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Abstract

While multiprocessor platforms have been widely adopted by the embedded
systems industry in the past couple of years, there are still fundamental chal-
lenges about their timing predictability for applications with real-time timing
constraints. The common-off-the-shelf (COTS) multiprocessor platforms typ-
ically use complex hardware components, interconnects and multi-level caches
which are designed to deliver higher average-case performance. However, these
features negatively impact the worst-case performance as they increase the in-
terference of tasks on shared hardware resources. One effective software-based
solution to counteract these issues is to use the non-preemptive execution model.

Despite its positive impact on timing predictability, non-preemptive execution
causes potential blocking problem which can decrease the ability to guarantee
all timing constraints of the system. It is also known that scheduling non-
preemptive periodic tasks on multiprocessor platforms is an NP-hard problem.

In this thesis, we focus on non-preemptive execution of sequential as well as
parallel real-time tasks upon multiprocessor platforms and investigate, extend,
and improve the state of the art on global, partitioned, and semi-partitioned
scheduling approaches for the problem.

We provide the first necessary test for partition-ability, i.e., a test that can
determine whether a given task set cannot be partitioned on a given number
of cores regardless of the partitioning policy. This test allows us to quantify
the pessimism of the existing partitioning heuristics as well as obtain the limits
of partitioned scheduling. We further introduce the first non-work-conserving
global scheduling policy and show that despite the fact that it improves over
the existing global scheduling policies, it is not as effective as the partitioned
scheduling strategies. We extend a sustainable scheduling algorithm designed
for uni-processor platforms to multiprocessor ones to improve the performance
of partitioning heuristics. A sustainable scheduling algorithm does not have
timing anomalies and hence it is easier to analyze and can have better scheduling
results.

Furthermore, we introduce the first semi-partitioned non-preemptive schedul-
ing solution for multiprocessor platforms. Our solution is able to schedule some
of the task sets for which it is impossible to find a partitioning solution. Finally,
we compare the overheads and memory consumption of various scheduling ap-
proaches (including ours) on a bare-metal multiprocessor hardware platform,
i.e., a 4 processor Raspberry Pi board. We show that our sustainable sched-
uler has a very low overhead while it out-performs other solutions in terms of
schedulability.
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Chapter 1

Introduction

Multiprocessor platforms increase computation power by giving us opportunities
for parallelism, in other words, allowing multiple functionalities or tasks to be
carried out simultaneously. Such systems have been widely adopted in the
embedded systems industry for a variety of applications ranging from digital
signal processing [44] to industrial control [28]. A survey by VDC Research
showed that 40% of industrial systems, including those with real-time timing
constraints, are using multiprocessor platforms [3].

The common-off-the-shelf (COTS) multiprocessor platforms typically use com-
plex hardware components, interconnects and multi-level caches. While these
features improve the average-case performance, they negatively impact the worst-
case performance as they increase the interference of tasks on shared hardware
resources such as caches, busses, memory banks, etc. Such an impact, however,
can be reduced drastically when a more time-predictable execution model such
as non-preemptive execution is applied on the system.

1.1 Problem Definition and Research Questions

While non-preemptive execution increases the timing predictability of the sys-
tem, it results in potential blocking times which can then increase the response-
time of higher-priority tasks. Jeffay et al. [23] have shown that the problem of
scheduling a set of real-time non-preemptive periodic tasks upon a uni-processor
platform is NP-hard. This holds true also for multiprocessor platforms when
tasks are partitioned between processors and run exclusively on the processor
they are assigned to [10].

In this work, we focus on the problem of scheduling a set of non-preemptive
periodic sequential or parallel tasks upon a multiprocessor platform. We invest-
igate, extend, and advance the state of the art in each of the following major
scheduling approaches: global, partitioned, and semi-partitioned scheduling. The
difference between these scheduling approaches comes from how they consider
task migration between processors [16]: in partitioned scheduling, no migration
is allowed, hence, tasks run exclusively on the processor they are assigned to.
In semi-partitioned scheduling, most tasks do not migrate but some do. And in
global scheduling, there is no explicit assignment between tasks and processors.
In the following, we describe some of the open problems w.r.t. the state of the
art of each of these scheduling approaches.

Partitioned scheduling. Most existing heuristics for task partitioning rely
on a fitness test that determines whether or not a new task can be added to an
existing partition. This fitness test is usually a schedulability test for a given
scheduling algorithm that will be used to schedule the tasks on the processor
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they are assigned to. This test determines whether the scheduling algorithm can
guarantee the timing constraints of the tasks during the lifetime of the system.
As a result, the success of a partitioning heuristic will depend on the success of
the underlying scheduling algorithm as well as the accuracy (lack of pessimism)
of the schedulability test used with it.

The state of the art has extensively explored policies such as non-preemptive
fixed-priority (NP-FP) or the earliest-deadline-first (NP-EDF) scheduling [20,
30, 19]. However, these policies are subject to scheduling anomalies and hence
are not sustainable [6]. A scheduling algorithm is called sustainable if and
only if a task set that can be successfully scheduled by the algorithm remains
schedulable if the timing constrains under which it was tested become more
relaxed [6], e.g., a task has a smaller execution time at runtime. Unfortunately,
most well-studied scheduling policies such as NP-FP and NP-EDF are not sus-
tainable w.r.t. execution time variation and those that are sustainable, such as
the first-in-first-out (FIFO) policy are known to have a poor schedulability.

Hence, our first research goal is to design and implement sustainable schedul-
ing policies and investigate their impact on the success of partitioning heuristics.
For this aim, we try to find an answer for the following research question:

RQ1. What is the impact of a sustainable scheduling policy on the
success of partitioning heuristics when applied to non-preemptive
sequential and/or parallel tasks?

The second research problem we address is about quantifying the pessimism
of the existing partitioning heuristics. Currently, apart from brute-force explor-
ation methods with exponential computational complexity, there is no known
optimal partitioning policy for periodic tasks scheduled on multiprocessor plat-
forms. This means that there is no method with a reasonable runtime that is
guaranteed to find a successful partition for a non-preemptive task set if such a
partition exists. This leaves the following question open:

RQ2. How can the pessimism of the existing partitioning heuristics
be quantified given the lack of an optimal partitioning algorithm?

Semi-partitioned scheduling. While the literature has extensively studied
semi-partitioned scheduling for preemptive tasks [2, 11], there is currently no
solution for non-preemptive tasks. This brings us to the third research question:

RQ3. Can a semi-partitioned scheduling solution be designed to
schedule task sets that cannot be partitioned?

Global scheduling. Non-preemptive execution may cause long blocking
from lower-priority tasks on higher-priority ones, and hence has typically a
lower success rate compared to preemptive scheduling. To combat this, recent
work [37, 36, 34] have introduced non-work-conserving policies, i.e., policies that
allow the resource to remain idle even if there are tasks in the ready queue. To
leave the processor idle, these policies look at future workloads in the system to
make scheduling decisions. Although these studies have shown promising im-
provements in schedulability, they have not yet been adopted for multiprocessor
platforms. This leads us to the next research question:

RQ4. How viable are non-work-conserving policies for global schedul-
ing in terms of schedulability and overheads?

Runtime overheads. Scheduling theory sometimes assumes that decisions
are made instantaneously but in practical implementations, schedulers incur

2



runtime overheads. When these overheads are too large, they can decrease the
schedulability of a task set. Additionally, embedded systems are often memory
constrained and hence there is a need for scheduling solutions with small memory
footprints. This motivates our final research question:

RQ5. What are the overheads (in terms of runtime and memory us-
age) of global, partitioned, and semi-partitioned scheduling on mul-
tiprocessor platforms?

1.2 Contributions

In order to address the first research question (RQ1), we introduce the concept
of sustainable partitioning to improve the success rate of partitioning heuristics,
where instead of typical non-sustainable scheduling policies to schedule a task
set in each partition, we use a sustainable scheduling policy (i.e., FIFO-OT
[35]). In addition, we propose a new partitioning heuristic which maps the
task set to a graph and partition them by finding the largest cliques in an
iterative way. Moreover, we extend our solution to parallel tasks by designing a
task-decomposition strategy to break down a given parallel task into a set
of sequential ones and then apply our sustainable partitioning solution on the
resulting tasks set.

We present the first necessary test for partition-ability of a task set
on a given number of processors. Our test determines if a task set cannot
be partitioned on a given number of processors with any partitioning policy.
To answer (RQ2), we measure the performance of the existing partitioning
heuristics against our necessary test.

For the third research question (RQ3), we propose an offline semi-partitioned
scheduling solution for sequential tasks called liquid-path scheduling and com-
plement it with an online sustainable semi-partitioned scheduling policy. Our
online policy extends the FIFO scheduling with offset tuning (FIFO-OT) [35]
from the uni-processor to multiprocessor platforms.

To address the fourth research question (RQ4), we introduce the first non-
work-conserving global scheduling policy for non-preemptive sequential
tasks on multiprocessor platforms. Our policy is an extension of one of the
most efficient non-work-conserving scheduling policies on uni-processor plat-
forms, called CW-EDF [36].

Finally, to answer (RQ5), we implement various scheduling solutions includ-
ing the ones we propose on a bare-metal Raspberry PI board with 4 processors
and measure their runtime overheads and memory consumption.

1.3 Organization

Chapter 2 provides important concepts forming the background of this thesis,
and presents the system model and notations used in this thesis. Chapter 3
introduces the state of the art. Chapters 4 and 5 present solutions for sequen-
tial and parallel workloads respectively. Experimental results are presented in
chapter 7, after which conclusions and future recommendations are presented
in chapter 8.
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Chapter 2

System Model and Background

This chapter introduces concepts integral to the formulation of the problem and
understanding of the solutions presented in later chapters. We begin in section
2.1 with definitions of the scope of this work and introduce our system model in
section 2.2. Next, in section 2.3, we present necessary background information
to aid understanding of the rest of the thesis.

2.1 Definitions

A real-time system is one whose correctness depends on both the timing and lo-
gical correctness of results. A common misconception is that a real-time system
is one which responds as quickly as possible, however, the requirement is that it
complete its operation within a stipulated time frame irrespective of the length
of this time frame. In such systems, timing constrains are classified as hard, firm
or soft in order of the consequences suffered from their violation. Hard real-time
systems require that all deadlines be respected as violations are catastrophic. A
common example is safety critical systems in avionic or automotive industries.
In firm systems, the results lose their utility if they are produced outside of
timing constraints. The consequence of timing failures in soft real-time systems
is typically performance degradation. We concern ourselves with hard real-time
systems.

Some important concepts in modelling a real-time system are as follows:

• Task - A task, often synonymous with a process, is a piece of computation
or functionality executed by a processor. In a real time system, the relative
deadline of a task is the time from its entry to the system, at which it must
be completed to guarantee correctness. Tasks generate an infinite number of
instances (called jobs) throughput the lifetime of the system and releases are
characterised by their periodicity. Tasks can be periodic - with jobs arriving at
a constant frequency, sporadic - with jobs arriving randomly with a minimum
inter-arrival time or aperiodic - with jobs arriving randomly [12].

• Feasibility - A feasible schedule is one which respects all timing constrains.
A task set is said to be feasible if and only if there exists a feasible schedule for
it, i.e., an infeasible task set is one that can never be successfully scheduled.

• Schedulability(with a scheduling algorithm A) - A task set is schedulable
with a given algorithm A when the algorithm results in a feasible schedule
for any execution scenario that can be generated by the task set. Execution
scenarios can vary at runtime resulting in different schedules. An example is
the variation in execution time. A task set that is schedulable with algorithm
A must remain schedulable for all possible execution times of the task set.
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Figure 2.1: Sequential task timing properties

• Precedence - Precedence as a concept becomes important when tasks cannot
be carried out in arbitrary order but instead follow a sequence imposed by data
dependency or simply the nature of the applications to which they belong.

• Slack - This is the maximum delay that a job can experience after its release
and still meet its timing requirements.

2.2 System Model

Generally, multiprocessor platforms give us the chance to exploit parallelism.
This can either be inter-task parallelism where different tasks runs sequentially
on a single processor or intra-task parallelism where a task can have components
or threads that run simultaneously on multiple processors. The option available
to us depends on the kind of tasks we have in the system. A task is either
able to carry out its operations simultaneously, i.e., it is a parallel task or is
constrained to perform computations in a sequential order.

Sequential Task Model

A task set is represented as τ = {τ1, τ2, ..., τn} where n is the number of tasks in
the set. τi = (Ci, Ti, Di, φi), where Ci is the worst-case execution time (WCET),
Ti is the period, Di ≤ Ti is the relative deadline of the task τi and φi is the
task offset. Other task properties that can be derived from the model are task
utilisation, Ui, computed as Ci/Ti. Unless otherwise stated, the offset of a
periodic task is assumed to be zero, i.e., it arrives exactly at multiples of its
period.

Given a set of tasks, the hyperperiod denoted by H, is the least common
multiple (LCM) of all the periods in the task set. In a periodic task set, all
events repeat in each hyperperiod. Ji = {Ji,1, Ji,2, ..., Ji,ni

} represents the set
of jobs in a hyperperiod H for τi where ni is the number of jobs of τi in H.
Each job Ji,j has a release time ri,j = (j − 1) ∗ Ti + φi and absolute deadline
di,j . The analysis presented in this thesis assumes task deadlines are equal
to their periods. Figure 2.1 shows the described timing properties graphically
represented.

Parallel Task Model

There are multiple ways to represent a parallel task but in this thesis, each task,
τi = (Ci, Ti, Di, Vi, Ei, Pi), is represented as a directed acyclic graph (DAG). A
DAG is a collection of nodes, Vi, also referred to as sub-tasks. Each sub-task
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Figure 2.2: An example of a parallel task modelled as a DAG

τ ji |1 ≤ j ≤ ni ∈ Vi is characterised by a worst case execution time Cji where ni
is the number of nodes in the DAG. Ei represents a set of directed edges which
determine the precedence constrains and subsequently the execution flow of the
whole task.

The global timing properties of the DAG resemble those of a sequential task in
that Ci is the WCET of the task computed as the sum of all the WCETs of the
nodes. It represents the worst case execution time should the DAG be executed
sequentially. Ti is the period and Di is the relative deadline of the task. Another
important timing property is Pi, which is the length of the critical path of the
task where the critical path is the longest chain of sequential computation as
necessitated by precedence constrains in the DAG. The definitions of utilisation
and jobs hold the same as in a sequential task.

Figure 2.2 shows an example of a parallel task modelled as a DAG with 8 sub-
tasks. Arrows represent precedence constraints, e.g. τ8i can only be run after
τ4i ,τ6i and τ7i have all been completed. This task has a sequential computation
time Ci of 26 units and a critical path τ1i ,τ4i ,τ8i with length Pi of 14 units.
Ji = {Ji,1, Ji,2, ..., Ji,ki} represents the set of jobs in a hyperperiod H for τi

where ki is the number of jobs of τi in H. The qth sub-task of a job of the DAG
is represented as Jqi,j

Processor Model

The system is assumed to be a homogeneous multiprocessor platform composed
of m identical unit-speed processors p1, ..., pm.

2.3 Background

2.3.1 Execution Models

Execution of processes or tasks can either be preemptive, non-preemptive or
limited-preemptive depending on whether a process can be interrupted by an-
other or not.

• Preemptive execution allows interruptions of running jobs by higher pri-
ority jobs. This is implemented by first saving the context of the running
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task, switching to the new task, and then restoring the state of the system to
continue the interrupted job after.

• Non-preemptive execution does not allow interruptions and as such a run-
ning task holds onto computing resources assigned to it until its completion.
This means that a higher priority job can be delayed by low-priority jobs.
This effect is known as blocking.

• Limited-preemptive execution is a scenario in which preemptions are
allowed but only at specific points in the execution of the running task. These
points are typically predetermined by application designers.

2.3.2 Schedulers

In computing systems, a scheduler is the entity responsible for allocation of
computing resources to processes. They generally control when a process has
access to a computing resource.

Scheduling Algorithms

Schedulers work with scheduling algorithms to make decisions and many classes
and categories of these algorithms exist. Scheduling algorithms can be classified
based on priority assignment is as follows:

• Fixed-priority (FP) assignment: Here, each task is assigned a fixed prior-
ity and all jobs of this task inherit the same priority which remains unchanged
throughout the lifetime of the system. Such algorithms are sometimes referred
to as fixed-priority (FP) algorithms and some common priority assignment
techniques are rate monotonic (RM) and deadline monotonic (DM) where
priorities are assigned in ascending order of period or relative deadlines re-
spectively.

• Job-level fixed-priority (JLFP) assignment: In this case, jobs of the
same task can have different priorities. The priorities are assigned based on
the activation order of jobs in the system. One example is earliest deadline
first (EDF) which assigns priorities to jobs based on their absolute deadlines.
Figure 2.3 shows an example of scheduling three tasks with EDF. This sched-
ule is the same produced by rate-monotonic fixed-priority (RM-FP) because
RM-FP makes the same decisions as EDF when the task set is harmonic, i.e.,
all periods in the set divide each other.

• Dynamic-priority assignment: Here, priorities of jobs can change during
their execution.

Figure 2.3: EDF and RM-FP scheduling

Another important classification of real-time scheduling algorithms is based
on idle time insertion.

• Work-conserving schedulers are those that never leave a computing re-
source idle when there is work to be done, i.e., tasks are run as soon as
possible.
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• Non-work conserving schedulers on the other hand, purposefully insert
idle times in schedules usually to guarantee schedulability of some future
workload.

(a) Work conserving scheduling

(b) Non-work conserving scheduling

Figure 2.4: Non-work conserving schedulers vs. work-conserving
schedulers

Additionally, an optimal scheduling algorithm is one that is able to schedule
all feasible task sets, i.e., if this algorithm fails to schedule a given task set, no
other algorithm can.

Schedulability Tests

The concepts of feasibility and schedulability as described in section 2.1 are
often determined by schedulability tests. A schedulability test is a test that
takes a set of tasks and a scheduling algorithm as input and returns an answer
to whether or not the task set is schedulable by the given algorithm. In the event
that the algorithm is known to be optimal, the result of this test represents the
feasibility of the task set. Schedulability tests are classified as follows:

• Necessary Tests: A false result from a necessary test means that the task
set is not schedulable..

• Sufficient Tests: A true result from a sufficient test means that the task set
is schedulable.

• Exact Tests: A true result from an exact test means that the task set is
schedulable and a false result means that means that the task set is not
schedulable.

Multiprocessor Schedulers

Multiprocessor schedulers are classified as either global, partitioned or semi-
partitioned.

• The global approach to scheduling involves one central scheduler and a
central ready queue. The scheduler dispatches jobs to the processors according
to a scheduling algorithm.

• The partitioned approach pins tasks in the system to processors in a way
that all jobs of a certain task are only allowed to execute on one processor.
This typically means there is a separate scheduler for each processor and the
scheduling problem reduces to a series of uni-processor scheduling problems
after task to processor assignment.
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Figure 2.5: Sufficient, exact, and necessary tests

• A semi-partitioned approach to scheduling pins some tasks to processors
while others are allowed to migrate.

Bin Packing

Partitioned and semi-partitioned scheduling require us to first solve the parti-
tioning problem which is known to be NP-hard for periodic hard real-time tasks
[10]. However, if this problem is approached with the knowledge that each pro-
cessor in a system has a limited processing capacity, it can be handled with bin
packing heuristics. Bin packing has been extensively studied in algorithmics and
is formulated as finding the minimum number of containers required to house a
set of items of varying volume or weights [15].

Volume is sometimes interpreted to mean task utilisation under real-time
systems and a task is placed in a container (processor) in the event that its
addition does not make utilisation of the container exceed 1. However, in non-
preemptive scheduling, we cannot depend on utilisation because the utilisation
bound for non-preemptive scheduling is 0 [33]. This is because tasks are never
preempted and a task with low utilisation can have a very long period and
an execution time that is long enough to completely block other tasks in the
system. As a result of this very low utilisation bound, we must couple whatever
fitting algorithm is used with a schedulability test. The test employed has a
huge effect on the success of the solution and the extent is explored empirically
in our evaluation.

Another important factor in determining the success of bin-packing is the
order in which the items are sorted. This determines the state of the bins when
an item is to be placed and since the algorithm does not employ backtracking,
this can make or break a solution. Some important bin packing heuristics are:

• First-fit: Under first-fit bin-packing, we traverse the containers in the same
order for each new item and place the item in the first bin that can accom-
modate it. We only open a new bin the case that the item cannot fit into any
existing bin.

• Next-fit: Under next-fit bin-packing, we keep track of the last bin in which
an item was placed and for any new item, traverse from this point onwards.
Like first-fit, we place the item in the next bin that can accommodate it.
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(a) Safe schedule

(b) Unsafe schedule

Figure 2.6: Unsustainability of EDF [33, 36]

• Best-fit: Like first-fit, we traverse the existing bins from the beginning for
each new item and only open a new bin the case that the item cannot fit into
any existing bin. The difference is that we place the item in the fullest bin
that can still accommodate it.

• Worst-fit: Much like best-fit except that we place the item in the least full
bin that can accommodate it.

2.3.3 Sustainable Scheduling

A scheduling algorithm is said to be sustainable when all task sets accepted
by the algorithm as feasible remain so if the timing constrains under which
it was tested become more relaxed [6]. These timing constrains include de-
creased execution time, increased deadlines or increased periods. The existence
of non-sustainable systems speak to the anomalies present under non-preemptive
execution model.

Figure 2.6 shows an example scenario. In Figure 2.6(a), at the time τ2 com-
pletes, τ1 has been released and the scheduler chooses the job of this task as
it has the earliest deadline. In Figure 2.6(b), we see that a reduction of the
execution time of τ2 leads the scheduler to make a decision that causes a missed
deadline. At the decision point, τ1 is not yet released and as such cannot be a
contender for the earliest deadline task [33].

2.4 Summary

In this chapter, we have presented a general introduction on the main focus of
our work. Important definitions and notations of our system model have been
introduced. Subsequent chapters refer to these models to explain the different
solutions proposed by this thesis.
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Chapter 3

Related Work

In this chapter, a brief survey of the existing techniques with similar aims or
methods to this work is presented. We treat the related work under two broad
categories namely sequential tasks in 3.1 and parallel tasks in 3.2 showing pro-
posed solutions from previous publications.

3.1 Sequential Tasks

Popular schedulers such as earliest deadline first (EDF), show poor performance
when applied on non-preemptive tasks [36]. Here, we consider schedulability as
a performance metric for a scheduler where schedulability refers to the ability
of a scheduling algorithm to successfully schedule its input task sets, namely,
build feasible schedules for the input task sets. An important tactic that has
been employed in literature to improve schedulability of non-preemptive task
sets is the concept of non-work conserving schedulers. In this case, processors
are allowed to be kept idle by the scheduler even when there is ready workload.
Novel non-work conserving schedulers have been presented by Nasri et al. [37,
36].

Precautious RM [37] works by looking at the next job of the highest-priority
task at every decision point. It schedules the highest-priority ready job only if
it does not cause a deadline miss for the next (non-ready) job of the task with
the smallest period. Critical window EDF (CW-EDF) [36, 34] on the other
hand, defines a critical window at each decision point and schedules the current
job that has the earliest deadline in the ready queue only if it will not cause
a deadline miss for any of the jobs in the critical window. If scheduling the
current job with the earliest deadline is going to cause a timing violation for
any of the jobs in the window of interest, then the processor is kept idle until
the next release event. CW-EDF only looks at one future job of each task that
is absent from the ready queue at the current decision point.

Figure 3.1 was culled from [34] and shows the improvement of a non-work
conserving scheduler like CW-EDF over work-conserving schedulers like non-
preemptive fixed-priority (NP-FP) and non-preemptive earliest deadline first
(NP-EDF). The figure presents a plot of schedulability ratio against utilisation
(U) on a uni-processor platform. While non-work conserving schedulers have
been able to schedule many cases that work-conserving schedulers could not,
both papers [37, 36] only consider uni-processor platforms. In the event that a
system is completely partitioned, these can be used for each processor.
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Figure 3.1: Performance of CW-EDF [34]

3.1.1 Partitioned Scheduling

The question of how to partition a given task set still remains. Classical parti-
tioning algorithms as discussed in section 2.3.2 have been employed in combin-
ation with schedulability tests to extract partitions for a given task set.

Mayank et al. [30] performed an analysis for partitioned non-preemptive EDF
scheduling and results presented showed that best-fit and first-fit produce the
best results, where the tasks were sorted according to their utilisation in a non-
increasing order. The method used to test if a new task fits on a processor was
according to Jeffay’s Test [23] which is formulated as ∀i, 1 < i < n; ∀L, T1 <
L < Ti:

L ≥ Ci +

i−1∑
j=1

⌊
L− 1

Tj

⌋
Cj (3.1)

This equation checks that the computation demand in every time interval L is
never greater than the size of the interval. Otherwise, such a task set will require
more computation time than any unit-speed processor can offer in that interval
and is thus unschedulable. This condition was proven to be only sufficient for
periodic tasks in [36].

An earlier work in a similar scenario was presented in [20] where partitioning
heuristics and an approximation of the demand bound function (DBF) [7] are
combined to form a partitioning algorithm for limited-preemptive tasks. This
test ensures the resulting partitions are EDF schedulable.

The approximation used [1] is computed as:

DBF (τi, L) =

{
0, if L < Di

WCETi + ui(L−Di), otherwise.
(3.2)

A task is added to an existing partition π if:Di −
∑
τj∈π

DBF (τj , Di)

 ≥ Ci + qmax(τ), (3.3)

where qmax(τ) is the maximum length of non-preemptive execution present
in the task set. In a completely non-preemptive scenario, this value is simply
the longest execution time of all tasks in the considered task set.
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Other works like Fan et al. [18] consider partitioning under fixed-priority
scheduling. An existing schedulability test that can be applied to partitioning
under fixed-priority scheduling is Davis’ Test [17]. It works by first computing
a busy period which is the duration of time for which the task undergoing the
test experiences the worst scheduling conditions. This is a fixed-point iteration
computed for a task with priority i as:

tn+1
i = Bi +

∑
∀k∈hep(i)

⌈
tni
Tk

⌉
Ck, (3.4)

where Bi is the worst blocking experienced by a task with priority i and hep(i)
refers to set of tasks with priority higher than or equal to i.

The worst-case response time is then computed for every job that falls in this
time window. The number of jobs for which this is computed is:

qi =

⌈
ti
Ti

⌉
(3.5)

We compute the worst-case response time (WCRT) for every instance q in qi
as:

WCRTn+1
i (q) = Bi + qCi +

∑
∀k∈hp(i)

⌈
WCRTni

Tk

⌉
Ck (3.6)

To pass this test, no instance must have a WCRT greater than the relative
deadline of the task.

3.1.2 Global Scheduling

Apart from partitioning, there are other possibilities such as globally scheduling
task sets. The following attempts have been made to extend EDF scheduling
to the global case.

Baruah [4] presents a schedulability condition for non-preemptive task sets
under global EDF scheduling. This condition arose from a modification of the
preemptive scheduling condition to account for blocking.

In the preemptive case, a task set is schedulable by global EDF upon m
processors if:

Usum ≤ m− (m− 1)Umax (3.7)

where Usum and Umax represent the total and maximum utilisation in the task
set respectively. However, due to blocking, utilisation is not a dependable metric
for non-preemptive global EDF.

The adjustment made is to compute a metric

Vi =
Ci

Ti − e
, (3.8)

which is a utilisation measure for a task subject to a maximum blocking of

e = max{Ci | ∀τi ∈ τ}. (3.9)

Thus, the resulting schedulability condition for non-preemptive global EDF
is:

Vsum ≤ m− (m− 1)Vmax, (3.10)

where Vsum and Vmax represent the total and maximum adjusted utilisation in
the task set respectively.

Response-time based analysis techniques also exist for global non-preemptive
scheduling. Nasri et al. [38] presented a sufficient test based on a schedule ab-
straction graph. The schedule abstraction graph of a task set, shows all possible
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job orderings in every possible schedule that can be generated from a given
JLFP scheduling policy for a given job set. Each node in the graph represents
a state of the system and is characterised by the finish time interval, i.e, earli-
est and latest finish time of any job ordering that leads to that state. State
transitions are represented by edges and are made by scheduling jobs. From the
graph, we can extract the worst-case response times of all jobs in the system.
This test is exact on a uni-processor platform [34] but only sufficient for global
non-preemptive scheduling.

Yalcinkaya et al. [45] provide an exact test for global non-preemptive schedul-
ing. The test employs timed automata models of the task and schedule. The
task automata contains states such as ready, running, completed and miss which
represent different conditions a task can be in. State transitions are made ac-
cording to decisions of the scheduler automata. To pass the test, no task should
reach the state where a deadline is missed, i.e, miss state.

3.1.3 Semi-Partitioned Scheduling

In semi-partitioned schedules, the majority of tasks are pinned to processors and
some are left to migrate. Under preemptive scheduling, an explored method
is to split the utilisation of tasks determined to be migratory and then use
partitioning techniques to determine where each portion of a migratory task is
executed as in [11]. There are two main strategies, [2] and [11], that split the
utilisation of migratory tasks. They allow the execution of any job of such a
task to be shared between a set of processors and both strategies maintain EDF
schedulability of the resulting semi-partitioned task set.

A key difference between [2] and [11] is in the way tasks are split. Andersson
et al. [2] group tasks into heavy and light groups with both groups executed
on disjoint sets of processors. No such separation is used by Burns et al. [11],
instead processors are filled with un-split tasks until it is no longer possible.
After which, the remaining tasks are split into parts with the first part having
its computation time equal to its deadline (a C=D splitting scheme).

These are possible strategies for preemptive scheduling but fail in the non-
preemptive case because tasks can only migrate at job boundaries. To the
best of our knowledge, no scheme that takes this into consideration has been
demonstrated in the literature.

3.2 Parallel Tasks

Parallel tasks can also be scheduled using global or partitioned scheduling al-
gorithms but intra-task parallelism blurs the definition of semi-partitioning.
Additionally, DAG scheduling can be classified in two other categories direct
scheduling, i.e., systems in which the scheduler is aware of the precedence con-
straints of the DAG and decomposed-based scheduling. Decomposition involves
expressing DAG precedence as timing requirements. In a decomposed DAG,
each sub-task is assigned a safe offset and deadline in a way that ensures that
precedence is maintained. The resulting deadline constrained sub-tasks are then
scheduled using the sequential task concepts which are typically less difficult to
analyse.

3.2.1 Direct Scheduling

Global scheduling techniques have also been applied to parallel tasks as in [27]
which proved a capacity augmentation bound of 4− 2

m for global EDF scheduling
of DAG tasks on m processors under preemptive scheduling. This bound means
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that any DAG task set with total utilisation m
4− 2

m

is schedulable by global EDF

on m unit speed processors provided that no DAG in the task set has a critical
path longer than 1

4− 2
m

. Nasri et al. [39] provide a sufficient test for globally

scheduled DAG Tasks using a schedule abstraction graph for any global job-level
fixed-priority scheduler.

There is another technique called federated scheduling which exclusively as-
signs n of m processors to a single parallel task. Li et al. [26] presents a
scheme that assigns processors to DAG tasks based on the relationship between
the utilisation and the critical path length. The number of processors assigned
exclusively to a single task is computed as:

n =

⌈
Ci − Pi
Di − Pi

⌉
(3.11)

Tasks with utilisation less or equal to unity do not need more than one pro-
cessor. All such tasks in the system are left to be globally scheduled on whatever
processors are left after the assignment of processors to the heavy tasks, i.e.,
tasks whose utilisation is larger than 1. The tasks considered are all implicit-
deadline tasks while [5] shows analysis for arbitrary-deadline tasks.

Although some literature regards federated scheduling to be the partitioned
counterpart of parallel tasks [5], we separate these concepts by defining the
partitioned DAG as one whose sub-tasks are pinned to processors. Partitioned
scheduling of DAG tasks has been studied by Casini et al. [14] who presen-
ted a partitioning algorithm for non-preemptive scheduling of DAG tasks. The
main idea of the solution is to successively fit sub-tasks of a DAG on processors
while ensuring that the worst-case response time satisfies the deadline require-
ments on each processor. These worst-case response times were computed by
a path-based response-time analysis also developed in the paper. It builds on
the response-time analysis of preemptive parallel tasks developed in [21]. The
scheme was demonstrated to outperform known global schedulers under fixed-
priority scheduling and is to the best of our knowledge, the first of such a
partitioning strategy.

3.2.2 DAG-decomposition-based Scheduling

In this approach, a DAG is decomposed into a series of sequential tasks where
each task is formed from a node of the DAG. The decomposition is done in such
a way that precedence constraints are maintained by the timing parameters of
the decomposed tasks, namely, offsets and deadlines. Decomposed scheduling
has been explored in [41, 40, 24]. Each work shows analysis for schedulability
of the resulting decomposed task set under preemptive global EDF. The gen-
eral method is to first build the ideal schedule assuming infinite processors are
present. As shown in Figure 3.3, such an ideal schedule completes its execution
in a time equal to the critical path length. From this schedule, information
on the earliest possible release and latest safe start times of each sub-task in
the DAG is extracted. This information is then employed for decomposition in
different ways.

The method in [41] divides the ideal schedule into segments and then assigns
relative deadlines to each segment based on the amount of parallelism present
in the segment. This method was found to have a resource augmentation bound
of 4 under preemptive scheduling with global EDF. This means that if there
exists any way to schedule the DAG on m identical unit-speed processors, then
the decomposed task set is schedulable by global EDF on m identical processors
if each processor is 4 times as fast as the original. The bound was found to be
4 + 2p under non-preemptive scheduling where p is a measure of the effect of
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Work Authors Problem Focus

Sequential
Tasks

Andersson and Tovar [2] Semi-partitioned scheduling of preemptive
tasks.

Fischer and Baruah [20] Limited-preemptive partitioned scheduling
of sequential tasks.

Baruah and Burns [4] Schedulability analysis of non-preemptive
task sets under global EDF scheduling.

Nasri and Kargahi [37] Non-work conserving scheduling of non-
preemptive tasks upon uni-processor plat-
forms.

Nasri and Fohler [36] Non-work conserving scheduling of non-
preemptive tasks upon uni-processor plat-
forms.

Mayank and Mondal [30] Non-preemptive partitioned scheduling of
sequential tasks.

Guan, Yi, Deng, Gu and
Yu [22]

Schedulability analysis of non-preemptive
task sets under global FP scheduling.

Nasri, Nelissen and
Brandenburg [38]

Response-time analysis for non-preemptive
job sets under global scheduling.

Yalcinkaya, Nasri and
Brandenburg [45]

An exact schedulability test for non-
preemptive self-suspending real-time tasks.

Burns, David, Wang and
Zhang [11]

Semi-partitioned scheduling of preemptive
tasks.

Parallel
Tasks

Li, Chen, Agrawal, Lu,
Gill and Saifullah [26]

Federated scheduling of implicit deadline
parallel tasks upon multiprocessor plat-
forms.

Saifullah, Ferry, Li and
Agrawal [41]

Decomposition based scheduling of parallel
tasks upon multiprocessor platforms.

Qamhieh, George and
Midonnet [40]

Decomposition (Stretching) based schedul-
ing of parallel tasks upon multiprocessor
platforms.

Li, Luo, Ferry, Agrawal,
Gill and Lu [27]

Global EDF scheduling of parallel tasks
upon multiprocessor platforms.

Baruah [5] Federated scheduling of arbitrary deadline
parallel tasks upon multiprocessor plat-
forms.

Jiang, Long, Guan and
Wan [24]

Decomposition based scheduling of parallel
tasks upon multiprocessor platforms.

Casini, Biondi, Nelissen
and Buttazzo [14]

Non-preemptive partitioned scheduling of
parallel tasks upon multiprocessor plat-
forms.

Nasri, Nelissen and
Brandenburg [39]

Response-time analysis of limited-
preemptive parallel DAG tasks under
global scheduling.

Table 3.1: Related work summary
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Figure 3.2: DAG decomposition

blocking computed as Emax

Emin
. Emax and Emin are the maximum and minimum

WCET among all nodes of the DAG respectively.

(a) Sample DAG

(b) Ideal schedule of sample DAG

Figure 3.3: Ideal schedule of a DAG

Qamhieh et al. [40] employ the concept of stretching. Stretching entails
progressively adding sub-tasks to the critical path until it has a utilisation of
1. After this, it executes on a dedicated processor. Offsets and deadlines are
assigned to the remaining sub-tasks or portions of sub-tasks that did not make it
to this stretched path following the precedence constrains of the DAG. Each sub-
task or portion must only be released after all its predecessors have completed
execution and must have a deadline earlier than the start time assigned its
earliest successor. These offsets and deadlines are based on both the structure of
the DAG and the positions of the sub-tasks in the stretched path. We deal with
portions of sub-tasks because the publication considers preemptive scheduling.
Under non-preemptive scheduling, no sub-task is allowed to be split.

Jiang et al. in [24], segment the ideal schedule and differentiate light and
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heavy segments. The assignment of relative deadlines is based on a measure
defined as the structure characteristic value of the DAG. This measure is com-
puted as the sum of the contribution of heavy segments to the sequential com-
putation time of the DAG and the contribution of light segments to the critical
path. It is handled this way to minimise the density of both threads and seg-
ments which directly affect schedulability of the resulting decomposed DAG.

Of these methods, [41] and [24] are comparable to our work because they can
be made to handle non-preemptive DAG tasks. The method in [40] allows the
execution of a node of a DAG to be split between two processors and this cannot
hold under non-preemptive execution.

3.3 Summary

A summary of the related work presented in this chapter is as shown in Table
3.1. The table shows closely related works and their focus areas ranging from
designing scheduling policies to building schedulability tests.
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Chapter 4

Sequential Task Scheduling

In this chapter, we present our solutions for scheduling sequential tasks on
multiprocessor platforms. In section 4.1, we present our partitioned scheduling
solutions. In section 4.2, we present the first semi-partitioned scheduler for non-
preemptive task sets and finally in section 4.3, we introduce a global non-work
conserving policy. These solutions provide a means to answer research questions
RQ1, RQ2 and RQ3.

4.1 Partitioned Scheduling

In section 4.1, we present three partitioning solutions. The first solution is
sustainable partitioning, which is an idea for partitioning when systems are
unaffected by execution time variations. We then discuss clique partitioning in
section 4.1.2 which can be used along with our sustainable partitioning idea to
divide task sets into partitions. Thirdly, we apply the idea of cliques to build a
necessary test for partitioned scheduling in section 4.1.3.

4.1.1 Sustainable Partitioning

Under partitioned scheduling, tasks are assigned to processors at design time
and are executed only on the assigned processors through out the lifetime of
the system. Bin-packing heuristics like first-fit and next-fit have been used
to accomplish task to processor assignment. Under preemptive partitioning,
utilisation is often used to determine if a task can fit on a processor. Under non-
preemptive scheduling, we cannot depend on utilisation because the utilisation
bound is 0 [33]. As a result of this very low utilisation bound, we must couple
whatever fitting algorithm is used with a schedulability test.

Schedulability tests for non-preemptive scheduling typically guarantee sus-
tainability by accounting for possible anomalies in the schedules and as such
are quite pessimistic [17, 23]. One way to improve the schedulability when we
have ”non-deterministic” execution times is to use a sustainable scheduling al-
gorithm such as FIFO scheduling to begin with. In that case, if the scheduler is
able to successfully schedule the task set when tasks have their worst-case execu-
tion times, it will be able to schedule the task set for any other smaller execution
time values as well. While FIFO scheduling in its pure form is known to have a
poor schedulability ratio in contrast to other scheduling algorithms, there is a
recent extension of it called FIFO with offset tuning (FIFO-OT) [35] that uses
the FIFO policy in its core but adapts job offsets such that the underlying FIFO
scheduler is able to regenerate a certain schedule at runtime. FIFO-OT is not
able to create schedules by itself but it is rather an online technique to allow a
given offline schedule be recreated at runtime. For this aim, FIFO-OT requires
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a feasible input schedule that is built for jobs in one hyperperiod in which each
job of a task has its worst-case execution time (WCET). There is no limit to
how such a schedule has been generated. One can use a brute-force algorithm
or one of the existing efficient online scheduling policies such as CW-EDF [36].

Given that among the existing uni-processor scheduling policies, CW-EDF has
the highest schedulability ratio, we build the schedule of one hyperperiod using
CW-EDF assuming that each job of each task has the worst-case execution time.
If the resulting schedule does not have a deadline miss, then it is guaranteed that
the that task set can be successfully scheduled on one processor using FIFO-OT.
It is worth noting that CW-EDF itself is not a sustainable scheduling policy and
hence can not replace the FIFO-OT technique. However, with the combination
of a schedule generated by CW-EDF and applied online via FIFO-OT, one
can ensure that the task set can be successfully scheduled on one processor
at runtime. Moreover, such a combination of techniques will have the highest
schedulability compared to online scheduling policies including CW-EDF itself.

4.1.2 Clique Based Partitioning

In this section, we revisit the partitioning problem and try to deviate from the
classical bin-packing-based solutions and move on to graph-based solutions. A
graph, in this context, is denoted by G = (V,E), where V is the set of vertices
and E is the set of edges.

The key idea of our solution is to find cliques in the graph where a clique
represents a set of tasks that can be partitioned together. A clique is a com-
plete sub-graph, i.e., a subset of vertices in which each vertex is connected to
every other member of the subset. A maximal clique is a clique that cannot be
extended by the addition of any other vertex in the graph.

Our starting point is to model a given task set as a graph where a vertex
v ∈ V represents a periodic task τi = (Ci, Ti, Di) and edges are placed between
tasks based on a predefined relationship between tasks. For our partitioning
scheme, this relationship is defined as follows:

An edge exists between two tasks τi and τj if both tasks fulfil the necessary
scheduling conditions for non-preemptive execution:

Ui + Uj ≤ 1 ∧ Cj ≤ 2(Ti − Ci) ∧ Ci ≤ 2(Tj − Cj). (4.1)

These are based on the necessary conditions for non-preemptive scheduling
presented in [13] and ensure that

1. the feasible utilisation bound is not exceeded,
2. non-preemptive scheduling of two consecutive jobs of each task is feasible.

Theorem 4.1.1 (From Cai et al. [13]) For any two non-preemptive tasks τi
and τj that satisfy the equation Cj > 2(Ti−Ci), it is impossible to find a feasible
schedule for both tasks on one processor regardless of the scheduling policy used.

Upon completion of the graph model, partitions are made by continuously
removing the largest schedulable clique in the graph until the graph is empty,
i.e., all tasks have been assigned a partition. We judge the size of a clique by the
number of tasks it contains and break ties in favour of the clique with the highest
total utilisation. The partitioning scheme also requires a schedulability test to
determine whether a given clique is schedulable as shown in line 6 of algorithm
4.2. We use the sustainable scheduling algorithm introduced in section 4.1.1
and hence after selecting a partition, we check if the tasks can be successfully
scheduled by CW-EDF for one hyperperiod where tasks run for their worst-case
execution times. This process is illustrated by the following example.
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Figure 4.1: Clique partitioning steps for tasks in Table 4.1

Illustrated Example

Given a task set, τ = {τ1, τ2, τ3, τ4, τ5} with task parameters as shown in Table
4.1, Figure 4.1 shows the resulting graph model with cliques highlighted. A
edge exists between τ1 and τ3 because the following relationships hold:

U1 + U3 = 0.7 < 1 ∧ C1 < 2(T3 − C3) ∧ C3 < 2(T1 − C1). (4.2)

Ti Ci Ui
τ1 10 5 0.5
τ2 20 15 0.75
τ3 50 10 0.2
τ4 50 30 0.6
τ5 100 2 0.02

Table 4.1: Sample task set to illustrate clique partitioning

The set of maximal cliques in order of their size (judged by number of ver-
tices and total utilisation) are {(τ1, τ3, τ5), (τ2, τ3, τ5), (τ3, τ4, τ5)}. Of these, the
largest clique, (τ1, τ3, τ5), has a utilisation sum 1.3 and is thus unschedulable.
The next largest, (τ2, τ3, τ5), is schedulable with a utilisation sum of 0.97. Thus,
this is removed from the graph as a partition leaving only vertices τ1 and τ4. As
there is no edge between them, they are assigned to two different partitions and
our algorithm is complete as the graph is now empty. The resulting partitions
are (τ2, τ3, τ5), (τ4) and (τ1).

It should be noted that subsets of maximal cliques are also cliques and the
algorithm begins to visit these in the case that no maximal clique is schedulable.
Additionally, listing all cliques may theoretically take exponential time as there
exist graphs with exponentially many cliques. However, considering the char-
acteristics of typical industry task sets (laid out in chapter 7), the problem is
expected to be solvable.

Algorithm 4.1: Graph Building Algorithm (τ)

1 V ← {vi ∀ τi ∈ τ} ;
2 E ← ∅;
3 for τi ∈ τ do
4 for τj ∈ τ ∧ τj 6= τi do
5 if Equation 4.1 then
6 E ← E + (τi, τj) ;

7 return G ;
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Algorithm 4.2: Clique Based Partitioning (G, τ)

Input: G, a graph model of τ according to algorithm 4.1
1 P ← ∅ ;
2 while G 6= ∅ do
3 Go ← ∅ ;
4 Find and order cliques by size;
5 for clique ∈ G do
6 if isSchedulable(clique) and |clique| > |Go| then
7 Go ← clique ;

8 Add Go to P ;
9 G← G−Go;

10 return P ;

4.1.3 A Necessary Test for Partition-ability

Due to the inherent complexity of the partitioning problem for periodic tasks,
there is currently no exact solution that can determine whether a given task set
can be successfully partitioned on a given number of processors. As a result,
there is no way to know what the true limit of the partition-ability of periodic
task sets is. Moreover, due to the lack of such an exact method for partitioning,
there is no method (with a reasonable runtime) that allows us to quantify the
pessimism of the existing partitioning heuristics.

The goal of this section is to introduce the first necessary test to evaluate the
partition-ability of a given task set. In other words, to build an efficient test that
is able to determine task sets that are impossible to be partitioned on a given
number of processors. Our test can then be used to quantify the pessimism of
the existing heuristics and quantify the limits of partitioning based solutions.

Our necessary test derives a lower bound on the minimum number of pro-
cessors required to partition a given task set under non-preemptive schedul-
ing. The test works by building the conflict graph of the task set, denoted by
G = (V,E), where V is the set of vertices (representing tasks) and E is the set of
edges (representing conflicts). A vertex v ∈ V represents a periodic task τi. An
edge e ∈ E represents a conflict between the two tasks that are assigned to the
vertices connected by that edge. Two tasks τi and τj (Ti ≤ Tj) are in conflict
if and only if they cannot be scheduled on one processor under any schedul-
ing policy. In other words, tasks τi and τj violate the necessary schedulability
condition [37] of non-preemptive tasks on a uni-processor platform:

Ui + Uj > 1 ∨ Cj > 2(Ti − Ci) ∨ Ci > 2(Tj − Cj). (4.3)

To build the conflict graph, every pair of tasks in the task set are considered;
if they have a conflict, then an edge is added between their vertices. The size
of the largest clique in the conflict graph represents the minimum number of
processors required to schedule the task set since none of the tasks in that clique
can be partitioned together with any other tasks in the clique. Hence, the size of
the largest clique, denoted by M , is a lower bound on the number of processors
required to partition this task set. If the available number of processors, denoted
by m, is smaller than M , the task set is not partition-able on m processors. This
can also be formulated as a graph colouring problem [29] with no two vertices
who share an edge coloured alike.
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Algorithm 4.3: Conflict Graph Building Algorithm (τ)

1 V ← {vi ∀ τi ∈ τ} ;
2 E ← ∅;
3 for τi ∈ τ do
4 for τj ∈ τ ∧ τj 6= τi do
5 if Equation 4.3 then
6 E ← E + (τi, τj) ;

7 return G ;

Algorithm 4.4: Necessary Test For Partition-ability (τ)

Input: G: a conflict graph model of τ according to algorithm 4.3
Output: M : the lower bound of the number of processors on which

the task set can be successfully partitioned.

1 C ← {cliques ∈ G} ;
2 M ← 0 ;
3 for clique in C do
4 if |C| > M then
5 M ← |C| ;

6 return M ;

Illustrated Example

Using the same task set as presented in Table 4.1, we demonstrate the workings
of the necessary test. The conflict graph for this task set is as shown in Figure
4.2. We see that this graph is the anti-graph of that presented in Figure 4.1.
This is because the conditions for forming an edge are the reverse of those used
in the clique partitioning algorithm.

From Figure 4.2, we see that there is only one clique in the resulting conflict
graph and thus, this is also our largest clique. The size of a clique in this context
is judged purely on the number of vertices contained therein, i.e., M for this
graph is 3. This is interpreted to mean that the smallest number of partitions
possible for any algorithm is 3.

This test is only necessary because the conflict conditions themselves are
necessary. Additionally, since we build it based only on pair wise conditions, the
absence of a clique among any subset of more than 2 tasks does not necessarily
mean that they together satisfy the necessary condition for scheduling.

Figure 4.2: Conflict graph model of tasks in Table 4.1
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4.1.4 Clique Finding Problem

Both algorithms in sections 4.1.2 and 4.1.3 depend on finding cliques in a graph.
The class of graphs we build are undirected, i.e., a conflict or the absence thereof
between two tasks exists both ways. Our versions of the clique problem have
two formulations:

1. finding the maximum clique, i.e., the clique with the largest number of
vertices of all cliques in the graph,

2. finding all maximal cliques, i.e., all cliques that cannot be extended by
the addition of a vertex.

Both problems are related in that the maximum clique can be found from listing
all maximal cliques and then selecting the largest one. Moon et al. [32] found
that the largest possible number of maximal cliques in a graph with n vertices
is 3n/3 and as such, the worst case time complexity of the maximum clique
problem is similarly O(3n/3). In our implementations, we use the clique finding
algorithm proposed in [9] which while not being the fastest available in the
literature, provides good enough results for the cases we handle in this thesis.
On average, it took less than 30 minutes to find the maximum clique.

4.2 Liquid-Path Scheduling

Partition-ability vs Feasibility: Our Motivation

In section 4.1.3, we have presented a necessary test for partition-ability of task
sets and this forms a bound on what is possible for any partitioning scheme.
However, failing such a test does not imply that the task set is infeasible. In
this section, we present a novel job-based fitting technique that results in a
semi-partitioned schedule of a task set. The intuition behind semi-partitioning
is to enable efficient use of processing time in cases where processors do not have
room for every job of a task but can likely accept some of its jobs. Under non-
preemptive scheduling, such task migration is only possible at job boundaries
in the case of sequential tasks.

Unlike partitioning heuristics that work on the tasks, we try to partition the
jobs of the tasks in a hyperperiod. Namely, we start by obtaining all jobs in
one hyperperiod and sort them according to some criteria and then assign each
job to the available processors. In order to see which processor can host the
job, we keep track of the currently assigned jobs to each processor in an ordered
list which contains the order of execution of the currently assigned jobs and the
leeway of each job in the list. We call this list a liquid path; it is liquid because
new jobs can use the available slack between existing items and fit themselves
in the path. We allow such insertions only if adding a new job to the path does
not result in a deadline miss for any other already admitted job.

Next, we introduce the pseudo-code, job-ordering criteria and job-admission
policy of our liquid-path scheduling algorithm.

Liquid-path scheduling algorithm

Liquid-path scheduling is a job-based fitting technique. Algorithm 4.5 shows the
steps for liquid-path scheduling given a set of tasks τ and m processors. In line
1, we sort the given task set in descending order of WCET and declare m empty
paths P = {P1, ..., Pm}. We then loop through every job in the hyperperiod in
line 4 and try to fit it on one of the paths in P . If no suitable position is found
for the job, i.e., all paths are too solid to accommodate the job, the algorithm
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fails. Otherwise, we continually place jobs on suitable paths until all jobs have
been handled and we return P which can then be interpreted as a schedule.

A path is called liquid for as long as there is enough slack to insert jobs
in between and gains solidity when any job insertion between any two path
members would result in a deadline miss along the path. A path is feasible
when every member satisfies its timing requirements.

Algorithm 4.5: Liquid-Path Semi-Partitioning (m, τ)

Input: A task set τ , a processor model with m processors

1 sort τ in descending order of WCET ;
2 P ← {P1, P2, ..., Pm} where Pi is an empty path;
3 for τi ∈ τ do
4 for Ji,j ∈ Ji do
5 fitFound ← False ;
6 core ← 1 ;
7 while ¬fitFound and core ≤ m do
8 find spot for job according to Equations 4.4, 4.5 ;
9 if Equation 4.6 then

10 fitFound ← True ;
11 update Pcore according to 4.7 - 4.10 ;

12 core ← core + 1 ;

13 if ¬fitFound then
14 return false ;

15 return P ;

In one extreme case, we end up with a completely partitioned schedule and
in the other we end up with a global schedule in which every task has migratory
jobs. The details of fitting a job on a path are discussed below.

A path L = {l0, l1, ..., lk} is defined as a sequence of jobs executed in a strict
order on a processor, where li = (ci, esti, lsti, Si, Fi, di) represents the job at the
i-th position on the path with a computation time ci, an earliest start time esti,
a latest start time lsti, a starting time Si, a finishing time Fi and an absolute
deadline di. l0 and lk are padding elements whose purpose is to enable the
algorithm place elements at the head and tail of the path thus, the length of a
path is k − 1.

Job Location

To insert a job Jx,y in a path, we have to decide what position exactly to put
the job. It is possible to decide on such a position for a job by checking every
item in the path but the search can be reduced by only considering positions in
which it is feasible to insert Jx,y. We do this by checking only items that fall
within the execution window of Jx,y defined by the interval

wx,y = [rx,y, dx,y], (4.4)

where rx,y, is the arrival time of the job in consideration and dx,y is its deadline.
This is because it is not feasible to place the job outside of this interval. A
position i is considered for inserting Jx,y if

wx,y ∩ [Fi−1, lsti] 6= ∅ (4.5)

In the event that multiple positions satisfy the conditions for successfully
scheduling Jx,y, one of them is selected based on a heuristic. We do not use
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backtracking and do not check multiple solutions to ensure the time complexity
of the search is linear with respect to the number of jobs in the hyperperiod.
Otherwise, it explodes to an exhaustive search of a feasible non-preemptive
schedule which is a known NP-Hard problem.

Path Insertion Policy

Jobs are executed non-preemptively hence, insertion of a job Jx,y in a position i
on a path can only be between the finishing time Fi−1 of a predecessor element
li−1 and latest start time lsti of a successor element li. As jobs are allowed
to alter the starting time of li, a bound is placed to ensure the path remains
feasible. The estimated finishing time of Jx,y, i.e., fx,y is derived from sx,y + Cx
where sx,y, i.e, its start time upon insertion is sx,y = max(rx,y, Fi−1). The
following conditions must hold for Jx,y to be inserted in a given position i

fx,y ≤ dx,y ∧ fx,y ≤ lsti (4.6)

namely, the finishing time of the job is smaller than its deadline and smaller than
the latest start time of its successor. Figure 4.3 shows the process of inserting a
job Jx,y in position 3 of the liquid path. Upon insertion, Jx,y becomes l3. The
job that previously occupied l3 is moved to position 4 as l4 with its starting and
finishing times updated as shown in the diagram.

Figure 4.3: Sample liquid-path job insertion

After any job insertion, the rest of the path is updated using

∀lz ∈ L|z ≥ i, Sz ← max(Fz−1, estz) (4.7)

until we either reach the tail of the path or a pair of elements in the path la and
lb for which the following condition holds:

b = a+ 1 ∧ Fa < estb. (4.8)

The latest start time of a path element is updated before insertion in the path
using

min(dx,y, lsti)− Cx,y, (4.9)

where Cx,y is the worst case execution time of Jx,y. By doing this, the latest
start time is propagated along the path with every new insertion. Tasks before
the point of insertion may also require their latest start time to be updated
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to ensure the timing constraints of the newly inserted job are not violated by
future insertions. This can be propagated backwards along the path using

lstz = min(dz, lstz+1)− cz, (4.10)

until we reach the head of the path.

4.3 Global Scheduling

As shown in Figure 3.1, non-work conserving policies can greatly improve the
schedulability of periodic non-preemptive task sets on uni-processor platforms.
This motivated us to look into applying such policies on multiprocessor plat-
forms. The goal is to see if non-work conserving policies can also improve global
multiprocessor scheduling (RQ4).

In this section, we introduce the first non-work conserving global scheduling
policy. Non-work conserving policies are those that are able to make the decision
to keep a processor idle even when there is a ready workload. The primary
reason for such a decision is to ensure that future jobs will be able to meet
their deadlines and as such, these policies typically try to look into the future.
A non-work conserving scheduler has an idle-time insertion policy (IIP) which
decides when to insert idle times in the schedule and how long they should last.

Our global scheduler is called by a processor whenever it finishes execution
of a job, whenever an idle time expires or whenever a job is released and the
processor is free. Whenever the scheduler is called, it selects the job with the
earliest deadline from the ready queue. However, our global policy also uses the
idea of a critical window [36] where the chosen earliest deadline job is scheduled
if and only if its execution maintains the feasibility of a set of jobs that will be
released in this window. Otherwise, we insert an idle time until the next release
event.

The critical window consists of the next job of any task that has no pending
job in the ready queue. To guarantee that these candidate jobs will be scheduled
safely, the scheduler looks ahead to the future of the system and extracts the
latest start time of each candidate job such that it will still meet its deadline.
The chosen earliest deadline job is scheduled if and only if it can complete its
execution before the latest start time for the processor that is performing the look
ahead, otherwise, an idle time is inserted on that processor.

Any processor that calls the scheduler will have to do a look ahead for the
whole system because under global scheduling, jobs can be run on any processor,
i.e., there is no task to processor assignment. We refer to this algorithm as global
critical window earliest deadline first (G CW-EDF).

4.3.1 Global CW-EDF Methodology

Algorithm 4.6 shows the pseudo code for G CW-EDF. At any time t at which
the scheduler makes a decision, we begin by picking the earliest deadline job
Ji,j in the ready queue. We then create a set of candidate jobs. A job is
considered a candidate job if it is the next job of a task with no pending job in
the ready queue. For each candidate job, the absolute deadline is computed as

Dnext
i =

(⌈
t
Ti

+ 1
⌉)
Ti.

The set of candidate jobs is then sorted in descending order of absolute dead-
lines, transforming it into an ordered list in line 2 of algorithm 4.6. Let us
call this list N and denote its length by k. In addition to N , the algorithm
also keeps track of the busy time of each processor, Bc in a list B where Bc is
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Algorithm 4.6: Global Critical-Window EDF (G CW-EDF) (t, τ)

Input: t, the current time and τ , the task set
1 Find the earliest deadline job in the ready queue Jx,y ;
2 Build the next ready jobs N ;
3 Sort processor busy times B;
4 c← 1 ;
5 for job Ji in N do
6 compute Li from Equation 4.11 ;
7 if min{Dnext

i , Li−1} − Ci < Bc then
8 Li = min{Dnext

i , Li−1} − Ci ;

9 else
10 LSTc = Li−1 ;
11 c← c+ 1 ;
12 Li = Dnext

i − Ci ;

13 if t+ Cx ≤ LST1 then
14 Schedule Jx,y ;

15 else
16 Schedule an idle interval until the next decision point;

the worst-case completion time of a processor c’s current workload. If Ji,j is
scheduled on processor c at time t, the processor updates Bc as Bc = t+ Ci.

We traverse the processors in ascending order of Bc which means that the first
processor we test is the processor with the earliest busy time. This decision was
made following the intuition that the processor that gets access to the global
scheduler is the one with the earliest busy time and will likely be unavailable
to run jobs in the near future. The chosen earliest deadline job is scheduled if
its worst completion time is less than the computed latest finish time for the
processor that has called the scheduler LST1.

To achieve this, the algorithm keeps the processors ordered in ascending order
of busy times. It computes the latest start time Li for each job in N using
Equation 4.11 beginning from latest deadline job in N . The latest start time
Li for each job in N is calculated assuming that the job will be placed on
a particular processor. The algorithm begins the computation of latest start
times from the earliest busy time in B and only moves to another processor
when we decide that candidate jobs can no longer fit on that processor. In
line 9, the algorithm updates the latest start time for a processor LSTc = Li−1
whenever a job in N cannot be placed on the processor c, i.e, if Ci > Li−1−Bc.
This happens when there is no room on processor c and hence, the look ahead
is continued from processor c+ 1.

Lp(t) =

{
Dnext
p − Cp if Cp > Lp−1 −Bc ∨ p = 1

min{Dnext
p , Lp+1(t)} − Cp otherwise

(4.11)

We illustrate an example in Figure 4.4. The ready queue currently contains
jobs of τ1 and τ2 with a job of τ1, J1,y, being the earliest deadline task. The
algorithm does the following:

1. It constructs a set of candidate jobs by considering the next jobs of all
tasks that currently have no job on the ready queue. This set contains
jobs of τ3, τ4 and τ5. When sorted, we treat these jobs in order J3,y, J4,y
and then J5,y. This is the makeup of N .
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Figure 4.4: Latest start time computation for global CW-EDF

2. The processors are ordered in ascending order of busy times meaning that
the processors are treated in order of B1 and then B2.

3. Candidate jobs are placed on processors from earliest to latest busy time
thus:

• We begin with attempting to place J3,y on processor 1. We compute
the latest start time as: L3 = Dnext

3 − C3 because it is the first
element in N .

• Next, we place J4,y. We compute L4 = L3−Ci because Dnext
4 > L3.

• The last job in N is J5,y and can no longer fit on processor 1. So, we
move onto processor 2 and freeze LST1 for processor 1 at L4.

After all items in N have been treated, the chosen earliest deadline job is
dispatched only if it can complete execution before the latest start time of the
scheduler-calling processor. In this case, L2 for processor 1.

The time complexity of the global CW-EDF is O(nlog(n) +mlog(m)) where
n is the number of tasks and m is the number of processors. The nlog(n)
component is because we sort the number of jobs in the set of candidate jobs
and in the worst case, every task in the system has a job in this set. Likewise,
the mlog(m) component is derived from sorting the busy time of all processors.
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Chapter 5

Parallel Task Scheduling

The use of multiprocessor platforms allows us to exploit intra-task parallelism
where a single task can have threads that are executed simultaneously. We
represent such parallel tasks as directed acyclic graphs (DAG). Each node of
the DAG represents a sub-task and the edges of the DAG represent the logical
dependencies of the sub-tasks. Edges in the DAG define the execution flow of
the task. However, there can be multiple valid sequences to execute a DAG task
and the decision is up to the scheduler in use.

There are two broad approaches to such DAG schedulers namely direct and
decomposed scheduling. In a direct scheduling approach, the scheduler is
aware of the logical dependencies and precedence constraints of the DAG. De-
composed scheduling on the other hand expresses DAG precedence in the timing
requirements. In a decomposed DAG, each sub-task is assigned a safe offset and
deadline in a way that ensures that precedence is maintained. The resulting
deadline constrained sub-tasks are then scheduled using sequential task con-
cepts. The advantage this presents is that the scheduler becomes simpler and
sequential task scheduling can be applied. It also allows us to handle mixtures
of sequential and parallel tasks in a system uniformly.

In this chapter, we present a parallel-task scheduling approach that uses a
decomposition algorithm in addition to partitioned scheduling as introduced in
chapter 4. The solution and corresponding evaluation in chapter 7 answer parts
of research question RQ1.

5.1 DAG Decomposition

Given a DAG task, a decomposition algorithm aims to return the DAG with
all sub-tasks assigned offsets and deadlines. The rules are that a sub-task must
only be released after the deadlines of all its predecessors and must have a
deadline earlier than the release of its successors. By doing so, a scheduler
that respects the timing constraints of the individual sub-tasks of a DAG will
intuitively guarantee the precedence constraints of the whole DAG.

In the end, we want to come up with a decomposed DAG that is likely to be
schedulable. We pay attention to the workload supplied to the system at any
point in time and try to ensure that it is never larger than the computing re-
sources available. This is because such a decomposition will not be schedulable.
We quantify a workload by its density ∆ = Ci

Di
which is a measure of how much

computation must be carried out in one unit of time for the workload to meet
its deadline.

In order to have higher chances for a successful decomposition, we form some
additional guidelines for a decomposition algorithm. They are:
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• G1The density of a sub-task should be less than 1.
This means that no relative deadline must be less than the execution time
of the sub-task. If this happens, the decomposed DAG is unschedulable on a
unit-speed machine.

• G2 The total density of the active sub-tasks at any point in time should be
less than m.
An active sub-task is a sub-task that has been released but has not completed
execution and m is the number of processors in the system. If at any point in
time, the total density of active sub-tasks exceeds m, then the decomposed
DAG is unschedulable on m processors.

General idea of the decomposition algorithm

The first step in our decomposition algorithm is to build the ideal schedule,
i.e., the schedule in the presence of infinite processors. At each point where a
sub-task completes its execution in this schedule, we demarcate a section of
the schedule. Figure 5.1 shows a sample DAG and 5.2 shows the ideal schedule
of the sample DAG with the demarcated sections.

The values within the circles represent the WCET
of a sub-task.

Figure 5.1: Sample DAG task

Figure 5.2: Ideal schedule with sections

Our assignment of offsets and deadlines are done on a section by section basis.
For each section Si, we assign a relative deadline that is greater than or equal
to the execution time of the section. This creates some slack between the end
of the section Si and the begining of the next section Si+1 as shown in Figure
5.3.

Sub-tasks can sometimes belong to multiple sections and because we consider
the non-preemptive execution model, we go one extra step of stitching sub-tasks
back together and assigning offsets as the offset of the earliest section to which
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it belongs and relative deadline as the sum of all the deadlines of the sections to
which it belongs. This step is illustrated in Figure 5.4 and forms the decomposed
DAG.

Figure 5.3: Ideal schedule with sections and their assigned slack

Figure 5.4: Decomposed DAG with offsets and deadlines

5.1.1 Terminology

Each section in the ideal schedule has a worst-case execution requirement ej and
we classify sections as either light or heavy based on the amount of parallelism in
the section. The parallelism is quantified by the number of threads, θ, present.
A section is light if

θ <
Ci
Ti
, (5.1)

and heavy when

θ ≥ Ci
Ti
. (5.2)

The contribution of the light sections to the critical path Pi is represented as
P lighti . Similarly, the contribution of the heavy sections to the total computation

time is Cheavyi .

P lighti =
∑
∀j∈LSi

ej , (5.3)

Cheavyi =
∑
∀j∈HSi

θjej , (5.4)

where LSi and HSi are the set of light and heavy sections respectively.
The intuition behind this segregation is that to ensure schedulability, sections

with θ larger than the number of processors available should be treated differ-
ently, i.e., given more slack. We choose Ci/Ti as a threshold for sections because
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Ci/Ti for a schedulable DAG is always less than m. Thus, if a light section has
θ > m, the whole DAG is unschedulable anyway.

5.1.2 Assigning Offsets and Deadlines

We assign each section a relative deadline dj which is a time share of the period
of the task Ti. The three scenarios to consider are those in which every section
is light, every section is heavy, and when we have a mix of both light and heavy
sections. For each of these cases, we try to formulate the deadline assignment
such that guidelines (G1) and (G2) are followed. In the case that all sections
are either light or heavy, we guarantee that the resulting decomposed task will
follow the guidelines (G1) and (G2) for schedulability. We do this by showing
the upper bound on densities of both whole sections ∆s

j and threads ∆t
j in a

section. This is because the schedule only has one active section at a time and as
such, the active workload at any time is made up of only one section. Deadlines
are assigned in each of the three cases as described below.

Case 1: All sections are heavy (LS = ∅)
In the case that all sections are heavy, Cheavyi = Ci because every section is

included in Cheavyi . We assign deadlines for each section as:

dj =
Ti θj ej
Ci

(5.5)

This means that the relative deadline allocated to each section is a function of
both the execution time of the section and the number of threads in the section.
The density of any thread, ∆t

j =
ej
dj

. In this case,

∆t
j =

Ci
Ti θj

. (5.6)

This density is maximised when θ has its smallest possible value and because
a section is determined heavy when Equation 5.2 holds, the minimum possible
value of θ is Ci

Ti
, i.e,

∆t
j =

Ci
Ti θj

≤ Ci Ti
Ti Ci

≤ 1, (5.7)

showing that guideline G1 is obeyed. The density of the section on the other
hand, is ∆s

i = θj∆
t
j and

∆s
j =

θj Ci
Ti θj

=
Ci
Ti
. (5.8)

Since we bound DAG tasks to obey the necessary condition, Ci

Ti
≤ m, then

section density is upper bounded at m thus obeying guideline G2.
Case 2: All sections are light (HS = ∅)

In this case, Plight = Pi because every section is light and part of the critical
path. Section deadlines are assigned as:

dj =
Ti ej
Pi

, (5.9)

i.e, the relative deadlines are dependent only on the execution time of the sec-
tion. The density of any thread is

ej
dj

and in this case has the value

∆t
j =

ej Pi
Ti ej

=
Pi
Ti
. (5.10)

This density is maximised when Pi has its largest possible value and a necessary
condition for the schedulability of a DAG on a unit speed processor is that the
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length of its critical path is smaller or equal to its deadline. Therefore the
maximum allowed value of Pi is Ti, otherwise there is no way to schedule this
on a unit speed processor.

∆t
j =

Pi
Ti
≤ Ti
Ti
≤ 1, (5.11)

thus obeying guideline G1. The density of the whole section is ∆s
j = θj∆

t
j and

∆s
j =

θj Pi
Ti

. (5.12)

This density is maximised when the value of θj is maximised and because we
consider a section to be light when Equation 5.1 holds, the maximum value of
θj is Ci

Ti
which is ≤ m to fulfil the necessary condition. Thus,

∆s
j =

Cj Pi
Ti Ti

≤ Cj Ti
Ti Ti

≤ Cj
Ti
≤ m (5.13)

which obeys guideline G2.
Case 3: We have both heavy and light sections (LS 6= ∅ and HS 6= ∅)

In tasks with a mix of heavy and light sections, the rules for deadline assignment
are different for light and heavy sections. We prioritise the heavy sections by
giving light sections a deadline that is exactly the value of their execution times,
i.e. for a light section, dj = ej . Thus, the total time share occupied by light

tasks is equal to P lighti . The density of any thread is ∆t
j =

ej
ej

= 1 satisfying

guideline G1. The density of the section remains ∆s
j = θj∆

t
j . For a light section,

its maximum value is m as follows from Equation 5.1 and the maximum thread
density.

After light sections have been assigned time portions exactly equal to P lighti ,

heavy sections are left to share Ti−P lighti thus deadlines are assigned as follows:

dj =
(Ti − Plight) θj ej

Cheavy
. (5.14)

Thread density is ∆t
j =

Cheavy

θj (Ti−Plight)
and the density of a section is ∆s

j =

θj∆
t
j =

Cheavy

(Ti−Plight)
. Maximising either of the density values is dependent on the

relationship between Cheavyi and P lighti and this is in turn dependent on the
structure of the DAG. As this is not information that is immediately apparent
from the timing parameters, we rely on the intuition that after giving a light
section only exactly what it needs, heavy sections have been given the best
possible chance.

Upon computation of all relative deadlines of the sections in the ideal sched-
ule, we assign offset of a sub-task as a sum of all the relative deadlines of its
predecessors and deadline as the sum of the relative deadlines of all sections to
which it belongs. For a node that has parts of its execution in sections k to r
of the ideal schedule:

φji =

k−1∑
i=0

di,

Dj
i =

r∑
i=k

di .

(5.15)

After the decomposition step, every sub-task is then treated as its own task
with the period T ji equal to the period Ti of the whole DAG, an offset φji
relative to this period, and a relative deadline Dj

i ≤ Di. These parameters can
be supplied to any of the sequential scheduling solutions presented in chapter 4.
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Chapter 6

Implementing Multiprocessor
Schedulers on Bare-Metal
Hardware

In this chapter, we focus on the implementation of multiprocessor schedulers.
In section 6.1, we explain our extension of FIFO-OT, a sustainable scheduler
which we adopt for multiprocessor platforms and in section 6.2, we explain our
hardware implementations of multiprocessor FIFO-OT and some other popular
multiprocessor schedulers.

6.1 Sustainable Multiprocessor Scheduling

In the next section, we explain how we extend FIFO-OT which was previously
defined for uni-processor platforms to multiprocessor platforms.

6.1.1 FIFO-OT for Multiprocessor Platforms

Perhaps the most intuitive way to ensure that an online schedule recreates a
given offline schedule is to store a table containing each scheduling decision.
The online scheduler then looks up this table at every decision point and dis-
patches the jobs according to the table. However, such tables typically require
substantial amounts of memory which may not always be available in an em-
bedded environment. There is a need for scheduling solutions that require much
less memory.

In FIFO policy, jobs are dispatched according to their release order. Hence,
the only way to force the FIFO policy to recreate a given schedule is to force the
jobs to be released in the order we want them to appear in the FIFO schedule.
Nasri et al. [35] have shown that this can be done by assigning offsets to
individual jobs. Moreover, they showed that in the context of uni-processor
platforms, most jobs do not require distinct offsets instead, they can share the
same offsets as other jobs. They hence proposed a solution to form partitions
of jobs that share the same offset and introduced an algorithm to minimise the
number of such partitions. In our work, we deal with more than one processor
and hence need new techniques to assign job offsets.

After assigning offsets, the memory footprint is reduced by only storing an
offset table instead of a table of scheduling decisions. The process of generating
an offset table begins from a schedule Φ. A non-preemptive schedule Φ for a
processor is an ordered sequence of tuples (Ji,j , si,j) that assigns a start time
si,j to each job in a hyperperiod. In order to ensure that a FIFO scheduler will
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be forced to schedule the given jobs in the order determined by schedule Φ, we
try to assign a new release time ri,j to each job Ji,j such that when it is put in
a FIFO queue, it is scheduled in the right time slot and starts its execution no
later than si,j .

Jobs in a schedule, Φ created for a multiprocessor platform also have a pro-
cessor assignment in addition to the timing information. A multiprocessor
schedule can allow migration and as such, all jobs of a task do not necessarily
have to be executed on the same processor. To handle this, we allow for offsets
to be larger than a period to force a processor to only run the jobs of a task
that belong to it.

Algorithm 6.1 processes one task at a time, handling all the jobs of a task
associated with a particular processor before moving on to the next. It uses
a greedy approach to find the minimum number of offset partitions where an
offset partition is a series of jobs of a task with the same offset value. Each
job is initially assigned a release time, r, according to its starting time in Φ,
i.e., ri,j = si,j(Φ) in line 1 of algorithm 6.1. The algorithm then keeps track of
potential offset intervals (POI) which is the range of offsets with which a job
can be safely released. Two jobs can share an offset if their POIs intersect. The
algorithm computes POI of the first job of any task as w and keeps track of all
its neighbours, updating w with the intersection of the neighbouring POIs in w
on line 13. In the event that the POI of a job Jx,y does not intersect with w,
jobs until Jx,y are saved to a partition with the last w as their collective safe
interval on line 16. The release times of all jobs in the partition are updated to
match a chosen offset in the range and a new partition then begins from Jx,y
with w reset to POIx,y on line 19. In the end, we get offset partitions for each
task from the perspective of a particular processor.

This process decouples the decisions of the processors and gives FIFO-OT the
chance to perform with the efficiency of a partitioned scheduler. This is reflected
in the offset tuning process. A job number relative to a processor is represented
as Ji,l while the absolute number of the job in the hyperperiod is Ji,j . If all
jobs of a task do not belong to a processor, then the lth job of τi on a processor
is not necessarily the jth job of τi in the hyperperiod. (j − l) represents the
number of jobs skipped from the perspective of a particular processor and the
minimum offset of Ji,l is then (j − l − 1)Ti. The latest possible time to release
a job, I li,j is its starting time in Φ, si,j and the earliest time it is safe to release
a job, Isi,j , is after all its predecessors in Φ have been released. Therefore, a
potential offset interval is computed as shown in Equation 6.1.

POIi,j = [Isi,j − r0i,l, I li,j − r0i,l] (6.1)

The values for Isi,j and I li,j are computed as:

Isi,j =


(j − 1)Ti, if Ri,j = ∅
max{(j − 1)Ti,max{Ri,j}+ 1}, if Ri,j 6= ∅ ∧ i < x

max{(j − 1)Ti,max{Ri,j}} otherwise

I li,j = si,j(Φ)

(6.2)

where Ri,j is the set of all jobs scheduled on the same processor as job Ji,j
and with an earlier release time than job Ji,j ,

Ri, j = {rx,y|rx,y ≤ ri,j ∧ Jcx,y == Jci,j} (6.3)

Since all the jobs of a task do not necessarily execute on the same processor,
we add a final padding value to each task to ensure that the scheduler is properly
reset at the end of a hyperperiod. For example, if the last job of a task on a
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processor is job 4 and the task has 10 jobs in a hyperperiod, we pad the next
arrival of the task on that processor such that it skips 6 periods. This padding
value is computed as (ni − li)Ti where ni represents the total numbers of jobs
of τi in the hyperperiod and li represents the number of jobs of τi that belong
to the processor in question. It reduces to 0 in the case that all the jobs of a
task belong to a single processor.

Algorithm 6.1: Multi-processor Offset Tuning (τ , Φ)

Input: A task set τ and a corresponding feasible schedule Φ
1 ri,j ← si,j(Φ) for Ji,j in H;
2 P = {P 1, ..., Pm} ;
3 for c = 1 to m do
4 P c = {P c1 , ..., P cn} ;
5 for τi ∈ τ do
6 k ← 1 ;
7 l← 1 ;
8 P ci ← ∅;
9 w ← [0, H];

10 for Ji,j on processor c in Φ do
11 l← l + 1;

12 POIi,j ← [[Isi,j − r0i,l, I li,j − r0i,l]] according to Equation 6.2 ;

13 if w ∩ POIi,j 6= ∅ then
14 w ← w ∩ POIi,j ;

15 else
16 Add partition p = {Ji,k, ...Ji,l−1} with offset ws to P ci ;
17 ∀ jobs in p, ri,x ← (x− 1)Ti + ws ;
18 k ← l ;
19 w ← POIi,j ;

20 Add final partition p = {Ji,k, ..., Ji,l} with offset ws to P ci ;
21 ∀ jobs in p, ri,x ← (x− 1)Ti + ws ;

22 return P ;

6.2 Implementation on a Hardware Platform

In this section, we explain how we have implemented various schedulers on
bare-metal hardware. We describe the implementation of a sustainable multi-
processor scheduler as described in section 6.1.1 alongside some popular parti-
tioned and global policies.

6.2.1 Multiprocessor FIFO-OT

In our implementation of FIFO-OT, a processor calls the scheduler at release
events and upon completion of any job. Each time the scheduler is called, the
job with the oldest release time is scheduled on the processor that made the call,
i.e., in a FIFO order. We keep distinct offset tables for each processor to ensure
that the processors do not share scheduling data and hence they can call
their schedulers without a need for semaphores or mutual exclusion to protect
global shared data.

We handle job releases by the scheduler itself, i.e., the scheduler is also re-
sponsible for updating the release times of future jobs based on the current time.
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After each release of a job, the job number and next release is updated using
the values stored in our offset table. We decided to not use software timers to
handle job release events because anyway we would need to adjust the offsets
manually according to our offset table. Our offset table entries contain an off-
set value and a job ID after which this offset no longer applies. The scheduler
keeps track of the current offset in use for a task and updates it whenever the
current job number is greater than the associated job ID. At the end of each
hyperperiod, all offsets are reset to the first entry of the offset table.

6.2.2 Global Policies

Each processor calls the scheduler either at a job release event or a job com-
pletion event. However, since any processor can call the scheduler at any time,
there might be multiple active instances of the scheduler function. As a res-
ult, the global shared variables that contain scheduling data (such as the ready
queue, etc.) must be protected against race conditions using semaphores. We
implement two variants of global scheduling namely, global EDF (G EDF) and
global FP (G FP). In our G FP scheduler, we sort the task set by priorities
during the initialization phase. We also maintain a ready queue with the same
ordering. When a task has a pending job, its entry in the ready queue is set
to 1 and when it does not have a pending job, its entry is set to 0. Thus, to
select which job to run, the FP scheduler extracts the highest set bit in the
ready queue with one instruction (in O(1)). Our G EDF scheduler maintains a
similar ready queue but since task priorities are not fixed, the scheduler needs to
keep track of the priority of the current job of each task and maintain a sorted
list of the pending jobs. This adds to the implementation overhead of G EDF.

6.2.3 Partitioned Policies

We implement three partitioned scheduling policies: partitioned FP (P FP),
partitioned EDF (P EDF) and partitioned CW-EDF (P CW-EDF). In these
implementations, each processor has a distinct set of tasks and as such, there
is no shared scheduling data. This removes the need for semaphores and each
processor can freely access the scheduler. Our implementations of P FP and
P EDF follow the same logic as G FP and G EDF descried above. P CW-
EDF is a non-work conserving scheduler and has an idle time insertion policy.
The decision to idle or not is also made within the scheduler.
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Chapter 7

Experimental Evaluation

In this chapter, we experimentally evaluate the solutions introduced in chapters
4, 5, and 6. In section 7.1, we discuss results of scheduling sequential workloads.
Section 7.2 deals with results of scheduling parallel tasks and in section 7.3, we
show measured overheads of the implementation of our sustainable scheduler on
actual hardware.

Abbreviation Description

FF DBF
Approx.

This refers to the first-fit partitioning using Fisher’s DBF approx-
imation test [7] as a fitting criteria (see Equation 3.3).

FF Davis This refers to the first-fit partitioning using Davis’ schedulability
test for FP schedulability (see Equation 3.6).

FF Jeffay This refers to the first-fit partitioning using Jeffay’s test for EDF
schedulablity introduced in [23] (see Equation 3.1).

FF CW-
EDF

This refers to the first-fit partitioning, where each processor is sched-
uled by a sustainable scheduling policy. Schedulability is evaluated
by building the CW-EDF schedule of one hyperperiod and checking
if there is a deadline miss.

FF RM-FP This refers to the first-fit partitioning, where each processor is sched-
uled by a sustainable scheduling policy. Schedulability is evaluated
by building the rate-monotonic (RM-FP) schedule of one hyper-
period and checking if there is a deadline miss.

NPT Our necessary test for partition-ability introduced in section 4.1.3.

LIQ Liquid-path partitioning, our semi-partitioning solution introduced
in section 4.2.

G CW-EDF Our global non-work conserving scheduler introduced in section
4.3.1.

FED Federated scheduling introduced in [26].

DirEDF This refers to direct global EDF scheduling where we make a global
EDF scheduler which is aware of precedence constraints.

G EDF Global EDF scheduling.

DECOM1 Decomposition method according to [41].

DECOM2 Our proposed DAG decomposition method in Section 5.1.

Table 7.1: Table of abbreviations

7.1 Sequential Tasks

7.1.1 Task Generation

Our task generation method follows the description of an automotive benchmark
application [25]. All task periods are chosen from {1, 2, 5, 10, 20, 50, 100, 200,
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1000} (milliseconds) with non-uniform probabilities. This method has been
adopted for task generation by many other works [35, 37, 33]. To generate n
synthetic periodic tasks, we first pick n periods according to the probability
distribution of periods in [25]. Next, we generate a set of n random utilisations
that sum up to our target system utilisation for the task set. We do this by
way of the RandFixSum algorithm from [43]. RandFixSum generates n random
numbers that sum up to a given value. We then compute worst-case execution
time and complete the properties of each task.

7.1.2 Experimental Setup

For our experiments, we generate 1000 task sets for each data point and vary
the following parameters:

• Number of processors: Multiprocessor platforms come in a variety of con-
figurations. While we limit our approach to homogeneous multiprocessor plat-
forms, the number of processors is varied in experiments. Our experiments
cover platforms with 2, 4 and 8 processors.

• Utilisations: Utilisation is a measure of how busy a system is. We generate
all utilisations as percentages of the number of processors, m i.e 0 < U ≤ m.
This is because task sets with utilisation greater than m are not feasible.

• Number of tasks: Finally, we vary the number of tasks to quantify the
behaviour of the algorithms with respect to n. The number of tasks considered
for each set of experiments is selected from the interval [m+ 1, 5m] where m
is the number of processors.

Performance Metrics

Our main performance metric for sequential task sets is the schedulability
ratio defined as the ratio of schedulable task sets to the total task sets generated.
When we discuss partitioning, we also refer to partition-ability ratio and
non partition-ability ratio. Partition-ability ratio is the ratio of task sets
that can successfully be scheduled by a partitioning heuristic to the total task
sets generated and non-partition-ability ratio is the ratio of task sets that are
certainly not partition-able by any partitioning algorithm (hence are rejected
by our necessary partition-ability test) to the total task sets generated.

7.1.3 Evaluation of Global CW-EDF

The impact of different heuristics on global CW-EDF schedulability.
As mentioned in section 4.3.1, our global CW-EDF algorithm has two options for
the look ahead step. We can either begin our look ahead from the processor with
the earliest or latest busy time. In this section, we discuss the impact of both
strategies. In our algorithm, we make a decision to begin the look ahead from
the processor with the estimated earliest busy time. This decision was made
following the intuition that the processor that gets access to the global scheduler
is the one with the earliest busy time therefore, it will likely not be available to
run jobs in the near future. In these experiments, we quantify the effectiveness of
this heuristic (referred to as LatestCore in Figure 7.1) by comparing it with one
that uses the processor with the earliest finish time (referred to as EarliestCore
in Figure 7.1). Figure 7.1 shows that the latest finish time heuristic can only
schedule 1% of task sets on 8 processors while the earliest finish time heuristic
schedules 55% when we have 12 tasks. The same difference in performance is
observed when we have 20 tasks on either 4 or 8 processors.

The impact of the number of tasks on global CW-EDF schedulabil-
ity. In this set of experiments, we look into the impact of the number of tasks
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Figure 7.1: The impact of different heuristics on global CW-EDF

Figure 7.2: The impact of the number of tasks on global CW-EDF

on schedulability. We vary the number of tasks and utilisation value while keep-
ing the number of processors constant. The performance is as shown in Figure
7.2 and we see that schedulability decreases with increasing number of tasks,
however, this effect decreases as number of tasks increase. On 8 processors for
instance, the average schedulability ratio of 10 tasks is 5% points higher than
that of 15 tasks while the average schedulability ratio of 20 tasks is only 1%
higher than that of 25 tasks.

The impact of the number of processors on global CW-EDF schedulab-
ility. Here, we look into the impact of varying number of processors on the
schedulability of global CW-EDF. Tasks perform better with fewer processors
but we must keep in mind that the utilisation values are expressed as percent-
ages of the number of processors. With a smaller number of processors, the
average utilisation share of each task is smaller than the case of a higher num-
ber of processors. From figure 7.3, the performance gap between 2 processors
and 4 processors is 6% when we have 12 tasks and the performance gap is 1%
between 4 processors and 8 processors. This suggests that the impact of number
of processors decreases as number of processors increase.
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Figure 7.3: The impact of the number of processors on global CW-EDF

7.1.4 Evaluation of Partitioning Solutions

The goal of this section is to (i) quantify the pessimism of the existing heuristic
partitioning methods, and (ii) find out the limits of the partition-ability, where
it is impossible to partition a task set on a given number of processors.

Evaluation of partitioning heuristics. In this section, we evaluate the
partitioning solutions for sequential tasks. We begin by looking at the relation
between the success of partitioning heuristics and the schedulability tests they
use to evaluate the fitness of a task to a partition. We focus on the first-fit
partitioning heuristic because it is one of the better performing fitting heuristics
as shown in [30] and corroborated by our data.

We use the abbreviations introduced in Table 7.1 to refer to the fitness tests
that were evaluated, i.e., FF DBF Approx., FF Davis, FF Jeffay, FF RM-
FP, FF CW-EDF, and NPT. Note that FF RM-FP and FF CW-EDF are
simulation-based tests, i.e., we simulate schedules for one hyperperiod using
RM-FP and CW-EDF scheduling policies. EDF was excluded as it was found
to make the same decisions as RM-FP for most of our task sets. This behaviour
is corroborated by [35]. The performance of our proposed clique partitioning
heuristic (in section 4.1.2) was the same as first-fit. To avoid cluttering the
diagrams, we excluded this result from the diagrams.

Partitioning under FF DBF Approx. deteriorates very rapidly as number
of tasks and utilisation increase and building a schedule gives us the highest
schedulability ratio. Taking Figure 7.4(a) for instance, when we assume that
we have a sustainable scheduler, e.g., using FF CW-EDF, we can schedule an
average of 77% of task sets across all utilisation values. Using tests that do not
assume this, e.g., FF Jeffay and FF Davis, we can only schedule an average
of 59% of task sets across all utilisation values.

Quantification of pessimism in partitioning heuristics. The necessary
test NPT as presented in Figure 7.4 serves as an upper bound that separates
non-partition-able task sets from those that may or may not be partition-able.
As it can be seen, with a larger number of processors (e.g., 8), partitioning
heuristics that are based on sustainable scheduling (generated by FF CW-
EDF or FF RM-FP are almost as good as an optimal partitioning strategy
because they can find a schedule for 98% of task sets that pass the necessary
test across all utilisation values (see Figure 7.4(b)). Other tests that are not
based on sustainable partitioning like FF Davis and FF Jeffay can find a
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Figure 7.4: Performance of first-fit partitioning with different
schedulability tests

schedule for 93% of task sets that pass the necessary test. Taking Figure 7.4(a),
sustainable partitioning, i.e., using FF CW-EDF, we can schedule 91% of task
sets that pass the necessary test while other partitioning heuristics can only
schedule an average of 67% of task sets that pass the necessary test across all
utilisation values. Hence, using sustainable partitioning increases schedulability
ratio by 24 percentage points in this case.

7.1.5 A Comparison between Global, Partitioned, and Semi-
Partitioned Solutions for Sequential Tasks

In this section, we plan to compare the best solution from each of the three main
scheduling approaches: global, partitioned, and semi-partitioned. The goal is
to understand which of these approaches provides a higher schedulability for
sequential task sets. The data shown in the chart of Figure 7.5 compares the
following FF CW-EDF, FF Jeffay, G CW-EDF, LIQ and NPT introduced
in Table 7.1.

An interesting observation in Figure 7.5 is that partitioned scheduling gets
better as number of processors and tasks increase irrespective of the test used.
This is a contrast to global scheduling where increasing the number of tasks
caused a large decline in performance (comparing Figure 7.5(a) and 7.5(b)).
Figure 7.5(a) shows that when 10 tasks are scheduled on 8 processors, the aver-
age schedulability ratio of FF CW-EDF is 85% and it rises to 94% when there
are 30 tasks in 7.5(b).

Another important observation is that task sets that fail the necessary test
for partition-ability could still be feasible. Of all the methods compared, only
liquid-path scheduling LIQ is able to achieve this as shown in Figure 7.5(a). The
chance of scheduling non-partition-able task sets gets slimmer as the number
of tasks and processors increase (comparing 7.5(a) and 7.5(b)). In the case of
8 processors and 30 tasks, we see that all the task sets generated passed the
necessary test. The actual performance of algorithms also closely match this as
all task sets are still schedulable at 70% utilisation and we can schedule half the
tasks sets at 90% utilisation.

For the sake of readability of the diagrams, we only mention the confidence
intervals in the text. In the scenarios presented in Figures 7.5(a) and 7.5(b), the
largest observed confidence intervals with respect to the average schedulability
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Figure 7.5: A comparison between global, partitioned, and semi-
partitioned scheduling for sequential task.

ratio of each algorithm were ±4.7% and ±6.1%, respectively.

7.2 Parallel Tasks

7.2.1 Task Generation

We generate a DAG task set of size n by first generating n random utilisation
values via the UUniFast algorithm [8] which generates random utilisation values
that add up to a target value U . Periods are picked from the set {x.10y|1 ≤
x ≤ 9, 3 ≤ y ≤ 5} with equal probability of occurrence. This method of period
assignment covers three orders of magnitude and is in line with industrial task
sets and synthetic task sets from other research works [39, 31, 42]. The WCET
of the whole DAG is then computed from the utilisation and period values.

With regards to the internal structure of the DAG, we use the method in [31]
which generates series-parallel DAG tasks with nested fork-joins by recursively
expanding sub-tasks (nodes) to either terminal nodes or parallel sub-graphs until
one of the limits of the DAG is reached. These limits are supplied as parameters
to our generation algorithm and are (i) the maximum number of branches from
any node, (ii) the maximum length of the critical path, or (iii) the maximum
number of nodes in the DAG. Sequel to the generation of the DAG structure,
WCET of the sub-tasks are assigned by again calling UUnifast with the WCET
of the whole DAG and the number of nodes therein. Each node has a probability
of either being a terminal node (pterm) or recursively expanded to have more
branches (pparallel). These values are described in Table 7.2 along with other
tunable parameters of a DAG.

7.2.2 Empirical Results

In our experiments on DAG scheduling, we vary the same parameters of number
of processors, number of DAG tasks and utilisation as in sequential tasks. Our
performance metric is again, schedulability ratio.

A combined performance comparison of parallel task solutions. We
evaluate schedulability of DAG tasks by comparing decomposition approaches
with direct scheduling. Additionally, within the decomposition approach, we
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Property Description Value

n Number of DAG tasks in the task set. Varied

Max Jobs Per Hyper-
period

Upper bound on the number of jobs in the hyper
period.

10,000

Max Branches Maximum number of branches 3

pterm Probability that a node is a terminal node, i.e.,
no more child nodes originate from this.

0.3

pparallel Probability that a node is a parent node. 0.7

padd edge Probability that an edge exists between sibling
nodes.

0.2

Max Critical Path
Nodes

Maximum number of nodes in the critical path of
the DAG.

50

Min Nodes Minimum number of sub tasks in a DAG. 5

Max Nodes Maximum number of sub-tasks in a DAG. 50

Table 7.2: Tunable DAG properties

Figure 7.6: The impact of number of tasks on DAG schedulability
(m=4)

compare the performance of globally scheduling the decomposed DAG tasks
and partitioning them. Essentially, we compare the combination of decompos-
ition and scheduling strategies. We compare FED, DirEDF, DECOM1 and
DECOM2 as introduced in Table 7.1.

From Figure 7.6, we see that the performance of federated scheduling of DAG
tasks decreases as number of DAG tasks increase. However, partitioned schedul-
ing of decomposed DAG tasks improves as the number of DAG tasks increase.
This is in line with our findings from sequential task experiments where parti-
tioned scheduling improved with increasing number of tasks, i.e., FF CW-EDF
and FF Jeffay in Figures 7.5(a) and 7.5(b). Additionally, in Figure 7.7, we see
that the combination of our decomposition strategy (DECOM2) and first-fit
partitioning yields the best schedulability ratio among all methods. Generally,
the combination of decomposition and first-fit partitioning performs better than
both direct scheduling of DAG tasks and global scheduling of decomposed DAG
tasks.

Figure 7.7 shows 10 DAG tasks on 4 and 8 processors. In these scenarios, DE-
COM2 with first-fit can schedule an average of 71% and 72% of task sets across
all utilisation values on 4 and 8 processors, respectively, while DirEDF can only
schedule an average of 20% and 18% on 4 and 8 processors, respectively. Fur-
thermore, in the case of 4 processors, the decomposed globally scheduled solu-
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Figure 7.7: A combined performance comparison of parallel task solu-
tions

tions perform worse than federated scheduling FED while federated scheduling
performs worse in the case of 8 processors. This is because federated scheduling
assigns an exclusive set of processors to each DAG that has a utilisation greater
than 1. Thus, when there are less processors available for the same number
of DAG tasks, each DAG has a higher utilisation value and therefore, more
DAG tasks claim multiple processors to themselves leaving fewer processors for
low-utilisation tasks to share and decreasing the overall schedulability.

7.3 Hardware Implementation

In this section, we evaluate the performance of the algorithms mentioned in
section 6.2 in terms of dynamic memory consumption and runtime overhead.
For our implementation, we have used the Raspberry Pi3 Model B. The board
is equipped with the Broadcom BCM2837 64bit CPU with frequency set to
1.2GHz. There are 4 processors in total and 1GB of RAM. We do not use
the operating system shipped with the board - Raspberry Pi OS - but build
bare-metal implementations of our schedulers.

Memory Consumption

Offline scheduling solutions typically require some additional memory apart
from the task parameters. In this section, we evaluate the memory consumption
necessary to implement FIFO-OT on multiprocessor platforms.

Our implementation uses the automotive benchmark where task sets all have
periods (in ms) ∈ {1, 2, 5, 10, 20, 50, 100, 200, 1000}. This shows that the first
limitation is that a period does not exceed 1000, therefore the largest offset φ, is
also bounded by 1000. Consequently, to store our offset values, we only needed
16 bits. Each offset value in the table is accompanied by a job ID that denotes
the last job in a consecutive set of jobs on which the offset applies. A job ID
depends on the number of jobs in a hyperperiod because offsets get reset every
hyperperiod. Our simulations limit this to 10,000 jobs in a hyperperiod, hence
we need 16 bits to store a job ID. As such, each offset entry cost us 32 bits.

As a baseline, we compute the cost of storing the whole scheduling table. To
store the whole table for one hyperperiod, we need to know the task ID and the
arrival time. We assume that arrivals are reset each hyperperiod and as such
16 bits is sufficient to store this value. Task IDs are limited to 8 bits giving us
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Error bars represent 95% confidence intervals.

Figure 7.8: Memory consumption of offset tables in bytes

a total of 24 bits per table entry. Additionally, we compare the offset tables
generated by different policies. We compare the offset tables resulting from
global EDF with tables generated for partitioned offline schedules. These are
shown as G EDF and FF CW-EDF, respectively in Figure 7.8. The data
presented is limited to task sets that are schedulable for each policy and in
Figure 7.8, we see that offset tables cost less than a table scheduler irrespective
of the policy used. However, offsets are much larger when there is a lot of
migration in the schedule as can be seen in the large difference between the size
of tables produced by global and partitioned policies. Offset tables built from
FF CW-EDF never exceed 10% of the amount of memory required for a table
scheduler across scenarios.

Runtime Overhead

Figure 7.9: Scheduling overhead
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We measure scheduling overheads as how long it takes for the scheduler to
make a decision each time it is called. We keep track of time by counting the
ticks of the system timer on the Raspberry Pi. Figure 7.9 shows the scheduling
overhead of Global EDF (G EDF), Global FP (G FP), Partitioned EDF (P
EDF), Partitioned FP (P FP), Partitioned CW-EDF (P CW-EDF) and fi-
nally our sustainable scheduler (FIFO-OT). Our implementation has a runtime
overhead that is 2% lower than partitioned EDF and 30% higher than parti-
tioned FP scheduling across all task set sizes evaluated. While having lower-
scheduling overhead, the schedulability ratio of partitioned FP without using
our sustainable scheduling policy was 74% (across all utilisation values in Fig-
ure 7.5) while it was 90% when using our sustainable scheduling policy.

Additionally, the global schedulers incur the highest-average overheads. Our
implementations of global FP and global EDF use semaphores to ensure mutu-
ally exclusive access to the scheduler and this makes their average overhead much
larger than the partitioned counterparts because processors are often blocked
on semaphores and have to wait for each other to be able to make scheduling
decisions. FP has a smaller overhead than EDF in both the global and parti-
tioned cases because it does not always have to loop through the task set to
make a scheduling decision.

Error bars represent 95% confidence intervals.

Figure 7.10: Average scheduling overhead
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Chapter 8

Conclusions

In this chapter, we present a summary of our contributions, our answers to the
research questions posed in section 1.1, and proposals for future work.

8.1 Summary of Contributions

A necessary test for partition-ability. We have designed a necessary test
that returns the minimum number of processors required to partition a given
sequential workload in section 4.1.3. Our proposed test is based on identifying
conflicts in a task set and constructing a graph model of the conflicts where
nodes are tasks and edges exist between any two tasks that do not satisfy the
necessary conditions for schedulability. Such a graph, gives us information on
which tasks cannot be partitioned together on a single processor. Consequently,
a clique in this graph represents a set of tasks that cannot be partitioned together
and hence the minimum number of processors required to partition the task set
is lower bounded by the size of the largest clique in the graph.

Sustainable partitioning for non-preemptive task sets. In section
4.1.1, we have shown the impact of using sustainable scheduling on the suc-
cess of partitioning heuristics. We have further extended FIFO-OT for mul-
tiprocessor platforms so that it can not only be used by partitioned but also
semi-partitioned and global scheduling policies.

Liquid-path scheduling. In section 4.2, we introduced the first semi-
partitioning algorithm for non-preemptive tasks on multiprocessor platforms.
Our algorithm works by assigning jobs to processors for one hyperperiod in-
stead of a whole task, i.e, it is a job-based fitting technique.

A global non-work conserving scheduler. In section 4.3.1, we extended
CW-EDF, a uni-processor non-work conserving policy, to design the first global
non-work conserving scheduling policy for multiprocessor platforms.

Partitioned scheduling of decomposed DAG tasks. To use classical
partitioning for parallel tasks, we first decompose each parallel task into a set
of sequential tasks with precedence forced by offsets and relative deadlines. In
chapter 5, we have introduced a DAG decomposition algorithm that is tailored
to non-preemptive execution of DAG nodes. We propose that the resulting
decomposed DAG tasks are scheduled by partitioning to increase schedulability
and reduce the scheduling overhead.

Implementing various scheduling policies on a bare-metal hardware
platform. We have implemented a set of schedulers on a bare-metal multipro-
cessor platform to evaluate their runtime overhead and memory consumption.
These include existing partitioned and global schedulers and our sustainable
multiprocessor scheduler as shown in chapter 6.
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8.2 Research Questions

RQ1. What is the impact of a sustainable scheduling policy on the success of
partitioning heuristics when applied to non-preemptive sequential and/or parallel
tasks?

Across all the scenarios that were examined, sustainable partitioning gives us
the highest-schedulability ratio. Taking Figure 7.4(a) for instance, sustainable
partitioning can schedule an average of 77% of task sets across all utilisation
values while other strategies can only schedule an average of 59% of task sets
across all utilisation values. To apply sustainable partitioning to parallel tasks,
we first decomposed the tasks to a series of sequential tasks. The schedulability
ratio of sustainable partitioning of a decomposed parallel task was found to
surpass both direct and decomposed global scheduling in all examined cases.

RQ2. How can the pessimism of the existing partitioning heuristics be quantified
given the lack of an optimal partitioning algorithm?

We have built a necessary test that serves as an upper bound on non partition-
able task sets. In most observed cases, our sustainable partitioning strategy is
able to schedule 98% (see Figure 7.5(a)) of task sets that pass our necessary
test while other solutions in the state of the art were able to schedule only 79%
of task sets that pass the necessary test. In our best observed performance (6
tasks on 4 processors), sustainable partitioning is able to schedule 100% of the
task sets that pass the necessary test while the best performance (10 tasks on
8 processors) of other strategies was 93%.

RQ3. Can a semi-partitioned scheduling solution be designed to schedule task
sets that cannot be partitioned?

We have designed a semi-partitioned solution called liquid-path scheduling
and observed that of all the methods compared, only liquid-path scheduling is
able to schedule task sets that fail the necessary test for partitioning as shown
in Figure 7.5(a).

RQ4. How viable are non-work-conserving policies for global scheduling in
terms of schedulability and overheads?

Our global non-work-conserving policy was able to schedule an average of
65% of task sets on 2 processors and 51% on 8 processors across all utilisation
values (see Figure 7.3). Its performance decreases with increasing number of
processors and tasks (see Figures 7.2 and 7.3) and as such does not scale well.

RQ5. What are the overheads (in terms of runtime and memory usage) of
global, partitioned, and semi-partitioned scheduling on multiprocessor platforms?

On average, our sustainable scheduler used 10% of the memory required for
a table-based scheduling solution. Our implementation has a runtime overhead
that is 2% lower than partitioned EDF and 30% higher than partitioned FP
scheduling (see Figure 7.9). This overhead is the price we pay to have 25 per-
centage points more schedulability than the non-sustainable scheduling policies
(see Figure 7.5).

In conclusion, our work has shown that partitioning solutions can provide
much higher schedulability ratio with much smaller runtime overhead than
the global solutions (even in comparison to our newly developed non-work-
conserving global scheduling algorithm). We also showed that the proposed
partitioning solutions are highly efficient and capable to schedule most of the
partition-able task sets. Moreover, we have shown that it is indeed possible
to surpass the schedulability of partitioning solutions by designing a semi-
partitioned scheduling solution that uses sustainable schedulers on each core.
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8.3 Future Work

So far, we have focused on periodic tasks and assumed no release jitter. In the
future, it would be interesting to extend this work to include sporadic tasks and
also extend the solutions to handle systems with release jitter.

Our necessary test can only answer whether a task set is certainly not partition-
able. However, it does not tell if that task set could or could not be scheduled
by any other scheduling approach such as global or semi-partitioned scheduling.
Hence, a nice future work would be to make a test that provides a bound on
the feasibility of a task set under non-preemptive scheduling in general.

Moreover, we have developed the liquid-path scheduling, a job-fitting tech-
nique that employs some constraint propagation. So far, we have not added
backtracking or backjumping to the algorithm. In the future, we would like
to see how much further we can push performance of the solution when using
backtracking.

Finally, the comparisons in this thesis have been based on schedulability ratios
but it can be further extended to see which methods minimise the number of
processors necessary to schedule a task set.
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