotypically and functionally distinct subsets have
been defined and, for some, a major role in disease processes has been found. For
immune cells, the functionality mostly relates to a set of proteins expressed on the
cells surface.

Recently introduced mass cytometry [126], at the moment allows the observa-
tion of around 50 of these proteins at the same time, four times as many as the
clinical standard. However, this number is still orders of magnitude smaller than the
estimated 10,000 immune-system-wide available proteins, providing phenotypic in-
formation. Hence, specific panels of markers, corresponding to proteins of inter-
est, need to be designed for each study. The composition of these panels is often
unique to a study and it is not known beforehand, which combinations of proteins
can be expected. Therefore, the identification of different phenotypes largely needs
to be carried out in a data-driven fashion by studying data heterogeneity rather than
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applying prior knowledge.

7.1.2 Biological Background

To analyze heterogeneity of immune cell subsets, multiparameter analysis of im-
mune cells at single-cell level is required. Flow cytometry has been the method of
choice for this purpose, however, suffers from a limitation; it is restricted by the
number of cellular markers that can be simultaneously analyzed, usually 10 to 12.
Therefore studies employing flow cytometry are usually focused on very specific,
known celltypes. This limitation has been overcome by the introduction of mass cy-
tometry. Mass cytometry is a novel, mass spectrometry-based, technique for char-
acterizing protein expression on cells (cytometry) at single-cell resolution. In short,
antibodies, selected to bind to specific proteins of interest on the cell membrane,
are conjugated with heavy metal reporters. After staining, the cells are vaporized,
atomized and ionized one by one and the remaining metals in the ion cloud can be
measured in a mass spectrometer to quantify the selected proteins on a per-cell
basis. Mass cytometry currently allows the simultaneous analysis of around 50
markers, a number which is expected to rise to 100 in the near future. This allows
much broader studies, for example to compare different diseases. Furthermore
it allows the inclusion of markers that usually would not be expected in a certain
group, possibly allowing the discovery of unknown cell types.

7.1.3 Cytosplore

Cytosplore is an interactive visual analysis system for understanding how the im-
mune system works. The goal of the analysis framework is to provide a clear picture
of the immune systems cellular composition and the cells’ corresponding proper-
ties and functionality. Cytosplore is targeted at the analysis of mass cytometry
(CyTOF) data. It provides multiple linked views, showing different levels of detail
and enabling the rapid definition of known and unknown cell types. Thanks to
A-tSNE and HSNE, the tool handles millions of cells, each represented as a high-
dimensional data point, facilitates hypothesis generation and confirmation, and
provides a significant speed up of the analytical workow.

Figure 7.1 presents an example of the application, where a HSNE analysis is
preformed. On the left side of the user interface, see Figure 7.1a, a control panel
is available. On this panel, the user selects the dimensions of interests, i.e., the
proteins that will be used to differentiate the cell types. Once that the dimensions
are chosen, the user starts analyzing the data by creating A-tSNE or HSNE embed-
dings. Cytosplore supports progressive computations [41] and the intermediate
results are immediately visualized in linked views. In the example, a HSNE analysis
is performed. Figure 7.1b shows the overview embedding, where the landmarks are
color coded according to the value of one of the chosen dimensions, showing that
the corresponding protein is partially responsible for the separations of some of
the clusters of landmarks.

The user can manually select a cluster in the overview, either manually or with
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Figure 7.1: Cytosplore [68] is an interactive visual analysis system for understanding how the immune system works. Each cell is represented as a
high-dimensional point, where the dimensions represents the frequency of protein interactions. Cytosplore offers several linked views to enable the
definition of cells differentiation. The user can interactively define which dimensions ought to be considered in the analysis (a). Embeddings of the
dataset are created by A-tSNE [138] or HSNE [136]. In this example a HSNE analysis is presented, with an overview embedding (b) and a detailed view
(c). In the detailed embedding the user selected a cluster. The corresponding high-dimensional profile is visualized in a heatmap visualization, enabling
the verification of which dimensions are responsible of the presented cluster.
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the help of a non-parametric clustering algorithm [46]. The selection is then used
to and create a detailed view by drilling in the HSNE hierarchy, en example of which
is presented in Figure 7.1b. In the detailed view, heterogeneity within the clusters is
revealed. The user can select a cluster of points in the embedding and analyze the
corresponding profile in a linked heatmap view, see Figure 7.1c.

Cytosplore has been developed in collaboration with immunologists at the Lei-
den University Medical Center, with the specific goal of empowering their analytical
capabilities. Before the introduction of Cytosplore, the analysis of a single dataset
could take several months, often relying on printouts of tSNE [177] embeddings on
subsets of the data. With Cytosplore, the same analyses are performed in only few
hours, while avoiding any subsampling of the data thanks to the adoption of our
HSNE algorithm. In particular, Cytosplore and HSNE allowed our research partners
to discover new immune-system cell-types as we will present in Section 7.1.4.

CyteGuide

To facilitate the exploration of the HSNE hierarchy, we introduced the CyteGuide
extension to cytosplore. In the basic HSNE implementation in Cytosplore, the user
would start with a high level embedding, showing only the most representative land-
marks, as presented in Chapter 6. Each of these landmarks represents a group of
cells of the next, more detailed level. This approach tackles scalability issues of
techniques like tSNE in terms of data size and computational performance, how-
ever, at the cost of increased user interaction. By looking just at the unordered
embeddings, the user can easily lose the overview of the state of the exploration,
see the example in Figure 7.2a.

Figure 7.2: Cyteguide facilitates the exploration of the HSNE hierarchy. Embeddings are organized in a
sunburst diagram, with the overview embedding at the center. Each embedding is automatically clus-
tered using the Mean Shift algorithm [46]. Different clustes are characterized by a different color and,
upon user request, a more detailed embedding of a corresponding cluster is created and arranged in the
sunburst diagram. For each embedding, a heatmap is used to show the variability of each feature in the
cluster. Clusters with higher variance are more interesting to be explored by the user.
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Figure 7.3: Adaptive layout of CyteGuide. Detailed embeddings can be placed at the center to reduce
clutter (a). A thumbnail and breadcrumb visualization is used to keep track of the interaction (b).

Furthermore, HSNE does not provide any guidance for exploration, or overview
of the state of the exploration beyond a set of unordered embeddings. Comput-
ing the embeddings is costly and can be unnecessary, if a higher level embedding
already shows all features of interest. Therefore, guiding the user to regions of inter-
est can save computation time. While our partners were able to create meaningful
insight with HSNE, especially due to its scalability, the exploration of the hierarchy
became a challenging task. The goal of Cyteguide is to ease the process of explor-
ing the hierarchy by providing an overview of the current state of the exploration,
but also by pointing the user to unexplored parts that could provide deeper insight
in lower levels of the hierarchy.

Figure 7.2 presents an example of Cyteguide for the analysis of a single-cells
dataset. The embedding representing the overview, i.e., containing landmarks from
the highest HSNE scale, is presented at the center of the Cyteguide visualization in
Figure 7.2b. The landmarks are colored according to the result of a Mean Shift [46]
clustering that is directly controlled by the user. In the example of Figure 7.2b, 5
clusters are identified. The circle surrounding the embedding is then divided in 5
equal-sized sectors, one for each cluster. These sectors are identified by using a
line with the same color of the corresponding cluster. On top of that, a heatmap
visualization is used to guide the user towards clusters that are interesting to be
investigated further. In the heatmap, each feature is colored according to the stan-
dard deviation of the feature in the cluster. Intuitively, if a cluster presents high
variance in one of the features, it may reveal higher heterogeneity at a lower level in
the HSNE hierarchy. The user decides to create more detailed embeddings for all
the five clusters. The embeddings are created in a progressive fashion, while the
CyteGuide visualization is extended by placing the corresponding embeddings in
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the sunburst diagram. The process can then be iterated, and the CyteGuide visual-
ization is adapted according to the user interaction.

CyteGuide adopts several design choices to deal with the ever decreasing visual
space available for more detailed embeddings. Among the others, the heatmap vi-
sualization shows only the feature with the highest standard deviation in a cluster
if not enough space is available. Moreover, detailed embeddings can be placed at
the center of the visualization in order to reduce clutter, see Figure 7.3a. A thumb-
nail and breadcrumb visualization is used to keep track of the interaction, see Fig-
ure 7.3b.

7.1.4 Discovery of Unknown Cell-Types

In a previous study performed by our partners [180], a mass cytometry data set
on 5.2 million cells derived from intestinal biopsies and paired blood samples was
analyzed using a pipeline consisting of several algorithms. The goal of the study
was the identification of rare cell-types, possibly related to autoimmune diseases.
These cell-types are identified by different type of interaction with proteins, resulting
in a different high-dimensional profile as presented in Section 7.1.2.

In their study, Van Unen et al. [180] proposed a computational pipeline that hav-
ily relies on downsampling. The data was subsampled to 2.2 million cells, hence
discarding almost 57% of the entire dataset. This choice is motivated by the limited
scalability of the algorithms comprising the pipeline, hence the subsapling of the
data is paramount for the feasibility of the computation.

The downsampled dataset was then processed with SPADE [142], a technique
that creates a tree of cell clusters. Subsets of the SPADE treg, i.e. clusters of cells,
were then used to create tSNE embeddings that are then processed by the AC-
CENSE algorithm [157]. ACCENSE performs a density-based subsampling and clus-
tering in the tSNE space, allowing for the extraction of high-dimensional profiles as-
sociated to the clusters visible in the embedding. After this final subsampling, only
1.1 million cells are analyzed by the experts, effectively discarding approximately
80% of the complete dataset. This pipeline is fully implemented in Cytosplore, and
we refer the interested reader to the work of Van Unen et al. [180] for more detail.

Despite the insight achieved by adopting the computational pipeline, it has sev-
eral limitations. First, it heavily relies on subsampling of the data to make the com-
putation feasible. By discarding almost 80% of the data, rare cell subsets, e.g., con-
taining less than 0.5% of the available cells, are not found during the analysis. Fi-
nally, despite the subsampling, the presented pipeline requires a lot of computation
time for each step of the pipeline. Several weeks of analysis are required to process
single-cell datasets containing millions of cells [68,180].

We proposed to substitute the complete pipeline with our Hierarchical Stochas-
tic Neighbor Embedding algorithm, as presented in Chapter 6. This approach has
several advantages. First, it does not require a combination of several algorithms,
i.e. SPADE-tSNE-ACCENSE, but provide a common framework for the analysis. Sec-
ond, it does not require to subsample the data. HSNE easily scales to several mil-
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Figure 7.4: Rare cell-type identification out of 5.2 million cells. At the top of the figure, a detailed HSNE
embedding is shown (a). The embedding contains 1.9 million cells, corresponding to the 36.9% of the
entire dataset. The embeddings are color-coded with the expressions of different markers, e.g. CD45RA,
CCRY or CD28. A small cluster is then selected and analyzed in a more detailed embdedding (b). Only
0.5% of the entire dataset are present in this embedding. A cluster of cells, here at the top left of the
embedding, was not known before due to the subsampling required by other computational tools (c).
The cells show an association with the RCDII disease (d).

lion data points, hence it allows for the analysis of all the 5.2 million cells without
requiring to subsample the data. Finally, despite no data being discarded during
the analysis, HSNE is much faster than the previously proposed pipeline, requiring
only few hours to process the data. Figure 7.4 shows an example of the analysis
performed. At the top of the figure, a detailed HSNE embedding is shown. The em-
bedding contains 1.9 million cells, which correspond to 36.9% of number of cells
available in the dataset. The embeddings are color-coded with the expressions of
different markers, e.g. CD45RA, CCR7 or CD28. A small cluster, having low value
for the marker CD28, is selected and analyzed in a more detailed embdedding, as
presented in Figure 7.4b. The new detailed embedding, contains only 0.5% of the
entire dataset. A cluster of cells, here at the top left of the embedding, was not
known before due to the subsampling required by other computational tools. As
a matter of fact, all the points in black and gray in Figure 7.4c, were not analyzed
in previous study due to the subsampling. Figure 7.4d shows that the subsampled
cells show an association with the RCDII disease.
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7.1.5 Discovery of Cell-Differentiation Pathways

A different discovery was made thanks to the adoption of the Progressive Visual
Analytics paradigm for single-cell analysis enabled by A-tSNE. As we presented in
Chapter 4, A-tSNE fully support progressive computations, hence the intermedi-
ate results of the optimization are presented to the user that decides on the con-
vergence of the algorithm. Our research partners at the Leiden University Medical
Center, were early adopters of the A-tSNE as implemented in Cytosplore. While ob-
serving the evolution of a single-cell data embedding, as presented in Figure 7.53,
they observed that in the early stage of the optimization, cells were creating a lin-
ear structure of points [102]. This observation was particularly interesting, since
the dataset they were analyzing potentially contains precursor cells, colored in red
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Figure 7.5: Cell pathways identitification. A-tSNE is used to visualize the intermediate results of the
tSNE optimization (a). Our research partners observed that the embedding presents a dominating linear
structure during the early stages of its evolution (a3). They hypothesized that this structure represents
the differentiation pathways from precursor cells, colored in red, to two different cell types (b). The high-
dimensional profile of the cells on the pathway is then extracted (c) and used to verify the hypothesis
with experiments in the laboratory [102].
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in Figure 7.5a, and these cells were visible at the center of the structure. Precur-
sor cells play a crucial role in several biological phenomena since they behave as
“building blocks” for other immune-system cells, as they can differentiate into mul-
tiple types of more specialized cell types. The transformation of a precursor cell to
a specialized cell type takes the name of differentiation pathway, and remain largely
unclear [102].

Our partners hypothesized that the linear structure was showing two differenti-
ation pathways from the precursor cells, to two different types of specialized cell-
types, see Figure 7.5b. Cells along the structure represents the different stages of
the differentiation, from which a high-dimensional evolution profile is extracted and
presented in Figure 7.5c. This profile, represents the different protein interactions
during cell differentiation. This information was used by our partners to validate
their hypothesis. In laboratory experiments, they managed to induce the differenti-
ation of the precursor cells by exposing them with the proper combination of pro-
teins [102], hence validating the original insight.

The reader may now wonder, how reliable is an insight obtained by looking at the
optimization of the embedding. This is a legitimate consideration, as a matter of
fact, the tSNE cost function is very far from being optimized during the early stage
of the embedding evolution. However, if we consider carefully how the optimiza-
tion is performed, we may observe that there is a reason why the linear structure
appears. As introduced in Section 4.3.3, an optimization strategy called early exag-
geration is used. To avoid local minima, during the early stage of the embedding
computation, attractive forces between points are exaggerated, hence the name of
early exaggeration. This result in better representation of major structures in the
high-dimensional data during the first iterations, since the repulsive forces are less
effective in spreading the points in the embedding. We believe that this is an inter-
esting example in which, progressive computations may provide additional insight
not only on the data that is studied, but also on the adopted algorithm.

7.1.6 Cytosplore Viewer

In the previous sections, we presented applications of the techniques developed
in this thesis for single-cell analysis. The applications are aimed at the analysis
on mass cytometry data, with a specific focus on the understanding of how the
immune system works. Mass cytometry is just one of the acquisition technigues
that, in recent years, enabled the acquisition of large single cell datasets. Another
notable example, is given by the Allen Institute for Brain Science. In their recent
work [67], the Allen Institute acquired data from 15 thousand cells, i.e., neurons, lo-
cated in a human brain region called the “Middle Temporal Gyrus”. For each cell, the
amount of activity of more than 20 thousand genes was measured with a technique
called RNA-sequencing. The data was then used to define a hierarchy of different
cortical cell types that are found in the human brain. Among the findings, the sci-
entist discovered dramatic differences between homologous cells in the human

Thttp://www.brain-map.org/
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Figure 7.6: Cytosplore Viewer is the accompanying visualization tool to the “Middle Temporal Gyrus”
dataset. The tools is an evolution of Cytosplore that is specifically designed to facilitate the exploration
of the hierarchy of neuron types found by the Allen Institute for Brain Science. In this figure, a Cyteguide
layout is used to organize tSNE mapping of the cells. Note that, differently from the original Cyteguide
implementation, in Cytosplore Viewer the hierarchy is pre-defined by the scientists at the Allen Institute.

and mouse, hence revealing the importance of studying directly the human brain
directly [67].

The Middle Temporal Gyrus dataset is openly available to anyone interested in
studying it%. In order to facilitate the exploration of the data, together with the Allen
Brain Institute we developed a visualization tool called “Cytosplore Viewer™. Cy-
tosplore Viewer is based on the techniques and applications presented in this dis-
sertation. It is an evolution of Cytosplore [68] and is developed as a collaboration
between the Allen Institute for Brain Science, the Leiden University Medical Cen-
ter and the Delft University of Technology. Figure 7.6 shows how the hierarchy of
cortical cell types is visualized in Cytosplore Viewer by adopting the Cyteguide [69]
visualization. Moreover, the tool allows for the recomputation of the tSNE maps
that are provided by the Allen Institute by selecting a reduced set of genes, i.e., di-
mensions. The embeddings are computed in a matter of seconds by using the
A-tSNE [138] algorithm presented in Chapter 5.

2http://celltypes.brain-map.org/maseq
Shttps://viewer.cytosplore.org/
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7.2 Hyperspectral Volume Data

In Chapter 6, we introduced the Hierarchical Stochastic Neighbor Embedding algo-
rithm (HSNE). As a test case for HSNE, in Section 6.5.1 we presented the analysis
of hyperspectral images of the Sun surface and the area surrounding the city of Los
Angeles. HSNE is well suited for the analysis of this type of data. While each pixel
in the image represents a high-dimensional vector encoding the intensity of dif-
ferent wavelengths, making the application of non-linear dimensionality-reduction
compelling, the image high resolution poses challenges in the scalability of the
chosen approach. The same analytical pipeline can be adopted for biomedical-
imaging data. Examples of possible acquisition techniques that generates high-
dimensional images are mass-spectrometry imaging [111], functional MRI [17] and
perfusion imaging [93].

In collaboration with the Leiden University Medical Center, we demonstrated
the effectiveness of HSNE applied to hyperspectral-volume data [3]. Thanks to the
scalability of HSNE, we were able to analyze stacks of hyperspectral images repre-
senting a volume. Figure 7.7 shows an example of a mass-spectrometry volume
containing a tumor. The overview embedding is used to quickly identify the re-
gion of interest, i.e., the tissue foreground. Detailed embeddings are then generated
and reveal the tumor and the connective tissue. In our study, we analyzed several
datasets, ranging from 10 thousand voxels, i.e., cells in the volume, to 1.3 million.
We demonstrated that HSNE reveals, relatively fast and in an interactive data-driven
manner, multiscale molecular structures that might hold biological interest. These
structures are otherwise very computationally difficult to identify using alternative
pipelines.
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Figure 7.7: HSNE for hyperspectral volume data. A mass-spectroscopy volume consisting of 150 thou-
sand voxel, i.e., cells, each described by 8 thousand dimensions is analyzed. By exploring the hierarchy,
tumor and connective tissue are easily identified [3].
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Multiscale Visualization
and Exploration of Large
Bipartite Graphs

The web is more a social creation than a technical one.

Tim Berners-Lee

In this chapter, we present a novel approach for the visualization of large bipartite graph. Our
analytics tool, which takes the name of WAOW-Vis, relies on the HSNE algorithm to create two
hierarchical representation of the sets of nodes in the bipartite graph. We enable a multiscale
exploration of communities created by connected nodes and we demonstrate the application
potential in the exploration of social-network data. In particular, we show how WAOW-Vis high-
lights communities of Twitter users that follows only polarized sources of information.

N. Pezzotti, J.-D. Fekete, T. Hollt, B. Lelieveldt, E. Eisemann, and A. Vilanova. Multiscale visu-
alization and exploration of large bipartite graphs. In Computer Graphics Forum, volume 37,
page 12,2018 [135].



8. Multiscale Visualization and Exploration of Large Bipartite Graphs

8.1 Introduction

The previous chapters focused mainly on the analysis of high-dimensional data
using non-linear dimensionality-reduction techniques. In this chapter we explore
and present extensions to our Hierarchical Stochastic Neighbor Embedding algo-
rithm to enable the analysis of very large bipartite graph. Our results demonstrate
that dimensionality-reduction can be used to solve analytical problems beyond the
analysis of high-dimensional data.

The bipartite graph is an important abstraction in computer science; vertices
in the graph are divided into two disjoint and independent collections of items %
and 7. The edges in the graph represent the relationships between the elements
in the two collections and, therefore, only connect elements in % to elements in 7.
Several problems can be modeled as a bipartite graph analysis, for example, the
two collections may be software developers and source files, gene mutations and
patients in a cohort study or social media users and the news outlets they follow
on social media. Previous work [65,185] has identified the following analytical tasks
for the exploratory analysis of bipartite graphs.

(T1) Identifying clusters of similar elements in % with regard to their connections
to elements in 7 and vice versa.

(T2) Understanding the interrelationships between the clusters in the two collec-
tions% and 7.

A widely used approach for performing these tasks is to visualize the bipar-
tite graph using a node-link visualization. A commonly used approach separates
the two collections of items on screen. Vertices are displayed as points arranged
along two parallel axes, i.e., corresponding to 22 and 7, and the edges are visualized
as lines connecting the vertices [65,185], see Figure 8.2a. By using matrix reorder-
ing algorithms on the adjacency matrix of the graph [13,185], vertices that share a
similar connection pattern with respect to the other collection can be placed close
together along the axis, allowing for identification of vertices with similar connec-
tions (T1) and their mutual relationships (T2). However, node-link visualizations do
not scale for the analysis of bipartite graphs containing more than a few hundreds
vertices due to the resulting visual clutter [52]. To overcome this limitation, algo-
rithmic graph preprocessing techniques are often used to reduce the complexity
of the graph to be drawn [185]. For bipartite graphs, biclustering algorithms, also
known as co-clustering techniques, become the standard for the identification of
sub-clusters in 22 and ¥ that share a similar connection pattern to the other col-
lection [67,105,125,141]. Clusters are then visualized as aggregated vertices in the
node-link diagram. Nonetheless, such an approach assumes that there is no vari-
ability within a cluster, which is problematic when the data is large and contains
a hierarchy of sub-clusters. For example, communities of social media users may
share similar connections to a set of news feeds, but they may also contain sub
communities where the connections are slightly different.
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Figure 8.1: Example of WAOW-Vis for a bipartite graph containing a collection % of 9.4M Twitter users
is linked to a collection of 228 7 of Twitter feeds associated to programming languages and US' news
outlets. The bipartite graph is preprocessed by the HSNE algorithm that extracts a hierarchy of land-
marks, i.e., sets of vertices. In the overview, landmarks in the highest scale for the two collections are
placed in (b,d) 1- and (a,e) 2-dimensional embeddings that reveal major clusters of similarly connected
vertices (c). The hierarchy is explored with an overview-first and details-on-demand approach that re-
veals hierarchies of sub-clusters (f).

To address this problem we present Who's-Active-On-What-Visualization (WAOQW-
Vis), a technique designed to reveal hierarchies of clusters in bipartite graphs. To
this end, we adapt our multiscale dimensionality-reduction algorithm, the “Hierar-
chical Stochastic Neighbor Embedding” (HSNE) [136] that is presented in Chapter 6,
for extracting and visualizing clusters of similarly connected vertices. Figure 8.1b-d
shows the resulting layout of WAOW-Vis, where two 1-dimensional embeddings are
used to visualize the vertices in a layout that mimic node-link visualizations for bi-
partite graphs (T1). Moreover, we show that, by adding 2-dimensional embeddings
of the same vertices, we obtain more detailed insight on the interrelationships be-
tween the clusters (T2). As an illustration of our results and goal, in Figure 8.7a we
can identify clusters and see the internal structure much easier than in Figure 8.1b.
However, Figure 8.1a-e, shows only one scale of the hierarchy computed by HSNE.
As we presented in Chapter 6, HSNE does not embed the dataset in its entirety but
it selects representative vertices at different scales. i.e., landmarks. The visualiza-
tion of the landmarks in the highest scale shows an overview of the main clusters
of connected vertices in the graph. The user can then select these clusters and ask
for a detailed visualization that reveals more sub-clusters for the landmarks in the
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lower scale, as shown in Figure 8.1f.

Several challenges need to be overcome to achieve our goals using HSNE. Di-
mensionality reduction algorithms rely on a dense representation of the data for the
computation of the similarities between points. This fact constitutes a problem if
the dimensionality-reduction is applied to a large adjacency matrix that is saved in
a dense format, as it will not fit in memory. Consider for example a dataset that
we mined from Twitter, which we will present in Section 8.7. It comprises of 19M
users linked to 329 user interests. The dense representation of the biadjacency
matrix would occupy 23 GB in memory if organized as required by dimensionality-
reduction algorithms such as HSNE. Then we adopt the Jaccard similarities, acom-
pelling metric that measure the amount of shared links, to compute similarities
between vertices. Figure 8.2 shows an example of how the similarities for the col-
lection % are computed. The vertices in % are seen as sets of elements in ¥. The
Jaccard similarities are computed as the number of shared elements between sets
divided by the size of their union. A similar computation is done for the verticesin 7.
Scalable computations and memory usage are enabled by the use of compressed
bitmaps [100] to represent the sets and by a novel tree-based data structure, the
Sets Intersection Tree (SIT), to efficiently compute the Jaccard similarities. More-
over, we show that by combining the k-nearest neighborhood graph, computed as
input for HSNE, the resulting embeddings reveal clusters of vertices at different
scales (T1) and their interrelationships (T2). Finally, since the user can be con-
fused by the fact that same vertices may appear in different locations in the 1- and
2-dimensional embeddings, we present a technigue that enforces similar positions
on the vertical axis for the same vertices to facilitate the creation of a mental map.

The contribution of this chapter is the WAOW-Vis framework, that allows for
analyzing bipartite graphs on a social-network scale at different levels of detail. The
development of WAOW-Vis is made possible by a set of additional contributions
described in the chapter:

+ The usage of compressed bitmaps as high-dimensional data representation for
bipartite-graphs.

- Adata structure for the efficient computations of similarities between compressed
bitmaps in the Jaccard space; the Sets Intersection Tree.

- A modification of the tSNE [177] algorithm for the creation of consistent and in-
terrelated embeddings.

The rest of the chapter is organized as follows. In the next section we present
the related work. An overview of WAOW-Vis is given in Section 8.3. Section 8.4 high-
lights the generation of the hierarchical representation of the data. In Section 8.5
we present the interactive exploration using WAOW-Vis. Finally, in Section 8.7 we
validate WAOW-Vis via several test cases based on three datasets that we obtained
by mining Twitter. We demonstrate how WAOW-Vis is particularly effective in high-
lighting communities of users that shares similar interests.

98



8.2. Related Work

U as sets of elements in V
3

®
o)
(b)

HQ
OISAOXSIOA

W |

(@)

000000l | @0 | _
J6.9 = 5eevool ~l00e] 66
. _10@@n®l _I ® | _
Jt = eoevel ool 033
. _l0@@n®l _| I
/) "Tooovol ~Teoedl %

Figure 8.2: Computation of the similarities between the vertices in %. Vertices in % are seen as sets of
elements in 7 (b). The Jaccard similarities are computed as the cardinality of the intersection divided
by the cardinality of the union (c).

8.2 Related Work

A Bipartite graph (%, 7, E) is a particular type of multifaceted graph [55] where ver-
tices form two disjoint sets % and 7, and edges E = (u,v) € % x ¥ connect ele-
ments from each sets. Bipartite graphs can be displayed using traditional visual
encodings for graphs such as node-link diagrams and adjacency matrices [185].
In a node-link diagram vertices are placed in a 2-dimensional space using a lay-
out algorithm [167]. Adjacency-matrix visualizations rely on matrix reordering tech-
nigues for highlighting connectivity patterns, e.g., cliques of strongly connected
nodes [13,185). Empirical studies show that node-link visualizations are usually
more intuitive for understanding the graph but, for dense graphs, adjacency matrix
visualizations outperform node-link visualizations due to the reduced visual clut-
ter [52]. Node-link diagrams relying on dimensionality reduction techniques have
also been presented [108], but they do not scale beyond few thousand vertices. To
combine the advantages of both worlds, hybrid techniques had been developed.
The MatrixExplorer [63] and the NodeTrix [64] visualization systems are just two
examples that combine node-links and adjacency matrix visualization in order to
provide greater insights. WAOW-Vis is a hybrid technique that scales to bipartite-
graphs with several millions vertices and edges. Similarly to matrix reordering tech-
nigues, it allows for identifying clusters of similarly connected vertices as clusters
of points in the dimensionality reduction layouts (T1), i.e.,, embeddings (see Fig-
ure 8.1a). Then, thanks to a visual design similar to node-link diagrams, WAOW-Vis
provides a better interpretability of the results by showing 1-dimensional embed-
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dings and their interrelationships (T2) (see Figure 8.1b-d).

In order to enforce a distinction between the collections % and 7, different ap-
proaches allocate separated visual spaces to the two collections, which can be
parallel axes, interleaved axes [16], or concentric circles [36]. Edges connecting the
vertices in the two collections are then visualized as links. A subset of the links may
be drawn based on the user’s current focus or, to give a complete picture of the data,
all the links can be drawn. Lines may be bundled in order to reduce the resulting
visual clutter [195]. This approach is used in several visual analytics systems such
as VisLink [29], PivotPath [35], PNLBs [51] and Jigsaw [164].

In this chapter we focus on the analysis of large graphs, i.e., containing tens of
millions of vertices and edges. Gaining insight from a direct visualization of the data
with one of the previously described techniques is not possible due to the resulting
visual clutter. Algorithmic graph preprocessing [185] is therefore of major impor-
tance in order to create meaningful visualizations. Graph filtering algorithms are
used for reducing the number of the visualized vertices [20,101]. Jia et al. [78], for
example, remove vertices that are not considered important according to a notion
of graph centrality. In graph aggregation techniques, the vertices are not simply
removed, but multiple vertices are merged into a single one, hence reducing the
size of the resulting graph. Vertices can be merged according to different crite-
ria, e.g., by treating cliques of strongly connected vertices as a single node in the
visualization [11,37]. For bipartite graphs, aggregation is usually performed using
biclustering algorithms [105] which create clusters in the two collections % and
¥ based on their mutual relationships. Biclustering algorithms are often used in
bioinformatic [61,125, 141] and for the analysis of deep neural networks [115]. If
the graph simplification is repeated multiple times, a hierarchical graph, also called
compound graph, is created. The hierarchical graph is then analyzed with visual-
izations that allow for the exploration of the data at different scales [63,64,70,187].
Existing technigues, however, are limited in the analysis of large graphs. The pre-
processing represents a bottleneck that requires many hours, or even days, to com-
plete, hence limiting the interactive analysis of the data. Our goal is to tackle bipar-
tite graphs with tens of millions of vertices and edges at interactive speed on regular
hardware.

8.3 WAOW-Vis overview

Figure 8.3 shows the overview of the generation of WAOW-Vis and its interactive
exploration. WAOW-Vis uses separated visual spaces for visualizing the two collec-
tions, and creates a layout similar to the traditional and easy to interpret node-link
visualization for bipartite graphs, as shown in Figure 8.1b-d. However, we propose
to enrich the visualization with 2-dimensional embeddings, see Figure 8.1a and e.
This solution reveals more clusters and richer information about their interrelation-
ships, as vertices have more visual space to be layed in (T2). We considered adding
links between the 2D and 1D embeddings to make the identification of the same
vertices easier. However, we quickly realized it would introduce excessive clutter
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Figure 8.3: Overview of WAOW-Vis. Two hierarchical representations of the collections % and 7 are
computed. The elements in the collections are encoded via compressed bitmaps (a). The k-nearest
neighborhood graph are computed for the non-duplicated bitmaps (b) and the hierarchy is computed
by HSNE (c). In WAOW-Vis, we first present an overview of the data (d). The user may focus on specific
regions of interest and generate more detailed visualizations (e).

and, instead, we developed a novel embedding computation technique keeps cor-
responding vertices roughly aligned (Section 8.5.2).

The main contribution of WAOW-Vis is it scalability to graphs that, to the best of
our knowledge, cannot be handled by existing techniques. This result is achieved
thanks to a novel algorithmic graph preprocessing that take advantage of the re-
cent advancements in the field of large high-dimensional data analysis [136,168].
Our approach can be separated in two steps, the hierarchy computation and the
exploratory analysis of the so computed hierarchies of vertices.

In the hierarchy computation step, two identical computational pipelines are
applied to the collections % and ¥ separately (Figure 8.3a-c). First, the biadjacency
matrices of the bipartite graph are transformed into two collections of compressed
bitmaps. A bitmap associated with a vertex in u € % contains the set of vertices
in 7 that are connected to u and vice versa (Section 8.4.1). Then, the compressed
bitmaps are organized in a novel data structure, the Set Intersection Tree (SIT), pre-
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sented in Section 8.4.2. The SIT allows for the efficient computation of Jaccard
similarities between vertices, leading to a scalable approach for the creation of the
k-nearest neighborhoods graph. The k-nearest neighborhoods graph is then used
as the input for the Hierarchical Stochastic Neighbor Embedding (HSNE) [136] al-
gorithm that generates a hierarchical representation of the collections % and ¥
(Section 8.4.3). Intuitively, the resulting hierarchies contain a number of scales.
Each scale contains a number of landmarks that can be seen as a collection of
elements in the two collection of vertices % and 7.

The exploratory analysis starts from an overview visualization, an example of
which is presented in Figure 8.1a-e. The visualization contains embeddings of the
landmarks at the highest scale of the HSNE hierarchy for each collection % and
¥ that reveal similarly connected clusters of vertices (Sections 8.5.1 and 8.5.2).
Furthermore, the user can request more detailed visualizations by filtering uninter-
esting clusters of vertices and by drilling into the hierarchies (Section 8.5.3), hence
generating novel layouts containing data points from a more detailed HSNE scale
(Figure 8.1f).

With this approach, the user can reveal more heterogeneity within one of the
previously identified cluster of vertices (T1). WAOW-Vis is designed to explore the
structure of bipartite graphs and the relations between the structures of the two
sets of vertices. From the perspective of the task taxonomy of graph visualization
by Lee et al. [98], WAOW-Vissupports group-level and cluster-level tasks, but not
path-level tasks. The node-level and link-level tasks can be supported with varying
levels or precision depending on the visualized scale.

8.4 Hierarchy computation

In this section we present how the bipartite graph is transformed in the two hier-
archical data representations that are used for the creation of WAOW-Vis. In each
subsection we present a single module of computational pipeline that is introduced
in Figure 8.3a-c.

8.4.1 Compressed bitmaps as high-dimensional data

Figure 8.4 shows an example of how the data is transformed in a collection of com-
pressed bitmaps that are used for the efficient computation of the similarities, both
in terms of memory and computations. The corresponding adjacency matrix for
this data is presented in Figure 8.4b. The matrix can be seen as a composition of
two disjoint and symmetric regions called biadjacency matrices, one of which is
shown in Figure 8.4c. Biadjacency matrices encode the relationships between the
set % and ¥ and vice versa.

We propose to treat the biadjacency matrices as high-dimensional datasets and
to measure similarities between the vertices using the Jaccard similarities as intro-
duced in Figure 8.2. Given two indices i and j, the Jaccard similarity of the corre-
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Figure 8.4: Bipartite graphs as high-dimensional data. A bipartite graph connects a collection of users
% with a collection of Twitter feeds 7. To avoid clutter, here we show only the links connecting u, and
v3 (a). The bipartite graph is represented by an adjacency matrix (b). The adjacency matrix contains
two symmetric biadjacency matrices (c). The elements in % and 7 are seen as two high-dimensional
datasets. To reduce the memory occupation and speed up the similarities computation, the data points
are saved as compressed bitmaps using, for example, a Run-Length Encoding [148](d).

sponding vertices is defined as follows:

Xy (vilb] Av,(b])

= , 8.1
Yu (vilb] vv;[b]) 6.7

J(vi,vj)

wherev; [b] is the b-th element in the i-th row of the biadjacency matrix where v;,v; €
% . The numerator computes the number of shared elements in % for v; and v;,
while the denominator counts the number of elements in the union of the two.
Dimensionality-reduction techniques requires the data to be in the form of dense
matrices, i.e., losing the advantage of a sparse representation of the biadjacency
matrices. Moreover, the resulting data matrix will not fit in memory for large graphs,
e.g., containing tens of millions of vertices. To overcome this limitation, we pro-
pose to treat the bipartite graph as a collection of compressed bitmaps, also called
bitsets, where every row in the biadjacency matrices is saved as a compressed
bitmap. A bitmap is a data representation in which every element in the set is
represented by a bit. Bitmaps permit the extremely fast computation of the Jac-
card similarity, see Equation 8.1. The numerator is computed with a bitwise-AND
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between the two bitmaps and the denominator with a bitwise-OR. However, the
memory occupation of the bitmap corresponds to the maximum number of ele-
ments in the set, i.e., the number of columns in our setting, making it identical to
a dense representation. Compression techniques are used to address this prob-
lem and to dramatically reduce the memory occupation of data. A straightforward
approach is to use run-length encoding (RLE) [148], in which repetitions of consec-
utive bits are stored as a single value as well as the number of times it occurs.
In this way, the biadjacency matrices are transformed in two collections of com-
pressed bitmaps representing the vertices, see Figure 8.4d. In WAOW-Vis we use
the Roaring Bitmaps [100], which are a hybrid data structure that combines differ-
ent compression schemes on chunks of the bitmap based on their characteristics,
e.g. their sparsity. Roaring Bitmaps are up to two orders of magnitude faster than
traditional set implementations and are used by several Big-Data processing en-
gines such as Apache-Lucene [110] and -Spark [193]. In the next section we present
how the k-nearest neighborhood graph, which is needed for the computation of the
HSNE hierarchies, is built from a large collection of compressed bitmaps.

8.4.2 Sets Intersection Tree

Once the biadjacency matrices are converted into two collections of bitmaps, %
and 7, we compute the k-nearest neighborhood graph for each collection. As the
procedure is the same for both, we will concentrate on the case of %. To the best of
our knowledge, no data structure exists to efficiently compute the k-nearest neigh-
bors among compressed bitmaps. To address this problem we propose a novel
tree-based data structure; the Sets Intersection Tree (SIT). Each node in this tree
represents an element in % and the SIT will support an efficient algorithm to calcu-
late the k-nearest neighbors of a given query element g, represented by its bitmap,
by using a special traversal algorithm. The efficiency of this traversal results from
the possibility for an early termination, which enables us to skip testing many ele-
ments in %. The early termination will be enabled by two criteria. First, each node
contains a union of all bitmaps of its subtree, enabling a quick test to determine if g
shares any common element with any node in the subtree by using a bitwise AND
operation. Second, the special construction of the tree will enable us to evaluate a
bound on the Jaccard similarities of all elements in a subtree using only the bitmap
of this subtree’s root node, the pivot. Before describing the traversal algorithm, we
first detail the construction, as it will facilitate deriving the bound on the Jaccard
similarity.

The actual construction of the tree works as follows. We select the element u
with the lowest cardinality to be the root node of our binary tree. Its bitmap will be
used as a pivot, hence the name, to partition the remaining elements in %, into a
set 24, which contains all elements intersecting u (an AND operation between the
bitmaps will not result in a zero), and the rest %,. The set %; will form the left, %,
the right subtree of u. The subtrees are build up recursively in the same manner,
choosing a pivot of lowest cardinality and building the subtrees. A special case
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Figure 8.5: Sets Intersection Tree Bitmaps are organized in a number of subtrees. (a) Every tree contains
bitmaps that are intersecting with the pivot, pg and p(l) in this case. Every sub tree is recursively divided in
subtrees. (b) The SIT is implemented with a left-child right-sibling binary-tree. Bitmaps are not actually
inserted in the tree but every node references to a linear array of indices. (c) The query for a set g starts
fromtheroot, i.e, p84 All'the siblings of a visited node are traversed, i.e., p(l). Children of a node are visited

if the union of the sets in the subtree are intersecting ¢g. Both p(l) and pg are visited in the example.

are identical elements, which do not appear multiple times in the tree, instead each
node will contain the indices of the corresponding elements in 2. Additionally, we
compute the union of the bitmaps in each subtree, which will be used for the early
termination. We use a bottom-up method by performing an OR operation between
the bitmaps of the children of each node.

The querying of k-nearest neighborhoods in the SIT works as follows. Given g €
% for which we want to find the k-nearest neighbors, we start a recursive visit from
the root of the SIT, pj in Figure 8.5. During the traversal, we maintain a min-heap
data structure of size k that keeps track of the closest neighbors found so far; each
visited node is compared against the minimal element in the heap and replaces it if
its Jaccard similarity (Equation 8.7; the intersection divided by the union) is larger.
At the end of the traversal, the heap will contain the k-nearest neighbors.

For each node, we test g's bitmap against the precomputed union of the sets in
its subtree Mp.If J(q, Mp) # 0, then the traversal continues with the children, other-
wise, they have no overlap and cannot be similar (Jaccard similarity is zero). It is
insufficient to test only against the bitmap of a node, as illustrated in Figure 8.5¢; pg
is not intersecting ¢ (Jaccard similarity is 0), however, g intersects p} in the subtree,
which has J (g, py) =

An additional early termination criterion stems from the way that the SIT is con-
structed. By selecting the smallest set to be the pivot of a subtree, we are inherently
introducing an ordering for the sets, i.e., the deeper a pivot, the larger it is. Because
the denominator of the Jaccard similarity contains the union of the two sets, we
can compute an upper bound for the similarities that we may find in a given sub
tree. If the upper bound is lower than minimal element in the heap, we can avoid
visiting the subtree.

Finally, for high efficiency, we propose a few optimizations, which we detail here.
First, our tree does not actually store the bitmaps in the nodes, as this would lead to
many copy operations of the data during the construction process. Instead, each
node contains pointers to a large linear array of indices that contains all bitmaps
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in sequential order. The partitioning is then only affecting the indices, but not the
bitmaps. Second, the construction of a subtree is stopped when only a few ele-
ments (typically 20) are left, as then the traversal cost actually exceeds the cost
for testing all elements individually. This strategy follows bucket KD-Trees [120],
where the final elements are stored in a list. This solution, together with the efficient
computation of bitwise-AND and -OR granted by the RoaringBitmaps, enables us to
compute the k-nearest neighborhood graphs containing several millions of nodes.

8.4.3 Hierarchical representation

The hierarchical representation of the biparite graph is generated by computing
the Hierarchical Stochastic Neighbor Embedding (HSNE) [136]. We differ from the
original HSNE algorithm, which is openly available as parte of the HDI library [134],
as we compute the hierarchies starting from the k-nearest neighborhoods graph
computed using the Jaccard similarities (Equation 8.1). This HSNE result allows
us to create visual clusters of vertices in % that share connections to the other
collection 7 in amultiscale approach (T1). Furthermore, by combining compressed
bitmaps, the SIT tree, and the HSNE algorithm, we are able to scale the computation
to extremely large biadjacency matrices, making it possible to analyze dataset of a
social-network scale.

More specifically, HSNE organizes the high-dimensional points or, in our case,
the vertices, in a number of scales that are organized hierarchically. Each scale con-
tains a number of landmarks that represent the complete data at the level of detail
identified by the scale. Intuitively, a landmark is a collection of similarly connected
vertices, where the degree of similarity is given by the position in the hierarchy. For
lower scales, only vertices that shares very similar connections belong to the same
landmark, while this constraint is relaxed the higher the scale in the hierarchy.

We denote the set of landmarks extracted from % at scale s as the collection
s, ' represents the first scale, which is the input dataset 2. Higher scales are
always subsets of previous scales, hence % c %°~!. Inside a scale, the similarity
between the landmarks is encoded by a transition matrix T;,. For the first scale, T,
is given by the k-nearest neighborhood graph that is weighted by the similarities.
Landmarks in the next scale are selected among those that have higher central-
ity in the graph. The centrality is computed by using the transition matrix qul asa
Markov Chain and by computing its stationary distribution with a Monte Carlo ap-
proach [50]. Vertices with value in the stationary distribution higher than a given
threshold are selected to be landmarks in the higher scale %2

A link between landmarks 2?2 to the landmarks in the lower scale %! is then
computed. More generally, it is defined as area of influence of ¢ over 2/5~! and is
encoded inthe matrix I3,. IS, has size |%°~'|x|%*|, where I°(i, j)« is the probability
that the landmark %" in the previous scale is well represented, i.e., close in the k-
nearest neighborhood graph, by %]5 The similarity matrix T, for landmarks in the
new scale s encodes the overlap of the area of influence of the landmarks %*. The
process is iterated until only a limited number of landmarks, i.e., less then a thou-
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sand, remain in the highest scale. A similar hierarchical representation is derived
for the collection 7. In the next section we present how the hierarchy is visualized
and explored.

8.5 Exploratory analysis

In this section we present the design of the visualizations used to interactively ex-
plore the hierarchical data representation of the graph. First we present the layout
of a single visualization (Section 8.5.1). Then we present how the dimensionality
reduction is performed for every collection (Section 8.5.2). Finally, we explain how
more detailed visualizations are generated from a subset of user-selected land-
marks (Section 8.5.3).

8.5.1 Visual design

Figure 8.1 shows an instance of WAOW-Vis. The visualization consist of four em-
beddings. Every point in the embeddings represent alandmark in the corresponding
HSNE scale. Landmarks are placed close together if they are similar according to
their Jaccard similarities at the given scale. This allows us to identify groups of
elements in the collection % that have similar connections to ¥, and vice versa.
Moreover, a landmark corresponds to a set of vertices in the original collection, as
presented in Section 8.4.3. The size of points in the visualization encodes the num-
ber of vertices represented by the corresponding landmark [136].

At the center of the visualization two 1-dimensional embeddings, one for 2 and
one for 7, are used to create a layout that is similar to a traditional node-link dia-
gram for bipartite graphs. We adopt this layout because it is reported that node-link
diagrams are more intuitive for understanding the graph [52]. By brushing on one
of the embeddings, the vertices are selected and the links to the other collection
are visualized as lines. These lines are then bundled with a real-time implementa-
tion of the force-directed bundling algorithm proposed by Holten and van Wijk [71].
Each collection % and 7 is also shown in a 2-dimensional embedding, as shown
in Figure 8.1a and e. The rationale behind this choice is that, the more visual space
is available for the landmarks, the more interrelationships between the clusters be-
come apparent as it can be seen by comparing Figure 8.7a to Figure 8.1b (T2).

Finally, we found that, if attributes are available for the element in the collection,
it is useful for the understanding of the interrelationships between the clusters to
add this information using, e.g., a word-cloud visualization. This feature leads to the
identification and labeling of clusters of landmarks. In the WAOW-Vis presented in
Figure 8.1, the two clusters in the collection 7 consists of Twitter feeds associated
to two different domains, i.e., computer science and United States’ news outlets.

8.5.2 Embedding computation and alignment
Without any additional constraint, the same clusters in the 1-and 2-dimensional em-
beddings might be placed in different positions along the vertical axis, which makes
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Figure 8.6: Possible problems that arise if the embeddings are generated independently from each
other. Here, the same data presented in Figure 8.1a-e is embedded with a tSNE minimization [177] instead
of our approach as presented in Section 8.5.2. Elements in % and 7 are badly aligned, hence cluttering
the visualization of the links between the two collections. Moreover, the same cluster of landmarks may
appear in different positions along the vertical axis (a). Bundling the lines reduces clutter but does not
produce a neat layout as in Figure 8.1a-e (b,c).

associations between the related embeddings a difficult task. Example of possible
problems are shown in Figure 8.6 for the same data presented in Figure 8.7a-€.
The two clusters highlighted in red are in different positions along the vertical axis.
Furthermore, the two collections are not properly aligned, hence creating a clut-
tered visualization of the links. By bundling the lines, as shown in Figure 8.6b-c, the
problem is mitigated but it is not removed. To address this issue, we implemented
a modified version of the tSNE algorithm [177] enforces similar positions on the
vertical axis for all landmarks of the same collection and for similarly connected
landmarks in 2 and 7.

A single embedding is computed by randomly placing the landmarks in a 1- or
2-dimensional space. With an iterative gradient-descent minimization, landmarks
are then moved in the embeddings in such a way that, after a number of iterations,
they are close to similar landmarks according to the transition matrix T;5,. In this
way, clusters of landmarks in the embedding represent groups of similar elements.
More specifically, we minimize the original tSNE's cost function CINF to generate
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the embedding e which is defined as follows:

CNE = KL(TS,1Qe), (8.2)

where KL(T;,11Q,.) is the Kullback-Leibler divergence between the joint-probability
distributions defined by the transition matrix T, and Q.. Q. is ajoint-probability dis-
tribution that is obtained by weighting the distances between the landmarks in the
embedding e with the Student’s t-distribution [177]. The points are then iteratively
moved in the embedding along the negative gradient of the cost function CSNE,
until their positions reflect the similarities in T;,. We refer the interested reader to
Chapter 3 for the detail on how Q, is computed and how the gradient-descent pa-
rameters for CSNE are chosen.

In order to take into consideration the position of landmarks in a set of embed-
dings F, hence enforcing the alignment between the same landmarks, we modify
the cost function C, as follows:

Ce=1-a)CN* ol
8.3
=(1-WKLTIQ) +a Y ¥ lyé-ylIP, (83)
feFieus

where y¢ is the vertical position of the landmark i in the embedding e that is
iteratively optimized. For an embedding f € F containing landmarks from the same

collection 2%, yf is the vertical position of i in f. For inter-collection embeddings,

i
i.e., optimization of % from 7%, ylf is computed as the mean position of the land-

marks in f that are connected by an edge to the landmark i in e. C, is the com-
position of two different costs, the CISNE, as presented in Equation 8.2, and €39,
which minimizes the squared distances between the position of a landmarks in the
embedding e and in the embedding f. The parameter a controls the weight that is
given to the two terms. For a = 0 the cost function is the same as a traditional tSNE
minimization, while for @ = 1, only the squared distances along the vertical axes are
minimized.

As before, the embeddings are generated by moving the points in the opposite
direction of the gradient of C,. We found that good results are obtained if we op-
timize all embeddings for 22 and ¥ simultaneously, letting each one influence the
other during the minimization. Regarding the parameter «, we found that for our
test cases it works well to start with a relatively high value, e.g,, @ = 0.5. In this
way, the landmarks are iteratively placed in similar positions along the vertical axes
right from the start. However, we believe that the preservation of the similarities
between similar vertices as computed by CISNE is of greater importance as it is the
main insight that the user aims at achieving (T1). For this reason we linearly reduce
the value of @ down to 0 after a number of iterations. Empirically, we found that a
linear reduction of a to 0 in 500 iterations is a good strategy for all test cases.
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8.5.3 Hierarchy exploration

The data exploration is implemented with a filter and drill-in strategy that starts from
the highest scale in the HSNE hierarchy for both collections % and 7. Landmarks
at this level of abstraction represent the main clusters. WAOW-Vis provides a mul-
tiscale exploration of the clusters, which is performed by letting the user select a
set of landmarks in either of the two collections with a brushing interaction. The
selection leads to a refined visualization that contains the influenced landmarks in
the lower scale for the corresponding collection.

We now provide the details on the creation of embeddings that contain land-
marks in lower scales of the hierarchy starting from a selection in a higher scale
for one of the collection, e.g., %. A similar approach is performed if the selection is
within 7. Given landmarks % at scale s and a set of indices of selected landmarks
A, the new visualization contains a subset of landmarks in 2!, which are under
the area of influence of the selection in s. As defined in Section 8.4.3, the area of
influence of the landmarks associated to a scale s is defined by the matrix I*(i, j)a.
I;, has size |2 571 x | *|, where I5(i, j)4, is the probability that the landmark 02/5‘1
in the previous scale is well represented by @/; The new embedding contains all

landmarks %! at scale s —1 for which the following is true:

Y IFk,a) >0, (8.4)

acA

where 0 < 0 < 1 is a user defined threshold. Intuitively, ¥ ,c4 I° (k, a) represents
the probability for the landmark %,j‘l to be influence by the selection A of land-
marks in %*. We experimentally found that a default value of 6 = 0.5, allows for
the effective exploration of the clusters of vertices. Figure 8.1 shows an example.
Once a cluster is selected, its detailed information at the lower scale can be visu-
alized upon the user’s request. In the next section, we provide further examples of
how the hierarchical exploration of the data give richer insight on the hierarchy of
clusters in the graph.

8.6 Implementation

WAOW-Vis is implemented in C++ for performance reasons and, when possible,
heavily uses OpenMP [31] to parallelize computations. It fully supports the Progres-
sive Visual Analytics paradigm [41,119], allowing for the visualization of the evolu-
tions of the embeddings, while the embeddings are iteratively generated. Therefore,
the user does not have to wait a fixed number of iterations and can autonomously
decide on the convergence of the embedding by evaluating their visual stability [138].
The compressed bitmaps are implemented using the C++ version of the Roaring
Bitmaps library [100]. The modified version of the HSNE algorithm [136], presented
inthis chapter, is derived from the original C++implementation available in the High-
Dimensional-Inspector library [134]. The embeddings are implemented in OpenGL.
The word-clouds are implemented in Javascript using D3 and are integrated in the
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Figure 8.7: Analysis of the United States’ politics and news datasets. The News dataset comprises a
collection 7 of Twitter accounts of journalists from two of the United States’ major news outlets, CNN
and Fox News. Users that follows the feeds in 7 are in the collection 2. Two echo chambers [47] are
identified in the dataset (a,b). Users in the top cluster are following only journalists from Fox News (a),
while the ones at the bottom are following only CNN's journalists (b). In the two visualizations (a,b)
only the edges linked to the selection are shown. In the right embedding, landmarks are visualized with
a green-to-orange color scale that shows the percentage of incoming edges in the current selection.
The clusters of orange-colored landmarks in 7 confirms the strong association for the selection in 2.
By drilling into the CNN cluster, a sub community that follows Fox News accounts is identified (c) The
analysis of the politics datasets does not show strong evidence of a polarized audience (d). A cluster
containing users that follow all the senators is highlighted in purple (d,e). The cluster in gray contains
users following the senators with the largest audience, while users in the red cluster follow senators with
not so many followers (d,e). A detailed visualization of the red cluster reveal that a polarized audience
exists for these senators (f).

C++ application using the QtWebKit Bridge. Finally, WAOW-Vis is released as part
of the High-Dimensional-Inspector library [134].

8.7 Test cases

To evaluate WAOW-Vis we present real-world examples of the analysis of bipartite
graphs of social-network scale. We identified three domains to analyze: computer
science, news, and politics. For each one of these domains, we chose as elements
of the collection 7 a number of Twitter-feeds, i.e., Twitter users that post mainly in
the chosen domain. The collection % contains all the followers for the elementin 7.
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Therefore, the resulting bipartite graph encodes the follower relationships between
the users and the Twitter-streams in the specific domain. In WAOW-Vis, clusters of
similar users are communities that share similar interests in the specific domain,
while clusters of similar feeds, share similar groups of followers.

We decided to focus on the analysis on the relationship between users and
feeds in Twitter as we are interested in exploring the presence of echo-chambers,
or filter bubble, in social networks. An echo chamber is a community of users that
receives only polarized information concerning a specific domain, e.g., politics. The
presence of echo chambers in social networks is deemed responsible for the po-
larization of the public discourse in recent years [47]. Contrary to other social net-
works like Facebook, follower relationships on Twitter are openly available through
the Twitter-API, allowing us to test WAOW-Vis on real-world data.

Table 8.1 presents the overview on the datasets that we collected and analyzed.
Every column corresponds to a bipartite graph associated with a specific domain.
The computer science dataset contains Twitter-feeds associated with several pro-
gramming languages, e.g., Java, C++, PHP and OpenGL. The news dataset contains
journalists and presenters of two of the major United States’ news outlets, i.e., CNN
and Fox News. The politics datasets contains the Twitter accounts of every United
States’ senator. The last column presents an additional dataset which is the union
of the previously introduced ones. The first three rows present the number of ver-
ticesin the collections and the edges connecting them. Note that, for the presented
datasets, |%| > |¥| due to scalability issues of the Twitter mining. Twitter imposes
a limitation in the number of user-followers relationships, i.e., edges in our graph,
that can be obtained per minute. This limit is of 5000 links per minute, hence it
required approximately 9 effective days of mining for gathering the datasets.

In Table 8.1, we present the computation time in seconds for the three process-
ing steps presented in Section 8.4, together with the maximum memory occupation
of WAOW-Vis for each dataset. The results are generated on a workstation with an
3.40GHz Intel i7-2600 CPU and 20 GB of memory. The computation of the hierar-
chies needed for the analysis of the largest dataset, which contains 19.7M users,
takes less than one hour. To give a perspective on size, Twitter has an estimated
number of 340M active daily users. We performed a comparison with the tradi-
tional HSNE hierarchy computation, which relies on the FLANN library [120] for the
similarity computation, using the dense representation of the graph. However, the
computation of the HSNE hierarchy is impossible to perform for all the datasets
due to the heavy memory requirements, hence demonstrating the need for a novel
approach as presented in this work.

8.7.1 News dataset

Figure 8.7a-b shows the exploratory analysis of the news dataset performed using
WAOW-Vis. Two separated clusters of Twitter feeds are visible in the right embed-
ding, i.e., 7. By visualizing the owners of the Twitter feeds in the word cloud, we re-
alize that they belong to Fox News journalists for the cluster at the top and to CNN
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Table 8.1: Datasets information are presented in the columns. The first three rows present the size of
the biparite graph, where (M) means millions of elements. Computation time in seconds for the SIT
creation, kNN and HSNE computation are presented. Finally, peak memory occupation of WAOW-Vis is
given.

ComputerS.  News  Politics Combined

|2 | 1.97M 7.67M | 12.42M | 19.7M

4 145 83 100 329
#Edges 4.4M 10.8M | 24.5M | 38.9M
SIT (s) 13 34 63 283

kNN (s) 50 59 430 1960
HSNE (s) 13 11 60 202

Mem. (GB) | 1.6 2.1 3.7 10.6

journalists for the one at the bottom. This insight is confirmed by the visualization
of the edges connecting the two collections. Contrary to the visualizations that we
presented so far, in Figure 8.7a-b we show the edges related to a user-defined se-
lection of landmarks. Selected landmarks in the left embedding are rendered with a
shade of orange, and only edges connected to these landmarks are shown. Most of
these edges are connected to the top cluster in the embedding on the right. Here,
landmark colors encode the percentage of incoming edges that are currently se-
lected by the user with a green-to-orange color scale. The top cluster in the right
embedding of Figure 8.7a has the same shade of orange of the selection in the left
embedding. This means that the current user selection among % is mainly con-
nected to the top cluster in 7. The same observation can be done for the cluster at
the bottom of the visualization, as shown in Figure 8.7b.

For both selections, only a small number of edges are connected to the oppo-
site cluster. This insight leads to the conclusion that two echo chambers [47] exist
for the two news outlets. However, in Figure 8.7b, we can observe that a more con-
sistent stream of edges is connecting CNN followers to the Fox News feeds. In
order to reveal more sub-communities within the cluster, a detailed visualization is
generated by drilling into the hierarchy. Figure 8.7¢c shows the resulting embedding.
The selection in the embedding contains all the landmarks (i.e., group of users)
that follow Fox News’ accounts. Finally, by selecting the small cluster which is en-
circled in Figure 8.7, followers of international CNN reporters, such as Kyung Lah
and Frederik Pleitgen, are identified.

8.7.2 Politics dataset

Figure 8.7d-f shows the exploratory analysis of the politics dataset. In this test
case, we expected to see an echo chamber for users connected to the Republi-
can senators and one for those connected to the Democratic senators. However,
a clear separation for the collection 7 is not visible in the visualization shown in
Figure 8.7d. To better understand the interrelationships between the two collec-
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tions, the user interacts with WAOW-Vis in order to get a more detailed insight on
the visible clusters. The cluster @ in Figure 8.7d is the most distinct one. To un-
derstand the connections of the clusters @ to the collection 7, the edges linked
to it are visualized. Figure 8.7e shows that the selected landmarks are connected
to the accounts of every senators. We conclude that this clusters contain political
enthusiasts or, more likely, software-controlled Twitter accounts. These accounts,
also known as Twitter-bots, work as tweet aggregators for a specific domain, for
example, by automatically reposting the senators’ tweets.

The cluster @ is then selected by the user. A visualization of the percentage
of the incoming edges in the right embedding is visualized in Figure 8.7e. Only the
large points in the embedding are colored with a shade of orange. These points cor-
respond to the senators with the largest user base, such a senator Elisabeth Warren
and Marco Rubio. This result shows that the cluster @ identifies the community of
users who are following mainly the most famous politicians. Finally, the cluster @in
Figure 8.7d corresponds to users following senators with a much smaller user base,
as can be seen by the result of the selection in Figure 8.7e. In the overview, cluster
3 already shows a separation in two sub clusters. A detailed visualization, which is
generated by drilling in the hierarchical representation, shows a better separation of
these clusters. The resulting embedding, which is presented in Figure 8.7f, shows
that a polarization of the users exists for Republicans and Democrats in this sub
community.

8.8 Conclusions and Future Work

Inthis chapter we have presented Who's-Active-On-What-Visualization (WAOW-Vis),
a visual analytics system for the exploratory analysis of large bipartite graphs. We
presented a novel graph preprocessing pipeline that is inspired by the recent devel-
opments in the analysis of large high-dimensional data. The scalability of WAOW-
Vis is enabled by three main contributions. The adoption of compressed bitmaps
for representing the graph and the novel Sets Intersection Tree (SIT) for efficiently
computing Jaccard similarities between the bitmaps. The similarities are then used
to generate a hierarchical representation of the graph with a modified version of the
Hierarchical Stochastic Neighbor Embedding (HSNE). Moreover, we presented sev-
eral insights obtained by the exploratory analysis of large datasets that we mined
from Twitter.

WAOW-Vis, however, does not come without limitations. First, while WAOW-Vis
can handle very large bipartite graphs, it can only handle undirected and unweighted
graphs. Extending our technique to handle weighted and directed graphs is an inter-
esting future work. Furthermore, in the exploratory analysis of the data, the several
visualizations that are generated make it difficult to keep a mental mapping of the
exploration process. Hollt et al. recently proposed CyteGuide [69] for guiding the
user in the exploration of a single HSNE hierarchy. An interesting future work is the
development of a similar approach for guiding the data exploration in WAOW-Vis.
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Moreover, the visualizations of the links between the two collections is limited to
the 1-dimensional embeddings. This may be a limitation as most of the insights
are obtained through the analysis of the 2-dimensional embeddings. Finally, in the
test cases we analyzed datasets where the two collections are very different in
size, due to the query limit imposed by Twitter. Because we are not limited to this
kind of datasets, it would be interesting to experiment with more balanced bipar-
tite graphs. Finally, bipartite graphs are widely used in biomedical research [61] and
for the visualization of deep neural networks [115]. An interesting research direc-
tion is the application of WAOW-Vis in the biomedical research field as presented
in Chapter 7.
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DeepEyes: Progressive Visual
Analytics for Designing
Deep Neural Networks

A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.

AsimoV’s first law of robotics

In this chapter we present DeepEyes, a Progressive Visual Analytics system that supports the
design of neural networks during training. We present novel visualizations, supporting the
identification of layers that learned a stable set of patterns and, therefore, are of interest for a
detailed analysis. The system facilitates the identification of problems, such as superfluous
filters or layers, and information that is not being captured by the network. We demonstrate
the effectiveness of our system through multiple use cases, showing how a trained network
can be compressed, reshaped and adapted to different problems.

N. Pezzotti, T. Hollt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and A. Vilanova. Deepeyes:
Progressive visual analytics for designing deep neural networks. IEEE transactions on visu-
alization and computer graphics, 24(1):98-108, 2018 [137].



9. DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks

9.1 Introduction

In this chapter we present how high-dimensional data analysis, and in particular the
HSNE algorithm presented in Chapter 6, is beneficial for the analysis of Deep Neural
Networks (DNNs), a class of algorithms that have shown outstanding performance
in various problems, like image and speech recognition [94]. DNNs consist of var-
ious interconnected layers. In each layer, a number of filters detect increasingly
complex patterns. For example, in networks trained to recognize objects in an im-
age, the first layer generally contains filters that are trained to detect colors and
edges. This information is aggregated by other layers to detect complex patterns,
e.g., grids or stripes. By using hundreds or thousands of filters in each layer, DNNs
allow for more complex patterns to be learned. Only recently the training of large
DNNs was made possible by the development of fast parallel hardware, i.e., GPUs,
and the creation of large training sets [88].

While the results that DNNs can achieve are impressive, they essentially remain
a black box. Anincreasing research effort is spent on making the visualization and
the analysis of these models feasible. While both, the machine learning and the vi-
sualization community, invested considerable effort in understanding how a trained
network behaves [103,145,194], e.g., by showing the patterns learned by the filters,
little effort has been spent on the creation of tools that support design decisions
given the pattern recognition problem at hand. Even though basic design guidelines
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Figure 9.1: DeepEyes is a Progressive Visual Analytics system for the analysis of deep neural networks
during training. The overview on the training is given by the commonly used loss- and accuracy-curves
(a) and the Perplexity Histograms (b) a novel visualization that allows the detection of stable layers.
A detailed analysis per layer is performed in three tightly linked visualizations. Degenerated filters are
detected in the Activation Heatmap (c), and filter activations are visualized on the Input Map (d). Finally,
in the Filter Map (e), relationships among the filters in a layer are visualized.
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exist, the process of designing a neural network is an iterative trial-and-error pro-
cess [4]. For example, experts can change the number of layers or filters per layer
but the effect of a modification only becomes obvious after hours, days or weeks,
as the network needs to be retrained, a lengthy task given the size of the datasets
involved. A visual analytics approach for the analysis of a deep network therefore
seems necessary [85]. As mentioned in Chapter 2, a recent paradigm called Pro-
gressive Visual Analytics, aims at improving the interaction with complex machine
learning algorithms [41,119,138,165]. This interaction is achieved by providing the
user with visualizations of the intermediate results while the algorithm evolves, the
training of the network in this setting. However, the size of DNNs makes the ap-
plication of the Progressive Visual Analytics paradigm challenging, requiring the
development of visualizations that heavily rely on data aggregation at interactive
rates [42,136,138,174].

In this chapter, we present DeepEyes, a Progressive Visual Analytics system
that supports the design of DNNs directly during training. After discussing with
machine learning experts that collaborated in the design of DeepEyes, we came
to realize that the existing work provides limited feedback on how a DNN can be
improved by the designer. To overcome this limitation, we identified the following
analytical tasks as critical to make informed design-decisions while the network is
trained:

(T1) Identification of stable layers which can be analyzed in more detail, effec-
tively facilitating the detailed analysis while the network is trained

(T2) Identification of degenerated filters that do not contribute to the solution
of the problem at hand and, therefore, can be eliminated

(T3) Identification of patterns undetected by the network, which may indicate
that more filters or layers are needed

(T4) Identification of oversized layers that contain unused filters and, therefore,
can be reduced in size

(T5) Identification of unnecessary layers or the need of additional layers, allow-
ing for the identification of an efficient architecture for the problem at hand

The main contribution presented in this chapter is the DeepEyes framework itself.
For the first time, DeepEyes integrates mechanisms to tackle all presented tasks to
analyze DNNs during training into a single, progressive visual analytics framework.
The development of DeepEyes is enabled by a set of further contributions presented
in this chapter:

- a new, data-driven analysis model, based on the sampling of sub-regions of the
input space, that enables progressive analysis of the DNN during training

- Perplexity Histograms, a novel overview-visualization that allows the identifica-
tion of stable layers of the DNN for further exploration
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(a) Convolutional Neural Network
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Figure 9.2: Overview of a DNN (a). Filter functions are computed by neurons in convolutional layers
by applying a kernel or convolution matrix on a subsets of the input (b), called Receptive Field, whose
instances are image patches (c). Filter functions are trained to detect different receptive field instances
(d) and they are organized in a 3D grid (e) according to the spatial relationships of the receptive fields
they compute.

+ aset of existing visualizations have been extended or adapted for our data-driven
approach to allow detailed analysis: Activation Heatmap, Input Map, and Filter
Map.

In the next section, we provide the reader with a primer on DNNSs, with the essen-
tial components to understand our contributions and the related work, presented
in Section 9.3. In Section 9.4, we present DeepEyes, describing our visualization
design based on the insights and support we want to provide to the DNN designer.
Furthermore we provide a first example of a DNN for the classification of handwrit-
ten digits. Two different use cases are provided in Section 9.5, while implementa-
tion details are given in Section 9.6.

9.2 Deep Learning Primer

Deep artificial neural networks are trained on a specific pattern recognition problem,
such as image classification. The goal is to predict a class of an unseen sample.
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A training set consists of a set of high-dimensional inputs x € R” together with an
associated vectory € {0,134 with ¥; y; = 1, where d is the total number of labels. The
only non-zero component indicates the associated label. The goal of a DNN is to
predict the label y € [0,1]¢ for an unseen input x e R”. The prediction is usually in the
form of a discrete probability distribution over the possible labels, hence ¥ ;y; = 1.

A DNN consists of a set of layers #. An example of a DNN that comprises
five layers, more specifically one data layer, two convolutional layers and two fully-
connected layers, is presented in Figure 9.2a. Independently from the nature of
the layer, every layer [ € & contains a set of neurons that computes filter func-
tions fl.’ e !, or, more concisely, filters. However, exactly the same filter can be
computed by many neurons in the same layer. In the example in Figure 9.2b-e the
input consist of images, where each pixel is a dimension in our input space R”. Fil-
ter functions in Layer1 do not take the full dimensionality R™ as input, but rather a
subsets R¥' c R”, the receptive fields where k! represents the size for layer 1. For
images, these subsets are patches and a few instance of these patches are pre-
sented in Figure 9.2c. Mathematically, a specific receptive field 6L e A! for layer 1 is

a set of indices 6% := {ij}j?lzo < {0...n} that defines a corresponding projection func-

tion m(6L) : R — RE (xo,... %) — (Xig, -+, Xi ;). We now focus on the relationship be-
tween filters and neurons given an instance of a receptive field, i.e., a specific patch
for a specific input image x identified by the projection function (6!)x). In Fig-
ure 9.2d a heatmap is shown to illustrate the output of filter functions fl.’(n(éﬁ)(x)),
also called filter activations, given specific instances of receptive fields m(5) ).
In the first layer, the filter function is usually a weighted sum of the pixel values on
the receptive field. These weights are the learnable parameters that are trained to
detect specific patterns in the data. Further, the weights define the filter function
and are the same for all neurons computing this filter. In the example, f,| detects
[d, having high filter activation, while ;' detects [el

Given a single instance of a receptive field, as [H or [¢] in Figure 9.2d, a 1-to-1
correspondence exists between filters and neurons (represented as points in Fig-
ure 9.2). However, when the full input is considered, neurons that share the same
filter function but process a different location in the image, i.e. receptive field, are
organized in a grid-like layout that mimic the input shape. The layout for Layer1 is
illustrated in Figure 9.2e, where neurons that compute the same filter function are
placed on planes. By stacking these planes, the resulting layout is a 3D grid of neu-
rons. Filter functions give better information on the detected patterns than single
neurons, as they are pattern detectors learned by the layer independently of the po-
sition in the input. Note how, in Figure 9.2e, [0 is detected by the filter /) which is
computed by different neurons, i.e., where eyes and portholes are located.

The same description holds for any layer, as shown in Figure 9.3a. Here, the
receptive fields are larger in deeper layers and the filter functions are trained to de-
tect more complex patterns. For example, £ is detected by the filter f as it has
a high activation. The main difference from Layer1 is that, the filter functions are
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(a) Convolutional layer acting on a Neuronal Receptive Field
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Figure 9.3: In deeper layers, filter functions are trained to detect more complex patterns in larger recep-
tive fields. In convolutional layers a subset of the neurons in the previous layer, the neuronal receptive
field, is the input to the filter functions rather than the receptive field instance (a). The same description
holds for a fully-connected layer, however, it differs from convolutional layers as the receptive field of a
neuron corresponds to the complete input and the neuronal receptive field contains all the neurons in

the previous layer (b).
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Figure 9.4: DeepEyes approach to filter analysis. Instances of receptive fields are sampled and embed-
ded in a 2-dimensional space based on the similarity of the activation in the neuronal receptive-field.
Activation of filters is highlighted in the resulting scatterplot and the instances of the receptive fields are
visualized in a linked view.

not a direct expression of the dimensions in the receptive field in Layer2. In this
layer, the filter functions consider as input a subset of the neurons in the previous
layer, whose receptive fields are fully contained in the receptive field for Layer3.
We define the region in the 3D grid of neurons in the previous layer as the neu-
ronal receptive field of the neuron in the considered layer. The filter activation is
obtained by weighting the activation of the neurons in the neuronal receptive field.
The neurons in Layer?2 are also organized in a 3D grid according to the relationships
between the receptive fields and the filters. In Figure 9.3b, the computation for the
fully-connected Layer3 is presented. Similarly to Layer?, Layer3 takes the neuronal
receptive field in the previous layer as input. The receptive fields of filters in fully-
connected layers correspond to the complete input, hence there is no need for a
3D grid of neurons. For this reason, a 1-to-1 correspondence between filters and
neurons exists, meaning that a filter function is computed by just one neuron.

In this section, we provided an overview of the relationships between relevant el-
ements of the DNN. We only briefly introduced the learnable parameters, or weights,
involved inthe convolutional or fully-connected layers. These parameters are learned
by optimization given the training set. In modern architectures many different layers
are used to define the filter functions, e.g., max-pooling and normalization layers.
The concepts introduced so far hold, as filters are defined as a composition of the
operations performed by different types of layers. For the intereseted reader we
refer to LeCun et al. [94] for a more broad overview.

In DeepEyes we rely on the idea that, independently from the chosen layers,
input data or receptive field instances are usually interpretable by humans, while
abstract weights and relationships between neurons are not [106,194]. Figure 9.4
provides an intuition of the central approach that we take in DeepEyes for analyzing
what patterns a layer is trained to detect. The user creates a 2-dimensional repre-
sentation of the instances of receptive fields used in the training. Instances that
are perceived as similar by the layer, i.e. have similar activation in the neuronal re-
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ceptive field, are close in the 2-dimensional visualization. Specific filter activation
is then highlighted on demand, allowing for the understanding of the response of
the filter to the input. For example, in Figure 9.4 we see that a separation of the
receptive fields according to the input label, i.e., cat and rocket which are visualized
in linked views, is available and the visualized activation of filter /7, is strongly cor-
related with the cat label. Note that, despite the focus on the analysis of DNNs for
image classification, the proposed approach is general as it focuses on filter activa-
tions and can be extended to different types of data, e.g., text or video, if appropriate
linked views are used [84].

9.3 Related Work

Existing visualization techniques for DNNs can be divided in weight-centric, dataset-
centric and filter-centric techniques.

Weight-centric techniques aim at visualizing the relationships between filters
in different layers through the visualization of the learnable parameters, or weights,
introduced in Section 9.2. A straightforward visualization for the weights are node-
link diagrams [146], similar to the one presented in Figure 9.2a for the connection of
Layer3 to Layer4. Here weights can be encoded in the edges, e.g., as line thickness.
However, this approach does not scale to state-of-the-art networks that comprise
millions of connections, limiting the application of weight-centric techniques mainly
to didactic purposes [56]. To reduce the clutter generated on such networks, Liu et
al. recently proposed a biclustering-based edge bundling approach [103] that ag-
gregates neurons and bundles edges. Neurons are aggregated if they are activated
by data that share the same label, while edges are bundled if they have similar and
large absolute weights. However, in DNNs, neurons are trained to separate labels
only in the last layers, therefore this clustering is not informative in early layers. For
example, in Figure 9.2e the filter /. activates both on|€ and R, an information that
does not reveal the pattern [e that the filter is trained to detect. Moreover, while the
system allows a real-time exploration of the network, the creation of the visualiza-
tions requires hours of preprocessing, making the analysis of the network during
training unfeasible. DeepEyes does not provide a weight-based visualization. After
discussing with the machine learning experts involved in the development, we real-
ized that it is more important to focus on the analysis of filters as pattern detectors,
rather than on individual neurons and their connections [194].

The goal of dataset-centric techniques is to provide a holistic view on how the
input data are processed by the network rather than providing a solution to the
previously introduced tasks (T1,T2,T3,T4,T5). The training- or the test-set is pro-
cessed by the DNN and the activations of neurons in the last fully-connected layer
are collected as high-dimensional feature vectors. Using non-linear dimensionality-
reduction techniques, the dimensionality of the feature vectors is reduced to two
dimensions and visualized in a scatterplot [2,82,116]. Two data points that are close
in the 2-dimensional space are also close in the feature space, meaning that the
network perceives them as similar. Recently, Rauber et al. [145] showed the evolu-
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tion of this representation during training, in Chapter 6 we showed that hierarchical
information is learnt by DNNs even though this information is not encoded in the
training set. While these techniques provide insight on how the network reacts as
a whole, they are limited to the analysis of the last fully-connected layer of the net-
work. The only work in the analysis of hidden layers, i.e., not the input- or last-layer,
is from Rauber et al. [145] where 2D embeddings are generated for hidden and fully-
connected layers. This approach suffers from a severe limitation, being restricted
to the analysis of layers where a 1-to-1 correspondence between neurons and filter
functions exists, i.e., fully-connected layers. We extend their work such that it can
be used for convolutional layers which are the most widely used layers in modern
day architectures [60,88,94,163,166).

Filter-centric techniques aim at giving an intuition on the pattern that a filter
fl.’ is trained to detect. A straightforward approach presented by Girshick et al. [54]
identifies for each filter fl.’ the instance of a receptive field 7(5%) (x) with the highest
activation f/(x(6})x)). The instance of a receptive field 7(8})(x) is then presented
to the user, e.g., as an image patch. A more complex approach aims at inverting
the filter function fil by defining (fl.l)*l, allowing for the reconstruction of the recep-
tive field 7(81)(x) that produces the highest activation for f/ [38,106,124,192,194].
However, the explicit definition of (fl.’)‘1 is not possible and it is approximated us-
ing deconvolutional neural networks [194]. This approach generates images that
can give the intuition of the patterns detected by the filters, as demonstrated by
Google's Deep Dream [118], and can be further extended for different tasks, such as
style transfer [48]. However, according to the feedback provided by machine learn-
ing experts, the reconstructed receptive fields can be difficult to interpret for com-
plex patterns, i.e., for late-layers in the network, and do not allow for a reasoning
on architectural decisions (T4,T5). Moreover, the reconstruction of the receptive
fleld is a minimization process itself that is time consuming, requires complex reg-
ularization techniques and may produce misleading results [106,192] Filter-centric
techniques are powerful tools but are generally limited to the analysis of a single
and well-behaving filter, making their application for the analysis of a neural net-
work during training difficult. DeepEyes includes novel filter-centric techniques for
the identification of badly trained filters (T2) and provides a holistic view on filter
activations given instances of receptive fields.

Finally, a recently proposed filter technigue visualizes relationships between fil-
ters, i.e,, how similarly they activate on the input and which label they are most
strongly associated with [145]. Filters are represented as points and placed in a
scatterplot by a multi-dimensional scaling algorithm [19]. Filter-to-label association
is then highlighted by coloring every point with the color of the most correlated
label. While this filter-centric technique allows for newer insights (T3), it has two
limitations that we overcome with a novel approach. First it requires the analysis
of the complete dataset and, second, it cannot be applied to convolutional layers.
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Figure 9.5: Overview of the DeepEyes system. The network training overview provided by the loss- and
accuracy-curves is integrated with the Perplexity Histograms that allow for the identification of stable
layers in the network (blue background). The user focuses on stable layers that are analyzed in detail
with three tightly linked visualizations, namely the Activation Heatmap, the Input Map and the Filter Map
(red background).

9.4 Deep Eyes

In this section, we introduce DeepEyes, a Progressive Visual Analytics system for
the analysis of DNNs during training that combines novel data- and filter-centric vi-
sualization techniques. We start with an overview of DeepEyes in relation to these
tasks in Section 9.4.1. A detailed description is provided in Sections 9.4.2 t0 9.4.5.
As a running example throughout this section we use the MNIST dataset [95] which
consists of a training set of 60K images and 10K validation images. We train with
the Stochastic Gradient Descent [97] the MNIST-Network that is provided in Caffe [79],
a commonly used deep learning library which provides the deep-learning frame-
work for DeepEyes. The network comprises two convolutional layers, with 20 and
50 filters respectively, and two fully connected layers with 500 and 10 filters re-
spectively. Note that we use the MNIST-Network as proof of concept of our imple-
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mentation and, for the sake of reproducibility, we use the architecture and training
parameters provided by Caffe even if they do not achieve state-of-the-art results in
classification performance.

9.4.1 Overview

Figure 9.5 shows an overview of our system. A DNN is trained by computing the fil-
ter activations on subsets of the training set, called mini-batches. The loss function,
which measures how close the prediction matches the ground truth, is computed
and the error is back propagated through the network. The learnable parameters
of the network are then updated in the opposite direction of the gradient of the loss
function [94, 97]. DeepEyes builds on the notion that the understanding of the re-
lationships between instances of receptive fields #(6%)(x), which can be visualized
and understood by humans, and the activation of filter functions f/ (61 ) is cru-
cial for understanding the patterns detected by the network in every layer.

For every mini-batch that is used to train the network, we sample instances of
the receptive fields for every layer and the corresponding filter activations. Unless
the user specifies otherwise, we sample a number of instances that grants a cover-
age of at least 50% of each input. This information is used to create a continuously-
updated dashboard that provides insights into which patterns are detected by the
layers in the DNN. In the Training Overview, loss and accuracy over time are pre-
sented. We complement this standard visualization, with a novel visualization, the
Perplexity Histograms (Section 9.4.2), which allows for identifying when a layer
learned to detect a stable set of patterns (T1). The detailed analysis of stable lay-
ers is performed using three tightly-connected visualizations, highlighted in red in
Figure 9.5. The Activation Heatmap (Section 9.4.3) allows for the identification of
degenerated filters (T2), while the Input Map (Sec 9.4.4) shows the relation of fil-
ter activations on instances of receptive fields for a given layer (T3). Finally, the
Filter Map shows how similar the filters activate on the input. Interaction with the
Input- and Filter-Map support the identification of oversized and unnecessary layers
(T4,T5).

9.4.2 Perplexity histograms as layer overview

The evolution of the loss- and accuracy-curve presented in the Training Overview,
is the de-facto standard way to visualize the evolution of the network during train-
ing. However, this visualization only provides information about the global trend
of the training and fails to give a per-layer visualization of the changes. Given the
size of the network, it is important to guide the user [23] towards layers that can
be analyzed in detail while the training progresses, i.e., layers that learned a sta-
ble set of patterns (T1). Our solution is based on the notion that every filter in a
layer is trained to identify a certain pattern for a specific receptive-field size [194].
Therefore, we propose to treat every layer as a classifier designed to detect pat-
terns, which are unknown at this moment, and we analyze its performance over
time. More specifically, we want to know if the classifiers’ ability to detect patterns
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Figure 9.6: Perplexity Histograms and their creation. Receptive fields are sampled for every input data
(a). The activation of the neurons that correspond to the receptive fields are collected, i.e., the receptive
field's depth column (b). The depth columns are transformed in probability vectors (c) whose perplex-
ity is computed (d) and used to populate the perplexity histogram (). (f) shows the evolution of the
perplexity histograms for the layer Conv1 and Conv2 in the MNIST-Network. Changes in the histogram
over time are presented in a second histogram, highlighting the changes with red and green bars, for
decreasing and increasing numbers, respectively.

is stable, increasing, or decreasing during training. If it is stable, it means that the
layer learned what it was able to learn. If it decreases, the knowledge that this layer
provides to the network is decreasing, and inversely when increasing.

We encode the layer stability as follows. For every input in a mini-batch, we ran-
domly sample a number of instances of receptive fields (Figure 9.6a) and the cor-
responding filter activations (Figure 9.6b). We transform the activations in a proba-
bility vector p e R¥'l, where || is the number of filters in the layer I, by applying a
L1-normalization (Figure 9.6¢). Then, we compute for every receptive field instance
the value of perplexity of the corresponding probability vector p (Figure 9.6d). The
perplexity, a concept from information theory [89] that, in this setting, measures
how well a pattern is detected by the layer under consideration.

The perplexity of the distribution p is equal to 1if only one filter is activated by the
instance of the receptive field. An example is given by the activations marked with
@ in Figure 9.6a. On the contrary, the perplexity of p is equal to the number of filters
|Z, if the activations of every filter are equal, as shown for the activations marked
with @ in Figure 9.6a. The Perplexity Histogram accumulates the sampled input
based on the corresponding perplexity value in the range [1,1.%"]] for every layer [
(Figure 9.6e). Changes in the histograms during training are visualized in a second
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histogram. Here, green bars represent an increase in the corresponding bin, while
red bars represent a decrease (Figure 9.6f). A shift to the left in the histogram, i.e.,
to lower values of perplexity, means that the ability to detect patterns for this layer
is increasing and vice-versa. Note that, because the computed perplexity assumes
continuous value, the number of bins in the histogram has no link with the number
of filters in the layer. We provide a default of 30 bins, that we empirically found to be
visually pleasing and does not hamper the ability to detect shifts in the histograms.

Figure 9.6f shows the evolution of the perplexity histograms of the convolutional
layers for the MNIST-Network, i.e., Convl and Conv2. After 10 iterations a shift to
low values of perplexity in the first layer is visible. The peak in the histogram for
Conv1 corresponds to patches that are not detected by any filter (T3). While the
histogram of the first layer is shifting to the left, i.e, decreasing the perplexity, the
histogram of the second layer is shifting to the right. This behavior shows that the
second layer is responding to a change in the filter functions computed in the first
layer by becoming less specific, i.e., increasing the resulting perplexity. The his-
tograms are updated at every iteration and the user monitors the stability of the
layers. Figure 9.6f shows how the histograms evolved after 80 iterations. Com-
pared to iteration 10, the first layer is still unstable and the second layer is now
more specific. After 300 iterations, the first layer is stable, while the second layer
shows a shift to lower values of perplexity. This shift is limited, showing that the
layer is currently affected by minor changes, allowing the user to start its detailed
analysis.

9.4.3 Activation Heatmap
Guided by the Perplexity Histograms, the user focuses on the detailed analysis of a
stable layer starting from the Activation Heatmap, where every filter is visualized as
a cell in a heatmap visualization (Figure 9.7a). The Activation Heatmap is designed
for the quick identification of degenerated filters (T2). We aim at the identification
of dead filters, i.e., filters that are not activating to any instance of a receptive field,
and filters that are activating to all instances. In both cases these filters are not
providing any additional information to the network. These filters are detected in a
heatmap visualization that shows the maximum- and the frequency-of-activation.
For creating the heatmaps, we randomly sample instances of receptive fields
and we compute the maximum activation ! for every filter £/ in layer 1

pj = max(f] (61 x))),

where 7(8!)(x) is the sampled instance of the receptive field. For each filter fl.’,
the corresponding p! is visualized in the heatmap in the range [0, max(u!, Vi)]. We
use a similar approach for the identification of filters that have high activation on
every input. For every filter, we keep track of how frequently they activate on the
sampled data, and we display these frequencies in the heatmap. We consider a
filter to be active on a given patch if its activation is greater than a percentage g
of the maximum activation max(,uﬁ,Vi), where a default value of = 0.5 is used.
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Figure 9.7: Detailed analysis performed in DeepEyes. Degenerated filters are detected in the Activation
Heatmap (a). The Input Map (b) shows a representation of the input space of a specific layer. By brushing
on the Input Map receptive fields are visualized in linked views (insets in (b)). Specific filter activations
(c) or the maximum activation of every filter (d) are visualized on the Input Map. The Filter Map (e) allows
for the understanding of the relationships between filters that are further investigated in the Input Map.
Specific filters are selected by clicking on the activation heatmap or by brushing on the Filter Map.

The user can choose if the maximum- or the frequency-of-activation is visualized
in the heatmap and we distinguish between the two by using two different color
scales. A green-to-yellow color scale is used for the maximum activation, while a
yellow-to-blue color scale is used for the frequency of activation [57]. At this level of
detail, we are interested in giving an intuition of the response of the layer as a whole,
hence we provide the option to keep the filters sorted according to the currently
visualized information. At this level of detail, we are interested in giving an intuition
of the response of the layer as a whole, making the identification of uninformative
filters easier. Therefore, we provide the option to keep the filters sorted according
to the information that is currently visualized. Because the learnable parameters
are changing during training, visualizing the maximum activation for a filter may be
misleading. For example, a filter that was active in the early phase of training can
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‘die” in later steps [94]. Therefore, we compute a measure for the reliability of the
information contained in the heatmap. We keep track of the last iteration where a
filter fl.’ reached an activation higher than a percentage 6 of its maximum activation
yﬁ, where 6 = 0.8 by default. We visually encode the distance between the current
iteration and the last one that reached the maximum activation threshold 6 as the
size of the cell that we draw in the heatmap [68] and we allow the reinitialization of
the computed maximum in a layer.

An example of the proposed visualization is presented in Figure 9.7a. The max-
imum activation of the filters in the first convolutional layer of the MNIST-Network
after 100 iterations is presented. Ten filters, highlighted in red, out of 20 have a very
low activation and do not provide additional information (T2). The smaller size of
the cell in the heatmap for the filter identified by a purple arrow means that the
maximum activation visualized is not reached in several iterations, leading to the
conclusion that at the current iteration its activation is even lower. By visualizing the
frequency of activation the user identifies several filters, here highlighted in orange,
that have high activation on every input (T2). These insights lead to the conclusion
the layer is oversized given the problem at hand (T4) and can be removed by the
user before continuing the training, making it faster and the final network smaller.
Our visual encoding is scalable in the number of visualized filters. One of the layers
with most filters in state-of-the-art architectures is the last fully-connected layer in
the AlexNet network [88], consisting of 4096 filters. If every filter is encoded, using
a 5x5 rectangle, the heatmap results in an image of 320x320 pixels, that easily fits
into our user interface.

9.4.4 Input Map
The Input Map is a cornerstone of DeepEyes. It provides the tools to solve several
analytical tasks (T2,T3,T4,T5) and is based on the idea presented in Figure 9.4. The
map is generated upon user's request when a stable layer is identified. An example
is given in Figure 9.7b where the first convolutional layer of the MNIST-Network is
analyzed in detail. Instances of receptive fields are visualized as points in a scat-
terplot and colored according to the label of the input they are obtained from. Two
instances are close in the scatterplot if they have similar activation for the neurons
within the neuronal receptive field and, therefore, are similar input for the current
layer (see Section 9.2). The layout is obtained by reducing the dimensionality of the
activation of neurons in the neuronal receptive field to 2 dimensions, while preserv-
ing neighborhood relationships [136]. By brushing on the scatterplot, the user se-
lects instances of receptive fields of interest that are visualized in a linked view, here
abstracted as arrows pointing to image patches. The mix of colors corresponding
to the input labels indicates that a separation between the classes is not possible
at this level (T5), also showing that a clustering of the neurons based on labels as
proposed by Liu et al. [103] is not meaningful for early-layers.

The activation of a user-selected filter is visualized on top of the Input Map, as
shown in Figure 9.7c where four filter activations are shown. We keep the Input
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different layers. A detailed description of the conclusions, drawn from these visualizations is presented
in Section 9.4.6.
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Map in the background as a reference, drawing the data points as larger and semi-
transparent circles. On top, we draw a new set of semi-transparent black circles,
whose size is encoding the intensity of the filter activation on the corresponding in-
put. The user can switch between the two visualization modes, allowing to reason
on where the activations are localized in the Input Map, therefore giving a detailed
understanding of which input is detected by a filter. For example, we can validate
the insights previously obtained through the Activation Heatmap. By clicking on
a cell in the heatmap, the corresponding filter activation is visualized in the Input
Map, showing that the dead filters are not activating on any input (T2). Moreover,
single filters are activating on large portions of the input. Together with the pres-
ence of many dead filters, this signals that the current layer contains more filters
than needed (T4). By visualizing the maximum activation of the filters on each
data point, as presented in Figure 9.7d, we allow for the identification of data that
are scarcely or not at all detected by the network. In the example, the outer region
of the Input Map contains points that do not produce a strong activation (T3). The
inspection of the instances of the corresponding receptive fields reveals that they
correspond to background patches and, therefore, are not informative for the prob-
lem at hand.

The Input Map is a dataset-centric technique (see Section 9.3), whose improve-
ments over the state-of-the-art are twofold. First, it is built by sampling instances
of receptive fields, allowing for the creation of a dataset-centric visualization even
if a 1-to-1 correspondence between filters and neurons does not exist, such as for
convolutional layers. Second, differently from existing techniques that focus on
the activation of the filters in the current layer, the Input Map reduces the dimen-
sionality based on the activations of the filters in the neuronal receptive field rather
than the activation of filters in the layer under analysis. This feature allows for
the analysis of the relationship between input and output of a layer, an approach
that was not possible before. While these two features allow for new insights, they
pose computational challenges in the creation of the 2-dimensional layout in the
interactive system. Tens of thousands of receptive field instances are sampled
during training and ought to be placed in the Input Map. Further, the dimension-
ality of the feature vector considered is higher than in existing technigues as we
do not just consider the activations in the current layer but the whole neuronal re-
ceptive field. We considered several dimensionality-reduction techniques for the
generation of the scatterplot [178]. The t-distributed Stochastic Neighbor Embed-
ding (tSNE) algorithm is often used [177] in dataset-centric techniques. However, as
reported by Rauber et al. [145] for their proposed approach, several dozens of min-
utes are required for the creation of embeddings containing 70K points described
by 50 dimensions, limiting its application in a Progressive Visual Analytics system
like DeepEyes. Therefore we use the recently-developed Hierarchical Stochastic
Neighbor Embedding (HSNE) [136], as it creates visual representations of tens of
thousands of data points, described by several thousand dimensions, in seconds.
HSNE enables the analysis of such large data in an interactive system by building
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a hierarchical representation of the data and by generating Input Maps with only
a few hundreds data points sampled from the input data. The exploration of the
complete dataset is then performed with a filter and drill-in paradigm as presented
in Chapter 6.

9.4.5 Filter Map
The Filter Map provides a view on how similarly filters in a layer respond to the input
as awhole. of oversized layers or the need for more layers (T4,T5). We visualize the
filters as points in a scatterplot. Filters with a similar activation pattern are placed
closerin the scatterplot (Figure 9.7e). If many filters activate in the same way on the
input it is an indications that the layer contains too many filters (T4). Here, we are
interested in visualizing the relationships between filters and labels y. Hence, points
are colored according to the training label that activates a filter the most, while the
size of the point shows how strongly the filter is correlated to that label. We choose
this encoding for the sake of simplicity, but different visual encodings can be used,
e.g., by encoding the correlation with color brightness or saturation [30,145]. The
presence of a cluster composed by large and similarly colored points in the Filter
Map is an indication that a classification can be performed at this stage (T5). To
the best of our knowledge, the only existing work in this direction is from Rauber
et al. [145]. In their work, the Pearson correlation between filter activations is com-
puted and the filters are visualized using a multi-dimensional scaling algorithm.
This approach requires the receptive field of the analyzed filters to cover the com-
plete input and it cannot be used for the analysis of convolutional layers, a severe
limitation if state-of-the-art architectures ought to be analyzed (see Section 9.2).
We propose to overcome this limitations by computing similarities in a progres-
sive way, using instances of receptive fields instead of the complete input. The
similarity between two filters is computed as a weighted Jaccard similarity [77].
This gives a measure of common amount of activation divided by the maximum
activation of both filters. If the filters activate equally for the same instances of re-
ceptive fields the value will be 1. The more they differ the smaller the similarity will
be. For two filters i and j on layer [, their similarity ¢;,; is computed as:

T pxmin(f] ((8;) ), f] (x(5}) (x)))
 Texmax(f] r@H ), £l reh )

bij 9.1)

where f/(n(51)) is the activation of the filter f/, given the sampled receptive
field for input x. The similarities are updated for every training iteration and, when
requested by the user, the filters are embedded in a 2D space with tSNE [177]. In
Figure 9.7¢, the Filter Map for the first layer of the MNIST-Network is presented. By
brushing on the scatterplot the user selects filters whose activation is then visual-
ized in the Input Map. In the example of Figure 9.7, it can be seen that two filters
that are close in the Filter Map (e) also have a similar activation pattern on the input
(c). We also keep track of which label is most associated with a filter. For each filter
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f1, we compute the vector t! € R?, where d is the number of labels in the dataset. It

contains the cumulative activation fl.’ on the sampled receptive fields of instances
of objects belonging to the same label:

th@argmax(y) = Y f/ (w61 x)), (9.2)
X

where x is an input with associated label vector y. For every filter fl.’, the corre-
sponding point in the Filter Map is drawn with the color associated with the label
argmax(tﬁ). The point size in the Filter Map encodes the strength of the associa-
tion with a label. This association is computed as the perplexity of the probabilities,
obtained by normalizing the vector tﬁ with L1-norm (see Section 9.4.2). The points
size encodes the inverse value of the perplexity, where a low value of perplexity
means a strong association with the label. Filters in Figure 9.7e are small in size,
showing a low association with the corresponding label, i.e. a large value of per-
plexity. Also, not all the label colors present in Figure 9.7b are represented in the
Filter Map, showing that filters in this layer are not specialized to perform a proper
classification.

9.4.6 From insights to network design
Here, we illustrate how insights obtained in DeepEyes support network design de-
cisions. Figure 9.8 shows the analysis of the MNIST-Network introduced in Sec-
tion 9.4. Driven by the stability of the perplexity histograms, the user is guided to
the detailed analysis of layers whose filters are stable. ConvTis analyzed first, then
Conv2, FCT and finally FC2. In the Input Map of ConvT, a separation of the labels
with respect to the input is not visible, since all label colors are mixed in the scatter-
plot (Figure 9.8a). Further, filters are active on large regions of the Input Map, see
filter activations in Figure 9.8a for the selected filter in the filter map. Many dead
filters are identified (T2) by selecting filters with low maximum activation in the Ac-
tivation Heatmap (Figure 9.8a). The layer is oversized (T4) as overly-redundant or
non-existent patterns are learnt by the filters. Conv2 is analyzed next. Here data
points in the Input Map start to cluster according to the labels (Figure 9.8b). Notice
that the shown instances of the receptive field are larger than for Conv7, as Conv2
processes a larger region of the input images. Differently from the previous layer,
filter activations are localized in the Input Map, leading to the conclusion that more
filters are needed in Conv2 than in Conv1. Similarly as for Figure 9.7d, points with
low maximum activation in Figure 9.8b correspond to background patches (T3).
In FCT (Figure 9.8c¢), inputs cluster in the Input Map according to the associated
label. The visualization of the Maximum Activation in Figure 9.8c shows that every
data point is activating at least one filter in the current layer, hence every input is
identified by the network at this level (T3). Before we can conclude that a classifi-
cation is feasible at this stage (T5), the Filter Map is analyzed. In the Filter Map, we
see that the filters form visual clusters that are associated with labels. However,
there is no visible red cluster, associated with the label “digit-5". The activation of a
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“digit-5" associated filter is visualized on the Input Map, showing a strong activation
also on points in green, i.e., "digit-3". This insight shows that a perfect separation is
not possible in this layer, and that the second fully-connected layer is needed (T5).
The presence of duplicated filters and dead filters, as in FCT, shows that this layer
is oversized and fewer filters can be used (T4).

Finally, in the last layer, which performs the prediction (Figure 9.8d), every filter is
colored with colors of different labels, showing that a correlation between filter and
label exists and the network is correctly classifying the input. By showing the acti-
vation of the filters on the Input Map, the user also gets an intuition of which labels
are confused by the network, e.g., points that correspond to the “digit-0" and “digit-
6", as shown in the filter activation in Figure 9.8d. Based on the insights obtained
from DeepEyes, we modified the network reducing the first convolutional layer from
20 to 10 filters, and the first fully-connected layer from 500 to 100. This reduction
allows for a smaller network which is faster to be trained and makes predictions
without any visible loss in the accuracy of the classification that is stable for both
architectures at 98.2% after 2000 iterations. Note that for the sake of reproducibility
we used the parameters defined by Caffe in the “lenet_train_test.prototxt” training
protocol.

9.5 Test cases

In this section, we provide further examples of analysis performed with DeepEyes.
In recent years a great number of different architectures have been presented. For
ourtest cases we decided to focus on widely used architectures derived from AlexNet
[88] that are often modified and adapted to solve different problems, a setting in
which the insights provided by DeepEyes are greatly needed. AlexNet [88] consists
of 5 convolutional layers, with 96-256-384-384-256 filters, and 3 fully-connected lay-
ers, with 4096-4096-1000 filters, leading to more than 16 million trainable parame-
ters. Note that AlexNet is among the largest neural networks in terms of computed
filter functions, where a trend in reducing the number of filters exists [60,72]. This
analysis demonstrates the scalability of our progressive system in a general setting.
In the first test case, we show how DeepEyes allows for a better understanding of
the fine-tuning of DNNs, while in the second test case, we show how a better archi-
tecture for the medical imaging domain is derived from insights obtained through
DeepEyes.

9.5.1 Fine tuning of a deep neural network

Training a large DNN from scratch requires a very large training set, computational
power, and time. To overcome this limitation, a common approach is to fine-tune
an already trained network for a different pattern recognition problem [15]. The ra-
tionale behind this approach is that low-level filters, like color- and edge-detectors,
could be reused. To which degree filters can be reused is crucial but not clear a-
priori [197]. In this test case, we show how DeepEyes helps in the identification
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(a) Examples of (b) Analysis of Conv1 layer
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(c) Analysis of Conv5 layer
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Figure 9.9: Fine tuning of a pretrained neural network. Deep eyes allows for the identification of layers
that do not need retraining, e.g. Conv1. Unrecognized input data are highlighted in the Perplexity His-
tograms and in the Maximum Activation visualization of the Input Map, here highlighting data that is
labeled as Geometric Compositions which are not recognized by the original network. Furthermore, a
filter trained to detect faces is not discriminative given the Romantic and Vintage labels.

of which layers contain useful filters that can be reused and filters that are not
needed and must be retrained. We used the fine-tuning example provided in Caffe,
where AlexNet, which was trained for image-classification, is retrained for image-
style recognition [79]. In this example, the prediction layer of the network is changed
from 1000 filters, used to detect 1000 objects, to 20 filters that are retrained to de-
tect 20 styles of images, e.g. “Romantic”, “Vintage” or “Geometric Composition”
(Figure 9.9a). The network requires 100.000 iterations and more than 7 hours to be

retrained with a K40 GPU and achieves an accuracy on the test set of 34.5% [79].

The hypothesis that color and edge detectors are useful filters for the problem
at hand is confirmed in the first convolutional layer, i.e., ConvT in Figure 9.9b, as
they present a localized and consistent activation pattern, e.g., blue- and vertical-
edge-detectors are found. While the first layer is stable, the Perplexity Histogram of
the fifth convolutional layers, i.e., Conv5, shows that an increasingly large number
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of input patches are not activating any filter, hinting at a problem in the filter func-
tions for this layer. The detailed analysis of Conv5 shown in Figure 9.9¢ reveals that
data labeled as “Geometric Composition” are in the region of the Input Map that is
hardly activating any filters (max activation in Figure 9.9¢). Images labeled as “Ge-
ometric Composition”, i.e., with large and uniform color surface, were not included
in the “image-classification” training set, therefore the network has not learnt use-
ful filters for discriminating such images. Another interesting insight is obtained
by visualizing the activation of other filters on the Input Map. For example, a filter
that detects human faces is found, see Figure 9.9c. While this filter is useful for the
image-classification problem, it is not discriminative for style-recognition because
human faces are associated with many different styles (Figure 9.9a). This insight
shows that the analyzed layer needs to learn new patterns from the input. The fine-
tuning of a network or, in general, the reusability of the learned filters, is an active
research topic under the name of transfer learning [191]. Insights obtained from
DeepEyes can help to improve the fine-tuning of networks by placing the user in the
loop.

9.5.2 Mitotic figures detection

We present a different test case from the application of DNNs in the medical imag-
ing domain. In this context, DNNs developed by the machine learning community
are applied to different recognition problems. DeepEyes helps in filling the exper-
tise gap, by providing insight on how the network behaves given the problem at
hand. The number of nuclei separations in tumor tissue is a measurement for tu-
mor aggressiveness. In radiotherapy treatment planning, histological images of tu-
mor tissue are analyzed by pathologists. Nuclei separations, also known as mitotic
figures, are counted. Examples of images with “mitotic figure” label are presented
in Figure 9.10a, together with images labeled as “negative”. The counting of mitotic
figures helps in deciding the dose of radiation used to treat a tumor, leading to a
more personalized treatment. However, it is a tedious task and DNNs have been re-
cently proposed to automatize the process. In this test case, we analyze the DNN
developed by Veta et al. [182] that is trained on the AMIDA dataset [183] to detect
mitotic figures in histological images. The network comprises 4 convolutional lay-
ers with 8,16,16 and 32 filters respectively, and 2 fully-connected layers, containing
100 and 2 filters respectively.

After a few training iterations, the first layer stabilizes and is analyzed in detail.
Figure 9.10b shows the detailed analysis of the first convolutional layer after 40 it-
erations. The Input Map shows a cluster of red points, corresponding to instances
of the receptive fields sampled from images labeled as mitotic figures. By visualiz-
ing the activation of the filters we see that filters are trained to detect dark regions
versus bright regions, as they are an important feature at this level. Similar Input
Maps are obtained in the other convolutional layers, where the patches processed
by the layers are larger.

An interesting observation is made in the first fully-connected layer of the net-
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work. The Input Map and the Filter Map for this layer are presented in Figure 9.10c.
A separation of the labeled input is visible in the Input Map, showing that the classi-
fication is feasible at this level. This is confirmed by the fact that filters are divided
in the Filter Map according to the most strongly associated label. Thus, another
layer, as is present in the network, is not needed in order to perform a prediction
on the problem at hand (T5). Therefore, we change the design by dropping the
fully-connected layer and by connecting the prediction layer directly to the last con-
volutional layer. The analysis of the prediction layer after retraining is provided in
Figure 9.10d. The new network reaches an accuracy of 95.9% on the test set, which
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Figure 9.10: Mitotic Figures detection. A DNN is trained to detect mitotic figures in histological images
(a). Filters in the first convolutional layer Conv1 are highly associated with mitotic figures (b). Labeled
data are separated in the Input Map of the first fully-connected layer FCT (c). After removing FCT the
prediction layer (d) still shows very strong separation, indicating that FCT is indeed not needed for clas-
sification.
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is identical to the accuracy obtained with the previous architecture, while it is much
faster to compute a prediction.

We contacted Veta et al. [182], presenting DeepEyes and providing our findings.
They informed us that they had come to the same conclusions after several blind
modifications of their network, commenting that a system like DeepEyes is benefi-
cial in the definition of networks for a specific medical imaging problem. Further-
more, they showed it particular interest in visualizing the instances of the receptive
flelds and the corresponding filter activation directly in the system. They also ac-
knowledged that inputs which are difficult to classify are easily identified by the user
in the Input Map (Figure 9.10d). Hence, they commented that DeepEyes also gives
insights on how the training set can be modified in order to improve the classifica-
tion as it shows which kind of input must be added to the training set.

9.6 Implementation

DeepEyes is developed to complement Caffe, a widely-used deep-learning library [79].
DeepEyes, requires Caffe files that describe the network and the parameters of the
solver as input. DeepEyes trains the network using Caffe, but seamlessly builds the
Progressive Visual Analytics system presented in this chapter on top of it.

For optimal performance, we implemented DeepEyes in C++. The interface is
implemented with Qt. Perplexity Histograms and the Activation Heatmaps are im-
plemented in JavaScript using D3 and are integrated in the application with QtWe-
bKit Bridge. The Input- and Filter-Maps, are rendered with OpenGL. DeepEyes is
implemented using a Model-View-Controller design pattern, allowing for the future
extension to different deep-learning libraries, such as Google’s TensorFlow [2] or
Theano [170].

9.7 Conclusions

In this chapter, we presented DeepEyes, a Progressive Visual Analytics systems
that supports the design of DNNs by showing the link between the filters and the
patterns they detect directly during training. The user detects stable layers (T1)
that are analyzed in detail in three tightly-linked visualizations. DeepEyes is the only
system we are aware of that supports DNN design decisions during training. Using
DeepEyes the user detects degenerated filters (T2), inputs that are not activating
any filter in the network (T3), and reasons on the size of a layer (T4). By visualizing
the activation of filters and the separation of the input with respect to the labels, the
user decides whether more layers are needed given the pattern-recognition prob-
lem at hand (T5). We used DeepEyes to analyze three DNNs, demonstrating how
the insights obtained from our system help in making decisions about the network
design.

A limitation of DeepEyes is that it relies on qualitative color palettes for the visu-
alization of labels in the Input- and Filter-Maps. This solution does not scale when
the number of labels is large, therefore we want to address this issue in future work.
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Further, the Input- and Filter-Map are created with dimensionality-reduction tech-
niques, which may be affected by projection errors. Hence, adding interactive val-
idation of the projections [109] is an interesting future work. Another interesting
future work is the development of linked views that allows for the analysis of dif-
ferent type of data, such as text or video. An interesting development would be to
integrate in DeepEyes different deep-learning libraries, such as TensorFlow [2] or
Theano [170], and to the analysis of different and other types of network architec-
tures, such as Recurrent Neural Networks [114] and Deep Residual Networks [60].
Finally, it would be interesting to apply DeepEyes for the analysis of DNNs in several
application contexts.

141







Conclusions

The known is finite, the unknown infinite;
intellectually we stand on an islet in the midst of an illimitable ocean of inexplicability.
Our business in every generation is to reclaim a little more land.

Thomas Henry Huxley



10. Conclusions

The effective analysis of high-dimensional data has been proven to be an im-
portant driver for new knowledge discovery in many different fields, from life sci-
encess [6,12,102] to artificial intelligence [83,116,137]. For a human, direct under-
standing of high-dimensional data is challenging, since it is far removed from our
daily experience. To overcome this limitation, visual analytics techniques and tools
combine visualizations, statistical analysis and mining algorithms in order to ex-
tract knowledge from data.

In this dissertation we focused on a class of algorithms that, in recent years,
achieved impressive results in supporting the hypothesis generation from data in
many different fields. Non-linear dimensionality-reduction algorithms, and tSNE [177]
in particular, are now widely adopted by biomedical researchers for the exploration
of their data, and by machine learning researchers for validation of their models.
Among the advantages of these techniques, is the ability to remove redundancy
between dimensions by extracting low-dimensional and non-linear structures that
are embedded in the high dimensional space.

However, at the time when this work started, non-linear dimensionality tech-
nigues were limited in their scalability, limiting the analysis to small datasets. This
fact posed a limitation to the applicability of the algorithms to an always increasing
dataset size. The work presented in this dissertation aimed specifically at this limi-
tation, proposing new algorithmic solutions that enabled the development of visual
analytics applications that are specifically designed for a given domain.

More specifically, in Chapter 4 we introduced the Approximated-tSNE (A-tSNE),
which proposes to build dimensionality-reduction embeddings on approximated in-
formation. We proposed to adopt approximated k-nearest-neighborhood search al-
gorithms to encode the local similarities between the data points. Thanks to this
innovation, a lengthy preprocessing of the data is avoided while, at the same time,
high-neighborhood preservation is achieved. Moreover, we provided the user with
the ability to locally refine the approximated information while the embedding is
computed, hence converging to non-approximated embeddings. Since our work
was presented in 2016, almost all the newly introduced non-linear dimensionality-
reduction algorithms make use of the approximated computation of the k-nearest-
neighborhood graph [25,87,112,168]. This work was further improved by adopting
a GPU-based computation of the embedding optimization which is presented in
Chapter 5. This technique, which makes use of the rendering pipeline to compute
the gradient as a derivation of three scalar fields, is implemented on the GPU and
runs in the client side of a web browser and it is openly available in the Google's
TensorFlow.js library.

Despite the improved interactivity of systems based on the Approximated-tSNE,
we observed that the optimization process becomes increasingly difficult to opti-
mize as the size of the dataset grows. To overcome this limitation, we presented
a novel algorithm that is the first to introduce a hierarchical exploration of non-
linear data; the Hierarchical Stochastic Neighbor Embedding (HSNE). HSNE, which
is presented in Chapter 6, extracts a hierarchy of data points, also known as land-
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marks, that represent the data at different scales. A hierarchical analysis is then
performed by the user. First the embedding representing the overview of the data,
i.e., the major high-dimensional structures, is generated. The user can select clus-
ters of landmarks that are of interest, a decision made by looking at some linked
views depicting the selection in the data-point space. New embeddings are then
generated by using the landmarks associated with the selection at a lower level in
the hierarchy. We demonstrated the relevance of HSNE and its applications in the
analysis of single cell data where we were able to identify rare cell-types in the im-
mune system that were previously unknown. Other insights obtained by applying
the techniques presented in this dissertation to biomedical data are presented in
Chapter 7.

We also presented a novel system for the analysis of bipartite graph that is
built on top of the HSNE algorithm. Thanks to new data structures we are able
to compute HSNE hierarchies of containing tens of million data points. This work
is motivated by the growing partisanship that social network creates online, a phe-
nomenon known as Filter-Bubbles or Echo-Chambers. Our WAOW-Vis system al-
lows to analyze this phenomenon on a desktop computer in only few minutes of
computation time. HSNE is also the cornerstone used for applying visual analytics
for the understanding and improvement of Deep Neural Networks. More specifi-
cally we present DeepEyes, a Progressive Visual Analytics system that supports the
design of neural networks directly during training. We showed how the system fa-
cilitates the identification of problematic design choices and information that is not
being captured by the network. We demonstrate the effectiveness of our system
through multiple use cases, showing how a trained network can be compressed,
reshaped and adapted to different problems.

The work presented in this thesis, provides solutions to the scalability issues
of non-linear dimensionality reduction techniques for visual data analysis. Despite
the results that we have reported and the increased capabilities of our algorithms,
several challenges remain to be tackled. First, the computation of the k-nearest
neighbors is a critical step of all the recently developed non-linear dimensionality-
reduction algorithms. Faster algorithms for kNN computations will be of great ben-
efit, while a change in the computational paradigm, for example by adopting a dif-
ferentiable programming approach, may open the door to novel and more efficient
techniques. Finally, we believe that the development of progressive data analytics
techniques will be of major importance in the near future. As Data Science requires
time-consuming and iterative manual activities, the extension of Progressive Visual
Analytics would be beneficial if applied in different computational modules, e.g.,
data cleaning, transformation and modeling. Therefore, the development of a Pro-
gressive Data Science [175] pipeline will make the data processing more efficient,
as any change of parameters and algorithms will be immediately and progressively
reflected to the user, allowing for a quick evaluation of the choices.
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