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Abstract
As housing development and housing market policies involve many long-term 
decisions, improving house price predictions could benefit the functioning of the 
housing market. Therefore, in this paper, we investigate how house price predic-
tions can be improved. In particular, the merits of Bayesian estimation techniques 
in enhancing house price predictions are examined in this study. We compare the 
pseudo out-of-sample forecasting power of three Bayesian models—a Bayesian 
vector autoregression in levels (BVAR-l), a Bayesian vector autoregression in dif-
ferences (BVAR-d), and a Bayesian vector error correction model (BVECM)—and 
their non-Bayesian counterparts. These techniques are compared using a theoretical 
model that predicts the borrowing capacity of credit-constrained and unconstrained 
households to affect house prices. The findings indicate that the Bayesian models 
outperform their non-Bayesian counterparts, and within the class of Bayesian mod-
els, the BVAR-d is found to be more accurate than the BVAR-l. For the two winning 
Bayesian models, i.e., the BVECM and the BVAR-d, the difference in forecasting 
power is more ambiguous; which model prevails depends on the desired forecasting 
horizon and the state of the economy. Hence, both Bayesian models may be consid-
ered when conducting research on house prices.
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1 Introduction

House price predictions are a fundamental part of informed decision-making in the 
built environment. For instance, the construction of houses is a time-consuming 
process.1 Therefore, when contemplating whether to embark on a house-building 
project, one must consider future prices rather than current ones. The same ration-
ale applies to housing market policies; the implementation of policies is a substan-
tial undertaking, and their effects do not materialize immediately. Consequently, it 
may be prudent for policymakers to intervene or consider how to intervene before 
problems emerge. Moreover, house price forecasts can potentially reduce market 
uncertainty by providing guidance to the market at times when house prices are at a 
turning point. This is beneficial for banks and their regulators as it enables them to 
determine better capital requirements, thereby improving risk management. As such, 
in this paper, we compare different house price forecasts and test which provides 
more accurate house price predictions.

A frequently used method to forecast house prices is the ordinary least squares 
(OLS) technique. However, the problem with this estimation technique, for the use 
of forecasting house prices, is that it minimizes the sum of squares. While this tech-
nique results in the best fitting model (the model with the highest possible R2 ), it can 
cause issues for forecasting as OLS models tend to explain variation that cannot be 
explained: they may overfit the data. That is, the model tries to attribute all varia-
tion to the model’s variables, while some variation observed in the data simply can-
not be explained. This issue is especially relevant in the context of complex models 
that involve a large number of variables. Nonetheless, even for relatively parsimoni-
ous models, overfitting can occur (Giannone et al., 2015). This overfitting problem 
manifests itself as a poor out-of-sample performance, and hence it is particularly 
undesirable when forecasting.

Bayesian models can reduce this overfitting problem by utilizing prior informa-
tion on the behavior of time series.2 Therefore, Bayesian estimation techniques are 
often preferred to their OLS counterparts (Bańbura et  al., 2010; Giannone et  al., 
2015; Koop et al., 2010b). In the literature, three Bayesian model specifications are 
frequently used to predict economic time series: a Bayesian vector autoregression 
in differences (BVAR-d), a Bayesian vector autoregression in levels (BVAR-l), and 
a Bayesian vector error correction model (BVECM). A point of criticism expressed 
regarding the first model (the BVAR-d), is that it does not take long-run—or coin-
tegrating—relationships into account.3 Since the second model (the BVAR-l) is pre-
sented in levels, it does allow for (implicit) cointegrating relationships. The model 

1 The time it costs to build a house depends, of course, on the regulatory context of the country (Oh & 
Yoon, 2020). Nonetheless, generally speaking, it ranges anywhere from three months to ten years (Meier, 
2018; Michielsen et al., 2019; Oh & Yoon, 2020).
2 It is worth noting that there are alternative methods that combat overfitting problems. Two popular 
ones are Ridge and Lasso regression (also called regularization methods). Note, however, that these two 
are, under some conditions, equivalent to Bayesian estimation. In this paper, we solely rely on Bayesian 
models due to their flexibility.
3 Note that modeling long-run relationships is especially important when predicting house prices, as the 
housing market is a sluggish market where prices exhibit long cycles and supply increases slowly.
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does, however, include all potential long-run relationships and does not restrict vari-
ables to converge to their equilibrium in the long run. Consequently, the last model 
(the BVECM) might be more desirable than the previous two models as it includes 
a cointegration constraint that ties the variables together in the long run (Engle & 
Granger, 1987a).

The contribution of this study is twofold. Firstly, the literature lacks an empirical 
comparison of the forecasting ability of house prices for the three aforementioned 
Bayesian models. Although some studies have compared one or two of these Bayes-
ian models to each other or their non-Bayesian counterparts, a systematic evaluation 
of all three models has not yet been undertaken. We conduct such a systematic com-
parison of the proposed Bayesian models and their non-Bayesian counterparts. Sec-
ondly, in the housing literature, a BVECM has, to the best of our knowledge, not been 
used to forecast house prices on a macroeconomic (or national) level, even though its 
model specification looks promising.4 Thus, our second contribution to the literature 
is to assess the merits of a BVECM to predict house prices on a national level.

Theoretical insights are required to incorporate long-run relationships into a 
BVECM. The long-run relationship we employ takes the importance of the financial 
sector into account by incorporating an equilibrium relationship between mortgage 
credit and house prices. This relationship is derived by Van der Drift et al. (2023) 
and relies on the notion that households spend a fixed fraction of their income on 
mortgage costs. The analysis is applied to the Dutch housing market as Dutch house-
holds generally purchase houses through mortgages, and thus, the proposed credit-
based long-run equilibrium applies (Van der Drift et al., 2023).

The remainder of the paper is organized as follows. Section 2 briefly introduces 
the long-run model. Section 3 summarizes the econometric methods applied in this 
empirical analysis. Section 4 discusses how we evaluate each model’s performance, 
Sect. 5 presents the results, and the last section concludes the paper.

2  The Long‑Run Model

The literature contains an abundance of papers on potential equilibrium relation-
ships for house prices.5 In this paper, we focus on one equilibrium relationship: the 
relationship between mortgage credit and house prices. This equilibrium can be 
explained by the fact that, in most countries, houses are bought through a mortgage, 
and consequently, mortgage conditions are an important driver of house prices. Not 
only does it drive demand, but it can be used to assess whether the housing mar-
ket is overvalued. This works as follows: if households spend an increasingly larger 

4 We are only familiar with the application of the BVECM in spatial/regional housing market models, 
and have not encountered papers that forecast house prices on a national level using a BVECM. Moreo-
ver, previous studies utilizing the BVECM employed standard priors and thereby neglected identification 
issues that can arise with the use of standard priors. Section 3.4 provides a more detailed discussion on 
this matter.
5 E.g., Fraser et al. (2008), Hort (1998), Hott and Monnin (2008), Iacoviello and Neri (2010), Korn and 
Yilmaz (2022), Liu et al. (2017), Malpezzi (1999), Mikhed and Zemcik (2009), Ozbakan et al. (2019), 
Scott (1990), and Tu et al. (2017).
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share of their income on housing, it could indicate potential default risk. That is, 
households simply are unable to spend a larger and larger fraction of their income 
on housing, and consequently, the demand for housing, and hence house prices, are 
likely to decrease shortly.

The credit-based equilibrium relationship employed in this paper incorporates the 
recent extension developed by Van der Drift et al. (2023). In contrast to previous equi-
librium relationships, this relationship takes two types of households into account: lower-
income and higher-income households. The first type, lower-income households, are 
assumed to be constrained in their borrowing behavior. This constraint could be caused 
by either a credit rationing bank or stringent financial regulation. Either way, due to the 
constraint, borrowers can only spend a certain share of their monthly income on mortgage 
costs (i.e., these households face a debt-service-to-income cap). In the model, these maxi-
mum monthly mortgage payments are discounted to receive the total amount a lower-
income household can spend on housing (bmax,c

t ).6
The other category of consumers, higher-income households, may not be sub-

ject to lending regulations. However, these households might exhibit a preference 
for allocating a specific proportion of their income towards mortgage payments. 
This can be conceptualized as a household budget plan where housing, the largest 
expense, receives a set amount and the remaining funds are allocated towards other 
expenses such as food, transportation, and leisure activities. Again, the monthly val-
ues are discounted to reflect their ability (or desire) to pay for housing ( bcd, ut ).7

In Van der Drift et al. (2023), it is formally derived that this long-run equilibrium 
can be presented by:

Thus, from Eq. (1) it follows that the purchase price of housing ( Pt ) is explained by 
the maximum borrowing amount of constrained households ( bmax,c

t  ) and the ability 
to pay of unconstrained households ( bcd, ut ).8 Finally, � reflects the spending share 
of constrained households and the parameter � reflects the fraction of income high-
income households spend on mortgage costs.9 An overview of the data sources used 
to estimate Eq. (1) is presented in Table 1 and the data is plotted in Fig. 1.

While this equilibrium condition may provide a useful benchmark, the reality of the 
housing market is more complex. The housing market is a sluggish market and, due to 

(1)Pt = �bmax, c
t

+ (1 − �)�bcd, u
t

.

6 The maximum borrowing amount of constrained households ( bmax,c
t  ) is expressed as a proportion ( �t ) 

of household income ( yt ), discounted at the mortgage interest rate ( it ) over the duration of the mortgage 
(n). Therefore, the maximum borrowing amount is given by: bmax

t
= �tyt

1−(1+it )
−nt

it
.

7 The ability to pay of unconstrained households ( bcd, ut  ) is defined similarly as the maximum borrowing 
amount of constrained households. There are, however, two differences: the debt-service-to-income cap 
( � ) is not included, and the mortgage interest deduction rate ( � ) is included in the calculation. This yields 
the following formula: bcd

t
=

it

1−(1+it )
−n

− it�t.
8 Note that housing supply is not included in the equilibrium outcome. This is the case as both types of 
consumers have unitary elastic demand. Consequently, an increase in housing supply will be offset by house-
holds demanding more housing. Please refer to Van der Drift et al. (2023) for more information on this topic.
9 The spending share is determined through empirical estimation, thus obviating the need for data on the 
relative consumption shares in the analysis.
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speculative or psychological effects, it adjusts gradually to changing economic conditions. 
Consequently, house prices cannot be expected to always be at the long-run equilibrium 
relationship. As such, studies have found that lagged values of house prices yield substan-
tial explanatory power over future values of house prices (Abraham & Hendershott, 1996; 
Hort, 1998; Malpezzi, 1999). Especially in the Netherlands, a country that displays mini-
mal house price reversals, research has shown that house prices are past dependent (De 
Vries & Boelhouwer, 2009; Tu et al., 2017). To account for this phenomenon, we include 
four lags of each variable in the models.10

3  Methodology

In the following subsections, we discuss each of the empirical models whose predic-
tive power will be evaluated in this paper.

Table 1  Data

The acronyms NVM, DNB, NIBUD, Tax, and CBS refer respectively to the Netherlands’ Association 
of Realtors, the Central Bank of the Netherlands, the National Institute for Family Financing, Dutch tax 
documents, and Statistics Netherlands

Variable Abbr Source

Median house prices P
t

NVM
Maximum borrowing amount of constrained households b

max,c

t
CBS, DNB & NIBUD

Ability to pay of unconstrained households b
cd,u

t
CBS, DNB & Tax

Fig. 1  Time series charts

10 One might argue that adding this many variables will hamper the model’s efficiency. However, we 
would like to stress that variable selection is a less pronounced issue for Bayesian models as it effectively 
recognizes robust relationships between variables.
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3.1  VAR

VARs are standard models to forecast time series, and they generally produce good 
forecasting results (Giannone et  al., 2019). VARs can be viewed as a system of 
equations in which each dependent variable is explained by its own lags and the lags 
of explanatory variables, which themselves are the dependent variables in the sys-
tem of equations (Sims, 1980). Due to this functional form, VARs are able to depict 
economic dependencies between own past values and lagged values of explanatory 
variables. Mathematically, the system of equations, in which all n variables are pre-
dicted, can be presented in the following way:

where yt is an n × 1 vector of variables. For the model presented in Sect.  2, yt is 
equal to the vector P

t
 , bmac,c

t
 , and bcd,u

t
 . p reflects the number of lags that are included 

in the regression and, as discussed in Sect. 2, in our research this term is equal to 
four. �i is an n × n matrix of parameters, and �t is an n × 1 vector of disturbance 
terms or ‘noise’.

A prerequisite for the estimation of the above-presented VAR is that the analyzed 
time series are stationary.11 House prices—and macroeconomic variables in gen-
eral—usually fail to meet this requirement (Clayton, 1997; Koop et al., 2005; Wu 
et al., 2017). These time series are often non-stationary, and OLS-based inference 
breaks down; the autoregressive coefficients are biased and the t distributions are no 
longer approximately normally distributed.12 Moreover, variables can appear to be 
related when in fact they are not, i.e., we might run a spurious regression.

In order to avoid invalid estimation, the data can be transformed into a stationary 
process by taking the differences between consecutive observations. If this first (sec-
ond, third, etcetera) difference is stationary, we can run a VAR in differences (i.e., a 
VAR-d) without violating estimation assumptions. If we let Δ denote the difference 
operator, the VAR-d has the following functional form:

For the model that will be estimated, i.e. the model described in the previous sec-
tion, Eq. (3) can be written as:

(2)yt = c +

p∑
i=1

�iyt−i + �t,

(3)Δyt = c +

p∑
i=1

�iΔyt−i + �t.

11 A stationary variable is one whose mean, variance, and covariance remain constant over time. Non-
stationary variables, on the other hand, may exhibit trends, cycles or random walks.
12 Note, that if variables are cointegrated that the OLS estimators are unbiased. In fact, the estimators are 
superconsistent; i.e., they converge to their true values at a faster rate than is the case for stationary vari-
ables (Stock, 1987) Nevertheless, if there is not “sufficient cointegration" their asymptotic distribution 
may be non-standard (Toda & Phillips, 1994).
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Thus, from Eq. (4) it explicitly follows that each variable has its own equation. 
Thence, all explanatory variables in a VAR are endogenous variables, i.e., they are 
created within the model. This provides a major advantage in forecasting, as there is 
no need to obtain information on future values of the explanatory variables.

3.2  VECM

As discussed above, VARs generally have to be differenced in order for the vari-
ables to be stationary and the estimation to be valid. However, in case of a common 
stochastic trend (i.e., cointegration), we can provide a meaningful interpretation of 
the parameters in their levels without violating any of the estimation assumptions. 
When data are cointegrated there namely exist relationships between variables in 
levels, which can render these variables stationary without taking consecutive differ-
ences. So-called VECMs capture these relationships and, in the presence of cointe-
gration, are expected to outperform VARs over longer forecasting horizons (Engle & 
Yoo, 1987).

These long-run relationships are especially important when predicting house 
prices, as the housing market tends to adapt sluggishly to changing economic con-
ditions. Therefore, in the empirical housing market literature, models that capture 
these long-run relationships (VECMs) are often preferred over models that do not 
(VAR-d).13 Mathematically, a VECM can be presented by:

The only difference with a VAR-d (Eq. 3) is the error correction term yt−1 , which 
captures how variables change if one of the variables departs from its equilibrium 
value. The term’s parameter Π represents the effect of the error-correction term on 
the short-run variables. This term is a n × r vector, where r is called the cointegra-
tion rank. r can be used to demonstrate the relationship between a VECM, a VAR-d, 
and a VAR-1. This works as follows: if r is zero, there are no cointegrating relation-
ships, and the model reduces to a VAR-d as presented in Eq. (3). If r is larger than 
zero but smaller than n, cointegration is present and the model is best represented 

(4)

ΔPt = c1 +

4∑
i=1

�1, 1, iΔPt−i +

4∑
i=1

�1, 2, iΔb
max, c

t−i
+

4∑
i=1

�1, 3, iΔb
cd, u

t−i
+ �1, t

Δbmax, c
t

= c2 +

4∑
i=1

�2, 1, iΔPt−i +

4∑
i=1

�2, 2, iΔb
max, c

t−i
+

4∑
i=1

�2, 3, iΔb
cd, u

t−i
+ �2, t

Δbcd, u
t

= c3 +

4∑
i=1

�3, 1, iΔPt−i +

4∑
i=1

�3, 2, iΔb
max, c

t−i
+

4∑
i=1

�3, 3, iΔb
cd, u

t−i
+ �3, t.

(5)Δyt = c +

p∑
i=1

�iΔyt−i + Πyt−1 + �t.

13 See for example: Abraham and Hendershott (1996), Brissimis and Vlassopoulos (2009), Clayton et al. 
(2019), Damen et al. (2016), Hort (1998), Leung (2014), Malpezzi (1999), Tu et al. (2017), and Tuluca 
et al. (2000).
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by a VECM (Eq. 5).14 Yet, if r = n , the variables are stationary, no cointegration is 
present, and the model can be validly estimated by a VAR-l (Eq. 2).

If the data are cointegrated (i.e., 0 < r < n ), the parameter Π can be further divided 
into two subterms: Π = ��� . Where �′ can be interpreted as the distance of the vari-
ables from their equilibrium and � and describes the speed at which variables converge 
back to the equilibrium. In vector form, this error-correction term is rather abstract, yet 
for the model that will be estimated,15 the VECM can be written as:

where Pt−1 − ��
1
b
max, c

t−1
− ��

2
b
cd, u

t−1
 reflects the error-correction term. This term reflects 

how much the previous period deviated from the model’s long-run equilibrium. 
Its coefficient ( � ), denotes how fast the equilibrium will be restored. Therefore, if 
variables are above (below) the long-run equilibrium they are expected to decrease 
(increase) shortly. Thus, in contrast to the VAR, this model incorporates an equilib-
rium mechanism and, when employed correctly, one can think of this equilibrium 
mechanism as a bubble buster.

3.3  BVAR

A drawback of the above-described models is that they contain numerous param-
eters that need to be estimated, while macroeconomic time series generally have a 
short length. To illustrate this argument: the simple three-variable VAR-d model 
presented in Eq. (4) already includes 39 parameters that have to be estimated. Par-
ticularly, when time series are relatively short, this can cause overfitting; i.e., a situa-
tion in which the in-sample fit of the model (i.e., the R2 ) is excellent, but the model’s 
out-of-sample performance is poor.

Bayesian estimation techniques combat the overfitting problem by using Bayes’ 
rule to shrink the model’s parameters towards a benchmark that is known to have 
decent forecasting power (Doan et  al., 1984; Litterman, 1979; Sims, 1980). This 
benchmark is called the prior and broadly speaking it reflects a loss function for 
implausible explanations. Therefore, the model does not optimize its in-sample fit 

(6)

ΔP
t

= c1 +

4∑
i=1

�1, 1, iΔPt−i +

4∑
i=1

�1, 2, iΔb
max, c

t−i
+

4∑
i=1

�1, 3, iΔb
cd, u

t−i
+ �1(Pt−1 − ��

1
b
max, c

t−1
− ��

2
b
cd, u

t−1
) + �1, t

Δbmax, c

t
= c2 +

4∑
i=1

�2, 1, iΔPt−i +

4∑
i=1

�2, 2, iΔb
max, c

t−i
+

4∑
i=1

�2, 3, iΔb
cd, u

t−i
+ �2(Pt−1 − ��

1
b
max, c

t−1
− ��

2
b
cd, u

t−1
) + �2, t

Δbcd, u
t

= c3 +

4∑
i=1

�3, 1, iΔPt−i +

4∑
i=1

�3, 2, iΔb
max, c

t−i
+

4∑
i=1

�3, 3, iΔb
cd, u

t−i
+ �3(Pt−1 − ��

1
b
max, c

t−1
− ��

2
b
cd, u

t−1
) + �3, t ,

14 Where r reflects the number of cointegrating vectors: if this number is one, there exists one linear 
combination of the variables that is stationary, and if r is two, there exist two linearly independent com-
binations, et cetera.
15 In line with the results of the Johansen test (Table 3) we model a VECM with one cointegrating rela-
tionship ( r = 1 ). Given that the model contains only one cointegrating relationship, we utilize the Engle-
Granger two-step method (2OLS) to conduct the analysis.
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completely, which reduces overfitting problems, decreases parameter uncertainty, 
and improves the model’s forecasting accuracy.

The Bayesian estimation method can be used to estimate the VAR-d as presented 
in Eq. (3), but it can also validly estimate a VAR-l as presented in Eq. (2). Thus, 
in contrast to an OLS-based VAR, having stationary data is not a requirement to 
estimate a BVAR (Phillips, 1991; Sims et al., 1990). That is the case as Bayesian 
estimation has the same shape regardless of whether the data are stationary or non-
stationary, and consequently, one can validly estimate a BVAR-l.16

There is no consensus in the economic literature as to whether one should employ 
a BVAR-l or a BVAR-d. However, in the housing literature, the BVAR-l is used rela-
tively more often.17 The popularity of the BVAR-l over the BVAR-d can presumably 
be explained by the fact that estimation in levels does not result in the information 
loss that is caused by differencing the data. Thence, similarly to a VECM, a BVAR-l 
includes information on variables in their levels. Yet, while a (B)VECM contains 
only stationary combinations of variables in levels, a BVAR-l simply contains all 
variables in their levels.18 Thence, the BVAR-l contains more potential long-run 
relationships that have to be estimated and does not restrict variables to converge to 
their equilibrium in the long run, and consequently, it is less efficient compared to a 
(B)VECM (Engle & Yoo, 1987).19 Furthermore, the BVAR-l includes non-station-
ary combinations of variables, while the (B)VECM only includes stationary combi-
nations of variables, some of these non-stationary combinations might seem valid, 
but could turn out to be spurious.

For Bayesian models, it is common practice to utilize the Minnesota prior due to 
its ability to effectively forecast time series (Koop, 2017; Litterman, 1979). However, 
it is important to note that the prior specification for a BVAR-l differs from that of 
a BVAR-d as the former includes non-stationary variables, while the latter includes 
stationary variables. For non-stationary variables, the Minnesota prior incorporates 
the wisdom, that these time series generally follow a random walk. Therefore, it sets 
the prior mean of the first lag of own variables to one and it is set to zero for any 
other parameters (Koop & Korobilis, 2010a; Lütkepohl, 2005). As a result, this prior 
essentially mimics a random walk, which tends to forecast non-stationary variables 

16 Please refer to Sims and Uhlig (1991) for more information on this topic. Suffice it to say that for 
OLS, the conditional likelihood function can be considered as a function of the data given the param-
eters, which may not be standard in case of non-stationarity. In contrast, the Bayesian approach views the 
conditional likelihood function as a function of the parameters given the data, which is standard.
17 For example, Das et  al. (2009), Gupta and Das (2010), and Wu et  al. (2017) employ a BVAR-d to 
estimate house prices. While Cuestas (2017), Emiliozzi et al. (2018), Gupta and Das (2008), Gupta and 
Miller (2012b), Hassani et al. (2017) and Hanck and Prüser (2020) estimate a BVAR-l. Note, however, 
that Hassani et al. (2017) predicted home sales instead of house prices.
18 For the model estimated in this study, the cointegration rank (r) is one. As a result, only one cointe-
grating relationship is estimated in the (B)VECM. For the BVAR-l this restriction is not implied, and 
consequently, this model includes three potential long-run relationships ( r = n).
19 Nonetheless, in the literature it is often argued that restrictions can also result in misspecification of 
the model. A more Bayesian approach would be to put an unlikely prior on these long-run relationships, 
rather than ruling them out completely. Please refer to Appendix  3 for more information on this topic.
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quite well.20 In contrast, for stationary variables, it is customary to set the prior mean 
of all variables to zero. This reduces the model’s parameters to white noise, which is 
known to accurately forecast stationary time series (Koop & Korobilis, 2010a).

The main merit of the Minnesota prior, that hence applies to the BVAR-d as well 
as the BVAR-l, is that the degree to which variables are shrunk differs per parameter. 
More distant lags of parameters (e.g., yt−4 ) are expected to yield less information 
than more recent lags (e.g., yt−1 ). This insight is incorporated by putting a stronger 
prior on more distant lags, hence shrinking these parameters relatively more. More-
over, the Minnesota prior includes the sensible notion that most of the variation in 
each of the variables is accounted for by own lags. This is enforced by putting a 
stronger prior on lags of other variables than on lags of the variable itself.21

3.4  BVECM

In the previous section we mentioned how a (B)VAR-l is different from VECM-like 
models; in essence, a VECM is a restricted VAR-l. These restrictions tie the varia-
bles together in the long run and make the VECM more efficient than an unrestricted 
VAR. Thence, imposing restrictions could result in a better forecasting accuracy.22 
Yet, the Bayesian version of a VECM, the BVECM, has, to the best of our knowl-
edge, not been used to forecast house prices at a macro level. The BVECM has only 
been used in a regional (spatial) model to capture price spillovers across housing 
markets (Gupta & Miller, 2012a; Nneji et al., 2015) and to predict house prices at 
the regional level (Gupta & Miller, 2012b).23 Thence, the literature lacks an applica-
tion and, more importantly, an evaluation of the forecasting power of the BVECM to 
predict house prices at the macro level.

The estimation of a BVECM is highly similar to that of a BVAR. The only differ-
ence is the need for a prior on the error correction term Π . This is, however, compli-
cated by the fact that Π involves a product of parameters Π = ��� , which introduces 
identification issues.24 Because of these identification issues using standard priors is 
problematic and can lead to an improper posterior distribution (Kleibergen & Van 
Dijk, 1994; Koop et al., 2005).

21 For both models, we follow common practice and set the tightness of the prior in accordance with Lit-
terman (1986) and Cuestas (2017).
22 However, it is important to note that incorrectly imposing restrictions could lead to misspecification of 
the model, thereby reducing the model’s forecasting performance.
23 Moreover, these papers use standard priors and therefore do not consider the identification issues 
mentioned below, which could lead to incorrect estimation.
24 In particular, please note that Π relies on a combination of � and �′ which is not unique. Thence, a 
nonsingular matrix A can affect � and �′ without affecting their product Π . Put differently; Π = ��� is 
equivalent to Π = �AA−1�� . In order to identify the model, one needs to put restrictions on � and �′ . 
However, even if global restrictions are imposed, a local identification issue still occurs if � = 0 . Please 
refer to Kleibergen and Van Dijk (1994) and Villani (2005) for more information on this topic.

20 It should be noted that the prior mean suggests that the variables are integrated of order one I(1) but 
not cointegrated. Although technically speaking, it does not eliminate the possibility of cointegration. In 
order to favor cointegration, additional priors have been developed. These priors are outlined and applied 
in Appendices B and C.
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In order to avoid improper estimation, in the main body of the article, we use 
the cointegration space approach.25 Since the cointegration space approach focuses 
on the space spanned by the vector of long-run parameters ( �′)—rather than the 
values of the vector—the prior is able to tackle the above-mentioned identifica-
tion issues (Koop et al., 2005, 2010b; Villani, 2005).26 Moreover, as is customary 
for this approach, we put a noninformative prior on the speed of convergence ( � ) 
(Koop et al., 2010b). And, in line with the estimation of our BVAR, for the short-run 
parameters ( � ) we employ a Minnesota prior with a prior mean of zero.

4  Model Evaluation

To evaluate each model’s predictive ability, we assess their out-of-sample—rather 
than in-sample—performance. This is because, as already hinted at in the introduc-
tion, in-sample errors are likely to underestimate forecasting errors (Makridakis 
et al., 1982). Method selection and estimation are namely designed to optimize the 
fit of the model on historical data, but history is unlikely to repeat itself, at least 
exactly. Thence, overfitting problems will only become apparent when looking at the 
out-of-sample performance of the models.

The entire dataset ranges from 1995 Q1 to 2020 Q4. However, to assess the out-
of-sample performance of the models, we split the data into two parts: (1) the train-
ing set, which is used to estimate the parameters, and (2) the test set, which is used 
for model evaluation. We produce 1–40-quarter-ahead forecasts, starting with the 
training that ranges from 1995 Q1 to 2005 Q4. To eliminate the possibility that an 
arbitrary choice of sample split affects the model’s performance, we rely on a roll-
ing-origin evaluation approach (Tashman, 2000). That is, we update the sample one 
quarter at a time, and repeat the procedure until the end of the sample in 2011 Q4. 
For each forecast, we calculate the Mean Absolute Percentage Error (MAPE) and 
we average them out to end up with our final result.27

25 In Appendix 3 we compare our results to those obtained by using a recently developed prior by Gian-
none et al. (2019).
26 The cointegrating space ℘ = sp(��) is the space spanned by �′ . It is an r-plane in n-space in which the 
cointegrating vectors �′ lie. Please refer to Koop et al. (2005) for a graphical representation of the coin-
tegration space and vector. The central location of ℘ is ℘H = sp(H) and its dispersion is controlled by �.
27 In this study, we employ the MAPE as the measure of forecasting accuracy, rather than the root mean 
squared forecasting error (RMSFE) due to the latter’s arbitrary penalization of large errors. For fur-
ther elaboration on this topic, the reader is referred to Tashman (2000) and/or Willmott and Matsuura 
(2005). Despite this, we have conducted a comparison of the results obtained using the MAPE with those 
obtained using the RMSFE and found that both measures yield similar conclusions. The results of this 
comparison are available upon request.
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5  Results

In this section, we first present identification tests. Thereafter, the forecasting perfor-
mance of the models is evaluated. Subsequently, the drivers of the two best-perform-
ing models are illustrated. Finally, the performance of these two winning models is 
assessed along the house price cycle.

5.1  Identification Tests

From Sect. 3, it followed that time series properties (i.e., stationarity and cointegra-
tion) are an important determinant of which empirical models can validly be esti-
mated. Thence, the natural starting point of a forecasting exercise is to examine the 
time series properties of variables used herein.

We first assess whether the models’ variables are stationary. Please recall that one 
needs stationarity to properly estimate a VAR, while for BVARs stationarity is not 
a requirement. We utilize two non-stationarity tests: the Augmented Dickey-Fuller 
(ADF) and the Phillips-Perron (PP) test, as well as one stationarity test: the Kwiat-
kowski-Phillips-Schmidt-Shin (KPSS) test, to determine whether the variables are 
stationary. The test results are presented in Table 2, and they indicate that all vari-
ables are non-stationary.28

Repeating the tests for the first-order difference, we found evidence that the first 
differences of these variables are stationary for all but one case. Specifically, only 
the ADF test for the first-order difference of house prices failed to reject the null 
hypothesis of non-stationarity. However, considering that all other tests indicate sta-
tionarity and the ADF test is known to have low power (Afriyie et al., 2020), it can 
be inferred that all the series are non-stationary but their first difference is stationary 
(i.e., all the time series are integrated of order one). Therefore, to prevent a spurious 
regression, we run the VAR in first differences.

Subsequently, the number of cointegrating relationships (or the cointegration 
rank) is tested. We need at least one cointegrating relationship to estimate a VECM. 
For a BVECM this test result is not a strict requirement, yet it is not uncommon to 
test for the number of cointegrating relationships. According to the results of the 
Johansen test presented in Table 3, both the trace and the eigenvalue test reject the 
null hypothesis of no cointegration, but the tests fail to reject the maximum of one 
cointegrating relationship at a 5% level. Thence, the Johansen test provides evidence 
on the existence of at least one cointegrating relationship and hence justifies the use 
of a (B)VECM.

28 In addition to the tests presented in Table 2, we employed the Zivot & Andrews test to investigate 
stationarity while considering the possibility of a structural break. This additional analysis was necessary 
because some variables exhibited significant fluctuations, as evident from Fig. 1. Due to brevity, these 
results are available upon request. Nonetheless, it is important to mention that the results of the Zivot & 
Andrews test confirm that all variables in our study are non-stationary.
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5.2  Forecasting Power

This section compares the predictive ability of the models discussed in Sect. 2. Fig-
ure 2 shows the forecasting errors of the models. Note that the same information is 
presented in tabular format in Appendix 1.

For ease of comparison, each subfigure displays a maximum of three models. As 
such, the BVAR-d model presented in subfigure b is identical to the BVAR-d model 
presented in subfigures c and d. When looking at all subfigures combined, we see 
a familiar pattern; i.e., for short-term forecasts, the forecasting errors are relatively 
small, but when forecasting further ahead the errors increase significantly. When 
forecasting ten years ahead the errors are severe, the model with the smallest fore-
casting error is on average off by circa 17 %. Thence, such long-term forecasts pro-
vide little valuable information. Nonetheless, for this research, it is interesting to 
include them as it is often argued that the benefits of a (B)VECM become apparent 
over longer forecasting horizons.

The first subfigure compares the predictive power of the two non-Bayesian mod-
els: the VAR and the VECM. It follows from the figure that the VAR performs 
slightly better at one-quarter-ahead forecasts, yet for all other forecasting horizons, 
the VECM prevails. This result is in line with economic theory (or practice), which 
states that VECMs are expected to outperform VARs over longer forecasting periods 

Table 2  Non-stationarity & stationarity tests

The table presents the test statistics of the Augmented Dickey-Fuller (ADF) test, the Phillips–Perron 
test (PP), and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The tests include both a trend and an 
intercept. ***p < 0.01; **p < 0.05; *p < 0.1

Test statistic levels Test statistic first difference

P
t b

max, c

t b
cd, u

t
ΔP

t Δb
max, c

t Δb
cd, u

t

ADF − 1.72 − 2.18 − 1.18 − 1.86 − 4.12*** − 5.37***
PP-� − 0.39 − 2.09 − 1.14 − 8.12*** − 9.96*** − 7.43***
PP-� − 1.04 − 7.51 − 3.75 − 93.73*** − 103.20*** − 71.43***
KPSS 1.67*** 0.81*** 2.10*** 0.36 0.14 0.26

Table 3  Johansen Cointegration 
test

r reflects the number of cointegrating relationships. All tests include 
an intercept. Tests that include both trend and intercept were also 
conducted, however, as the trend parameter was found to be insig-
nificant, it was removed from the analysis. The optimal lag orders 
for the tests were determined using the Akaike information criterion, 
with a maximum of six lags. ***p < 0.01; **p < 0.05; *p < 0.1

 Trace test  Eigenvalue test

r ≤ 2 4.81 4.81
r ≤ 1 18.34* 13.53
r = 0 41.34*** 23.00**
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(Engle & Yoo, 1987). Note, however, that the VECM outperforms the VAR at 
relatively short forecasting horizons already. This is most likely the case as house 
prices do not drift off, they have a tendency to almost immediately move towards the 
long-run equilibrium (although it can still take a long time before the equilibrium is 
fully restored). Moreover, note that the difference in forecasting accuracy increases 
over the forecasting horizon, indicating that long-run relationships become more 
important when forecasting further ahead. Thus, modeling long-run relationships in 
VECM-form is especially beneficial when forecasting house prices more than one-
quarter ahead, and this benefit becomes even more apparent on longer forecasting 
horizons.

Subsequently, in subfigure b, the forecasting accuracy of the VAR-d, BVAR-d, 
and BVAR-l are compared. At all forecasting horizons, the BVAR-d and BVAR-l 
outperform the VAR-d. When forecasting further ahead, this difference, in terms of 
forecasting accuracy, increases. Thus, the two Bayesian VARs always outperform 
the OLS VAR, indicating that using prior information improves the forecasting per-
formance of the models significantly. When comparing the two BVARs, it is evident 
that their forecasting performance is comparable for predictions up to three and a 
half years ahead. However, as the forecasting horizon extends, the BVAR-d prevails 
over the BVAR-l. Thus, although a non-stationary BVAR is allowed, it does not 
seem to beat a stationary BVAR.

Fig. 2  Pseudo out-of-sample forecasting error
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Subfigure c compares the VECM with the BVECM. For this comparison, we 
also find that at all forecasting horizons, the Bayesian model outperforms its non-
Bayesian counterpart. However, in contrast to the VAR models (panel b), the differ-
ence in terms of forecasting accuracy is smaller. Moreover, the difference between 
the VECM and the BVECM stagnates after eight years (about 32 quarters). Overall, 
when we combine the results of panels b & c, we conclude that for both the VECM-
like and VAR-like models, the Bayesian version outperforms its OLS counterpart, 
indicating that shrinking the models’ parameters towards a parsimonious benchmark 
is beneficial. Therefore, when forecasting house prices, Bayesian estimation tech-
niques would be preferred over their OLS counterparts at all forecasting horizons.

Finally, in Panel d we compare the two winning Bayesian models: the BVECM 
and the BVAR-d. For these models, the results are less clear-cut: for forecasts up 
until three quarters ahead the BVAR-d slightly outperforms the BVECM, for fore-
casts from three quarters to seven years ahead the BVECM prevails, yet for forecasts 
further ahead the BVAR-d wins again. Since the results are more comparable, we 
use the Diebold–Mariano (DM) test in Appendix 1 to determine whether the two 
forecasts differ. Although the difference between the two models is not significant 
for all forecasting periods, the results of the DM test suggest that the BVAR-d out-
performs in the short-run, the BVECM performs best for medium-term forecasts, 
and the BVAR-d wins again for long-term forecasts.29 These results are seemingly 
in line with the notion that the benefits of a BVECM become apparent over longer 
forecasting horizons. However, in contrast to this notion, for long-term forecasts, the 
BVAR-d prevails.30 This anomaly can most probably be explained by the fact that 
we fail to estimate the error-correction term adequately when forecasting this far 
ahead, leading to a poorer performance of the BVECM compared to the BVAR-d. 
All in all, for short-run forecasts, the BVAR-d appears to be the preferable option, 
while for medium-term forecasts the BVECM outperforms, and for long-term fore-
casts the BVAR-d is the more sensible choice.

5.3  Forecast Error Variance Decomposition

From the previous section, it followed that neither the BVECM nor the BVAR-d 
exhibited a clear advantage in terms of forecasting accuracy. Therefore, this subsec-
tion dives deeper into the differences between the BVECM and the BVAR-d. This 
exercise aims to provide a better understanding of what drives both models. In par-
ticular, we are interested in how much the models’ variables explain the variability 
of house prices over time. We formally assess each variable’s contribution by ana-
lyzing the effect of shocks in the models’ variables. This exercise is called a forecast 

29 In particular, the DM test indicates that for one-quarter-ahead forecasts, the BVAR-d forecasts signifi-
cantly better at a 10% level of significance. On the other hand, the BVECM performs significantly better 
for a range of 11–21-quarters-ahead forecasts, and even at a 1% level of significance for three- to four-
and-a-half-years-ahead forecasts. However, for ten-years-ahead forecasts, the BVAR-d forecasts demon-
strate better performance at a 10% level of significance.
30 Thus, while for the OLS models the benefits of incorporating a long-run relationship into the model 
are relatively large, this is to a lesser extent the case for Bayesian models.
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error variance decomposition (FEVD), and it essentially reflects how important a 
shock is in explaining the variations of the variables in the model.31

Figure 3 reflects the FEVD of house prices for the BVECM and the BVAR-d. Up 
to one year ahead, the two subfigures are comparable. That is, variations in house 
prices are mainly determined by their past value. Thereafter, for the BVECM, the 
borrowing capacity of constrained households takes up a significant part of the 
explanation of house prices. Or, phrased differently, the error correction term gradu-
ally kicks in. For the BVAR-d this is not the case, this model mainly depends on var-
iations in house prices. In particular, for the BVAR-d for forecasts ten years ahead, 
90% of the variation in house prices comes from shocks in house prices, while this 
is only 70% for the BVECM. Thence, the BVAR-d resembles a simple autoregres-
sive model that predicts that house prices tomorrow are merely explained by house 
prices today. The BVECM, on the other hand, incorporates an equilibrium relation-
ship that includes the effect of changes in the borrowing capacity on house prices.

5.4  Forecasting Power Along the House Price Cycle

Having a better understanding of the differences between the BVAR-d and the 
BVECM, we finally assess how well both perform during different economic seasons. 
Or, phrased differently, we compare the forecasting accuracy of the winning models 
over the house price cycle. This analysis is performed as forecasters might be more 
interested in predicting the timing of peaks and troughs (i.e., turning points) rather 
than the aggregated performance of a model over the boom-bust cycle (i.e., Sect. 5.2).

Nevertheless, since house prices experienced at most two turning points dur-
ing the out-of-sample period, we do not attempt a formal analysis of the compet-
ing models’ ability to predict turning points. Instead, Our primary objective is to 
compare the forecasting accuracy of the models throughout the house price cycle. In 
particular, for this exercise, four different forecasting horizons are considered: one 

Fig. 3  Forecast error variance decomposition of house prices

31 The FEVD is needed as—due to the vector-lag form of the model—responses are not directly obvious 
from the models’ estimates. That is, within the model everything depends on everything therefore, the 
most convenient way to assess responses to shocks is graphically.
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quarter ahead, half a year ahead, one year ahead, and two years ahead. We stop at 
two-years-ahead forecasts as predicting turning points is a difficult matter, and con-
sequently, one can simply not expect a model to predict a turning point that lies 
more than two years ahead. Subsequently, these predictions are plotted against their 
actual outcomes to assess which model performs best when.

The first panel of Fig. 4 shows the results for one-quarter-ahead forecasts. Differ-
ences between the BVECM and BVAR-d are small. For the BVECM we see, how-
ever, slightly more outliers than for the BVAR-d. This is true over the entire sample 
and is not concentrated at a specific event or economic season, indicating the BVAR-
d is the preferable option for one-quarter-ahead forecasts.

For half-a-year-ahead forecasts, the results are similar, but the differences 
between the BVECM and the BVAR-d are slightly larger. The BVAR-d seems to be 
better equipped to predict the temporary revival of house prices after the financial 
crisis (i.e., 2009). The BVECM, on the other hand, performs slightly better in the 
period of fast-rising house prices of 2015–2020. The latter is most likely the case 
as house prices increased rapidly in that period due to decreases in the interest rate. 
The lower interest rate increased households’ borrowing capacity ( bmax, c

t & b
cd, u
t  ) 

and this allowed them to buy a more expensive home; as such, these house price 

Fig. 4  Pseudo out-of-sample forecasts and actual house prices
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increases are explained by their fundamentals (i.e., the long-run relationships). This 
equilibrium mechanism is incorporated in the BVECM, while the BVAR-d fails to 
disentangle speculative price movements from these founded price movements.

For one- and two-years-ahead forecasts, the differences between the mod-
els become even more apparent. From the two subfigures, it still follows that the 
BVECM exaggerated the bust caused by the financial recession. Strikingly, however, 
the revival of the housing market in 2014, is better captured by the BVECM than 
by the BVAR-d. The BVECM namely correctly pointed to a price increase in 2014, 
while the BVAR-d still predicted a decrease. In fact, the BVECM was able to predict 
the exact timing of this turning point. Thus, during a crisis, a BVAR-d may be more 
appropriate, while the BVECM might provide more accurate predictions after the 
crisis.

6  Conclusion

This study investigated five empirical methods to predict house prices in the 
Netherlands. In particular, OLS-based estimation methods were compared to their 
Bayesian counterparts. The Bayesian models were expected to outperform, as 
they are able to tackle overfitting problems. Our findings substantiate this hypoth-
esis: Bayesian models have a better forecasting performance compared to the 
OLS models. Notably, this finding was observed for the relatively parsimonious 
three-variable model, indicating that overfitting can occur even with a small num-
ber of variables. Therefore, when predicting house prices, it might be wise to opt 
for Bayesian models, particularly when the sample is relatively small and/or the 
model contains many parameters.

Within the class of Bayesian models, we compared three variants: a BVAR in 
levels, a BVAR in differences, and a BVECM. While the BVAR in levels is com-
monly utilized in the housing literature, it becomes apparent that the BVAR in 
differences consistently exhibits better performance than the BVAR in levels. As 
for the remaining models, namely the BVAR in differences and the BVECM, the 
results are less clear-cut. Which model performs best in terms of forecasting accu-
racy seems to depend on two things: (i) the forecasting horizon, and (ii) the eco-
nomic season. The BVECM incorporates long-run relationships and this seems 
to be particularly beneficial for medium-term forecasts. However, in periods of 
market uncertainty, such as during a recession, incorporating these long-run equi-
librium relationships might not provide as much insightful information. Instead, 
a more useful approach could involve predicting that tomorrow will likely resem-
ble today. Incorporating long-run equilibrium relationships seems, however, espe-
cially valuable if one seeks to predict when the recession will end, or to forecast 
house prices in normal times (i.e., post-crisis). Therefore, a researcher interested 
in predicting house prices might consider applying both Bayesian models and 
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carefully assess the models’ forecasting results in light of the current economic 
state and the desired forecasting horizon.

Nonetheless, it is important to acknowledge that while our study sheds light on 
the relative performance of these Bayesian models, the practical applicability of 
such models during crisis periods should be approached with caution. The lack of 
reliable prior information during crises and the potential for rapid and unforeseen 
changes in economic conditions could impact the models’ forecasting performance. 
Future research could explore alternative modeling approaches (e.g., regime-switch-
ing models) to better adapt to sudden economic shocks and identify optimal fore-
casting strategies during crisis periods.

Furthermore, it is essential to emphasize that this paper solely focuses on the 
Dutch housing market. In the Netherlands, mortgage debt is substantial, rendering 
mortgage conditions pivotal in determining house prices. Therefore, the long-term 
relationship used in the (B)VECM incorporates this insight. Our results support 
this equilibrium; in the short-run house prices are mainly driven by their lagged 
value, yet, this effect slowly fades away and the borrowing capacities take up a part 
of explaining house prices. Nevertheless, it is important to acknowledge that in 
countries where a greater share of properties are purchased outright or with mini-
mal mortgage financing, the impact of mortgage conditions on house prices might 
be limited. For such contexts, integrating an alternate long-term relationship into 
a BVECM—potentially one based on wealth—could offer more insight. However, 
further research is necessary to delve into this subject.

Appendix 1. Forecasting Errors

Table 4 shows the forecasting errors as presented in Fig. 2. Each row represents a 
different forecasting horizon, expressed in quarterly intervals. While not displayed 
in Fig. 2, the column labeled “RW" showcases the forecasting errors for a random 
walk model with drift. This random walk model serves as a baseline or reference 
point for evaluating the effectiveness of more complex forecasting models.

The column labeled “Min" indicates the model with the smallest forecasting 
error. As highlighted in the main text, the winning model is consistently either the 
BVAR-d or the BVECM. To test the differences in forecasting performance between 
the BVECM and BVAR-d, the “DM" column presents the results of the Diebold-
Mariano test for absolute forecasting errors using Newey-West errors (Diebold & 
Mariano, 1995). The null hypothesis posits that the two models exhibit equivalent 
forecasting accuracy, while the alternative hypothesis suggests differences in their 
forecasting accuracies.
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Table 4  Pseudo out-of-sample forecasting error

***p < 0.01; **p < 0.05; *p < 0.1

Quarter RW VAR-d VECM BVAR-l BVAR-d BVECM MIN DM

1 0.021 0.022 0.026 0.022 0.019 0.022 BVAR-d − 1.80*
2 0.033 0.043 0.037 0.032 0.029 0.034 BVAR-d − 1.19
3 0.046 0.062 0.047 0.039 0.039 0.041 BVAR-d − 0.53
4 0.062 0.076 0.057 0.048 0.048 0.047 BVECM 0.18
5 0.080 0.095 0.070 0.060 0.061 0.060 BVECM 0.06
6 0.096 0.121 0.085 0.072 0.070 0.069 BVECM 0.04
7 0.113 0.145 0.096 0.081 0.078 0.075 BVECM 0.25
8 0.130 0.162 0.105 0.088 0.086 0.081 BVECM 0.59
9 0.147 0.177 0.119 0.098 0.096 0.089 BVECM 0.83
10 0.163 0.200 0.131 0.105 0.103 0.093 BVECM 1.18
11 0.181 0.223 0.137 0.113 0.108 0.091 BVECM 2.22**
12 0.198 0.241 0.145 0.119 0.116 0.089 BVECM 2.89***
13 0.212 0.259 0.155 0.126 0.123 0.095 BVECM 2.86***
14 0.223 0.278 0.163 0.132 0.127 0.095 BVECM 2.93***
15 0.234 0.305 0.173 0.146 0.131 0.096 BVECM 3.02***
16 0.247 0.331 0.181 0.164 0.136 0.098 BVECM 3.28***
17 0.257 0.356 0.193 0.182 0.142 0.101 BVECM 3.15***
18 0.268 0.389 0.204 0.202 0.146 0.104 BVECM 2.81***
19 0.278 0.427 0.219 0.223 0.151 0.110 BVECM 2.45**
20 0.288 0.461 0.232 0.243 0.155 0.112 BVECM 2.30**
21 0.297 0.485 0.248 0.263 0.158 0.120 BVECM 1.87*
22 0.303 0.519 0.260 0.282 0.161 0.123 BVECM 1.65
23 0.310 0.562 0.273 0.303 0.164 0.127 BVECM 1.39
24 0.315 0.601 0.281 0.320 0.164 0.130 BVECM 1.13
25 0.320 0.626 0.294 0.337 0.167 0.137 BVECM 0.87
26 0.321 0.658 0.302 0.351 0.166 0.140 BVECM 0.71
27 0.320 0.698 0.309 0.367 0.166 0.144 BVECM 0.46
28 0.316 0.736 0.315 0.378 0.163 0.151 BVECM 0.09
29 0.311 0.763 0.326 0.391 0.161 0.157 BVECM − 0.23
30 0.305 0.790 0.333 0.400 0.159 0.164 BVAR-d − 0.56
31 0.300 0.824 0.341 0.410 0.158 0.168 BVAR-d − 0.72
32 0.292 0.862 0.348 0.418 0.157 0.172 BVAR-d − 0.85
33 0.287 0.891 0.354 0.428 0.159 0.174 BVAR-d − 0.84
34 0.282 0.928 0.362 0.437 0.160 0.178 BVAR-d − 0.92
35 0.277 0.969 0.368 0.447 0.163 0.183 BVAR-d − 1.02
36 0.272 1.014 0.370 0.456 0.165 0.187 BVAR-d − 1.09
37 0.268 1.046 0.375 0.463 0.168 0.194 BVAR-d − 1.25
38 0.263 1.087 0.378 0.470 0.170 0.201 BVAR-d − 1.46
39 0.260 1.138 0.382 0.476 0.172 0.210 BVAR-d − 1.68
40 0.257 1.205 0.381 0.482 0.174 0.218 BVAR-d − 1.91*
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Appendix 2. The Combination Prior

Doan et al. (1984) and Sims (1993) suggested supplementing the Minnesota prior of a 
BVAR-l with additional priors that favor unit roots and cointegration. These additional 
priors are respectively known as the “sum-of-coefficients" and “dummy-initial-obser-
vation" prior and they were motivated by the desire to prevent an overly large share of 
the variation in the data from being explained by the deterministic component.

In the literature, it is common practice to combine the Minnesota prior with the 
sum-of-coefficients prior and the dummy-initial-observation prior, which is known 
as the “combination prior" (Giannone et  al., 2015). Since this combination prior 
aligns with the common belief that macroeconomic data often exhibit unit roots and 
cointegration, it tends to improve the forecasting accuracy of a BVAR-l.

In the remaining part of this section, a model with combination prior, as proposed 
by Giannone et al. (2015), is estimated and compared to the forecasting results of 
the two winning Bayesian models, namely the BVAR-d and BVECM. When com-
paring the forecasting results of the model with the combination prior to those of 
the BVECM and BVAR-d, we find that their forecasting accuracy is highly simi-
lar for forecasts up to one year ahead See Fig.  5. However, in two instances, the 
combination prior demonstrates a slight advantage in forecasting power compared to 
the other models. Nevertheless, it is important to note that, as per the DM-test, this 
advantage does not translate into significantly better predictions in these cases. As 
we extend the forecasting horizon, the performance of the model with the combina-
tion prior deteriorates, and both the BVECM and BVAR-d significantly outperform 
it. Therefore, for this forecasting exercise, a model with a combination prior pro-
vides little improvement compared to a BVAR-d and/or BVECM. 

Fig. 5  Pseudo out-of-sample forecasting error, combination prior
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Appendix 3. Priors for the Long Run

According to Giannone et al. (2019), the BVECM specification used in the main text 
is too restrictive. The authors state that this model is not flexible enough as in prac-
tice it is difficult to identify whether data are stationary or integrated. The authors 
include these insights into the so-called “prior for the long run” (PLR). This model 
can be thought of as a BVAR which includes the BVECM specification as a special 
case.32 Unlike the BVECM, the PLR includes all potential long-run relationships 
and does not exclude any potentially non-stationary long-run relationships. How-
ever, the PLR utilizes economic theory to assign higher weights to more plausible 
long-run relationships and lower weights to less plausible relationships.

In this section, the forecasting performance of a PLR is compared with the two 
winning Bayesian models: the BVAR-d and BVECM.33 From Fig. 6, it is evident 
that up until a 2.5-year forecasting horizon, the forecasting performance of the 
models is comparable. However, in five instances, the PLR demonstrates a slight 
advantage in forecasting power compared to the other models. Nevertheless, it 
is important to note that, as per the DM-test, this advantage does not translate 
into significantly better predictions in these five cases. As we extend the forecast-
ing horizon, an interesting shift occurs. The PLR model begins to underperform 
significantly when compared to the BVECM and the BVAR-d. Thus, compared 
to the BVECM and the BVAR-d, the PLR yields little improvement. Therefore, 
one might argue that, in this case, it would be wiser to rely on a BVAR-d and a 
BVECM for forecasting house prices instead of combining them into one model 
(i.e., the PLR).

Fig. 6  Pseudo out-of-sample forecasting error, PLR

33 I.e., a BVECM with priors on the cointegration space as proposed in Koop et al. (2010b).

32 Please note that this prior is highly related to the sum-of-coefficients prior. In fact, Giannone et  al. 
(2019) point out that under some conditions, the PLR simplifies to the sum-of-coefficients prior.
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