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Adding a Parity-Check Bit
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Abstract—The correspondence gives a new condition for a-ary linear
code of length and minimum distance to be extendable to a code of the
same dimension, length + 1, and minimum distance

Index Terms—Code extension, linear codes, parity-check bit.

I. INTRODUCTION

A binary linear[n; k; d]-codeC of odd minimum distanced can be
extended to an[n + 1; k; d + 1]-code by adding a parity-check bit.
This means that codewords of odd weight get an extra coordinate1
and those with even weight an extra coordinate0. Since the codewords
of even weight inC constitute a one-codimensional subcode, adding a
parity-check bit can be viewed as an application of Construction X. The
codimension1 case of this construction reads as follows. (All codes in
this correspondence are supposed to be linear.)

Proposition 1 [6, pp. 581–583]: If an [n; k; d]q-codeC has a one-
codimensional subcodeC0 with minimum distance> d, thenC can be
extended to an[n + 1; k; d + 1]q-code.

Proof: Choose an arbitrary vectorxxx 2 CnC0: Then the extended
code can be taken as the span inn+1q of (xxx; 1) and the vectors(ccc; 0),
ccc 2 C0:

The obvious generalization of parity check extension to codes over
a field of sizeq > 2 usually does not yield codes of larger minimum
distance. But in 1995, Hill and Lizak proved the following theorem.

Theorem 2 [4], [5]: Let C be an [n; k; d]-code over q with
gcd (d; q) = 1 and with all weights congruent to0 or d (moduloq).
ThenC can be extended to an[n + 1; k; d + 1]-code, all of whose
weights are congruent to0 or d + 1 (moduloq).

The essential step in the proof of this result is the establishment of
the fact that the words of weight congruent to 0 moduloq in the codes
under consideration form a 1-codimensional subcode. Then Proposi-
tion 1 immediately finishes the proof.

The next proposition shows that also something can be said if more
than two weights moduloq occur. But then information on the weight
distribution of the code must be available. By definition, theweight
distributionof a codeC is the sequence(Ai(C))i=0���n, with

Ai(C) := jfccc 2 C jwt (ccc) = igj:

Proposition 3: Let C be an[n; k; d]-code over a finite field q of
characteristicp, and lett be any integer that is not divisible byp: Then
the set

C(t) := fccc 2 C jwt (ccc) 6� tmod pg

is a one-codimensional subcode ofC if and only if its size is right, i.e.,
if and only if

i6�tmod p

Ai(C) = q
k�1

:
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Proof: Let q := pr: Consider the polynomial function

': n
q ! q; (x1; x2; � � � ; xn) 7�!

n

i=1

(xi)
q�1

:

Actually, ' maps n
q onto the prime field p: We can view n

q as an
p-vector space of dimensionrn: The q-degree of' is q � 1, but

what about its p-degree? The functions

x 7�! x
p
; i = 0; 1; � � � ; r � 1

are p-linear. So, decomposing the monomialxq�1 as

x
q�1 = x

p�1(xp)p�1(xp )p�1 � � � (xp )p�1

we see that the p degree of' is equal tor(p� 1): The function
 : C ! p;  (ccc) = '(ccc)� t;

on therk-dimensional p-vector spaceC will have degree at most
r(p � 1): So defines a word in the generalized Reed–Muller code
Rp(r(p � 1); rk): The weight of this word is the size of the support
of  

wt ( ) =
i 6�tmod p

Ai(C):

It is well known (cf. [2] or [3]) that the minimum weight of
Rp(r(p� 1); rk) is equal toprk�r = qk�1, and that the supports of
the minimum-weight codewords are thep-affine (rk � r)-flats in
rk
p : So, if

i6�tmod p

Ai(C) = q
k�1

then

C(t) := fccc 2 C jwt (ccc) 6� tmodpg

is an p-affine (rk � r)-flat in the rk-dimensional p-vector space
C: Since we assumed thatt 6� 0mod p, the setC(t) contains the zero
vector and hence is an(rk � r)-dimensional p-linear subspace of
C: Finally, C(t) is invariant under scalar multiplication with nonzero
elements from q: SoC(t) actually is a(k� 1)-dimensional q-linear
subspace ofC:

We now can invoke once more Construction X to obtain the fol-
lowing generalization of Hill and Lizak’s result.

Theorem 4: LetC be an[n; k; d]-code over a finite field q of char-
acteristicp: If d 6� 0 mod p and

i6�dmod p

Ai(C) = q
k�1

thenC can be extended to an[n + 1; k; d+ 1]-code.

Remark 5: The weight distribution of the (generalized)
Reed–Muller codes is known to possess gaps. See, for instance,
[3] for a survey. This means that if

i6�dmod p Ai(C) is below a
certain bound, then it has to be equal toqk�1: We give two examples.

1) If q := 3 andd 6� 0mod3, then

i6�dmod 3

Ai(C) < 5 � 3k�2

implies that

i6�dmod 3

Ai(C) = 3k�1:

2) If q := 4, then

i even

Ai(C) < 7 � 4k�2

implies that

i even

Ai(C) = 4k�1:

Theorem 4 can be combined with the MacWilliams identities and
other constraints on the weight distribution to prove the nonexistence
of codes with certain parameters. Here is one example.

Example 6: Let C be a putative[85; 6; 61]4-code. We apply the
usual linear program with respect to the MacWilliams equations and
information on the dual distance and nonexistence of residual codes
from the table in [1]. As a result, we find that

i odd

Ai(C) � 1764 < 7 � 46�2:

Hence the preceding remark and Theorem 4 imply thatC can be ex-
tended to a[86; 6; 62]4-code. The table in [1] tells us that such a code
does not exist. Consequently,C does not exist.
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Abstract—We demonstrate that many well-known binary, quaternary,
and -ary codes are cocyclic Hadamard codes; that is, derived from a co-
cyclic generalized Hadamard matrix or its equivalents. Nonlinear cocyclic
Hadamard codes meet the generalized Plotkin bound. Using presemifield
multiplication cocycles, we construct new equivalence classes of cocyclic
Hadamard codes which meet the Plotkin bound.

Index Terms—Cocycle, generalized Hadamard matrix, Hadamard codes,
presemifield, relative difference set.

I. INTRODUCTION

In [12], the first author introduced a very general description of co-
cyclic codes in order to demonstrate the previously unrecognized (and
well-hidden) presence of cocycles in several code construction tech-
niques. Cocycles are mappings : G � G ! C, whereG andC are
finite groups withC Abelian, which satisfy a particular quasi-associa-
tive equation (1). They arise naturally in the topology of surfaces, in
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