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Abstract

Wireless sensor networks (WSNs) are ad-hoc wireless networks of
small form-factor embedded nodes with limited memory, processing, and
energy resources. Certain applications, like security and art monitoring,
require reliable data transport. Current work for WSNs only provides
stochastic reliability or guaranteed reliability for bulk transfer. This
thesis describes the design, implementation, and evaluation of Reliable
Transport AODV (RT-AODV). RT-AODV is a protocol that provides
guaranteed reliability for individual messages. Both routing and reliable
transport are covered in this work. End-to-end positive acknowledge-
ments with timeouts and retransmissions are used to provide guaranteed
reliability. NST-AODV, an existing any-to-any routing protocol, is used
to route the data and acknowledgement messages through the network.
To enhance the stability and quality of NST-AODV some adjustments
are done: the hardware specific Link Quality Indicator (LQI) is replaced
by a statistical link estimator, and a loop detection mechanism and route
quality monitoring are added. A proof of concept implementation has
been done on the Embedded Software group’s testbed. Experiments of
larger scale and longer duration were done in TOSSIM simulations. For
evaluation, Reliable Transport AODV (RT-AODV) is compared to the
Collection Tree Protocol (CTP) and NST-AODV. Results show that RT-
AODV performs well compared to both NST-AODV and CTP. A serious
cost increase (in terms of transmissions) is involved with using end-to-
end acknowledgements. The strength of RT-AODV is not pure delivery
ratio. For larger networks, it performs slightly less than NST-AODV.
However, RT-AODV guarantees that a message is delivered to its des-
tination if an acknowledgement is received. The work described in this
thesis shows that using end-to-end acknowledgements and any-to-any
routing in wireless sensor networks is certainly viable.
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Chapter 1

Introduction

During the last decade, the field of Wireless Sensor Networks (WSNs) has
emerged from science fiction (Smart Dust, [17]) to a mature research topic.
WSNs offer a completely new approach to many environmental monitoring and
event detection applications [14, 21, 28]. This technological advance has been
made possible by the miniaturisation of integrated circuits. Microprocessors,
radio transceivers, and sensors, now all fit on a centimetre or even millimetre
sized board.

A Wireless Sensor Network consists of small computers called nodes. Nodes
are equipped with a microcontroller, a radio transceiver, sensors, and a power
supply. The power supply is usually off-grid, e.g. batteries, solar power, or
energy harvesting. Figure 1.1 shows an example of a typical WSN setup.

The most important characteristic of WSNs is ad-hoc network deployment;
the network must organise itself without external configuration. Both the
media access control (MAC) layer and the network layer (routing) suffer most
from this characteristic. The MAC protocol has to decide whether a node
has to sleep, send, or listen at a certain point in time. Some MAC-layer

Figure 1.1: An example of a Wireless Sensor Network. The six nodes on the left
are regular sensor nodes. The rightmost node is the sink, which is connected by a
wired link to the outside world.
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2 Introduction

issues are node synchronisation and the hidden terminal effect. The routing
protocol is responsible for forwarding messages to a next node, such that each
message eventually reaches its destination. Routing protocol issues are radio-
link dynamics and unknown network-topology.

In most cases, the monitoring and event detection data needs to be trans-
ported to one or more nodes called gateway or sink. These nodes are usually
connected to the outside world over a long-range wired or wireless link. For
the data packets to find their way through the network, some kind of routing
protocol is required. In addition to best-effort data delivery, some applica-
tions require guaranteed delivery (i.e. with positive acknowledgements) for
each single message. This is generally not provided by WSN protocol stacks.

1.1 Problem statement

This project started from an internship at SOWNet Technologies. First, their
case is described below, followed by the problem statement it has led to.

SOWNet case description The motivation for this MSc thesis project is
the need of SOWNet Technologies [1] for a reliable data-transport mechanism
for WSNs. Their focus is the development of an art monitoring system. Guar-
anteed delivery of status and alarm messages to the gateway is required for
such applications. Status messages are sent at a regular interval, varying from
30 seconds to 40 minutes. Alarm messages are event-triggered.

Network reconfiguration is another requirement for this application. For the
reconfiguration of single nodes, it is required to be able to address individual
nodes; one-to-any routing is required.

The application’s network characteristics are given in Table 1.1. The ap-
plication uses a two-layer network of sensing and forwarding nodes. Sensing
nodes communicate over a single-hop protocol with a forwarding node. For-
warding nodes are mains powered and form a mesh network that takes care of
multi-hop message transport. Sensing nodes are not an issue; this thesis only
discusses forwarding nodes.

Table 1.1: Network characteristics of a typical art monitoring application of
SOWNet Technologies.

topology two layers: sensing and forwarding nodes

maximum network size 150 forwarding nodes

sensing nodes / forwarding node 20 - 100 nodes

network diameter (forwarding nodes) 20 hops

message types and interval status (periodic), alarm (event)

maximum message delay 15 s
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Problem statement Guaranteed message delivery and any-to-any routing
are not supported by current transport and network protocols that are avail-
able for WSNs, see Section 2.4. Protocols that provide this functionality do
exist for Mobile Ad hoc Networks (MANETs). These protocols, however, are
not directly applicable to the problem due to limitations of WSNs. Most
WSNs are constrained on available energy, radio bandwidth, memory, and
computational speed.

The goal of this thesis is to develop a reliable transport protocol for WSNs.
Previous work does not include guaranteed delivery or end-to-end positive ac-
knowledgements. Our aim is to provide a very high delivery ratio (> 99.99 %),
guaranteed delivery, any-to-one routing (data collection), and one-to-any or
any-to-any routing (node reconfiguration).

1.2 Approach

This MSc thesis describes the work that has been done on the development
of Reliable Transport AODV (RT-AODV).

First, research was performed on what current protocols and approaches
are available for WSNs. None of the currently available protocols offers guar-
anteed delivery of individual messages or end-to-end acknowledgements. We
decided to use existing work on any-to-any routing, and extend that with a
reliable transport mechanism. We use a reactive any-to-any routing protocol
called NST-AODV [10]. As a reliable transport mechanism we chose end-to-
end acknowledgements. For each individual message, an acknowledgement is
sent from the destination, back to the source. Other solutions include single-
hop acknowledgements and end-to-end negative acknowledgements. However,
those mechanisms do not provide the desired level of reliability. This is dis-
cussed in detail in Section 2.3.

The protocol is implemented using T-Node hardware and the TOSSIM sim-
ulator from the TinyOS distribution. The proof of concept implementation on
real sensor networks hardware is used to demonstrate that the protocol can
run on an actual sensor network. Then, simulation is used to evaluate RT-
AODV and compare it to plain NST-AODV and the Collection Tree Protocol
(CTP) [9].

1.3 Organisation

The remainder of this thesis is organised as follows. A theoretical background
and related work are presented in Chapter 2. Chapter 3 discusses the func-
tional and technical design of RT-AODV. Implementation details are given in
Chapter 4. The work is verified by the experiments presented in Chapter 5.
Finally, a conclusion and future work are given in Chapter 6.





Chapter 2

Background

This chapter provides a theoretical background on topics related to reliable
transport in WSNs. Section 2.1 discusses the most commonly used traffic pat-
terns in WSNs. Section 2.2 gives an overview of the different kinds of routing
protocols for (wireless) ad-hoc networks in general. Section 2.3 discusses re-
liability mechanisms and corresponding data patterns (stream, block, single
packet). Section 2.4 discusses related work on reliable transport in WSNs.

2.1 Traffic patterns

The most commonly used traffic patterns in WSNs are collection and dissem-
ination. Collection uses an any-to-one routing scheme; all nodes forward their
packets towards the same destination (i.e. the gateway). Dissemination is used
to distribute a single message, injected at the gateway, over the complete net-
work. A one-to-all routing scheme is used. Both collection and dissemination
do not provide mechanisms to address individual nodes. To provide individual
node reconfiguration, a one-to-any routing scheme is required. An any-to-any
routing scheme would also suit the requirements. Figure 2.1 gives a graphical
representation of the three traffic patterns discussed above.

(a) collection (b) dissemination (c) reconfiguration

Figure 2.1: Traffic patterns.

5



6 Background

2.2 Routing

A routing protocol is responsible for selecting a route through a network for the
messages to reach their destination. In wireless networks, and more specific,
WSNs, this is hard due to frequent topology changes caused by link dynamics
and failing nodes. Two important characteristics of routing protocols are link
estimation and routing scheme.

Link estimation and metrics For a routing protocol to choose which route
is the best one available, a quality metric is required. Hop count and expected
transmissions (ETX) [4] are well known metrics. Protocols that use a metric
based on hop count try to minimise the number of hops for each route. This
can easily lead to the use of low-quality links, and result in unreliable routes.

The goal of ETX-based protocols is to minimise the number of expected
transmissions for each route. Each node maintains link-quality statistics for
a small set of neighbours about the incoming and outgoing link quality. The
incoming link quality can be determined directly based on the ratio of received
an missed beacon messages; those messages are transmitted at an exponen-
tially increasing interval. Incoming link qualities have to be exchanged with
neighbouring nodes to determine their outgoing link qualities. The outgoing
link quality from node A to node B is equal to the incoming link quality
from node B to node A. The incoming and outgoing link qualities together
form the bidirectional link quality. It is important to use bidirectional links.
If a unidirectional link is used, link layer acknowledgements are not received
by the sender; this can cause the sender to repeatedly retransmit a message
without receiving an acknowledgement.

Routing schemes Routing protocols can be classified in three schemes:
proactive, reactive, and hybrid.

Proactive routing schemes maintain routing information for the complete
network. Each node has a routing table with an entry for each other node.
An entry consists of a destination, the next hop to reach that destination, and
route information. Routing information is updated periodically, or triggered
by network topology changes. Some examples are the Destination-Sequenced
Distance-Vector (DSDV) routing protocol [24], and the Optimized Link State
Routing protocol (OLSR) [3]. DSDV uses hop-count as a routing metric.
For each destination, a sequence-number determines the freshness of a route.
OLSR determines for each link whether it is bidirectional or not. Only bidirec-
tional links are used for routing. OLSR uses an optimised flooding mechanism
to distribute routing information over the network.

Reactive, or on-demand routing schemes maintain routing information for
active routes only. If a route to the corresponding destination is not available
at the current node, a route discovery process is started to retrieve the required
information. Two kinds of reactive routing are available: source routing and
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hop-by-hop routing. In protocols using source routing, each packet carries its
complete route to the destination. Intermediate nodes forward the packet over
this path. An example is Dynamic Source Routing [16]. Hop-by-hop routing
protocols only include the packet’s destination. Each node forwards the packet
over the route that is present in its routing table. An example of a reactive
hop-by-hop routing protocol is Ad hoc On-demand Distance-Vector routing
(AODV) [23]. NST-AODV [10] is an implementation of AODV developed for
the sensor networks platform TinyOS [20]. Implementation details of, and
adaptations to NST-AODV are discussed in detail in Chapter 4.

A routing scheme that uses both reactive and proactive mechanisms to
maintain routing information is called a hybrid routing protocol. Most hybrid
protocols use some form of zone routing. A node maintains routing infor-
mation in a proactive fashion within its zone. Information about routes to
nodes outside its zone are maintained in a reactive fashion. The Zone Routing
Protocol (ZRP)[11] is an example of a hybrid routing protocol.

2.3 Reliable transport

A transport protocol provides message delivery on top of a routing protocol.
Possible features are message ordering, reliable message delivery, and conges-
tion control. The focus of this thesis is on reliable message delivery; therefore
this section only discusses reliable transport.

Reliable transport protocols can provide two types of reliability: stochastic-
and guaranteed reliability. Stochastic reliability promises to deliver a message
with a certain probability. To provide stochastic reliability, or best-effort
delivery, most protocols do a limited number of single-hop retransmits, or
send the message over multiple routes. Stochastic reliability is too weak to
fulfil the requirements for the art monitoring application given in Chapter 1.

Guaranteed reliability uses an acknowledgement mechanism to let the source
node know whether a packet has been received at the destination, or is miss-
ing. To provide guaranteed reliability, the source node of a message requires
feedback from the destination. A distinction is made between messages that
are part of a block or stream, and messages that are not.

For messages that are part of a block or a stream, it is possible to detect
the absence of a message at the destination, and it suffices to send negative
acknowledgements for missing messages. For a message block, the block size
is known by the destination. For a message stream, a later message will be
received, which indicates that previous messages are missing.

On the other hand, for messages that are not part of a block or a stream,
the destination has no knowledge about a missing packet that has not been
received. In this case, positive acknowledgements and a timer at the source
are required for each message to achieve guaranteed reliability.

For both positive and negative acknowledgements, the routing layer must
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provide means to send acknowledgements from the destination back to the
source.

2.4 Related work

For typical WSN applications, data collection is the most important traffic
pattern. An environment is continuously monitored for events, or periodic
measurements are done. This data has to be reported to the base station. In
most cases, receiving the majority of the data is most important. Gaps that
are caused by failed messages can either be left open, interpolated, or a re-
transmit can be requested. For these cases stochastic reliability or guaranteed
bulk-transport are sufficient.

Most WSNs are battery powered, and therefore energy constrained. A
trade-off in energy efficiency, reliability, throughput, routing scheme, network
lifetime, and message delivery delay is required. For the above-mentioned
applications, energy efficiency can be traded for a reliability scheme that has
relatively low overhead, like guaranteed bulk-transport or stochastic reliabil-
ity. A simple routing scheme that only allows to forward messages to a base
station is sufficient in most cases. Each application has its own throughput
and delivery delay requirements. The limited hardware platform, applications,
and requirements have led to the development of several routing and transport
protocols. The protocols and protocol classes that are most relevant to our
work are summarised below.

The Collection Tree Protocol The Collection Tree Protocol (CTP) [9] is
the default collection protocol of the TinyOS distribution. A network that uses
CTP contains one or more base stations, or root nodes. Root nodes advertise
their presence to neighbouring nodes. Non-root nodes advertise their distance
to a root in terms of the expected number of transmissions (ETX). This way,
each node maintains a route to the closest root node. Loop detection and
topology repair are well handled. The results presented in [9] show delivery
ratio’s of over 90 %. Our experiments, as discussed in Chapter 5, show much
lower delivery ratio’s for network sizes of over 20 nodes.

Reliable bulk-transfer protocols Some examples of protocols that pro-
vide reliable bulk-transfer are PSFQ [27], FLUSH [18], and RCRT [22]. These
protocols determine if all messages are received at the destination. When a
message is missing, a negative acknowledgement is sent to the source, and the
message will be retransmitted.

TinyHop TinyHop [25] is a reactive routing protocol that provides end-to-
end acknowledgements for individual messages. The metric that is used to
determine which route to use is based on time. Each node only forwards the
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first route discovery message for each individual route request. The route
of the message that arrives first at the destination is used. This method
can easily lead to the use of unstable routes, or routes with a low delivery
ratio. Experiments show low delivery ratios, especially for larger networks
(128 nodes, 20 hop diameter, delivery ratio < 20 %).





Chapter 3

Design

The hardware platform for which Reliable Transport AODV (RT-AODV) is
developed has a grid-powered forwarding network; it is not energy constrained.
With respect to current work, this allows us to provide a higher level of relia-
bility, and a more flexible routing scheme. The applications that RT-AODV is
designed for require guaranteed delivery of individual messages. The only way
to provide this level of reliability is by end-to-end positive acknowledgements.

We propose to use an any-to-any routing protocol; the rationale of this so-
lution is twofold: it allows to route acknowledgement messages back to the
source, as well as sending reconfiguration messages to arbitrary nodes. We
have built our solution on top of NST-AODV [10], a reactive, any-to-any,
hop-by-hop routing protocol. We have improved the original implementation
of NST-AODV by making the route discovery mechanism more robust, adding
loop detection and loop handling mechanisms, and adding a statistical bidi-
rectional link-estimator. This work brought NST-OADV to a level of stability
such that it is usable for commercial applications. On top of the adapted rout-
ing protocol we have implemented an end-to-end positive-acknowledgement
mechanism with timeouts and retransmissions. Figure 3.1 gives an overview
of the proposed protocol stack, an overview of the subcomponents of NST-
AODV, and the internal information flow of NST-AODV.

This chapter describes the design of RT-AODV. Section 3.1 discusses the
used routing protocol (NST-AODV), and the working of its components. Sec-
tion 3.2 covers the design of the transport mechanism.

3.1 Routing

Routing is handled by NST-AODV, which is a reactive, hop-by-hop, any-to-
any routing protocol, specifically designed for WSNs. It provides the necessary
mechanisms for route discovery, route maintenance, message forwarding, and
link estimation. Figure 3.1 gives an overview of the components of NST-
AODV, and the information flow between the components.

11
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link estimator

routing engine

forwarding engine

routing table

MAC protocol

RT-AODVtransport layer

routing layer

data link layer

NST-AODV

Figure 3.1: Protocol-stack overview of RT-AODV with subcomponents of NST-
AODV. The arrows indicate the internal information flow of NST-AODV.

The routing engine maintains the routing table. There is one entry for each
destination. An entry contains the following information: destination address,
route sequence number, next-hop address, route length, and route quality. If
no route is available for a required destination, the routing engine starts a
route-discovery process to find one.

The link estimator provides statistical information about the quality of in-
dividual links. The quality of a route is determined by the product of the
quality of each link on that route, see Equation 3.1.

Messages are forwarded by the forwarding engine. For each message, the
next hop to reach the destination is taken from the routing table. One of the
major concerns for routing protocols are routing loops. Due to the decen-
tralised approach of finding and maintaining routes, it is difficult to prevent
loops. The forwarding engine is responsible for detecting routing loops.

quality (reception ratio)route = qualitylink 1 × . . .× qualitylink n (3.1)

3.1.1 Route discovery

When a node wants to send a message to a destination, the routing table is
searched for a corresponding route. If a route to the destination is unavail-
able, a route-discovery process is started. A route-request message is flooded
through the network until it reaches the destination. Each node records the
current information contained in the route-request message. A route-request
message contains the following information: source address, destination ad-
dress, source sequence number, last-known sequence number of the destina-
tion, current route length, and current route quality.

If a route-request message reaches its destination, a route reply message is
sent back to the source over the route that the route request had travelled
to reach the destination. Upon reception of a route reply, a node checks its
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(a) The route request is
flooded through the complete
network.

S

D
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route

(b) A direct route reply: the
destination (node D) sends a
route reply.

A

S

D

RREP

link

(c) An indirect route reply:
node A already has a route
to the destination (node D)
and sends a route reply im-
mediately.

Figure 3.2: Direct and indirect route discovery processes.

previously recorded information, which includes the next hop to the source,
and adds the new route to its routing table.

For a faster response to a route request, and less overhead, indirect route
discovery is allowed; nodes that have a valid route to the destination can also
send a route reply. Figure 3.2 explains the difference between a direct and an
indirect route discovery process.

Each route discovery process is uniquely identified by its source address,
source sequence number, and destination address. If a route request is re-
ceived, processing and forwarding is only carried out for newer or better
routes. A newer route request is recognised by a higher sequence number.
If the sequence numbers of the last and current route request are equal, the
last route request is only accepted if its route quality is higher. Route replies
are selected analog to route requests. As a result, the route with the best
quality is recorded in the routing table.

3.1.2 Link quality estimation

The link-quality estimator that we included in RT-AODV is the implementa-
tion that is also used for CTP [9]. It uses information from periodic beacons,
as well as data messages. Beacons are broadcasted by each node. Each beacon
includes a sequence number and data entries of the Link Estimation Exchange
Protocol (LEEP) [8]. After a fixed number of beacons has been received from
one node, the sequence numbers are used to determine the number of missing
beacons. The forwarding engine reports for each unicast message whether or
not an acknowledgement has been received.



14 Design

SA

B

CD RREQ

RREP

Figure 3.3: An example scenario that results in a loop. The link from node S to
node A is part of the route from node S to node D. This link fails, and node S
initiates a route discovery. A route request (RREQ) travels from node S to node C,
which node C replies to (RREP) with its available route via node B to node D. The
route from node C to node D includes node S, and will form a loop. Based on their
local information, both node S and node C cannot determine that a loop is being
formed.

The estimates based on beacons are usually very rough. However, this
estimate is only used as an initial value, and will become more precise when
the link is actually used to forward data messages [9].

3.1.3 Route quality estimation and evaluation

After a route has been determined, the actual quality of the route may vary
over time. This variation can be caused by environmental changes and network
utilisation. In order to deliver all messages successfully, we try to notice the
symptoms before failures happen.

If the delivery ratio of a route drops below a threshold, a route discovery
process is started to try to find a better route.

3.1.4 Routing loops

Due to the decentralised routing approach generally used in WSNs, loops will
likely form at some point in time. An example of how indirect route-discovery
can lead to a routing loop is given in Figure 3.3.

A loop is identified if a message passes the same node twice, with a time-
to-live (TTL) that differs at least two hops from the previous reception. If a
loop has been detected, a process is started to remove the conflicting entries
from the routing table.

3.2 Transport

A given fact about wireless data transmission is that intermittent failures
occur [26]; a mechanism that handles those failures is required. We have de-
signed and implemented an end-to-end positive acknowledgement mechanism;
this is the only type of mechanism that can determine that an individual mes-
sage has been successfully received at the destination. If an acknowledgement
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is not received within the timeout period, two things might have happened:
the data message did not reach the destination or the acknowledgement mes-
sage did not reach the source. In both cases, the only way to request a new
acknowledgement is to retransmit the data message from the source.

If there is no maximum number of retransmissions, the transport protocol
could try to deliver a message that continuously fails. To prevent this, a
limited number of retransmissions is allowed. If this limit is reached, the
message is flooded through the complete network as a final attempt. If the
message is successfully received at the destination, an acknowledgement is sent
back to the source in the usual fashion.

Flooded messages contain the same route discovery information as route-
request messages do. Each node that receives a flooded message will record
the route information, as it would do with a regular route-request message.
If the message reaches its destination, and the route satisfies the minimum
quality, a route reply is sent to the source.





Chapter 4

Implementation

For the implementation of our reliable transport protocol we use NST-AODV
as the underlying routing protocol. The original implementation of NST-
AODV is not very robust and lacks important features like a statistical link-
estimator, loop detection, and route monitoring. We have made improvements
to enhance robustness, and made additions to include the required features.
All improvements and additions are discussed in the remainder of this chapter.
The implementation is done in TinyOS, a commonly used operating system for
WSNs. We speak of NST-AODV as the routing protocol, and of RT-AODV
as the transport protocol on top of it.

This chapter provides an in-depth description of the implementation details
of RT-AODV. Section 4.1 gives a short introduction to TinyOS 2.0. Section 4.2
provides details about the routing protocol like the route discovery mechanism,
message-header structure, and the link estimator. It covers work that is part
of the original implementation; this is useful for a good understanding of
our own work. Section 4.3 discusses the implementation of the end-to-end
acknowledgement and retransmission mechanism. As a proof of concept, we
have implemented RT-AODV on a sensor network hardware platform. This
is discussed in Section 4.4.

4.1 TinyOS

TinyOS [20] is an event-driven operating system for WSNs. It takes care of
low-level hardware interfacing and scheduling. The programming language for
TinyOS is nesC [7], which is a derivative of C. Programs in nesC are defined as
components and implementations of those components. Components are wired
together by interfaces; an interface defines commands and events. The user of
an interface can call commands, and is notified of each firing event. TinyOS
provides hardware support for a wide range of platforms and components. It
also provides platform independent components and commonly used software
components, such as timers, data structures, radio stacks, etcetera.

17
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TinyOS also includes TOSSIM [19], which is a WSN simulator. The simula-
tor can run the exact same code as the corresponding hardware platform does.
For our simulation implementation we have modeled the lnode platform [1].
It simulates an MSP430 series microcontroller and a CC1101 packet radio.

4.2 Routing

This section describes the components of NST-AODV. First, the message
structure is discussed. Then, each component is discussed, and the fields that
are used and modified by it.

4.2.1 Message structure

Figure 4.1 gives a graphical representation of the NST-AODV control and data
messages. The single-hop header fields are used for single-hop transmission
by the radio. It is provided by the Active Message abstraction of TinyOS [2].
NST-AODV uses four message types: route request, route reply, route error,
and data. The message type is indicated in the type field of the single-hop
header.

A data message contains a single-hop header, a multi-hop header, and an
AODV header. The multi-hop header contains the multi-hop source and des-
tination, and the type of the data message. These are used by the forwarding
engine.

The AODV header contains route-request information, sequence number,
retransmit number, time-to-live (TTL), and AODV-specific flags. The se-
quence number, retransmit number, and the multi-hop source address denote
a unique message. Those values are used for duplicate filtering, loop detec-
tion, and to identify corresponding acknowledgements and messages. The
route-request information part carries the sequence number of the last known
route to the destination, the current ETX value, and route-request specific
flags. If a message is a route request or a flooded message that contains route-
request information, the number of hops equals MAX TTL − TTL. The
route-request flags indicate whether or not an indirect route reply is allowed.
A route-request message has the same structure as a data message, but does
not contain any data. NST-AODV uses 16 or 32-bit addresses, depending
on the platform. For the lnode platform, which uses 32-bit addresses, NST-
AODV introduces 19 bytes overhead per message. This excludes the 10 byte
single-hop header that is required by any routing protocol. Given a maximum
packet size of 64 bytes, there are 35 bytes payload left.

A route-reply message contains the usual single-hop header, the source ad-
dress and destination address of the route, the sequence number of the route,
route length, route quality in ETX, and route reply flags. The flags indicate
that the reply is direct (i.e. from the destination) or indirect (i.e. from an
intermediate node).
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Figure 4.1: Structure of NST-AODV message types. Size in bytes is given between
parentheses. 32-bit addresses are used.

The route-error specific fields are source, destination, sequence number,
and flags. The destination and sequence number identify the route that has
to be removed from the routing table. The source address is included to stop
forwarding the route error message when it reaches the source of the route
error.

4.2.2 Routing engine

The routing engine covers the mechanisms for route discovery, sending and
processing of route error messages, and routing table maintenance.

Route discovery The route-discovery algorithm consists of two stages:
flooding a route request through the network, and sending a route reply from
the destination back to the source.

Each time a node forwards a route request, the hop count and route quality
contained in the route request are updated. The number of hops is increased
and the ETX value of the last hop is added to the route ETX. For link ETX,
route ETX and route length, maximum values are determined. Routes for
which those maximums are exceeded, will very likely be unreliable, or need-
lessly inefficient; those route-request messages will not be forwarded.

All nodes maintain a cache of recently-received route discovery information.
If a route request has been received, a look-up for the source address and
sequence number is done. If an entry exists, the route request was not the first
one received. If two route requests originate from the same route discovery,
they are compared by their ETX value. Only route-request messages that
correspond to a new route discovery process, or to routes that are of better
quality than the current best route, are processed and forwarded. A route-
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request message carries a flag that indicates that direct route discovery is
compulsory or not.

During a route discovery for a certain destination, messages that are ad-
dressed to that node are put on hold. However, the node can still continue
forwarding messages to other destinations.

Sliding window mechanism The original implementation of the routing
protocol is not resilient to sequence-number overflows and rebooting nodes. In
both cases, control messages are recognised as out of order, and are discarded.

This is easily solved by a sliding-window mechanism. We define the window
of valid sequence numbers as all sequence numbers that are newer or at least
the window size older than the last sequence number. All sequence numbers
that are at most the window size smaller are in the window of invalid sequence
numbers. Only messages that have a valid sequence number are accepted,
others are discarded.

After a node has booted, its sequence number is initialised to 0. If its route
requests are not replied to, its sequence number is possibly in the window
of invalid sequence numbers. To overcome this, a node increases its sequence
number by the window size. This is repeated until a route reply is successfully
received.

Routing table In WSNs, most traffic is directed to and from a single node:
the base station. As the network fans out quickly, nodes that are further
away from the base station forward traffic for fewer nodes, and also need to
maintain fewer routes.

To minimise control overhead, the routing table needs to have the size of
the number of nodes in the network. This can become a problem for large
networks. However, increasingly more memory is available within the same
power envelope. A possible solution to minimise routing table size for large
networks will be discussed in Chapter 6.

Route-quality monitoring The original routing protocol does not monitor
routes that are currently in use; actions are taken only if a route is no longer
available. To achieve a delivery ratio that is as high as possible, we do not
want a route to suddenly stop working. Therefore, we have implemented a
route-quality monitoring system.

We distinguish three situations: a failing forward route, a failing reverse
route, and a node that has difficulties in finding a route. Detection of the
symptoms of each situation takes place at the destination. To filter high
frequency, or short term changes, an exponentially weighted moving average
is used.

Problems on the forward route lead to a high number of transmissions that
is needed before a message is successfully delivered to the destination. This
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is indicated by a high average retransmission number of the message that is
received first. The destination informs the source by setting a flag in the
AODV-flags section of the acknowledgement message. The source responds
by starting a direct route discovery to find a new route.

In case of a failing reverse route, messages on the forward route are received
successfully, but acknowledgements are not received by the source. This is
indicated by a high number of received retransmits per single message. In this
case the destination node starts a direct route discovery to the source.

In the first two situations, the alternative route that results from the route
discovery only replaces the current route if it is of good quality. The quality
of the current route is very likely not representative for the current situation;
we cannot use it to compare the current and the alternative route. Therefore,
it is not required that the new route is of a better quality than the current
route.

The third situation covers nodes that have difficulties in finding a route to
the destination. In this case a node floods its messages to the destination.
If a high ratio of messages from a node is flooded, this indicates that the
node can probably not find a valid route and has connectivity problems. This
can be indicated to the application; an engineer can then respond by adding
additional nodes or move the node to have better connectivity.

4.2.3 Forwarding engine

The forwarding engine transmits messages to the next hop and detects if a
problem occurs. Problems like routing loops and link failures are signalled to
the routing engine.

Loop detection and handling Loop detection takes place at two loca-
tions: at forwarding nodes and at source nodes. Forwarding nodes use a re-
cently received message cache to detect loops. If the cache contains an entry
that corresponds to the source address and sequence number of the received
message, and the TTL differs by two or more hops, the message has likely
travelled over a loop. Source nodes detect loops by checking a message that is
received to be forwarded. If the source address equals the local address, this
indicates a loop.

If a loop is detected, a route-error message is sent over that route. The mes-
sage is forwarded at each node until it reaches the original node that detected
the loop. In this case, the route error traversed the complete loop. A loop
can also be temporary; it can disappear before the route error has traversed
the complete loop. In this case, the route error will reach the destination of
the route, and will not be forwarded as well. If a route error is received by
a node, the node removes all routesthat travel over the loop from its routing
table.
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To decrease the probability that the next route discovery process results
in a loop, the initiated route-discovery process does only allow direct route
discovery.

Link failures If for a single message all single-hop retransmissions fail, i.e.,
no link-layer acknowledgement is received, the current link-quality is evalu-
ated. If the quality drops below the threshold, all routes from that node with
the next hop that is equal to the destination of the failing link, are removed.
A route discovery process will be started when one of the removed routes is
required at a later time. No further action is taken at the forwarding node;
end-to-end retransmissions will resolve single-hop failures.

4.2.4 Link-quality estimator

The original implementation of NST-AODV does not include a statistical bidi-
rectional link-quality estimator; the Link Quality Indicator (LQI) value of the
CC2420 radio [15] is used to determine route quality. We have replaced the
LQI value by the link estimator that has been developed as part of CTP for
two reasons: LQI does not provide a very good estimation of the actual link
quality [6], and it is only available on specific radio hardware.

The metric that is used to evaluate route quality is the expected number
of transmissions (ETX). Internally, the link estimator uses both ETX and re-
ception ratio to represent link quality. ETX is expressed in terms of reception
ratio in Equation 4.1. To determine the quality of a route, Equation 4.2 is
used.

ETX =
1

reception ratio
(4.1)

ETXroute = ETXlink 1 + ETXlink 2 + . . . + ETXlink n (4.2)

The link estimator determines link quality based on the reception ratio of
beaconing messages and data messages. The beaconing messages are used to
determine an initial estimate. The estimate is made more precise when the
link is in use to transmit data messages.

Beacon messages are sent periodically. The interval increases exponentially
from 2 seconds to 5 minutes. Nodes that have recently joined the network
or have no valid route available can set the pull bit in their beacons. If a
neighbouring node receives a beacon with a pull bit, it resets its interval to 2
seconds. This allows for faster bidirectional link estimation at node start-up.

In addition to the beacon-based estimate, the reception ratio of data mes-
sages is used to obtain a more precise estimate of the link. The link layer
reports to the link estimator whether or not a link-layer acknowledgement
was received for each message.
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Figure 4.2: link-quality estimation “data-flow”

Beaconing only allows a node to determine the incoming quality of a link.
To calculate bidirectional link-quality, nodes exchange incoming link-quality
information using LEEP [8]. The LEEP protocol piggybacks link quality
information on the beacon messages. Equation 4.3 is used to calculate the
bidirectional link-quality from the incoming and outgoing link-quality. The
ratio of the number of acknowledged messages to the total number of messages
directly represents bidirectional link-quality. Each time the bidirectional link-
quality is calculated, the outcome is fed through an exponentially weighted
moving average. Figure 4.2 gives an overview of how link-quality information
flows through the link estimator.

qualitybidirectional =
1

qualityincoming × qualityoutgoing
(4.3)

4.3 Transport

This section describes the implementation details of the transport layer. The
transport layer is implemented on top of the routing protocol that has been
discussed in the previous section. The transport layer implements an acknowl-
edgement and retransmission mechanism to provide guaranteed message de-
livery.

Each data message carries a sequence number and a retransmission num-
ber in the AODV header (Figure 4.1a). An acknowledgement message only
contains the sequence number of the corresponding message; a delayed ac-
knowledgement message corresponding to the first transmission will also ac-
knowledge a later retransmission.

For a message to be successfully delivered, at least the following three events
have to take place: the message needs to be enqueued at the source, the source
needs to successfully send the message to the next hop of a valid route, and it
needs to be acknowledged. Those events can fail and happen out of order. The
state machine given in Figure 4.3 handles the state transitions of end-to-end
messages.
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Acknowledgements and forwarded messages that originate from another
source are not kept in the queue to wait for an acknowledgement. They are
removed as soon as a sendDone event has occurred. In TinyOS, a sendDone
event is fired when the radio is done transmitting a message and is ready to
accept the next message.

init failqueue full

queued

queued

radio sent

timeout

broadcasted

set timestamp

<= max timeouts

ACK after previous timeout

sendDone

ACK

timeout

ACK

flood sendDone success

successacked

> max

timeouts

ACK

sendDone

timeout

init fail

success

sendDone fail

Figure 4.3: State machine. The underlined acknowledgement events happen out of
order.

Timeouts The current implementation uses a predefined static timeout pe-
riod. It is not dependent on the length of a route, or the average round trip
time of the route. It is required to determine a suitable value for each network,
such that the most remote nodes are able to deliver their messages within the
timeout period. In the future, the timeout period can be determined as a
factor of the moving average of the route trip time. In case of a network-wide
emergency flood, the timeout period is doubled to increase the probability
that the acknowledgement is received on time. A typical timeout period is
in the order of seconds. We poll for timeouts twice every second. A timeout
occurs if an end-to-end acknowledgement is not received on time.

Retransmissions If the maximum number of retransmissions has been reached,
or a timeout occurred after a network wide flood, the transport mechanism
has failed to deliver the message. How this situation is handled is up to the
application.
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Out-of-order events Two situations occur in which an acknowledgement
is received out of order, i.e. not right after a successful sendDone event; see
Figure 4.3. A single-hop message can be successfully transmitted to the next
hop while the link-layer acknowledgement has failed. The source node is still
trying to deliver the message to the next hop while the message has already
reached its end-to-end destination An acknowledgement is sent back and is re-
ceived at the source before the node knows that is has successfully transmitted
the message to the next hop. After the acknowledgement has been received we
have to wait for the single-hop transmission to finish, and the radio to reach
its initial state. Then we can send the next message.

The second situation involves the reception of an acknowledgement that
corresponds to a previous end-to-end transmission that has already timed
out. This acknowledgement has a different retransmit number than the last
retransmit number, but the corresponding sequence number will acknowledge
the message.

4.4 Proof of concept

This section discusses the implementation of RT-AODV on sensor network
hardware. The prototype implementation has been done on the testbed of
the Embedded Software group of Delft University of Technology. The testbed
consists of 20 T-Nodes that are placed in four rooms [13]. A T-Node consists of
an ATMega128L, 8-bit, 8 MHz microcontroller with 128 kB of programmable
flash and 4 kB of RAM, and a CC1000, 868 MHz, 76.8 kBaud radio. Figure 4.4
shows the network topology of the testbed.
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Figure 4.4: Testbed topology. Each line represents a link with at least 90 % bi-
directional delivery ratio. Dark blue nodes periodically send a message to the sink.
Red nodes are shut down one by one each hour in experiment 2.
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Table 4.1: The memory footprint of RT-AODV components, based on 16-bit ad-
dresses.

component number of entries entry size (B) RAM (B)

routing table 12 20 240

data message queue 8 65 520

control message queue 8 52 416

flood cache 12 7 84

route-request cache 12 13 156

total 1416

Table 4.1 shows the memory footprint of RT-AODV per component. RT-
AODV requires more memory than typical WSN collection protocols, e.g.
CTP maintains an 80 byte routing table of 10 entries of 8 bytes. This is due
to the fact that we have to maintain a much more complicated routing table
than tree-based protocols, which only transmit messages in the direction of
the sink, and not back to the original source; this requires only a single route.

4.4.1 Experiments

The experiments evaluate RT-AODV under three different circumstances: a
stable network, a network with failing and later restarting nodes, and a net-
work with radio jamming. We have implemented a simple TinyOS program
that reports the node’s supply voltage every 5 minutes for the six blue nodes
in Figure 4.4. All nodes forward messages to the sink, node 7.

Experiment 1: normal conditions

This experiment has been carried out under normal conditions. The results
given in Figure 4.5 show that the network is very stable, and few end-to-end
retransmissions are required. All messages have been delivered successfully.

Not all messages were acknowledged after the first transmission. If we count
those messages as failed messages, the delivery ratio is 99.83 %. In this ex-
periment, RT-AODV gains 0.17 % successful delivery by including end-to-end
acknowledgements.

Experiment 2: joining and leaving nodes

This experiment is done with a network that contains joining and leaving
nodes. Some of the sending nodes (blue) require one or more of the failing
nodes (red) to deliver messages to the sink; see Figure 4.4. When one of
these nodes is shut down, routes that currently flow through it will fail. This
triggers the route discovery process to reconnect the network. The results



4.4. Proof of concept 27

 0

 2

 4

 6

 0  12  24  36  48  60  72  84  96

# 
tr

an
sm

is
si

on
s 

/ m
es

sa
ge

time (hours)

required transmissions for successful delivery

Figure 4.5: Experiment 1: normal conditions

given in Figure 4.6 show very few end-to-end retransmissions. With respect
to experiment 1, we observe a small increase in the number of required end-
to-end transmissions. Most of the time retransmissions are bursty, but there
is no strict grouping right after a node failure.

Three messages, out of 52 230, have failed during the two day experiment.
The cause of the failures is not very clear. An explanation that relates to the
joining and leaving nodes is that a leaving node broke a route that could not
be repaired in time. In the testbed network, a joining node can trigger almost
the complete network to reset their beaconing period. The large number of
beacons can interfere with the propagation of route discovery messages. This
can result in bad link quality estimates and failing route requests.

This experiment shows that RT-AODV is resilient to node failures and
topology changes. If changes in the network occur, RT-AODV stabilises
quickly on a new route.
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Figure 4.6: Experiment 2: joining and leaving nodes. Each 60 minutes a node is
shut down for 15 minutes.
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Experiment 3: network jamming

This experiment covers network jamming. One node of the testbed is pro-
grammed to transmit a large number of messages at a much higher power
level than the regular nodes. This makes that the other nodes cannot com-
municate over their radios during that period. Similarly to experiment 2, this
experiment also involves triggering of route discovery and reconnecting the
network. The difference with experiment 2 is that nodes are not rebooted,
and thus do not return to their initial state after the communications failure
is over.

During the 15 minute jamming period, a lot of messages fail to reach the
sink. The nodes only try to forward a message for a short period of time
(#retransmits · timeout period = 25 · 6 = 150 s). As we can see in Figure
4.7b, the network returns to a stable state within 4 minutes after the jamming
period is over, at 795 minutes.
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(b) 40 minute closeup of jamming at 13 hours.

Figure 4.7: Experiment 3: one jamming node that is turned on every hour for 15
minutes.

Overall experiment results

The overall results of the three experiments are given in Table 4.2. Overhead
is calculated as the ratio of the number control or beaconing messages to the
number of data messages. The results show that it is feasible to implement
and deploy RT-AODV on a sensor networks hardware platform. It can deliver
messages with a high probability, very close to 100 %. Failing and joining
nodes and network jamming both cause some failed messages; however, the
protocol still performs good.

The overall results show an increase in control overhead for the node failures
experiment; compared to the normal experiment the control overhead quadru-
ples. Failing and joining nodes cause routes to fail and new routes to form.
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Table 4.2: Experiment results of the proof of concept implementation.

normal node failures jamming

delivery ratio (%) 100.000 99.998 99.851

control overhead (%) 0.14 0.59 7.53
beaconing overhead (%) 5.77 14.79 4.76

average hops 2.85 3.06 3.39

This results in a fair increase of control overhead. Network jamming causes
a much bigger increase in control overhead. When the complete network is
being jammed, all links fail, and routing table entries are marked invalid. For
each route, a new route discovery has to be started each hour. In normal
situations, a route requires very little maintenance.

As we can also see in the overall results, joining nodes introduce a lot of
extra beaconing overhead; beaconing overhead almost triples compared to the
normal experiment. This is caused by the pull bit that is set in the first
couple of beacons that a node broadcasts after starting the routing protocol.
Due to very high connectivity in the testbed, messages will be received by
a large part of the network. It causes a node that receives such a beacon
to reset its beaconing interval to two seconds. The jamming experiment has
less beaconing overhead compared to the normal experiment. However, this
difference of almost 1 % is much smaller than the difference between the normal
experiment and the node failure experiment.

The average number of hops that is required to reach the destination can
be used as a measure for route quality. A shorter route, that is still reliable
and stable, is better than a longer one. The differences between the three
experiments are not very large. We can conclude that efficient routes are
established under all three circumstances.





Chapter 5
Experiments and results

To evaluate the performance of RT-AODV we want do to a large scale exper-
iment with a long duration. This is infeasible due to the unavailability of a
large testbed and the amount of time this would require. Therefore, we have
decided to extend our proof of concept, as discussed in Chapter 4, by larger
scale, one week simulation-time experiments.

To provide an extensive evaluation of RT-AODV, we have set up a realis-
tic simulation environment and ran simulations of SOWNet’s art monitoring
application [1]. We compare RT-AODV to two protocols: the Collection Tree
Protocol and NST-AODV (without acknowledgements and retransmissions).
The powerful lab workstations allowed us to run multiple simulations concur-
rently, saving a lot of time.

We only evaluate the reliable data-collection scenario. RT-AODV can also
be used as a basis for a reliable reconfiguration mechanism that can address
individual nodes.

This chapter discusses the experiments that were performed to show how
RT-AODV performs as a mechanism for guaranteed delivery of status mes-
sages and alarm messages to the sink. First, we discuss the simulation envi-
ronment in Section 5.1. We discuss the experiments and results in Section 5.2.
In this section, RT-AODV is compared to the Collection Tree Protocol [5] and
NST-AODV [10].

5.1 Simulation environment

For our simulations we have used TOSSIM [19]. TOSSIM is a discrete event
simulator for TinyOS [20]; it can run TinyOS programs without modifica-
tion. The simulator includes the complete radio stack of the lnode platform
of SOWNet Technologies [1].

To simulate a real WSN deployment, we have taken SOWNet’s art mon-
itoring application. This application sends periodic status messages to the
sink at a 5 minute interval and an alarm message when a sensor is triggered.

31
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Figure 5.1: An example network-topology for an art monitoring system. Node 0
is the sink, the large circles are forwarding nodes, the small circles are sensor nodes.
Each node is connected by a good link with each other node at a one hop distance,
and by an unreliable link with nodes at a two hop distance. The unreliable links are
not shown to keep the figure a bit clearer.

An example topology consists of 19 forwarding nodes, each connected to two
sensing nodes, see Figure 5.1.

Each wireless network simulator requires a radio-channel model that deter-
mines for each message which nodes successfully received the message. Our
simulator includes a Signal to Noise Ratio (SNR) based model and a link
failure model. Both are discussed in more detail in the following paragraphs,
followed by a paragraph on repeatability of experiments.

Radio model The simulator uses an SNR-based model to determine whether
or not two nodes can exchange messages. A topology file defines the received
signal strength in both directions between each pair of nodes in the network.
Each radio has an SNR-threshold; if a signal exceeds the sum of all other
signals by at least the SNR-threshold, it is decodable. A noise pattern that is
loaded from a file is used to generate noise for each link.

Research has been done on the similarities between hardware experiments
and simulations for SNR-based radio models [12]. The experiments are fo-
cused on MAC protocol performance. The results show very high similarities
between simulations using on the SNR-based radio model and hardware exper-
iments. One of the MAC protocols that is used for the evaluation is B-MAC.
Because our simulation also uses B-MAC, our simulation results are expected
to be realistic.

Link-failure model In addition to the SNR-based model, we have included
a link-failure model to simulate environmental changes. Situations occur when
nodes cannot communicate to each other for a short amount of time. This
leads to bursty errors. We model those periods by randomly disabling an
incoming or outgoing link for a period of two seconds. Data from deployments
that are done by SOWNet show periods of bursty errors with a length of a
few seconds.
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Repeatability To be able to repeat an experiment several times, for ex-
ample to compare how two protocols handle the same situation, we need to
be able to repeat an experiment with the same series of events. We only do
this for the link-failure model. Link failures occur less frequent than failing
transmissions due to noise (determined by the SNR-model). Therefore the
law of large numbers does not apply to link-failure scenarios. As link failures
also have a much longer duration of two seconds, their influence on the results
is much larger than the influence of noise.

To be able to repeat a link-failure scenario we seed the random number
generator for each random event with a simulation-time dependent value and
the node id. Time is divided in discrete blocks of two seconds. For each event
that happens within a two second block, the random number generator is
seeded with the start time of this block.

5.2 Experiments

In order to evaluate our work we have done simulations for various network
sizes. Each run has a duration of one week simulation time. For each experi-
ment, 10 runs are executed to obtain statistical significance. For the simulation
experiments, we have evaluated RT-AODV under normal circumstances, i.e.
there are no joining or leaving nodes and no network jamming.

In this section we evaluate the behaviour and performance of RT-AODV.
The results are given in Table 5.1. We determine cost in terms of transmissions
per end-to-end message. Overhead is calculated as the ratio of the number of
control or beaconing transmissions to the number of data transmissions.

First we take a look at RT-AODV on its own; the behaviour during network
setup and during stable operation are discussed. Then we compare RT-AODV
to CTP and NST-AODV to see how it performs in contrast to these alternative
solutions.

5.2.1 RT-AODV

We take a look at the behaviour of the protocol over one week. In the overview
(Figure 5.2a) we see that most messages are delivered after one or two trans-
missions. A very small number of messages needed three or more transmis-
sions. We conclude that RT-AODV determines routes with a good quality
that require only a small number of transmissions.

During network setup, the protocol has not yet established good routes.
The first few messages of each forwarding node need more transmissions than
is normal under stable operation. After that short period, the routes quickly
stabilise; most messages are acknowledged after the first transmission. See
Figure 5.2b. We conclude that RT-AODV has a low network setup time of a
couple of minutes.
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During stable operation most messages are delivered and acknowledged after
the first transmission. We can see only a small number of messages that
requires a single retransmission; 98.9 % of the messages is acknowledged after
the first transmission, 1.1 % of the messages after the second. See Figures 5.2a
and 5.2c. RT-AODV operates very well under stable conditions. The routing
and link-quality information is accurate and leads to stable routes.
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(a) Overview of the 7 day experiment. 98.9 % of all messages was successfully acknowl-
edged after one transmission. 1.1 % needed two transmissions. Less than 0.01 % of the
messages was transmitted more than twice before an acknowledgement had been received.
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(b) Initial 20 minutes. Only one message failed
during the setup phase.
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(c) Stable one hour period, starting at day 3.

Figure 5.2: 7 day simulation run.

5.2.2 Comparison to other protocols

We compare RT-AODV to two other protocols on delivery ratio and delivery
cost. The first protocol is the Collection Tree Protocol; this is the default
collection protocol that comes with TinyOS 2. We compare RT-AODV to
CTP to show how it performs in contrast to the de facto solution for collec-
tion. CTP is discussed in more detail in Chapter 2. The second protocol is
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plain NST-AODV, i.e. RT-AODV without end-to-end acknowledgements and
without end-to-end retransmissions.

Scalability We can see a fairly large performance drop in the results of
RT-AODV for the 43 node network. In all experiments, the nodes near the
sink have a very good delivery ratio (95 - 100 %). The 10 to 15 nodes that are
furthest away from the sink show a large drop in message delivery (30 - 80 %).
We have looked into various possible causes for the sudden performance drop
for this specific group of nodes: route discovery problems, routing loops, and
clustering of message injection over the forwarding nodes and in time, and
bandwidth shortage.

If suddenly multiple nodes have problems in delivering their messages, a lot
of retransmissions and control messages are send. Due to overhearing, only
four nodes can send concurrently in the 43 node network. The combination
of these causes a bandwidth shortage during which very little messages are
successfully delivered. An experiment with more bandwidth shows that RT-
AODV can also perform well on larger deployments.

Delivery ratio To compare the three protocols on delivery ratio we look at
the ratio of acknowledged messages for RT-AODV. However, a message that
is not acknowledged, did not per se fail to reach its destination. Therefore, we
also look at ratio of delivered messages for RT-AODV. The results are given
in Figure 5.3.

RT-AODV shows very good results for the network of 19 nodes. Very close
to a 100 % of all messages is acknowledged. For the networks of 31 and 43
nodes, we can see a fairly large drop in performance, especially for 43 nodes.
This has been discussed in the previous paragraph. The experiment with an
increased bandwidth of 125 kbaud shows a delivery ratio of 99.84 %.

CTP shows very weak performance for all network sizes. Starting with only
80 % delivery for the smallest network, and further decreasing to 60 % and
47 % for the networks of 31 and 43 nodes respectively.

NST-AODV shows good results in terms of delivery ratio. For all network
sizes, more than 99 % of the messages has successfully reached the sink. This
is somewhat better than the delivery ratio of RT-AODV, which drops to 98 %
for the largest network. For the network of 19 nodes, RT-AODV acknowledges
more messages (99.97 %) than what NST-AODV delivers (99.46 %). For 31
nodes, the delivery ratios of both protocols are almost equal (RT-AODV:
99.40 %, NST-AODV: 99.30 %).

The difference in performance between RT-AODV and NST-AODV for 43
nodes can be due to higher network utilisation, or the maintenance of more
routes. More route maintenance could introduce more routing loops. The
problems that occur with RT-AODV, as discussed in the previous paragraph
on scalability, do not seem to occur with NST-AODV.
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The strength of RT-AODV is guaranteed delivery (acknowledgements), and
not pure delivery ratio.
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Figure 5.3: Delivery ratio of RT-AODV, CTP, and NST-AODV for network sizes
19, 31, and 43. For RT-AODV both the ratio of messages that are actually delivered
to the destination, and the ratio of messages that are acknowledged, are plotted. For
CTP and NST-AODV only the ratio of delivered messages is plotted.

Delivery cost To compare the cost for the three protocols we look at the
total cost in terms of transmitted messages per end-to-end message (Figure
5.4a), and the number of transmitted messages to only deliver the forward
message (and not the acknowledgement). The latter evaluates how well the
protocol determines the best available route; the fewer messages are required
to reach the destination, the better the route is (Figure 5.4b).

The total cost for RT-AODV to deliver and acknowledge a message is rather
high. The number of required messages varies from 2 times the network diam-
eter for the smallest network to 3 times the network diameter for the largest
network (Figure 5.4c). NST-AODV requires a minimum number of transmis-
sions to deliver a message to its multi-hop destination; slightly more transmis-
sions than the number of hops are required. This indicates that reliable and
short routes are determined by the routing protocol. CTP requires a larger
number of transmissions to deliver a message: 1.26 to 1.75 transmissions per
hop.

When we compare the total delivery cost for RT-AODV to the other two
protocols, we see that it has almost doubled (Figure 5.4a). Most of this
increase is due to the acknowledgement that has to travel the complete route
back to the source. For the larger networks, overhead also starts to count.
Figure 5.4c shows cost relative to the network diameter; the acknowledgement
is left out for RT-AODV (norm.). The increase from 1 to 1.5 transmissions
per hop is partly caused by increased overhead (Table 4.2).

The cost to deliver the message to its destination, not counting the acknowl-
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edgement, is very close to the minimum for NST-AODV. RT-AODV is very
close. CTP is using much more transmissions than the other two protocols
(Figure 5.4b).

If we compare the results from the RT-AODV experiment with a higher
bandwidth of 125 kbaud, we see that delivery costs have severely decreased.
Figure 5.4a and Figure 5.4c show that RT-AODV is very competitive to CTP.
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Chapter 6

Conclusions and future work

The motivation for this MSc thesis project is the need of SOWNet Technolo-
gies for a reliable transport protocol for wireless sensor networks. Part of the
requirement is that the protocol must be able to deliver an individual message
(i.e. no bulk transport: a message that is not part of a stream or block). Pre-
vious work does not include end-to-end acknowledgements; reliable transport
for WSNs mainly consists of negative acknowledgement mechanisms, which
are only suited for bulk transport.

Our solution, called RT-AODV, treats each message on its own. The reac-
tive any-to-any routing protocol NST-AODV is used to deliver messages to
their multi-hop destination. If a message is delivered to its destination, an
end-to-end acknowledgement is sent back to the source. If it takes too long
for an acknowledgement to be received by the source, a timeout is fired and
the message is retransmitted. If the maximum number of retransmits has
been reached, delivery has failed. The goal of our solution is twofold: provide
guaranteed delivery for an individual message, and provide the means to do
reliable reconfiguration for single nodes.

We have made improvements to NST-AODV to enhance its robustness,
and made additions to include a statistical link-estimator, loop detection, and
route monitoring. On top of NST-AODV we have implemented an end-to-end
acknowledgement mechanism with timeouts and retransmissions.

To evaluate RT-AODV we have done a proof of concept implementation on
the testbed of the Embedded Software group of Delft University of Technology.
To be able to evaluate our work on a larger scale, with a longer duration, and
with respect to other protocols, we have done TOSSIM simulations. We have
compared RT-AODV to NST-AODV and the Collection Tree Protocol. The
remainder of this section draws conclusions on the used techniques and the
outcome of the performed experiments.

Conclusions We have used an any-to-any routing paradigm to deliver mes-
sages from all nodes to the sink (i.e. data collection). The sink requires a

39



40 Conclusions and future work

route to the source of each message to deliver an acknowledgement. To be
able to reach each node in the network, a routing table entry is required for
each forwarding node in the network. This requires a fair amount of state
for each node. Due to advances in microcontrollers, more and more RAM
becomes available, and maintaining more state is less of a problem. If larger
networks are required, for which the amount of state cannot fit in RAM, we
can look for hybrid solutions of source routing and hop-by-hop routing, as is
discussed below.

The use of end-to-end acknowledgements increases the delivery cost, in
terms of required messages, by a factor of two. This is a direct implica-
tion of end-to-end acknowledgements; we need to send a data message to the
destination, and an acknowledgement message back to the source. This makes
end-to-end acknowledgements an expensive approach to reliable transport.

The overall performance of RT-AODV is good. It operates very stable under
typical conditions. If the complete network, or a part of the network, cannot
transmit messages due to radio jamming, this leads to failed messages. This
is something that any protocol would suffer from. After the network jamming
is over, the network quickly stabilises.

Network setup time is low. This is the period when nodes start to transmit
their first messages, and no routes are available yet. Some of the first messages
fail and require more retransmissions. After a few minutes, when all routes
are established, the network becomes stable and messages are delivered and
acknowledged after the first or second transmission.

Compared to CTP, RT-AODV provides a much better delivery ratio at
a significant cost increase. As noted before, this is a direct consequence of
using end-to-end acknowledgements. Compared to NST-AODV, RT-AODV
delivers the same ratio of messages to the destination. With respect to NST-
AODV and CTP, the acknowledgement mechanism is the major strength of
RT-AODV. If an acknowledgement has been received, the source can tell for
sure that the message has been delivered to the destination.

We conclude that any-to-any routing and end-to-end acknowledgements are
a good approach for reliable transport in low bandwidth and low resource
networks like WSNs.

Future work Future research in reliable transport for wireless sensor net-
works could include a hybrid solution of source routing and hop-by-hop rout-
ing. An approach to reduce the overhead of end-to-end acknowledgements can
start off from a single-hop acknowledgement protocol that is combined with a
negative-acknowledgement flooding mechanism.

Routing To decrease the routing table size that is required to address
all nodes in the network, we could introduce source routing for the first few
hops of each route that originates from the sink.
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For this approach, the sink maintains the first few hops for each destination.
This might require specialised hardware, as more memory is required to store
those routes. If the first few hops are maintained on the sink node the close
neighbours of the sink do not need to maintain routes to a large part of the
network. This decreases the memory required for the routing table. The
last few hops can be included in the message header, and updated at each
transmission. All nodes maintain a route to the sink; it only costs a single
routing table entry for the complete network. When a message is received by
the sink, it records the last hops as the start of the route to the source of
the message. When the message reaches the end of the route that is provided
in the header, the current node can send over the its known route to the
destination, or start a route request if no route is available.

This mechanism only works if the connection is initialised by a node that
wants to transmit to the sink. When the sink initialises a connection to a
sensor node for which it has not received any messages, it does not have a
route to that destination. Some sort of route discovery is required to reach a
node that does have a valid route. We can use a route discovery mechanism
like it is implemented in NST-AODV. If the destination is reached, a route
reply is send back to the sink over the same route as the route request, and
records its last few hops. Upon reception of the route reply by the sink, it
records the start of the route, and a valid route to the destination has been
created.

This approach is a trade-off between an increase in routing table size (hop-
by-hop routing) and an increase in message size (source routing). An advan-
tage is that only a single node (the sink) requires additional memory (flash or
RAM) to store the start of each route.

Reliable transport The overhead that is introduced by end-to-end ac-
knowledgements is quite high; it takes up almost half of the delivery cost per
message. A reliability protocol that only compromises slightly on guaranteed
delivery, but has a heavily reduced overhead, is a good subject for future
research.

We can leave out end-to-end acknowledgements if there is only a small
number of messages that is not delivered with the first transmission. Then
only a small number of failed deliveries remains, for which a failure message
has to be delivered back to the source. This message must be delivered with
very high probability to provide reliable transport. Failures can be detected
at forwarding nodes when they do not have a route to forward the message to
the destination. The number of failure messages will be relatively small; the
increase in overall delivery cost due to an expensive delivery method will be
small. One can think of a reliable form of flooding or gossipping to deliver the
message. Direct neighbours can require an acknowledgement from the source
node.
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If a failure message reaches the source, it can retransmit the message with
a request for an end-to-end acknowledgement. If a node notices network of
delivery problems in its vicinity, there might be a higher probability for its
own messages to fail as well. Under those conditions, a node can request to
receive an end-to-end acknowledgement for a message.

This approach can heavily reduce the overhead that is introduced by end-
to-end acknowledgements.
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