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Chapter 1

Introduction

This thesis focuses on large deviations and parameter estimations for diffusion pro-
cesses with small noise. In the real world, the small noise environment is often con-
sidered ideal due to the inevitability of random noise. By reducing the impact of
noise, the law of large numbers (LLN) provides a theoretical basis for understanding
the behavior of complex systems as they evolve. The LLN suggests that, despite
the existence of random noise, the average behavior of the system converges to the
expected behavior over time.

Based on the above analysis, small noise for a system is needed in real applications.
In this thesis, we mainly:

• prove large deviation principles for slow-fast processes, where the slow process is
a class of diffusion processes with small noise, and the fast process is a switching
process;

• prove the consistency and asymptotic normality of estimators for small noise
diffusion processes.

In the following, we start with the law of large numbers, the central limit theorem,
and the large deviations theory of random variables.

1.1 Classical probability limits

Probability theory is a branch of mathematics that investigates the probabilities asso-
ciated with random phenomena. Random phenomena refer to objective events where
the outcome cannot be predetermined by individuals; instead, these events can result
in any one of multiple possible outcomes.

1



2 Introduction

In both the natural world and human society, there are numerous random phenomena.
For example, when tossing a coin, it may land on heads or tails; when measuring the
length of an object, different results may be obtained due to variations in instruments
and environmental factors; when manufacturing light bulbs under the same produc-
tion conditions, the lifespan of the bulbs may vary. All these instances represent
random phenomena.

In fact, people have gradually realized through long-term practical experience that
although the occurrence of an event in an experiment is accidental, a large number
of repeated experiments under the same conditions show obvious regularity. This
is because the random errors of each trial will cancel each other out by averaging
over multiple repetitions. For example, if an unbiased coin is tossed many times, the
frequency of heads coming up gradually approaches the probability 1/2 as the number
of flips increases; when the length of the same object is measured many times, the
average value of the measurement results gradually approaches the true length of the
object with the increase of the number of measurements. The (strong) law of large
numbers and the central limit theorem are results that describe and demonstrate
these regular events (i.e., frequencies close to the mean).

In the simplest setup, we first consider mutually independent and identically dis-
tributed (i.i.d.) random variables X1, X2, . . . on the probability space (R,B(R),P).
Its mean and standard deviation are u and σ, respectively. For each n, let

Sn =

n∑
i=1

Xi (1.1)

represent the sum of random variables X1, X2, . . . , Xn. The average 1
nSn represents

the frequency of events occurring.

The Strong Law of Large Numbers (SLLN) states that the average of many indepen-
dent samples is close to the mean of a single sample:

• strong law of large numbers

1

n
Sn → u P− a.s. as n→ ∞.

Compared with the SLLN, the Central Limit Theorem (CLT) further considers the
deviations between the average of multiple independent samples and the mean of a
single sample:

• central limit theorem

√
n

(
1

n
Sn − u

)
⇒ σN(0, 1) in law w.r.t. P as n→ ∞.

In contrast, the Large Deviation Principle (LDP) quantifies deviations at a large
distance occurrence thus being rare events (i.e., frequencies far from the mean):
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• large deviation principle

P
(
1

n
Sn ≈ γ

)
∼ e−nI(γ), γ ̸= u,

where
I(γ) = sup

λ∈R
{λγ − logM(λ)} (1.2)

and M(λ) = E[eλX1 ], λ ∈ R, is the moment generating function of X1. The
LDP mentioned above is Cramér theorem; see [DZ98, Theorem 2.2.3] for the
proof.

The LDP describes events where the average of many independent samples diverges
from the mean of a single sample at an exponential rate, which is the probability of
rare events. Precisely calculating the probability of these rare events is crucial in the
fields of statistics, information theory, statistical physics, financial mathematics, and
so on.

1.2 Random walks and Brownian motions

In the previous section, we provided a framework for the emergence and description
of classical probability limits: SLLN, CLT, and LDP for random variables. However,
many random phenomena evolve, such as fluctuations in stocks and exchange rates,
sound signals, video signals, body temperature changes, and so on. This evolution
can be described by stochastic processes. Continuous time stochastic processes can
be divided into continuous time stochastic processes with discrete states, random
walks, and continuous time stochastic processes with continuous states, Brownian
motion. Random walks and Brownian motion are essential concepts in probability
theory. They have numerous applications across various fields and provide a basis for
understanding the behavior of stochastic processes.

A simple random walk describes the movement of a particle that moves randomly in
any direction with equal probability. It is also known as a drunkard’s walk. Simple
random walks have many applications in computer science, where they are used to
model the behavior of random algorithms and the spread of computer viruses.

Brownian motion is the most famous stochastic process coming from physical phe-
nomena. Let us begin with an overview of the development of Brownian motion.

In 1827, Robert Brown, a British botanist, observed under a microscope that pollen
particles suspended in water were constantly moving in irregular motion. Although
the phenomenon had been observed before, Brown was the first to conduct a system-
atic scientific study of it. Therefore, this movement came to be known as Brownian
motion.

Some 50 years later, in 1877, Joseph Delsaulx correctly pointed out that Brownian
motion is caused by particles suspended in a liquid being unbalanced by the collisions
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of surrounding molecules. But this is just a description, not a theory, and not exper-
imentally proven. It was not until 1905 that Einstein published the paper “On the
movement of small particles suspended in stationary liquids required by the molecular-
kinetic theory of heat” [Ein05], which was the first theoretical and quantitative study
of Brownian motion. Informally, he described Brownian motion as

dX(t) = “Γ(t)dt”, (1.3)

where Γ(t) represents the “swelling and falling force” of a unit mass of pollen particles
when colliding with liquid molecules.

On the one hand, French physicist Langevin and others found that using Einstein’s
Brownian motion model (1.3) to describe the random movement of tiny pollen par-
ticles observed by Brown in liquid was not entirely satisfactory. In 1908, three years
after Einstein’s landmark paper, Langevin published another groundbreaking paper.
In this paper, he summarized Einstein’s theory and developed a new equation to
describe Brownian motion:

dX(t) = −θX(t)dt+ “Γ(t)dt”, (1.4)

where θ represents the damping coefficient per unit mass, and X(t) is the speed which
a particle moves in the liquid.

On the other hand, although Einstein did not develop a general theory of Brown-
ian motion, his work influenced American mathematician Norbert Wiener. In 1923,
Wiener constructed a stochastic process, W (t), based on Einstein’s equation to de-
scribe Brownian motion, also known as the Wiener process. It is uniquely determined
by the following characteristics:

(1) W (t)−W (s) and {W (r)}0≤r≤s are independent;

(2) The law of W (t)−W (s) is N(0, t− s) for t > s.

Wiener thus determined the distribution of Brownian motion, giving rise to theWiener
measure. It is a probability measure on the path space C([0,∞);R), supported on
the set of trajectories that are everywhere continuous but nowhere differentiable.

In mathematics, we can replace “Γ(t)dt” in (1.3) and (1.4) to be dW (t). Hence, we
get

dX(t) = dW (t)

and

dX(t) = −θX(t)dt+ dW (t), (1.5)

respectively. The second equation is the prototype of the stochastic differential equa-
tion, named Ornstein-Uhlenbeck (OU) process.
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1.3 Limit theorems of random walks

In this section, we aim to extend the limit theorems for random variables discussed
in Section 1.1 to the context of random walks, in parallel.

Recall the definition of Sn defined in (1.1), similarly define the stochastic process

S⌊nt⌋ =

⌊nt⌋∑
i=1

Xi, t ≥ 0

where ⌊nt⌋ is the integer part of nt. The process {S⌊nt⌋ : t ≥ 0} records the discrete-
time random walk {Sn : n = 0, 1, 2 . . .} on a continuous time scale such that in one
unit (t = 1) of continuous time there will be the contribution from n discrete time
units.

In this setting, for S⌊nt⌋, we have the Functional Strong Law of Large Number (FS-
LLN):

• functional strong law of large number
For t ≥ 0,

1

n
S⌊nt⌋ → ut, P− a.s. as n→ ∞.

We further know the associated CLT, and start to short analysis before we give

the results. We scale random walk S⌊nt⌋ to X(n)(t) = 1√
n
S⌊nt⌋. The process X

(n)
t =

1√
n
S⌊nt⌋ further scales distance in such a way that one unit of distance in the new scale

equals
√
n spatial units used for the random walk. This is a convenient normalization

since (for large n)

E(X(n)(t)) = 0, V(X(n)(t)) =
⌊nt⌋σ2

n
≈ σ2t.

Since the sample paths of X(n) = {X(n)(t) : t ≥ 0} have jumped (though small for
large n) and are, therefore, discontinuous, it is technically more convenient to linearly
interpolate the random walk between one jump point and the next, using the same
space-time scales as used for {X(n)(t) : t ≥ 0}. The resulting polygonal process
X̃(n) := {X̃(n) : t ≥ 0} is formally defined by

X̃(n) =
S⌊nt⌋√
n

+ (nt− ⌊nt⌋)
S⌊nt⌋ + 1

√
n

, t ≥ 0.

In this way, just as for the limiting Brownian motion process {X̃(n) : t ≥ 0} are
continuous, i.e. X̃(n) takes its values in the same space C([0,∞),R) as the Brownian
motion process.

Further quantifying the deviation between 1
nS⌊nt⌋ and ut, the result is named the

Function Central Limit Theorem (FCLT), also known as Donsker’s theorem; see
[Whi02, Theorem 4.3.2] for the proof.
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• functional central limit theorem
For t ≥ 0, define that

Sn(t) =
√
n

(
1

n
S⌊nt⌋ − ut

)
(1.6)

is the normalized partial sum process in D([0,∞),R)), then

Sn(t) ⇒ σW (t), as n→ ∞,

where W (t) is a standard Brownian motion.

There is a natural path space large deviation result for 1
nS⌊nt⌋, Mogulskii’s theorem,

see [DZ98, Theorem 5.1.2] for the proof. Let C([0, T ];R) denote the space of continu-
ous functions from [0, T ] to R, and let C0([0, T ];R) ⊆ C([0, T ];R) denote the subspace
of functions with value zero at time zero.

• large deviation principle
1
nS⌊nt⌋ satisfy LDP in C0([0, T ],R)

P
(
1

n
S⌊nt⌋ ≈ γ

)
∼ e−nI(γ), t ≥ 0,

where the rate function I(γ) =
∫ 1

0
I(γ̇t)dt. Here, γ̇t denotes the velocity of the

path γ at time t.

From FCLT, we know that Brownian motion is obtained by scaling random walks,
taking the limit after linear interpolation. If we replace the random walk with the
Brownian motion, we get a similar statement of limit theorems. The first one is
Schilder’s theorem; see [DZ98, Theorem 5.2.3].
Theorem 1.1 (Schilder’s theorem). The law of Xn(t) = 1√

n
W (t) satisfy LDP in

C0([0, T ];R)
P(Xn(t) ≈ γ(t)) ∼ e−nI(γ),

where

I(γ) =

{
1
2

∫ T
0
|γ̇(t)|2dt, if γ ∈ H1,

∞, else

is a good rate function, where H1([0, T ];R) ⊆ C0([0, T ];R) for the set of functions

γ ∈ C0([0, T ];R) which are absolutely continuous and which satisfy
∫ T
0
|γ̇(t)|2dt <∞.

Next, we remark that Schilder’s theorem can be extended to more general diffusion
processes. In the following result, the limit is taken as the scale of the noise goes to
zero, so these results are extremely useful in practical engineering situations where
one is interested in the long time behavior of dynamical systems in the small noise
regime. For the sake of completeness, we state it now:
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Theorem 1.2 (Freidlin-Wentzell, Theorem 5.6.3 in [DZ98]). Let u : R → R be a
Lipschitz function, write {Xn(t)}t∈[0,T ] for the solution to the SDE

dXn(t) = u(Xn(t))dt+
1√
n
dW (t). (1.7)

Then, the law of Xn(t) satisfy LDP in C0([0, T ];R)

P(Xn(t) ≈ γ(t)) ∼ e−nIu(γ),

where

Iu(γ) =

{
1
2

∫ T
0
|γ̇(t)− u(γ(t))|2dt, if γ ∈ H1

∞, else

is a good rate function.

From the results of the Schilder and Fredlin-Wentzell theorems, we derive rate func-
tions of having the general form

I(γ) =

∫ T

0

L(γ(t), γ̇(t))dt. (1.8)

The map L : R×R → [0,∞] that appears in the rate function is called the Lagrangian.
If a process Xn(t) satisfies a large deviation principle with a Lagrangian rate func-
tion, then its limiting dynamics can be determined by solving L(x(t), ẋ(t)) = 0. For
example, L(x, v) = 1

2 |v|
2 is independent of x in Schilder’s theorem, and L(x, v) =

1
2 |v − u(x)|2 is used in the Fredlin-Wentzell theorem. The limiting dynamics are
ẋ(t) = 0 and ẋ(t) = u(x), respectively.

Initially, the Schilder and Fredlin-Wentzell theorems studied the large deviations of
simple stochastic differential equations. Motivated by this, many researchers have ex-
tended their work to more complex stochastic differential equations. In the following,
we will further extend the discussion to the case of slow-fast processes.

1.4 Large deviations

1.4.1 Large deviations for simple slow-fast processes

In the previous section, we have seen that the study of large deviations for complex
stochastic differential equations is quite mature. However, many natural phenomena
vary over multiple time scales where an interplay between slow and fast processes
generates complex behavior. Some examples can be seen in weather modeling, the
stock market, physiological rhythms, and pituitary cells. These examples refer to
systems with multiple time scales, which motivated us to study the large deviation of
slow-fast processes.
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To perform mathematical analysis, we introduce a switch in (1.7), we study a special
class of dynamical systems of the form:

dXn(t) = u(Xn(t),Λn(t))dt+
1√
n
dW (t) (1.9)

with Λn(t) a jump process flip between states

−1 → 1, 1 → −1, at rate n. (1.10)

In general, the limiting dynamics of (1.9) is characterized by the averaging principle.
The application of this averaging principle provides an effective method to reduce
computational complexity. It can be viewed as a variant of the law of large numbers.

To explain the average principle in our setting, when n→ ∞, the noise in (1.9) going
away, we expect Xn(t) converge to the solution of an ordinary differential equation
(ODE). Because of the separation of time scale, we assume that the fast process Λn(t)
equilibrates at π∗ = 1

2 (δ−1 + δ1), and then have Xn(t) → x where x = x(t) is the
solution of an ODE satisfying that

ẋ(t) =
1

2
u(x(t),−1) +

1

2
u(x(t), 1).

To characterize that Xn(t) goes beyond the limit x, we do LDP. Without loss of
generality, suppose that Λn(t) remains stationary in a fixed state z. At this time, by
the Freidlin-Wentzell, Theorem 1.2, we first have large deviation:

P[Xn ≈ γ] ∼ exp

{
−n
∫ ∞

0

1

2
|γ̇(t)− u(γ(t), z)|2dt

}
.

Secondly, we have Donsker-Varadhan large deviations for the empirical measure of
Λn(t):

P
[∫ 1

0

δΛn(t)dt ≈ π

]
∼ exp {−nI(π)}

with the rate function

I(π) = − inf
ϕ>>0

∫
Aϕ

ϕ
dπ,

where
Aϕ(1) = ϕ(−1)− ϕ(1), Aϕ(−1) = ϕ(1)− ϕ(−1)

is the generator of jump process of (1.10). Define v : {−1, 1} → R. We want to
produce the speed v while being at x for the LDP of Xn(t). Suppose fast process
equilibrates at π = (π(−1), π(1)) ̸= π∗, satisfying π(−1)v−1 + π(1)v1 = v.

For z = −1, we know that the rate is 1
2π(−1)|v − u(x,−1)|2, and for z = 1, we know

that the rate is 1
2π(1)|v − u(x, 1)|2. So the cost would be

1

2
π(−1)|v − u(x,−1)|2 + 1

2
π(1)|v − u(x, 1)|2.
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Then we assume that if at −1 produce v−1, if at 1 produce v1. In this case, let
1
2v−1 +

1
2v1 = v. Then the cost of obtaining v allows us to optimize over all choices

v−1, v1:

inf
1
2 v−1+

1
2v1=v

{
1

2
π(−1)|v − u(x,−1)|2 + 1

2
π(1)|v − u(x, 1)|2

}
.

Finally, at the Freidlin-Wentzell large and Donsker-Varadhan large deviations com-
pete at the same scale, we have

P[Xn(t) ≈ γ(t)] ∼ e−nJ(γ)

where the rate function is

J(γ) =

∫ ∞

0

inf
π
{Lπ(γ(t), γ̇(t)) + I(π)}dt, (1.11)

with

Lπ(x, v) = inf

{
1

2

∫
|v(z)− u(x, z)|2π(dz)

∣∣∣∣ ∫ v(z)π(dz) = v

}
.

Based on the above idea, we can further study the LDP of more complex slow-fast
systems in the thesis.

(1) The Cox–Ingersoll–Ross processes with fast switching

Let us first mention some works related to the large deviation of slow and fast sys-
tems. The remarkable work of Feng and Kurtz [FK06] consists of combining the tools
of probability, analysis, and control theory used in the works of de Acosta [dA97],
Dupuis and Ellis [DE97], Evans and Ishii [EI85], Fleming [Fle78], Fleming [Fle85],
Fleming [MYZ99], Puhalskii [Puh94], and others to propose a general strategy for the
study of large deviations of processes. Feng, Forde, and Fouque in [FFF10] studied
the LDP of the Heston stochastic volatility model in the regime in which the matu-
rity is small but large compared to the mean-reversion time of the stochastic volatility
factor. Subsequently, Feng, Fouque, and Kumar in [FFK12] established a large devi-
ation principle for general stochastic volatility models in the two regimes of fast and
ulta-fast mean-reversion, and we derive asymptotic smiles/skews. After that, Huang,
Mandjes, and Spreij studied in [HMS16] large deviations for Markov-modulated dif-
fusion processes with rapid switching. In [PS24], Peletier and Schlottke proved the
pathwise LDP of switching Markov processes by exploiting the connection between
Hamilton-Jacobi (HJ) equations and Hamilton-Jacobi-Bellman (HJB) equations. In
[KS20], Kraaij and Schlottke studied the LDP for the slow-fast system under regular
conditions, where the fast process is a switching process. For the proof, they used the
Bootstrapping procedure, which is a technology for comparison principle of the HJB
equation. Later, Della Corte and Kraaij [DCK24] continued to explore LDP in the
context of molecular motors modeled by a diffusion process driven by the gradient
of a weakly periodic potential that depends on an internal degree of freedom. The
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switch of the internal state, which can freely be interpreted as a molecular switch, is
modeled as a Markov jump process that depends on the location of the motor.

However, as mentioned earlier, all the work mainly considered LDP in a compact
setting. We now consider a singular case that causes the noncompact domain of the
slow process. The basic Cox-Ingersoll-Ross (CIR) model is a diffusion equation on
(0,∞) with singularity at 0. Because of this, Euclidean techniques to study the large
deviation principle fail, as has been exhibited in [DFL11]. Instead, the authors in
[DFL11] take a Riemannian point of view to perform the analysis of the associated
Hamilton-Jacobi equation. Thus, working with the more involved model with a switch
taking possibly many values, the analysis is expected to involve techniques arising
from Riemannian geometry.

Therefore, in the Chapter 3, the following CIR process with fast switching is treated
to investigate large deviations of solutions.

Let E = (0,∞) and S = {1, 2, . . . , N}, N <∞. The CIR processes with fast switching
on E × S are described as{

dXε
n(t) = η(µ(Λεn(t))−Xε

n(t))dt+ n−
1
2 θ
√
Xε
n(t)dW (t),

(Xε
n(0),Λ

ε
n(0)) = (x0, k0) ∈ E × S,

(1.12)

where the fast process Λεn(t) is a switching process with transition rate 1
εqij(x) on a

set S,

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

(1.13)

for small ∆ > 0, i, j ∈ S, x ∈ E, and ε > 0 is a small parameter. Obviously, (1.12)
and (1.13) together is a slow-fast system.

Then, formally the large deviation principle with speed n holds for Xε
n(t) with a good

rate function J having the same form as in (1.11),

J(γ) =

∫ ∞

0

inf
π
{Lπ(γ(t), γ̇(t)) + I(π)}dt (1.14)

and

Lπ(x, v) = inf

{
|v − η(µ(i)− x(t))|2

2θ2x(t)
π(dz)

∣∣∣∣ ∫ v(z)π(dz) = v

}
.

where

I(π) = − inf
g≫0

∫
Rxϕ

ϕ
dπ,

where Rx is the generator of a state-dependent switching:

Rxg(z) =
∑
j∈S

qzj(x) (ϕ(j)− ϕ(z)) .
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(2) The diffusion processes with fast switchings on complete Riemannian
manifolds

Until now, the extensive results on LDPs for slow-fast systems are on Euclidean space,
there is not much work on the Riemannian manifold. Röckner and Zhang [RZ04]
studied sample path large deviations for diffusion processes on configuration spaces
over a Riemannian manifold. Kraaij, Redig, and Versendaal [KRV19] generalized
classical large deviation theorems to the setting for complete, smooth Riemannian
manifolds. However, they focused on the simple setting of random walks rather than
slow-fast systems. Versendaal [Ver21] studied large deviations for Brownian motion
in evolving Riemannian manifolds. Based on existing research results, in Chapter 4,
we further prove the LDPs of the diffusion processes with fast switchings on complete
Riemannian manifolds. If the Riemannian manifold is not complete, the CIR process
with fast switching is a special case. This can be explored in future work.

Let M be a Riemannian manifold. If we do not care about the completeness of
Riemannian manifold. Define E : E × S → (−∞,+∞]. The functional E is smooth
and finite on E. Working in the natural global chart, we can define a Riemannian
metric using g(x) = x−1, or equivalently ⟨v, w⟩g(x) = 1

xvw on the tangent bundle at
x. In this setting, The model we deal with below is an extension of (1.12). That is,
when fixed z, we get

b(x, z) := gradE(x, z) = g−1(x)E ′(x, z) = η(µ(z)− x),

if we set E(x, z) = η[µ(z) log(x)− x+ µ(z)− µ(z) logµ(z)].

Based on the above analysis, in Chapter 4, we are considering a stochastic differential
equation on M × S with initial value (x0, k0):

dXε
n(t) =

1√
n
uεn(t) ◦ dW (t) + b(Xε

n(t),Λ
ε
n(t))dt,

where Λεn(t) is a switching process with transition rate 1
εqij(x) on a finite set S,

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

for small ∆ > 0, i, j ∈ S, x ∈ M , and ε > 0 is a small parameter. uεn(·) is a unique
element such that Xε

n(t) = puεn(t), where p : O(M) →M is a projection map. Precise
details and conditions of this system will be specified later. Then we get LDP with
the rate function having the form (1.14). But the proof on a Riemannian manifold
should be careful, especially if we want to get some global properties on M .

1.5 Parameter estimations

The asymptotic properties of stochastic differential equations are studied to under-
stand the long time behavior of the solutions. As one of the asymptotic properties,
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large deviations have been discussed earlier. However, if there are unknown param-
eters in the coefficients of stochastic differential equations, it is necessary to study
the asymptotic properties of the parameters. For example, we assume that u is an
unknown parameter in the OU process:

dX(t) = −θX(t)dt+ dW (t). (1.15)

Many scholars have studied the asymptotic properties of parameter estimators from
the perspective of statistics. Specifically, they focus on two key asymptotic properties
of parameter estimators: consistency and asymptotic normality.

Before we give the definition of consistency, we introduce why consistency is crucial.
In general, θ is commonly used to represent parameters, and the set of all possible
values of parameter θ is called the parameter space, which is represented by Θ.

As we all know, a point estimate is a statistic, so it is a random variable. Under the
condition of a certain sample size, it is impossible to ask it to be exactly equal to
the true value of the parameter. But if we have enough observations, according to
the Glivenko-Cantelli theorem, as the sample size increases, the empirical distribu-
tion functions approximate the true distribution functions. Therefore, it is perfectly
reasonable to ask the estimator to approximate the true value of the parameter as
the sample size continues to increase. This is consistency, which is defined as follows:
Definition 1.3 (Consistency). Let θ ∈ Θ is a unknown parameter, θ̂n = θ̂n(x1, x2, . . . , xn)

is a parameter estimator of θ, n is sample size. We call θ̂n consistency for θ if any
ε ≥ 0,

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0.

Consistency is considered to be one of the most basic requirements for estimation. If
an estimator fails to achieve any specified level of precision in estimating the parameter
as the sample size increases, it becomes highly questionable. Generally, estimates that
do not meet the compatibility requirements are disregarded.

The next question of interest concerns the order at which the discrepancy θ̂n− θ con-
verges to zero after having consistency. The answer depends on the specific situation,
but for estimators based on n replications of an experiment the order is often 1/

√
2.

Then multiplication with the inverse of this rate creates a proper balance, and the
sequence

√
n(θ̂n − θ) converges in distribution, most often a normal distribution.

Definition 1.4 (Asymptotic normality). An asymptotically normal estimator θ̂n of
parameter θ is said to be asymptotically normal if there exists a sequence of nonneg-

ative constants σn(θ) tending to zero, such that θ̂n−θ
σn(θ)

converges in distribution to the

standard normal distribution. In this case, θ̂n is also said to follow an asymptotic
normal distribution N(θ, σ2(θ)).

By studying the consistency and asymptotic normality of parameter estimators, the
estimation and inference of parameters in stochastic differential equations can be more
fully understood, thus improving the ability to predict long-term behavior.



1.6. Least squares estimation 13

1.6 Least squares estimation

Based on the theory of parameter estimation of random variables, we consider the
parameter estimation of stochastic differential equations. The literature primarily
adopts two methods for estimating drift parameters in stochastic differential equa-
tions: the first one is maximum likelihood estimation (MLE) based on the Girsanov
transformation. For example, Prakasa Rao [PR83], Liptser and Shiryaev [LS01]. The
second one is the least squares method (LSE); see Le Breton [LB76] and Kasonga
[Kas88]. It turns out that when the driving is Brownian motion or a general square-
integrable process, both LSE and MLE are applicable, and LSE has strong consistency
under certain conditions.

1.6.1 LSE for linear drift SDEs

To prepare for the questions considered in this thesis, we begin with the linear drift
SDEs, the OU process (1.15), using the least squares method. For fixed T > 0,

dXε(t) = −θXε(t)dt+ εdW (t), (1.16)

where θ is the unknown parameter to be estimated. We assume that θ can be es-
timated be continuous observation {Xε(t)}0≤t≤T . The Brownian motion stands for
the stochastic error. We set the zero initial value for later analysis.

To explain the least squares technique for (1.16) we formally write

Ẋε(t) = −θXε(t) + εẆ (t),

where ḟ(t) denote derivative with respect to time and we minimize

1

ε2

∫ T

0

|Ẋε(t) + θXε(t)|2dt

=
1

ε2

[∫ T

0

(Ẋε(t))2dt+ 2θ

∫ T

0

Xε(t)dXε(t) + θ2
∫ T

0

(Xε(t))2dt

]
.

It is a quadratic function in terms of θ. The minimizer can be explicitly represented
by

θ̂ε = −
∫ T
0
Xε(t)dXε(t)∫ T

0
(Xε(t))2dt

,

we call it the least squares estimator. To show the least squares estimator θ̂ε converges
to the real value θ0 satisfying dX0(t) = −θ0X0(t)dt, we have

θ̂ε − θ0 = −
∫ T
0
Xε(t)dXε(t)∫ T

0
(Xε(t))2dt

− θ0

(1.16)
= θ − θ0 −

ε
∫ T
0
Xε(t)dW (t)∫ T

0
(Xε(t))2dt

.

(1.17)
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When ε→ 0, from (1.17) we have the consistency

θ̂ε → θ0.

We proceed to consider the asymptotic normality by rescaling θ̂ε − θ0 by ε−1, from
(1.17) we have

ε−1(θ̂ε − θ0) = ε−1(θ − θ0)−
∫ T
0
Xε(t)dW (t)∫ T

0
(Xε(t))2dt

,

where
∫ T
0
Xε(t)dW (t) is a stochastic integral. When ε→ 0, we have

ε−1(θ̂ε − θ0) → −
∫ T
0
X0(t)dW (t)∫ T

0
(X0(t))2dt

, (1.18)

which means that the least squares estimator is asymptotic normality.

However, we assume that the OU process can be observed continuously in time. This
assumption is not always appropriate and impossible to achieve in practice. In addi-
tion, the OU process is a stochastic differential equation with linear drift concluding
unknown parameters, which can earlier get the explicit least squares estimator.

1.6.2 LSE for nonlinear drift SDEs

In this section, we will explore the behavior of least squares estimators in the context
of nonlinear stochastic differential equations. We begin by introducing the following
process: for fixed T > 0,

dXε(t) = b(Xε(t), θ)dt+ εdW (t), (1.19)

where b : Rd ×Θ → Rd is nonlinear about θ. We further restate (1.19) to

Ẋε(t) = b(Xε(t), θ) + εẆ (t).

In this case, the quadratic function is described by

Ψε(θ) =

∫ T

0

|Ẋε(t)− b(Xε(t), θ)|2dt, (1.20)

and is called contrast functions in parameter estimation theory. Similarly, the min-
imum value of Ψε occurs when the derivative is zero. However, in the nonlinear

system, the derivatives dΨε(θ)
dθ are functions of both the independent variable and the

parameters, and these derivative equations do not have a closed solution in general.
Instead, given an initial value, then the parameters are refined iteratively, that is, the
values are obtained by successive approximation.

Numerical analysis is the study of algorithms that use numerical approximation for
the problems of mathematical analysis. Euler-Marayama (EM) scheme is a simple
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numerical method for stochastic differential equations. Without loss of generality,
one may assume that there exists a sufficiently large integer n > 0 such that the
stepsize

δ :=
T

n
∈ (0, 1).

Now, for k = 1, 2, . . . , n, we introduce the following EM scheme form of (1.19)

Y ε((k + 1)δ) = Y ε(kδ) + b(Y ε(kδ), θ)δ +∆Wk,

where ∆Wk :=W ((k+1)δ)−W (kδ). Hence, the contrast function (1.20) is discreted
and becomes the finite sum

Ψn,ε(θ) = δ−1
n∑
k=1

F ∗
k (θ)Fk(θ),

where
Fk(θ) := Y ε((k + 1)δ)− Y ε(kδ)− b(Y ε(kδ), θ)δ.

The next goal is that how to find a θ̂n,ε such that Ψn,ε(θ) taking the minimum value,
namely,

Ψn,ε(θ̂n,ε) = min
θ∈Θ

Ψn,ε(θ) or θ̂n,ε = argmin
θ∈Θ

Ψn,ε(θ).

Clearly, due to the nonlinearity of b, it is not possible to derive an explicit expression
for θ̂n,ε. This poses challenges in proving consistency and asymptotic normality. To
address this issue, we first introduce theorem 5.9 in [vdV98] to prove the consistency

of θ̂n,ε. Without changing the notation, we emphasize it here.
Theorem 1.5 (Theorem 5.9 in [vdV98]). Let Ψn be random vector-valued functions
and let Ψ be a fixed vector-valued function of θ such that for every ε > 0

sup
θ∈Θ

∥Ψn(θ)−Ψ(θ)∥ P→ 0, (1.21)

inf
θ:d(θ,θ0)≥ε

∥Ψ(θ)∥ > 0 = ∥Ψ(θ0)∥. (1.22)

Then any sequence of estimators θ̂n such that Ψn(θ̂n) = OP(1) converges in probability
to θ0.

Returning to our case, once we have established consistency, it becomes meaningful
to expand Ψn,ε around θ0 using a Taylor expansion. Informally, we have

Ψn,ε(θ̂n,ε) ≈ Ψn,ε(θ0) + (θ̂n,ε − θ0)∇θΨn,ε(θ0), θ ∈ Bθ0(θ̂n,ε).

This can be rewritten as

ε−1(θ̂n,ε − θ0) ≈
ε−1(Ψn,ε(θ̂n,ε)−Ψn,ε(θ0))

∇θΨn,ε(θ0)
.
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The numerator is asymptotically normal by the central limit theorem. The denomi-
nator is an average and can be analyzed by the law of large numbers. Together with
Slutsky’s lemma, these observations yield ε−1(θ̂n,ε− θ0) is asymptotic normality. For
the rigorous proof, it will be made in this thesis.

(3) The stochastic differential equations with Hölder drift

There are numerous results on parameter estimation for SDEs with regular drift under
various settings to support this point. In [WS16], maximum likelihood estimation was
used to study drift parameters in diffusion processes. As for more complex processes,
we refer to [WWMX16] and [Lon09], who investigated the maximum likelihood esti-
mation of McKean-Vlasov SDEs and studied the parameter estimation problem for
one-dimensional Ornstein-Uhlenbeck processes with small Lévy noise, respectively.
In particular, for considering a high-frequency sample of discrete observations of the
diffusion processes at time points, the following related works are crucial for param-
eter estimation; see, [FZ89, Yos92, Kes97, Lon09, DGCL18, AHPP23] and references
therein.

However, the above SDEs are all under the condition of regular coefficients, and
the problem of parameter estimation with irregular drift has not been well studied.
Motivated by this, in Chapter 5, we study the asymptotic property of stochastic
differential equations with singular coefficients. In detail, the singular coefficient is
the drift satisfying Hölder conditions as we will now describe.

We fix the time horizon T > 0. For the scale parameter ε ∈ (0, 1), we are interested
in the following SDE

dXε(t) = b(Xε(t), θ)dt+ ε σ(Xε(t))dW (t), (1.23)

where b : Rd×Θ → Rd, σ : Rd → Rd⊗Rd and (W (t))t≥0 is a d-dimensional Brownian
motion defined on the probability space (Ω,F ,P) with the filtration (Ft)t≥0 satisfy-
ing the usual condition. In (1.23), we assume that the drift b and the diffusion σ are
known apart from the parameter θ ∈ Θ. Then, as above mentioned, we establish con-
trast function and further get least square estimator θ̂n,ε = argminθ∈Θ Ψ(θ). Under
suitable conditions, the first result is that

θ̂n,ε → θ0 in probability.

Roughly speaking, ε−1(θ̂n,ε − θ0) is asymptotic normality, which is the second result.
Please see Chapter 5 for more details.

(4) The McKean-Vlasov stochastic differential equations with delay

In recent years, McKean–Vlasov stochastic differential equations (SDEs), also called
distribution-dependent or mean field SDEs, have received increasing attention for
their theoretical importance in characterizing nonlinear Fokker–Planck equations from
physics. On the other hand, SDEs have been developed as crucial mathematical tools
for modeling economic and financial systems. In the real world, the evolution of
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these systems is not only driven by micro actions (drift and noise), but also relies on
the macro environment (in mathematics, distribution of the systems). The McKean-
Vlasov SDE

dXε(t) = b(Xε(t),LXε(t), θ)dt+ ε σ(Xε(t),LXε(t))dW (t) (1.24)

is a kind of mathematical model, which can characterize the evolution of the phe-
nomenon.

With deep research, people also realize some facts that many phenomena around us do
not immediately generate an impact at the moment they occur and they exhibit some
degree of delay: individuals infected with the coronavirus may not display symptoms
such as fever and cough until two weeks later; when a driver encounters a sudden
situation and initiates emergency braking, it takes some time for the car to come to a
complete stop. This means that we should add delay elements in (1.24), then we get

dXε(t) = b(Xε(t),LXε(t), X
ε(t− τ),LXε(t−τ), θ)dt

+ε σ(Xε(t),LXε(t), X
ε(t− τ),LXε(t−τ))dW (t),

(1.25)

which is called McKean-Vlasov SDEs with delay. This is our aim process studying in
Chapter 6 if we use a simple notation, Xε(·) and LXε(·) are replaced by Xε

. and µε. ,
respectively.

dXε
t = b(Xε

t , X
ε
t−τ , µ

ε
t , µ

ε
t−τ , θ)dt+ ε σ(Xε

t , X
ε
t−τ , µ

ε
t , µ

ε
t−τ )dW (t).

We assume that the drift term b and the diffusion term σ are known apart from the
parameter θ ∈ Θ. Then we study the parameter estimation of θ in the same way
as above. The main difference is that when we construct the contrast function, we
need to discretize not only the time, but also need to discretize the distribution that
appears in (1.25) through empirical distribution

µε,Nt (dx) =
1

N

N∑
j=1

δXε,j,N
t

(dx), t ≥ −τ,

where Xε,j,N , j = 1, 2, · · · , N satisfying a stochastic interacting particle system which
can be described as

dXε,i,N
t = b(Xε,i,N

t , Xε,i,N
t−τ , µε,Nt , µε,Nt−τ , θ)dt+ εσ(Xε,i,N

t , Xε,i,N
t−τ , µε,Nt , µε,Nt−τ , θ)dW (t).

1.7 Goal and overview of the thesis

The thesis is divided into two parts:
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(I) Large deviations for slow-fast processes: this part starts with a mathematical
introduction of the strategy of large deviations for simple stochastic processes
in Chapter 2. Subsequently, it delves into the analysis of large deviations for
slow-fast processes in Euclidean space and Riemannian manifold settings, re-
spectively. This includes Chapters 3 and 4.

(II) Parameter estimations related to the study of consistency and asymptotic nor-
mality: this involves Chapters 5 and 6.

As mentioned above, in Chapter 2, we introduce a general strategy of large deviations,
namely the nonlinear semigroup method, which is frequently employed throughout
this thesis. The proof of this method relies on several key elements including op-
erator convergence, exponential tightness, comparison principle, and action-integral
representation.

In Chapter 3, we delve into the analysis of large deviations of Cox-Ingersoll-Ross
processes with fast switching, employing the nonlinear semigroup method introduced
in Chapter 2. However, the domain of CIR processes poses a challenge as it is a
noncompact space and singular at 0. To address this issue, the Lyapunov function is
introduced to stay away from the singularity points. Additionally, the Riemannian
metric allows for the proof of comparison principle. These measures help us facilitate
the analysis of large deviations.

We proceed with Chapter 4, where we consider a slow-fast system on a complete
Riemannian manifold. The setting gives us a complex Hamiltonian. We first find a
suitable Lyapunov function. Then the Riemannian metric with parallel transport to
prove the comparison principle. Finally, we prove the existence of a global solution
for a nonsmooth Hamiltonian.

Large deviation is a form of an asymptotic property. Now, we turn to consider other
asymptotic behavior parameter estimators, focusing on consistency and asymptotic
normality.

In Chapter 5, we explore a multi-dimensional stochastic differential equation with an
unknown parameter under the Hölder drift condition. Initially, we address the Hölder
drift using the Zvonkin transformation. The idea of the Zvonkin transformation is
to construct a one-to-one transformation that allows us to transition from a diffusion
process with a nonzero drift coefficient to a process without drift. Subsequently, we
establish the consistency and asymptotic normality of the least squares estimator
after using the Euler-Maruyama scheme. Additionally, we extend our analysis to the
setting of stochastic functional differential equations, where the discrete method is
replaced by the truncated Euler-Maruyama scheme.

In Chapter 6, we focus on parameter estimation for a McKean-Vlasov stochastic
differential equation with delay. Consequently, under more general conditions, we
derive the asymptotic properties of the least squares estimator.
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We provide a flow diagram in Figure 1.1 to illustrate the relationship between each
chapter.

Small

noise

Small

noise

Chapter 1
Introduction

Part I Large deviations

Chapter 2

A general idea of large deviations

Chapter 3
Singular and finite case

Chapter 4
Riemannian manifold case

Part II Parameter estimations

Chapter 5
SDEs case

Chapter 6
McKean-Vlasov SDEs case

Figure 1.1: Overview of the structure of this thesis
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Part I

Large deviations





Chapter 2

Large deviations of simple
stochastic processes

In Chapter 1, we provide an informal analysis of the ideas presented in the thesis.
Beginning with this Chapter, the content will adhere strictly to formal standards. We
commence by defining large deviations in Polish space.
Definition 2.1. Let {Xn}n≥1 be a sequence of random variables on Polish space X .
Furthermore, consider a function I : X → [0,∞]. We say that

• the function I is a rate function if the set {x ∈ X | I(x) ≤ c} is closed for every
c ≥ 0. The function I is a good rate function if the set {x ∈ X | I(x) ≤ c} is
compact for every c ≥ 0.

• the sequence {Xn}n≥1 is exponentially tight at speed n, if for every a ≥ 0, there
exists a compact set Ka ⊆ X such that

lim sup
n→∞

1

n
logP(Xn /∈ Kc

a) ≤ −a.

• the sequence {Xn}n≥1 satisfies the large deviation principle with speed n and
good rate function I if for every closed set F ⊆ X , we have

lim sup
n→∞

1

n
logP(Xn ∈ F ) ≤ − inf

x∈F
I(x),

and, for every open set U ⊆ X , we have

lim inf
n→∞

1

n
logP(Xn ∈ U) ≥ − inf

x∈U
I(x).

23
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Recall the Freidlin-Wentzell theorem discussed in Chapter 1, which motivates the
study of large deviations of stochastic differential equations. The classical proof
method utilized by Freidlin-Wentzell is the continuous mapping method. In this
chapter, we will explore a general method that uses semigroup theory to establish
pathwise large deviation principles for Markov processes.

To accomplish this objective, we first present the Bryc theorem regarding the large
deviation principles for sequences of random variables.
Theorem 2.2 (Bryc’s theorem). Let (Xn)n≥1 be a sequence of E-value random vari-
ables. Suppose that the sequence (Xn)n≥1 is exponentially tight and that the limit

Λ(f) = lim
n→∞

1

n
logE[enf(Xn)]

exists for each f ∈ Cb(E). Then (Xn)n≥1 satisfies the large deviation principle with
good rate function

I(x) = sup
f∈Cb(E)

{f(x)− Λ(f)}, x ∈ E.

We aim to establish connections between large deviations for sequences of random
variables and the asymptotic behavior of functionals, specifically logarithmic moment
generating functionals of the form 1

n logE[enf(Xn(t))]. To achieve this, we introduce a
sequence of Markov processes Xn(t) taking values in E with generator An. We define
the linear Markov semigroup Sn(t) as follows:

Sn(t)f(x) := E[f(Xn(t))|Xn(0) = x], t ≥ 0, x ∈ E,

which, at least formally, satisfies

Anf :=
d

dt

∣∣∣
t=0

Sn(t)f = lim
t→0

Sn(t)f − f

t
.

Fleming in [Fle85] introduced the following nonlinear contraction semigroup Vn(t) for
Markov processes Xn(t),

Vn(t)f(x) =
1

n
logEx[enf(Xn(t))] =

1

n
logSn(t)e

nf (x), t ≥ 0, x ∈ E, (2.1)

and large deviations for sequences (Xn(t))n≥1 of Markov processes can be studied
using the asymptotic behavior of the corresponding nonlinear semigroups. Again, at
least formally, Vn(t) should satisfy

d

dt

∣∣∣
t=0

Vn(t)f =
d

dt

∣∣∣
t=0

1

n
logSn(t)e

nf =
1

n
e−nfAne

nf =: Hnf. (2.2)

Fleming and others have employed this approach to establish large deviation results
for sequences (Xn(t))n≥1 of Markov processes Xn(t) at single time points and exit
times. The book by [FK06] extends this approach further, demonstrating how con-
vergence of the nonlinear semigroups and their generators Hn can be used to obtain
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both, exponential tightness and the large deviation principle for the finite dimensional
distributions of the processes. Showing the large deviation principle for finite dimen-
sional distributions of the sequence of Markov processes and using the exponential
tightness gives then the full pathwise large deviation principle for the sequence of
Markov processes. The approach, known as nonlinear semigroup methods, requires
proving the following key points:

(a) exponential tightness;

(b) the existence of an H such that Hn → H;

(c) H generates a semigroup V (t).

However, during the proof, establishing that H determines a limiting semigroup V (t)
can be challenging. In the example that follows, the existence of such a semigroup
from the nonlinear H is asserted without formal proof.

2.1 An illustrative example

Recall the Freidlin-Wentzell theorem, which studies the large deviation behavior of
solutions to stochastic differential equations with small noise.
Theorem 2.3 (Freidlin-Wentzell, Theorem 5.6.3 in [DZ98]). Let u : R → R be a
Lipschitz function, write {Xn(t)}t∈[0,T ] for the solution to the SDE

dXn(t) = u(Xn(t))dt+
1√
n
dW (t).

Then, the law of Xn(t) satisfy LDP in C0([0, T ];R)

P(Xn(t) ≈ γ(t)) ∼ e−nIu(γ),

where

Iu(γ) =

{
1
2

∫ T
0
|γ̇(t)− u(γ(t))|2dt, if γ ∈ H1

∞, else

is a good rate function.

The proof is by the continuous mapping method. Here, we want to use the nonlinear
semigroup method. The important step is that if there is a semigroup V (t) generated
by H. The answer is yes. In the following, we provide an informal proof.

To simplify, we assume that item (a) naturally holds when working in a compact
space.

To obtain item (b), first, the generator of Xn(t) is given by

Anf(x) = u(x)∂xf(x) +
1

2n
∂xx(x)f(x), x ∈ R.
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Therefore, according to Hnf = 1
ne

−nfAne
nf , we have

Hnf(x) = u(x)∂xf(x) +
1

2n
∂xxf(x) +

1

2
|∂xf(x)|2,

which represents a nonlinear generator of Xn(t). Let n → ∞ in the above equation,
it leads to a limit Hamiltonian:

Hf(x) = u(x)∂xf(x) +
1

2
|∂xf(x)|2. (2.3)

We have completed the proof of item (b). For item (c), we claim that H generates
the semigroup V (t) is

V (t)f(x) = sup
γ,γ(0)=x

{
f(γ(t))−

∫ t

0

1

2
|γ̇(s)− u(x)|2ds

}
. (2.4)

Informally, we can justify this claim by considering the derivative with respect to t
at t = 0:

d

dt

∣∣∣
t=0

V (t)f(x) = sup
γ,γ(0)=x

d

dt

∣∣∣
t=0

{
f(γ(t))−

∫ t

0

1

2
|γ̇(s)− u(x)|2ds

}
= sup
γ,γ(0)=x

{
∂xf(γ(0))γ̇(0)−

1

2
|γ̇(0)− u(x)|2

}
= sup

v

{
∂xf(x)v −

1

2
|v − u(x)|2

}
= u(x)∂xf(x) +

1

2
(∂xf(x))

2

= Hf(x).

(2.5)

Thus, V (t) indeed corresponds to the semigroup generated by H.

Next, we turn to the large deviation principle associated with this setup gives a rate
function

I(x) =

∫ T

0

1

2
|γ̇(t)− u(x)|2dt.

In general, the integrand of the rate function is called Lagrangian L. In this case,
L(γ̇(t)) = 1

2 |γ̇(t)− u(x)|2. The Lagrangian L can be characterized in two ways.

First, Lagrangian L is the Legendre transform of Hamiltonian H. To do it, let p =
∂xf(x), from (2.3) we define

H(p) = up+
1

2
p2,

which is a convex function of p. We change the function of p to a function of the rate
v based on the Legendre transform of H, obtaining

L(v) = sup
p∈R

{pv −H(p)} =
1

2
|v − u(x)|2. (2.6)
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By convex duality in Euclidean space, it also follows that

H(p) = sup
v∈R

{pv − L(v)}.

Second, Lagrangian L comes from an optimization problem. Modifying V (t) in (2.4)
using L, we get

V (t)f(x) = sup
γ,γ(0)=x

{
f(γ(t))−

∫ t

0

L(γ̇(s))ds
}
.

Thus, Lagrangian L is characterized both by its role as the Legendre transform of
the Hamiltonian H and by its appearance in the optimization formulation of the
semigroup V (t).

We continue to analyze (2.5). The semigroup V (t) is a solution of the following
parabolic partial differential equation (PDE):{

∂tg(x, t)−H(∂xg(x, t)) = 0, if t > 0,

g(x, 0) = g0(x), if t = 0.
(2.7)

The above PDE can be solved rigorously in the sense of viscous solutions. However, in
Feng and Kurtz’s book [FK06], instead of (2.7), they studied the following Hamilton-
Jacobi (HJ) equation to derive the large deviation principle:

f − λHf = h (2.8)

where H is defined in (2.3), λ > 0 and h ∈ Cb(R). The resolvent

R(λ)h(x) = sup
γ∈AC
γ(0)=x

∫ ∞

0

λ−1e−λ
−1t

(
h(γ(t))−

∫ t

0

1

2
|γ̇(s)− u|2ds

)
dt,

is a solution of (2.8). By Lemma 8.18 of [FK06], we have

lim
m→∞

|R(t/m)mf(x)−V(t)f(x)| = 0.

In the thesis, we follow the approach using the second HJB equation, f − λHf = h,
to prove large deviations.

The background of HJ equations originates from control theory. While solving the
HJ equation at all points in the classical sense is challenging, an alternative approach
involves considering the following: suppose f ∈ C∞(R) such that f − f has a local
maximum at x. This leads to

f(x)− λHf(x) ≤ h(x),
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we call f is a subsolution of the HJ equation under this setting. Similarly, consider
f ∈ C∞(R) such that f − f has a local minimum at x. Then we have

f(x)− λHf(x) ≥ h(x),

we call f is a supersolution of the HJ equation.

It is worthwhile taking a moment to observe what is going on here. If f − f has a
local maximum at x, we have f(x) = f(x) and f(y) ≤ f(y) for all y near x. Thus, the
graph of f touches the graph of f from above at the point x, f must be a subsolution
of the HJ equation. Similarly, the graph of f touches the graph of f from above at
the point x, f must be a supersolution of the HJ equation. In the following, we give
Figure 2.1 to further understand.

Figure 2.1: An illustration of test functions touching a nonsmooth function u from
above and below. The functions f1 and f2 , drawn in red, touch u from above, while
f
1
and f

2
, drawn in blue, touch f from below

Finally, for the strict definition of viscosity solution in the coming section.

2.1.1 Viscosity solutions

We give a strict definition of viscosity solution.
Definition 2.4 (Viscosity solutions). Let H ⊆ Cb(E) × Cb(E) be a multivalued
operator. We denote D(H) for the domain of H and R(H) for the range of H. Let
λ > 0 and h ∈ Cb(E). Consider the Hamilton-Jacobi equation

f − λHf = h. (2.9)

Classical solutions We say that u is a classical subsolution of (2.9) if there is a
function g such that (u, g) ∈ H and u − λg ≤ h. We say that v is a classical
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supersolution of (2.9) if there is a function g such that (v, g) ∈ H and v −
λg ≥ h. We say that u is a classical solution if it is both a subsolution and a
supersolution.

Viscosity subsolutions We say that u is a (viscosity) subsolution of (2.9) if u is
bounded, upper semicontinuous, and if for every (f, g) ∈ H there exists a se-
quence xn ∈ E such that

lim
n→∞

u(xn)− f(xn) = sup
x
u(x)− f(x),

lim sup
n→∞

u(xn)− λg(xn)− h(xn) ≤ 0.

Viscosity supersolutions We say that v is a (viscosity) supersolution of (2.9) if
v is bounded, lower semicontinuous, and if for every (f, g) ∈ H there exists a
sequence sequence xn ∈ E such that

lim
n→∞

v(xn)− f(xn) = inf
x
v(x)− f(x),

lim inf
n→∞

v(xn)− λg(xn)− h(xn) ≥ 0.

Viscosity solutions We say that u is a (viscosity) solution of (2.9) if it is both a
subsolution and a supersolution to (2.9).

Remark 2.5. Consider the definition of subsolutions. Suppose that the test function
(f, g) ∈ H has compact sublevel sets, then instead of working with a sequence xn, we
can pick x0 such that

u(x0)− f(x0) = sup
x
u(x)− f(x),

u(x0)− λg(x0)− h(x0) ≤ 0.

Similarly, a simplification holds in the case of supersolutions. This is used in the proof
Lemma 3.13 below.
Definition 2.6 (Comparison principle). We say that (2.9) satisfies the comparison
principle if for every viscosity subsolutions u and viscosity supersolutions v to (2.9),
we have u ≤ v.
Remark 2.7 (Uniqueness). The comparison principle implies the uniqueness of vis-
cosity solutions. Suppose that u and v are both viscosity solutions, then the compar-
ison principle yields that u ≤ v and v ≤ u, implying that u = v.

2.2 Nonlinear semigroup methods

In the last section, we introduced viscosity solutions and HJ equations using simple
stochastic differential equations. In the current section, we proceed to present a
general strategy for large deviations based on viscosity solutions and HJ equations.
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Before presenting the strategy, we will first provide some definitions that will be used
later. Based on Lagrangian L, we give the definition of Nisio semigroup V (t) and
resolvent R(λ).
Definition 2.8 (Nisio semigroup). Define the Nisio semigroup for measurable func-
tions f on E:

V(t)f(x) = sup
γ∈AC
γ(0)=x

{
f(γ(t))−

∫ t

0

L(γ(s), γ̇(s))ds
}
. (2.10)

Definition 2.9 (Resolvent R(λ)). For λ > 0 and h ∈ Cb(E), define the resolvent
R(λ)h : E → R by

R(λ)h(x) = sup
γ∈AC
γ(0)=x

∫ ∞

0

λ−1e−λ
−1t

(
h(γ(t))−

∫ t

0

L(γ(s), γ̇(s))ds
)
dt. (2.11)

We continue to define an action-integral representation of the rate function using
absolutely continuous curves.
Definition 2.10 (Absolutely continuous). We denote by AC(E) the space of abso-
lutely continuous curves in E. A curve γ : [0, T ] → E is absolutely continuous if there

exists a function g ∈ L1[0, T ] such that for t ∈ [0, T ] we have γ(t) = γ(0) +
∫ t
0
g(s)ds.

We write g = γ̇.

A curve γ : [0,∞) → E is absolutely continuous, i.e. γ ∈ AC(E), if the restriction to
[0, T ] is absolutely continuous for every T > 0.
Definition 2.11 (Exponential compact containment ofXn(t)). We say that a process
Xn(t) satisfies the exponential compact containment condition at speed n, for every
all compact K0 ⊆ E, T > 0 and a ≥ 0, there exists a compact set Ka,T ⊆ E such
that

lim sup
n→∞

sup
x0∈K0

1

n
logP [Xn(t) /∈ Ka,T for some t ≤ T |Xn(0) = x0] ≤ −a.

Definition 2.12 (Action-integral representation of rate function). We say that a rate
function I : DE(R+) → [0,∞] is of the action-integral form if there is a non-trivial
convex map L : E × E → [0,∞] with which

I(x) =

{
I0(x(0)) +

∫∞
0

L(x(t), ẋ(t))dt, if x ∈ AC(E),

∞, otherwise,

where I0 : E → [0,∞] is a rate function. We refer to the map L as the Lagrangian,
i.e. v 7→ L(x, v) is convex and (x, v) 7→ L(x, v) is lower semicontinuous.
Definition 2.13 (Extended limit, Definition A.12 in [FK06]). For every n ≥ 1, let
Hn ⊂ Cb(E)×Cb(E) be an operator. The extended limit ex− limn→∞Hn is defined
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as the collection (f, g) ∈ Cb(E) × Cb(E) for which there exists a sequence {fn}n≥1

with fn ∈ D(Hn) such that

lim
n→∞

(∥fn − f∥+ ∥Hnfn − g∥) = 0.

An operator H is said to be contained in ex− limn→∞Hn if the graph {(f,Hf)|f ∈
D(H)} is a subset of ex− limn→∞Hn.

Now, we are ready to provide the main proposition for proving for proving large
deviation using nonlinear semigroup methods.
Proposition 2.14 (Adaptation of Theorem 5.15, Theorem 8.27 and Corollary 8.28
in [FK06] to our context). Let Xn(t) be Markov processes on E. Suppose that

(a) Xn(0) satisfies large deviation principle;

(b) there exists an operator H ⊂ ex− limn→∞Hn in the sense Definition 2.13;

(c) we have exponential compact containment of the process Xn(t);

(d) for all λ > 0 and h ∈ Cb(E), the comparison principle holds for f − λHf = h.

Then the following hold:

(i) (Limit of nonlinear semigroup) There exists a unique operator semigroup V (t)
such that

lim
n→∞

∥Vn(t)fn − V (t)f∥ = 0 (2.12)

and there exists a unique R(λ)f such that

lim
m→∞

∥R(t/m)mf − V (t)f∥ = 0, (2.13)

whenever f ∈ D(H), fn ∈ Cb(E), and ∥fn − f∥ → 0.

(ii) (Large deviation principle) Xn(t) satisfies the large deviation principle with good
rate function I given by

I(x) = I0(x(t0)) + sup
k∈N

sup
0=t0<t1<···<tk<∞

k∑
i=0

IVti+1−ti(x(ti+1) | x(ti)), (2.14)

where for ∆t = ti+1 − ti > 0 and x(ti+1), x(ti) ∈ E, the conditional rate
functions IV∆t(x(ti+1) | x(ti)) are

IV∆t(x(ti+1) | x(ti)) = sup
f∈Cb(E)

[f(x(ti+1))− V (∆t)f(x(ti))].

Suppose in addition that

(e) V (t) = V(t) with V as in (2.10).
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Then we have the action-integral representation following the representation of rate
function (2.14):

I(γ) =

{
I0(γ(0)) +

∫∞
0

L(γ(s), γ̇(s))ds, if γ ∈ AC(E),

∞, otherwise.
(2.15)

2.2.1 Outline of the ideas

In this subsection, we sketch why Proposition 2.14 is true. That is, we check the
assumptions (a)-(e) of Proposition 2.14 in detail.

Step 1: For the Markov process Xn(t), we aim to prove LDP on the path space.
The approach is based on a variant of the projective limit theorem, Lemma 2.15
as below. Namely, if a sequence of the processes is exponentially tight in the
Skorokhod space, then it suffices to establish the LDP of finite-dimensional
distributions. Moreover, the rate function is given in the projective limit form:
it is given as the supremum over the rate functions of the finite-dimensional
distributions.

Step 2: We show the exponential tightness of Xn(t) and the LDP for the finite
dimensional distributions. For the proof of exponential tightness, we do not
enter a detailed discussion and refer to Corollary 4.19 in [FK06], it suffices in
our context to establish the exponential compact containment condition. When
the state space E is compact, exponential tightness is usually easier to verify.

We are left to prove LDP for finite-dimensional distributions, which is estab-
lished via Bryc’s theorem, Lemma 2.16 as below. For this one needs to prove
convergence of log expectations.

For simplicity, we consider the log expectation for k = 1 with f0, f1 ∈ Cb(E)
and 0 = t0 < t1 only, and have

Γn = Γn(f0, f1)

:=
1

n
logE

(
enf0(Xn(t0))+nf1(Xn(t1))

)
=

1

n
logE[E(enf0(Xn(t0))+nf1(Xn(t1)) | Xn(t0) = x0]

=
1

n
logE

(
enf0(x0)+nVn(t1)f1(x0)

)
, (2.16)

where in the third equality we used the Markov property and the conditional
log-Laplace transform Vn(t1) is defined in (2.1). Moreover, (2.16) reduces to
proving

(a) the LDP for Xn(t0) with rate function I0, which is item (a) of Proposi-
tion 2.14;
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(b) the convergence of the conditional log-Laplace transform Vn(t1).

To proceed, we defer the proof of item (b) to Step 3. Given that item (b)
is true, there exists a limit Γ of Γn as n → ∞. We note that the limit is
f0(z) + V (t1)f1(z). Combining this limit, we first use Lemma 2.17 and take
over sup about f0 and f1 via Lemma 2.16 in the first equality below. The rate
function for (Xn(t0), Xn(t1)) by Bryc’s theorem is given by

It0,t1(x(t0), x(t1))

= sup
f0,f1

(
f0(x(t0)) + f1(x(t1))− sup

z

(
f0(z) + V (t1)f1(z)− I0(z)

)
︸ ︷︷ ︸

Lem 2.17

)
︸ ︷︷ ︸

Lem 2.16

= sup
g0,f1

(
g0(x(t0))− V (t1)f1(x(t0)) + f1(x(t1))− sup

z

(
g0(z)− I0(z)

))
= sup

g0

inf
z

(
g0(x(t0))− g0(z) + I0(z)

)
+ sup

f1

(
f1(x(t1)− V (t1)f1(x(t0))

)
=: I0(x(t0)) + IV∆t(x(t1) | x(t0)),

where in the second equality we define g0 := f0 + V (t1)f1 for simplicity, and in
the last equality we have

I0(x(t0)) = sup
g0

inf
z

(
g0(x(t0))− g0(z) + I0(z)

)
and

IV∆t(x(t1)|x(t0)) = sup
f1

(
f1(x(t1)− V (t1)f1(x(t0))

)
, ∆t = t1 − t0.

By induction, we get LDP for the finite-dimensional distributions of (Xn(0),
Xn(t1),. . ., Xn(tk)) with rate function with the projective limit form:

IVt0...tk(x(t0), . . . , x(tk)) = IV0 (x(t0)) +

k∑
i=0

IVti+1−ti(x(ti+1)|x(ti)).

Step 3: We are left to establish item (b) of step 2, ∥Vn(t)f − V (t)f∥ → 0 for any
t ≥ 0 and n → ∞. To do this, we achieve the goal by the Trotter-Kato-
Kurtz theorem, Lemma 2.18 as below. From the theorem, we need to check the
following conditions for any f ∈ Cb(E):

(a) Hn is the generator of semigroup Vn;

(b) H is the generator of semigroup V ;

(c) limn→∞ ∥Vn(t)f − (1− t
nHn)

−nf∥ = 0;
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(d) limn→∞ ∥V (t)f − (1− t
nH)−nf∥ = 0;

(e) limn→∞ ∥Hn −H∥ = 0.

The statement of items (a) and (c) is similar to items (b) and (d), but the proof
is completely different. Item (a), it is obtained in (2.2). For item (c), we obtain
it by the semigroup generation theorem.

We cite the Crandall-Liggett theorem, Lemma 2.19 as below, to show item (b)
and (d) by modifying item (e). Two conditions need to be verified, dissipativity
and the range condition. For the first one, the dissipativity of H holds since the
operator Hn is dissipative.

The second one is the range condition: for sufficiently many h ∈ Cb(E) and all
λ > 0 one can find an f ∈ D(H) that solves the equation f − λHf = h in the
classical sense. Moreover, if H is dissipative, then such a solution is unique.

However, for nonlinear equations, the verification of the range condition is very
hard and it was observed early on [CL83] that viscosity solutions can be used
to replace classical solutions. By weakening the type of solution needed for
(1−λH)f = h, we have to require a strong form of uniqueness condition known
as the comparison principle. Informally, this principle states that, if upper
semicontinuous f and lower semicontinuous f satisfy

(1− λH)f ≤ h and (1− λH)f ≥ h, (2.17)

then f ≤ f . The f and f are called, respectively, a viscosity subsolution and a
viscosity supersolution, and are not necessarily in the domain of H.

This provides an opportunity for further relaxation of conditions. If (2.17)
holds, we can introduce two more operators: H0, H1 such that Hf ≤ H0f and
Hf ≥ H1f for all f ∈ D(H) ∩ D(Hi). Then

(1− λH0)f ≤ h and (1− λH1)f ≥ h.

Later on, formulate H0, H1 in terms of a Lyapunov function to restrict further
analysis to compact sets. It suffices to establish the comparison principle for
H0, H1 in the sense of viscosity solutions.

Next, we turn to the existence of viscosity solutions using the Barles-Perthame
procedure. The construction of f , f by the Barles–Perthame procedure then

reveals that f = f = f ∈ Cb(E). Hence, each h uniquely corresponds to an
f ∈ Cb(E), and we can denote it by f = R(λ)h. Consequently, at least formally,
R(λ) = (1−λH)−1. In other words, H0, H1 implicitly determine H through its
resolvent. We can now completely avoid using item (e) limn→∞ ∥Hn −H∥ = 0,
and we replace it by: for each

H1f ≤ lim inf
n→∞

Hnfn, lim sup
n→∞

Hnfn ≤ H0f some fn → f,
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in the strongly uniform sense.

From the above analysis, the conditions items (a) - (e) reduce to establish that
viscosity solutions of f−λHnf = h converge to viscosity solutions of f−λHf =
h.

To do this, by the Barles-Perthame procedure, for every x ∈ E, there exists a
sequence xn ∈ E such that limn→∞ xn = x, one can show that

u(x) := sup

{
lim sup
n→∞

Rn(λ)h(xn) | lim
n→∞

xn = x

}
,

v(x) := inf

{
lim inf
n→∞

Rn(λ)h(xn) | lim
n→∞

xn = x

}
,

are a viscosity subsolution and a viscosity supersolution to f − λHf = h. It
is obvious that u ≥ v from the construction. In addition, from item (d) of
Proposition 2.14: the comparison principle is satisfied, we obtain that u =
v = R(λ)h which is the unique viscosity solution. Next, using this solution,
we can extend the domain of the operator H by adding all pairs of the form
(R(λ)h, λ−1(R(λ)h− h)) to the graph of H to obtain a new operator Ĥ:

Ĥ =
{(
R(λ)h, λ−1(R(λ)h− h)

) ∣∣λ > 0, h ∈ Cb(X)
}
.

Furthermore, we prove this extension operator Ĥ satisfying the conditions of
the Crandall-Liggett theorem. Firstly, the range condition is held by construc-
tion. Secondly, Ĥ is a dissipative operator as it satisfies the positive maximum
principle, Lemma 2.22 as below, and [Kra22] have proven it on proposition 4.10.

Using the Crandall-Liggett theorem once again, Ĥ generates a semigroup V (t).
Subsequently, thanks to the Trotter-Kato-Kurtz theorem, we achieve the goal

∥Vnf(t)− V f(t)∥ → 0 for any t ≥ 0, f ∈ D(Ĥ), as n→ ∞.

Step 4: From steps 1, 2, and 3, we obtain that the LDP is satisfied and with a rate
function in the projective limit form (2.14). However, the rate function is only
implicitly characterized by V (t). This is why we establish a Lagrangian form
rate function (2.15) based on (2.14). To do so it is sufficient to prove that for
any f ∈ Cb(E),

V (t)f = V(t)f (2.18)

by the method of resolvent approximation, where V(t) is defined in (2.10).

To do this, we connect the variational semigroup to the resolvent. We first recall
the Nisio semigroup of (2.11):

R(λ)h(x) = sup
γ∈AC
γ(0)=x

∫ ∞

0

λ−1e−λ
−1t
(
h(γ(t))−

∫ t

0

L(γ(s), γ̇(s))ds
)
dt.
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If conditions 8.9, 8.10, and 8.11 in [FK06] hold, we obtain the following impor-
tant results.

• For λ > 0, we have R(λ)Cb(E) ⊆ Cb(E) and R(λ)h is a viscosity solution
of f − λHf = h, following the first part of the proof of Lemma 2.23;

• for f ∈ Cb(E),
lim
n→∞

∥R(t/n)nf −V(t)f∥ = 0, (2.19)

thanks to Lemma 2.24.

In addition, by combining the comparison principle, we get

R(λ)h = R(λ)h, (2.20)

which is proposition 2.14 of Proposition 2.14.

Subsequently, from (2.13), (2.19) and (2.20), we obtain V (t)f = V(t)f .

In summary, it is proven that conditions 8.9, 8.10, and 8.11 in [FK06] are pre-
requisites for obtaining the action-integral rate function.

Next, we give the auxiliary lemmas used in Steps 1-4 in the order of occurrence.
Lemma 2.15 (Projective limit theorem, Theorem 4.28 in [FK06]). Assume that
{Xn} is exponentially tight in DE [0,∞) and that for each 0 ≤ t1 < t2 < · · · < tm,
{(Xn(t1), . . . , Xn(tm))} satisfies the large deviation principle in Em with rate function
It1,...,tm . Then {Xn} satisfies the large deviation principle in DE [0,∞) with good rate
function

I(x) = sup
{ti}⊂∆c

x

It1,...,tm((x(t1), . . . , x(tm)),

where {ti} is shorthand for all sets of the form {t1, t2, . . . , tm} and ∆x is the set of
times where x is discontinuous.
Lemma 2.16 (Bryc’s theorem, Proposition 3.25 in [FK06]). Suppose {(Xn, Yn)} is
exponentially tight in the product space (S1 × S2, d1 + d2). Let µn ∈ P(S1 × S2) be
the distribution of (Xn, Yn) and let µn(dx× dy) = ηn(dy|x)µ1

n(dx), that is, µ
1
n is the

S1-marginal of µn and ηn gives the conditional distribution of Yn given Xn. Suppose
that for each f ∈ Cb(S2)

Λ2(f |x) = lim
n→∞

1

n
log

∫
S2

enf(y)ηn(dy|x)

exists, that the convergence is uniform for x in compact subsets of S1, and that Λ2(f |x)
is a continuous function of x. For x ∈ S1 and y ∈ S2, define

I2(y|x) = sup
f∈Cb(S2)

(f(y)− Λ2(f |x)).

If {Xn} satisfies the large deviation principle with good rate function I1, then {(Xn, Yn)}
satisfies the large deviation principle with good rate function

I(x, y) = I1(x) + I2(y|x).
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Lemma 2.17 (Varadhan’s Lemma, Theorem III.13 in [dH08]). Let (Pn) satisfy the
LDP on X with rate n and with rate function I. Let Fn : X → R be a continuous
function that is bounded from above and ∥Fn − F∥ → 0 when n→ ∞. Then

lim
n→∞

1

n
log

∫
X
enFn(x)Pn(dx) = sup

x∈X
(F (x)− I(x)).

The following theorem is a simplification of Proposition 5.5 in [FK06].
Lemma 2.18 (Trotter-Kato-Kurtz theorem, Proposition 5.5 in [FK06]). Let E be
a Polish space and let Hn : Cb(E) → Cb(E) and H : D(H) ⊆ Cb(E) → Cb(E)
be dissipative operators that satisfy the range condition with the same λ. Let Vn(t)
and V (t) be the corresponding generated semigroups in the Crandall-Liggett sense.
Suppose that the following:

For each f ∈ D(H), there exist fn ∈ D(Hn) such that

∥f − fn∥
n→∞−→ 0 and ∥Hf −Hnfn∥

n→∞−→ 0.

Then for any f ∈ D(H) and fn ∈ Cb(E) such that ∥f − fn∥ → 0, we have

∥V (t)f − Vn(t)fn∥
n→∞−→ 0.

Lemma 2.19 (Crandall-Liggett theorem in [CL71]). Let H be an operator on a
Banach space X. Suppose that

(a) H is dissipative. We say H ⊆ Cb(E)×Cb(E×S) is dissipative if for all (f1, g1),
(f2, g2) ∈ H and λ > 0 we have

∥f1 − λg1 − (f2 − λg2)∥ ≥ ∥f1 − f2∥;

(b) H satisfies the range condition. We say H ⊆ Cb(E) × Cb(E × S) satisfies the
range condition if for all λ > 0 we have: the uniform closure of D(H) is a subset
of R(1− λH).

We denote by R(λ) = (1 − λH)−1. Then there is a strongly continuous contraction
semigroup V (t) defined on the uniform closure of D(H) and for all t ≥ 0 and f in
the uniform closure of D(H)

lim
n→∞

∥R(t/n)nf − V (t)f∥ = 0.

Condition 2.20 (Condition 3.1 in [Kra20]). An ⊂ Cb(E) × Cb(E) is an operator
such that the martingale problem for An ⊂ Cb(E)× Cb(E) is well-posed. Denote by
Px ∈ P(DE(R+)) the solution that satisfies X(0) = x, Px almost surely. The map
x 7→ Px is assumed to be continuous for the weak topology on P = P(DE(R+)).
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Lemma 2.21 (Theorem 3.6 in [Kra20]). Let Condition 2.20 be satisfied. For each
h ∈ Cb(E) and λ > 0 the function Rn(λ)h is a viscosity solution to f − λHnf = h.
Lemma 2.22 (The positive maximum principle for nonlinear generator in [Kra16]).
For any (f1, g1), (f2, g2) ∈ H and λ > 0, there exist sequences xn ∈ Cb(E) satisfied
dissipativity condition it is equivalent to (a) and (b).

(a) If x0 ∈ E is such that

f1(x0)− f2(x0) = sup
xn∈E

f1(xn)− f2(xn),

then g1(x0)− g2(x0) ≤ 0;

(b) If x0 ∈ E is such that

f1(x0)− f2(x0) = inf
xn∈E

f1(xn)− f2(xn),

then g1(x0)− g2(x0) ≥ 0.

Lemma 2.23 (Theorem 8.27 in [FK06]). Let (E, r) and (U, q) be complete, separable
metric spaces. Suppose that A ⊂ Cb(E) × C(E × U) and L : E × U → [0,∞] satisfy
Conditions 8.9, 8.10, and 8.11 of [FK06]. Define

Hf(x) = sup
u∈Γx

(Af(x, µ)− L(x, u))

with D(H) = D(A). Then

(a) For each h ∈ Dα,

Rαh(x0) := sup
γ∈AC
γ(0)=x0

{
∫ ∞

0

α−1e−α
−1th(γ(t))dt

−
∫ ∞

0

α−1e−α
−1t

∫ t

0

L(γ(s), γ̇(s))dsdt}

is continuous and is a solution of f − αHf = h.

Lemma 2.24 (Lemma 8.18 in [FK06]). Suppose Conditions 8.9 and 8.10 hold, and
let {V(t)} be defined by (8.10). Then for each f ∈ Cb(E) and each x0 ∈ E,

V(t)f(x0) = lim
n→∞

R(t/n)nf(x0).



Chapter 3

Large deviations with finite
fast switching

In this chapter, we study the large deviations for Cox-Ingersoll-Ross (CIR) processes
with small noise and state-dependent fast switching via associated Hamilton-Jacobi-
Bellman equations. As the separation of time scales, when the noise goes to 0 and the
rate of switching goes to ∞, we get a limit equation characterized by the averaging
principle. Moreover, we prove the large deviation principle with an action-integral
form rate function to describe the asymptotic behavior of such systems. The new
ingredient is establishing the comparison principle in the singular context. The proof
is carried out using the nonlinear semigroup method introduced in Chapter 2.

This chapter is based on

[HKX23] Yanyan Hu, Richard C. Kraaij, and Fubao Xi. Large deviations for Cox-
Ingersoll-Ross processes with state-dependent fast switching, 2023

3.1 Introduction

The classical Cox-Ingersoll-Ross (CIR) process was proposed by John C. Cox, Jonathan
E. Ingersoll, and Stephen A. Ross in [CIR05, CIR85]. It is an important tool for mod-
eling the stochastic evolution of interest rates and has widespread applications in the
field of finance, especially in the stock market. In general, it is described as

dX(t) = η(µ−X(t))dt+ θ
√
X(t)dW (t),

where X(t) stands for the instantaneous interest rate at time t; η > 0 is the rate
of mean reversion; µ represents the mean of the interest rate; θ > 0 is the standard
deviation of the interest rate; (W (t))t≥0 is a real value Brownian motion.

39
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In the real world, motivated by the increasing demand for modeling complex systems,
in which structural changes, small fluctuations as well as big spikes coexistence are
intertwined, we realize that the classical CIR process is lacking the desired complexity.
Moreover, an instructive example in a stock market is that equity investors can be
classified as belonging to two categories, long-term investors and short-term investors.
Long-term investors consider a relatively long time horizon and make decisions based
on the weekly or monthly performance of the stock, whereas short-term investors,
such as day traders, focus on returns in the short term, daily, or even shorter periods.
Their time scales are in sharp contrast, and we call it the two time-scale systems or
slow-fast systems. Hence, we add switching to CIR processes that can have mutual
impacts, and if we adjust the frequency of the switching may cause a separation of
scale. In this chapter, for E = (0,∞) and S = {1, 2, . . . , N}, N < ∞, we study CIR
processes with small noise and fast switching on E × S{

dXε
n(t) = η(µ(Λεn(t))−Xε

n(t))dt+
1√
n
θ
√
Xε
n(t)dW (t),

(Xε
n(0),Λ

ε
n(0)) = (x0, k0) ∈ E × S,

(3.1)

where the fast process Λεn(t) is a jumping process on S satisfying

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

(3.2)

for ∆ > 0, i, j ∈ S, x ∈ E, and ε > 0 is a small parameter.

The key feature of such slow-fast systems is that the fast process reaches its equi-
librium state at much shorter time scales while the slow system effectively remains
unchanged. The local equilibration phenomenon allows the approximation of the
properties of the slow system by averaging out the coefficients over the local station-
ary distributions of the fast process. Such approximations yield a significant model
simplification and are mathematically justified by establishing an appropriate averag-
ing principle. Hence, when n→ ∞ and ε→ 0, the system (3.1) and (3.2) is averaged
under the law of large number scaling, we can identify that the limit equation is

dX(t) = η

(∑
i∈S

µ(i)πxi (t)−X(t)

)
dt,

where πx(t) = (πxi (t))i∈S is the stationary distribution of fast processes depending on
the position of Xε

n(t) = x.

In this setting, we need quantification of how well, the averaging principle applies to
a specific problem. One of the ways to quantify this approximation is large deviation
principle (LDP) of the Markov processes (Xε

n(t),Λ
ε
n(t)). In the following, we first

conduct an informal analysis.

Due to the scale separation phenomenon of slow-fast systems, there are two types of
LDP. We first have the Donsker-Varadhan LDP for the occupation measures of the
fast process Λεn(t) around π(t) when X

ε
n(t) is close to x(t):
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P
(

1

dt

∫ t+dt

t

δΛε
n(s)

ds|t≥0 ≈ π(t)|t≥0

∣∣∣∣Xε
n(t)|t≥0 = x(t)|t≥0

)
∽ e−

1
ε Ĩx(π), (3.3)

where

Ĩx(π) = − inf
g≫0

∫
Rxg

g
dπ,

where Rx is the generator of a state-dependent switching:

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) ,

where x(t) := x.

Furthermore, we find that the Freidlin-Wentzel LDP of the slow process Xε
n(t) is

obtained under the condition that the fast process reaches π(t), and has

P
(
Ẋε
n(t)|t≥0 ≈ ρ̇(t)|t≥0

∣∣∣∣ 1dt
∫ t+dt

t

δΛε
n(s)

ds|t≥0 ≈ π(t)|t≥0, X
ε
n(s)|s∈(0,t] = x(s)|s∈(0,t]

)
∽ e−nÎ(ρ|π), (3.4)

where

Î(ρ|π) = min
ρ̇(t)=

∑N
i=1 viπi(t)

N∑
i=1

|vi − η(µ(i)− x(t))|2

2θ2x(t)
πi(t).

To analyze the system (3.1) and (3.2) from the point of view of a long-term investor,
we need to consider the LDP of both fast and slow processes (Xε

n(t),Λ
ε
n(t)) at time t

to maximize profits. That is formally

P

(
Ẋε
n(t)|t≥0 ≈ ρ̇(t)|t≥0,

1

dt

∫ t+dt

t

δΛε
n(s)

ds|t≥0 ≈ π(t)|t≥0

∣∣∣∣Xε
n(s)|s∈(0,t] = x(s)|s∈(0,t]

)

= P

(
Ẋε
n(t)|t≥0 ≈ ρ̇(t)|t≥0

∣∣∣∣ 1dt
∫ t+dt

t

δΛε
n(s)

ds|t≥0 ≈ π(t)|t≥0, X
ε
n(s)|s∈[0,t] = x(s)|s∈[0,t]

)

× P

(
1

dt

∫ t+dt

t

δΛε
n(s)

ds|t≥0 ≈ π(t)|t≥0

∣∣∣∣Xε
n(s)|s∈(0,t] = x(s)|s∈(0,t]

)

= exp

{
−
(
nÎ(ρ|π) + 1

ε
Ĩx(π)

)}
,

(3.5)

where in the last line, we use the results of Donsker-Varadhan LDP (3.3) and Freidlin-
Wentzel LDP (3.4). Moreover, from (3.5) and the contraction principle [DZ98, The-
orem 4.2.1], we obtain

P
(
Ẋε
n(t)|t≥0 ≈ ρ̇(t)|t≥0

∣∣∣∣Xε
n(s)|s∈(0,t] = x(s)|s∈(0,t]

)
∽ exp

{
− inf

π

(
nÎ(ρ|π) + 1

ε
Ĩx(π)

)}
.
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For ease of analysis in subsequent steps, we define a set

G =

{
Ẋε
n(t)|t≥0 ≈ ρ̇(t)|t≥0

∣∣∣∣Xε
n(s)|s∈(0,t] = x(s)|s∈(0,t]

}
.

Hence, we get

− logP(G) ∽ inf
π

(
nÎ(ρ|π) + 1

ε
Ĩx(π)

)
. (3.6)

In (3.1) the intensity of the multiplicative noise and in (3.2) the frequency of the
fast random switching may have different ratios n−1/ε when n → ∞ or ε → 0. To
determine the optimal LDP’s convergence speed of (Xε

n(t),Λ
ε
n(t)) at time t, it is

necessary to analyse (3.6) in three different scenarios:

Case 1 ε≪ 1
n : we have a Donsker-Varadhan type LDP

−ε logP(G) ∽ inf
π

(
nεÎ(ρ|π) + Ĩx(π)

)
→ inf

π
Ĩx(π);

Case 2 1
n ≪ ε: we have a Freidlin-Wentzell type LDP

− 1

n
logP(G) ∽ inf

π

(
Î(ρ | π) + 1

nε
Ĩx(π)

)
→ inf

π
Î(ρ | π);

Case 3 ε = 1
n : we have the combination of Donsker-Varadhan LDP and Freidlin-

Wentzell LDP

−ε logP(G) ∽ inf
π

(
Î(ρ | π) + Ĩx(π)

)
= inf

π

(
min

ρ̇(t)=
∑N

i=1 viπi(t)

N∑
i=1

|vi − η(µ(i)− x(t))|2

2θ2x(t)
πi(t) + Ĩx(π)

)
.

In this chapter, we treat the most complex case, namely Case 3, ε = 1
n , which the

two LDP’s are completed at the same scale.

For the proof, we use Feng and Kurtz’s method based on Hamilton-Jacobi theory and
control theory, which has been developed to study LDP associated with a sequence of
Markov processes. Firstly, the advantage of this method is that the operator conver-
gence treats both the classical Freidlin-Wentzell theory and the Donsker-Varadhan
theory within one framework. Secondly, Feng and Kurtz’s method deals with the
difficulties caused by nonlinear operators using viscosity solutions. Inspired by this
approach, Peletier and Schlottke [PS24] studied a stochastic differential equation with
finite state fast switching on the flat torus, but the diffusion coefficient was additive
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noise. Subsequently, Kraaij and Schlottke [KS20] investigated the LDP of the slow-
fast system by giving the abstract generator with uniformly elliptic conditions. In
addition, Feng, Fouque and Kumar [FFK12] studied the small-time large deviation
for fast mean-reverting stochastic volatility models using the simplified Feng and
Kurtz’s method due to this system living in a compact space. Huang, Mandjes, and
Spreij [HMS16] were also interested in the joint sample-path large deviations princi-
ple for the Markov-modulated diffusion process and the occupation measure of the
Markov chain. However, as mentioned earlier, all the work mainly considered LDP in
a regular setting, we now consider a singular setting which causes the non-compact
domain of the slow process. Because of this, Euclidean techniques to study the large
deviation principle fail. Alternatively, the authors in [DFL11] take a Riemann point
of view to analyze the associated Hamilton-Jacobi equations, and we extend their
insights to the two time-scale contexts by adding switching.

To conclude, we investigate the LDP for CIR processes with state-dependent fast-
switching, by associated Hamilton-Jacobi and Hamilton-Jacobi-Bellman equations,
which are the primary tools we need. Our specific technical roadmap is as follows:
we begin with using Skorokhod’s representation to give an integral form of the fast-
switching process and obtain strong nonnegative solutions of the CIR processes with
fast switching by pathwise splicing. Then, we modify the technique introduced in the
book [FK06] of Feng and Kurtz to

(a) verify convergence of the sequence of nonlinear operators Hn to a multi-valued
limit operator H. We reduce H to H by solving an eigenvalue problem, in which
we effectively find an optimal stationary measure most notably;

(b) verify exponential tightness on the “path-space” as the CIR process is a diffusion
process equation on (0,∞) with a singularity at 0 leading to a non-compact
space.

(c) verify the comparison principle for the nonlinear multi-valued limiting operator
H, which is hard to prove but plays a prominent role. We achieve it by con-
necting viscosity solutions for H to those for H and prove comparison principle
for f − λHf = h, λ > 0.

(d) construct a variational representation for H, which gives the rate function with
the action-integral from.

3.1.1 CIR processes with finite state-dependent fast switching

Through the introduction, we have learned about the process to be studied and the
questions to be explored. Below, we will provide a detailed explanation. First, we
will introduce the process: CIR processes with finite state-dependent fast switching
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on E × S {
dXε

n(t) = η(µ(Λεn(t))−Xε
n(t))dt+ n−

1
2 θ
√
Xε
n(t)dW (t),

(Xε
n(0),Λ

ε
n(0)) = (x0, k0) ∈ E × S,

(3.7)

where the fast process Λεn(t) is a jumping-process on S satisfying

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

(3.8)

for ∆ > 0, i, j ∈ S, x ∈ E, and ε > 0 is a small parameter. The system (Xε
n(t),Λ

ε
n(t))

is a Markov process.

The slow process Xε
n(t) is mean-reverting singular diffusion. Xε

n(t) stands for the
instantaneous interest rate at time t; η > 0 is the rate of mean reversion; for any i ∈ S,
µ(i) represents the mean of the interest rate; θ > 0 is the standard deviation of the
interest rate. (W (t))t≥0 is a real value Brownian motion defined on the probability
space (Ω,F ,P) with the filtration (Ft)t≥0 satisfying the usual condition (i.e., F0

contains all P-null sets and Ft = Ft+ :=
⋂
s>t Fs).

The fast process Λεn(t) is a finite state-dependent switching process. In particular, if
S = {1}, (3.7) is often used to characterize the interest rate in finance which is called
classical CIR processes without switching.

Before studying the process (Xε
n(t),Λ

ε
n(t)), we first give a result on the existence and

uniqueness of the process.
Proposition 3.1 (Existence and uniqueness). For every i, assume that 2ηµ(i) ≥ θ2,
then the systems (3.7) and (3.8) have a nonnegative unique strong solution (Xε

n(t),Λ
ε
n(t))

with initial value (Xε
n(0),Λ

ε
n(0)) = (x0, k0), and (Xε

n(t),Λ
ε
n(t)) is non-explosive.

The proof of Proposition 3.1 is deferred to Section 3.6.

3.1.2 Main results

Before giving a main result, we set the assumptions that will be necessary for the
main result.
Assumption 3.1. Let ε = 1

n , this shows that small disturbance and fast switching
have the same rate.
Assumption 3.2. For any x ∈ E, (qij(x))i,j∈S is a conservative, irreducible transi-
tion rate matrix, and supi∈S

∑
j∈S,j ̸=i qij(x) <∞.

Assumption 3.3. There exists a constant C > 0 such that

|qij(x)− qij(y)| ≤ C|x− y|, x, y ∈ E, i, j ∈ S.

Remark 3.2. If Assumption 3.1 is satisfied, (3.7) and (3.8) become{
dXn(t) = η(µ(Λn(t))−Xn(t))dt+ n−

1
2 θ
√
Xn(t)dW (t),

(Xn(0),Λn(0)) = (x0, k0) ∈ E × S,
(3.9)
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and

P(Λn(t+△) = j | Λn(t) = i, Xn(t) = x) =

{
nqij(x)△+ ◦(△), if j ̸= i,

1 + nqij(x)△+ ◦(△), if j = i.
(3.10)

From now on, except for the Section 3.6 we use (Xε
n(t),Λ

ε
n(t)) instead of (Xn(t),Λn(t)).

Assumption 3.2 guarantees that there exists a unique stationary distribution πx(t) =
(πxi (t))i∈S for the fast process Λn(t) if slow process is fixed at x. Moreover, the system
(3.9) and (3.10) will be averaged according to the law of large numbers limit, and the
limit equation is

dX(t) = η

(∑
i∈S

µ(i)πxi (t)−X(t)

)
dt.

We need Assumption 3.3 to prove the comparison principle for technical reasons.

Here, we state the path large deviation principles of the Markov process (Xn(t),Λn(t)),
which is the main result in this chapter.
Theorem 3.3 (Large deviations for slow processes). Let (Xn(t),Λn(t)) be the Markov
processes (3.9) and (3.10) on E × S. Suppose that

• the large deviation principle holds for Xn(0) on E with speed n and a good rate
function I0;

• Assumptions 3.1, 3.2 and 3.3 are satisfied.

Then, the large deviation principle with speed n holds for Xn(t) on DE(R+) with a
good rate function I having action-integral representation,

I(γ) =

{
I0(γ(0)) +

∫∞
0

L (γ(s), γ̇(s)) ds, if γ ∈ AC(E),

∞, otherwise

with L(x, v) := supp∈R{⟨p, v⟩ − H(x, p)} which is the Legendre dual of H given by

H(x, p) = sup
π∈P(S)

{∫
Bx,p(z)π(dz)− I(x, π)

}
, (3.11)

where

Bx,p(i) = η(µ(i)− x)p+
1

2
θ2xp2

coming from the slow process Xn(t) and Donsker–Varadhan function

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz),

where Rx is the generator corresponding to the fast process Λn(t) defined by

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) .
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The verification of Theorem 3.3 is based on extending Proposition 2.14 from the single
process to slow-fast systems. In the process of implementation, we need to prove
operator convergence, exponential tire tightness, comparison principle, and action-
integral representation of rate function. We start with the operator convergence.

3.2 Operator convergence and principal-eigenvalue
problem

In this section, we discuss how to verify the convergence of the nonlinear operator Hn

and study the principal-eigenvalue problem.

3.2.1 Operator convergence

Let C2(E × S;R+) denote the family of all nonnegative functions which are twice
differentiable in the spatial variable. By Assumption 3.1, we focus on (Xn(t),Λn(t)),
which is a Markov process whose generator is given by

Anf(x, i) = η (µ(i)− x) ∂xf(x, i) +
1

2n
θ2x∂xxf(x, i)

+ n
∑
j∈S

qij(x) (f(x, j)− f(x, i)) .
(3.12)

Based on the relation

Hnf =
1

n
e−nfAne

nf ,

which is a Fleming’s nonlinear generator; see [Fle78], we have

Hnf(x, i) = η (µ(i)− x) ∂xf(x, i) +
1

2
θ2x (∂xf(x, i))

2
+

1

2n
θ2x∂xxf(x, i)

+
∑
j∈S

qij(x)
(
en(f(x,j)−f(x,i)) − 1

)
.

For any i ∈ S, Hnf(x, i) does not converge due to the divergence of the fourth term as
n→ ∞. Hence, we can choose a suitable function sequence to deal with the divergent
term. Let

fn(x, i) = f(x) +
1

n
ϕ(x, i), ∀ f ∈ C2

b (E) and ϕ ∈ C2
b (E × S). (3.13)

then we have

Hnfn(x, i) = η
(
µ(i)− x

)(
∂xf(x) +

1

n
∂xϕ(x, i)

)
+

1

2
θ2x
(
∂xf(x) +

1

n
∂xϕ(x, i)

)2
+

1

2n
θ2x
(
∂xxf(x) +

1

n
∂xxϕ(x, i)

)
+
∑
j∈S

qij(x)
(
eϕ(x,j)−ϕ(x,i) − 1

)
.

(3.14)
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Hence, there exists a limiting function Hf,ϕ(x, i) such that, for all f ∈ D(H) and
ϕ ∈ C2

b (E × S)
lim
n→∞

∥Hnfn −Hf,ϕ∥ = 0.

where

Hf,ϕ(x, i) = η (µ(i)− x) ∂xf(x) +
1

2
θ2x
(
∂xf(x)

)2
+
∑
j∈S

qij(x)
(
eϕ(x,j)−ϕ(x,i) − 1

)
.

(3.15)

We gather the important results in the following proposition.
Proposition 3.4 (Multi-valued limit Hamiltonian). Let (Xn(t),Λn(t)) be a Markov
process on E × S with generator An in (3.12). Set Hnfn as in (3.14) and

H :=
{
(f,Hf,ϕ) | f ∈ C2

b (E), Hf,ϕ ∈ Cb(E × S) and ϕ ∈ C2
b (E × S)

}
, (3.16)

where

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
(df(x))2 +

∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1]. (3.17)

Then, H ⊂ ex− limn→∞Hn in the sense of Definition 2.13.

3.2.2 Principal-eigenvalue problem

Building on the preparation in the previous subsection, we obtain a multi-valued
limit H. We proceed to solve a principal eigenvalue problem to prove the comparison
principle in Lemma 3.13. The eigenvalue problem is one in terms of fast processes.

Consider Equation (3.17) of Proposition 3.4, we have the following decompose: a
function depending on i

Bx,∂xf(x)(i) := η(µ(i)− x)∂xf(x) +
1

2
θ2x(∂xf(x))

2

and the jump operator Rx acting on the state i,

Rxe
ϕ(x,i) :=

∑
j∈S

qij(x)(e
ϕ(x,j) − eϕ(x,i)).

We seek a ϕ such that there is a constant H(x, ∂xf(x)) such that

H(x, ∂xf(x)) := Bx,∂xf(x)(i) + e−ϕ(x,i)Rxe
ϕ(x,i)

is independent of i. Rewriting this equation in terms of g = eϕ, we thus aim to find
g and H(x, df(x)) such that(

Rx +Bx,∂xf(x)
)
g(i) = H(x, ∂xf(x))g(i).
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In other words, we aim to find the principal eigenfunction and eigenvalue for the
operator Rx + Bx,∂xf(x) in terms of i, which can be carried out using the Perron-
Frobenius theorem and leads to the representation (3.11).
Proposition 3.5 (Principal-eigenvalue problem). Let Assumptions 3.2 be satisfied.

For each (x, ∂xf(x)), there exist g > 0 and a unique eigenvalue H(x, ∂xf(x)) ∈ R
such that (

Rx +Bx,∂xf(x)
)
g = H(x, ∂xf(x))g, (3.18)

with H(x, ∂xf(x)) given by

H(x, ∂xf(x)) = sup
π∈P(S)

inf
g>0

∫ (
Rx +Bx,∂xf(x)

)
g(i)

g(i)
π(di)

= sup
π∈P(S)

{∫
Bx,∂xf(x)(i)π(di)− I(x, π)

} (3.19)

where

I(x, π) = − inf
g>0

∫
Rxg(i)

g(i)
π(di). (3.20)

Proof. Using Assumptions 3.2, from the Perron-Frobenius theorem in [DV75], we can
obtain there exists a unique eigenvalue with associated eigenfunction which have the
representation (3.19).

3.3 Exponential tightness

In this section, we prove exponential tightness by applying [FK06, Corollary 4.17],
which establishes exponential tightness based on the exponential compact contain-
ment condition and the convergence of the sequence Hn. The definition of the expo-
nential compact containment condition of (Xn(t),Λn(t)) is similar to Definition 2.11,
but should consider the fast process.
Definition 3.6 (Exponential compact containment of (Xn(t),Λn(t))). We say that
a process (Xn(t),Λn(t)) satisfies the exponential compact containment condition at
speed n, for every all compact K0 ⊆ E, T > 0 and a ≥ 0, there exists a compact set
Ka,T ⊆ E such that

lim sup
n→∞

sup
(x0,k0)∈K0×S

1

n
logP [(Xn(t),Λn(t)) /∈ Ka,T × S for some t ≤ T ] ≤ −a.

Here, we prove that (Xn(t),Λn(t)) satisfies the exponential compact containment
condition. To do this, we need to find a containment function Υ, which plays the role
of a Lyapunov function and allows our analysis to be restricted to compact regions in
E. Here we give the rigorous definition and take a specific function Υ in our case.
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Definition 3.7 (Containment function). We say that a function Υ : E → [0,∞) is a
containment function for Bx,p if Υ ∈ C1(E) and it is such that

• for every C > 0, the set {x | Υ(x) ≤ C} is compact;

• supx,iBx,∂xΥ(x)(x, i) <∞.
Lemma 3.8. The function

Υ(x) := − log(x) + log(1 +
1

2
x2)− log

√
2 (3.21)

is a containment function for Bx,p.

Proof. Firstly, we prove that Υ has compact sub-level sets. Note that 0 and ∞ are
the boundary of E and the function x 7→ Υ(x) goes to ∞ at the boundary points 0
and ∞, respectively. Regarding the second property, for any x ∈ E, we have

H((x, i), ∂xΥ(x)) = − 1

x

(
ηµ(i)− θ2

2

)
+ η <∞, (3.22)

and which boundedness condition follows with the constant

sup
x,i

− 1

x

(
ηµ(i)− θ2

2

)
<∞

and 2ηµ(i) ≥ θ2 for all i ∈ S. From (3.22), it follows that

CΥ := sup
x,i

Bx,∂xΥ(x)(x, i) <∞. (3.23)

The proof is completed.

Here, we are ready to give the following proposition that (Xn(t),Λn(t)) satisfies the
exponential compact containment condition.
Proposition 3.9. Let (Xn(t),Λn(t)) be a Markov process corresponding to An. Υ is
a containment function in (3.21). Suppose that the sequence (Xn(0),Λn(0)) is expo-
nentially tight with speed n. Then the sequence (Xn(t),Λn(t)) satisfies the exponential
compact containment condition with speed n as in Definition 3.6.

Proof. We use the proof method coming from [FK06, Lemma 4.22]. The details are
as follows.

Fix a ≥ 0 and T > 0. S is a finite state space, S is also a compact set. We construct
a compact set K ′ × S by Tychonoff’s theorem [Eng89, Theorem 3.2.4] such that

lim sup
n→∞

1

n
logP [(Xn(t),Λn(t)) /∈ K ′ × S for some t ≤ T ] ≤ −a.
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As (Xn(0),Λn(0) is exponentially tight with speed n, we can find compact K0 so that

lim sup
n→∞

1

n
logP [(Xn(0),Λn(0)) /∈ K0 × S] ≤ −a,

Then, in virtue of the convergence of the operator, we can find (fn, gn) ∈ Hn, a
compact K × S and an open set G× S, and define

β(K,G, S) := lim inf
n→∞

(
inf

(x,i)∈Gc×S
fn(x, i)− sup

(x,i)∈K×S
fn(x, i)

)

and
γ(G,S) = lim sup

n→∞
sup

x∈G×S
gn(x, i)

such that β(K,G, S) + Tγ(G,S) ≤ −a.

Set γ := sup(x,i)∈E×S H((x, i), ∂xΥ(x)) and c1 := sup(x,i)∈K0×S Υ(x). Observe that
γ <∞ by (3.22) and c1 <∞ by compactness. Now choose c2 such that

−(c2 − c1) + Tγ = −a (3.24)

and take K = {(x, i) ∈ E × S | Υ(x) ≤ c1} and G = {(x, i) ∈ E × S | Υ(x) < c2}.

Let θ : [0,∞) → [0,∞) be a compactly supported smooth function with the property
that θ(x) = x for x ≤ c2. For each n, define fn := θ ◦ Υ and gn := Hnfn. By the
convergence of operator, gn → Hf and moreover, by construction β(K,G, S) = c2−c1
and γ(G,S) = γ. Thus by (3.24) and [FK06, Lemma 4.22] we obtain

lim sup
n→∞

1

n
logP[(Xn(t),Λn(t)) /∈ G× S for some t ≤ T ] ≤ −a

and the compact containment condition holds with Ka,T = G.

3.4 Comparison principle

In this section, we prove the comparison principle for the Hamilton-Jacobi equation
f − λHf = h with the help of the single valued operator Hf(x) := H(x, ∂xf(x)) in
(3.19) as defined.

We argue by first encoding the containment function Υ into the domain of our op-
erators. This allows us to work with optimizes as in Remark 2.5, and the strat-
egy is summarized in Figure 3.1 below. We begin with the definition of the op-
erators H1, H2, H†, and H‡ using Υ(x) = − log(x) + log

(
1 + 1

2x
2
)
− log

√
2 with

CΥ = supx,iBx,∂xΥ(x)(x, i) <∞. Denote by C∞
l (E) the set of smooth functions on E

that have a lower bound and by C∞
u (E) the set of smooth functions on E that have

an upper bound.
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Definition 3.10. (Single valued operators)

• For f ∈ C∞
l (E) and δ ∈ (0, 1) set

fδ† := (1− δ)f + δΥ,

Hδ
†,f (x) := (1− δ)Hf(x) + δCΥ,

and set
H† :=

{(
fδ† , H

δ
†,f
) ∣∣∣f ∈ C∞

l (E), δ ∈ (0, 1)
}
.

• For f ∈ C∞
u (E) and δ ∈ (0, 1) set

fδ‡ := (1 + δ)f − δΥ,

Hδ
‡,f (x) := (1 + δ)Hf(x)− δCΥ,

and set
H‡ :=

{(
fδ‡ , H

δ
‡,f
) ∣∣∣f ∈ C∞

u (E), δ ∈ (0, 1)
}
.

Definition 3.11. (Multi-valued operators)

• For f ∈ C∞
l (E), δ ∈ (0, 1) and ϕ ∈ C2

b (E × S). Set

fδ1 := (1− δ)f + δΥ,

Hδ
1,f,ϕ(x, i) := (1− δ)Hf,ϕ(x, i) + δCΥ,

and set

H1 :=
{(
fδ1 , H

δ
1,f,ϕ

) ∣∣∣f ∈ C∞
l (E), δ ∈ (0, 1), ϕ ∈ C2

b (E × S)
}
.

• For f ∈ C∞
u (E), δ ∈ (0, 1) and ϕ ∈ C2

b (E × S). Set

fδ2 := (1 + δ)f − δΥ,

Hδ
2,f,ϕ(x, i) := (1 + δ)Hf,ϕ(x, i)− δCΥ,

and set

H2 :=
{(
fδ2 , H

δ
2,f,ϕ

) ∣∣∣f ∈ C∞
u (E), δ ∈ (0, 1), ϕ ∈ C2

b (E × S)
}
.

Based on the above preparations, we are ready to state the most important proposition
of this section.
Proposition 3.12 (Comparison principle). Let Assumptions 3.2 and 3.3 be satisfied.
Let h1, h2 ∈ Cb(E) and λ > 0. Let u be any subsolution to f − λHf = h1 and let v
be any supersolution to f − λHf = h2. Then we have that

sup
x
u(x)− v(x) ≤ sup

x
h1(x)− h2(x).
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sub

super

sub

super
sup

er

sub

H
implicit

multi-valued

H1

H2 H‡

H†

H
explicit

single valued
comparison

Figure 3.1: An arrow connecting an operator A with operator B with subscript ‘sub’
means that viscosity subsolutions of f − λAf = h are also viscosity subsolutions of
f − λBf = h. Similarly, we get the description for arrows with a subscript ‘super’.
The middle gray box around the operators H† and H‡ indicates that the comparison
principle holds for subsolutions of f −λH†f = h and supersolutions of f −λH‡f = h.
The left blue box indicates that H is an implicit and multi-valued operator. The right
blue box indicates H is an explicit single value operator.

3.4.1 Strategy of proof of Proposition 3.12

The argument of Proposition 3.12 is inspired by the methods of [FK06, Chapter 11]
and [KS21, Section 5] and is carried out by establishing the Figure 3.1. We first
establish the two horizontal arrows in Figure 3.1.
Lemma 3.13. Fix λ > 0 and h ∈ Cb(E).

(a) Every subsolution to f − λH1f = h is also a subsolution to f − λH†f = h.

(b) Every supersolution to f − λH1f = h is also a supersolution to f − λH‡f = h.

Proof. Let u be a subsolution to f − λH1f = h. We show it is also a subsolution to
f − λH†f = h. To do it, for one thing, we find a unique optimizer x0 in the compact
level sets of Υ for the definition of viscosity solutions due to the existence of Υ. For
another, we find a corrector using x0.

Step 1: we show there exists x0 such that

u(x0)− fδ1 (x0) = sup
x
u(x)− fδ1 (x). (3.25)

First of all, note that u and −fδ1 are upper semicontinuous. As Υ has compact
sub-level sets, there exists x0 such that

u(x0)− fδ1 (x0) = sup
x
u(x)− fδ1 (x).

Next, let f̂ ∈ C∞
l (E) such that f̂(x0) = f(x0) and f̂(x) > f(x) if x ̸= x0 so that x0

is the unique optimizer in

u(x0)− fδ1 (x0) = sup
x
u(x)− fδ1 (x)
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and in addition f ′(x0) = f̂ ′(x0).

Step 2: we consider the corrector. The corrector ϕx0
= τ(x0, p) existing by Proposi-

tion 3.5 is such that
Hδ

1,f̂ ,ϕx0

(x0, i)

does not depend on i, and we have

Hδ
1,f̂ ,ϕx0

(x0, i) = (1− δ)Hf(x0) + δCΥ.

due to Proposition 3.5. As u is a subsolution to f −λH1f = h, there are (xn, in) such
that

lim
n
u(xn)− f̂†δ (xn) = sup

x
u(x)− f̂†δ (x)

and
lim sup

n
u(xn)− λHδ

1,f̂ ,ϕx0

(xn, in)− h(xn) ≤ 0.

As x0 is the unique optimizer of sup(u− f̂†δ ), and as S is compact, there exists i0 ∈ S
such that along a subsequence we have (xn, in) → (x0, i0) as n → ∞. We conclude
that

u(x0)− λHδ
†,f (x0)− h(x0) = u(x0)− λHδ

1,f̂ ,ϕx0

(x0, i)− h(x0) ≤ 0.

So in combination with (3.25), we have obtained the two desired properties for each
pair of functions in H†. We conclude that u is a subsolution to f − λH†f = h.

Lemma 3.14. Fix λ > 0 and h ∈ Cb(E).

(a) Every subsolution to f − λHf = h is also a subsolution to f − λH†f = h.

(b) Every supersolution to f − λHf = h is also a supersolution to f − λH‡f = h.

Proof. Fix λ > 0 and h ∈ Cb(E). Let u be a subsolution to f − λHf = h. We prove
it is also a subsolution to f − λH†f = h.

Fix δ > 0, f ∈ C∞
l (E) such that (fδ† , H

δ
†,f ) ∈ H†. We will prove that there is a

sequence xn ∈ E such that

lim
n→∞

u(xn)− fδ† (xn) = sup
x∈E

u(x)− fδ† (x), (3.26)

lim sup
n→∞

u(xn)− λHδ
†,f (xn)− h(xn) ≤ 0. (3.27)

As the function [u − (1 − δ)f ] is bounded from above and Υ has compact sublevel
sets, the sequence xn along which the first limit is attained can be assumed to lie in
the compact set

K :=
{
x | Υ(x) ≤ δ−1 sup

x
(u(x)− (1− δ)f(x))

}
.
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SetM = δ−1 supx(u(x)−(1−δ)f(x)). Let γ : R → R be a smooth increasing function
such that

γ(r) =

{
r, if r ≤M ,

M + 1, if r ≥M + 2.

Let fδ be a function on E defined by

fδ(x) := γ((1− δ)f(x) + δΥ(x)) = γ(fδ† (x)).

By construction, fδ is smooth and constant outside of a compact set and thus lies
in D(H) = C∞

cc (E). As u is a viscosity subsolution for f − λHf = h there exists a
sequence xn ∈ K ⊆ E (by our choice of K) with

lim
n
u(xn)− fδ(xn) = sup

x∈E
u(x)− fδ(x), (3.28)

lim sup
n

u(xn)− λHfδ(xn)− h(xn) ≤ 0. (3.29)

As fδ equals fδ† on K, we have from (3.28) that also

lim
n
u(xn)− fδ† (xn) = sup

x∈E
u(x)− fδ† (x),

establishing (3.26). Convexity of p → H(x, p) yields for arbitrary points x ∈ K the
estimate

Hfδ(x) = H(x, ∂xfδ(x))

≤ (1− δ)H(x, ∂xf(x)) + δH(x, ∂xΥ(x))

≤ (1− δ)H(x, ∂xf(x)) + δCΥ = Hδ
†,f (x).

Combining this inequality with (3.29) yields

lim sup
n

u(xn)− λHδ
†,f (xn)− h(xn)

≤ lim sup
n

u(xn)− λHfδ(xn)− h(xn) ≤ 0,

establishing (3.27). This concludes the proof.

Lemma 3.15. Fix λ > 0 and h ∈ Cb(E).

(a) Every subsolution to f − λHf = h is also a subsolution to f − λH1f = h.

(b) Every supersolution to f − λHf = h is also a supersolution to f − λH2f = h.

Proof. This proof has the same idea as Lemma 3.14, but we need to make appropriate
modifications. To maintain integrity and readability, we give its proof in the following.
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Fix λ > 0 and h ∈ Cb(E). Let u be a subsolution to f − λHf = h. We prove it is
also a subsolution to f − λH1f = h. Fix δ ∈ (0, 1), ϕ ∈ C2

b (E × S) and f ∈ C∞
l (E),

such that (fδ1 , H
δ
1,f,ϕ) ∈ H1. We will prove that there are (xn, in) such that

lim
n
u(xn)− fδ1 (xn) = sup

x
u(x)− fδ1 (x) (3.30)

lim sup
n

u(xn)− λHδ
1,f,ϕ(xn, in)− h(xn) ≤ 0. (3.31)

We have thatM := δ−1 supx(u(x)−(1−δ)f(x)) <∞ as u is bounded and f ∈ Cl(E).
It follows that the sequence xn along which the limit in (3.30) is attained is contained
in the compact set K := {x | Υ(x) ≤M}.

Let γ : R → R be a smooth increasing function such that

γ(r) =

{
r, if r ≤M ,

M + 1, if r ≥M + 2.

Denote by fδ the function on E defined by

fδ(x) := γ((1− δ)f(x) + δΥ(x)) = γ(fδ1 (x)).

By construction, fδ is smooth and constant outside of a compact set and thus lies in
D(H) = C∞

cc (E). As eϕ ∈ C2
b (E×S), we also have e(1−δ)ϕ ∈ C2(E×S). We conclude

that (fδ, Hfδ,(1−δ)ϕ) ∈ H. As u is a viscosity subsolution for f−λHf = h, there exist
xn ∈ K ⊆ E (by our choice of K) and in ∈ S with

lim
n
u(xn)− fδ(xn) = sup

x
u(x)− fδ(x), (3.32)

lim sup
n

u(xn)− λHfδ,(1−δ)ϕ(xn, in)− h(xn) ≤ 0. (3.33)

As fδ equals fδ1 on K, we have from (3.32) that also

lim
n
u(xn)− fδ1 (xn) = sup

x
u(x)− fδ1 (x),

establishing (3.30). For arbitrary sequences (xn, in) the elementary estimate

Hfδ,(1−δ)ϕ(xn, in)

= Bx,∂xfδ(x)(xn, in) + e−(1−δ)ϕ(xn,in)Rxe
(1−δ)ϕ(xn,in)

≤ (1− δ)Bx,∂xf(x)(xn, in) + δBx,∂xΥ(x)(xn, in) + (1− δ)e−ϕ(xn,in)Rxe
ϕ(xn,in)

= (1− δ)
(
Bx,∂xf(x)(xn, in) + e−ϕ(xn,in)Rxe

ϕ(xn,in)
)
+ δBx,∂xΥ(x)(xn, in)

≤ Hδ
1,f,ϕ(xn, in),
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In the first inequality, we use that Bx,p is convex concerning p. In virtue of (3.23),
the last inequality holds. Combining above inequality with (3.33) yields

lim sup
n

[
u(xn)− λHδ

1,f,ϕ(xn, in)− h(xn)
]

≤ lim sup
n

[u(xn)− λHfδ,ϕ(xn, in)− h(xn)] ≤ 0,

establishing (3.31). This concludes the proof.

The following lemma is to verify the comparison principle for Hamilton-Jacobi-Bellman
equations involving the Hamiltonian H† and H‡.
Lemma 3.16. Assumptions 3.2 and 3.3 hold. Let h1, h2 ∈ Cb(E) and λ > 0. Let u
be any subsolution to f−λH†f = h1 and let v be any supersolution to f−λH‡f = h2.
Then we have

sup
x
u(x)− v(x) ≤ sup

x
h1(x)− h2(x).

A key step in the proof is the doubling of variables procedure as e.g. explained in
[CIlL92]. We first give the the definition of penalization function for introducing the
auxiliary lemma below that is often used in proving Lemma 3.16.
Definition 3.17 (Penalization function). We say that d : E × E → [0,∞) is a
penalization function if d ∈ C(E × E) and if x = y if and only if d(x, y) = 0.
Lemma 3.18 (Lemma A.10 in [CK17]). Let u be bounded and upper semicontinuous,
let v be bounded and lower semicontinuous, let the distance function d : E ×E → R+

be good penalization function and let Υ be a good containment function.

Fix δ > 0. For every m > 0 there exist points xδ,m, yδ,m ∈ E, such that

u(xδ,m)

1− δ
− v(yδ,m)

1 + δ
−md2(xδ,m, yδ,m)− δ

1− δ
Υ(xδ,m)− δ

1 + δ
Υ(yδ,m)

= sup
x,y∈E

{ u(x)
1− δ

− v(y)

1 + δ
−md2(x, y)− δ

1− δ
Υ(x)− δ

1 + δ
Υ(y)

}
.

Additionally, for every δ > 0 we have that

(a) The set {xδ,m, yδ,m | m > 0} is relatively compact in E.

(b) All limit points of {(xδ,m, yδ,m)}m>0 are of the form (z, z) and for these limit
points we have

u(z)− v(z) = sup
x∈E

u(x)− v(x).

(c) We have

lim
m→∞

md2(xδ,m, yδ,m) = 0.
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Remark 3.19. For the good penalization function d in Lemma 3.18, we take

d2(x, y) =
2

θ2
(
√
x−√

y)2 (3.34)

based on [DFL11, Section 2.2] in the proof of Lemma 3.16.

Here, we give the proof of Lemma 3.16.

Proof of Lemma 3.16. For 0 < δ < 1 and m > 1, let

Φδ,m(x, y) :=
u(x)

1− δ
− v(y)

1 + δ
−md2(x, y)− δ

1− δ
Υ(x)− δ

1 + δ
Υ(y),

where d(·, ·) is given in (3.34) and Υ(·) is given in (3.21). Since Υ(·) has compact
level sets, there exists (xδ,m, yδ,m) ∈ E × E satisfying

Φδ,m(xδ,m, yδ,m) = sup
(x,y)∈E×E

Φδ,m(x, y). (3.35)

Let φδ,m1 ∈ D(H†) be defined as

φδ,m1 (x) : = (1− δ)
(v(yδ,m)

1 + δ
+md2(x, yδ,m) +

δ

1− δ
Υ(x) +

δ

1 + δ
Υ(yδ,m)

)
+ (1− δ)(x− xδ,m)2,

where adding (1− δ)(x− xδ,m)2 in φδ,m1 (x) implies that u−φδ,m1 attains its a unique
supremum at x = xδ,m, namely

sup
x∈E

u(x)− φδ,m1 (x) = u(xδ,m)− φδ,m1 (xδ,m).

By the viscosity subsolution property of u one has

u(xδ,m)− λ
[
(1− δ)H(xδ,m, p

1
δ,m) + δCΥ

]
≤ h1(xδ,m), (3.36)

where

P 1
δ,m := m∂xd

2(xδ,m, yδ,m) =
2m

θ2
(
1−

√
yδ,m

√
xδ,m

)
. (3.37)

Similarly, let φδ,m2 ∈ D(H‡) be defined as

φδ,m2 (y) : = (1 + δ)
(u(xδ,m)

1− δ
−md2(x, yδ,m)− δ

1− δ
Υ(xδ,m)− δ

1 + δ
Υ(y)

)
− (1 + δ)(y − yδ,m)2.

Therefore, we obtain the supersolution inequality

v(xδ,m)− λ
[
(1 + δ)H(yδ,m, p

2
δ,m)− δCΥ

]
≥ h2(yδ,m), (3.38)
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where

p2δ,m := −m∂yd2(xδ,m, yδ,m) = −2m

θ2
(
1−

√
xδ,m

√
yδ,m

)
. (3.39)

By Lemma 3.18, we have

lim
m→∞

md2(xδ,m, yδ,m) = 0. (3.40)

Combining (3.36), (3.38) and (3.40) we get

sup
x∈E

u(x)− v(x) ≤ lim inf
δ→0

lim inf
m→∞

(u(xδ,m)

1− δ
− v(yδ,m)

1 + δ

)
≤ lim inf

δ→0
lim inf
m→∞

{h1(xδ,m)

1− δ
− h2(yδ,m)

1 + δ
(3.41)

+
δ

1− δ
CΥ +

δ

1 + δ
CΥ (3.42)

+ λ
(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)}
, (3.43)

where in the first inequality we use (3.35) and drop the non-negative functions d2(·, ·)
and Υ(·). The term in (3.42) vanishes as CΥ in (3.23) is a constant.

Based on Lemma 3.18, for fixed δ and varying m, the sequence (xδ,m, yδ,m) takes
its values in a compact set and, hence, admits converging subsequences. By (b) of
Lemma 3.18, these subsequences converge to points of the form (x, x). Therefore, we
can deal with (3.41). Then, by the above analysis, we can get

sup
x∈E

u(x)− v(x) ≤ λ lim inf
δ→0

lim inf
m→∞

(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)
+ sup
x∈E

h1(x)− h2(x).

It follows that the comparison principle holds for f − λH†f = h1 and f − λH‡f = h2
whenever for any δ > 0

lim inf
m→∞

(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)
≤ 0. (3.44)

To that end, recall H(x, p) in (3.19):

H(x, p) = sup
π∈P(S)

{∫
Bx,p(z)π(dz)− I(x, π)

}
,

where π 7→
∫
Bxδ,m,piδ,m

(z)π(dz) is bounded and continuous and I(xδ,m, ·) has com-

pact sub-level sets in P(S). Thus, there exists an optimizer πδ,m ∈ P(S) such that

H(xδ,m, p
1
δ,m) =

∫
Bxδ,m,p1δ,m

(z)πδ,m(dz)− I(xδ,m, πδ,m) (3.45)
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and

H(yδ,m, p
2
δ,m) ≥

∫
Bxδ,m,p2δ,m

(z)πδ,m(dz)− I(xδ,m, πδ,m). (3.46)

Combining (3.45) and (3.46), we obtain

H(xδ,m, p
1
δ,m)−H(yδ,m, p

2
δ,m)

≤
∫ (

Bxδ,m,p1δ,m
(z)−Byδ,m,p2δ,m(z)

)
πδ,m(dz) (3.47)

+ I(yδ,m, πδ,m)− I(xδ,m, πδ,m). (3.48)

It is sufficient to prove that (3.47) and (3.48) are sufficiently small. For (3.47), by
calculating the difference of integrand Bx,p in detail, for any z ∈ E and i ∈ S, one
has

Bxδ,m,p1δ,m
(z)−Byδ,m,p2δ,m(z)

=
(
η(µ(z)− xδ,m)p1δ,m +

1

2
θ2xδ,m(p1δ,m)2

)
−
(
η(µ(z)− yδ,m)p2δ,m +

1

2
θ2yδ,m(p2δ,m)2

)
=
(
η(µ(z)− xδ,m)p1δ,m − η(µ(z)− yδ,m)p2δ,m

)
+
(1
2
θ2xδ,m(p1δ,m)2 − 1

2
θ2yδ,m(p2δ,m)2

)
=

2mη

θ2
(µ(z)− yδ,m)

(
1−

√
xδ,m

√
yδ,m

)
+

2mη

θ2
(µ(z)− xδ,m)

(
1−

√
yδ,m

√
xδ,m

)
=

2mη

θ2
[
(µ(z)− yδ,m)

(
1−

√
xδ,m

√
yδ,m

)
+ (µ(z)− xδ,m)

(
1−

√
yδ,m

√
xδ,m

)]
= −mηµ(z)d

2(xδ,m, yδ,m)
√
xδ,myδ,m

−mηd2(xδ,m, yδ,m) ≤ 0,

where in the third equality we use (3.37) and (3.39). For (3.48), we utilize the equi-
continuity of I(·, π) established in Lemma 3.20 below for the spatial variable. We are
left with stating and verifying Lemma 3.20. This finishes the proof of (3.44) and the
comparison principle for H† and H‡.

Lemma 3.20. Let Assumption 3.3 be satisfied. Recall (3.20):

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz).

For any compact set G ⊆ E, then the collection {x 7→ J(x, π) | π ∈ P(S)} is equi-
continuity.

Proof. Let ρ be some metric on the topology of E. We will prove that for any compact
sets G ⊆ E and ε > 0, there is some δ > 0 such that for all x, y ∈ G with ρ(x, y) ≤ δ
and for all π ∈ P(S), we have

|I(x, π)− I(y, π)| ≤ ε. (3.49)
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In virtue of the definition of I, there exists a function ϕ ∈ C(S) independent of x
such that eϕ in the domain of Rx, and

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz)

= sup
ϕ∈C(S)

∑
i,j∈S

qij(x)πi
(
1− eϕ(j)−ϕ(i)

)
.

Let x, y ∈ G. By continuity of the transition rate qij(x), the I(x, ·) are uniformly
bounded for x ∈ G:

0 ≤ I(x, π) ≤
∑
i,j,i ̸=j

qij(x)πi ≤
∑
i,j,i ̸=j

qij(x) ≤
∑
i,j,i ̸=j

qij , qij := sup
x∈G

qij(x).

For any n ∈ N , there exists ϕn ∈ C(S) such that

0 ≤ I(x, π) ≤
∑
i,j,i ̸=j

qij(x)πi(1− eϕ
n(j)−ϕn(i)) +

1

n
.

By reorganizing, we find for all pairs (k, l) the bound

πke
ϕn(l)−ϕn(k) ≤ 1

rG(k, l)

( ∑
i,j,i ̸=j

qij(x)πi +
1

n

)
≤ 1

rG(k, l)

( ∑
i,j,i ̸=j

qij +
1

n

)
,

where rG(k, l) := infx∈G qkl(x). Thereby, evaluating in I(y, π) the same function ϕn

to estimate the supremum,

I(x, π)− I(y, π)

≤ 1

n
+
∑
k,l,k ̸=l

qkl(x)πk
(
1− eϕ

n(l) − eϕ
n(k)

)
−
∑
k,l,k ̸=l

qkl(y)πk
(
1− eϕ

n(l) − eϕ
n(k)

)
≤ 1

n
+
∑
k,l,k ̸=l

|qkl(x)− qkl(y)|πk +
∑
k,l,k ̸=l

|qkl(y)− qkl(x)|πkeϕ
n(l)−ϕn(k)

≤ 1

n
+
∑
k,l,k ̸=l

|qkl(x)− qkl(y)|
[
1 +

1

rG(k, l)

( ∑
k,l,k ̸=l

qkl + 1
)]
.

We take n → ∞ and use that the rates x 7→ qkl(x) are Lipschitz continuous under
Assumption 3.3, and hence uniformly continuous on compact sets, to obtain (3.49).
Hence, the proof of the lemma is concluded.

3.4.2 Proof of Proposition 3.12

We now prove Proposition 3.12; that is, the verification of the comparison principle
for the Hamilton-Jacobi equations f − λHf = h. The proof follows the strategy of
Figure 3.1 combined with Lemma 3.13, Lemma 3.14, Lemma 3.15 and Lemma 3.16.
We thus obtain Figure 3.2 via adding these lemmas in Figure 3.1 as below for an easy
understanding of the proof strategy of Proposition 3.12.
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Lem
3.15

Lem 3.15

Lem 3.13

Lem 3.13
Lem

3.14

Lem 3.14

H

H1

H2 H‡

H†

H

sub

super

Lem 3.16

Figure 3.2: Add lemmas in Figure 3.1

Proof of Proposition 3.12. Fix h1, h2 ∈ Cb(E) and λ > 0. Let u be a viscosity
subsolution to (1 − λH)f = h1 and v be a viscosity supersolution to (1 − λH)f =
h2. By Lemma 3.15 and Lemma 3.13, the function u is a viscosity subsolution to
(1 − λH†)f = h1 (see red part on Figure 3.2) and v is a viscosity supersolution to
(1 − λH‡)f = h2 (see blue part on Figure 3.2). Hence by the comparison principle
for H†, H‡ established in Lemma 3.16, we get supx u(x)− v(x) ≤ supx h1(x)− h2(x).
This finished the proof.

3.5 Proof of action-integral representation of the
rate function

In this section, we will prove our main result Theorem 3.3. According to the strategy
in Section 2.2, the proof is based on three main parts that we have proven:

• operator convergence;

• exponential tightness;

• comparison principle.

Hence, Xε
n(t) satisfies large deviation principles with projective limit form rate func-

tion (2.14).

We are left to prove that (2.14) has the action-integral form rate function (2.15), and
put it in the proof of Theorem 3.3 below. To achieve the aim, according to step 4
in Section 2.2.1, we should first prove the lemma below which is necessary to obtain
(2.15).
Lemma 3.21. Let H : E × E → R be the map given in (3.19) and the operator
Hf(x) := H(x, ∂xf(x)). Then, the operator H satisfies Conditions 8.9, 8.10, and
8.11 of [FK06].

Proof. We first show that the following conditions imply Conditions 8.9, 8.10, and
8.11 in a non-compact setting. These ideas come from the proof of Proposition 6.1-(i)
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in [PS24]. We begin with modifying the conditions adapted to our setting.

(a) The function L : E × E → [0,∞] is lower semicontinuous and for every C ≥ 0,
the level set {(x, v) ∈ E × E | L(x, v) ≤ C} is relatively compact in E × E.

(b) For all f ∈ D(H) there exists a right continuous, non-decreasing function ψf :
[0,∞) → [0,∞) such that for all (x, v) ∈ E × E,

|∂xf(x) · v| ≤ ψf (L(x, v)) and lim
r→∞

r−1ψf (r) = 0.

(c) For each x0 ∈ E and every f ∈ D(H), there exists an absolutely continuous
path x : [0,∞) 7→ E such that∫ t

0

H(x(s), ∂xf(x(s)))ds =

∫ t

0

∂xf(x(s)) · ẋ(s)− L(x(s), ẋ(s))]ds.

Then, we will use (1), (2), and (3) to prove Condition 8.9, 8.10, and 8.11. Regarding
Condition 8.9, the operator Af(x, v) := ∂xf(x) · v on the domain D(A) = D(H)
satisfies Condition 8.9.1 in [FK06]. For Condition 8.9.2 in [FK06], we can choose Γ =
E×E, and for x0 ∈ E, take the pair (x, λ) with x(t) = x0 and λ(dv×dt) = δ0(dv)×dt.
Condition 8.9.3 in [FK06] is a consequence of Condition 8.9.1 in [FK06] from above.
Condition 8.9.4 in [FK06] can be verified as follows. Let be Υ the containment function
used in (3.21) and note that the sub-level sets of Υ are compact. Let γ ∈ AC(E) with
γ(0) ∈ K and such that the control∫ T

0

L(γ(s)), γ̇(s)) ≤M

implies γ(t) ∈ K̂ for all t ≤ T , where K̂ is a compact set. Then,

Υ(γ(t)) = Υ(γ(0)) +

∫ t

0

⟨∂xΥ(γ(s)), γ̇(s)⟩ds

≤ Υ(γ(0)) +

∫ t

0

L(γ(s)), γ̇(s)) +H(γ(s), ∂xΥ(γ(s)))ds

≤ sup
y∈K

Υ(y) +M +

∫ T

0

sup
z

H(z, ∂xΥ(z))ds

:= C <∞.

Hence, we can take K̂ = {z ∈ E | Υ(z) ≤ C}. Condition 8.9.5 in [FK06] is implied
by Condition 8.9.2 in [FK06] from above.

Condition 8.10 [FK06] is implied by Condition 8.11 [FK06] with the fact that H1 = 0
[FK06, Remark 8.12-(e)].

Finally, Condition 8.11 in [FK06] is implied by (3) above, with the control λ(dv×dt) =
δẋ(t)(dv)× dt.
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In the rest of this section, we prove Theorem 3.3.

Proof of Theorem 3.3. From Proposition 2.14, we have proven LDP with a projective
limit form rate function. Then we rewrite the rate-function on the Skorohod space in
an action-integral form.

We first show that the Lagrangian L is superlinear, which means (L(x, v)/|v|) → ∞
as |v| → ∞. To do it, for any c > 0 we have

L(x, v)
|v|

= sup
p∈R

[
p · v

|v|
− H(x, p)

|v|

]
≥ sup

|p|=c

[
p · v

|v|
− H(x, p)

|v|

]
≥ c− 1

|v|
sup
|p|=c

H(x, p).

The convex Hamiltonian is continuous, and therefore sup|p|=cH(x, p) is finite. Hence
for arbitrary c > 0, we have L(x, v)/|v| > c/2 for all |v| large enough.

Let x : [0, T ] → E be absolutely continuous and are two arbitrary 0 = t0 < t1. We
show that

IVt1−t0(x(t1) | x(t0)) = inf
γ(t0)=x(t0)
γ(t1)=x(t1)

∫ t

0

L(γ(s), γ̇(s))ds, (3.50)

where the infimum is taken over absolutely continuous paths γ : [t0, t1] → E. Once
we have this equality established, we obtain for arbitrary k ∈ N and points in time
0 = t0, t1, . . . , tk = T the estimate

IVt1−t0(x(t1) | x(t0)) + IVt2−t1(x(t2) | x(t1)) + · · ·+ IVtk−tk−1
(x(tk) | x(tk−1)

≤
∫ T

0

L(x(s), ẋ(s))ds,

since x(·) satisfies the begin- and endpoint constraints. For the reverse inequality, we
note that adding time points increases the two-point rate functions since we add a
condition on the paths; for t0 < t1 < t2,

IVt2−t0(x(t2) | x(t0))

= inf
γ(t0)=x(t0)
γ(t2)=x(t2)

[∫ t1

t0

L(γ(s), γ̇(s))dt+
∫ t2

t1

L(γ(s), γ̇(s))dt
]

≤ inf
γ(t0)=x(t0)
γ(t1)=x(t1)

[∫ t1

t0

L(γ(s), γ̇(s))dt
]
+ inf

γ(t1)=x(t1)
γ(t2)=x(t2))

[∫ t2

t1

L(γ(s), γ̇(s))dt
]

= IVt2−t1(x(t2) | x(t1)) + IVt1−t0(x(t1)|x(t0)).
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The partitions of a time interval [0, T ] give rise to a monotonically increasing sequence.
In the limit, we obtain

sup
k

sup
ti

k∑
i=0

IVti+1−ti(x(ti+1) | x(ti)) =
∫ T

0

L(x(s), ẋ(s))ds.

We do not show that here but refer to [Vil09, Definition 7.11, Example 7.12]. We now
show how (3.50) follows from the compact sub-level sets.

For f ∈ Cb(E) and x(t0) ∈ E, starting from

V (t1)f(x(t0)) = V(t1)f(x(t0))

= sup
γ(t0)=x(t0)
γ(t1)=x(t1)

{
f(γ(t1))−

∫ t1

t0

L(γ(s), γ̇(s))ds
}
.

= − inf
γ(t0)=x(t0)
γ(t1)=x(t1)

{∫ t1

t0

L(γ(s), γ̇(s))ds− f(γ(t1))

}
.

(3.51)

We have

IVt1−t0(x(t1) | x(t0))
= sup
f∈Cb(E)

(f(x(t1))−V(t1)f(x(t0)))

(3.51)
= sup

f∈Cb(E)

inf
γ(t0)=x(t0)
γ(t1)=x(t1)

[
f(x(t1))− f(γ(t1)) +

∫ t1

t0

L(γ(s), γ̇(s)ds
]
.

(3.52)

For any f ∈ Cb(E),

inf
γ(t0)=x(t0)

[
f(x(t1))− f(γ(t1)) +

∫ t1

t0

L(γ(s), γ̇(s)ds
]
≤ inf
γ(t0)=x(t0)
γ(t1)=x(t1)

∫ t1

t0

L(γ(s), γ̇(s)ds,

since {γ : γ(t0) = x(t0)} contains {γ : γ(t0) = x(t0), γ(t1) = x(t1)}. Taking the
supremum over all f

sup
f∈Cb(E)

inf
γ(t0)=x(t0)

[
f(x(t1))− f(γ(t1)) +

∫ t1

t0

L(γ(s), γ̇(s)ds
]

≤ inf
γ(t0)=x(t0)
γ(t1)=x(t1)

∫ t1

t0

L(γ(s), γ̇(s)ds,

shows the inequality “≤” of (3.50).

For the reverse, let f ∈ Cb(E). There are curves γm satisfying γm(t0) = x(t0) and



3.6. Proof of existence and uniqueness 65

inf
γ(t0)=x(t0)

[
f(x(t1))− f(γ(t1)) +

∫ t1

t0

L(γ(s), γ̇(s)ds
]
+

1

m

≥ f(x(t1))− f(γm(t1)) +

∫ t1

t0

L(γm(s), γ̇m(s)ds.

Since f is bounded, this implies lim supm→∞
∫ t1
t0

L(γm(s), γ̇m(s)ds < ∞. By com-

pactness of sublevel sets, we can pass to a converging subsequence (denoted as well
by γm). If γm(t1) ↛ x(t1), then It(x(t1) | x(t0)) = ∞, and the desired estimate holds.

If γm(t1) → x(t1), then by lower semicontinuity of γ →
∫ t1
t0

L(γ(s), γ̇(s)ds,

inf
γ(t0)=x(t0)

[
f(x(t1))− f(γ(t1)) +

∫ t1

t0

L(γ(s), γ̇(s)ds
]

≥ lim inf
m→∞

f(x(t1))− f(γm(t1)) +

∫ t1

t0

L(γm(s), γ̇m(s)ds

≥
∫ t1

t0

L(γ(s), γ̇(s)ds ≥ inf
γ(t0)=x(t0)
γ(t1)=x(t1)

∫ t1

t0

L(γ(s), γ̇(s)ds,

and the reverse inequality “≥” of (3.50) follows.

3.6 Proof of existence and uniqueness

In order to prove Proposition 3.1, we use the methods of Skorokhod’s representa-
tion and pathwise splicing. In the following, we start with introducing Skorokhod’s
representation of fast process Λεn(t).

3.6.1 Skorokhod’s representation

The role of Skorokhod’s representation is to represent the evolution of the discrete
component Λεn(t) in the form of a stochastic integral with respect to a Poisson random
measure (see, for example, [Sha18]). Precisely, for each x ∈ R, construct a family of
intervals {Γεij(x) : i, j ∈ S} on the half line in the following manner:

Γε12(x) =
[
0,

1

ε
q12(x)

)
Γε13(x) =

[1
ε
q12(x),

1

ε
[q12(x) + q13(x)]

)
...

Γε1N (x) =
[1
ε

N−1∑
j=1

q1j(x),
1

ε
q1(x)

)
Γε21(x) =

[1
ε
q1(x),

1

ε
[q1(x) + q21(x)]

)
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Γε23(x) =
[1
ε
[q1(x) + q21(x)],

1

ε
[q1(x) + q21(x) + q23(x)]

)
...

and so on. Therefore, we obtain a sequence of consecutive, left-closed, right-open
intervals Γεij(x) of R+, each having length 1

εqij(x). For convenience of notation, we set
Γεii(x) = ∅ and Γεij(x) = ∅ if qij(x) = 0, i ̸= j. Define a function hε : R×S×Mε → R
by

hε(x, i, z) =
∑
l∈S

(l − i)1Γε
il(x)

(z).

That is, with the partition {Γεij(x) : i, j ∈ S with i ̸= j} used and for each i ∈ S, if
z ∈ Γεij(x), h

ε(x, i, z) = j − i; otherwise hε(x, i, z) = 0. Then (3.8) is equivalent to

dΛεn(t) =

∫
[0,Mε]

hε(Xε
n(t),Λ

ε(t−), z)N(dt,dz), (3.53)

where Mε = N(N − 1)Hε with Hε := maxi,j∈S supx∈R
1
εqij(x) < ∞. N(dt, dz) is

a Poisson random measure (corresponding to a stationary point process p(t)) with
intensity dt × m(dz), and m(dz) is the Lebesgue measure on [0,Mε]. Note that
N(·, ·) does not depend on ε, because the function hε(·, ·, ·) contains all information
about 1

εq(·), see [XZ17, Proporsition 2.4]. N(·, ·) is independent of the Brownian
motion W (·). Due to the finiteness of m(·) on [0,Mε], there is only a finite number
of jumps of the process p(t) in each finite time interval. Let σ1 < σ2 < . . . < . . .
be the enumeration of all elements in the domain Dp of the stationary point process
p(t) corresponding to the above Poisson random measure N(dt, dz). It follows that
limn→∞ σn = ∞ almost surely.
Remark 3.22. (3.8) describes the evolution of the jump process, but it is difficult
to study the existence and uniqueness of the system solution directly by using (3.8).
Skorokhod’s representation is a good approach to express the phenomenon (3.8) with
the integral equation, and the information contained is not lost.

3.6.2 Proof of Proposition 3.1

For each k ∈ S, when we fixed a state, (3.7) becomes a classical CIR process

dXε,(k)
n (t) = η(µ(k)−Xε,(k)

n (t))dt+ n−
1
2 θ

√
X
ε,(k)
n (t)dW (t). (3.54)

There exist a unique nonnegative strong solution of (3.54) with 2ηu(i) ≥ θ2 due to
[KS91, Proposition 5.2.13 and Corollary 5.3.23] by Yamada-Watanabe theorem.

Proof of Proposition 3.1. The idea of the proof comes from the stationary increments
of Brownian motion and the poisson point process, and we segment the path-space
through stopping time, see Figure 3.3.
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0 σ1σ1 σ2 σ3
. . .
σn−1 σn

. . .

Figure 3.3: The time interval

Step 1: Let us first consider the solution in the time interval [0, σ1], where σ1 is the
stopping time. For any t ∈ [0, σ1) and any path {(Xε

n(s),Λ
ε
n(s)) : 0 ≤ s ≤ t},

we always have∫ t

0

∫
[0,Mε]

hε(Xε
n(s−),Λεn(s−), z)N1(ds,dz) ≡ 0, (3.55)

and then Λεn(t) ≡ Λεn(0) = k. Hence, on the interval [0, σ1), (3.7) is equivalent

to (3.54) which has a unique strong solution X
ε,(k)
n (t) with X

ε,(k)
n (0) = x, so

(Xε
n(t),Λ

ε
n(t)) = (X

ε,(k)
n (t), k) for 0 ≤ t < σ1. From (3.53) we have

Λεn(σ1) = k +
∑
l∈S

(l − k)1
Γε
kl(X

ε,(k)
n (σ1))

(p(σ1)).

Then, on the time interval [0, σ1], set

(Xε
n(t),Λ

ε
n(t)) =

{
(X

ε,(k)
n (t), k), 0 ≤ t < σ1,

(X
ε,(k)
n (σ1),Λ

ε
n(σ1)), t = σ1

(3.56)

Next, set ξ̃ = Xε
n(σ1), W̃ (t) =W (t+ σ)−W (t) and p̃(t) = p(t+ σ1).

Step 2: Similarly, we consider the solution on the interval [0, σ2 − σ1] with respect
to (ξ̃,Λεn(σ1)) as above, and define

(X̃ε
n(t), Λ̃

ε
n(t)) = (X

ε,(Λε
n(σ1))

n (t),Λεn(σ1)) for 0 ≤ t < σ2 − σ1,

X̃ε
n(σ2 − σ1) = Xε,(Λε(σ1))

n (σ2 − σ1),

Λ̃εn(σ2 − σ1) = Λεn(σ1) +
∑
l∈S

(l − Λεn(σ1))1Ãε
n(l)

(p̃(σ2 − σ1)),

where
Ãεn(l) = ΓεΛε

n(σ1)l
(X

ε,(Λε
n(σ1))

n (σ2 − σ1)−).

Furthermore, we define

(Xε
n(t),Λ

ε
n(t)) = (X̃ε

n(t− σ1), Λ̃
ε
n(t− σ1)) t ∈ [σ1, σ2],

which and (3.56) together give the solution on the time interval [0, σ2]. Con-
tinuing this procedure inductively, (Xε

n(t),Λ
ε
n(t)) is determined uniquely on the

time interval [0, σn] for every n and thus (Xε
n(t),Λ

ε
n(t)) is determined globally

because limn→∞ σn = ∞ almost surely.



68 Large deviations with finite fast switching

Step 3: Consequently, we have proved the existence of a unique strong solution to
the systems (3.7) and (3.53).

The proof is completed.



Chapter 4

Large deviations on
Riemannian manifolds

In Chapter 3, we have studied the large deviations of the slow-fast processes on
Euclidean space. In this chapter, we consider a class of slow-fast processes on a
connected complete Riemannian manifold M . The limiting dynamics as the scale
separation goes to ∞ is governed by the averaging principle. Around this limit, we
prove large deviation principles with an action-integral rate function for the slow pro-
cess by nonlinear semigroup methods together with Hamilton-Jacobi-Bellman (HJB)
equation techniques.

Our main innovation is solving the comparison principle for viscosity solutions for
the HJB equation on M and the construction of a variational viscosity solution for
the non-smooth Hamiltonian, which lies at the heart of deriving the action integral
representation for the rate function.

This chapter is based on

[HKX24] Yanyan Hu, Richard C. Kraaij, and Fubao Xi. Large deviations for slow-fast
processes on connected complete Riemannian manifolds. Stochastic Process.
Appl., 2024

4.1 Introduction

In this paper, letM be a d-dimensional connected complete Riemannian manifold and
S = {1, 2, . . . , N}, N < ∞. We consider a stochastic differential equation consisting
of Riemannian Brownian motion with a switching drift onM×S with an initial value

69
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(x0, k0):

dXε
n(t) =

1√
n
Uεn(t) ◦ dW (t) + b(Xε

n(t),Λ
ε
n(t))dt, (4.1)

where Λεn(t) is a switching process with transition rate on the set S,

P(Λεn(t+∆) = j | Λεn(t) = i,Xε
n(t) = x) =

1

ε
qij(x)∆ + o(∆), if j ̸= i, (4.2)

for small ∆ > 0, i, j ∈ S, x ∈ M , and ε > 0 is a small parameter. Uεn(·) is a unique
element such that Xε

n(t) = pUεn(t), where p : O(M) →M is the canonical projection
map from the orthonormal frame bundle on O(M) to M . Precise details and condi-
tions of this system will be specified later. Obviously, (4.1) and (4.2) together is a
slow-fast system.

It is not too difficult to see that under some conditions, the effective behavior of
the slow process (4.1) can be accurately described by the averaged system as ε → 0
and n → ∞, utilizing the averaging principle. To be more specific, if Xε

n(t) ≈ x,
if the jump coefficient x 7→ qij(x) is continuous and the jump-matrix is uniformly
ergodic, one expects that the fast process Λεn(t) equilibrates in the stationary measure
corresponding to the jump kernel.

This observation implies that, as ε→ 0 and n→ ∞, the slow process converges to an
averaged process defined as follows{

dX(t) = b(X(t))dt,

X(0) = x0,
(4.3)

where b(x) =
∑
i∈S b(x, i)π

x
i (t) and π

x(t) = (πxi (t))i∈S is the unique invariant proba-
bility measure of the fast process with the slow variable being “frozen” at a determin-
istic point x ∈ M . The application of this averaging principle provides an effective
method to reduce computational complexity. It can be viewed as a variant of the law
of large numbers.

In contrast to the averaging principle, the large deviation principle (LDP) excels in
providing a more precise description of the dynamic behavior, it specifically addresses
the characterization of the exponential decay rate associated with probabilities of rare
events. Informally, LDP is the estimate of the form

P(Xn(t) ≈ γ(t)) ∼ e−nI(γ), as n→ ∞,

for γ : [0,∞) →M . I takes the form

I(γ) =

{
I0(γ(0)) +

∫∞
0

L (γ(s), γ̇(s)) ds, if γ ∈ AC(M),

∞, otherwise,

where AC denotes the set of absolutely continuous trajectories. I0 quantifies the large
deviations for Xn(0) alone, and the map L : TM → [0,∞] is called the Lagrangian.
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The large deviation principle indeed quantifies the decay of probabilities for trajecto-
ries away from the solution of the averaging principle (4.3), as the solution of (4.3) is
the unique trajectory for which I(X) = 0.

The main purpose of this paper is to prove an LDP around such an averaged process
on M . The theory of LDP is one of the classical topics in probability theory, see
[DZ98, dH08, FK06], which has widespread applications in different areas such as
information theory, thermodynamics, statistics, and engineering.

Let us mention some works related to our purposes. Huang, Mandjes, and Spreij
[HMS16], studied large deviations for Markov-modulated diffusion processes with
rapid switching. In [PS24], Peletier and Schlottke proved pathwise LDP of switching
Markov processes by exploiting the connection between Hamilton-Jacobi (HJ) equa-
tions and Hamilton-Jacobi-Bellman (HJB) equations. In [KS20], Kraaij and Schlottke
studied the LDP for the slow-fast system under regular conditions, where the fast pro-
cess is a switching process. For the proof, they used the Bootstrapping procedure,
which is a technology for comparison principle of the HJB equation. Later, Della
Corte and Kraaij [DCK24] continued to explore LDP in the context of molecular
motors modeled by a diffusion process driven by the gradient of a weakly periodic
potential that depends on an internal degree of freedom. The switch of the internal
state, which can freely be interpreted as a molecular switch, is modeled as a Markov
jump process that depends on the location of the motor. Subsequently, Hu, Kraaij,
and Xi [HKX23] considered the Cox-Ingersoll-Ross processes with state-dependent
fast switching in the case of the degenerate diffusion coefficient.

Although there are extensive results on LDPs for slow-fast systems in Euclidean space,
there is not much work in the context of Riemannian manifolds. Röckner and Zhang
[RZ04] studied sample path large deviations for diffusion processes on configuration
spaces over a Riemannian manifold. Kraaij, Redig and Versendaal [KRV19] general-
ized classical large deviation theorems on complete, smooth Riemannian manifolds,
and also considered Riemannian Brownian motion in the single time-scale context.
Furthermore, Versendaal [Ver21] studied large deviations for g(t)-Brownian motion
in a complete, evolving Riemannian manifold with respect to a collection {g(t)}t∈R of
Riemannian metrics, smoothly depending on t again in the single time-scale context.

Motivated by the aforementioned papers about LDP for slow-fast processes on Eu-
clidean space and simple LDP on Riemannian manifold, it is a natural question to
ask how to generalize the above large deviation results for slow-fast processes to Rie-
mannian manifolds. In this paper, we address this question. That is we prove LDPs
with an action-integral rate function for the slow process by nonlinear semigroup
methods together with the HJB equation techniques. Note that our drift coefficient
of slow process only satisfies locally one-sided Lipschitz continuity, which is weaker
than the bounded condition. Moreover, the rate functions are related to the Hamil-
tonian H : T ∗M → [0,∞] obtained by taking the Legendre transform of Lagrangian
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L : TM → [0,∞]. One formally defines that

H(x, df(x)) = sup
π∈P(S)

{∫
Bx,df(x)(z)π(dz)− I(x, π)

}
,

where

Bx,df(x)(z) = b(x, z)df(x) +
1

2
|df(x)|2

coming from the slow process Xn(t) and Donsker-Varadhan function

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz),

where Rx is the generator corresponding to the fast process Λn(t) defined by

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) .

Although following the proof ideas from Feng and Kurtz’s book [FK06], considering
the comparison principle and the existence of solutions of HJB equations, we need
to put forward some new ideas to show those owing to the special properties of the
Riemannian manifold.

We first discover special properties on M , which have caused difficulties but also is
the key innovation in our proof:

(i) The first one, to ensure the exponential tightness, we find a good containment
function:

Υ(x) =
1

2
log(1 + f2(x)),

where the smooth function f(x) approximates d(x0, x) for some x0 ∈ M and
satisfying formally supzH(z,dΥ(z)) < C <∞ which plays the role of a relaxed
Lyapunov function.

(ii) The second one, the distance function d(x, y), x, y ∈ M is not always smooth.
More specifically, d(x, y) is not smooth on the cut-locus of x or y. This happens
because the shortest path (geodesic) between two points may not be unique, for
example, a spherical surface. Compared with d(x, y), d2(x, y) is smooth when
x closed to y. We use d2(x, y) in the proof of comparison principle.

(iii) The third one, we need to prove the global existence of solutions for an HJB
equation on M to obtain an action-integral rate function. To establish exis-
tence we need to solve an appropriate control problem. A key obstacle is the
construction from local solutions to global solutions.
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4.2 Riemannian manifolds

In this section, we introduce some of the definitions, properties, and symbols that
were mentioned earlier. This can be found in any textbook on Riemannian manifold,
for example, [Lee03, Wan14].

Throughout the paper, (M, g) is a d-dimensional connected complete Riemannian
manifold. We start with the definition of chart, which is used to prove Condition
4.32. A coordinate chart (or just a chart) on M is a pair (O, φ), where O is a
homeomorphism from O to an open subset Õ = φ(O) ⊂ Rd.

The tangent space of M at x ∈ M is denoted by TxM . We denote by ⟨·, ·⟩x = g(·, ·)
the scalar product on TxM with the associated norm | · |x, where the subscript x
is sometimes omitted. The tangent bundle of M is denoted by TM := ⊔x∈MTxM ,
which is naturally a manifold. Let T ∗

xM = (TxM)∗ be the cotangent space at x ∈M ,
namely the dual space of the tangent space TxM (the space of linear functions on
TxM). Let T ∗M = ⊔x∈MT ∗

xM , which is called the cotangent bundle on M .

Given a piecewise smooth curve γ : [a, b] → M joining x to y, i.e. γ(a) = x and

γ(b) = y, we can define the length of γ by l(γ) =
∫ b
a
|γ̇(t)|dt. Then the Riemannian

distance d(x, y), which induces the original topology on M , is defined by minimizing
this length over the set of all such curves joining x to y.

Let ∇ be the Levi-Civita connection associated with the Riemannian metric. Let γ
be a smooth curve in M . A vector field X is said to be parallel along γ if and only if
∇γ̇tX = 0. If γ̇ itself is parallel along γ, we say that γ is a geodesic, and in this case
|γ̇| is constant. When |γ̇| = 1, γ is said to be normalized. A geodesic joining x to y
in M is said to be minimal if its length equals d(x, y).

A Riemannian manifold is complete if for any x ∈ M all geodesics emanating from
x are defined for all −∞ < t < ∞. By the Hopf-Rinow Theorem [Lee97, Theorem
6.13], we know that if M is complete then any pair of points in M can be joined by a
minimal geodesic. Moreover, (M,d) is a complete metric space and bounded closed
subsets are compact.

Given a (piecewise) smooth curve γ : [a, b] → M , we denote parallel transport along
γ from γ(t0) to γ(t1) by τγ,t0t1 , or simply τt0t1 whenever the meant curve is clear. If
points x, y ∈ M can be connected by a unique geodesic of minimal length, we will
also write τxy meaning parallel transport from x to y along this specific geodesic.

The exponential map expx : TxM → M at x is defined by expx v = γv(1, x) for
each v ∈ TxM , where γ(·) = γv(·, x) is the geodesic starting at x with velocity v.
Then expx(tv) = γv(t, x) for each real number t. Note that the mapping expx is
differentiable on TxM for any x ∈M .

In many cases, the minimal geodesic is not unique. For instance, for the unit sphere
Sd, each half circle linking the highest and the lowest points is a minimal geodesic.
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This fact leads to the notion of cut-locus.
Definition 4.1. Let x ∈M . For any X ∈ Sx := {X ∈ TxM : |X| = 1}, let

r(X) := sup{t > 0 : d(x, expx(tX)) = t}.

If r(X) <∞ then we call expx(r(X)X) a cut-point of x. The set

cut(x) := {expx(r(X)X) : X ∈ Sx, r(X) <∞}

is called the cut-locus of the point of x. Moreover, the quantity

ix := inf{r(X) : X ∈ Sx}

is called the injectivity radius of x. For any set A ⊆ M we write i(A) := infx∈A ix
the injectivity radius of A.
Lemma 4.2 ([Kli82]). The injectivity radius ix depends continuously on x. In par-
ticular, if K ⊆M is compact we have i(K) > 0.

Note that i(K) > 0 is used to find a smooth distance on M .
Definition 4.3. Let T (M) be the space of smooth vector fields on M and let ∇ be
any connection on M . The formula

R(X,Y )Z := ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z,

for X, Y , Z ∈ T (M), defines a function R : T (M) × T (M) × T (M) called the
Riemannian curvature of M , where [X,Y ] = XY − Y X is the commutator of X and
Y .

By taking the trace of the curvature tensor with respect to the first and the last entry,
we obtain a 2-tensor which we will call the Ricci tensor of the (co)-metric g, denoted
by Rg.

To prove the existence solutions of HJB equations on M , we need the definitions of
push-forward and pullback.
Definition 4.4 (Push-forward). If M and N are smooth manifolds and φ :M → N
is a smooth map, for each p ∈M we define a map

φ∗p : TpM → Tφ(p)N, (4.4)

called the push-forward associated with φ, by

(φ∗p(v))(f) = v(f ◦ φ), v ∈ TpM, f ∈ C∞(M).

Definition 4.5 (Pullback). If M and N are smooth manifolds and φ : M → N be
an invertible smooth map, for each p ∈M we define a map

φ∗
p : T

∗
φ(p)N → T ∗

pM

by pullback associated with φ

(φ∗
pξ)(v) = ξ(φ∗p(v)), ξ ∈ T ∗

φ(p)N, v ∈ TpM. (4.5)
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We can put all φ∗p and φ
∗
p together to obtain φ∗ : TM → TN and φ∗ : T ∗N → T ∗M ,

respectively.

The next lemma shows that tangent vectors to curves behave well under composition
with smooth maps.
Lemma 4.6 (Proposition 3.11 in [Lee03]). Let φ :M → N be a smooth map, and let
γ : J →M be a smooth curve, where J ∈ R is an interval. For any t ∈ J , the tangent
vector to the composite curve φ ◦ γ at t = t0 is given by

( ˙φ ◦ γ)(t0) = (φ ◦ γ)∗
d

dt

∣∣∣∣
t0

= φ∗γ̇(t0).

The chain rule for total derivatives is important in Riemannian manifolds because it
allows us to compute the derivative of a composite function.
Lemma 4.7 (The chain rule for total derivatives, Proposition A.24 in [Lee03]). Sup-
pose V , W , X are finite-dimensional vector spaces, U ⊂ V and Ũ ⊂W are open sets,
and F : U → Ũ and G : Ũ → X are maps. If F is differentiable at a ∈ U and G is
differentiable at F (a) ∈ U , then G ◦ F is differentiable at a, and

D(G ◦ F )(a) = DG(F (a)) ◦DF (a). (4.6)

4.3 Constructing a diffusion process with fast switch-
ing on Riemannian manifolds

In the above section, we only gave the basic knowledge about the large deviation
principle. We next state the definition of the orthonormal frame bundle and horizontal
lift to construct a diffusion process with switching on M × S, for which we want to
study the large deviation behaviour,

dXε
n(t) =

1√
n
Uεn(t) ◦ dW (t) + b(Xε

n(t),Λ
ε
n(t))dt, (4.7)

where Λεn(t) is a switching process with transition rate on the set S,

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

(4.8)

for small ∆ > 0, i, j ∈ S, x ∈M , and ε > 0 is a small parameter.

We start by establishing that the above process exists. As the switch is taking place on
the finite set S, the key issue to be resolved is the non-explosiveness of the diffusion
process (4.7). In the context without switching, non-explosiveness is implied by a
lower bound on the curvature and gradient of the drift. We will also assume this for
our result.
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Assumption 4.1. For each i ∈ S, b(·, i) in (4.7) is a C1-smooth vector field on M .
There is a constant ρ(n) such that the CD(ρ(n),∞) curvature condition

inf
i∈S

Rg −∇b(·, i) ≥ ρ(n)g

holds where Rg is the Ricci tensor of the (co)-metric g.
Theorem 4.8. Under Assumption 4.1, the system, (4.7) and (4.8), has a unique non-
explosive strong solution (Xn(t),Λn(t)) with initial value (Xn(0),Λn(0)) = (x0, k0).

The proof follows the same method as Proposition 3.1. We extend it to the context
of Riemannian manifolds.

We next turn to present the definition of the orthonormal frame bundle and the
horizontal lift.

LetOx(M) be the space of all orthonormal bases of TxM . DenoteO(M) := ⊔x∈MOx(M),
which is called the orthonormal frame bundle over M . Obviously, Ox(M) is isometric
to O(d), the group of orthogonal (d× d)-matrices.

Let p : O(M) → M with pu := x if u ∈ Ox(M), which is called the canonical
projection from O(M) onto M . Now, given e ∈ Rd, our goal is to define the cor-
responding horizontal vector field on O(M). On the one hand, for any u ∈ O(M)
we have ue ∈ TpuM . Let us be the parallel transportation of u along the geodesic
exppu(sue), s ≥ 0. We obtain a vector

He(u) :=
d

ds
us|s=0 ∈ TuO(M).

Thus, we have defined a vector filed He on O(M) which is indeed C∞-smooth. In
particular, let {ei}di=1 be an orthonormal basis on Rd, define

∆O(M) :=

d∑
i=1

H2
ei .

This operator is independent of the choice of the basis {ei}. We call ∆O(M) the
horizontal Laplace operator. On the other hand, for any vector field Z on M , we
define its horizontal lift by HZ(u) := Hu−1Z(u), u ∈ O(M), where u−1Z is the
unique vector e ∈ Rd such that Zpu = ue.

Let ∆M be the Laplace-Beltrami operator,

∆Mf =
1√
G

∂

∂xi

(√
Ggij

∂f

∂xj

)
, f ∈ C2(M). (4.9)

We have the conclusion below, the horizontal Laplacian ∆O(M) is the lift of the
Laplace-Beltrami operator ∆M to the orthonormal frame bundle O(M).
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Lemma 4.9 (Proposition 3.1.2 of [Hsu02]). Let f ∈ C∞(M), and f̃ = f ◦ p its lift
to O(M). Then for any u ∈ O(M),

∆Mf(x) = ∆O(M)f̃(u),

where x = pu.

Having the preparations of orthonormal frame bundle and horizontal lift, we can
establish a diffusion process and (4.7) with switching (4.8) in detail.

Proof of Theorem 4.8. We divide the proof into two steps.

Step 1: A SDE with a fixed switching state.

Let b : Rd → TM be a C1-smooth vector field onM . According to the idea of [Wan14,
Section 2.1], we study a diffusion process generated by AMn := 1

2n∆M + b, where ∆M

is a Laplace-Beltrami operator in (4.9).

To this end, we first construct the corresponding Horizontal diffusion process gen-

erator by A
O(M)
n := 1

n∆O(M) + Hb on O(M) by solving the Stratonovich stochastic
differential equation

dUn(t) =
1√
n

d∑
j=1

Hej (Un(t)) ◦ dW j(t) +Hb(Un(t))dt, Un(0) = u0 ∈ O(M),

where W (t) := (W 1(t), . . . ,W d(t)) is the d-dimensional Brownian motion on a com-
plete filtered probability space (Ω, F , {Ft}t≥0, P). Since Hb is C

1, it is well known
that (see e.g. [Elw82, Chapter IV, Section 6]) the equation has a unique solution up
to the lifetime ζ := limj→∞ ζj , where

ζj := inf{t ≥ 0 : d(pU, pUn(t)) ≥ j}, j ≥ 1.

Using Assumption 4.1, we further get that

P(ζ = ∞) = 1,

which means that ξ is the infinite lifetime, see [Hsu02, Section 4.2].

Let Xn(t) = pUn(t). Then Xn(t) solves the equation

dXn(t) =
1√
n
Un(t) ◦ dW (t) + b(Xn(t))dt, Xn(0) = x0 := pu0 (4.10)

up to the infinite lifetime ζ. By the Itô formula, for any f(·) ∈ C2
0 (M),

f(Xn(t))− f(x0)−
∫ t

0

AMn f(Xn(s))ds =
1√
n

∫ t

0

⟨(Un(s))−1gradf(Xn(s)),dW (s)⟩
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is a martingale up to the infinite lifetime ζ; that is Xn(t) is the diffusion process
generated by AMn , and we call it the AMn -diffusion process. When b = 0, then Xn(t)
is generated by 1

2n∆M and is called the Brownian motion on M .

Step 2: the SDE with switching for any states. Here, we are going to introduce SDE
with switching in (4.10). To achieve this, for S = {1, 2 . . . , N} with N < ∞, we let
the drift coefficient of the slow process depend on i ∈ S, where i represents the state
of the switching process.

We construct the joint process as follows. Initialize the process from (x0, k0) and run
the diffusion process Xn(t) with b = b(·, k0) in (4.10) as in Step 1. As this process has
an infinite lifetime, we can wait until the first switch as indicated by the jump kernel

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

(4.11)

for small ∆ > 0, i, j ∈ S, x ∈M , and ε > 0 is a parameter.

We then run (4.10) with the state to which the jump kernel points us to jump. As S
is finite, we can repeat this process and obtain our desired switching process with an
infinite lifetime.

4.3.1 The main results

In this paper, we consider the slow-fast systems (4.7) and (4.8). We first collect all
the assumptions that are needed before giving the main results.
Assumption 4.2. Let ε = 1

n , this shows that small disturbance and fast switching
have the same rate.

This assumption means that the slow-fast system (4.7) and (4.8) becomes

dXn(t) =
1√
n
Un(t) ◦ dW (t) + b(Xn(t),Λn(t))dt, (4.12)

and

P(Λn(t+△) = j | Λn(t) = i, Xn(t) = x) =

{
nqij(x)△+ ◦(△), if j ̸= i,

1 + nqij(x)△+ ◦(△), if j = i.
(4.13)

In the following, we will focus on (4.12) and (4.13).
Assumption 4.3. Fix x0 ∈ M and define r(x) = d(x, x0). We say that b is linear
growth if there exists a constant C > 0 such that, for all x ∈M ,

|b(x, i)| ≤ C(1 + r(x)), ∀ i ∈ S.

Assumption 4.4. We say that b is a locally one-sided Lipschitz function if, for any
compact set K ⊆ M , there exists a constant CK > 0 such that, for all x, y ∈ K, it
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holds that

dx

(
1

2
d2(·, y)

)
(x)b(x, i)− dy

(
−1

2
d2(x, ·)

)
(y)b(y, i) ≤ CKd

2(x, y), ∀ i ∈ S,

where d(x, y) < i(K) and i(K) is the injectivity radius of K defined in Section 4.2.
Assumption 4.5. For any x ∈ M , (qij(x))i,j∈S is a conservative, irreducible tran-
sition rate matrix, and supi∈S

∑
j∈S,j ̸=i qij(x) <∞.

Assumption 4.6. For any compact sets K ⊆ M , there exists a constant CK > 0
such that

|qij(x)− qij(y)| ≤ CKd(x, y), x, y ∈ K, i, j ∈ S.

Then, we give some remarks on these assumptions.

• Assumption 4.3 controls the rate at which the process may deviate to prove
exponential tightness.

• Assumption 4.4 is set for proving the comparison principle.

• Assumptions 4.5 and 4.6 of a fast switching process for any given x ensures
the existence of an invariant probability measure that satisfies the averaging
principle.

In the following, we give the main result.
Theorem 4.10 (Large deviations for slow processes). Let (Xn(t),Λn(t)) be the Markov
processes on M × S. Consider the setting of Assumptions 4.2, 4.3, 4.4, 4.5 and 4.6.
Suppose that the large deviation principle holds for Xn(0) on M with speed n and a
good rate function I0.

Then, the large deviation principle is satisfied with speed n for the processes Xn(t)
with a good rate function I having action-integral representation,

I(γ) =

{
I0(γ(0)) +

∫∞
0

L (γ(s), γ̇(s)) ds, if γ ∈ AC(M),

∞, otherwise.

where L : TM → [0,∞] is the Legendre transform of H given by L(x, v) = supp∈T∗
xM

{⟨v, p⟩−
H(x, p)}, and

H(x,df(x)) = sup
π∈P(S)

{∫
Bx,df(x)(z)π(dz)− I(x, π)

}
(4.14)

where

Bx,df(x)(z) = b(x, z)df(x) +
1

2
|df(x)|2

coming from the slow process Xn(t) and Donsker-Varadhan function

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz),
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where Rx is the generator corresponding to the fast process Λn(t) defined by

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) .

The proof of Theorem 4.10 follows the strategy used in Section 2.2, where the most
crucial part is proving the assumptions in Proposition 2.14. However, in this chapter,
our process involves fast-slow systems on a Riemannian manifold, so Proposition 2.14
has been modified.
Proposition 4.11 (Adaptation of Proposition 2.14 to our context). Let (Xn(t),Λn(t))
be Markov processes on M × S. Suppose that

(a) Xn(0) satisfies large deviation principle;

(b) there exists an operator H ⊂ ex − limn→∞Hn in the sense Definition 2.13 on
Riemannian manifold;

(c) we have exponential compact containment of the process (Xn(t),Λn(t));

(d) for all λ > 0 and h ∈ Cb(M), the comparison principle holds for f − λHf = h.

Then the following hold:

(i) (Limit of nonlinear semigroup) There exists a unique operator semigroup V (t)
such that

lim
n→∞

∥Vn(t)fn − V (t)f∥ = 0 (4.15)

and there exists a unique R(λ)f such that

lim
m→∞

∥R(t/m)mf − V (t)f∥ = 0, (4.16)

whenever f ∈ D(H), fn ∈ Cb(M × S), and ∥fn − f∥ → 0.

(ii) (Large deviation principle) Xn(t) satisfies the large deviation principle with good
rate function I given by

I(x) = I0(x(t0)) + sup
k∈N

sup
0=t0<t1<···<tk<∞

k∑
i=0

IVti+1−ti(x(ti+1) | x(ti)), (4.17)

where for ∆t = ti+1 − ti > 0 and x(ti+1), x(ti) ∈ M , the conditional rate
functions IV∆t(x(ti+1) | x(ti)) are

IV∆t(x(ti+1) | x(ti)) = sup
f∈Cb(M)

[f(x(ti+1))− V (∆t)f(x(ti))].

Suppose in addition that
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(e) V (t) = V(t) with V as in (2.10).

Then the rate function (4.17) can be represented in the following action-integral form:

I(γ) =

{
I0(γ(0)) +

∫∞
0

L(γ(s), γ̇(s))ds, if γ ∈ AC(M),

∞, otherwise.
(4.18)

The proof of Theorem 4.10 is thus immediate upon checking Proposition 4.11 (a) to
(e) for our switching diffusion. We will verify (a) to (d) in Section 4.4 and (e) in
Section 4.5.

4.4 The proof of Proposition 4.11 (a) to (d)

In this section, we will establish Proposition 4.11 (a) to (d) for our switching diffusion:

Using the discussion in the previous section, we can prove items (i) and (ii) of Theo-
rem 4.10 once the following four facts are established:

• Item (b): we obtaining a limiting multi-valued Hamiltonian H ⊆ ex − limHn

in Section 4.4.1;

• Part of item (d): We identify a single valued Hamiltonian H via a suitable
eigenvalue problem in Section 4.4.1;

• Item (c): we obtain the compact containment condition in Section 4.4.2;

• Part of item (d): we prove the comparison principle for H and H in Section
4.4.3.

4.4.1 Identification of a multi-valued Hamiltonian

Our first goal is to obtain a multi-valued Hamiltonian H ⊆ ex− limHn. We consider
the solution (Xn(t),Λn(t)) of the system (4.12) and (4.13) with the generator AMn :

AMn f(x, i) =
1

2n
∆Mf(x, i) + b(x, i)df(x, i) + n

∑
i∈S

qij(x)(f(x, j)− f(x, i)). (4.19)

We give a multi-valued limit Hamiltonian by the generator AMn . Denote by C2
c (M) the

set of twice continuously differentiable functions that are constant outside a compact
set.
Proposition 4.12 (Multi-valued limit Hamiltonian). Let (Xn(t),Λn(t)) be a Markov
process on M × S with generator AMn in (4.19). Set Hn = 1

ne
nfAMn e

nf and

H :=
{
(f,Hf,ϕ) | f ∈ C2

b (M), Hf,ϕ ∈ Cb(M × S) and ϕ ∈ C2
b (M × S)

}
, (4.20)
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where

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
|df(x)|2 +

∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1]. (4.21)

Then, H ⊂ ex− limn→∞Hn.

Proof. By the generator AMn in (4.19), for enf ∈ D(AMn ) we get a nonlinear generator

Hnf(x, i) =
1

n
e−nfAMn e

nf (x, i)

= b(x, i)df(x, i) +
1

2
|df(x, i)|2 + 1

2n
∆Mf(x, i)

+
∑
j∈S

qij(x)[e
n(f(x,j)−f(x,i)) − 1].

(4.22)

When n→ ∞, (4.22) is not convergent due to the divergence of the fourth term. To
proceed, instead of using f in (4.22), we take a sequence

fn(x, i) = f(x) +
1

n
ϕ(x, i), ∀ f ∈ C2

b (M) and ϕ ∈ C2
b (M × S).

As dfn(x, i) = df(x) + 1
ndϕ(x, i), (4.22) implies

Hnfn(x, i) = b(x, i)

(
df(x) +

1

n
dϕ(x, i)

)
+

1

2

∣∣∣∣df(x) + 1

n
dϕ(x, i)

∣∣∣∣2
+

1

2n
∆M

(
f(x) +

1

n
ϕ(x, i)

)
+
∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1].

Taking n→ ∞ gives the following uniform limit:

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
|df(x)|2 +

∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1],

establishing the claim.

A single valued Hamiltonian via the eigenvalue problem
In the multi-valued operator H, we seek a single-valued operator that we will use to
establish the comparison principle in Section 4.4.3 below. In particular, we aim to
find for any f ∈ D(H) a unique g such that (f, g) ∈ H and g do not depend on i ∈ S.
This unique g will then be the basis to define Hf .

Consider (4.21) of Proposition 4.12:

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
|df(x)|2 +

∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1]. (4.23)
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As the eigenvalue problem is one in terms of the fast process, we decompose (4.23)
into a function depending on i

Bx,df(x)(i) = b(x, i)df(x) +
1

2
|df(x)|2 (4.24)

and the jump operator acting on the state i:

Rxe
ϕ(x,i) =

∑
j∈S

qij(x)[e
ϕ(x,i) − eϕ(x,j)]

We thus seek a ϕ such that there is a constant H(x, df(x)) such that

H(x, df(x)) := Bx,df(x)(i) + e−ϕ(x,i)Rxe
ϕ(x,i) (4.25)

is independent of i. Rewriting this equation in terms of g = eϕ, we thus aim to find
g and H(x, df(x)) such that(

Rx +Bx,df(x)
)
g(i) = H(x, df(x))g(i).

In other words, we aim to find the principal eigenfunction and eigenvalue for the
operator Rx + Bx,df(x) in terms of i, which can be carried out using the Perron-
Frobenius theorem and leads to the representation (4.14).
Proposition 4.13 (Principal-eigenvalue problem). Let Assumption 4.5 be satisfied.

For each (x, df(x)), there exist g > 0 and a unique eigenvalue H(x, df(x)) ∈ R such
that (

Rx +Bx,df(x)
)
g = H(x, df(x))g, (4.26)

with H(x, df(x)) given by

H(x, df(x)) = sup
π∈P(S)

inf
g>0

∫ (
Rx +Bx,df(x)

)
g(i)

g(i)
π(di)

= sup
π∈P(S)

{∫
Bx,df(x)(i)π(di)− I(x, π)

} (4.27)

where

I(x, π) = − inf
g>0

∫
Rxg(i)

g(i)
π(di). (4.28)

Proof. Using Assumption 4.5, from the Perron-Frobenius theorem in [DV75], we can
obtain there exists a unique eigenvalue with associated eigenfunction which has the
representation (4.27).

We next aim to define a new operator in terms of H. We first note the following result
that can be obtained as in [DCK24, Propositions 4.7 and 4.8].
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Lemma 4.14. The map H in (4.27) is continuous in (x, p) and convex in p for fixed
x.

As a direct consequence, we are able the introduce our single valued operator H.
Recall that C2

c (M) is the set of twice continuously differentiable functions that are
constant outside of a compact set.
Definition 4.15. Set H ⊆ Cb(M)× Cb(M) with domain D(H) = C2

c (M) by

Hf(x) := H(x, df(x)) (4.29)

with H as in (4.27).

4.4.2 Exponential compact containment

In this section, the key step, in obtaining exponential tightness on a Riemannian
manifold, is to find a good containment function that can limit our analysis to a
compact set.
Definition 4.16 (Good containment function). We say that Υ : M → R is a good
containment function (for H) if

(Υa) Υ ≥ 0 and there exists a point x0 such that Υ(x0) = 0,

(Υb) Υ is twice continuously differentiable,

(Υc) for every c ≥ 0, the set {x ∈M | Υ(x) ≤ c} is compact,

(Υd) we have supxH(x, dΥ(x)) <∞.

Let us denote by d the Riemannian distance function associated to the metric g. Fix
x0 ∈ M and consider the radial function r(x) = d(x, x0). Since r is not everywhere
smooth, it is not suitable for constructing a good containment function as in Definition
4.16. However, since r is 1-Lipschitz (with respect to the metric g), we can find a
smooth function f with f(x0) = r(x0) = 0 and such that ∥f − r∥ ≤ 1 and |df | ≤ 2.
Using this, we define Υ by

Υ(x) =
1

2
log(1 + f2(x)). (4.30)

We now show that Υ can be used as a good containment function. The following is
an adaptation of [Ver21, Proposition 4.11].
Lemma 4.17. Let M be a complete Riemannian manifold. Under Assumption 4.3,
Υ defined in (4.30) is a good containment function for the Hamiltonian H in (4.29).

Proof. This proof is inspired by [KRV19, Ver21], and is therefore only different in
checking property d. We prefer to spell out the proof of (Υa)-(Υc) as it will be used
to prove (Υd).

Clearly Υ ≥ 0 and Υ(x0) = 0, and Υ ∈ C∞(M).
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Furthermore, since r is smooth, it follows that Υ is smooth. Now, for c > 0, the
continuity of Υ implies that {x ∈ M | Υ(x) ≤ c} is closed. Furthermore, Υ(x) ≤ c
implies that f(x) ≤

√
e2c − 1. It follows that d(x, x0) ≤ 1 + f(x) ≤ 1 +

√
e2c − 1.

Hence, {x ∈ M | Υ(x) ≤ c} is bounded. Since M is complete, we conclude that
{x ∈M | Υ(x) ≤ c} is compact.

Note that for all x ∈M ,

dΥ(x) =
f(x)

1 + f2(x)
df(x). (4.31)

This, together with Assumption 4.3 and |df | ≤ 2, for z ∈ S, we first estimate that

b(x, z)dΥ(x) = b(x, z)df(x)
f(x)

1 + f2(x)

≤ |b(x, z)| · |df(x)| · f(x)

1 + f2(x)

≤ C(2 + f(x))
f(x)

1 + f2(x)
.

(4.32)

Hence, supx,z b(x, z)dΥ(x) <∞. Now recall the Hamiltonian H in (4.29), from (4.32),
we obtain

H(x, dΥ(x)) = sup
π∈P(S)

{∫
Bx,dΥ(x)(z)π(dz)− I(x, π)

}
≤
∫
Bx,dΥ(x)(z)π(dz)

=

∫ (
b(x, z)dΥ(x) +

1

2
|dΥ(x)|2

)
π(dz)

≤ C

∫ (
f(x)

1 + f2(x)
+

f2(x)

1 + f2(x)
+

f2(x)

(1 + f2(x))2

)
π(dz),

where the first inequality uses the definition of supremum and I(x, π) is nonnegative.
We conclude that supxH(x, dΥ(x)) <∞, which implies that Υ is a good containment
function.

Applying the good containment function (4.30), we proceed to consider the exponen-
tial compact containment of the system (Xn(t),Λn(t)).
Proposition 4.18 (Exponential compact containment condition). Let (Xn(t),Λn(t))
be a Markov process corresponding to AMn . Then the exponential compact containment
condition as in Definition 2.11.

The result follows using martingale control techniques as in Proposition 3.9 using Υ
from Lemma 5.4.
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4.4.3 Comparison principle

One of the key steps in the modern doubling of variables procedure in the comparison
principle proofs is the estimate

H
(
xα,dx

α

2
d2(·, yα)

)
(xα)−H

(
yα,−dy

α

2
d2(xα, ·)

)
(yα) ≤ αCd2(xα, yα), (4.33)

for suitable xα, yα satisfying αd2(xα, yα) → 0 as α→ ∞.

In our case, the Hamiltonian is that

H(x, df(x)) = sup
π∈P(S)

{∫
Bx,df(x)(z)π(dz)− I(x, π)

}
,

where

Bx,df(x)(z) = b(x, z)df(x) +
1

2
|df(x)|2 . (4.34)

In the proof of Lemma 3.16 below, we will pick an optimizer π∗ forH
(
y,−dy

α
2 d

2(xα, ·)
)
(yα),

so that the estimate (4.33) reduces to

• the use of Assumption 4.4 to control the difference of the two terms that include
the drift b;

• properties of the Riemannian metric d to threat the quadratic part |df |2, see
Lemma 4.19 below;

• estimates on objects of the type |I(xα, π∗)− I(yα, π∗)|, see Lemma 4.30.

A final issue arises from the fact that the metric d2 is non-differentiable on the cut-
locus, which we will treat by using that as αd2(xα, yα) → 0, we will always work
outside of the cut-locus.

Smooth distance functions
We first present the differential property of the distance function to deal with the
quadratic part in (4.34), the proof is shown in [KRV19, Appendix C.1].
Lemma 4.19. Let x, y ∈M and assume that x /∈ cut(y) (or equivalently, y /∈ cut(x)),
where cut(·) is a cut-locus. Then for all V ∈ TyM we have

dy(d
2(x, ·))(y)(V ) = 2⟨γ̇(1), V ⟩g(y),

where γ : [0, 1] → M is the unique geodesic of minimal length connecting x and y.
Consequently, we obtain

τx,ydx(d
2(·, y))(x) = −dy(d

2(x, ·))(y). (4.35)

Remark 4.20. Note that (4.35) implies that if x /∈ cut(y) (or equivalently, y /∈
cut(x)), we have

|dx(d2(·, y))(x)|2g(x) = |dy(d2(x, ·))(y)|2g(y)
useful for estimating the quadratic part in the estimate (4.33).
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Our approach to proving the comparison principle is to double variables, as in the
classical setting of viscosity solutions in Euclidean spaces, using the distance function
as a penalizing function.
Lemma 4.21 (Lemma A.10 in [CK17]). Let u be bounded and upper semicontinuous,
let v be bounded and lower semicontinuous, and let Υ be a good containment function
as defined in (4.30).

Fix δ > 0. For every m > 0 there exist points xδ,m, yδ,m ∈M , such that

u(xδ,m)

1− δ
− v(yδ,m)

1 + δ
− m

2
d2(xδ,m, yδ,m)− δ

1− δ
Υ(xδ,m)− δ

1 + δ
Υ(yδ,m)

= sup
x,y∈M

{
u(x)

1− δ
− v(y)

1 + δ
− m

2
d2(x, y)− δ

1− δ
Υ(x)− δ

1 + δ
Υ(y)

}
.

(4.36)

Additionally, for every δ > 0 we have that

(a) The set {xδ,m, yδ,m | m > 0} is relatively compact in M .

(b) All limit points of {(xδ,m, yδ,m)}m>0 are of the form (z, z) and for these limit
points we have

u(z)− v(z) = sup
x∈M

u(x)− v(x).

(c) We have

lim
m→∞

md2(xδ,m, yδ,m) = 0.

In the proof of the comparison principle, Lemma 4.29, below, we will have to work
with smooth test functions that are derived from the optimization procedure in (4.36)
above. Due to the presence of the cut-locus, smoothness of m

2 d
2 is, however, not

guaranteed. For any fixed δ, we see that the injectivity radius i(K) = infx∈K ix is
bounded away from 0 on the compact K obtained in (a). Thus by (c) our optimizing
values must lie in the complement of the cut-locus for large m. The next lemma
allows us to replace d2 by a smooth function behaving similarly outside the cut-locus.
Lemma 4.22. For any compact set K ⊆ M , there is smooth function ΨK : M2 →
[0,∞) satisfying

ΨK(x, y) =
1

2
d2(x, y) if d(x, y) ≤ i(K)

2
,

ΨK(x, y) >
1

8
i(K)2 if d(x, y) >

i(K)

2
.

The proof is similar to Lemma 7.7 of [KRV19].
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The necessary operators for proving comparison principle
To prove the comparison principle for the Hamilton-Jacobi equation in terms of H
and relate it to the variational Hamiltonian H of Definition 4.15, we introduce two
new pairs of Hamiltonians (H1, H2) and (H†, H‡) that serve as natural upper and
lower bounds for H and H respectively. These new Hamiltonians are both defined
in terms of the containment function Υ of (4.30), which introduces unboundedness
in our test functions, allowing us to work with optimizing points in the definition of
viscosity sub and supersolutions.

Denote by C∞
l (M) the set of smooth functions on M that has a lower bound and

by C∞
u (M) the set of smooth functions on M that has an upper bound. Denote

CΥ := sup(x,i)∈M×S Bx,dΥ(x)(i) <∞.
Definition 4.23 (Multi-valued operators). Recall the definition of Hf,ϕ in (4.21).

• For f ∈ C∞
l (M), δ ∈ (0, 1) and ϕ ∈ C2

b (M × S). Set

fδ1 (x) := (1− δ)f(x) + δΥ(x),

Hδ
1,f,ϕ(x, i) := (1− δ)Hf,ϕ(x, i) + δCΥ,

and set

H1 :=
{(
fδ1 , H

δ
1,f,ϕ

) ∣∣∣ f ∈ C∞
l (M), δ ∈ (0, 1), ϕ ∈ C2

b (M × S)
}
.

• For f ∈ C∞
u (M), δ ∈ (0, 1) and ϕ ∈ C2

b (M × S). Set

fδ2 (x) := (1 + δ)f(x)− δΥ(x),

Hδ
2,f,ϕ(x, i) := (1 + δ)Hf,ϕ(x, i)− δCΥ,

and set

H2 :=
{(
fδ2 , H

δ
2,f,ϕ

) ∣∣∣ f ∈ C∞
u (M), δ ∈ (0, 1), ϕ ∈ C2

b (M × S)
}
.

We use the single valued Hamiltonian H to define two new single valued operators.
Definition 4.24 (Single valued operators). Recall the definition of H(x,df(x)) of
(4.27).

• For f ∈ C∞
l (M) and δ ∈ (0, 1) set

fδ† (x) := (1− δ)f(x) + δΥ(x),

Hδ
†,f (x) := (1− δ)H(x, df(x)) + δCΥ,

and set

H† :=
{(
fδ† , H

δ
†,f
) ∣∣∣ f ∈ C∞

l (M), δ ∈ (0, 1)
}
.
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• For f ∈ C∞
u (M) and δ ∈ (0, 1) set

fδ‡ (x) := (1 + δ)f(x)− δΥ(x),

Hδ
‡,f (x) := (1 + δ)H(x, df(x))− δCΥ,

and set
H‡ :=

{(
fδ‡ , H

δ
‡,f
) ∣∣∣ f ∈ C∞

u (M), δ ∈ (0, 1)
}
.

We collect H, H, H†, H‡, H1 and H2 in Figure 3.1, which intuitively provides the
proof strategy for the comparison principle in the following subsection. Note that to
obtain the comparison principle for H only the left-hand side of the figure is necessary.
We aim to establish a variational expression for the rate function, however, by showing
that V (t) = V(t). This we will carry out in Section 4.5 on which we will show that
the variational resolvent will give viscosity solutions in terms of the Hamilton-Jacobi
equation in terms of H. The right-hand side of the figure will show that all viscosity
solutions under consideration must be the same.

sub

super

sub

super
sup

er

sub

H
implicit

multivalued

H1

H2 H‡

H†

H
explicit

single valued
comparison

Figure 4.1: An arrow connecting an operator A with operator B with subscript ‘sub’
means that viscosity subsolutions of f − λAf = h are also viscosity subsolutions of
f − λBf = h. Similarly, we get the description for arrows with a subscript ‘super’.
The middle gray box around the operators H† and H‡ indicates that the comparison
principle holds for subsolutions of f −λH†f = h and supersolutions of f −λH‡f = h.
The left blue box indicates that H is an implicit and multi-valued operator. The right
blue box indicates H is an explicit single valued operator.

Main propositions: comparison principle
Based on the above preparations, we are ready to state the proposition of this sub-
section.
Proposition 4.25 (Comparison principle). Let Assumptions 4.3, 4.4, 4.5 and 4.6 be
satisfied. Let h1, h2 ∈ Cb(M) and λ > 0. Let u be any subsolution to f − λHf = h1
and let v be any supersolution to f − λHf = h2. Then we have that

sup
x∈M

u(x)− v(x) ≤ sup
x
h1(x)− h2(x).

Proof. The result is immediate from Lemmas 4.26, 4.28, and 3.16 below.
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The proofs of the next three lemmas are analogous to those in [HKX23].
Lemma 4.26. Let Assumption 4.5 be satisfied. Fix λ > 0 and h ∈ Cb(M).

(a) Every subsolution to f − λH1f = h is also a subsolution to f − λH†f = h.

(b) Every supersolution to f − λH1f = h is also a supersolution to f − λH‡f = h.

Lemma 4.27. Let Assumption 4.3 be satisfied. Fix λ > 0 and h ∈ Cb(M).

(a) Every subsolution to f − λHf = h is also a subsolution to f − λH†f = h.

(b) Every supersolution to f − λHf = h is also a supersolution to f − λH‡f = h.

Lemma 4.28. Let Assumption 4.3 be satisfied. Fix λ > 0 and h ∈ Cb(M).

(a) Every subsolution to f − λHf = h is also a subsolution to f − λH1f = h.

(b) Every supersolution to f − λHf = h is also a supersolution to f − λH2f = h.

In addition to the lemmas above, we still need to verify the comparison principle for
f − λH†f = h1 and f − λH‡f = h2 on M from Figure 3.1.
Lemma 4.29. Suppose Assumptions 4.3, 4.4, 4.5 and 4.6 hold. Let h1, h2 ∈ Cb(M)
and λ > 0. Let u be any subsolution to f − λH†f = h1 and let v be any supersolution
to f − λH‡f = h2. Then we have

sup
x∈M

u(x)− v(x) ≤ sup
x∈M

h1(x)− h2(x). (4.37)

Proof. For a sub and supersolution u and v, δ ∈ (0, 1) and m ≥ 1, we follow (4.36)
and set

Φδ,m(x, y) :=
u(x)

1− δ
− v(y)

1 + δ
− m

2
d2(x, y)− δ

1− δ
Υ(x)− δ

1 + δ
Υ(y), (4.38)

By Lemma 4.21, we find a compact set K and (xδ,m, yδ,m) ∈ K ×K satisfying

Φδ,m(xδ,m, yδ,m) = sup
(x,y)∈M×M

Φδ,m(x, y). (4.39)

By Lemma 4.22, we can replace m
2 d

2 by ΨK and consider

Φ̂δ,m(x, y) :=
u(x)

1− δ
− v(y)

1 + δ
−mΨK(x, y)− δ

1− δ
Υ(x)− δ

1 + δ
Υ(y). (4.40)

It follows from 4.39 that for large m we have

Φ̂δ,m(xδ,m, yδ,m) = sup
(x,y)∈M×M

Φ̂δ,m(x, y). (4.41)
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In view of (4.41), it follows that xδ,m is the unique maximizing point for

sup
x∈M

u(x)− φδ,m1 (x) = u(xδ,m)− φδ,m1 (xδ,m)

where φδ,m1 is constructed by taking the appropriate remaining terms of (4.38), with
an additional penalization (1− δ)d2(x, xδ,m) to turn xδ,m into the unique optimizer:

φδ,m1 (x) : = −(1− δ)Φδ,m(x, yδ,m) + u(x) + (1− δ)d2(x, xδ,m)

= (1− δ)

(
− u(x)

1− δ
+
v(yδ,m)

1 + δ
+mΨK(x, yδ,m) +

δ

1− δ
Υ(x) +

δ

1 + δ
Υ(yδ,m)

)
+ u(x) + (1− δ)d2(x, xδ,m)

= (1− δ)

(
v(yδ,m)

1 + δ
+mΨK(x, yδ,m) +

δ

1− δ
Υ(x) +

δ

1 + δ
Υ(yδ,m)

)
+ (1− δ)d2(x, xδ,m)

= (1− δ)

(
mΨK(x, yδ,m) + d2(x, xδ,m) +

δ

1 + δ
Υ(yδ,m) +

v(yδ,m)

1 + δ

)
+ δΥ(x).

Since u is a viscosity subsolution of f − λH†f = h1 we conclude that

u(xδ,m)− λ
[
(1− δ)H(xδ,m, p

1
δ,m) + δCΥ

]
≤ h1(xδ,m), (4.42)

where for large m

p1δ,m := mdxΨK(·, yδ,m)(xδ,m) = m dx

(
1

2
d2(·, yδ,m)

)
(xδ,m). (4.43)

Similarly, we obtain that yδ,m it the unique optimizer for

inf
y∈M

v(x)− φδ,m2 (y) = v(yδ,m)− φδ,m2 (yδ,m),

where

φδ,m2 (y) : = (1 + δ)

(
mΨK(xδ,m, y)− d2(y, yδ,m)− δ

1− δ
Υ(xδ,m) +

u(xδ,m)

1− δ

)
− δΥ(y).

As v is a viscosity supersolution of f − λH‡f = h2, we then know that

v(xδ,m)− λ
[
(1 + δ)H(yδ,m, p

2
δ,m)− δCΥ

]
≥ h2(yδ,m), (4.44)

where for large m

p2δ,m := −m dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m). (4.45)

By item (c) of Lemma 4.21, we have

lim
m→∞

md2(xδ,m, yδ,m) = 0. (4.46)
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Taking (4.42), (4.44) and (4.46) into account, we obtain that

sup
x∈M

u(x)− v(x) ≤ lim inf
δ→0

lim inf
m→∞

(
u(xδ,m)

1− δ
− v(yδ,m)

1 + δ

)
≤ lim inf

δ→0
lim inf
m→∞

{h1(xδ,m)

1− δ
− h2(yδ,m)

1 + δ
(4.47)

+
δ

1− δ
CΥ +

δ

1 + δ
CΥ (4.48)

+ λ
(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)}
, (4.49)

where in the first inequality we use (4.39) and drop the nonnegative functions d2(·, ·)
and Υ(·).

The term (4.48) vanishes as δ → 0. For the term (4.47), the sequence (xδ,m, yδ,m)
takes its values in a compact set and, hence, admits converging subsequences as
m → ∞. By (b) of Lemma 3.18, these subsequences converge to points of the form
(x, x). Hence, by the above analysis, we get

sup
x∈M

u(x)− v(x) ≤ λ lim inf
δ→0

lim inf
m→∞

(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)
+ sup
x∈M

h1(x)− h2(x).

It follows that the comparison principle holds for f − λH†f = h1 and f − λH‡f = h2
whenever for any δ > 0

lim inf
m→∞

(
H(xδ,m, p

1
δ,m)−H(yδ,m, p

2
δ,m)

)
≤ 0. (4.50)

To that end, recall H(x, df(x)) in (4.29):

H(x, df(x)) = sup
π∈P(S)

{∫
Bx,df(x)(z)π(dz)− I(x, π)

}
,

where π 7→
∫
Bx,df(x)(z)π(dz) is bounded and continuous, and I(x, ·) has compact

sub-level sets in P(S). Thus, there exists an optimizer πδ,m ∈ P(S) such that

H(xδ,m, p
1
δ,m) =

∫
Bxδ,m,p1δ,m

(z)πδ,m(dz)− I(xδ,m, πδ,m) (4.51)

and

H(yδ,m, p
2
δ,m) ≥

∫
Byδ,m,p2δ,m(z)πδ,m(dz)− I(yδ,m, πδ,m). (4.52)

Combining (4.51) and (4.52), we obtain

H(xδ,m, p
1
δ,m)−H(yδ,m, p

2
δ,m)
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≤
∫ (

Bxδ,m,p1δ,m
(z)−Byδ,m,p2δ,m(z)

)
πδ,m(dz) (4.53)

+ I(yδ,m, πδ,m)− I(xδ,m, πδ,m). (4.54)

It is enough to prove that (4.53) and (4.54) go to 0 as m → ∞. For (4.53), by
calculating the difference of integrand Bx,p in detail, for any z ∈ S, from (4.24),
(4.43), (4.45) and Remark 4.20, one has

Bxδ,m,p1δ,m
(z)−Byδ,m,p2δ,m(z)

= mdx

(
1

2
d2(·, yδ,m)

)
(xδ,m)b(xδ,m, z) +

1

2

∣∣∣∣m dx

(
1

2
d2(·, yδ,m)

)
(xδ,m)

∣∣∣∣2
−

[
−m dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)b(yδ,m, z) +

1

2

∣∣∣∣−m dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)

∣∣∣∣2
]

= mdx

(
1

2
d2(·, yδ,m)

)
(xδ,m)b(xδ,m, z) +m dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)b(yδ,m, z)

+
m2

2

(∣∣∣∣dx(1

2
d2(·, yδ,m)

)
(xδ,m)

∣∣∣∣2 − ∣∣∣∣−dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)

∣∣∣∣2
)

(4.55)

= mdx

(
1

2
d2(·, yδ,m)

)
(xδ,m)b(xδ,m, z) +m dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)b(yδ,m, z)

≤ Cd2(xδ,m, yδ,m),

where in the last inequality, we use Assumption 4.4. Noting that the last term in line
5 vanishes. This is happened because, fix δ > 0, there is a compact Kδ ⊆ M such
that {xm,δ, ym,δ | m > 0} is contained in Kδ by item (a) of Lemma 4.21. By the
continuity of the injectivity radius and the compactness of Kδ, we can find a ∆ > 0
such that i(Kδ) ≥ ∆ > 0. Then there exists a unique geodesic of minimal length
connecting xm,δ and ym,δ. Furthermore, by Lemma 4.19 we have

dxd
2(·, ym,δ)(xm,δ) = −τxm,δ, ym,δ

dyd
2(xm,δ, ·)(ym,δ), (4.56)

where τxm,δ,ym,δ
denotes parallel transport along the unique geodesic of minimal length

connecting xm,δ and ym,δ. As parallel transport is an isometry, we find as in Remark
4.20 that∣∣∣∣dx(1

2
d2(·, yδ,m)

)
(xδ,m)

∣∣∣∣2
g(xδ,m)

=

∣∣∣∣−dy

(
1

2
d2(xδ,m, ·)

)
(yδ,m)

∣∣∣∣2
g(yδ,m)

Hence, (4.53) is sufficiently small, as m → ∞, using (4.46) and (4.55). To obtain
that (4.54) is sufficiently small, we utilize the equi-continuity of I(·, π) established in
Lemma 4.30 below for the spatial variable. This finishes the proof of (4.50) and the
comparison principle for H† and H‡.
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Here, we state the equi-continuity of I(·, π) to finish the proof of the comparison
principle of H† and H‡ in Lemma 3.16. The proof is analogous to Lemma 3.20.
Lemma 4.30. Let Assumption 4.6 be satisfied. Recall (4.28):

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz).

For any compact set K ⊆ M and for all π ∈ P(S), then {x 7→ J(x, π)}x∈K,π∈P(S) is
equi-continuous.

4.5 The proof of Proposition 4.11 (e)

In this final chapter, we will establish (e) of Proposition 4.11, which is the key state-
ment to obtain the variational representation of the rate function in Theorem 4.10.

The proof is based on the analysis of variational semigroups and resolvents of Chapter
8 in [FK06] and are based on their main Conditions 8.9, 8.10, and 8.11 of [FK06],
which we adapt to the Riemannian context below as Conditions 4.31 and 4.32.

We will then carry out two main steps.

• We will show in Section 4.5.1 which key results of [FK06, Chapter 8] are used
to obtain V (t) = V(t), and how this relates to our set-up in Section 4.4.

• We verify in Sections 4.5.2 and 4.5.3 Conditions 4.31 and 4.32 respectively in
our context.

Condition 4.31. Suppose that the map T ∗M ∋ (x, p) → H(x, p) ∈ R is continuous,
and is convex in the second variable p. Define L as its Legendre transform. Suppose
that there is a good containment function Υ for H. Then

(a) the function L : TM → [0,∞] is lower semi-continuous and for each compact
set K ⊆M and c ∈ R the set

{(x, v) ∈ TM | x ∈ K, L(x, v) ≤ c}

is compact in TM .

(b) for each compact K ⊆M , any finite time T > 0 and finite bound C ≥ 0, there
exists a compact set K̂ = K̂(K,T,C) ⊆M such that x ∈ AC(M) and x(0) ∈ K,
if ∫ T

0

L(x(s), ẋ(s))ds ≤ C,

then x(t) ∈ K̂ for all 0 ≤ t ≤ T .

(c) for each compact set K ⊆ M and c ∈ R, there exists a right-continuous non-
decreasing function ψK,c : R+ → R+ such that

lim
r→∞

r−1ψK,c(r) = 0. (4.57)
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and
|df(x)v| ≤ ψK,c(L(x, v)), ∀ (x, v) ∈ TM, x ∈ K,

where f ∈ CK,c and

CK,c :=
{
f ∈ C2

c (M)
∣∣∀x ∈ K, |df(x)| ≤ c

}
. (4.58)

Condition 4.32. For any initial point x(0) ∈M , T > 0 and f ∈ D(H), there exists
an absolutely continuous curve x : [0, T ] →M such that for all 0 < t ≤ T∫ t

0

H(x(s),df(x(s)))ds+

∫ t

0

L(x(s), ẋ(s))ds =
∫ t

0

df(x(s))ẋ(s)ds. (4.59)

4.5.1 Connecting Conditions 4.31 and 4.32 to Section 4.4

In this section, we state two results of [FK06] and show how these can be used to
obtain V (t) = V(t). For readability, we repeat the definitions of V and R:

V(t)f(x) := sup
γ∈AC
γ(0)=x

{
f(γ(t))−

∫ t

0

L(γ(s), γ̇(s))ds
}

(4.60)

and

R(λ)h(x) := sup
γ∈AC
γ(0)=x

{∫ ∞

0

λ−1e−λ
−1t

(
h(γ(t))−

∫ t

0

L(γ(r), γ̇(r))dr
)
ds

}
. (4.61)

Proposition 4.33 (Lemma 8.18 of [FK06]). Let Conditions 4.31 and 4.32 be satisfied.

For any f ∈ Cb(M), t ≥ 0 and x ∈M , we have

lim
m→∞

|R(t/m)mf(x)−V(t)f(x)| = 0.

The next result of [FK06], obtainable from the proof of Theorem 8.27 in [FK06],
establishes that the variational resolvent gives viscosity solutions for the operator H.
Proposition 4.34. Let Conditions 4.31 and 4.32 be satisfied. Then we have

• R(λ)h is a visocosity subsolution to f − λHf = h,

• the lower semi-continuous regularization (R(λ)h)∗ of R(λ)h is a visocosity su-
persolution to f − λHf = h.

Combining these two statements with Proposition 4.11 (i), it follows that Proposition
4.11 (e), namely that V (t) = V(t), is satisfied if R(λ) = R(λ). Using the results of
Section 4.4, we thus obtain the following result:

Proposition 4.35. Let Conditions 4.31 and 4.32 be satisfied. Then V (t)f = V(t).
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Proof. By Proposition 4.34, Lemma 4.27 and Lemma 3.16, R(λ)h equals the unique
viscosity solution to the pair of equations

f − λH†f = h, f − λH‡f = h,

and thus equals R(λ)h from Proposition 4.11. By Propositions 4.33 and Proposition
4.11 (i), it follows that V (t) = V(t) establishing the claim.

We are left to prove Conditions 4.31 and 4.32 in the following two sections.

4.5.2 Verification of Condition 4.31

In this section, we verify Condition 4.31.
Proposition 4.36. Let Assumption 4.3 be satisfied. Then Condition 4.31 holds.

Proof. To obtain Item (a), observe that L ≥ 0 follows from H(x, 0) = 0. The La-
grangian L is convex, and lower semicontinuous as it is the Legendre transform of H.
For C ≥ 0, we prove that the set {(x, v) ∈ TM : x ∈ K,L(x, v) ≤ C} is bounded, and
hence is relatively compact. For any p ∈ T ∗

xM and v ∈ TxM , we have

pv ≤ L(x, v) +H(x, p) x ∈ K.

Thereby, if L(x, v) ≤ C, then

|v| = sup
|p|=1

pv ≤ sup
|p|=1

[L(x, v) +H(x, p)] ≤ C + C1,

where C1 exists due to continuity of H obtained in Lemma 4.14 and x ∈ K. Then for
R := C + C1,

{(x, v) ∈ TM : L(x, v) ≤ C} ⊆ {v : |v| ≤ R},

thus {L ≤ C} is a bounded subset in TM .

For item (b), recalling that by Assumption 4.3 and Lemma 4.17 the level sets of Υ are
compact and we control the growth of Υ. For K ⊆M , T > 0, C ≥ 0 and x ∈ AC(M)
as above, this follows by noting that

Υ(x(t)) = Υ(x(0)) +

∫ t

0

dΥ(x(s))ẋ(s)ds

≤ Υ(x(0)) +

∫ t

0

[L(x(s), ẋ(s)) +H(x(s),dΥ(x(s)))] ds

≤ sup
y∈K

Υ(y) + C1 + T sup
z∈M

H(z,dΥ(z)) = C <∞,

for any 0 ≤ t ≤ T , so that the compact set K̂ = {z ∈ M : Υ(x) ≤ C} satisfies the
condition.
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Proof of (c) is inspired by that of Lemma 10.21 of [FK06]. We first prove that L(x, v)
is superlinear. Recall that by Lemma 4.14 H is continuous, which implies

HK(c) := sup
x∈K

sup
p∈T∗

xM,|p|≤c
H(x, p) <∞.

Using the definition of L, it thus follows for any (x, v) ∈ TM , x ∈ K with |v| > 0
that

L(x, v)
|v|

≥ sup
p∈T∗

xM, |p|≤c

pv

|v|
− HK(c)

|v|
= c− HK(c)

|v|

It follows that

lim
N↑∞

inf
x∈K

inf
v∈TxM :|v|=N

L(x, v)
|v|

= ∞.

Secondly, for s ≥ 0, define the map ϑ(s) by

ϑ(s) := s inf
x∈K

inf
v∈TxM :|v|≥s

L(x, v)
|v|

. (4.62)

It thus follows that ϑ is a strictly increasing function satisfying

lim
s↑∞

ϑ(s)

s
= ∞. (4.63)

Next, define ΨK,c(r) =: CK,cϑ
−1(r) with ϑ−1(r) = inf{ω : ϑ(ω) ≥ r}. By monotonic-

ity of ϑ, we have for any x ∈ K that

ϑ(C−1
K,c|df(x)v|)

(4.58)

≤ ϑ(|v|)
(4.62)

≤ L(x, v).

Hence by monotonicity of ΨK,c, we find |df(x)v| ≤ ΨK,c(L(x, v)) for any f ∈ CK,c,
and (x, v) ∈ TM with x ∈ K. Finally (4.57) follows by (4.63) and the definition of
ϑ−1(r).

4.5.3 Verification of Condition 4.32

In this section, we verify Condition 4.32: the construction of curve with arbitrary
lifetime, starting point and f ∈ D(H) = C2

c (M) satisfying∫ t

0

H(x(s),df(x(s)))ds+

∫ t

0

L(x(s), ẋ(s))ds =
∫ t

0

df(x(s))ẋ(s)ds. (4.64)

Proposition 4.37. Let Assumption 4.3 be satisfied. Then Condition 4.32 holds.

The key insight in Lemma 4.38 below is that, when working on local coordinate
charts, the problem can be transferred to Euclidean space. Solutions can then be
found via convex analysis and differential inclusion theory, see e.g. [Dei92, Lemma
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5.1]. Transferring back the solution to the manifold leads to locally defined solutions
of (4.64). We perform this analysis in Section 4.5.3 below.

As usual, the problem thus resides into patching these curves together to form a curve
of arbitrary length. For this, we need to control the time of existence for our local
solutions. We do so in multiple steps. Fix some time interval [0, T ] for which we aim
to construct our curve.

• In Lemma 4.41, we will show that for any T > 0 and any curve satisfying (4.64)

the curve remains in a compact set K̂ up to time T0. We can thus construct
curves locally on sets that have a radius that is lower bounded by the injectivity
radius i(K̂) = infx∈K̂ ix > 0.

• Given any such locally constructed curve, we control the Lagrangian linearly in
time in Lemma 4.42

• Using this linear Lagrangian growth, we show in Lemma 4.43 that the squared
distance to the starting point of the curve grows at most linearly. As the size
of the ball is controlled by the injectivity radius on K̂ it follows that there is a
lower bound on the interval of existence of the locally constructed curve.

Based on these three steps, we conclude that we can construct solutions to (4.64) on
arbitrarily sized intervals [0, T ].

Local construction of solutions
In the first result, we show how the various quantities in (4.64) transfer from M to
a local coordinate chart. This result is essentially a write-up of basic Riemannian
coordinate transformations acting on L and H. We write it down for an arbitrary
smooth invertible map from a subset of a manifold M to a subset of a manifold N .
Lemma 4.38. Let M be a Riemannian manifold. For an invertible smooth map
φ : O ⊆M → φ(O) := N , via push-forward and pullback in Section 4.2 define

Hφ := H ◦ φ∗ : T ∗N → R

and

Lφ := L ◦ φ−1
∗ : TN → R,

where H : T ∗M → R and L : TM → R. Define fφ = f ◦ φ−1. Let x : [0, T ] → O,
suppose that y(s) = φ(x(s)) : [0, T ] → φ(O), then we have that

(a) dfφ(y(s))ẏ(s) = df(x(s))ẋ(s),

(b) Hφ(y(s),dfφ(y(s))) = H(x(s),df(x(s))),

(c) Lφ(y(s), ẏ(s)) = L(x(s), ẋ(s)).

(d) Lφ is the Legendre transform of Hφ, i.e., Hφ(η, ξ) = supw∈TηN {ξ(w)− Lφ(η, w)},
for any (η, ξ) ∈ T ∗N .
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Proof. We start to prove item (a). By Lemma 4.6, there exists a curve x(s) on O
such that

dfφ(y(s))ẏ(s) = dfφ(φ(x(s)))φ∗(ẋ(s))

= df(x(s))ẋ(s),

where in the last show we used the chain rule (4.6) such that

dfφ(φ(x(s))) = d(f ◦ φ−1)(φ(x(s)))

= df(φ−1(φ(x(s))))d(φ−1(φ(x(s))))ϕ∗(ẋ(s))

= df(x(s))
d

dt

∣∣∣∣
t=s

φ−1(φ(x(t)))

= df(x(s))ẋ(s).

(4.65)

We then prove item (b) based on the ideas when we obtain item (a). By calculating,
we have

Hφ(y(s),dfφ((y(s)))) = H ◦ φ∗(φ(x(s)),dfφ(φ(x(s))))

= H(x(s), φ∗(dfφ(φ(x(s))))

= H(x(s),df(x(s))),

where in the last equality we use (4.65). Therefore, item (b) is obtained. We continue
to prove item (c) by simple calculating, and get

Lφ(y(s), ẏ(s)) = L ◦ φ−1
∗ (φ(x(s)), φ∗(ẋ(s)))

= L(x(s), ẋ(s)).

To prove item (d), for any (η, ξ) ∈ T ∗N , we have

Hφ(η, ξ) = H(φ−1(η), φ∗(ξ))

= sup
v∈TηM

{
φ∗(ξ)(v)− L(φ−1(η), v)

}
(4.5)
= sup

φ∗(v)∈TηN

{ξ(φ∗(v))− Lφ(η, φ∗(v))}

= sup
w∈TηN

{ξ(w)− Lφ(η, w)} ,

where the second equality is the fact that L is the Legendre transform of H. The
proof is completed.

Using a transfer of M to a coordinate chart, we can work on Euclidian space. We
will construct local solutions using convex analysis and differential inclusion theory.
Below, we will use the notion of a subdifferential.
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Definition 4.39. For a general convex functional p 7→ Φ(p) we denote the subdiffer-
ential at p0 ∈ Rd as the set

∂pΦ(p0) := {ξ ∈ Rd : Φ(p) ≥ Φ(p0) + ξ(p− p0),∀p ∈ Rd}.

In the next result, we obtain a local solution to (4.64) by transferring to a chart. We
follow the notation of Lemma 4.38
Lemma 4.40. Let M be a Riemannian manifold and let x0 ∈M . Let φ : O ⊆M →
φ(O) ⊆ Rd be a coordinate chart. Consider the open ball O := BR(x0) around x0 with
the radius R > 0 strictly smaller than the injectivity radius ix0

at x0. Fix f ∈ C1(M).
Then the following content holds.

(a) There exists a solution y(t) : [0, T0(x)) → φ(O) ⊆ Rd to the differential inclusion{
ẏ(t) ∈ ∂pHφ(y(t),dfφ(y(t)),

y(0) = 0 = φ(x0)
(4.66)

with
T0(x) = inf

{
t > 0

∣∣ y(t) /∈ φ(BR/2(x0))
}
. (4.67)

(b) Set x(t) = φ−1(y(t)). Then the curve x : [0, T0(x)) → BR/2(x0) ⊆ M satisfies
x(0) = x0 and∫ t

0

H(x(s),df(x(s)))ds+

∫ t

0

L(x(s), ẋ(s))ds =
∫ t

0

df(x(s))ẋ(s)ds. (4.68)

for any t < T0(x).

Proof. We first prove the existence of a solution to the differential inclusion (4.66). By
takingO = BR(x0) in Lemma 4.38 and define T0(x) = inf

{
t > 0

∣∣ y(t) /∈ φ(BR/2(x0))
}
,

the subdifferential ∂pHφ(y(t),dfφ(y(t)) satisfies all the conditions of Lemma 5.1 of
[Dei92]. Note that for this statement, we use that the convexity of H in p obtained
in Lemma 4.14 transfers to Hφ. Hence, there exists a solution y(t) such that (4.66)
holds.

Next, we turn to prove that there exists a solution such that (4.68) holds by local
construction. To do it, for the initial point x0 ∈ M , there exists a ball BR(x0) with
R strictly smaller than ix0

. We claim that∫ t

0

Hφ(y(s),dfφ(y(s)))ds+

∫ t

0

Lφ(y(s), ẏ(s))ds =
∫ t

0

dfφ(y(s))ẏ(s)ds. (4.69)

on φ(O). Then (4.68) follows from (4.69) and Lemma 4.38.

We are left to prove that (4.69) holds. On the one hand, we have that

Hφ(y(s),dfφ(y(s))) ≥ dfφ(y(s))ẏ(s)− Lφ(y(s), ẏ(s)),
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for all y(s) ∈ φ(O), via convex duality. Then, integrating the above inequality gives
one inequality in (4.69).

Regarding the other inequality, via (4.66) we obtain for all p ∈ φ(O),

Hφ(y(s), p) ≥ Hφ(y(s),dfφ(y(s))) + ẏ(s) (p− dfφ(y(s))) ,

and as a consequence

Hφ(y(s),dfφ(y(s))) ≤ dfφ(y(s))ẏ(s)− Lφ(y(s), ẏ(s)),

and integrating gives the other inequality.

Lower bounding the time of existence of local solutions
The first step in lower bounding the time of existence of local solutions is a priori
control of any curve satisfying (4.64). The next result follows as a by-product of
Condition 4.31.
Lemma 4.41. Let Assumption 4.3 be satisfied. Let K0 ⊆ M a compact set and
T > 0. For any f ∈ D(H), then there is a compact set K̂ ⊆ M such that any curve
x : [0, T0) →M with T0 ≤ T satisfying x(0) ∈ K0 and for all t < T0∫ t

0

H(x(s),df(x(s)))ds+

∫ t

0

L(x(s), ẋ(s))ds =
∫ t

0

df(x(s))ẋ(s)ds (4.70)

it holds that x(t) ∈ K̂ for any t < T0.

Recall that by Definition 4.15 of H we have D(H) = C2
c (M).

Proof. First of all, note that

cf := sup
z

{−Hf(z)} <∞

as H is continuous by Lemma 4.14 and f ∈ C2
c (M). Furthermore, write ∥f∥ =

supx |f(x)|. Note that by (4.70), we have for any curve∫ t

0

L(x(s), ẋ(s))ds = f(x(t))− f(x(0))−
∫ t

0

H(x(s),df(x(s)))ds

≤ 2∥f∥+ tcf ≤ 2∥f∥+ Tcf

the result thus follows by Condition 4.31 (b).

For the next three lemmas and the proof of Condition 4.32, we first provide a short
sketch of the approach before giving a rigorous proof. The approach involves proof
by contradiction. Specifically, we assume that there does not exist a global curve on
[0, T ] satisfying (4.59). We first find the maximum time interval [0, Tmax], Tmax < T ,
in which the curve satisfies (4.59). However, by extending the existing curve through
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patching in a chart at a new point and a lower bound on the time length of the
extension, we obtain a new curve that operates over a longer time interval, which
leads to a contradiction.

Next, we show the curve as in Lemma 4.40 has a Lagrangian cost that grows linearly
in time uniformly in their starting point in a compact set.
Lemma 4.42. Let M be a Riemannian manifold and K ⊆M a compact set. Fix R ∈
[i(K)/2, i(K)). Then there is a constant C such that for any curve x(t) : [0, T0(x)) →
BR/2(x0) with x(0) = x0 ∈ K as in Lemma 4.40, we have∫ t

0

L(x(s), ẋ(s))ds ≤ Ct

for any t < T0(x).

Proof. First of all, denote by K̂ the compact set obtained by covering K by balls of
radius R/2. No considered curve can leave K̂ by construction.

Denote cf,K̂ = supz∈K̂{−Hf(z)}. As x satisfies (4.68), by Condition 4.31 (c), there

exists a function ψK̂,R, R is independent of x, such that for t < T0(x)∫ t

0

L(x(s), ẋ(s))ds =
∫ t

0

df(x(s))ẋ(s)ds−
∫ t

0

Hf(x(s))ds

≤
∫ t

0

ψK̂,R (L(x(s), ẋ(s))) ds+ tcf,K̂ .

Furthermore, as ψK̂,R is non-decreasing and the fact that
ψK̂,R(r)

r converges to 0 for

r → ∞, there exist 0 < m < 1 and r∗ ≥ 1 such that
ΨK̂,R(r)

r ≤ m for r ≥ r∗.
Proceeding our estimate, by splitting the integral into regions [0, t] = I1 ∪ I2 with

I1 := {s ∈ [0, t] | L(x(s), ẋ(s)) ≥ r∗} ,
I2 := {s ∈ [0, t] | L(x(s), ẋ(s)) < r∗} ,

we get ∫ t

0

L(x(s), ẋ(s))ds ≤
∫
I1

ψK̂,R(L(x(s), ẋ(s)))
L(x(s), ẋ(s))

L(x(s), ẋ(s))ds

+

∫
I2

ψK̂,R(L(x(s), ẋ(s)))ds+ tcf,K̂

≤ m

∫ t

0

L(x(s), ẋ(s))ds+ t
(
ψK̂,R(r

∗) + cf,K̂

)
.

Rearranging terms leads to∫ t

0

L(x(s), ẋ(s))ds ≤ t
ψK̂,R(r

∗) + cf,K̂
1−m
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establishing the claim with C =
ψK̂,R(r∗)+cf,K̂

1−m .

Next, we control the speed at which curves as in Lemma 4.40 move away from their
starting point.
Lemma 4.43. Let M be a Riemannian manifold and K ⊆ M a compact set. Fix
R ∈ [i(K)/2, i(K)).

Then there is a C > 0 such that for any x0 ∈ K and any curve x(t) : [0, T0(x)) →
BR/2(x0) with x(0) = x0 as in Lemma 4.40, we have

1

2
d2(x(t), x0) ≤ tC

for any t < T0(x). In particular T0(x) ≥ R2

8C .

The proof of Lemma 4.43 relies on Lemma 4.40 and the following preliminary lemma.
We first state the preliminary lemma before proceeding to prove Lemma 4.43.
Lemma 4.44. Let K ⊆ M be a compact set in M . For any x0 ∈ K and radius
R < ix0

, set

gx0,R(x) = θR

(
1

2
d2(x, x0)

)
where θR : [0,∞) → [0, 34R] is a smooth non-decreasing function, satisfying θ′R(r) ≤ 1
where θR(r) = r for r ≤ R/2 and θR(r) is constant for r ≥ 3

4R.

For any such R, we have gx0,R ∈ CK,R where CK,R was defined in Condition 4.31 (c)
equation (4.58). Moreover, gx0,R ∈ D(H).

Proof. By construction, we have

dgx0,R(x) = θ′R

(
1

2
d2(x, x0)

)
d(x, x0)

which by the properties of θR satisfies

|dgx0,R(x)| ≤ d(x, x0) ≤ R

for any x ∈ B(x0, R). In particular, we have gx0,R ∈ CK,R. Moreover, since gx0,R is
twice continuously differentiable and constant outside of a compact set, we conclude
that gx0,R ∈ D(H).

Proof of Lemma 4.43. Fix x0 ∈ K and any curve x(t) : [0, T0(x)) → BR/2(x0) with
x(0) = x0 as in Lemma 4.40. Let gx0,R ∈ D(H) be any smooth bounded function as

in Lemma 4.44 and K̂ be the compact set obtained by covering K by balls of radius
R/2.
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It thus follows by the proof strategy of Lemma 4.42 that for any t < T0(x), we have

1

2
d2(x(t), x0) ≤ t

(
mC1 + ψK̂,R(r

∗)
)
.

The result thus follows for C = mC1 + ψK̂,R(r
∗).

We are ready to verify Condition 4.32.

Proof of Condition 4.32 . We argue by contradiction. Fix x0 ∈ M and T > 0. Sup-
pose there does not exist an absolutely continuous curve x(t), t ∈ [0, T ] started at
x0 ∈M such that (4.59) holds.

In other words,

Tmax = sup {T0(x) | ∃x : [0, T0(x)) →M satisfying (4.59), x(0) = x0} < T. (4.71)

By Lemma 4.41 there is a compact set K ⊆ M such that any curve considered in

(4.71) stays in K. Fix ε < R2

8C ≤ T0(x) as in Lemma 4.43.

Fix the curve x satisfying (4.59) with x(0) = x0, T0(x) > Tmax − ε. Patching the
curve x̃ : [0, T0(x̃)) started from x(T0(x)− ε) obtained from Lemma 4.40 to the curve
x at time T0(x)−ε, we obtain from Lemma 4.43 that this curve, is a solution to (4.59)
on the time interval [0, T0(x)− ε+ T0(x̃)), which contradicts (4.71).

This establishes the claim.
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Chapter 5

Parameter estimations for
singular SDEs

From this chapter, we turn to study parameter estimations. In this chapter, by taking
Zvonkin’s transformation, we investigate parameter estimation for a class of multi-
dimensional stochastic differential equations with small perturbation parameters in
diffusion coefficients, where the drift coefficients not only have an unknown parameter
θ but also are Hölder continuous. These processes may enhance the applicability of
our results to considerable practical models. Due to the irregular drift, the primary
challenge is dealing with the mean square error between an accurate and numerical
solution. Under these settings, we demonstrate the consistency and asymptotic nor-
mality of error concerning the least squares estimator in probability when stepsize
δ → 0 and small parameter ε → 0 simultaneously. Moreover, we extend the results
to the case of stochastic functional differential equations.

This chapter is based on

[HXZ24] Yanyan Hu, Fubao Xi, and Min Zhu. Asymptotic properties for the parame-
ter estimation instochastic (functional) differential equations with Hölder drift.
Stochastics, 96(1):766–798, 2024

5.1 Introduction

The theory of parameter estimations for stochastic differential equations (SDEs) is
one of the active research fields. The background, motivation, applications, and
fundamental results of the theory are well established; many methods have been
put forward to solve the parameter estimation problem of diffusion processes, such

107



108 Parameter estimation for singular SDEs

as maximum likelihood estimation, Bayes estimation, and least squares estimation
(LSE) based on continuous or discrete observations.

To the best of our knowledge, there are numerous results on parameter estimation for
SDEs with regular drift under various settings. [WS16] studied maximum likelihood
estimation for drift parameters in diffusion processes. As for more complex processes,
we can refer to [WWMX16] and [Lon09], who investigated the maximum likelihood
estimation of McKean-Vlasov SDEs and studied the parameter estimation problem
for one-dimensional Ornstein-Uhlenbeck processes with small Lévy noise, respectively.
In particular, for considering a high-frequency sample of discrete observations of the
diffusion processes at time points, the related works are crucial for parameter esti-
mation; see, e.g., [FZ89, Yos92, Kes97, Lon09, DGCL18, AHPP23] and references
therein.

However, the parameter estimation problem with irregular drift has not been well
studied yet. This is one of our motivations. Moreover, a lot of authors have paid
attention to many types of SDEs with irregular drifts, such as Hölder continuity,
Hölder-Dini continuity, and even only integrability (e.g., [GM01, KR05, Zha05, Zha11,
Zha16] and references within) over the past few years. Specifically, [Wan16] showed
gradient estimations and applications for SDEs in Hilbert space with multiplicative
noise and Dini continuous drift via Zvonkin’s transformation. In addition, the problem
of convergence rate can also be solved by this transformation. For instance, [BHY19]
showed the convergence rate of the numerical solution and accurate solution for SDEs
with Hölder-Dini continuous drift. Subsequently, this method has raised considerable
attention, and more realistic models are emerging. For example, [Hua19] applied this
transformation to derive exponential convergence for functional SDEs with Hölder
continuous drift, [HY21a] further extended to the case of α-stable process.

At the same time, there has been some development in the setting of diffusion coeffi-
cients for parameter estimation problems. Long, Shimizu, and Sun [LSS13] studied the
problem of parameter estimation for discretely observed stochastic processes driven
by additive small Lévy noises, namely σ = 1. Although they gave a brief remark that
their methodology can be easily extended to the more general case of semi-martingale
noises. However, the diffusion coefficients discussed in that paper still are additive,
which restricts the applicability of their models. In a similar framework, Long, Ma,
and Shimizu [LMS17] further considered parameter estimation for discretely observed
SDEs driven by small Lévy noises, where σ is a linear multiplicative and they did not
impose Lipschitz condition on σ. After that, Ren and Wu [RW19b, RW21] studied
the parameter estimation for Mckean-Vlasov SDEs, where the diffusion coefficient is
nonlinear.

Motivated by the previous literature about SDEs with irregular drift coefficients and
more general diffusion coefficients, in the present work, we would like to explore the
parameter estimate of multidimensional SDEs via the least square method. We allow
that the diffusion σ is nonlinear and the drift b is bounded and Hölder continuous.
The least square method involves solving SDEs and constructing contrast functions,
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and often it is difficult to deal with them. For this reason, we approximate the solu-
tions of SDEs considered by selecting an appropriate numerical scheme and designing
the corresponding contrast functions based on the approximated equations. In this
work, we present the least square method for SDEs/SFDEs, which is one of the well-
known methods in the theory of parameter estimations for SDEs/SFDEs that is used
to prove the consistency and asymptotic normality of the estimator. In the case of
singular drifts, the techniques used in existing literature [Lon09] can not be applied,
because it uses the analysis of standard SDEs under Lipschitz conditions. The tech-
niques applied in this work use in particular the regularity of the non-degenerate
Kolmogorov equation and some basic convergence principles from functional analysis.
An important result is that the appropriate numerical approximations converge in
the mean square to the accurate solutions of SDEs/SFDEs considered (see Theorems
5.16 and 5.21). Moreover, since the approximation method also involves SFDEs, by
using the ideas from [BS18] and adapting them for the considered SFDEs we establish
the approximated equation of (5.19) below and its contrast function, and deduce the
square error between accurate solutions and numerical solutions, which gives us a
necessary condition for the consistency and asymptotic normality.

5.2 Preliminaries and main results

Throughout this chapter, the following notation will be used. For d,m, p ∈ N, the set
of all positive integers, let (Rd, ⟨·, ·⟩, | · |) be the d-dimensional Euclidean space with
the inner product ⟨·, ·⟩ inducing the norm | · |. Let Rd⊗Rm the collection of all d×m
matrixes with real entries, which is endowed with the Hilbert-Schmidt norm ∥ · ∥HS.
For A ∈ Rd ⊗ Rm, A∗ denotes the transpose of A. Concerning a square matrix A,
A−1 means the inverse of A provided that detA ̸= 0. For p ∈ N, let Θ be an open
bounded convex subset of Rp, and Θ is the closure of Θ. For r > 0 and x ∈ Rp, Br(x)
means the closed ball centered at x with the radius r. Let Bb(Rd) be the collection
of all bounded measurable functions f : Rd → R, endowed with the uniform norm
∥f∥∞ := supx∈Rd |f(x)|. For a real number a > 0, ⌊a⌋ stands for the integer part
of a. Let τ > 0 be a fixed number and C = C([−τ, 0];Rd), which is endowed with
the uniform norm ∥f∥C = sup−τ≤γ≤0 |f(γ)|, γ ∈ [−τ, 0]. For f ∈ C([−τ,∞);Rd)
and t ≥ 0, let ft ∈ C be defined by ft(γ) = f(t + γ), γ ∈ [−τ, 0]. In terminology,
(ft)t>0 is called the segment (or window) process corresponding to (f(t))t≥−τ . For
A =: (A1, A2, . . . , Ap) ∈ Rp ⊗ Rpd with Ak ∈ Rp ⊗ Rd, k = 1, . . . , p, and B ∈ Rd, let
us define A ◦B ∈ Rp ⊗ Rp by

A ◦B = (A1B,A2B, · · · , ApB), (5.1)

and more details about this symbol can be found in the appendix.
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5.2.1 LSE for SDEs

In this subsection, we fix the time horizon T > 0. For the scale parameter ε ∈ (0, 1),
we are interested in the following SDE

dXε(t) = b(Xε(t), θ)dt+ ε σ(Xε(t))dW (t), t ∈ [0, T ], Xε(0) = x0 ∈ Rd, (5.2)

where b : Rd×Θ → Rd, σ : Rd → Rd⊗Rd and (W (t))t≥0 is a d-dimensional Brownian
motion defined on the probability space (Ω,F ,P) with the filtration (Ft)t≥0 satisfying
the usual condition (i.e., F0 contains all P-null sets and Ft = Ft+ :=

⋂
s>t Fs).

In what follows, denote the initial value of (5.2) by Xε(0) when we emphasize the
dependence on ε, and ε is a small perturbation. In (5.2), we assume that the drift b
and the diffusion σ are known apart from the parameter θ ∈ Θ.

Intuitively, we derive the underlying deterministic ordinary differential equation under
the true value θ0 of the drift parameter corresponding to ε = 0 in (5.2),

dX0(t) = b(X0(t), θ0)dt, t ∈ [0, T ], X0(0) = x0 ∈ Rd. (5.3)

Herein, it is worth pointing out that (5.2) and (5.3) share the same initial value.
Definition 5.1 (Strong solution). For any T ≥ 0, a continuous adapted process
(X(t))t∈[0,T ] on Rd is called a strong solution of (5.2), if∫ t

0

E(|b(X(s), θ)|+ ∥σ(X(s))∥2HS)ds <∞, t ∈ [0, T ],

and P-a.s.

X(t) = X(0) +

∫ t

0

b(X(s), θ)ds+

∫ t

0

σ(X(s))dW (s), t ∈ [0, T ].

Throughout the chapter, for any x, y ∈ Rd and θ ∈ Θ, we assume the following
conditions
Assumption 5.1. b is bounded and there exists a constant C > 0 and α ∈ (0, 1] such
that

sup
θ∈Θ

|b(x, θ)− b(y, θ)| ≤ C|x− y|α.

Assumption 5.2. σ is invertible, and

∥σ∥HS + ∥∇σ∥HS + ∥σ−1∥HS + ∥∇σ−1∥HS <∞.

Assumption 5.3. For j = 1, 2, there exists a constant C > 0 such that

sup
θ∈Θ

∥(∇j
θb)(x, θ)− (∇j

θb)(y, θ)∥HS ≤ C|x− y|α.
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Remark 5.2. Under Assumption 5.1 and ∥σ∥HS <∞ in Assumption 5.2, (5.2) enjoys
a unique strong solution (Xε(t))t∈[0,T ]; see, e.g., [BH22, Theorem 1.4]. Because we
want to study the consistency and asymptotic normality of the least squares estimator,
we add Assumption 5.3 and ∥∇σ∥HS+∥σ−1∥HS+∥∇σ−1∥HS <∞ in Assumption 5.2.
Likewise, under Assumption 5.1, (5.3) admits a unique solution (X0(t))t∈[0,T ]. In
addition, we can also generalize in this thesis that b is locally bounded rather than
uniformly bounded. However, when b satisfies the unbounded condition, this is a
challenge that we will investigate in future papers.

Without loss of generality, one may assume that there exists a sufficiently large integer
n > 0 such that the stepsize

δ :=
T

n
∈ (0, 1).

Now, for k = 1, 2, . . . , n, we introduce the following Euler–Maruyama (EM) scheme

Y ε((k + 1)δ) = Y ε(kδ) + b(Y ε(kδ), θ)δ + εσ(Y ε(kδ))∆Wk, (5.4)

where ∆Wk :=W ((k + 1)δ)−W (kδ). The continuous EM scheme reads

dY ε(t) = b(Y ε(tδ), θ)dt+ εσ(Y ε(tδ))dW (t), t ∈ [0, T ], (5.5)

with the same initial value Y ε(0) = Xε(0) = x0 ∈ Rd, where tδ = ⌊t/δ⌋δ. Then,
by (5.5) and the theory of least squares method, we design the following contrast
function

Ψn,ε(θ) = ε−2δ−1
n∑
k=1

F ∗
k (θ)σ̂(Y

ε((k − 1)δ)Fk(θ). (5.6)

Herein, for k = 1, 2, . . . , n,

Fk(θ) := Y ε(kδ)− Y ε((k − 1)δ)− b(Y ε((k − 1)δ), θ)δ, (5.7)

σ̂(Y ε(kδ)) := (σσ∗)−1(Y ε(kδ)). (5.8)

To achieve the LSE of θ ∈ Θ, it suffices to choose an element θ̂n,ε ∈ Θ such that

Ψn,ε(θ̂n,ε) = min
θ∈Θ

Ψn,ε(θ). (5.9)

Whence,
θ̂n,ε = argmin

θ∈Θ
Ψn,ε(θ).

Set
Φn,ε(θ) := ε2(Ψn,ε(θ)−Ψn,ε(θ0)). (5.10)

It follows from (5.9) that

Φn,ε(θ̂n,ε) = min
θ∈Θ

Φn,ε(θ). (5.11)

Likewise, we reformulate θ̂n,ε ∈ Θ ensuring (5.11) to hold true as

θ̂n,ε = argmin
θ∈Θ

Φn,ε(θ). (5.12)

In this work, θ̂n,ε satisfing (5.12) is named as the LSE of θ ∈ Θ.
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Remark 5.3. If b(·, θ) is explicit concerning the parameter θ, then the least squares

estimator θ̂n,ε can indeed be obtained by Fermat’s theorem; see Example 5.7 below
for more details.

For the sake of notation brevity, for any x ∈ Rd and θ ∈ Θ, let

G(x, θ, θ0) = b(x, θ0)− b(x, θ). (5.13)

One of the first main results is concerned with the consistency of the LSE of θ ∈ Θ.
Theorem 5.4 (Consistency). Let Assumptions 5.1 and 5.2 hold and assume further
H(θ) > 0 for any θ ̸= θ0 ∈ Θ. Then we have

θ̂n,ε → θ0 in probability as ε→ 0 and n→ ∞.

Set, for any x ∈ Rd and θ ∈ Θ,

I(θ) :=

∫ T

0

(∇θb)
∗(X0(t), θ)σ̂(X0(t))(∇θb)(X

0(t), θ)dt, (5.14)

Υ(x, θ0) := (∇θb)
∗(x, θ0)σ̂(x)σ(x) (5.15)

and

K(θ) =: −2

∫ T

0

{(∇(2)
θ b∗)(X0(t), θ) ◦ (σ̂(X0(t))G(X0(t), θ, θ0))}dt, (5.16)

where the notation (∇(2)
θ b∗) := (∇θ(∇θb

∗)) and “◦” is defined in (5.1).

The second result is presented below, revealing the asymptotic normality property of
θ̂n,ε.
Theorem 5.5 (Asymptotic normality). Let the assumptions of Theorem 5.4 hold,
suppose further that Assumption 5.3 hold. If I(·) and K(·) are continuous. Then we
have

ε−1(θ̂n,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0(t), θ0)dW (t) in probability

as ε→ 0 and n→ ∞.
Remark 5.6. Although we handle the least square estimator on the Hölder drift
condition, there is no loss of efficiency to the consistency and asymptotic normality
of the estimator.

Here, we provide an example of real value SDE, which can further intuitively explain
the results of Theorems 5.4 and 5.5.
Example 5.7. Let θ ∈ (c1, c2) for some constants c1 and c2 with c1 < c2. Assume
that

P(|Xε(t)| <∞) = 1. (5.17)
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For any ε ∈ (0, 1), we consider the following real value SDE,

dXε(t) = [(1 + θ)|Xε(t)|]1/2dt+ ε(1 + |Xε(t)|)dW (t), t ∈ (0, T ] (5.18)

with initial datum Xε(0) = x0, where θ is an unknown parameter.

Obviously, for any x ∈ R, form (5.18) we have

b(θ, x) = ((1 + θ)|x|) 1
2 , σ(x) = 1 + |x|.

Namely, (5.18) can be reformulated as (5.2).

Next, we aim to examine whether all the assumptions imposed in Theorems 5.4 and
5.5 hold. Indeed, b is bounded via (5.17) and θ ∈ (c1, c2), and by a direct calculation,
for any x, y ∈ R, there exists a constant C > 0 such that

|b(θ, x)− b(θ, y)| = (1 + θ)
1
2 (|x| 12 − |y| 12 )

≤ (1 + θ)
1
2 |x− y| 12 ≤ C|x− y| 12 .

The Assumption 5.1 is checked. After that, the real diffusion coefficient σ is invertible
and there exists a constant C > 0 such that |σ| ≤ C by (5.17), and we have

|σ−1| ≤ 1, |∇σ| ≤ 1 and |∇σ−1| ≤ 1.

Hence, the Assumption 5.2 holds.

We are left to prove that the Assumption 5.3 holds. To do it, since

∇θb(θ, x) =
1

2
((1 + θ)|x|)− 1

2 |x| = 1

2
√
1 + θ

|x| 12 ,

one has

|∇θb(θ, x)−∇θb(θ, y)|

=
1

2
(1 + θ)−

1
2 (|x| 12 − |y| 12 ) ≤ 1

2
(1 + θ)−

1
2 |x− y| 12 ≤ 1

2
|x− y| 12 .

Similarly,

∇θ(∇θb(θ, x)) = −1

4
(1 + θ)−

3
2 |x| 12 ,

then

|∇θ(∇θb(θ, x))−∇θ(∇θb(θ, y))| =
∣∣∣∣−1

4
(1 + θ)−

3
2 (|x| 12 − |y| 12 )

∣∣∣∣ ≤ |x− y| 12 .

Thus, Assumption 5.3 holds.

Then, we continue to provide the contrast function below, which plays an important
role in obtaining the consistency and asymptotic normality from Theorems 5.13 and
5.4. Based on (5.6) with

Fk(θ) = Y ε(kδ)− Y ε((k − 1)δ))− ((1 + θ)|Y ε((k − 1)δ))|) 1
2 δ
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and

σ̂(Y ε(kδ)) =
1

(1 + |Y ε((k − 1)δ))|)2
,

the contrast function admits the form

Φn,ε(θ) = ε−2δ−1
n∑
k=1

|Y ε(kδ)− Y ε((k − 1)δ))− ((1 + θ)|Y ε((k − 1)δ))|) 1
2 δ
∣∣2

(1 + |Y ε((k − 1)δ))|)2
.

Noting that the derivative of Φn,ε(θ) is

dΦn,ε(θ)

dθ
= − 1

ε2
√
1 + θ

n∑
k=1

∣∣Y ε(kδ)− Y ε((k − 1)δ))− ((1 + θ)|Y ε((k − 1)δ)|) 1
2 δ
∣∣

(1 + |Y ε((k − 1)δ))|)2|Y ε((k − 1)δ))|− 1
2

,

and when
dΦn,ε(θ)

dθ
= 0,

one obtains

θ̂n,ε =
(|Y ε(kδ)| − |Y ε((k − 1)δ))|)2

δ2|Y ε((k − 1)δ))|
− 1.

of the unknown parameter θ. In terms of Theorem 5.4, θ̂n,ε → θ in probability as
ε→ 0 and n→ ∞. Next, from (5.14) and (5.15), it follows that

I(θ0) =
1

4(1 + θ0)

∫ T

0

|X0(t)|
1 + |X0(t)|

dt

and ∫ T

0

Υ(X0(t), θ0)dW (t) =
1

4(1 + θ0)

∫ T

0

|X0(t)|
1 + |X0(t)|

dW (t).

At last, according to Theorem 5.5, we conclude that

ε−1(θ̂n,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0(t), θ0)dW (t) in probability

as ε→ 0 and n→ ∞.

5.2.2 LSE for SFDEs

In this subsection, we discuss the extension of Theorems 5.4 and 5.5 to the general
model when the drift contains delay term. In many applications, the future state of
stochastic systems is not only dependent on the present but also on history. So we
are interested in more realistic processes called SFDEs, namely,

dXε(t) = b(Xε(t), θ)dt+ Z(Xε
t )dt+ εσ(Xε(t))dW (t), t ∈ [0, T ], Xε

0 = ξ ∈ C ,
(5.19)
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where Z : C → Rd. (5.19) can be regarded as the perturbation of the SDE (5.2). The
perturbation function Z is dependent on the history state and describes a delayed
feedback loop that has a weak impact on the unperturbed dynamics.

In order to prove the existence and uniqueness of a solution to (5.19), we shall add
the following assumption about the delay drift.
Assumption 5.4. Z is bounded and there exists a constant C > 0 such that

|Z(ξ)− Z(η)| ≤ C||ξ − η||C , ξ, η ∈ C .

Remark 5.8. The singularity of our drift is only reflected in a part of the coefficients,
namely b, which depend on the present state. This happens because the regularity of
the non-degenerate Kolmogorov equation related to Zvonkin’s transformation depends
on the present state.
Remark 5.9. Since Hölder continuity is stronger than Dini continuity, according to
[HZ19, Theorem 2.1] for H = Rd, under Assumptions 5.1, 5.2 and 5.4, the SFDE
(5.19) has a unique non-explosive solution denoted by Xε

t with Xε
0 = ξ.

When ε = 0, it is obvious that (5.19) can be rewritten as

dX0(t) = b(X0(t), θ)dt+ Z(X0
t )dt.

For k = 1, 2, . . . , n, the discrete-time EM scheme of (5.19) is defined as

Y ε((k + 1)δ) = Y ε(kδ) + b(Y ε(kδ), θ)δ + Z(Ŷ εkδ)δ + εσ(Y ε(kδ))∆Wk (5.20)

with same value Y ε(0) = Xε
0 = ξ, and Ŷ εt ∈ C is defined in the way

Ŷ εt (γ) := Y ε((t+ γ) ∧ tδ), γ ∈ [−τ, 0].

The truncated EM scheme associated (5.19) is described as

dY ε(t) = b(Y ε(tδ), θ)dt+ Z(Ŷ εt )dt+ εσ(Y ε(tδ))dW (t), t ∈ [0, T ], (5.21)

with the same initial value Y ε(γ) = Xε(γ) = ξ(γ), γ ∈ [−τ, 0]. It is obvious that one
obtains the relations

∥Y εt ∥C = sup
−τ≤γ≤0

|Y ε(t+ γ)| = sup
(t−τ)+≤s≤t

|Y ε(s)| (5.22)

and
∥Ŷ εt ∥C = sup

−τ≤γ≤0
|Y ε((t+ γ) ∧ tδ)| ≤ ∥Y εt ∥C . (5.23)

Then, on the basis of (5.20), we design the following contrast function

ΨZn,ε(θ) = ε−2δ−1
n∑
k=1

(FZk )∗(θ)σ̂(Y ε(k−1)δ)F
Z
k (θ). (5.24)
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Herein, for k = 1, 2, . . . , n,

FZk (θ) := Y ε(kδ)− Y ε((k − 1)δ)− b(Y ε((k − 1)δ), θ)δ − Z(Ŷ ε(k−1)δ)δ

and σ̂(·) is defined in (5.8). Thus, we can get the least squares estimator θ̂Zn,ε by
(5.24) in the same way as in Subsection 5.2.1.
Remark 5.10. The truncated EM method has recently aroused widespread con-
cern; see, e.g., [NBK+20, BS18]. For SFDEs, the simple discrete-time observations
are insufficient to build the contrast function because the SFDEs involved are path-
dependent. Linear interpolation is a traditional method of approximating the func-
tional solution, and in the thesis, we use truncated EM. Compared with linear inter-
polation, the advantage of truncation is that no additional continuity conditions need
to be imposed on the initial value.

The main result of LSEs about SFDEs is stated below.
Theorem 5.11. Under Assumptions 5.1, 5.2, 5.3 and 5.4, for any θ ̸= θ0 ∈ Θ, it
yields that

θ̂Zn,ε → θ0 in probability

as ε → 0 and n → ∞. Moreover, for I(·) in (5.14), K(·) in (5.16) and Υ(·, θ0) in
(5.15), if I(·) and K(·) are continuous, we have that

ε−1(θ̂Zn,ε − θ0) → I−1

∫ T

0

Υ(X0(t), θ0)dW (t) in probability

as ε→ 0 and n→ ∞.
Remark 5.12. Last but not least, from the results of Theorem 5.11, the delay part
is reflected in the least square estimator θ̂Zn,ε. That is,

θ̂Zn,ε = argmin
θ∈Θ

ΨZn,ε(θ),

which means that

ΨZn,ε(θ̂
Z
n,ε) = min

θ∈Θ
ΨZn,ε(θ),

where ΨZn,ε(θ) is the contrast function defined in (5.24). Therefore, we see that the
delay term Z essentially originates from the construction of the contrast function.

5.3 Proof of main results

In this section, we complete the proof of the main theorems in the above section.
First, we prove Theorems 5.4 and 5.5, which are the main results in Subsection 5.2.1
about SDEs.
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5.3.1 Proof of Theorems 5.4 and 5.5

Before presenting the proof of Theorems 5.4 and 5.5, it is necessary that we prove
Lemmas 5.13 - 5.19 below. We first give Lemma 5.13, which shows finite pth moment
of the solution Y ε(·).
Lemma 5.13. Under Assumptions 5.1 and 5.2 for p ≥ 2, there exists a constant
CT > 0 such that

sup
0<t≤T

E|Y ε(t)|p ≤ CT (1 + |x0|p). (5.25)

Proof. we only need to apply the fundamental inequality, the Hölder inequality for
integrals for time, and the Burkhold-Davis-Gundy (BDG) inequality for the term
involving martingale. For C > 0, it holds that

1+E|Y ε(t)|p

≤ 1 + C|x0|p + Ctp−1

∫ t

0

E|b(Y ε(sδ), θ)|pds+ CE
(∫ t

0

(ε∥σ(Y ε(sδ))∥HS)
pds
) p

2

≤ 1 + C|x0|p + C(tp−1 + t
p−2
2 )

∫ t

0

{E|b(Y ε(sδ), θ)|p + E∥σ(Y ε(sδ))∥pHS}ds

≤ 1 + C|x0|p + C(tp−1 + t
p−2
2 )

∫ t

0

{1 + E|Y ε(sδ)|p}ds,

where the third inequality applies Assumptions 5.1 and 5.2. Since

sup
0≤s≤t

|Y ε(sδ)| ≤ sup
0≤s≤t

|Y ε(s)|,

we derive that

1 + E|Y ε(t)|p ≤ 1 + C|x0|p + C(tp−1 + t
p−2
2 )

∫ t

0

(1 + E|Y ε(s)|p)ds

for C > 0. Consequently, the Gronwall inequality yields that there exists a constant
CT > 0 such that

sup
0≤t≤T

E|Y ε(t)|p ≤ CT (1 + |x0|p).

The proof is completed.

Lemma 5.14. Under Assumptions 5.1 and 5.2, for any δ ∈ (0, 1) and ε > 0, it holds
that

E|Y ε(t)− Y ε(tδ)|2 ≤ Cδ(δ + ε2). (5.26)
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Proof. Applying the elementary inequality, the Hölder inequality, and the Itô isome-
try, we deduce that

E|Y ε(t)− Y ε(tδ)|2 ≤ 2E
∣∣∣∣∫ t

tδ

b(Y ε(sδ), θ)ds

∣∣∣∣2 + 2E
∣∣∣∣ε ∫ t

tδ

σ(Y ε(sδ))dW (s)

∣∣∣∣2
≤ 2δE

∫ t

tδ

|b(Y ε(sδ), θ)|2ds+ 2ε2E
∫ t

tδ

∥σ(Y ε(sδ))∥2HSds

≤ Cδ(δ + ε2),

where the third inequality utilizes the fact that b and σ are bounded from Assumptions
5.1 and 5.2 respectively.

Since b is singular, we need to construct a regular transform to remove b. For any
λ > 0, consider the following partial differential equation (PDE),

Luλ + b+∇bu
λ = λuλ, (5.27)

where

L =
1

2
ε2Tr

(
σσ∗∇2uλ

)
,

and ∇bu
λ := ⟨∇uλ, b⟩ is the directional derivative of uλ along b.

Motivated by the result, Lemma 2.1 in [BHY19], by the same line, we introduce the
following lemma, the regularity of the non-degenerate Kolmogorov equation.
Lemma 5.15. Under Assumptions 5.1 and 5.2, for a sufficiently large λ > 0, (5.27)
admits a unique solution uλ ∈ C([0, T ];C2

b (Rd;Rd) with

∥∇uλ∥∞ ≤ 1

2
, ∥∇2uλ∥∞ ≤ 1

2
. (5.28)

We can construct a diffeomorphism on Rd, i.e,

V λ(x) := x+ uλ(x), x ∈ Rd, (5.29)

and V λ(x) inherits the smoothness of uλ(x).

The following two lemmas are essential in consistency and asymptotic distribution
properties. One of the difficulties in the proof is dealing with E|Y ε(t)−Xε(t)|2 and
E|Xε(t) − X0(t)|2 owing to the α-continuous drift. So, motivated by [BHY19], we
will adopt Zvonkin’s transformation.
Lemma 5.16. Assume that Assumptions 5.1 and 5.2 hold. Then, for any δ ∈ (0, 1)
and ε > 0, there exists a constant CT > 0 such that

sup
0≤t≤T

E|Y ε(tδ)−X0(t)|2

≤ CT

[(
δα(δα + ε2α)α + δ(ε2 + ε4)(δ + ε2)

)
e1+ε

2

+ (ε2 + ε4) + δ(δ + ε2)
]
.

(5.30)
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Proof. For any t ∈ [0, T ], by the triangle inequality, it holds that

E|Y ε(tδ)−X0(t)|2

≤ 3(E|Y ε(tδ)− Y ε(t)|2 + E|Y ε(t)−Xε(t)|2 + E|Xε(t)−X0(t)|2).
(5.31)

Let us first estimate E|Y (t)ε−Xε(t)|2 using Zvonkin’s transformation. Applying the
Itô formula to V λ(Y ε(t)) and V λ(Xε(t)), one has

dV λ(Y ε(t)) = ∇V λ(Y ε(t))b(Y ε(tδ), θ)dt+ ε∇V λ(Y ε(t))σ(Y ε(tδ))dW (t)

+
1

2
ε2Tr

(
σ(Y ε(tδ))σ(Y

ε(tδ))
∗∇2uλ(Y ε(t))

)
dt,

(5.32)

dV λ(Xε(t)) = ∇V λ(Xε(t))b(Xε(t), θ)dt+ ε∇V λ(Xε(t))σ(Xε(t))dW (t)

+
1

2
ε2Tr

(
σσ∗∇2uλ

)
(Xε(t))dt,

(5.33)

respectively. Then we use (5.27) to deal with the drift, and we have

dV λ(Y ε(t)) = λuλ(Y ε(t))dt+∇V λ(Y ε(t))(b(Y ε(tδ), θ)− b(Y ε(t), θ))dt

+ ε∇V λ(Y ε(t))σ(Y ε(tδ))dW (t)

+
1

2
ε2Tr

(
[σ(Y ε(tδ))σ(Y

ε(tδ))
∗ − σ(Y ε(t))σ(Y ε(t))∗]∇2uλ(Y ε(t))

)
dt,

dV λ(Xε(t)) = λuλ(Xε(t))dt+ ε∇V λ(Xε(t))σ(Xε(t))dW (t), (5.34)

respectively. Hence, the above equations, together with the elementary inequality,
the Hölder inequality and the Itô isometry, yield that

E|V λ(Y ε(t))− V λ(Xε(t))|2

≤ CT

∫ t

0

E|uλ(Y ε(s))− uλ(Xε(s))|2ds

+ CT

∫ t

0

E|∇V λ(Y ε(s))(b(Y ε(sδ), θ)− b(Y ε(s), θ))|2ds

+ Cε2
∫ t

0

E∥∇V λ(Y ε(s))σ(Y ε(sδ))−∇V λ(Xε(s))σ(Xε(s))∥2HSds (5.35)

+ CTε4
∫ t

0

E
∣∣∣Tr([σ(Y ε(sδ))σ(Y ε(sδ))∗ − σ(Y ε(s))σ(Y ε(s))∗]∇2uλ(Y ε(s))

)∣∣∣2ds
=:

4∑
i=1

Gi(t).

Subsequently, we estimate them one by one.
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For the G1(t), we use the fact from the Taylor expansion, there exists ξε(s) between
Y ε(s) and Xε(s) such that

|uλ(Y ε(s))− uλ(Xε(s))| ≤ ∥∇uλ(ξε(s))∥∞|Y ε(s)−Xε(s)|. (5.36)

This, together with (5.28), we infer that

G1(t) ≤ CT

∫ t

0

E|Y ε(s)−Xε(s)|2ds. (5.37)

For the G2(t), (5.28) and Assumption 5.1 lead to

G2(t) ≤ CT

∫ t

0

E
(
∥∇V λ∥2∞|b(Y ε(sδ), θ)− b(Y ε(s), θ)|2

)
ds

≤ CT

∫ t

0

E|b(Y ε(sδ), θ)− b(Y ε(s), θ)|2ds

≤ CT

∫ t

0

E|Y ε(sδ)− Y ε(s)|2αds

≤ CT

∫ t

0

(
E|Y ε(sδ)− Y ε(s)|2

)α
ds,

(5.38)

where in the last step we have taken advantage of the Jensen inequality for the concave
function xα, α ∈ (0, 1].

For the G3(t), by Assumption 5.1, Assumption 5.2, (5.28) and the Taylor expansion,
one has

G3(t) ≤ Cε2
∫ t

0

E
∥∥∥(∇V λ(Y ε(s))−∇V λ(Xε(s))

)
σ(Y ε(sδ))

∥∥∥2
HS

ds

+ Cε2
∫ t

0

E
∥∥∥∇V λ(Xε(s))

(
σ(Y ε(sδ))− σ(Xε(s))

)∥∥∥2
HS

ds

≤ Cε2
∫ t

0

(E|Y ε(s)−Xε(s)|2 + E|Y ε(sδ)− Y ε(s)|2)ds.

(5.39)

For the G4(t), one uses a similar operation when we deal with G3(t), and obtains that

G4(t) ≤ CTε4
∫ t

0

E
(
∥∇2uλ∥2∞∥σ(Y ε(sδ))σ(Y ε(sδ))∗ − σ(Y ε(s))σ(Y ε(s))∗∥2HS

)
ds

≤ CTε4
∫ t

0

E∥σ(Y ε(sδ))σ(Y ε(sδ))∗ − σ(Y ε(s))σ(Y ε(s))∗∥2HSds

≤ CTε4
∫ t

0

(
E∥(σ(Y ε(sδ))− σ(Y ε(s)))σ(Y ε(sδ))

∗∥2HS (5.40)

+ E∥σ(Y ε(s))(σ(Y ε(sδ))− σ(Y ε(s)))∗∥2HS

)
ds
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≤ CTε4
∫ t

0

E|Y ε(sδ)− Y ε(s)|2ds.

Consequently, taking (5.37)-(5.40) into consideration, we deduce from (5.35) and
(5.26) that

E|V λ(Y ε(t))− V λ(Xε(t))|2

≤ C

∫ t

0

(
(T + ε2)E|Y ε(sδ)− Y ε(s)|2 + T (E|Y ε(sδ)− Y ε(s)|2)α

+ (ε2 + Tε4)E|Y ε(s)−Xε(s)|2
)
ds

≤ CT

∫ t

0

(
(1 + ε2)E|Y ε(sδ)− Y ε(s)|2 + (E|Y ε(sδ)− Y ε(s)|2)α (5.41)

+ (ε2 + ε4)E|Y ε(s)−Xε(s)|2
)
ds

≤ CT

∫ t

0

(
(1 + ε2)E|Y ε(s)−Xε(s)|2 + δα(δα + ε2α)α + δ(ε2 + ε4)(δ + ε2)

)
ds.

Note that we work within a fixed time horizon, [0, T ], so T is absorbed into C in the
above second inequality.

To proceed, we first need to find the relation between |Y ε(t)−Xε(t)| and |V λ(Y ε(t))−
V λ(Xε(t))| to handle the left side of (5.41). Taking advantage of the elementary
inequality (a+ b)2 ≤ 2(a2 + b2), for any a, b > 0, it follows from (5.28) that

|Y ε(t)−Xε(t)|2

= |Y ε(t) + uλ(Y ε(t))− (Xε(t) + uλ(Xε(t))) + uλ(Xε(t))− uλ(Y ε(t))|2

= |V λ(Y ε(t))− V λ(Xε(t)) + uλ(Xε(t))− uλ(Y ε(t))|2

≤ 2
(
|V λ(Y ε(t))− V λ(Xε(t))|2 + |uλ(Xε(t))− uλ(Y ε(t))|2

)
≤ 2|V λ(Y ε(t))− V λ(Xε(t))|2 + 1

2
|Y ε(t)−Xε(t)|2.

Hence, we have

|Y ε(t)−Xε(t)|2 ≤ 4|V λ(Y ε(t))− V λ(Xε(t))|2. (5.42)

And then, in terms of (5.42), it follows from (5.41) that

E|Y ε(t)−Xε(t)|2

≤ CT
(
δα(δα + ε2α)α + δ(ε2 + ε4)(δ + ε2)

)
+ CT (1 + ε2)

∫ t

0

E|Y ε(s)−Xε(s)|2ds.

Next, using the Gronwall inequality, we have

E|Y ε(t)−Xε(t)|2 ≤ CT
(
δα(δα + ε2α)α + δ(ε2 + ε4)(δ + ε2)

)
e1+ε

2

. (5.43)
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Now we are left to estimate E|Xε(t)−X0(t)|2. Applying the same technique as above
to deal with V λ(Xε(t)) in (5.34), one has

dV λ(X0(t)) = λuλ(X0(t))dt− 1

2
ε2Tr

(
σ(σ)∗∇2uλ

)
(X0(t))dt.

This, together with (5.34), yields that from the Hölder inequality and the Itô isometry

E|V λ(Xε(t))− V λ(X0(t))|2

≤ CT

∫ t

0

E|uλ(Xε(s))− uλ(X0(s))|2ds

+ Cε2
∫ t

0

E∥∇V λ(Xε(s))σ(Xε(s))∥HSds

+ CTε4
∫ t

0

E
∣∣∣Tr(σ(σ)∗∇2uλ

)
(X0(s))

∣∣∣2 ds
≤ CT

∫ t

0

E|Xε(s)−X0(s)|2ds+ CTε2 + CT 2ε4

≤ CT

(∫ t

0

E|Xε(s)−X0(s)|2ds+ ε2 + ε4
)
.

(5.44)

Moreover, using the same technology as obtaining (5.42), we have

|V λ(Xε(t))− V λ(X0(t))| ≤ 4|Xε(t)− V 0(t)|. (5.45)

Then, we deal with the left side of (5.44) by (5.45), and we have

E|Xε(t)−X0(t)|2 ≤ CT

(∫ t

0

E|Xε(s)−X0(s)|2ds+ ε2 + ε4
)
.

Applying the Gronwall inequality, one has

E[|Xε(t)−X0(t)|2] ≤ CT (ε
2 + ε4). (5.46)

Plugin (5.26), (5.43) and (5.46) into (5.31), we get

E|Y ε(tδ)−X0(t)|2

≤ CT

[(
δα(δα + ε2α)α + δ(ε2 + ε4)(δ + ε2)

)
e1+ε

2

+ (ε2 + ε4) + δ(δ + ε2)
]
.

We have derived the desired assertions.

Lemma 5.17 below plays a crucial role in revealing the asymptotic behavior of the
LSE of the unknown parameter.
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Lemma 5.17. Let Assumptions 5.1 and 5.2 hold. Then we have

δ

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))G(Y ε((k − 1)δ), θ, θ0)

→ H(θ) :=

∫ T

0

G∗(X0(t), θ, θ0)σ̂(X
0(t))G(X0(t), θ, θ0)dt,

(5.47)

in L1 uniformly with respect to θ as ε → 0 and δ → 0, in which (X0(t))t∈[0,T ] is the
solution to ordinary differential equation (5.3). Moreover,

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))Fk(θ0) → 0 (5.48)

in L1 uniformly with respect to θ as ε→ 0 and δ → 0.

Proof. We begin with the proof of (5.47). It is straightforward to see that

δ

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))G(Y ε((k − 1)δ), θ, θ0)

−
∫ T

0

G∗(X0(t), θ, θ0)σ̂(X
0(t))G(X0(t), θ, θ0)ds

=

∫ T

0

{
G∗(Y ε(tδ), θ, θθ)σ̂(Y

ε(tδ))G(Y
ε(tδ), θ, θ0)

−G∗(X0(t), θ, θ0)σ̂(X
0(t))G(X0(t), θ, θ0)

}
ds

=

∫ T

0

(
G(Y ε(tδ), θ, θ0)−G(X0(t), θ, θ0)

)∗
σ̂(Y ε(tδ))G(Y

ε(tδ), θ, θ0)dt

+

∫ T

0

G∗(X0(t), θ, θ0)
(
σ̂(Y ε(tδ))− σ̂(X0(t))

)
G(Y ε(tδ), θ, θ0)dt

+

∫ T

0

G∗(X0(t), θ, θ0)σ̂(X
0(t))

(
G(Y ε(tδ), θ, θ0)−G(X0(t), θ, θ0)

)
dt

=: J1(T, ε, δ) + J2(T, ε, δ) + J3(T, ε, δ).

Before estimating

E|Ji(T, ε, δ)| → 0, i = 1, 2, 3,

as ε→ 0, δ → 0, we prepare the estimations for G and σ̂. For any x, y ∈ Rd, α ∈ (0, 1],
it follows from (5.13) and Assumption 5.1 that

|G(x, θ, θ0)−G(y, θ, θ0)| ≤ |b(x, θ0)− b(y, θ0)|+ |b(x, θ)− b(y, θ)|
≤ C|x− y|α.

(5.49)
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For any x, y ∈ Rd, we get from (5.8) and Assumption 5.2 that

∥σ̂(x)− σ̂(y)∥HS = ∥(σσ∗)−1(x)− (σσ∗)−1(y)∥HS

= ∥(σ∗)−1σ−1(x)− (σ∗)−1σ−1(y)∥HS

≤ ∥∇σ−1∥HS∥σ−1(x)− σ−1(y)∥HS

≤ ∥∇σ−1∥2HS|x− y|
≤ C|x− y|.

(5.50)

Hence, by (5.50) we have

∥σ̂(x)∥HS ≤ ∥σ̂(x)− σ̂(0)∥HS + ∥σ̂(0)∥HS ≤ C(1 + |x|). (5.51)

Consequently, combining with (5.49), (5.51), and Assumption 5.1, we deduce that
when ε→ 0 and δ → 0

E|J1(T, ε, δ)|

≤ CE
∫ T

0

|(G(Y ε(tδ), θ, θ0)−G(X0(t), θ, θ0))
∗| · ∥σ̂(Y ε(tδ))∥HS · |G(Y ε(tδ), θ, θ0)|dt

≤ CE
∫ T

0

|Y ε(tδ)−X0(t)|α(1 + |Y ε(tδ)|)dt

≤ C

∫ T

0

(E[|Y ε(tδ)−X0(t)|2α])1/2(1 + E|Y ε(tδ)|2)1/2dt

≤ C

∫ T

0

(E[|Y ε(tδ)−X0(t)|2])α/2(1 + E|Y ε(tδ)|2)1/2dt→ 0,

where the last three inequalities use the Hölder inequality, the Jensen inequality,
(5.30) and (5.25) in order. Similarly, we have

E|J2(T, ε, δ)|

≤ CE
∫ T

0

|G∗(t,X0(t), θ, θ0)| · ∥σ̂(Y ε(tδ))− σ̂(X0(t))∥HS · |G(Y ε(tδ), θ, θ0)|dt

≤ CE
∫ T

0

|Y ε(tδ)−X0(t)|dt ≤ C

∫ T

0

(E[|Y ε(tδ)−X0(t)|2])1/2dt→ 0

and

E|J3(T, ε, δ)|

≤ CE
∫ T

0

|G∗(X0(t), θ, θ0)| · ∥σ̂(X0(t))∥HS · |G(Y ε(tδ), θ, θ0)−G(X0(t), θ, θ0)|dt

≤ CE
∫ T

0

|Y ε(tδ)−X0(t)|αdt ≤
∫ T

0

(E|Y ε(tδ)−X0(t)|2)α/2dt→ 0.
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Then, we derive that
E|Ji(T, ε, δ)| → 0, i = 1, 2, 3, (5.52)

whenever ε→ 0 and δ → 0. Hence, (5.47) follows immediately from (5.52).

In the sequel, we are going to show that (5.48) holds. Note that

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))Fk(θ0)

= ε

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))σ(Y ε((k − 1)δ))(W (kδ)−W ((k − 1)δ))

= ε

∫ T

0

G∗(Y ε(tδ), θ, θ0)σ̂(Y
ε(tδ))σ(Y

ε(tδ))dW (t),

where in the first step, we use the definition of Fk(θ0). Next, via the Hölder inequality,
Assumption 5.1 and Assumption 5.2, as well as the result in Lemma 5.13, one achieves
that

E

∣∣∣∣∣
n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))Fk(θ0)

∣∣∣∣∣
≤ ε
(∫ T

0

E|G∗(Y ε(tδ), θ, θ0)σ̂(Y
ε(tδ))σ(Y

ε(tδ))|2dt
)1/2

≤ Cε
(∫ T

0

(1 + E|Y ε(tδ)|4)dt
)1/2

≤ Cε,

(5.53)

where we have applied (5.25) in the last procedure. Therefore, (5.48) is now available
from (5.53).

With Lemmas 5.13 - 5.17 in hand, we are in the position to complete the proof of
Theorem 5.4.

Proof of Theorem 5.4. From (5.10), a straightforward calculation gives that

Φn,ε(θ)

= δ−1
n∑
k=1

(
F ∗
k (θ)σ̂(Y

ε((k − 1)δ))Fk(θ)− F ∗
k (θ0)σ̂(Y

ε((k − 1)δ))Fk(θ0)
)

= δ−1
n∑
k=1

{(
Fk(θ0) +G(Y ε((k − 1)δ), θ, θ0)δ

)∗
σ̂(Y ε((k − 1)δ))

×
(
Fk(θ0) +G(Y ε((k − 1)δ), θ, θ0)δ

)
− F ∗

k (θ0)σ̂(Y
ε((k − 1)δ))Fk(θ0)

}
(5.54)

= δ

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))G(Y ε((k − 1)δ), θ, θ0)
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+ 2

n∑
k=1

G∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y
ε((k − 1)δ))Fk(θ0).

In terms of Lemmas 5.17, we deduce from the Chebyshev inequality that

sup
θ∈Θ

| − Φn,ε(θ)− (−H(θ))| → 0 in probability.

On the other hand, for any κ > 0, notice that

sup
|θ−θ0|≥κ

(−H(θ)) < −H(θ0) = 0

due to H(·) > 0. Moreover, according to the notion of θ̂n,ε, one has −Φn,ε(θ̂n,ε) ≥
−Φn,ε(θ0) = 0. As far as our present model is concerned, all of the assumptions in The-
orem 1.5 with Mn(·) = −Φn,ε(·) and M(·) = −H(·) are fulfilled. As a consequence,

we conclude that θ̂n,ε → θ0 in probability as ε→ 0 and n→ ∞, as required.

We first prove the following lemmas, which will be used in the proof of Theorem 5.5.
Lemma 5.18. Under Assumptions 5.1, 5.2 and 5.3, Υ is defined in (5.15). Then we
have

ε−1(∇θΦn,ε)(θ0) → −2

∫ T

0

Υ(X0(t), θ0)dW (t) in probability (5.55)

whenever ε→ 0 and δ → 0.

Proof. By the chain rule, one infers from (5.54), (5.7), (5.13) and (5.4) that

ε−1(∇θΦn,ε)(θ0)

= 2ε−1
n∑
k=1

(∇θG)
∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y

ε((k − 1)δ))Fk(θ0)

= −2

n∑
k=1

(∇θb)
∗(Y ε((k − 1)δ), θ0)σ̂(Y

ε((k − 1)δ))σ(Y ε((k − 1)δ))∆Wk

= −2

∫ T

0

Υ(Y ε((k − 1)δ), θ0)dW (t)

= −2

∫ T

0

Υ(Y ε(tδ), θ0)dW (t),

where in the second line we used (5.4), (5.7) and the fact that

(∇θG)(Y
ε((k − 1)δ), θ, θ0) = −(∇θb)(Y

ε((k − 1)δ), θ0). (5.56)

To achieve (5.55), in terms of Theorem 2.6 of [Fri75] for any ρ > 0 and κ > 0

P

(∣∣∣∣∣
∫ T

0

(Υ(Y ε(tδ), θ0)−Υ(X0(t), θ0)

∣∣∣∣∣ ≥ ρ

)
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≤ P

(∫ T

0

∥Υ(Y ε(tδ), θ0)−Υ(X0(t), θ0)∥2dt ≥ ρ2κ

)
+ κ,

it is sufficient to claim that∫ T

0

∥Υ(Y ε(tδ), θ0)−Υ(X0(t), θ0)∥2dt→ 0 in probability (5.57)

as ε→ 0, δ → 0 and the arbitrariness of κ. Observe that

∥Υ(Y ε(tδ), θ0)−Υ(X0(t), θ0)∥2HS

≤ ∥[(∇θb)
∗(Y ε(tδ), θ0)− (∇θb)

∗(X0(t), θ0)]σ̂(Y
ε(tδ)σ(Y

ε(tδ)∥2HS

+ ∥(∇θb)
∗(X0(t), θ0)[σ̂(Y

ε(tδ)− σ̂(X0(t))]σ(Y ε(tδ))∥2HS

+ ∥(∇θb)
∗(X0(t), θ0)σ̂(X

0(t))[σ(Y ε(tδ))− σ(X0(t))]∥2HS

=: ς1(t, ε, δ) + ς2(t, ε, δ) + ς3(t, ε, δ).

By Assumption 5.3 when j = 1, (5.51) and Assumption 5.2, we have

ς1(t, ε, δ) ≤ C|Y ε(tδ)−X0(t)|2α(1 + |Y ε(tδ)|2). (5.58)

By (5.50) and Assumption 5.2, one gets

ς2(t, ε, δ) ≤ C

∫ T

0

|Y ε(tδ)−X0(t)|2(1 + |Y ε(tδ)|2), (5.59)

where we use the fact from Assumption 5.3

∥(∇θb)
∗(X0(t), θ)∥ ≤ C(1 + |X0(t)|). (5.60)

By (5.60), (5.51) and ∥∇σ∥HS <∞ in Assumption 5.2, it follows that

ς3(t, ε, δ) ≤ C

∫ T

0

|Y ε(tδ)−X0(t)|2(1 +X0(t)|4).

So, in what follows, it remains to show

P
(∫ T

0

∥Υ(Y ε(tδ), θ0)−Υ(X0(t), θ0)∥2dt ≥ ρ

)
≤ P

(∫ T

0

ς1(t, ε, δ)dt ≥ ρ/3

)
+ P

(∫ T

0

ς2(t, ε, δ)dt ≥ ρ/3

)

+ P

(∫ T

0

ς3(t, ε, δ)dt ≥ ρ/3

)
.

(5.61)
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First, let us show by the Chebyshev inequality, the properties of expectation and
tδ ≤ t ≤ T , we imply that

P

(∫ T

0

ς1(t, ε, δ)dt ≥ ρ/3

)

≤ C

ρ

∫ T

0

E
[
|Y ε(tδ)−X0(t)|2α(1 + |Y ε(tδ)|2)

]
dt

=
C

ρ

∫ T

0

E
[
E
[
|Y ε(tδ)−X0(t)|2α(1 + |Y ε(tδ)|2)

] ∣∣Ftδ]dt
=
C

ρ

∫ T

0

E
[
(1 + |Y ε(tδ)|2)

]
E
[
|Y ε(tδ)−X0(t)|2α

]
dt

≤ C

ρ

∫ T

0

(1 + E|Y ε(tδ)|2)
(
E
[
|Y ε(tδ)−X0(t)|2

])α
dt→ 0

(5.62)

as ε→ 0 and δ → 0. Note that in the last inequality, we use Lemmas 5.13 and 5.16.

Next, for ς2, we use the same method as (5.62), and from (5.58), Lemmas 5.13 and
5.16 we have

P

(∫ T

0

ς2(t, ε, δ)dt ≥ ρ/3

)

≤ C

ρ

∫ T

0

E
[
|Y ε(tδ)−X0(t)|2(1 + |Y ε(tδ)|2)

]
dt

≤ C

ρ

∫ T

0

(1 + E|Y ε(tδ)|2)E
[
|Y ε(tδ)−X0(t)|2

]
dt→ 0

(5.63)

as ε→ 0, δ → 0.

We continue to deal with ς3,

P

(∫ T

0

ς3(t, ε, δ)dt ≥ ρ/3

)

≤ C

ρ

∫ T

0

E
[
|Y ε(tδ)−X0(t)|2(1 + |X0(tδ)|4)

]
dt

≤ C

ρ

∫ T

0

E[|Y ε(tδ)−X0(t)|2]dt→ 0

(5.64)

as ε→ 0, δ → 0.

Substituting (5.62), (5.63) and (5.64) into the right of (5.61) respectively, the claim
(5.57) holds and we have the desired result (5.55).
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Lemma 5.19. Let Assumptions 5.1, 5.2 and 5.3 hold. Then

(∇(2)
θ Φn,ε)(θ) → K(θ) := K(θ) + 2I(θ) in probability (5.65)

as n → ∞ and ε → 0, where I(·) and K(·) are introduced in (5.14) and (5.16),
respectively.

Proof. By the chain rule, we deduce from (5.56) that

(∇(2)
θ Φn,ε)(θ)

= 2

n∑
k=1

(∇(2)
θ G)∗(Y ε((k − 1)δ), θ, θ0) ◦ (σ̂(Y ε((k − 1)δ))Fk(θ))

+ 2

n∑
k=1

(∇θG)
∗(Y ε((k − 1)δ), θ, θ0)σ̂(Y

ε((k − 1)δ))(∇θFk)(θ)

= −2

n∑
k=1

(∇(2)
θ b)∗(Y ε((k − 1)δ), θ) ◦ (σ̂(Y ε((k − 1)δ))Fk(θ0))

− 2δ

n∑
k=1

{
(∇(2)

θ b)∗(Y ε((k − 1)δ), θ) ◦ (σ̂(Y ε((k − 1)δ))G(Y ε((k − 1)δ), θ, θ0)

−
n∑
k=1

(∇θb)
∗(Y ε((k − 1)δ), θ)σ̂(Y ε((k − 1)δ))(∇θb)(Y

ε((k − 1)δ), θ)

}
=: Θ1(ε, δ) + Θ2(ε, δ).

Taking Assumption 5.3 and the Chebyshev inequality into consideration, mimicking
the argument of (5.48), we obtain that

Θ1(ε, δ) → 0 in probability as ε→ 0, δ → 0.

Observe that

Θ2(ε, δ) = −2

∫ T

0

(∇(2)
θ b)∗(Y ε(tδ), θ) ◦ (σ̂(Y ε(tδ))G(Y ε(tδ), θ, θ0) dt

+ 2

∫ T

0

(∇θb)
∗(Y ε(tδ), θ)σ̂(Y

ε(tδ)(∇θb))(Y
ε(tδ), θ)dt

= ϑ1(ε, δ) + ϑ2(ε, δ).

Carrying out an analogous argument to derive (5.47), together with Assumption 5.3
and the Chebyshev inequality, we infer that

ϑ1(ε, δ) → K(θ) in probability as ε→ 0, δ → 0, (5.66)

and that
ϑ2(ε, δ) → 2I(θ) in probability as ε→ 0, δ → 0. (5.67)

Thus, the desired assertion follows from (5.66) and (5.67) immediately.
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Now we start to finish the argument of Theorem 5.5 on the basis of the previous
lemmas.

Proof of Theorem 5.5. The proof can be carried out as in the proof of Theorem 2.2 of
[LSS13]. We prefer to clarify this in the thesis. According to the result of Theorem 5.4,

there exists a sequence ηn,ε → 0 as n→ ∞ and ε→ 0 such that θ̂n,ε ∈ Bηn,ε(θ0) ⊂ Θ,
P-a.s., that is to say,

P
(
θ̂n,ε ∈ Bηn,ε

(θ0)
)
→ 1, as n→ ∞, ε→ 0. (5.68)

Then, it is easy to see that

(∇θΦn,ε)(θ̂n,ε) = (∇θΦn,ε)(θ0) + Fn,ε(θ̂n,ε − θ0), θ̂n,ε ∈ Bηn,ε
(θ0) (5.69)

with

Fn,ε :=

∫ 1

0

(∇(2)
θ Φn,ε)(θ0 + v(θ̂n,ε − θ0))dv, θ̂n,ε ∈ Bηn,ε

(θ0),

owing to the Taylor expansion. In what follows we intend to deduce that

Fn,ε → K(θ0) P− a.s. (5.70)

as n→ ∞ and ε→ 0. Indeed, for θ̂n,ε ∈ Bηn,ε
(θ0),

∥Fn,ε −K(θ0)∥

≤ ∥Fn,ε − (∇(2)
θ Φn,ε)(θ0)∥+ ∥(∇(2)

θ Φn,ε)(θ0)−K(θ0)∥

≤
∫ 1

0

∥(∇(2)
θ Φn,ε)(θ0 + v(θ̂n,ε − θ0))− (∇(2)

θ Φn,ε)(θ0)∥dv

+ ∥(∇(2)
θ Φn,ε)(θ0)−K(θ0)∥

≤ sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φn,ε)(θ)−K(θ)∥+ sup

θ∈Bηn,ε (θ0)

∥K(θ)−K(θ0)∥

+ 2∥(∇(2)
θ Φn,ε)(θ0)−K(θ0)∥,

where K(·) is shown in (5.65). This, together with Lemma 5.19 and the continuity of

K(·), yields that (5.70) holds. Next, we show the asymptotic distribution of θ̂n,ε. Let

Fn,ε = {Fn,ε is invertible , θ̂n,ε ∈ Bηn,ε
(θ0)}.

By Lemma 5.19, one gets, for some positive constant c,

P
(

sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φn,ε)(θ)−K(θ0)∥ ≤ c

2

)
→ 1 (5.71)
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as n → ∞ and ε → 0. What’s more, by following the line of [LSS13, Theorem 2.2],
we can deduce that Fn,ε is invertible on the set

Γn,ε :=
{

sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φn,ε)(θ)−K(θ0)∥ ≤ c

2
, θ̂n,ε ∈ Bηn,ε

(θ0)
}
.

Clearly,

1 ≥ P(Γn,ε) ≥P
(

sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φn,ε)(θ)−K0(θ0)∥ ≤ c

2

)
+ P

(
θ̂n,ε ∈ Bηn,ε(θ0)

)
− 1. (5.72)

Thus, taking advantage of (5.71), (5.68) as well as (5.72), we deduce

P(Fn,ε) ≥ P(Γn,ε) → 1 as n→ ∞, ε→ 0. (5.73)

Let
Un,ε = Fn,ε1Fn,ε

+ Ip1(Fn,ε)
c ,

where Ip is a p× p identity matrix. It follows from (5.69) that

ε−1(θ̂n,ε − θ0)

=(ε−1(θ̂n,ε − θ0))1Fn,ε
+ (ε−1(θ̂n,ε − θ0))1(Fn,ε)

c

=(Un,ε)
−1Fn,ε(ε

−1(θ̂n,ε − θ0))1Fn,ε
+ (ε−1(θ̂n,ε − θ0))1(Fn,ε)

c

=ε−1(Un,ε)
−1{(∇θΦn,ε)(θ̂n,ε)− (∇θΦn,ε)(θ0)}1Fn,ε

+ (ε−1(θ̂n,ε − θ0))1(Fn,ε)
c

=− ε−1(Un,ε)
−1(∇θΦn,ε)(θ0)1Fn,ε

+ (ε−1(θ̂n,ε − θ0))1(Fn,ε)
c

→I−1(θ0)

∫ T

0

Υ(X0(t), θ0)dW(t) as n→ ∞, ε→ 0,

where in the fourth step we have used Fermat’s lemma and dropped the term (∇θΦn,ε)(θ̂n,ε),
and in the last step we have utilized Lemma 5.18, (5.65), (5.70), and (5.73). The de-
sired conclusion is obtained.

5.3.2 Proof of Theorem 5.11

Theorem 5.11 extends the LSE from SDEs to SFDEs. Based on the proof of consis-
tency and asymptotic normal properties in Subsection 5.3.1, we only need to prove
the following necessary lemmas for establishing Theorem 5.11.
Lemma 5.20. Let Assumptions 5.1, 5.2 and 5.4 be satisfied, and let p ≥ 2, ξ ∈
Lp([−τ, 0];Rd). Then there exists a CT > 0 such that

E||Y εt ||
p
C ≤ CT (1 + E∥ξ∥pC )e(1+ε

2) <∞, t ∈ [0, T ]. (5.74)
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Proof. By the Itô formula, we have

(1 + |Y ε(t)|2)
p
2

= (1 + |ξ(0)|2)
p
2 + p

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 (Y ε(s))∗{b(Y ε(sδ), θ) + Z(Ŷ εs )}ds

+
pε2

2

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 |σ(Y ε(sδ))|2ds

+
p(p− 2)ε2

2

∫ t

0

(1 + |Y ε(s)|2)
p−4
2 |Y ε(s)σ(Y ε(sδ))|2ds (5.75)

+ εp

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 (Y ε(s))∗σ(Y ε(sδ))dW (s)

≤ 2
p−2
2 (1 + |ξ(0)|p) + p

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 ×

(√M
2

|Y ε(s)|2

+
1

2
√
M

|b(Y ε(sδ), θ) + Z(Ŷ εs )|2 +
(p− 1)ε2

2
|σ(Y ε(sδ))|2

)
ds

+ εp

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 (Y ε(s))∗σ(Y ε(sδ))dW (s),

where in the last inequality we use the elementary inequality and the Young inequality.

By using the elementary inequality, Assumption 5.1, (5.22) and the Young inequality,
we have

|b(Y ε(sδ), θ)|2 ≤ |b(Y ε(sδ), θ)− b(0, θ)|2 + |b(0, θ)|2

≤ ∥Y εs ∥2αC + C ≤ α∥Y εs ∥2C + (1− α) + C ≤ C(1 + ∥Y εs ∥2C ).
(5.76)

Similarly, by using the elementary inequality, Assumption 5.2, (5.22), we get

∥σ(Y ε(sδ))∥2HS ≤ C(1 + ∥Y εs ∥2C ). (5.77)

Carrying out an analogous argument to derive (5.77), together with Assumption 5.4
and (5.23), we derive

|Z(Ŷ εs )|2 ≤ C(1 + ||Ŷ εs ||2C ) ≤ C(1 + ||Y εs ||2C ). (5.78)

By preparing (5.76), (5.77) and (5.78), there exists a constant M > 0 such that

p

∫ t

0

(1 + |Y ε(s)|2)
p−2
2 ×

(√M
2

|Y ε(s)|2 + 1

2
√
M

|b(Y ε(sδ), θ) + Z(Ŷ εs )|2

+
(p− 1)ε2

2
|σ(Y ε(sδ))|2

)
ds
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≤ p

∫ t

0

√
M

2
(1 + ||Y εs ||2C )

p
2 ds+ Cp

∫ t

0

1√
M

(1 + ||Y εs ||2C )
p
2 ds (5.79)

+ Cp

∫ t

0

(p− 1)ε2

2
(1 + ||Y εs ||2C )

p
2 ds

≤ C(1 + ε2)

∫ t

0

(1 + ||Y εs ||2C )
p
2 ds.

Thus, substituting (5.79) into (5.75), it holds that

E
(

sup
0≤s≤t

(1 + |Y ε(s)|2)
p
2

)
≤ 2

p−2
2 (1 + E||ξ||pC ) + C(1 + ε2)E

∫ t

0

(1 + ||Y εs ||2C )
p
2 ds

+ εpE
(

sup
0≤s≤t

∫ s

0

(1 + |Y ε(s)|2)
p−2
2 (Y ε(s))∗σ(Y ε(sδ))dW (s)

)
.

(5.80)

For the last term in (5.80) by using the BDG inequality and the Young inequality, we
derive that

εpE
(

sup
0≤s≤t

∫ s

0

(1 + |Y ε(s)|2)
p−2
2 (Y ε(s))∗σ(Y ε(sδ))dW (s))

)
≤ 4

√
2εpE

(∫ t

0

(1 + |Y ε(s)|2)p−2|Y ε(s)σ(Y ε(sδ))|2ds
) 1

2

≤ 4
√
2εpE

{
( sup
0≤s≤t

(1 + |Y ε(s)|2))
p
2

∫ t

0

(1 + |Y ε(s)|2)
p−4
2 |Y ε(s)|2|σ(Y ε(sδ))|2ds

} 1
2

≤ 4
√
2εpE

{
( sup
0≤s≤t

(1 + |Y ε(s)|2))
p
2

∫ t

0

C(1 + ||Y εs ||2C )
p
2 ds
} 1

2

(5.81)

≤ 1

2
E
(

sup
0≤s≤t

(1 + |Y ε(s)|2)
p
2

)
+ 16ε2p2CE

∫ t

0

(1 + ||Y εs ||2C )
p
2 ds.

Substituting (5.81) into (5.80), one has

E
(

sup
0≤s≤t

(1 + |Y ε(s)|2)
p
2

)
≤ 2

p
2 (1 + E||ξ||pC ) + C(1 + ε2)E

∫ t

0

(1 + ||Y εs ||2C )
p
2 ds.

(5.82)

Next, in order to obtain (5.74), we need to deal with the left side of (5.82). It holds
that

E( sup
−τ≤s≤t

(1 + |Y ε(s)|2)
p
2 )
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= E( sup
−τ≤s≤0

(1 + |Y ε(s)|2)
p
2 ) + E( sup

0≤s≤t
(1 + |Y ε(s)|2)

p
2 )

≤ E(1 + ||ξ||2C )
p
2 + E( sup

0≤s≤t
(1 + |Y ε(s)|2)

p
2 ) (5.83)

≤ 2
p−2
2 (1 + E||ξ||pC ) + E( sup

0≤s≤t
(1 + |Y ε(s)|2)

p
2 ).

Substituting (5.82) into the right side of (5.83), we derive

E( sup
−τ≤s≤t

(1 + |Y ε(s)|2)
p
2 )

≤ 2
p−2
2 (1 + E||ξ||pC ) + 2

p
2 (1 + E||ξ||pC ) + C(1 + ε2)E

∫ t

0

(1 + ||Y εs ||2C )
p
2 ds

≤ C(1 + E||ξ||pC ) + C(1 + ε2)

∫ t

0

E( sup
−τ≤r≤s

(1 + |Y ε(r)|2)
p
2 )ds.

An application of the Gronwall inequality implies that

E( sup
−τ≤s≤t

(1 + |Y ε(s)|2)
p
2 ) ≤ CT (1 + E∥ξ∥pC )e(1+ε

2),

and the desired assertion (5.74) follows. The proof is complete.

Lemma 5.21. Assume that Assumptions 5.1, 5.2 and 5.4 hold. Then, there exists a
constant CT > 0 such that

sup
0≤t≤T

E∥Ŷ εt −X0
t ∥2C ≤ CT

(
δ + (δα + δ(1 + ε2 + ε4))e(1+ε

2) + (ε2 + ε4)
)
.

Proof. The proof uses a similar idea of Lemma 5.16 with a little modification. By
using the elementary inequality, we have

E∥Ŷ εt −X0
t ∥2C ≤ 3E∥Ŷ εt − Y εt ∥2C + 3E∥Y εt −Xε

t ∥2C + 3E∥Xε
t −X0

t ∥2C . (5.84)

To proceed, we begin to estimate the first one, E∥Ŷ εt − Y εt ∥2C .

The first estimation: by Lemma 5.20 with p = 2, there exists a constant C > 0 such
that

E∥Y εt ∥2C ≤ C <∞. (5.85)

This, together with using the elementary inequality, the Hölder inequality and the
BDG inequality, yields that

E∥Y εt − Ŷ εt ∥2C

= E
(

sup
t−τ≤s≤t

|Y ε(s)− Y ε(s ∧ tδ)|2
)

= E
(

sup
t−τ≤s≤t

|Y ε(s)− Y ε(tδ)|21{s≥tδ}

)
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= E

(
sup

t−τ≤s≤t

∣∣∣∣∫ s

tδ

b(Y ε(u), θ)du+

∫ s

tδ

Z(Ŷ εu )du+

∫ s

tδ

σ(Y ε(u))dW (u)

∣∣∣∣2
)

(5.86)

≤ C

{
δ

(∫ t

tδ

E|b(Y ε(u), θ)|2du+

∫ t

tδ

E|Z(Ŷ εu )|2du
)
+

∫ t

tδ

E∥σ(Y ε(u))∥2HSdu

}
≤ C

{
δ

∫ t

tδ

(1 + E∥Y εu ∥2C )du+

∫ t

tδ

(1 + E∥Y εu ∥2C )du

}
≤ C(δ2 + δ) ≤ Cδ,

where in the second inequality we use (5.76), (5.77) and (5.78).

The second estimation: from (5.19) and (5.21), by the Itô formula and (5.27), we have

dV λ(Xε(t))

=
{
λuλ(Xε(t)) +∇V λ(Xε(t))Z(Xε

t )
}
dt+ ε∇V λ(Xε(t))σ(Xε(t))dW (t)

(5.87)

and

dV λ(Y ε(t))

= λuλ(Y ε(t))dt+∇uλ(Y ε(t))[b(Y ε(tδ), θ)− b(Y ε(t), θ)]dt

+∇V λ(Y ε(t))Z(Ŷ εt )dt+ ε∇V λ(Y ε(t))σ(Y ε(tδ))dW (t)

+
1

2
ε2Tr

(
[σ(Y ε(tδ))σ

∗(Y ε(tδ))− σ(Y ε(t))σ∗(Y ε(t))]∇2uλ(Y ε(t)
)
dt,

(5.88)

where V λ(·) is defined in (5.29). Taking the integral and expectation on both sides
of (5.87) and (5.88), using the Hölder inequality and the BDG inequality, we have

E|V λ(Y ε(t))− V λ(Xε(t))|2

≤ CT

∫ t

0

E|uλ(Y ε(s))− uλ(Xε(s))|2ds

+ CT

∫ t

0

E|∇V λ(Y ε(s)) (b(Y ε(sδ), θ)− b(Y ε(s), θ)) |2ds

+ Cε2
∫ t

0

E∥∇V λ(Y ε(s))σ(Y ε(sδ))−∇V λ(Xε(s))σ(Xε(s))∥2HSds (5.89)

+ CTε4
∫ t

0

E
∣∣∣Tr([σ(Y ε(sδ)σ∗(Y ε(sδ))− σ(Y ε(s))σ∗(Y ε(s))]∇2uλ(Y ε(s)

)∣∣∣2ds
+ CT

∫ t

0

E|∇V λ(Y ε(s))Z(Ŷ εs )−∇V λ(Xε(s))Z(Xε
s )|2ds

=:

5∑
i=1

Λi(t).
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Next, we shall estimate Λi(t), i = 1, 2, 3, 4, 5. First, for Λi(t), i = 1, 2, 3, 4, using the
same technology as the argument of Gi(t), i = 1, 2, 3, 4 in Lemma 5.16, it holds that

Λ1(t) ≤ CT

∫ t

0

E|Y ε(s)−Xε(s)|2ds ≤ CT

∫ t

0

E∥Y εs −Xε
s∥2Cds, (5.90)

Λ2(t) ≤ CT

∫ t

0

(E|Y ε(sδ)− Y ε(s)|2)αds ≤ CT

∫ t

0

(E∥Ŷ εs − Y εs ∥2C )αds, (5.91)

Λ3(t) ≤ Cε2
∫ t

0

(E|Y ε(s)−Xε(s)|2 + E|Y ε(sδ)− Y ε(s)|2)ds

≤ Cε2
∫ t

0

(
E∥Y εs −Xε

s∥2C + E∥Ŷ εs − Y εs ∥2C
)
ds

(5.92)

and

Λ4(t) ≤ CTε4
∫ t

0

E|Y ε(sδ)− Y ε(s)|2ds ≤ CTε4
∫ t

0

E∥Ŷ εs − Y εs ∥2Cds, (5.93)

respectively. We are left to estimate Λ5(t). To do it, by using the elementary inequal-
ity, the Taylor expansion, (5.28) and Assumption 5.4, we have

Λ5(t) ≤ CT

∫ t

0

E
∣∣∣(∇V λ(Y ε(s))−∇V λ(Xε(s))

)
Z(Ŷ εs )

∣∣∣2 ds
+ CT

∫ t

0

E
∣∣∣∇V λ(Xε(s))

(
Z(Ŷ εs )− Z(Xε

s )
)∣∣∣2 ds

≤ CT

∫ t

0

E|Y ε(s)−Xε(s)|2ds+ CT

∫ T

0

E∥Ŷ εs −Xε
s∥2Cds

≤ CT

∫ t

0

E∥Y εs −Xε
s∥2Cds+ CT

∫ T

0

E∥Ŷ εs −Xε
s∥2Cds.

(5.94)

In conclusion, combining (5.90)-(5.94) into (5.89), we have

E|V λ(Y ε(t))− V λ(Xε(t))|2

≤ C(T + ε2)

∫ t

0

E∥Y εs −Xε
s∥2Cds+ C

∫ t

0

(E|Ŷ εs − Y εs ∥2C )αds

+ C(ε2 + Tε4)

∫ t

0

E∥Ŷ εs − Y εs ∥2C + CT

∫ T

0

E∥Ŷ εs −Xε
s∥2Cds

≤ C(T + ε2)

∫ t

0

E∥Y εs −Xε
s∥2Cds+ C

∫ t

0

(E|Ŷ εs − Y εs ∥2C )αds

+ C(T + ε2 + Tε4)

∫ t

0

E∥Ŷ εs − Y εs ∥2Cds,
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where in the last line we use the fact that

E∥Ŷ εs −Xε
s∥2C ≤ 2E∥Ŷ εs − Y εs ∥2C + 2E∥Y εs −Xε

s∥2C .

Moreover, it follows from (5.42) and (5.86) that

E∥Y εt −Xε
t ∥2C

≤ C(T + ε2)

∫ t

0

E∥Y εs −Xε
s∥2Cds+ C

∫ t

0

(E|Ŷ εs − Y εs ∥2C )αds

+ C(T + ε2 + Tε4)

∫ t

0

E∥Ŷ εs − Y εs ∥2Cds

≤ C(T + ε2)

∫ t

0

E∥Y εs −Xε
s∥2Cds+ CTδα + CTδα(T + ε2 + Tε4)

≤ CT (1 + ε2)

∫ t

0

E∥Y εs −Xε
s∥2Cds+ CT (δ

α + δ(1 + ε2 + ε4)).

By using the Gronwall inequality, one has

E∥Y εt −Xε
t ∥2C ≤ CT (δ

α + δ(1 + ε2 + ε4))e(1+ε
2). (5.95)

The third estimation: we claim that

E∥Xε
t −X0

t ∥2C ≤ CT (ε
2 + ε4). (5.96)

The proof of the third estimation is similar to the idea of the second estimation, so
we omit it here.

Therefore, substituting (5.86), (5.95) and (5.96) into (5.84), we have

E∥Ŷ εt −X0
t ∥2C ≤ CT

(
δ + (δα + δ(1 + ε2 + ε4))e(1+ε

2) + (ε2 + ε4)
)
.

The proof was completed.

Proof of Theorem 5.11. Theorem 5.11 mainly states the results about the consistency
and asymptotic normality of the least squares estimator θ̂Zn,ε obtained from SFDEs
when n → ∞ and ε → 0. In this proof, we need to use technical Lemmas 5.20 and
5.21. For the specific idea of proof, please refer to Theorems 5.4 and 5.5.

5.4 Appendix

In this section, we will further explain how to understand the symbol “◦” defined in
(5.1) and appearing in the proof of Lemma 5.19; see, [RW21].
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For a differentiable function V (x) = (V1(x), . . . , Vd(x))
∗ : Rm → Rd, define its gradi-

ent operator (∇xV )(x) ∈ Rd ⊗ Rm with respect to x = (x1, . . . , xm)∗ ∈ Rm by

(∇xV )(x) =


∂
∂x1

V1(x)
∂
∂x2

V1(x) · · · ∂
∂xm

V1(x)
∂
∂x1

V2(x)
∂
∂x2

V2(x) · · · ∂
∂xm

V2(x)

· · · · · · · · · · · ·
∂
∂x1

Vd(x)
∂
∂x2

Vd(x) · · · ∂
∂xm

Vd(x)

 ,

which enjoys the property ∇xV
∗(x) = (∇xV )∗(x) .

For a matrix-valued function V (x) = (Vij(x))m×d : R → Rm ⊗ Rd be differentiable,
its derivative ∂

∂xV (x) ∈ Rm ⊗ Rd with respect to x ∈ R admits the form

∂

∂x
V (x) =


∂
∂xV11(x)

∂
∂xV12(x) · · · ∂

∂xV1d(x)
∂
∂xV21(x)

∂
∂xV22(x) · · · ∂

∂xV2d(x)
· · · · · · · · · · · ·

∂
∂xVm1(x)

∂
∂xVm2(x) · · · ∂

∂xVmd(x)

 . (5.97)

If V (x) = (Vij(x))m×d : Rm → Rm ⊗ Rd is differentiable, its gradient operator
(∇xV )(x) ∈ Rm ⊗ Rmd with respect to the variable x = (x1, . . . , xm)∗ ∈ Rm is
written as

(∇xV )(x) =
( ∂

∂x1
V (x),

∂

∂x2
V (x), · · · , ∂

∂xm
V (x)

)
,

where ∂
∂xi

V (x) is defined as in (5.97). Hence, there exists a matrixA = (A1, A2, . . . , Ap) ∈
Rp⊗Rpd with Ak ∈ Rp⊗Rd, k = 1, 2, . . . , p, and B ∈ Rd, we can define A◦B ∈ Rp⊗Rp
by

A ◦B = (A1B,A2B, . . . , ApB).



Chapter 6

Parameter estimations for
McKean-Vlasov SDEs

This chapter aims to further solve the problem of parameter estimation for delay
McKean-Vlasov stochastic differential equations (SDEs) with the coefficient exhibiting
super-linear growth in the state component. Specifically, we propose a least squares
estimator for an unknown parameter in the drift of a delay McKean-Vlasov SDEs
with a small noise dispersion parameter by making use of time-discretized interacting
particle systems and proving the weak convergence between the estimator and the true
value, under suitable conditions. To achieve our main purposes on weak convergence,
we give the approximation of the distribution of delay McKean-Vlasov SDEs at the
discrete points and take advantage of calculating skills on the space of probability
measures with finite order moments. Moreover, the asymptotic distribution of the
least squares estimator is derived via the properties of solutions for the corresponding
interacting particle systems.

This chapter is based on

[ZH22] Min Zhu and Yanyan Hu. Least squares estimation for delay McKean–Vlasov
stochastic differential equations and interacting particle systems. Commun.
Math. Sci., 20(1):265–296, 2022

6.1 Introduction

The evolution of numerous stochastic systems depends not only on the microcosmic
state of the particles, but also on the macrocosmic distribution of the particles. The
McKean-Vlasov SDE is a kind of mathematical model, which can characterize the
evolution of those stochastic systems. The pioneering work on McKean-Vlasov SDEs

139
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is initiated in [McK66], and McKean studied the propagation of chaos in physical
systems of N -interacting particles related to Boltzmann’s model for the statistical
mechanics of rarefied gases in [McK67]. More concretely, McKean-Vlasov SDEs are
a special class of SDEs, where the coefficients involved depend not only on the state
process but also on their distribution. In response to the great needs, as a hot but
difficult research topic, they have important application value in the fields of stochas-
tic control, insurance, and mathematical finance, to name a few; see, for instance,
[BLM17, CD18]. McKean-Vlasov SDEs have been extensively investigated by many
authors, and various results on well-posedness, Harnack inequalities, Bismut formula,
ergodicity, and other quantitative and qualitative properties have been proposed
(e.g.[RZ21, Wan18, RW19a, EGZ19]). In contrast to the general McKean-Vlasov
SDEs, there has not been much research on path-dependent McKean-Vlasov SDEs,
but these have begun to gain attention recently. For works on well-posedness and
Harnack-type inequalities, we refer to [HRW19, Hua21]. Huang and Yuan [HY21b]
showed the existence and uniqueness of strong solutions to distribution-dependent
neutral SFDEs and gave the comparison theorem of these equations. Most of the
previous works are concerned with path-dependent McKean-Vlasov SDEs which do
not contain unknown parameters. However, in many practical applications, these
models may contain unknown parameters. Hence, we want to estimate determin-
istic quantities of these unknown parameters for SDEs, especially, path-dependent
McKean-Vlasov SDEs.

Based on discrete and continuous time observations, there have been a number of
attempts in the literature to develop methods on the parametric estimation for SDEs;
see, e.g., [BBAKP18, BP16, LMS17]. Beyond that, estimation for stochastic delay
differential equations (SDDEs) has been studied from various points of view, we refer
to Kuechler and Soerensen [KS10], who proposed an estimator of drift parameters for
affine stochastic delay differential equations by discretization of the continuous-time
likelihood function; Reiss [Rei05] studied the problem of nonparametric estimation
for affine SDDEs by continuous observation. Above all, the small diffusion asymp-
totic of SDEs has been discussed systematically and applied successively to real world
problems; see, for instance, the monograph [Kut04] for more details. In general, the
parametric estimation relied on continuous-time observations, which is a mathemati-
cal idealization, and no measuring device can follow continuously the sample paths of
the diffusion processes involved (cf.[RW21]). So, from a practical standpoint in para-
metric inference, it is more meaningful to explore asymptotic estimation for diffusion
processes with small dispersions based on discrete observations. Whereas multiple
methods have been proposed, the simplest and most natural solution seems to be
the one based on the least squares estimation (LSE) in cases of large-scale scattered
data, see, e.g., [Ma10, LSS13, Kas88]. Concerning the LSE under various settings, we
refer to, e.g., [LSS13] for SDEs driven by small Lévy noises with Lipschitz condition
for the drift term, [Lon10] for SDEs driven by small α-stable noises with Lipschitz
coefficients, and [PY19] for the α-stable Ornstein-Uhlenbeck process with a constant
drift.
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Compared with the general SDEs, the corresponding issues for McKean-Vlasov SDEs
are rare. Recent attempts towards parameter inference of McKean-Vlasov SDEs (cf.
[RW21, RW19b, WWMX16]) have led to renewed interest in the asymptotic theory
of stochastic models. Inspired by their studies, we make a new attempt to study
the problem of parameter estimation for delayed McKean-Vlasov SDEs with a small
dispersion. Moreover, there is no published LSE for delayed McKean-Vlasov SDEs, to
the best of our knowledge. What’s more, for the problem of parameter estimation of
delay McKean-Vlasov SDEs, the technique used for the general SDEs cannot directly
be applied to obtain an asymptotically consistent estimation. This is because the
McKean-Vlasov SDEs cannot be solved explicitly. A significant consequence of this
fact is that we cannot obtain observations of the distribution of the path at regular
space time points directly in most of our arguments. So, whereas the mechanisms of
LSE are often relatively simple, caution needs to be exercised when approximating
the distribution at every step of the analysis. Indeed, in many situations, due to the
complicated dependence structure among discrete points, results from the execution
of LSEs may differ considerably from the standard SDEs, affecting both the accuracy
and precision of the LSE-based predictions.

References [RW19b, RW21] though, have succeeded in investigating parameter estima-
tion for path-dependent McKean-Vlasov SDEs by an Euler-Maruyama type scheme.
In particular, under the monotone condition, [RW21] studied LSE for path-dependent
McKean-Vlasov SDEs by using the continuous time tamed EM method. It is worth
noting that they simulated the segment process by the linear interpolations between
the points on the gridpoints and approximated its distribution directly using the law
of the associated segment process. Even so, the distribution cannot be simulated by
the computer. Based on the macrocosmic property of the distribution of stochastic
systems, we shall investigate parameter estimation for McKean-Vlasov SDEs by us-
ing an empirical distribution corresponding to stochastic interacting particle systems
to approximate the distributions at each step. This method, based on stochastic
interacting particle systems, has been successfully applied to the approximation of
McKean-Vlasov SDEs in [BH22]. In the current work, by constructing an appropri-
ate contrast function based on the associated interacting particle systems, we shall
provide a new idea to derive the LSE consistency and asymptotic distribution for a
class of McKean-Vlasov SDEs. Compared with the existing results in the work, the
innovations of the Chapter lie in two aspects:

(a) We introduce stochastic particle systems to simulate delay McKean-Vlasov
SDEs, and establish the contrast function;

(b) Our model is more applicable and practical as we are dealing with delay SDEs
with superlinear growth coefficients which are distribution dependent.
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6.2 Preliminaries and interacting particle systems

Throughout this Chapter, the following notation and terminology will be used. For
m, d ∈ N, the set of all positive integers, let (Rd, ⟨·, ·⟩, | · |) be the d-dimensional
Euclidean space with the inner product ⟨·, ·⟩ inducing the norm | · | and Rd ×Rm the
collection of all d×m matrixes with real entries, which is endowed with the Hilbert-
Schmidt norm ∥ · ∥. 0 ∈ Rd denotes the zero vector. For a matrix A, A∗ denotes the
transpose of A. Concerning a square matrix A, A−1 means the inverse of A provided
that det(A) ̸= 0. For p ∈ N, let Θ be an open bounded convex subset of Rp, and Θ
the closure of Θ. For r > 0 and x ∈ Rp, Br(x) represents the closed ball centered
at x with the radius r. ⌊a⌋ stands for the integer part of the real number a ≥ 0.
For a random variable ξ, Lξ denotes its law. For given τ > 0, C := C([−τ, 0];Rd)
means the family of all continuous functions ξ : [−τ, 0] → Rd with the uniform norm
∥ξ∥∞ := sup−τ≤θ≤0 |f(θ)|. For p > 0, Pp(Rd) stands for the space of all probability

measures on Rd with the finite p-th moment, i.e., µ(| · |p) :=
∫
Rd |x|pµ(dx) < ∞ for

µ ∈ Pp(Rd). Define the Wp-Wasserstein distance on Pp(Rd) by

Wp(µ, ν) = inf
π∈C(µ,ν)

(∫
Rd

∫
Rd

|x− y|pπ(dx,dy)
) 1

1∨p

, µ, ν ∈ Pp(Rd),

where C(µ, ν) signifies the set of all couplings of µ and ν. L0
p(Rd) denotes the space

of Rd-valued, F0-measurable random variables X with E|X|p < ∞. Let (Wt)t≥0 be
an m-dimensional Brownian motion defined on the probability space (Ω,F ,P) with
the filtration (Ft)t≥0 satisfying the usual condition (i.e., F0 contains all P-null sets
and Ft = Ft+ :=

⋂
s>t Fs).

For a fixed time horizon T > 0 and scale parameter ε ∈ (0, 1), we consider a delay
McKean-Vlasov SDE on Rd{

dXε
t = b(Xε

t , X
ε
t−τ , µ

ε
t , µ

ε
t−τ , θ)dt+ ε σ(Xε

t , X
ε
t−τ , µ

ε
t , µ

ε
t−τ )dWt, t ∈ (0, T ]

Xε
s = ξ(s), s ∈ [−τ, 0]

(6.1)

where µε· := LXε
·
denotes the law of Xε

· ; b : Rd × Rd × P2(Rd)× P2(Rd)×Θ → Rd
and σ : Rd×Rd×P2(Rd)×P2(Rd) → Rd×Rm are continuous. In (6.1), we assume
that the drift term b and the diffusion term σ are known apart from the parameter
θ ∈ Θ. We stipulate that θ0 ∈ Θ is the true value of θ ∈ Θ.

For i ∈ SN := {1, · · · , N}, N ≥ 1, let (Xi
0,W

i
t ) be i.i.d copies of (X0,Wt). We

introduce the stochastic interacting particle to approximate (6.1). First, for t ∈ (0, T ],
consider the following stochastic non-interacting particle systems associated with (6.1){

dXε,i
t = b(Xε,i

t , Xε,i
t−τ , µ

ε,i
t , µε,it−τ , θ)dt+ ε σ(Xε,i

t , Xε,i
t−τ , µ

ε,i
t , µε,it−τ )dW

i
t ,

Xε,i
s = ξ(s), s ∈ [−τ, 0], i ∈ SN ,

(6.2)

where µε,i· := LXε,i
·

denotes the law of Xε,i
· , i ∈ SN . By virtue of the weak uniqueness

due to Theorem 6.1, it is easy to see that µε· = µε,i· , i ∈ SN . Let µ̃ε,N· be the empirical



6.2. Preliminaries and interacting particle systems 143

distribution corresponding to Xε,1
· , Xε,2

· , · · · , Xε,N
· , namely,

µ̃ε,Nt (dx) =
1

N

N∑
j=1

δXε,j
t

(dx), t ≥ −τ.

Consider the following deterministic ordinary differential equation{
dX0,i

t = b(X0,i
t , X0,i

t−τ , µ
0
t , µ

0
t−τ , θ0)dt, t > 0,

X0
s = ξ(s), s ∈ [−τ, 0], i ∈ SN

(6.3)

where µ0
· = µ0,i

· := LX0,i
·

denotes the law of X0,i
· .

Second, for t ∈ (0, T ], stochastic interacting particle systems can be described as{
dXε,i,N

t = b(Xε,i,N
t , Xε,i,N

t−τ , µε,Nt , µε,Nt−τ , θ)dt+ ε σ(Xε,i,N
t , Xε,i,N

t−τ , µε,Nt , µε,Nt−τ )dW
i
t ,

Xε,i,N
s = ξ(s), s ∈ [−τ, 0], i ∈ SN ,

(6.4)

where µε,N· stands for the empirical distribution corresponding toXε,1,N
· , · · · , Xε,N,N

· ,
namely,

µε,Nt (dx) =
1

N

N∑
j=1

δXε,j,N
t

(dx), t ≥ −τ. (6.5)

It is worth pointing out that (6.1), (6.2), (6.3) and (6.4) share the same initial data.
Set

B(x, y, θ0, θ) := b(x, y, µ, ν, θ0)− b(x, y, µ, ν, θ)

and

Λ(x, y) := (σσ∗)(x, y, µ, ν),

for any x, y ∈ Rd and µ, ν ∈ P(Rd).

For a fixed time horizon T > 0, we give a uniform time discretization of [−τ, T ] with
mesh-size δ = T

n = τ
M ∈ (0, 1), where n, M > 1. In order to approximate the measure

µε· and improve the simulation precision of (6.1), by virtue of the interacting particle
system (6.4) we construct the following contrast function

Ψi,Nn,ε (θ) = ε−2δ−1
n∑
n=1

(P ε,i,Nk (θ))∗Λ−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ), (6.6)

where

P ε,i,Nk (θ) = Xε,i,N
kδ −Xε,i,N

(k−1)δ − b(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)δ, (6.7)

for k = 1, 2, · · · , n.
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According to the principle of the least squares method, to achieve the least squares
estimation of θ ∈ Θ, we need to seek an argument θ̂i,Nn,ε ∈ Θ such that

Ψi,Nn,ε (θ̂
i,N
n,ε ) = min

θ∈Θ
Ψi,Nn,ε (θ), (6.8)

namely,
θ̂i,Nn,ε = argmin

θ∈Θ
Ψi,Nn,ε (θ).

Let θ0 ∈ Θ be the true value of θ and

Φi,Nn,ε (θ) = ε2(Ψi,Nn,ε (θ)−Ψi,Nn,ε (θ0)).

Then, from (6.8), one has

θ̂i,Nn,ε = argmin
θ∈Θ

Φi,Nn,ε (θ). (6.9)

That is to say, θ̂i,Nn,ε satisfying (6.9) is called LSE of θ ∈ Θ.

To obtain the main results, we give the following assumptions. LetKi : Rd×Rd → R+

such that
Ki(x, y) ≤ Li(1 + |x|ri + |y|ri), i = 1, 2, 3, 4, 5, (6.10)

for some constants Li > 0, ri ≥ 1 and any x, y ∈ Rd. Furthermore, for any xi, yi ∈ Rd
and µi, νi ∈ P2(Rd), i = 1, 2, we assume that:
Assumption 6.1. For any θ ∈ Θ, there exists a C1 > 0 such that

⟨x1 − x2, b(x1, y1, µ, ν, θ)− b(x2, y2, µ, ν, θ)⟩ ≤C1

(
|x1 − x2|2 + |y1 − y2|2

)
;

|b(x, y, µ1, ν1, θ)− b(x, y, µ2, ν2, θ)| ≤C1

(
W2(µ1, µ2) +W2(ν1, ν2)

)
;

|b(x1, y1, µ, ν, θ)− b(x2, y2, µ, ν, θ)| ≤C1|x1 − x2|+K1(y1, y2)|y1 − y2|;

Assumption 6.2. There exists a C2 > 0 such that

∥σ(x1, y1, µ, ν)− σ(x2, y2, µ, ν)∥ ≤ C2|x1 − x2|+K2(y1, y2)|y1 − y2|

and
∥σ(x, y, µ1, ν1)− σ(x, y, µ2, ν2)∥ ≤ C2

(
W2(µ1, µ2) +W2(ν1, ν2)

)
;

Assumption 6.3. σσ∗ is invertible, and there exists a C3 > 0 such that

∥(σσ∗)−1(x1, y1, µ1, ν1)− (σσ∗)−1(x2, y2, µ2, ν2)∥

≤ C3

(
|x1 − x2|+W2(µ1, µ2) +W2(ν1, ν2)

)
+K3(y1, y2)|y1 − y2|;

Assumption 6.4. There exists a C4 > 0 such that

sup
θ∈Θ

∥(∇θb)(x1, y1, µ1, ν1, θ)− (∇θb)(x2, y2, µ2, ν2, θ)∥

≤ C4

(
|x1 − x2|+W2(µ1, µ2) +W2(ν1, ν2)

)
+K4(y1, y2)|y1 − y2|,

where (∇θb) means the gradient operator w.r.t. the fifth spatial variable;
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Assumption 6.5. There exists a C5 > 0 such that

sup
θ∈Θ

∥(∇(2)
θ b∗)(x1, y1, µ1, ν1, θ)− (∇(2)

θ b∗)(x2, y2, µ2, ν2, θ)∥

≤ C5

(
|x1 − x2|+W2(µ1, µ2) +W2(ν1, ν2)

)
+K5(y1, y2)|y1 − y2|,

where ∇(2)
θ b =: ∇θ(∇θb);

Assumption 6.6. There exists a constant q > p such that

sup
0≤t≤T

E|Xt|q <∞.

Assumptions 6.1 and 6.2 are used to guarantee the well-posedness of (6.1) and the cor-
responding stochastic interacting particle system (6.4) (see Theorem 6.1 and Lemma
6.6 below). Besides, Assumptions 6.3 and 6.6 also play an important role in the anal-
ysis of the consistency of the LSE for the unknown parameter θ. Assumption 6.6 is
set to ensure that strong convergence between stochastic interacting particle systems
and non-interacting particle systems in the p-th moment holds, which improves the
result in [BH22] on the convergence, in two aspects: First, the Assumption 6.6 is more
applicable than the conditions of [BH22, Theorem 1.4]; Second, in the current work
we only need Assumption 6.6 to hold for some q > p, wherein it is easier to seek a
constant q under Assumptions 6.1 and 6.2, and it is not confined to p > 4 as [BH22].
Assumptions 6.4 and 6.5 are used to establish the asymptotic distribution of the LSE.

6.3 Main results

Under the framework of non-Lipschitz condition, the tamed Euler scheme is adopted
to establish contrast function for LSE in [RW21]. Here we approximate (6.1) by a
particle system, and investigate the consistency and asymptotic distribution of the
LSE under a super-linear condition. First, we show the following result on the strong
well-posedness of (6.1), where the drift and diffusion terms have polynomial growth
for the delay variables.
Theorem 6.1. Assume that Assumptions 6.1 and 6.2 hold, for any initial value
Xε

0 = ξ ∈ L0
p1q1(C ), where p1 and q1 will be shown in the proof, then (6.1) possesses

a unique global strong solution (Xε
t )t≥−τ with

E
(

sup
−τ≤t≤T

|Xε
t |p
)
≤ C <∞, p ≥ 2. (6.11)

The strong well-posedness of McKean-Vlasov SDEs under various conditions has been
studied largely, e.g., [dRST19] with a drift of polynomial growth, [Wan18] for conti-
nuity, monotonicity, and growth of coefficients, [BH22] with Hölder continuous coef-
ficients. In the meantime, strong well-posedness of path-dependent McKean-Vlasov
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SDEs has got more and more attention, e.g., [HRW19] under the condition of conti-
nuity, monotonicity, and growth of coefficients, [RW19b] for one-side Lipschitz drifts
and Lipschitz diffusions. Theorem 6.1 above shows that the delay McKean-Vlasov
SDE is strong well-posedness when both the coefficients have super-linear growth.

The second result in the current work shows the consistency of the LSE with high
frequency and small dispersion. To display this result, we analyze strong convergence
between stochastic interacting particle systems and non-interacting particle systems
corresponding to delay McKean-Vlasov SDEs (6.1) whenever the particle number goes
to infinity and the stepsize closes to zero. For the sake of simplicity, we set

Π(θ) :=

∫ T

0

B∗(X0,i
t , X0,i

t−τ , θ0, θ)Λ
−1(X0,i

t , X0,i
t−τ )B(X0,i

t , X0,i
t−τ , θ0, θ)dt, (6.12)

Υ(x, y, θ0) := (∇θb)
∗(x, y, µ, ν, θ0)Λ

−1(x, y)σ(x, y, µ, ν), x, y ∈ Rd, µ, ν ∈ Pp(Rd)
(6.13)

and

I(θ) :=

∫ T

0

(∇θb)
∗(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ)Λ
−1(X0,i

t , X0,i
t−τ )

× (∇θb)(X
0,i
t , X0,i

t−τ , µ
0,i
t , µ0,i

t−τ , θ)dt. (6.14)

Theorem 6.2. Under Assumptions 6.1, 6.2, 6.3 and 6.6. If, for any θ ∈ Θ, Π(θ) ≥ 0,
then

θ̂i,Nn,ε → θ0 in probability as N,n→ ∞ and ε→ 0.

The last result focuses on the asymptotic distribution of the LSE θ̂i,Nn,ε .
Theorem 6.3. Under the assumptions of Theorem 6.2, suppose that Assumptions
6.4 and 6.5 hold. Then,

ε−1(θ̂i,Nn,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)dW
i
t P− a.s.

as n,N → ∞ and ε→ 0, where I(·) and Υ(·) are continuous.

6.4 An illustrative example

In this section, we intend to provide an example to demonstrate our results. We first
give the setup of numerical examples as follows.
Example 6.4. Let θ = (θ(1), θ(2))∗ ∈ Θ0 := (c1, c2)× (c3, c4) ⊂ R2 for some c1 < c2
and c3 < c4. For any ε ∈ (0, 1), consider the following delay McKean-Vlasov SDE

dXε(t) =
{
θ(1) + θ(2)

(
Xε
t − (Xε

t−τ )
3 +Xε

t−τ + EXε
t−τ

)}
dt

+ ε
{
1 + |Xε

t−τ |3 + |Xε
t−τ |+ E|Xε

t−τ |
}
dW (t), t ∈ (0, T ] (6.15)
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with the initial value Xε
0 = ξ, where θ ∈ Θ0 is an unknown parameter with the true

value θ∗0 = (θ
(1)
0 , θ

(2)
0 ) ∈ Θ0. Let θ̂i,Nn,ε ∈ Θ be the least squares estimation for the

unknown parameter θ. For any x, y ∈ R and µ, ν ∈ P2(R), set

b̃(x, y) := x− y3 + y + Ey, (6.16)

b(x, y, µ, ν, θ) := θ(1) + θ(2)b̃(x, y) (6.17)

and
σ(x, y, µ, ν, θ) := 1 + |y|3 + |y|+ E|y|. (6.18)

Then, (6.15) can be reformulated as (6.1). Furthermore, according to Theorem 6.2
and Theorem 6.3, we get

θ̂i,Nn,ε → θ0

and

ε−1(θ̂i,Nn,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0,i
s , X0,i

s−τ , θ0)dW
i
s

in probability as N,n→ ∞ and ε→ 0. Here

I(θ0) =

∫ T

0

1

(1 + 2|X0,i
s−τ |+ |X0,i

s−τ |3)2

(
1 b̃(X0,i

s , X0,i
s−τ )

b̃(X0,i
s , X0,i

s−τ ) b̃(X0,i
s , X0,i

s−τ )
2

)
ds

and

Υ(X0,i
s , X0,i

s−τ , θ0) =
1

1 + 2|X0,i
s−τ |+ |X0,i

s−τ |3
(
1, b̃(X0,i

s , X0,i
s−τ )

)∗
.

Next, concerning (6.15) we aim to examine that all the assumptions imposed on
Theorem 6.2 and Theorem 6.3 apply very well. Indeed, by a direct calculation, for
any µ, ν, µi, νi ∈ P2(R) and x, y, xi, yi ∈ R, i = 1, 2, it follows from (6.16), (6.17) and
the Hölder inequality that there exists a constant c > 0

|b(x, y, µ1, ν1, θ)− b(x, y, µ2, ν2, θ)|

= |θ(2)| · |E(y1 − y2)| ≤ |θ(2)|
(
E|y1 − y2|2

) 1
2

≤ cW2(ν1, ν2),

⟨x1 − x2, b(x1, y1, µ, ν, θ)− b(x2, y2, µ, ν, θ)⟩

≤ |θ(2)|
(
|x1 − x2|2 + |y1 − y2|2

)
≤ c
(
|x1 − x2|2 + |y1 − y2|2

)
and

|b(x1, y1, µ, ν, θ)− b(x2, y2, µ, ν, θ)|

≤ |θ(2)| ·
(
|x1 − x2|+ |y31 − y32 |+ |y1 − y2|

)
≤ c
(
|x1 − x2|+ |y1 − y2|(1 + |y1|2 + |y2|2)

)
.
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On the other hand, it holds that, by (6.18),

|σ(x1, y1, µ, ν)− σ(x2, y2, µ, ν)| ≤ |y1 − y2|(1 + |y1|2 + |y2|2)

and

|σ(x, y, µ1, ν1)− σ(x, y, µ2, ν2)| ≤ E|y1 − y2| ≤ cW2(ν1, ν2).

Hence, Assumptions 6.1 and 6.2 hold for (6.15). Next, note that

|σ−2(x1, y1, µ1, ν1)− σ−2(x2, y2, µ2, ν2)|

=
∣∣∣ 1

(1 + |y1|3 + |y1|+ E|y1|)2
− 1

(1 + |y2|3 + |y2|+ E|y2|)2
∣∣∣

≤ 4
∣∣∣|y1|3 + |y1|+ E|y1| − |y2|3 − |y2| − E|y2|

∣∣∣
≤ c
(
|y1 − y2|(1 + |y1|2 + |y2|2) +W2(ν1, ν2)

)
.

So, Assumption 6.3 is fulfilled. Furthermore, it follows from (6.17) that

(∇θb)(ζ, µ, θ) =
(
1, b̃(x, y)

)∗
and (∇θ(∇θb))(ζ, µ, θ) = 02×2, (6.19)

where 02×2 stands for the 2×2-zero matrix. Thus, (6.16) yields that both Assumptions
6.4 and 6.5 hold. As a consequence, concerning (6.15), Assumptions 6.1 - 6.5 hold,
respectively. In terms of (6.6), the contrast function enjoys the form

Ψi,Nn,ε (θ) =ε
−2δ−1

n∑
k=1

1

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

×
∣∣∣Xε,i,N

kδ −Xε,i,N
(k−1)δ −

(
θ(1) + θ(2)b̃(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )

)
δ
∣∣∣2.

Note that

∂

∂θ(1)
Ψi,Nn,ε (θ) =− 2 ε−2

n∑
k=1

1

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

×
{
Xε,i,N
kδ −Xε,i,N

(k−1)δ −
(
θ(1) + θ(2)b̃(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )

)
δ
}

and

∂

∂θ(2)
Ψi,Nn,ε (θ) =− 2 ε−2

n∑
k=1

1

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

×
{
Xε,i,N
kδ −Xε,i,N

(k−1)δ −
(
θ(1) + θ(2)b̃(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )

)
δ
}

× b̃(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ ).
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Setting
∂

∂θ(1)
Ψi,Nn,ε (θ) =

∂

∂θ(2)
Ψi,Nn,ε (θ) = 0,

we obtain that the LSE θ̂i,Nn,ε = (θ̂
i,N,(1)
n,ε , θ̂

i,N,(2)
n,ε )∗ of the unknown parameter θ =

(θ(1), θ(2))∗ ∈ Θ0 possesses the formula

θ̂i,N,(1)n,ε =
A2A5 −A3A4

δ(A1A5 −A2
4)

and θ̂i,N,(2)n,ε =
A1A3 −A2A4

δ(A1A5 −A2
4)
,

where

A1 :=

n∑
k=1

1

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

,

A2 :=

n∑
k=1

Xε,i,N
kδ −Xε,i,N

(k−1)δ

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

,

A3 :=

n∑
k=1

(Xε,i,N
kδ −Xε,i,N

(k−1)δ)b̃(X
ε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

,

A4 :=

n∑
k=1

b̃(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

(1 + |Xε,i,N
(k−1)δ−τ |3 + |Xε,i,N

(k−1)δ−τ |+ E|Xε,i,N
(k−1)δ−τ |)2

and

A5 :=

n∑
k=1

(
b̃(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )

)2
(1 + |Xε,i,N

(k−1)δ−τ |3 + |Xε,i,N
(k−1)δ−τ |+ E|Xε,i,N

(k−1)δ−τ |)2
.

In terms of Theorem 6.2, θ̂i,Nn,ε → θ in probability as ε → 0 and n → ∞. Next, from
(6.19), it follows that

I(θ0) =

∫ T

0

1

(1 + 2|X0,i
s−τ |+ |X0,i

s−τ |3)2

(
1 b̃(X0,i

s , X0,i
s−τ )

b̃(X0,i
s , X0,i

s−τ ) b̃(X0,i
s , X0,i

s−τ )
2

)
ds,

and, for ζ ∈ C ,∫ T

0

Υ(X0,i
s , X0,i

s−τ , θ0)dW (s) =

∫ T

0

1

1 + 2|X0,i
s−τ |+ |X0,i

s−τ |3|

(
1

b̃(X0,i
s , X0,i

s−τ )

)
dWs.

At last, according to Theorem 6.2, we conclude that

ε−1(θ̂i,Nn,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)dW
i
t P− a.s.

as ε→ 0 and n→ ∞ provided that I(·) is positive definite.
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6.5 Proof of main results

6.5.1 Proof of Theorem 6.1.

The more popular methods to argue regarding the existence of solutions of McKean-
Vlasov SDEs need to seek the convergence of the corresponding distribution-iterated
SDEs; see, for instance [HRW19, Wan18]. However, it is hard to verify the convergence
of the distribution-iterated SDEs for (6.1), due to the coefficients satisfying polynomial
growth with respect to the delay variables. So, we will adopt an interval iteration
method to overcome this difficulty in terms of the structure of (6.1).

Proof of Theorem 6.1. Under Assumptions 6.1 and 6.2, firstly, we shall show the well-
posedness of the delay McKean-Vlasov SDE (6.1). For each t ∈ [0, τ ], (6.1) can be
reformulated as{

dXε
t = b(Xε

t , ξt−τ , µ
ε
t , µ

0
t−τ , θ)dt+ εσ(Xε

t , ξt−τ , µ
ε
t , µ

0
t−τ )dWt,

Xε
s = ξs, s ∈ [−τ, 0],

(6.20)

where µ0
· := Lξ· . Then (6.20) is a non-delay SDE. In terms of Assumptions 6.1 and

6.2, it holds that the coefficients of (6.20) are Lipschitz continuous, then this SDE
has a unique strong solution on the interval [0, τ ].
On the interval t ∈ [τ, 2τ ], SDE (6.1) can be written as

dXε
t = b(Xε

t , X
ε,(1)
t , µεt , µ

1
t , θ)dt+ εσ(Xε

t , X
ε,(1)
t , µεt , µ

1
t )dWt (6.21)

with the initial value Xε
τ , where X

ε,(1)
t = Xε

t−τ and µ1
· := L

X
ε,(1)
·

. Obviously, the

delay McKean-Vlasov SDE (6.1) becomes a general McKean-Vlasov SDE with Lip-
schitiz condition. Then this equation (6.21) has a unique strong solution on the
interval [τ, 2τ ]. Duplicating this procedure over the intervals [nτ, (n + 1)τ ], where
2 < n ≤ ⌊T/τ⌋.

In addition, for any x, y ∈ Rd and µ, ν ∈ Pp(Rd), by Assumptions 6.1 and 6.2, it is
easy to see that there is a constant C > 0 such that

|b(x, y, µ, ν, θ)| ≤ C(1 + |x|+ |y|+ |y|r1+1 +W2(µ, δ0) +W2(ν, δ0)) (6.22)

and

∥σ(x, y, µ, ν)∥ ≤ C(1 + |x|+ |y|+ |y|r2+1 +W2(µ, δ0) +W2(ν, δ0)), (6.23)

where δ0 is the Dirac measure at point 0 ∈ Rn.

Secondly, we shall show that the p-th moment of the solution is uniformly bounded
in a finite time interval. In fact, set (Xε

t )t≥−τ to be a solution to (6.1) with initial
data Xε

0 = ξ ∈ L0
p1q1(C ). Let τm = inf{t > 0 : |Xε

t | ≥ m}, for m ≥ 1. Then, by
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the Burkhold-Davis-Gundy inequality and Hölder inequality, together with (6.22) and
(6.23), one gets

E
(

sup
0≤s≤t∧τm

|Xε
s |p
)

≤ CE∥ξ∥p∞ + CE
(∫ t∧τm

0

|b(Xε
s , X

ε
s−τ , µ

ε
s, µ

ε
s−τ , θ)|pds

)
+ CE

(∫ t∧τm

0

∥σ(Xε
s , X

ε
s−τ , µ

ε
s, µ

ε
s−τ )∥pds

)
≤ C

{
1 + E

∫ t∧τm

0

(1 + |Xε
s |p)ds+ E

∫ t∧τm

0

(
|Xε

s−τ |(r1+1)p

+ |Xε
s−τ |(r2+1)p

)
ds+ E

∫ t∧τm

0

(W2(µ
ε
s, δ0)

p +W2(µ
ε
s−τ , δ0)

p)ds
}
.

Let m→ ∞, then we get

E
(

sup
0≤s≤t

|Xε
s |p
)

≤ C
{
1 +

∫ t

0

E|Xε
s |pds+

∫ t

0

(E|Xε
s−τ |γ1p + E|Xε

s−τ |γ2p)ds

+

∫ t

0

(EW2(µ
ε
s, δ0)

p + EW2(µ
ε
s−τ , δ0)

p)ds
}

≤ C
{
1 +

∫ t

0

E|Xε
s |pds+

∫ t

0

(E|Xε
s−τ |γ1p + E|Xε

s−τ |γ2p)ds
}
,

where γ1 := r1 + 1 and γ2 := r2 + 1. Then the Gronwall inequality yields

E
(

sup
0≤s≤t

|Xε
s |p
)
≤ C

{
1 +

∫ t

0

(E|Xε
s−τ |γ1p + E|Xε

s−τ |γ2p)ds
}
. (6.24)

Set q1 := γ1 ∨ γ2 and

pi = (⌊T/τ⌋+ 2− i)pq
⌊T/τ⌋+1−i
1 , i = 1, 2, · · · , ⌊T/τ⌋+ 1.

Then there exists a finite sequence {p1, p2, · · · , p⌊T/τ⌋+1} such that

pi ≥ 2, pi+1q1 < pi and p⌊T/τ⌋+1 = p, i = 1, 2, · · · , ⌊T/τ⌋.

Further, for Xε
0 = ξ ∈ L0

p1q1(C ), one has

E
(

sup
0≤s≤τ

|Xε
s |p1

)
≤ C(1 + E∥ξ∥p1γ1∞ + E∥ξ∥p1γ2∞ ) ≤ C, (6.25)

which leads to

E
(

sup
−τ≤s≤τ

|Xε
s |p1

)
≤ E

(
sup

−τ≤s≤0
|Xε

s |p1
)
+ E

(
sup

0≤s≤τ
|Xε

s |p1
)
≤ C.
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It follows from (6.24), (6.25) and the Hölder inequality that

E
(

sup
−τ≤s≤2τ

|Xε
s |p2

)
≤ C

{
1 +

∫ 2τ

0

(E|Xε
s−τ |p2γ1 + E|Xε

s−τ |p2γ2)ds
}

≤ C
{
1 +

∫ τ

0

(
(E|Xε

s |p1)p2γ1/p1 + (E|Xε
s |p1)p2γ2/p1

)
ds
}

≤ C <∞.

Carrying out the previous procedures gives (6.11).

Remark 6.5. Obviously, E
(
sup−τ≤t≤T |X0

t |p
)
≤ C < ∞(p ≥ 2) if the coefficients

may be polynomial of any degree r ≥ 1 with respect to the delay variables.

6.5.2 Proof of Theorem 6.2.

Next, to derive the consistency of LSE, we display some auxiliary results in the form
of lemmas.
Lemma 6.6. Assump Assumptions 6.1 and 6.2 hold. Then stochastic interacting
particle system (6.4) has a strong solution with

sup
i∈SN

E
(

sup
−τ≤t≤T

|Xε,i,N
t |p

)
≤ C <∞, p ≥ 2.

Proof. For x := (x1, x2, · · · , xN ) ∈ Rd ⊗ RN , y := (y1, y2, · · · , yN ) ∈ Rd ⊗ RN ,
xi, yi ∈ Rd, i = 1, 2, · · · , N , define

µNx =
1

N

N∑
i=1

δxi
, µNy =

1

N

N∑
i=1

δyi ,

b̃(x, y) = (b(x1, y1, µ
N
x , µ

N
y , θ), · · · , b(xN , yN , µNx , µNy , θ))∗,

σ̃(x, y) = diag
(
σ(x1, y1, µ

N
x , µ

N
y ), · · · , σ(xN , yN , µNx , µNy )

)
and

W̃t =
(
W 1
t , · · · ,WN

t

)∗
.

Then, (6.4) can be redescribed as

dXt = b̃(Xt, Xt−τ )dt+ εσ̃(Xt, Xt−τ )dW̃t, t ≥ 0. (6.26)

Note that for any x, y ∈ Rd ⊗ RN

W2(µ
N
x , µ

N
y ) ≤

( 1

N

N∑
j=1

|xj − yj |2
) 1

2

.



6.5. Proof of main results 153

This, together with Assumptions 6.1 and 6.2, for any x, x′, y, y′ ∈ Rd ⊗ RN , leads to

|b̃(x, y)− b̃(x′, y′)| ≤ C|x− x′|+K1(y1, y2)|y − y′|

and
|σ̃(x, y)− σ̃(x′, y′)| ≤ C|x− x′|+K2(y1, y2)|y − y′|.

Then by [BY13, Lemma 2.2], it can be readily seen that (6.26) admits a unique global
strong solution with

E
(

sup
−τ≤t≤T

|Xt|p
)
≤ C, p ≥ 2.

Consequently, we conclude that (6.4) has a unique strong solution with

sup
i∈SN

E
(

sup
−τ≤t≤T

|Xε,i,N
t |p

)
≤ C <∞, p ≥ 2.

The proof is completed.

Remark 6.7. In [BH22, Lemma 3.1], Bao and Huang have investigated the ques-
tion of the well-posedness of the stochastic N -interacting particle systems associated
with McKean-Vlasov SDEs. We extend the idea used in [BH22] to the case of delay
McKean-Vlasov SDEs.
Lemma 6.8. Let Assumptions 6.1, 6.2 and 6.6 hold. Then, for initial value Xε

0 =
ξ ∈ L0

p1q1(C ), p ≥ 2,

sup
i∈SN

E( sup
0≤t≤T

|Xε,i,N
t −Xε,i

t |p) ≤ C(CN + C
1
2

N ), (6.27)

where CN is a decreasing function with respect to N and is defined as (6.35).

Proof. For fixed λ > 1 and arbitrary ϵ ∈ (0, 1), there exists a continuous nonnegative
function ψλϵ, x ≥ 0, with support [ϵ/λ, ϵ] such that∫ ϵ

ϵ/λ

ψλϵ(x)dx = 1 and 0 ≤ ψλϵ(x) ≤
2

x lnλ
, x > 0.

Let

ϕλϵ(x) =

∫ x

0

∫ y

0

ψλϵ(z)dzdy, x > 0.

Then ϕλϵ is C
2 and satisfies

x− ϵ ≤ ϕλϵ(x) ≤ x, x > 0 (6.28)

and

0 ≤ ϕ′λϵ(x) ≤ 1, ϕ′′λϵ(x) ≤
2

x lnλ
1[ϵ/λ,ϵ](x), x > 0. (6.29)

Define
Vλϵ(x) = ϕλϵ(|x|), x ∈ Rd. (6.30)
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Then, by the definition of ϕλϵ, it holds that Vλϵ ∈ C2(Rd;R+). For x ∈ Rd, a direct
calculation leads to

∂Vλϵ(x)

∂xi
= ϕ′λϵ(|x|)

xi
|x|

and

∂2Vλϵ(x)

∂xi∂xj
= ϕ′λϵ(|x|)(δij |x|2 − xixj)|x|−3 + ϕ′′λϵ(|x|)xixj |x|−2, i, j = 1, 2, · · · , d,

where δij = 1 if i = j or otherwise 0. Set

(Vλϵ)x(x) :=
(∂Vλϵ(x)

∂x1
, · · · , ∂Vλϵ(x)

∂xd

)
and (Vλϵ)xx(x) :=

(∂2Vλϵ(x)
∂xi∂xj

)
d×d

, x ∈ Rd.

According to (6.29) and (6.30), it holds

0 ≤ |(Vλϵ)x(x)| ≤ 1 and ∥(Vλϵ)xx(x)∥ ≤ 2d
(
1 +

1

lnλ

) 1

|x|
1[ϵ/λ,ϵ](|x|), x ∈ Rd. (6.31)

Set Zi,N· := Xε,i,N
· − Xε,i

· and Z
i,N

· := (Xε,i,N
· , Xε,i

· ) ∈ R2d. For any t ∈ [0, T ], by
the Itô formula, one gets

Vλϵ(Z
i,N
t )

=

∫ t

0

⟨(Vλϵ)x(Zi,Ns ), b(Xε,i,N
s , Xε,i,N

s−τ , µε,Ns , µε,Ns−τ , θ)− b(Xε,i
s , Xε,i

s−τ , µ
ε
s, µ

ε
s−τ , θ)⟩ds

+
ε2

2

∫ t

0

trace{(σ(Xε,i,N
s , Xε,i,N

s−τ , µε,Ns , µε,Ns−τ )− σ(Xε,i
s , Xε,i

s−τ , µ
ε
s, µ

ε
s−τ ))

∗

× (Vλϵ)xx(Z
i,N
s )(σ(Xε,i,N

s , Xε,i,N
s−τ , µε,Ns , µε,Ns−τ )− σ(Xε,i

s , Xε,i
s−τ , µ

ε
s, µ

ε
s−τ ))}ds

+ ε

∫ t

0

⟨(Vλϵ)x(Zi,Ns ), σ(Xε,i,N
s , Xε,i,N

s−τ , µε,Ns , µε,Ns−τ )− σ(Xε,i
s , Xε,i

s−τ , µ
ε
s, µ

ε
s−τ )dW

i
s⟩

=:

3∑
i=1

Qi(t).

By means of Assumption 6.1, (6.31) and the Hölder inequality, we derive that, for
any t ∈ [0, T ]

E
(

sup
0≤s≤t

|Q1(s)|p
)

≤
∫ t

0

E|b(Xε,i,N
s , Xε,i,N

s−τ , µε,Ns , µε,Ns−τ , θ)− b(Xε,i
s , Xε,i

s−τ , µ
ε
s, µ

ε
s−τ , θ)|pds

≤ C

∫ t

0

{
E|Zi,Ns |p +

(
EK2p

1 (Z
i,N

s−τ )
) 1

2
(
E|Zi,Ns−τ |2p

) 1
2

(6.32)
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+ EW2(µ
ε,N
s , µεs)

p + EW2(µ
ε,N
s−τ , µ

ε
s−τ )

p
}
ds.

By means of Assumption 6.2, (6.31) and the Hölder inequality, it holds that

E
(

sup
0≤s≤t

|Q2(s)|p
)

≤ Cε2pE
∫ t

0

1

|Zi,Ns |p
{
|Zi,Ns |2p +K2p

2 (Z
i,N

s−τ )|Z
i,N
s−τ |2p +W2(µ

ε,N
s , µεs)

2p

+W2(µ
ε,N
s−τ , µ

ε
s−τ )

2p
}
1[ϵ/λ,ϵ](|Zi,Ns |)ds

≤ Cε2p
∫ t

0

{
E|Zi,Ns |p + 1

ϵp

(
EK4p

2 (Z
i,N

s−τ )
) 1

2
(
E|Zi,Ns−τ |4p

) 1
2

+
1

ϵp
EW2(µ

ε,N
s−τ , µ

ε
s−τ )

2p + E|Zi,Ns |−pW2(µ
ε,N
s , µεs)

2p1[ϵ/λ,ϵ](|Zi,Ns |)
}
ds

≤ Cε2p
∫ T

0

{
E|Zi,Ns |p + 1

ϵp

(
EK4p

2 (Z
i,N

s−τ )
) 1

2
(
E|Zi,Ns−τ |4p

) 1
2

+
1

ϵp

(
EW2(µ

ε,N
s , µεs)

2p + EW2(µ
ε,N
s−τ , µ

ε
s−τ )

2p
)}

ds.

(6.33)

By virtue of Assumption 6.2, the Burkhold-Davis-Gundy inequality, the Hölder in-
equality and the Young inequality, we derive that

E
(

sup
0≤s≤t

|Q3(s)|p
)

≤ Cεp
∫ t

0

{
E|Zi,Ns |p +

(
EK2p

2 (Z
i,N

s−τ )
) 1

2
(
E|Zi,Ns−τ |2p

) 1
2

+ EW2(µ
ε,N
s , µεs)

p + EW2(µ
ε,N
s−τ , µ

ε
s−τ )

p
}
ds.

(6.34)

In addition, it follows from (6.10), (6.11) and Lemma 6.6 that

EK2p
1 (Z

i,N

s−τ ) + EK4p
2 (Z

i,N

s−τ ) ≤ C.

This, together with (6.32), (6.33) and (6.34), it holds from (6.28) that, for any t ∈
[0, T ] and p ≥ 2

E
(

sup
0≤s≤t

|Zi,Ns |p
)

≤ 2p−1
{
ϵp + E

(
sup

0≤s≤t
V pλϵ(Z

i,N
s )

)}
≤ C

{
ϵp +

∫ t

0

{
E|Zi,Ns |p +

(
E|Zi,Ns−τ |2p

) 1
2

+
1

ϵp

(
E|Zi,Ns−τ |4p

) 1
2

+ EW2(µ
ε,N
s , µεs)

p + EW2(µ
ε,N
s−τ , µ

ε
s−τ )

p
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+
1

ϵp

(
EW2(µ

ε,N
s , µεs)

2p + EW2(µ
ε,N
s−τ , µ

ε
s−τ )

2p
)}

ds

≤ C
{
ϵp +

∫ t

0

{
E|Zi,Ns |p +

(
E|Zi,Ns−τ |2p

) 1
2

+
1

ϵp

(
E|Zi,Ns−τ |4p

) 1
2

+ EWp(µ̃
ε,N
s , µεs)

p + EWp(µ̃
ε,N
s−τ , µ

ε
s−τ )

p

+
1

ϵp

(
EW2(µ

ε,N
s−τ , µ̃

ε,N
s−τ )

2p + EW2p(µ̃
ε,N
s−τ , µ

ε
s−τ )

2p

+ EW2p(µ̃
ε,N
s , µεs)

2p
)}

ds,

we used the Hölder inequality and the fact that

EW2(µ
ε,N
· , µε· )

p ≤ EW2(µ
ε,N
· , µ̃ε,N· )p + EW2(µ̃

ε,N
· , µε· )

p ≤ E|Zi,N· |p + EW2(µ̃
ε,N
· , µε· )

p

since (Zi,N· )1≤j≤N are identically distributed. Moreover, according to [FG15, Theo-
rem 1] and Assumption 6.6, it holds that

EWp(µ̃
ε,N
· , µε· )

p ≤ C̃


N−1/2 +N

p
q−1, if p > d

2 , q ̸= 2p,

N−1/2 log(1 +N) +N
p
q−1, if p = d

2 , q ̸= 2p,

N−p/d +N
p
q−1, if p ∈ (0, d2 ), q ̸=

d
d−p .

=: CN .

(6.35)

Thus, it follows from the Gronwall inequality that

E
(

sup
0≤s≤t

|Zi,Ns |p
)
≤C
{
ϵp +

∫ t

0

{(
E|Zi,Ns−τ |2p

) 1
2

+
1

ϵp

(
E|Zi,Ns−τ |4p

) 1
2

+ CN +
1

ϵp
CN

}
ds
}
.

Set, for any p ≥ 2,

pi = (⌊T/τ⌋+ 2− i)p4⌊T/τ⌋+1−i, i = 1, 2, · · · , ⌊T/τ⌋+ 1.

Then it is easy to see that

pi ≥ 2, 4pi+1 < pi and p⌊T/τ⌋+1 = p, i = 1, 2, · · · , ⌊T/τ⌋. (6.36)

For s ∈ [0, τ ], Zi,Ns−τ = 0, which, and taking ϵ = C
1

2p1

N implies that

E
(

sup
0≤s≤τ

|Zi,Ns |p1
)
≤ C(CN + C

1
2

N ).

This fact, together with (6.36) and the Hölder inequality, implies

E
(

sup
0≤s≤2τ

|Zi,Ns |p2
)

≤ C
{
ϵp2 +

∫ 2τ

0

{(
E|Zi,Ns−τ |p1

) p2
p1

+
1

ϵp2

(
E|Zi,Ns−τ |p1

) 2p2
p1

+ CN +
1

ϵp2
CN

}
ds
}
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≤ C(CN + C
1
2

N ),

by setting ϵ = C
1

2p2

N . Repeating the previous procedures gives the desired assertion
(6.27).

Remark 6.9. In terms of Lemma 6.8, it is desirable to measure the convergence
between stochastic interacting particle systems and the corresponding non-interacting
particle systems in the sense of the p-moment. This result plays an important role in
the process of establishing the consistency of the LSE.
Lemma 6.10. Let Assumptions 6.1, 6.2 and 6.6 hold. Then, for initial value Xε

0 =
ξ ∈ L0

p1q1(C ), p ≥ 2, there is C > 0 such that

E
(

sup
0≤t≤T

|Xε,i
tδ

−X0,i
t |p

)
≤ Cδ(δp−1 + εp) + Cεp, i ∈ SN , (6.37)

where tδ := ⌊t/δ⌋δ.

Proof. For any t ∈ [0, T ],

|Xε,i
tδ

−X0,i
t |p ≤ 2p−1|Xε,i

tδ
−Xε,i

t |p + 2p−1|Xε,i
t −X0,i

t |p. (6.38)

Now, for any t ∈ [0, T ], there exists an integer k0 ∈ [0, n− 1] such that t ∈ [k0δ, (k0 +
1)δ]. Obviously, k0 = [t/δ]. Next, the Hölder inequality and Burkhold-Davis-Gundy
inequality, together with Assumptions 6.1 and 6.2, yield that

E
(

sup
0≤t≤T

|Xε,i
tδ

−Xε,i
t |p

)
= E

(
sup

0≤t≤T
|Xε,i

k0δ
−Xε,i

t |p
)

≤ 2p−1δp−1E
∫ T

k0δ

|b(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ , θ)|pds+ 2p−1εpCp,T

× E
∫ T

k0δ

∥σ(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ )∥pds (6.39)

≤ C(2δ)p−1

∫ T

k0δ

{
1 + E|Xε,i

s |p + E|Xε,i
s−τ |p + E|Xε,i

s−τ |p(r1+1) + EW2(µ
ε,i
s , δ0)

p

+ EW2(µ
ε,i
s−τ , δ0)

p
}
ds+ Cεp

∫ T

k0δ

{
1 + E|Xε,i

s |p + E|Xε,i
s−τ |p

+ E|Xε,i
s−τ |p(r2+1) + EW2(µ

ε,i
s , δ0)

p + EW2(µ
ε,i
s−τ , δ0)

p
}
ds

≤ C(δp−1 + εp)

∫ T

k0δ

{
1 + E|Xε,i

s |p + E|Xε,i
s−τ |pq1

}
ds

≤ Cδ(δp−1 + εp).
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Moreover, set Zit := Xε,i
t − X0,i

t and Z
i

· := (Xε,i
· , X0,i

· ) ∈ R2d. Applying the Itô
formula implies that

Vλϵ(Z
i
t)

=

∫ t

0

⟨(Vλϵ)x(Zis), b(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ , θ)− b(X0,i

s , X0,i
s−τ , µ

0
s, µ

0
s−τ , θ)⟩ds

+
ε2

2

∫ t

0

trace{(σ(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ ))

∗(Vλϵ)xx(Z
i
s)σ(X

ε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ )}ds

+ ε

∫ t

0

⟨(Vλϵ)x(Zis), σ(Xε,i
s , Xε,i

s−τ , µ
ε
s, µ

ε
s−τ )dW

i
s⟩

=:

3∑
i=1

Qi(t).

By means of Assumption 6.1, (6.31) and the Hölder inequality, we derive that, for
any t ∈ [0, T ]

E
(

sup
0≤s≤t

|Q1(s)|p
)

≤
∫ t

0

E|b(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ , θ)− b(X0,i

s , X0,i
s−τ , µ

0
s, µ

0
s−τ , θ)|pds

≤ C

∫ t

0

{
E|Zis|p +

(
EK2p

1 (Z
i

s−τ )
) 1

2
(
E|Zis−τ |2p

) 1
2

+ EW2(µ
ε,i
s , µ0

s)
p (6.40)

+ EW2(µ
ε,i
s−τ , µ

0
s−τ )

p
}
ds

≤ C

∫ t

0

{
E|Zis|p + E|Zis−τ |p +

(
E|Zis−τ |2p

) 1
2
}
ds.

By means of Assumption 6.2, the elementary inequality, the Hölder inequality and
(6.31), it holds that

E
(

sup
0≤s≤t

|Q2(s)|p
)

≤ ε2p

2
E
∫ t

0

{∥(Vλϵ)xx(Zis)∥∥σ(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ )∥2}pds

≤ Cε2pE
∫ t

0

1

|Zis|p
{
1 + |Zis|2p + |Zis−τ |2p + |Zis−τ |2p(r2+1) +W2(µ

ε,i
s , µ0

s)
2p

+W2(µ
ε,i
s−τ , µ

0
s−τ )

2p
}
1[ϵ/λ,ϵ](|Zis|)ds (6.41)

≤ Cε2p
∫ t

0

{
ϵp + E|Zis|p +

1

ϵp

(
1 + E|Zis−τ |2p + E|Zis−τ |2p(r2+1)

)}
ds.
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By virtue of Assumption 6.2, the Burkhold-Davis-Gundy inequality, the Hölder in-
equality and the elementary inequality, we derive that

E
(

sup
0≤s≤t

|Q3(s)|p
)

≤ CεpE
∫ t

0

∥σ(Xε,i
s , Xε,i

s−τ , µ
ε,i
s , µε,is−τ )∥pds

≤ CεpE
∫ t

0

{
1 + |Xε,i

s |p + |Xε,i
s−τ |p + |Xε,i

s−τ |p(r2+1) (6.42)

+W2(µ
ε,i
s , µ0

s)
p +W2(µ

ε,i
s−τ , µ

0
s−τ )

p
}
ds

≤ Cεp
∫ t

0

{
1 + E|Zis|p + E|Zis−τ |p + E|Zis−τ |p(r2+1)

}
ds.

Furthermore, in view of (6.40), (6.41) and (6.42), we derive that, for any t ∈ [0, T ]
and p ≥ 2,

E
(

sup
0≤s≤t

|Zis|p
)

≤ 2p−1
{
ϵp + E

(
sup

0≤s≤t
V pλϵ(Z

i
s)
)}

≤ C
{
ϵp +

∫ t

0

{
E|Zis|p + E|Zis−τ |p +

(
E|Zis−τ |2p

) 1
2

+ ϵpε2p

+
ε2p

ϵp

(
1 + E|Zis−τ |2p + E|Zis−τ |2p(r2+1)

)
+ εp + εpE|Zis−τ |p(r2+1)

}
ds.

Then, the Gronwall inequality implies that

E
(

sup
0≤s≤t

|Zis|p
)

≤ C
{
ϵp +

∫ t

0

{
ϵpε2p + εp + E|Zis−τ |p +

(
E|Zis−τ |2p

) 1
2

+
ε2p

ϵp

(
1 + E|Zis−τ |2p + E|Zis−τ |2p(r2+1)

)
+ εpE|Zis−τ |p(r2+1)

}
ds.

(6.43)

Set, for any p ≥ 2,

pi = (⌊T/τ⌋+ 2− i)p(2r2 + 2)⌊T/τ⌋+1−i, i = 1, 2, · · · , ⌊T/τ⌋+ 1.

Then it is easy to see that

pi ≥ 2, 2(r2 + 1)pi+1 < pi and p⌊T/τ⌋+1 = p, i = 1, 2, · · · , ⌊T/τ⌋. (6.44)

For s ∈ [0, τ ], Zis−τ = 0, which, and taking ϵ = ε implies that

E
(

sup
0≤s≤τ

|Zis|p1
)
≤ Cεp1 .
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This fact together with (6.43), (6.44) and the Hölder inequality implies, by setting
ϵ = ε,

E
(

sup
0≤s≤2τ

|Zis|p2
)

≤ C
{
ϵp2 +

∫ 2τ

0

{
ϵp2ε2p2 + εp2 + E|Zis−τ |p2 +

(
E|Zis−τ |2p2

) 1
2

+
ε2p2

ϵp2

(
1 + E|Zis−τ |2p2 + E|Zis−τ |2p2(r2+1)

)
+ εp2E|Zis−τ |p2(r2+1)

}
ds

≤ C
{
ϵp2 +

∫ 2τ

0

{
ϵp2ε2p2 + εp2 +

(
E|Zis−τ |p1

) p2
p1

+
(
E|Zis−τ |p1

) p2
p1

+
ε2p2

ϵp2

(
1 +

(
E|Zis−τ |p1

) 2p2
p1

+
(
E|Zis−τ |p1

) 2p2(r2+1)
p1

)
+ εp2

(
E|Zis−τ |p1

) p2(r2+1)
p1

}
ds

≤ Cεp2 .

Following the previous procedures implies that

E
(

sup
0≤t≤T

|Zit |p
)
≤ Cεp. (6.45)

Plugging (6.39) and (6.45) into (6.38) yields (6.37).

Lemma 6.11. Let Assumptions 6.1, 6.2 and 6.3 hold. Then, for any initial value
Xε

0 = ξ ∈ L0
p1q1(C ),

Φi,N,(1)n,ε :=

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ0) → 0,

in L1 as ε→ 0 and n,N → ∞.

Proof. According to (6.5), we get

W2(µ
ε,N
s , δ0)

2 ≤ 1

N

N∑
i=1

|Xε,i,N
s |2, s ≥ −τ. (6.46)

In view of (6.4) and (6.7), one has

Φi,N,(1)n,ε =ε

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

× σ(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ )(W

i
kδ −W i

(k−1)δ)

=ε

∫ T

0

B∗(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)Λ

−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )
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× σ(Xε,i,N
sδ

, Xε,i,N
sδ−τ , µ

ε,N
sδ

, µε,Nsδ−τ )dW
i
s ,

where sδ := ⌊s/δ⌋δ. This, together with the Hölder inequality and [CD18, Theorem
7.1], further implies that

E|Φi,N,(1)n,ε | =εE
∣∣∣ ∫ T

0

B∗(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)Λ

−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )

× σ(Xε,i,N
sδ

, Xε,i,N
sδ−τ , µ

ε,N
sδ

, µε,Nsδ−τ )dW
i
s

∣∣∣
≤Cε

(
E
∫ T

0

|B∗(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)|

2∥Λ−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )∥

2

× ∥σ(Xε,i,N
sδ

, Xε,i,N
sδ−τ , µ

ε,N
sδ

, µε,Nsδ−τ )∥
2ds
) 1

2

.

(6.47)

One the other hand, for any x, y ∈ Rd and µ, ν ∈ P(Rd), i = 1, 2, by Assumption 6.3,
it is easy to see that there is a constant L > 0 such that

∥(σσ∗)−1(x, y, µ, ν)∥ ≤ L
{
1 + |x|+ |y|+ |y|r3+1 +W2(µ, δ0) +W2(ν, δ0)

}
. (6.48)

Now, it follows from (6.22) that

|B∗(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)|

2 ≤C
{
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2 + |Xε,i,N

sδ−τ |
2(r1+1)

+W2(µ
ε,N
sδ

, δ0)
2 +W2(µ

ε,N
sδ−τ , δ0)

2
}
. (6.49)

Due to (6.23), we obtain

∥σ(Xε,i,N
sδ

, Xε,i,N
sδ−τ , µ

ε,N
sδ

, µε,Nsδ−τ )∥
2 ≤ C

{
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2 + |Xε,i,N

sδ−τ |
2(r2+1)

+W2(µ
ε,N
sδ

, δ0)
2 +W2(µ

ε,N
sδ−τ , δ0)

2
}
. (6.50)

From (6.48), one has

∥Λ−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )∥

2 ≤C
{
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2 + |Xε,i,N

sδ−τ |
2(r3+1)

+W2(µ
ε,N
sδ

, δ0)
2 +W2(µ

ε,N
sδ−τ , δ0)

2
}
.

(6.51)

Substituting these inequalities into (6.47), by the Hölder inequality and using (6.46)
lead to

E|Φi,N,(1)n,ε |

≤ Cε
{
E
∫ T

0

{
1 + |Xε,i,N

sδ
|8 + |Xε,i,N

sδ−τ |
8 + |Xε,i,N

sδ−τ |
8q1 +W2(µ

ε,N
sδ

, δ0)
8

+W2(µ
ε,N
sδ−τ , δ0)

8 + |Xε,i,N
sδ

|4 + |Xε,i,N
sδ−τ |

4 + |Xε,i,N
sδ−τ |

4(r3+1)
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+W2(µ
ε,N
sδ

, δ0)
4 +W2(µ

ε,N
sδ−τ , δ0)

4
}
ds
} 1

2

≤ Cε
{
E
∫ T

0

{
1 + |Xε,i,N

sδ
|8 + |Xε,i,N

sδ−τ |
8 + |Xε,i,N

sδ−τ |
8q1 +

( 1

N

N∑
j=1

E|Xε,j,N
sδ

|8
)

+
( 1

N

N∑
j=1

E|Xε,j,N
sδ−τ |

8
)
+ |Xε,i,N

sδ
|4 + |Xε,i,N

sδ−τ |
4 + |Xε,i,N

sδ−τ |
4(r3+1)

+
( 1

N

N∑
j=1

E|Xε,j,N
sδ

|4
)
+
( 1

N

N∑
j=1

E|Xε,j,N
sδ−τ |

4
)}

ds
} 1

2

≤ Cε,

where the last step is due to Lemma 6.6. Hence, the desired result holds by taking ε
sufficiently small and n,N sufficiently large.

Lemma 6.12. Let Assumptions 6.1, 6.2, 6.3 and 6.6 hold. Then, for any initial
value Xε

0 = ξ ∈ L0
p1q1(C ),

δ

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

×B(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ) → Π(θ)

in L1as ε→ 0, N → ∞ and δ → 0, where Π(θ) is defined in (6.12).

Proof. Obviously,

Φi,N,(2)n,ε (θ)

:=δ

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

×B(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)

=

∫ T

0

B∗(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)Λ

−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )B(Xε,i,N

sδ
, Xε,i,N

sδ−τ , θ0, θ)ds.

Thus, by calculating directly, one has

Φi,N,(2)n,ε (θ)−Π(θ)

=

∫ T

0

{
B(Xε,i,N

sδ
, Xε,i,N

sδ−τ , θ0, θ)−B(X0,i
s , X0,i

s−τ , θ0, θ)
}∗

Λ−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )

×B(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)ds+

∫ T

0

B∗(X0,i
s , X0,i

s−τ , θ0, θ)
{
Λ−1(Xε,i,N

sδ
, Xε,i,N

sδ−τ )
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− Λ−1(X0,i
s , X0,i

s−τ )
}
B(Xε,i,N

sδ
, Xε,i,N

sδ−τ , θ0, θ)ds+

∫ T

0

B∗(X0,i
s , X0,i

s−τ , θ0, θ)

× Λ−1(X0,i
s , X0,i

s−τ )
{
B(Xε,i,N

sδ
, Xε,i,N

sδ−τ , θ0, θ)−B(X0,i
s , X0,i

s−τ , θ0, θ)
}
ds

=:

3∑
i=1

Ji.

In addition, for any xi, yi ∈ Rd and µxi
, µyi ∈ P2(Rd), i = 1, 2, it follows from

Assumption 6.1 that

|B(x1, y1, θ0, θ)−B(x2, y2, θ0, θ)|
≤ C{|x1 − x2|+ (1 + |y1|r1 + |y2|r1)|y1 − y2|
+W2(µx1

, µx2
) +W2(µy1 , µy2)}.

(6.52)

This leads to

|B(Xε,i,N
sδ

, Xε,i,N
sδ−τ , θ0, θ)−B(X0,i

s , X0,i
s−τ , θ0, θ)|

≤ C{|Xε,i,N
sδ

−X0,i
s |+ (1 + |Xε,i,N

sδ−τ |
r1 + |X0,i

s−τ |r1)|X
ε,i,N
sδ−τ −X0,i

s−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )}.

(6.53)

Set q2 = (r1 + 1) ∨ (r3 + 1). By (6.49) and (6.51), one has

∥Λ−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )∥ · |B(Xε,i,N

sδ
, Xε,i,N

sδ−τ , θ0, θ)|

≤ C
{
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2 + |Xε,i,N

sδ−τ |
2q2

+
1

N

N∑
j=1

|Xε,j,N
sδ

|2 + 1

N

N∑
j=1

|Xε,j,N
sδ−τ |

2
}
,

(6.54)

where we have used (6.46). Then, the Hölder inequality implies that

E|J1|

≤ CE
∣∣∣ ∫ T

0

{
|Xε,i,N

sδ
−X0,i

s |+ (1 + |Xε,i,N
sδ−τ |

r1 + |X0,i
s−τ |r1)|X

ε,i,N
sδ−τ −X0,i

s−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}{
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2 + |Xε,i,N

sδ−τ |
2q2

+
1

N

N∑
j=1

|Xε,j,N
sδ

|2 + 1

N

N∑
j=1

|Xε,j,N
sδ−τ |

2
}
ds
∣∣∣

≤ CE
∣∣∣ ∫ T

0

{
|Xε,i,N

sδ
−X0,i

s |
(
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2q2 +

1

N

N∑
j=1

|Xε,j,N
sδ

|2

+
1

N

N∑
j=1

|Xε,j,N
sδ−τ |

2
)
+ |Xε,i,N

sδ−τ −X0,i
s−τ |

(
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2q2 (6.55)
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+
1

N

N∑
j=1

|Xε,j,N
sδ

|2 + 1

N

N∑
j=1

|Xε,j,N
sδ−τ |

2
)2

+
(
W2(µ

ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

)

×
(
1 + |Xε,i,N

sδ
|2 + |Xε,i,N

sδ−τ |
2q2 +

1

N

N∑
j=1

|Xε,j,N
sδ

|2 + 1

N

N∑
j=1

|Xε,j,N
sδ−τ |

2
)}

ds
∣∣∣

≤ C

∫ T

0

{√
E|Xε,i,N

sδ −X0,i
s |2 +

(
EW2(µ

ε,N
sδ

, µ0,i
s )2 + EW2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

2
) 1

2
}
ds

≤ C

∫ T

0

{
(CN + C

1
2

N ) + Cδ(δ + ε2)
} 1

2

ds,

where, in the first step we used (6.53) and (6.54), and in the last step we utilized
lemmas 6.8 and 6.10. To obtain the estimate of J2, we firstly seek some inequalities
of the integrands. By (6.22), we find out

|B∗(X0,i
s , X0,i

s−τ , θ0, θ)|

≤ L
{
1 + |X0,i

s |+ |X0,i
s−τ |+ |X0,i

s−τ |(r1+1) +W2(µ
0,i
s , δ0) +W2(µ

0,i
s−τ , δ0)

}
.

(6.56)

By means of Assumption 6.3, one gets

∥Λ−1(Xε,i,N
sδ

, Xε,i,N
sδ−τ )− Λ−1(X0,i

s , X0,i
s−τ )∥

≤ C3

{
|Xε,i,N

sδ
−X0,i

s |+ (1 + |Xε,i,N
sδ−τ |

r3 + |X0,i
s−τ |r3)|X

ε,i,N
sδ−τ −X0,i

sδ−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}
,

EW2(µ
ε,N
sδ

, µ0,i
s )2 + EW2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

2

≤ E|Xε,i,N
sδ

−Xε,i
sδ

|2 + EW2(µ̃
ε,N
sδ

, µεsδ)
2 + E|Xε,i,N

sδ−τ −Xε,i
sδ−τ |

2

+ EW2(µ̃
ε,N
sδ−τ , µ

ε
sδ−τ )

2 + E|Xε,i
sδ

−X0,i
s |2 + E|Xε,i

sδ−τ −X0,i
s−τ |2

and

E|Xε,i,N
sδ

−X0,i
s |2 ≤ 2E|Xε,i,N

sδ
−Xε,i

s |2 + 2E|Xε,i
sδ

−X0,i
s |2. (6.57)

In view of the results obtained above, we find out

E|J2|

≤ CE
∣∣∣ ∫ T

0

{
1 + |X0,i

s |+ |X0,i
s−τ |+ |X0,i

s−τ |(r1+1) +W2(µ
0,i
s , δ0) +W2(µ

0,i
s−τ , δ0)

}
×
{
|Xε,i,N

sδ
−X0,i

s |+ (1 + |Xε,i,N
sδ−τ |

r3 + |X0,i
s−τ |r3)|X

ε,i,N
sδ−τ −X0,i

sδ−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}
×
{
1 + |Xε,i,N

sδ
|+ |Xε,i,N

sδ−τ |+ |Xε,i,N
sδ−τ |

(r1+1)
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+W2(µ
ε,N
sδ

, δ0) +W2(µ
ε,N
sδ−τ , δ0)

}
ds
∣∣∣

≤ CE
∫ T

0

∣∣∣{|Xε,i,N
sδ

−X0,i
s |
(
1 + |Xε,i,N

sδ
|+ |Xε,i,N

sδ−τ |
q2 +W2(µ

ε,N
sδ

, δ0)

+W2(µ
ε,N
sδ−τ , δ0)

)
+
(
1 + |Xε,i,N

sδ
|+ |Xε,i,N

sδ−τ |
q1 +W2(µ

ε,N
sδ

, δ0)

+W2(µ
ε,N
sδ−τ , δ0)

)2
|Xε,i,N

sδ−τ −X0,i
sδ−τ |+

(
W2(µ

ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

)
×
(
1 + |Xε,i,N

sδ
|+ |Xε,i,N

sδ−τ |
q2 +W2(µ

ε,N
sδ

, δ0) +W2(µ
ε,N
sδ−τ , δ0)

)}∣∣∣ds (6.58)

≤ C

∫ T

0

{√
E|Xε,i,N

sδ −X0,i
s |2 +

√
E|Xε,i,N

sδ−τ −X0,i
sδ−τ |2 +

(
EW2(µ

ε,N
sδ

, µ0,i
s )2

+ EW2(µ
ε,N
sδ−τ , µ

0,i
s−τ )

2
) 1

2
}
ds

≤ C

∫ T

0

{
(CN + C

1
2

N ) + Cδ(δ + ε2)
} 1

2

ds,

where, in the last step we have used the inequalities (6.27) and (6.37). Moreover, the
inequality (6.48) leads to

∥Λ−1(X0,i
s , X0,i

s−τ )∥

≤ L
{
1 + |X0,i

s |+ |X0,i
s−τ |+ |X0,i

s−τ |(r3+1) +W2(µ
0,i
s , δ0) +W2(µ

0,i
s−τ , δ0)

}
,

(6.59)

which, together with (6.53) and (6.56), further leads to

E|J3|

≤ CE
∣∣∣ ∫ T

0

{
1 + |X0,i

s |+ |X0,i
s−τ |+ |X0,i

s−τ |q2 +W2(µ
0,i
s , δ0) +W2(µ

0,i
s−τ , δ0)

}2

×
{
|Xε,i,N

sδ
−X0,i

s |+ (1 + |Xε,i,N
sδ−τ |

r1 + |X0,i
s−τ |r1)|X

ε,i,N
sδ−τ −X0,i

s−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}
ds
∣∣∣

≤ CE
∫ T

0

{
|Xε,i,N

sδ
−X0,i

s |+ (1 + |Xε,i,N
sδ−τ |

r1 + |X0,i
s−τ |r1)|X

ε,i,N
sδ−τ −X0,i

s−τ |

+W2(µ
ε,N
sδ

, µ0,i
s ) +W2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}
ds (6.60)

≤ C

∫ T

0

{
E|Xε,i,N

sδ
−X0,i

s |+ (1 + E|Xε,i,N
sδ−τ |

2r1)
1
2

√
E|Xε,i,N

sδ−τ −X0,i
s−τ |2

+ EW2(µ
ε,N
sδ

, µ0,i
s ) + EW2(µ

ε,N
sδ−τ , µ

0,i
s−τ )

}
ds

≤ C

∫ T

0

{
(CN + C

1
2

N + δ(δ + ε2))
1
2 + CN + C

1
2

N + δ(δ + ε2)
}
ds.
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Therefore, from (6.55), (6.58) and (6.60), we conclude that the desired result holds.

Proof of Theorem 6.2.

Φi,Nn,ε (θ) =ε
2(Ψi,Nn,ε (θ)−Ψi,Nn,ε (θ0))

=δ−1
n∑
k=1

{(
P ε,i,Nk (θ0) + b(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ0)δ

− b(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)δ

)∗
Λ−1(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )

×
(
P ε,i,Nk (θ0) + δ(b(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ0)

− b(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

)
− (P ε,i,Nk (θ0))

∗

× Λ−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ0)

}
=2

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ0)

+ δ

n∑
k=1

B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)Λ

−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )

×B∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , θ0, θ)

=:2Φi,N,(1)n,ε (θ) + Φi,N,(2)n,ε (θ).

In view of Lemmas 6.11 and 6.12, together with the Chebyshev inequality, we deduce
that

sup
θ∈Θ

| − Φi,Nn,ε (θ)− (−Π(θ))| → 0 in probability. (6.61)

According to (6.9), we find out 0 = Φi,Nn,ε (θ0) ≥ Φi,Nn,ε (θ̂
i,N
n,ε ), i.e., 0 = −Φi,Nn,ε (θ0) ≤

−Φi,Nn,ε (θ̂
i,N
n,ε ). In addition, due to Π(·) ≥ 0, we get

sup
|θ−θ0|≥ι

(−Π(θ)) < −Π(θ0) = 0, for any ι > 0. (6.62)

In terms of Theorem 1.5, and combining with (6.61) and (6.62), we deduce that

θ̂i,Nn,ε → θ0 in probability as N,n→ ∞ and ε→ 0.

6.5.3 Proof of Theorem 6.3.

To make the deduction of the asymptotic distribution of the LSE θ̂i,Nn,ε clearer, we
divide the proof of Theorem 6.3 into several auxiliary lemmas.
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Lemma 6.13. Assume that Assumptions 6.1– 6.6 hold. Then, for Xε
0 = ξ ∈

L0
p1q1(C ),∫ T

0

Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)dW

i
t →

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)dW
i
t P− a.s. (6.63)

as ε→ 0, δ → 0 and N → ∞. Moreover,

ε−1(∇θΦ
i,N
n,ε )(θ0) → −2

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)W
i
t P− a.s.

whenever ε→ 0 and n,N → ∞.

Proof. In view of Assumption 6.4, we see that, for any x, y ∈ Rd and µ, ν ∈ P2(Rd),
there exists a constant C > 0 such that

sup
θ∈Θ

∥(∇θb)(x, y, µ, ν, θ)∥

≤ C{1 + |x|+ |y|+ |y|r4+1 +W2(µ, δ0) +W2(ν, δ0)}.
(6.64)

We first claim that∫ T

0

∥Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)−Υ(X0,i

t , X0,i
t−τ , θ0)∥2dt→ 0 P− a.s. (6.65)

as ε→ 0, δ → 0 and N → ∞. According to (6.13), one gets

∥Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)−Υ(X0,i

t , X0,i
t−τ , θ0)∥2

≤ 3∥{(∇θb)
∗(Xε,i,N

tδ
, Xε,i,N

tδ−τ , µ
ε,N
tδ

, µε,Ntδ−τ , θ0)− (∇θb)
∗(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ0)}

× Λ−1(Xε,i,N
tδ

, Xε,i,N
tδ−τ )σ(X

ε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ )∥
2

+ 3∥(∇θb)
∗(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ0)× {Λ−1(Xε,i,N
tδ

, Xε,i,N
tδ−τ )

− Λ−1(X0,i
t , X0,i

t−τ )}σ(X
ε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ )∥
2

+ 3∥(∇θb)
∗(X0,i

t , X0,i
t−τ , µ

0
t , µ

0
t−τ , θ0)Λ

−1(X0,i
t , X0,i

t−τ )

× {σ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ )− σ(X0,i
t , X0,i

t−τ , µ
0,i
t , µ0,i

t−τ )}∥2

=:

3∑
k=1

Gk.

For the first term G1, from Assumption 6.4 we first give the below result

∥(∇θb)
∗(Xε,i,N

tδ
, Xε,i,N

tδ−τ , µ
ε,N
tδ

, µε,Ntδ−τ , θ0)− (∇θb)
∗(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ0)∥2

≤ C
{
|Xε,i,N

tδ
−X0,i

t |2 + (1 + |Xε,i,N
tδ−τ |

2r4 + |X0,i
t−τ |2r4)|X

ε,i,N
tδ−τ −X0,i

t−τ |2

+W2(µ
ε,N
tδ

, µ0,i
t )2 +W2(µ

ε,N
tδ−τ , µ

0,i
t−τ )

2
}
.
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This, combining (6.50) with (6.51), leads to

G1

≤ C
{
1 + |Xε,i,N

tδ
|2 + |Xε,i,N

tδ−τ |
2 + |Xε,i,N

tδ−τ |
2(r2+1) +W2(µ

ε,N
tδ

, δ0)
2 +W2(µ

ε,N
tδ−τ , δ0)

2
}

×
{
1 + |Xε,i,N

tδ
|2 + |Xε,i,N

tδ−τ |
2 + |Xε,i,N

tδ−τ |
2(r3+1) +W2(µ

ε,N
tδ

, δ0)
2 +W2(µ

ε,N
tδ−τ , δ0)

2
}

×
{
|Xε,i,N

tδ
−X0,i

t |2 + |Xε,i,N
tδ−τ −X0,i

t−τ |2(1 + |Xε,i,N
tδ−τ |

2r4 + |X0,i
t−τ |2r4)

+W2(µ
ε,N
tδ

, µ0,i
t )2 +W2(µ

ε,N
tδ−τ , µ

0,i
t−τ )

2
}

(6.66)

≤ C|Xε,i,N
tδ

−X0,i
t |2

{
1 + |Xε,i,N

tδ
|4 + |Xε,i,N

tδ−τ |
q3 +W2(µ

ε,N
tδ

, δ0)
4 +W2(µ

ε,N
tδ−τ , δ0)

4
}

+ C|Xε,i,N
tδ−τ −X0,i

t−τ |2
{
1 + |Xε,i,N

tδ
|8 + |Xε,i,N

tδ−τ |
2q3 +W2(µ

ε,N
tδ

, δ0)
8 +W2(µ

ε,N
tδ−τ , δ0)

8
}

+ CW2(µ
ε,N
tδ

, µ0,i
t )2

{
1 + |Xε,i,N

tδ
|4 + |Xε,i,N

tδ−τ |
q3 +W2(µ

ε,N
tδ

, δ0)
4 +W2(µ

ε,N
tδ−τ , δ0)

4
}

+ CW2(µ
ε,N
tδ−τ , µ

0,i
t−τ )

2
{
1 + |Xε,i,N

tδ
|4 + |Xε,i,N

tδ−τ |
q3 +W2(µ

ε,N
tδ

, δ0)
4 +W2(µ

ε,N
tδ−τ , δ0)

4
}

=:

4∑
k=1

Σk,

where q3 = 4((r2 + 1) ∨ (r3 + 1)) ∨ (2r4).

For any ρ > 0 and i ∈ SN , in view of the Chebyshev inequality and (6.57), we arrive
at

P
(∫ T

0

∥Σ1∥dt ≥ ρ
)

≤ P
(
C

∫ T

0

|Xε,i,N
tδ

−X0,i
t |2

{
1 + |Xε,i,N

tδ
|4 + |Xε,i,N

tδ−τ |
q3 +W2(µ

ε,N
tδ

, δ0)
4

+W2(µ
ε,N
tδ−τ , δ0)

4
}
dt ≥ ρ

)
≤ C

ρ

∫ T

0

(
E
{
1 + |Xε,i,N

tδ
|8 + |Xε,i,N

tδ−τ |
2q3 +W2(µ

ε,N
tδ

, δ0)
8

+W2(µ
ε,N
tδ−τ , δ0)

8
}) 1

2
(
E|Xε,i,N

tδ
−X0,i

t |4
) 1

2

dt (6.67)

≤ C

ρ

∫ T

0

(
1 + E|Xε,i,N

tδ
|8 + E|Xε,i,N

tδ−τ |
2q3 +

1

N

N∑
j=1

E|Xε,j,N
tδ

|8

+
1

N

N∑
j=1

E|Xε,j,N
tδ−τ |

8
) 1

2
(
E|Xε,i,N

tδ
−X0,i

t |4
) 1

2

dt→ 0
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as ε→ 0, δ → 0 and N → ∞. Using the same idea like in the above, we get

P
(∫ T

0

∥Σ2∥dt ≥ ρ
)
→ 0, (6.68)

as ε→ 0, δ → 0 and N → ∞. At the same time, it follows from the Hölder inequality
that

E∥Σ3∥

≤ C
(
EW2(µ

ε,N
tδ

, µ0,i
t )4

) 1
2
(
1 + E|Xε,i,N

tδ
|8 + E|Xε,i,N

tδ−τ |
2q3 + EW2(µ

ε,N
tδ

, δ0)
8

+ EW2(µ
ε,N
tδ−τ , δ0)

8
) 1

2

≤ C
(
EW4(µ

ε,N
tδ

, µ̃ε,Ntδ )4 + EW4(µ̃
ε,N
tδ

, µεtδ)
4 + EW2(µ

ε
tδ
, µ0,i
t )4

) 1
2
(
1 + E|Xε,i,N

tδ
|8

+ E|Xε,i,N
tδ−τ |

2q3 +
1

N

N∑
j=1

E|Xε,j,N
tδ

|8 + 1

N

N∑
j=1

E|Xε,j,N
tδ−τ |

8
) 1

2

(6.69)

≤ C
(
E|Zi,Ntδ |4 + CN + E|Xε,i

tδ
−X0,i

t |4
) 1

2
(
1 + E|Xε,i,N

tδ
|8 + E|Xε,i,N

tδ−τ |
2q3

+
1

N

N∑
j=1

E|Xε,j,N
tδ

|8 + 1

N

N∑
j=1

E|Xε,j,N
tδ−τ |

8
) 1

2

≤ C
(
CN + C

1
2

N + δ(δp−1 + εp) + εp
) 1

2 → 0,

as ε→ 0, δ → 0 and N → ∞. Similarly, one has

E∥Σ3∥ → 0, (6.70)

as ε→ 0, δ → 0 and N → ∞. Consequently, from (6.66)-(6.69), we get∫ T

0

|G1|dt→ 0, in probability, (6.71)

when ε→ 0, δ → 0 and N → ∞.

For the second term G2, following a similar line of argument as (6.71), we get∫ T

0

|G2|dt→ 0, in probability, (6.72)

when ε→ 0, δ → 0 and N → ∞.

For the third term G3, by Assumption 6.2, (6.59) and (6.64), one has

G3 ≤C
{
|Xε,i,N

tδ
−X0,i

t |2 + (1 + |Xε,i,N
tδ−τ |

2r2 + |X0,i
t−τ |2r2)|X

ε,i,N
tδ−τ −X0,i

t−τ |2
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+W2(µ
ε,N
tδ

, µ0,i
t )2 +W2(µ

ε,N
tδ−τ , µ

0,i
t−τ )

2
}
. (6.73)

On the other hand, thanks to (6.57) and (6.73), it follows that

P
(∫ T

0

G3dt ≥ ϵ
)

≤ C

ϵ

∫ T

0

{
E|Xε,i,N

tδ
−X0,i

t |2 + E(1 + |Xε,i,N
tδ−τ |

2r2 + |X0,i
t−τ |2r2)|X

ε,i,N
tδ−τ −X0,i

t−τ |2

+
1

N

N∑
j=1

E|Xε,j,N
tδ

−X0,j
t |2 + 1

N

N∑
j=1

E|Xε,j,N
tδ−τ −X0,j

t−τ |2
}
dt→ 0,

as ε→ 0, δ → 0 and N → ∞. Hence,∫ T

0

G3dt→ 0, in probability, (6.74)

as ε → 0, δ → 0 and N → ∞. As a consequence, (6.65) follows from (6.71), (6.72)
and (6.74). What’s more, for any ρ > 0 and ϵ > 0, owing to (6.65), one gets

P
(∣∣∣ ∫ T

0

(Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)−Υ(X0,i

t , X0,i
t−τ , θ0))dW

i
t

∣∣∣ ≥ ρ
)

≤ P
(∫ T

0

∥Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)−Υ(X0,i

t , X0,i
t−τ , θ0)∥2dt ≥ ρ2ϵ

)
+ ϵ,

which, together with the arbitrariness of ϵ and (6.65), implies that (6.63) holds. And
by a simple calculation, one gets

ε−1(∇θΦ
i,N
n,ε )(θ0)

=− 2

n∑
k=1

(∇θb)
∗(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ0)

× Λ−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )σ(X

ε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ )δW

i
k

=− 2

∫ T

0

Υ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0)dW

i
t → −2

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)dW
i
t , P− a.s.,

whenever ε→ 0 and n,N → ∞.

Lemma 6.14. Under the assumptions of Theorem 6.3,

(∇(2)
θ Φi,Nn,ε )(θ) → K(θ) := K(θ) + 2I(θ), P− a.s., (6.75)

as ε→ 0, δ → 0 and N → ∞, where I(θ) is defined in (6.14), and

K(θ) : = −2

∫ T

0

(∇(2)
θ b∗)(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ )

◦
{
Λ−1(X0,i

t , X0,i
t−τ )B(X0,i

t , X0,i
t−τ , θ0, θ)

}
dt.
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Proof. We first calculate that

(∇(2)
θ Φi,Nn,ε )(θ)

= (∇θ(∇θΦ
i,N
n,ε ))(θ)

= −2

n∑
k=1

(∇(2)
θ b)∗(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

◦
{
Λ−1(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ)

}
− 2

n∑
k=1

(∇θb)
∗(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

× Λ−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )(∇θP

ε,i,N
k )(θ)

= −2

n∑
k=1

(∇(2)
θ b)∗(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

◦
{
Λ−1(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )P

ε,i,N
k (θ0)

}
− 2δ

n∑
k=1

{
(∇(2)

θ b)∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

◦
{
Λ−1(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ )B(Xε,i,N

(k−1)δ, X
ε,i,N
(k−1)δ−τ , θ0, θ)

}
− (∇θb)

∗(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

× Λ−1(Xε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ )(∇θb)(X

ε,i,N
(k−1)δ, X

ε,i,N
(k−1)δ−τ , µ

ε,N
(k−1)δ, µ

ε,N
(k−1)δ−τ , θ)

}
=: Π1 +Π2.

For any x, y ∈ Rd and µ, ν ∈ Pp(Rd), notice from Assumption 6.5 that

sup
θ∈Θ

∥(∇(2)
θ b∗)(x, y, µ, ν, θ)∥

≤ C{1 + |x|+ |y|+ |y|r5+1 +W2(µ, δ0) +W2(ν, δ0)}.
(6.76)

Set q4 = (r3+1)∨ (r5+1). For the first term Π1, by (6.51) and (6.76), one arrives at

E|Π1|

≤ 2ε
(
E
∫ T

0

∥(∇(2)
θ b)∗(Xε,i,N

tδ
, Xε,i,N

tδ−τ , µ
ε,N
tδ

, µε,Ntδ−τ , θ)∥
2∥Λ−1(Xε,i,N

tδ
, Xε,i,N

tδ−τ )

× σ(Xε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ )∥
2dt
)1/2

≤ Cε
(
E
∫ T

0

(
1 + |Xε,i,N

tδ
|2 + |Xε,i,N

tδ−τ |
2 + |Xε,i,N

tδ−τ |
2q4 +

1

N

N∑
j=1

|Xε,j,N
tδ

|2
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+
1

N

N∑
j=1

|Xε,j,N
tδ−τ |

2
)3

dt
)1/2

≤ Cε
(∫ T

0

(
1 + E|Xε,i,N

tδ
|6 + E|Xε,i,N

tδ−τ |
6q4 +

1

N

N∑
j=1

E|Xε,j,N
tδ

|6

+
1

N

N∑
j=1

E|Xε,j,N
tδ−τ |

6
)
dt
)1/2

≤ Cε→ 0, as ε→ 0, δ → 0 and N → ∞.

For the second term Π2, we infer that

Π2 = −2

∫ T

0

(∇(2)
θ b)∗(Xε,i,N

tδ
, Xε,i,N

tδ−τ , µ
ε,N
tδ

, µε,Ntδ−τ , θ) ◦ (Λ
−1(Xε,i,N

tδ
, Xε,i,N

tδ−τ )

×B(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0, θ))dt

+ 2

∫ T

0

(∇θb)
∗(Xε,i,N

tδ
, Xε,i,N

tδ−τ , µ
ε,N
tδ

, µε,Ntδ−τ , θ)Λ
−1(Xε,i,N

tδ
, Xε,i,N

tδ−τ )

× (∇θb)(X
ε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ , θ)dt

=: H1 +H2.

Taking into consideration Lemma 6.11 and Assumption 6.5 yields that

H1 −K(θ)

=− 2

∫ T

0

(
(∇(2)

θ b)∗(Xε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ , θ) ◦ (Λ
−1(Xε,i,N

tδ
, Xε,i,N

tδ−τ )

×B(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0, θ))− (∇(2)

θ b∗)(X0,i
t , X0,i

t−τ , µ
0,i
t , µ0,i

t−τ , θ)

◦ (Λ−1(X0,i
t , X0,i

t−τ )B(X0,i
t , X0,i

t−τ , θ0, θ))
)
dt

=− 2

∫ T

0

(
((∇(2)

θ b)∗(Xε,i,N
tδ

, Xε,i,N
tδ−τ , µ

ε,N
tδ

, µε,Ntδ−τ , θ)

− (∇(2)
θ b∗)(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ)) ◦ (Λ−1(Xε,i,N
tδ

, Xε,i,N
tδ−τ )B(Xε,i,N

tδ
, Xε,i,N

tδ−τ , θ0, θ))

+ (∇(2)
θ b∗)(X0,i

t , X0,i
t−τ , µ

0,i
t , µ0,i

t−τ , θ) ◦ (Λ−1(Xε,i,N
tδ

, Xε,i,N
tδ−τ )− Λ−1(X0,i

t , X0,i
t−τ ))

×B(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0, θ)) + (∇(2)

θ b∗)(X0,i
t , X0,i

t−τ , µ
0,i
t , µ0,i

t−τ , θ)

◦ (Λ−1(X0,i
t , X0,i

t−τ )(B(Xε,i,N
tδ

, Xε,i,N
tδ−τ , θ0, θ)−B(X0,i

t , X0,i
t−τ , θ0, θ))

)
dt

=:

3∑
i=1

M3.

For the term M1, thanks to Assumptions 6.5, (6.22) and (6.48), it follows from the
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Hölder inequality that

E|M1|

≤ C

∫ T

0

(
E|Xε,i,N

tδ
−X0,i

t |2 + E|Xε,i,N
tδ−τ −X0,i

t−τ |2(1 + |X0,i
t−τ |2r5 + |Xε,i,N

tδ−τ |
2r5)

+
1

N

N∑
j=1

E|Xε,j,N
tδ

−X0,j
t |2 + 1

N

N∑
j=1

E|Xε,j,N
tδ−τ −X0,j

t−τ |2
)1/2

×
(
1 + E|Xε,i,N

tδ
|4 + E|Xε,i,N

tδ−τ |
4 + E|Xε,i,N

tδ−τ |
4q2 +

1

N

N∑
j=1

E|Xε,j,N
tδ

|4

+
1

N

N∑
j=1

E|Xε,j,N
tδ−τ |

4
)1/2

dt

≤ C

∫ T

0

(
E|Xε,i,N

tδ
−X0,i

t |2 + (E|Xε,i,N
tδ−τ −X0,i

t−τ |4)
1
2 (1 + E|X0,i

t−τ |4r5

+ E|Xε,i,N
tδ−τ |

4r5)
1
2 +

1

N

N∑
j=1

E|Xε,j,N
tδ

−X0,j
t |2 + 1

N

N∑
j=1

E|Xε,j,N
tδ−τ −X0,j

t−τ |2
)1/2

dt,

where, in the second step we have used the result in Lemma 6.6. Then, according to
(6.57), one has

E|M1| → 0 as ε→ 0, δ → 0, N → ∞.

By Assumptions 6.3, (6.48), (6.52) and (6.76) and carrying out similar arguments,
one has

E|M2| → 0 as ε→ 0, δ → 0, N → ∞

and

E|M3| → 0 as ε→ 0, δ → 0, N → ∞.

As a result, we conclude that

H1 → K(θ) P− a.s. as ε→ 0, δ → 0, N → ∞. (6.77)

Again, carrying out analogous arguments to derive (6.77), we obtain

H2 → 2I(θ) P− a.s. as ε→ 0, δ → 0, N → ∞. (6.78)

Therefore, the desired assertion is completed by (6.77) and (6.78) immediately.

Now we start to finish the argument of Theorem 6.3 on the basis of the previous
lemmas.
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Proof of Theorem 6.3. According to the result of Theorem 6.2, there exists a sequence
ηi,Nn,ε → 0 as N,n → ∞ and ε → 0 such that θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0) ⊂ Θ, P-a.s., that is to
say,

P
(
θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0)
)
→ 1, as n,N → ∞, ε→ 0. (6.79)

Then, it is easy to see that

(∇θΦ
i,N
n,ε )(θ̂

i,N
n,ε ) = (∇θΦ

i,N
n,ε )(θ0) + F i,Nn,ε (θ̂

i,N
n,ε − θ0), θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0) (6.80)

with

F i,Nn,ε :=

∫ 1

0

(∇(2)
θ Φi,Nn,ε )(θ0 + v(θ̂i,Nn,ε − θ0))dv, θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0),

owing to the Taylor expansion. In what follows we intend to deduce that

F i,Nn,ε → K(θ0) P− a.s. (6.81)

as n,N → ∞ and ε→ 0. Indeed, for θ̂i,Nn,ε ∈ Bηi,Nn,ε
(θ0),

∥F i,Nn,ε −K(θ0)∥

≤ ∥F i,Nn,ε − (∇(2)
θ Φi,Nn,ε )(θ0)∥+ ∥(∇(2)

θ Φi,Nn,ε )(θ0)−K(θ0)∥

≤
∫ 1

0

∥(∇(2)
θ Φi,Nn,ε )(θ0 + v(θ̂i,Nn,ε − θ0))− (∇(2)

θ Φi,Nn,ε )(θ0)∥dv

+ ∥(∇(2)
θ Φi,Nn,ε )(θ0)−K(θ0)∥

≤ sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φi,Nn,ε )(θ)−K(θ)∥+ sup

θ∈Bηn,ε (θ0)

∥K(θ)−K(θ0)∥

+ 2∥(∇;
(2)
θ Φi,Nn,ε )(θ0)−K(θ0)∥,

where K(·) is shown in (6.75). This, together with Lemma 6.14 and the continuity of

K(·), yields that (6.81) holds. Next we show the asymptotic distribution of θ̂i,Nn,ε . Let

F i,N
n,ε = {F i,Nn,ε is invertible , θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0)}.

By Lemma 6.14, one gets, for some positive constant α,

P
(

sup
θ∈B

η
i,N
n,ε

(θ0)

∥(∇(2)
θ Φi,Nn,ε )(θ)−K(θ0)∥ ≤ α

2

)
→ 1 (6.82)

as n,N → ∞ and ε→ 0. What’s more, by following the line of [LSS13, Theorem 2.2],
we can deduce that F i,Nn,ε is invertible on the set

Γi,Nn,ε :=
{

sup
θ∈B

η
i,N
n,ε

(θ0)

∥(∇(2)
θ Φi,Nn,ε )(θ)−K(θ0)∥ ≤ α

2
, θ̂i,Nn,ε ∈ Bηi,Nn,ε

(θ0)
}
.
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Clearly,

1 ≥ P(Γi,Nn,ε ) ≥P
(

sup
θ∈Bηn,ε (θ0)

∥(∇(2)
θ Φi,Nn,ε )(θ)−K0(θ0)∥ ≤ α

2

)
+ P

(
θ̂i,Nn,ε ∈ Bηn,ε

(θ0)
)
− 1. (6.83)

Thus, taking advantage of (6.82), (6.79) as well as (6.83), we deduce

P(F i,N
n,ε ) ≥ P(Γi,Nn,ε ) → 1 as n,N → ∞, ε→ 0. (6.84)

Let
U i,Nn,ε = F i,Nn,ε 1Fi,N

n,ε
+ Ip1(Fi,N

n,ε )
c ,

where Ip is a p× p identity matrix. It follows from (6.80) that

ε−1(θ̂i,Nn,ε − θ0)

= (ε−1(θ̂i,Nn,ε − θ0))1Fi,N
n,ε

+ (ε−1(θ̂i,Nn,ε − θ0))1(Fi,N
n,ε )

c

= (U i,Nn,ε )
−1F i,Nn,ε (ε

−1(θ̂i,Nn,ε − θ0))1Fi,N
n,ε

+ (ε−1(θ̂i,Nn,ε − θ0))1(Fi,N
n,ε )

c

= ε−1(U i,Nn,ε )
−1{(∇θΦ

i,N
n,ε )(θ̂

i,N
n,ε )− (∇θΦ

i,N
n,ε )(θ0)}1Fi,N

n,ε

+ (ε−1(θ̂i,Nn,ε − θ0))1(Fi,N
n,ε )

c

= −ε−1(U i,Nn,ε )
−1(∇θΦ

i,N
n,ε )(θ0)1Fi,N

n,ε
+ (ε−1(θ̂i,Nn,ε − θ0))1(Fi,N

n,ε )
c

→ I−1(θ0)

∫ T

0

Υ(X0,i
t , X0,i

t−τ , θ0)dW
i
t as n,N → ∞, ε→ 0,

where, in the fourth step we have used the Fermat lemma and dropped the term
(∇θΦ

i,N
n,ε )(θ̂

i,N
n,ε ), and in the last step we have utilized Lemma 6.6, (6.75), (6.81), and

(6.84). The desired conclusion is obtained.
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Summary

In this thesis, we study large deviations and parameter estimations for small noise
diffusion processes. In Chapter 1, we start with the classical limit theorems to intu-
itively introduce large deviations and parameter estimations, which provide for further
developments in the thesis.

The first part, consisting of Chapters 2 - 4, is on large deviations. In Chapter 2, we
begin with the simple stochastic differential equation to explain the idea behind the
proof of the nonlinear semigroup method, which is used to prove large deviations in
Chapters 3 and 4. In the process, viscosity solutions and the Hamilton-Jacobi-Bellman
equations are introduced.

Chapter 3 is concerned with the Cox–Ingersoll–Ross process{
dXε

n(t) = η(µ(Λεn(t))−Xε
n(t))dt+ n−

1
2 θ
√
Xε
n(t)dW (t),

(Xε
n(0),Λ

ε
n(0)) = (x0, k0) ∈ E × S,

where the fast process Λεn(t) is a jumping process on finite sets S satisfying

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

for ∆ > 0, i, j ∈ S, x ∈ E = (0,∞), where ε > 0 is a small perturbation. Then,
under suitable conditions the large deviation principle with speed n holds for the slow
process Xε

n(t) on the Skorokhod space DE(R+) with a good rate function I having
action-integral representation,

I(γ) =

{
I0(γ(0)) +

∫∞
0

L (γ(s), γ̇(s)) ds, if γ ∈ AC(E),

∞, otherwise

with L(x, v) = supp∈R{⟨p, v⟩ − H(x, p)} which is the Legendre dual of H given by

H(x, ∂xf(x)) = sup
π∈P(S)

{∫
Bx,∂xf(x)(z)π(dz)− I(x, π)

}
,
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where

Bx,∂xf(x)(i) = η(µ(i)− x)∂xf(x) +
1

2
θ2x(∂xf(x))

2

is coming from the slow process Xn(t) and Donsker–Varadhan function

I(x, π) = − inf
g>0

∫
Rxg(z)

g(z)
π(dz),

where Rx is the generator corresponding to the fast process Λεn(t) defined by

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) .

During the proof of the above result, we obtain operator convergence, exponential
tightness, comparison principle, and action-integral representation. As the slow pro-
cess is a Cox-Ingersoll-Ross process that is singular at the point 0, deriving a non-
compact space leads to obstacles in proving the exponential tightness and the com-
parison principle. To solve it, we find a good containment function

Υ(x) = − log(x) + log(1 +
1

2
x2)− log

√
2,

which has the same function as the usual Lyapunov function used to get exponen-
tial tightness. Subsequently, we prove the comparison principle using Riemannian
distance

d(x, y) = |
√
x−√

y|, x, y ∈ E (85)

instead of the normal distance d(x, y) = |x− y|, x, y ∈ E.

In Chapter 4, we study general slow-fast systems on Riemannian manifolds. This
leads to the analysis of a rather complex Hamiltonian

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
|df(x)|2 +

∑
j∈S

qij(x)(e
ϕ(x,j)−ϕ(x,i) − 1),

where f ∈ C2(M) and ϕ ∈ C2(M × S). In this setting, the approximate Lyapunov
function is Υ(x) = 1

2 log(1 + f2(x)) for getting the exponential tightness and the
comparison principle. For the proof of the exponential tightness, our condition is
linear growth which is weaker than the conditions in the existing literature. For
the proof of the comparison principle, the extra difficulties come from three reasons:
first, compared with the CIR process, the target process is a more general Stochastic
differential equation; second, the distance function d is not smooth on the Riemannian
manifold; third, the drift coefficient is a locally one-sided Lipschitz condition. Finally,
for the proof of action-integral representation, it suffices to prove the existence of a
viscosity solution, in which we need to find a global curve. To get it, we introduce
a new approach using a local analysis that allows them to transfer the problem to
Euclidean space, before having to patch things together.
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Next, we turn to the second part of the thesis. In this part, the small noise diffusion
processes with unknown parameters in the drift coefficient are studied. We solve how
to get consistency and asymptotic normality of the estimator by the least squares
method in Chapters 4 and 5.

More precisely, in Chapter 5, we consider a multidimensional stochastic differential
equation

dXε(t) = b(Xε(t), θ)dt+ εσ(Xε(t))dW (t), (86)

where the drift b is bounded and Hölder continuous. When ε→ 0, we have

dX0(t) = b(X0(t), θ0)dt.

In this case, we first constructed the estimator θ̂n,ε = argminθ∈Θ Ψn,ε(θ), where
Ψn,ε(θ) is a contrast function utilizing the Euler-Maruyama (EM) scheme and the
theory of least squares. The main results are obtained with high frequency (n→ ∞)

and small dispersion (ε → 0). The first main result is consistency, θ̂n,ε → θ0 in
probability; the second main result is asymptotic normality property,

ε−1(θ̂n,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0(t), θ0)dB(t) in probability,

where for any x ∈ Rd and θ ∈ Θ,

Υ(x, θ0) := (∇θb)
∗(x, θ0)σ̂(x)σ(x)

with
σ̂(x) := (σσ∗)−1(x)

and

I(θ) :=

∫ T

0

(∇θb)
∗(X0(t), θ)σ̂(X0(t))(∇θb)(X

0(t), θ)dt.

The hard part in proving these results is to use the Zvonkin transform to handle the
Hölder drift. The idea of the Zvonkin transformation is to construct a one-to-one
transformation that allows us to transition from a diffusion process with a non-zero
drift coefficient to a process without drift. Then we further disturb the SDE in (86),
and we obtain a stochastic functional differential equation (SFDE)

dXε(t) = b(Xε(t), θ)dt+ Z(Xε
t )dt+ εσ(Xε(t))dW (t).

The perturbation function Z depends on the history state and describes a delayed
feedback loop that has a weak impact on the unperturbed dynamics. We follow
the framework of the least squares method to demonstrate both consistency and
asymptotic normality, the difference point is that we adopt the truncated EM instead
of the EM scheme to discrete the SFDE.

Finally, in Chapter 6, we further investigate parameter estimations for more com-
plex systems, McKean-Vlasov SDEs with the point delay. The evolution of these
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equations depends not only on the state of the microscopic particles but also on the
distribution of the macroscopic particles. Compared with the conditions set in the
existing parameter estimation literature, we obtain the asymptotic properties of the
least square estimator under the weaker condition: the drift and diffusion coefficients
both satisfied the superlinear growth instead of the Lipschitz condition. To get it, we
approximate the McKean-Vlasov SDEs with point delay via weakly interacting parti-
cle systems. As a key step in the proof, the propagation of chaos and the convergence
of the EM scheme associated with the consequent weakly interacting particle systems
are obtained.
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Samenvatting

In dit proefschrift bestuderen wij grote afwijkingen en parameterschattingen voor
diffusie processen met een kleine noise factor. In hoofdstuk 1 beginnen we met de
klassieke limietstelling en introduceren we op intüıtieve wijze grote afwijkingen en
parameterschattingen, die de basis vormen voor de rest van het proefschrift.

Het eerste deel bestaat uit de hoofdstukken 2, 3 en 4, en gaat over grote afwijkingen.
In hoofdstuk 2 beginnen we met eenvoudige stochastische differentiaalvergelijkingen
om de ideeën uit te leggen die ten grondslag liggen aan de niet-lineaire semigroepbe-
nadering die in gebruikt om grote afwijkingen te de hoofdstukken 3 en 4 worden bewi-
jzen. Tegelijkertijd worden ook viscositeitsoplossing en de Hamilton-Jacob-Bellman-
vergelijking beschreven.

Hoofdstuk 3 behandelt het Cox-Ingersoll-Ross proces{
dXε

n(t) = η(µ(Λεn(t))−Xε
n(t))dt+ n−

1
2 θ
√
Xε
n(t)dW (t),

(Xε
n(0),Λ

ε
n(0)) = (x0, k0) ∈ E × S,

waar het snelle proces Λεn(t) het sprongproces is op de eindige verzameling S voldoet
aan

P(Λεn(t+△) = j | Λεn(t) = i,Xε
n(t) = x) =

{
1
εqij(x)△+ ◦(△), if j ̸= i,

1 + 1
εqij(x)△+ ◦(△), if j = i,

voor ∆ > 0, i, j ∈ S, x ∈ E = (0,∞), waar ε > 0 een kleine verstoring is. Onder de
juiste omstandigheden geldt dan het principe van de grote afwijking van de snelheid
n voor het langzame proces Xε

n(t) op Skorokhod-Ruimten DE(R+) met een goede
snelheidsfunctie I met een gëıntegreerde weergave van actie

I(γ) =

{
I0(γ(0)) +

∫∞
0

L (γ(s), γ̇(s)) ds, if γ ∈ AC(E),

∞, anders

met L(x, v) = supp∈R{⟨p, v⟩ −H(x, p)} die de Legendre duale van H is, gegeven door

H(x, ∂xf(x)) = sup
π∈P(S)

{∫
Bx,∂xf(x)(z)π(dz)− I(x, π)

}
,
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waar

Bx,∂xf(x)(i) = η(µ(i)− x)∂xf(x) +
1

2
θ2x(∂xf(x))

2

komt van het langzame proces Xn(t) en de Donsker-Varadhan functie

I(x, π) = − inf
g>0

∫
E

Rxg(z)

g(z)
π(dz),

waar Rx de generator is die overeenkomt met het snelle proces Λεn(t) gedefinieerd door

Rxg(z) =
∑
j∈S

qzj(x) (g(j)− g(z)) .

Bij het aantonen van de bovenstaande resultaten krijgen we operator convergentie,
exponentiele compactheid, een vergelijkingsprincipe en action-integral representatie.
Aangezien langzame processen een Cox-Ingersoll-Ross proces is dat singulier is in
0, het afleiden van een niet-compacte ruimte leidt tot obstakels om de exponentiële
tightness en het vergelijkings principe te bewijzen. Vervolgens bewijzen wij we het
vergelijkingsprincipe met behulp van de Riemannse manifolds

d(x, y) = |
√
x−√

y|, x, y ∈ E (87)

in plaats van de normale afstand d(x, y) = |x− y|, x, y ∈ E.

In Hoofdstuk 4 bestuderen we algemene langzaam-snelle systemen op Riemannse man-
ifolds. Dit geeft dan aanleiding tot de analyse van een vrij complexe hamiltoniaanse
functie

Hf,ϕ(x, i) = b(x, i)df(x) +
1

2
|df(x)|2 +

∑
j∈S

qij(x)[e
ϕ(x,j)−ϕ(x,i) − 1],

waar f ∈ C2(M) en ϕ ∈ C2(M × S). In dit geval is de approximatieve Lyapunov-
functie Υ(x) = 1

2 log(1 + f2(x)), gebruikt om exonenẗıele tightness en het vergelijk-
ingsprincipe te verkrijgen. Voor het bewijs van exonenẗıele tightness gebruiken we
lineaire groei, een conditie lineaire groei voor, die zwakker is dan de condities in de
bestaande literatuur. Voor het bewijs van het vergelijkingsprincipe doen zich drie
extra moeilijkheden voor: ten eerste is het doelproces een meer algemene stochastis-
che differentiaalvergelijking dan het CIR-proces; ten tweede is de afstandsfunctie d
niet glad op de Riemann-varieteit; ten derde, de drift coefficient is lokaal eenzijdige
Lipschitz voorwaarde. Tenslotte is het voor het bewijs van de action-integral repre-
sentatie voldoende om het bestaan van een viscosity oplossing te bewijzen, waarin we
een globale curve moeten vinden. Om een globale curve te vinden introduceren we
een nieuwe methode, die gebruik maakt van lokale analyse, waardoor het probleem
kan worden overgebracht naar de Euclidische ruimte, waarna alles samen kan worden
gebracht.

Vervolgens gaan we naar het tweede deel van dit proefschrift. In dit deel worden small
noise diffusie processen met onbekende parameters in de drift coefficient bestudeerd.
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In de hoofdstukken 4 en 5 hebben we met behulp van de kleinste kwadraten meth-
ode onderzocht hoe we de consistency en asymptotische normaliteit van de schatter
kunnen krijgen.

Preciezer, in hoofdstuk 5 bekijken we een multidimensionele stochastische differenti-
aalvergelijking

dXε(t) = b(Xε(t), θ)dt+ εσ(Xε(t))dW (t), (88)

waar de drift b begrensd en Hölder continu is. Als ε→ 0 gaat, hebben we dat

dX0(t) = b(X0(t), θ0)dt.

In dit geval construeren we eerst de schatter θ̂n,ε = argminθ∈Θ Ψn,ε(θ), waar Ψn,ε(θ)
is een contrastfunctie die gebruik maakt van het Euler-Maruyama (EM) scheme en
de theorie van de kleinste kwadraten. De belangrijkste resultaten zijn verkregen met
hoge frequenties (n → ∞) en kleine dispersie (ε → 0). Het eerste hoofdresultaat

resultaat is consistency, θ̂n,ε → θ0 in kans; het tweede hoofdresultaat resultaat is
asymptotische normaliteit,

ε−1(θ̂n,ε − θ0) → I−1(θ0)

∫ T

0

Υ(X0(t), θ0)dB(t) in probability,

waar voor elke x ∈ Rd en θ ∈ Θ,

Υ(x, θ0) := (∇θb)
∗(x, θ0)σ̂(x)σ(x)

met
σ̂(x) := (σσ∗)−1(x)

en

I(θ) :=

∫ T

0

(∇θb)
∗(X0(t), θ)σ̂(X0(t))(∇θb)(X

0(t), θ)dt.

Het moeilijke deel om deze resultaten te bewijzen is het gebruik van Zvonkin trans-
formaties om Hölder drift te verwerken. Het idee van de zvonkin-transformatie is om
een injectieve transformatie te construeren die ons in staat stelt om over te gaan van
een diffusieproces met een niet-nuldrift coefficient naar een proces zonder drift. De
SDE in (88) wordt dan verder verstoord om een Stochastische functionele differenti-
aalvergelijking (SFDE) te verkrijgen

dXε(t) = b(Xε(t), θ)dt+ Z(Xε
t )dt+ εσ(Xε(t))dW (t).

De perturbatiefunctie Z is afhankelijk van historische toestanden en beschrijft een
terugkoppelingslus met vertraging die een zwakke invloed heeft op de dynamica van de
onverstoorde dynamica. We volgen het raamwerk van de kleinste kwadraten methode
om consistentie en asymptotische normaliteit aan te tonen, met het verschil dat we
afgekorte EM gebruiken in plaats van EM om de SFDE te discretiseren.
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Tenslotte wordt in hoofdstuk 6 nader ingegaan op de parameterschatting van com-
plexere systemen, namelijk Mckean-Vlasov SDEs met puntvertraging. De evolutie van
deze vergelijkingen hangt niet alleen af van de toestand van de microscopische deelt-
jes, maar ook van de verdeling van de macroscopische deeltjes. In vergelijking met
de voorwaarden die in de literatuur voor parameter schatting, krijgen we de asymp-
totische eigenschappen van de kleinste kwadraten schatter onder zwakkere schatter:
zowel de drift coefficient en de diffusie coefficient voldoen aan de hyperlineaire groei,
niet aan de Lipschitz-voorwaarde. Om het te verkrijgen benaderen we de McKean-
Vlasov SDEs met puntvertraging via het weakly interacting particle systems. Als
een cruciale stap in het bewijs, wordt de convergentie van het EM algorithme ven
de verspreiding van chaos en het daaruit voortvloeiende weakly interacting particle
systems verkregen.
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with Hölder drift. Stochastics, 96(1):766–798, 2024

[HKX24] Yanyan Hu, Richard C. Kraaij, and Fubao Xi. Large deviations for
slow-fast processes on connected complete Riemannian manifolds.
Stochastic Process. Appl., 2024

Submitted

[HKX23] Yanyan Hu, Richard C. Kraaij, and Fubao Xi. Large deviations
for Cox-Ingersoll-Ross processes with state-dependent fast switching,
2023

203




	Chapter 1: Introduction
	Classical probability limits
	Random walks and Brownian motions
	Limit theorems of random walks
	Large deviations
	Parameter estimations
	Least squares estimation
	Goal and overview of the thesis

	I Large deviations
	Chapter 2: Large deviations of simple stochastic processes
	An illustrative example
	Nonlinear semigroup methods

	Chapter 3: Large deviations with finite fast switching
	Introduction
	Operator convergence and principal-eigenvalue problem
	Exponential tightness
	Comparison principle
	Proof of action-integral representation of the rate function
	Proof of existence and uniqueness

	Chapter 4: Large deviations on Riemannian manifolds
	Introduction
	Riemannian manifolds
	Constructing a diffusion process with fast switching on Riemannian manifolds
	The proof of Proposition 4.11 (a) to (d) 
	The proof of Proposition 4.11 (e)


	II Parameter estimations
	Chapter 5: Parameter estimations for singular SDEs
	Introduction
	Preliminaries and main results
	Proof of main results
	Appendix

	Chapter 6: Parameter estimations for McKean-Vlasov SDEs
	Introduction
	Preliminaries and interacting particle systems
	Main results
	An illustrative example
	Proof of main results

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	Publications


