
 
 

Delft University of Technology

The steady-state response of a rotating ring subjected to a stationary load

Lu, Tao; Tsouvalas, Apostolos; Metrikine, Andrei

DOI
10.1016/j.ijsolstr.2020.06.011
Publication date
2020
Document Version
Final published version
Published in
International Journal of Solids and Structures

Citation (APA)
Lu, T., Tsouvalas, A., & Metrikine, A. (2020). The steady-state response of a rotating ring subjected to a
stationary load. International Journal of Solids and Structures, 202, 319-337.
https://doi.org/10.1016/j.ijsolstr.2020.06.011

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijsolstr.2020.06.011
https://doi.org/10.1016/j.ijsolstr.2020.06.011


International Journal of Solids and Structures 202 (2020) 319–337
Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsols t r
The steady-state response of a rotating ring subjected to a stationary
load
https://doi.org/10.1016/j.ijsolstr.2020.06.011
0020-7683/� 2020 The Author(s). Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail address: T.Lu-2@tudelft.nl (T. Lu).
T. Lu ⇑, A. Tsouvalas, A.V. Metrikine
Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 October 2019
Received in revised form 7 June 2020
Accepted 9 June 2020
Available online 20 June 2020

Keywords:
Rotating ring on elastic foundation
Plane strain
High-order model
In-plane vibrations
Steady-state response
Method of the images
Resonance speeds
The in-plane steady-state response of a rotating ring on elastic foundation subjected to a stationary load is
investigated theoretically using a high-order model in the framework of the plane strain assumption. The
adopted high-order model accounts for the through-thickness variation of stresses and displacements, as
well as the boundary tractions at the inner and outer surfaces of the ring. Based on the ratio of the foun-
dation stiffness to the stiffness of the ring, two configurations of the ring-on-foundation system are inves-
tigated, namely soft foundation (stiff ring) and stiff foundation (soft ring). The analytical ‘‘method of the
images” is used to obtain the ring response. It is found that the response of a stiff ring to a stationary load
of constant magnitude is governed by the translational rigid body-like motion. In contrast, in the case of a
soft ring, a wave-like deformation is predicted for the rotational speeds higher than a critical one. It is for
the first time that such wave-like displacements are predicted using a rotating ring model with the rota-
tion effects being properly considered. The response of a rotating ring to a stationary harmonic load is
studied too. The predicted displacements using the high-order model are compared with those obtained
from the classical low-order model in which only the radial and circumferential displacements at themid-
dle surface of the ring are considered. It is concluded that only in the case of a stiff ring, the classical low-
ordermodel and the high-ordermodel give similar predictions.When the ring is soft, the predictions of the
two models deviate significantly. Resonances of a stationary ring under a moving load and a rotating ring
subjected to a stationary load are compared in terms of the resonance speeds and the steady-state
responses. It is shown that these two situations can not be treated as equal in many cases.
� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction absence of consensus on the existence of resonances of a rotating
Rotating ring-like structures are very commonly used in civil,
mechanical and aerospace engineering. Typical examples of such
structures are components in turbomachinery (Macke, 1966), com-
pliant gears (Cooley and Parker, 2014), flexible train wheels (Noga
et al., 2014), conventional pneumatic tyres (Gong, 1989) and more
recent non-pneumatic tyres (Gasmi et al., 2012). At the micro-
scale, rotating ring models find their applications in the field of ring
gyroscopes (Yoon et al., 2015), in which high accuracy of modelling
is required. The in-plane vibrations of rotating rings are of particu-
lar interest since the above-mentioned structures are usually sub-
jected to in-plane loads.

The main points of attention in the studies on the dynamic
response of the rotating rings are the existence and severity of res-
onances and the occurrence of the so-called ‘‘standing waves”
which is a stationary deformation pattern observed in rolling pneu-
matic tires (Padovan, 1976; Chatterjee et al., 1999). Despite the
ring subjected to a stationary load with constant magnitude
(Endo et al., 1984; Huang and Soedel, 1987; Lin and Soedel, 1988;
Krylov and Gilbert, 2010; Graham, 2013; Krylov, 2013; Lu and
Metrikine, 2015), a seemingly conclusive result has been obtained
in Lu et al. (2019) according to which resonance can occur in rotat-
ing rings. Modes which are stationary as observed in a space-fixed
reference system, are excited by the load (Soedel, 2004) when a
ring rotates at high speeds, resulting in a steady-state response
which is time-invariant to a space-fixed observer. The experi-
mental evidence of such a response is the occurrence of the sta-
tionary deformation patterns in rolling tires (Chatterjee et al.,
1999; Cho et al., 2007). Similar wave phenomena have been
reported in soft calenders of paper machines (Karttunen, 2015).

Apart from the numerical modelling e.g. in Padovan (1975),
Kennedy and Padovan (1987), Cho et al. (2007), Karttunen and von
Hertzen (2013), efforts into theoretical prediction of the wave-like
steady-state response can be found in Padovan (1976), Potts et al.
(1977), Soedel (1975), Chatterjee et al. (1999), Karttunen and von
Hertzen (2016), Krylov and Gilbert (2010). However, in these
models either the bending stiffness is not considered (Chatterjee
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et al., 1999; Karttunen and von Hertzen, 2016) or the rotation
effects are not properly accounted for Padovan (1976), Potts
et al. (1977), Soedel (1975), Krylov and Gilbert (2010). For exam-
ple, the rotation-induced hoop tension is not considered in
Padovan (1976), Potts et al. (1977) and in Soedel (1975), Krylov
and Gilbert (2010) all the rotation effects are neglected. The rota-
tion effects, namely the centrifugal force that leads to an axi-
symmetric radial expansion and a hoop stress, and the Coriolis
force are essential to determine the dynamic behaviour of rotating
rings (Lu et al., 2019; Lu, 2019). The stationary wavy deformation
has not been successfully predicted so far using a rotating ring
model which properly considers the rotation effects.

In this paper, the high-order model is adopted from Lu et al.
(2019) to simulate the in-plane response of rotating rings on elastic
foundation to a stationary load. The primary aim is to investigate
the ring response at resonance speeds and to analyze the steady-
state deflection patterns of the ring rotating at speeds lower and
higher than the minimum resonance speed. The steady-state
response of a rotating ring subjected to a constant stationary load
is calculated using the ‘‘method of the images” (Metrikine and
Tochilin, 2000). The responses are computed for the cases of soft
foundation (stiff ring) and stiff foundation (soft ring). The influences
of the relative value of the foundation stiffness and the ring stiffness
are therefore thoroughly addressed. Applying a stationary constant
load, results show that the n ¼ 1 mode governs the response of the
soft foundation (stiff ring) case, leading to a translational rigid
body-like motion of the ring. On the contrary, a localised response
occurs for a soft ring that rotates sub-critically, i.e. at speeds lower
than the minimum resonance speed, whereas a wave-like defor-
mation pattern is predicted when the ring rotates super-
critically. The differences in predicted displacements between
the classical model and the high-order model are investigated.
The applicability and limitations of the classical model in predict-
ing the dynamic response of rotating rings are addressed.

Besides the case of rotating rings under stationary load, it is also
common in engineering practice that a stationary ring is subjected
to a circumferentially moving load. Investigations of the steady-
state responses in such a case can be found in Metrikine and
Tochilin (2000), Forbes and Randall (2008), Karttunen and von
Hertzen (2014), Karttunen and von Hertzen (2016). It is concluded
(Karttunen and von Hertzen, 2014) that the effect of rotation is
negligible and the rotating ring under stationary load and station-
ary ring under moving load can be treated as equal. In this paper,
the two cases are compared with the focus placed on the steady-
state responses and, particularly, the resonance speeds. It is shown
that these two cases need to be distinguished.

The main original contribution of this paper lies in the theoret-
ical prediction of a wave-like stationary deformation pattern which
occurs in a rotating ring subjected to a stationary load. A proper
consideration of the rotation effects is the key that makes it possi-
ble to distinguish the range of parameters in which the wave-like
pattern can occur. This has not been done in the past. In general,
the results obtained in this paper close the debate on the existence
of resonances of rotating rings under a stationary load and demon-
strate the applicability and limitations of the classical rotating thin
ring models in predicting the forced vibrations.

The paper is structured as follows. Section 2 gives the complete
description of the mathematical statement of the problem and the
procedure to solve it. Subsequently, the steady-state responses of
rotating rings under stationary constant and harmonic loads are
discussed in Section 3 and the influence of the foundation stiffness
on the dynamic response is thoroughly investigated. In Section 4,
resonance speeds, as well as the dynamic responses, are discussed
for the stationary ring under moving load and the rotating ring
subjected to stationary load cases. Finally, Section 5 summarises
the main conclusions of this paper.

2. Model and the ‘‘method of the images

A rotating ring on elastic foundation subjected to a stationary
load is shown in Fig. 1. The inner surface of the ring is connected
to an immovable axis by distributed radial and circumferential
springs (the foundation). The ring rotates at a constant angular
speed X. A space-fixed coordinate system r; hð Þ is adopted to
describe the motions of the ring. It is assumed that the mean radius
of the ring is R. To simplify mathematical expressions, an auxiliary
coordinate z is introduced as z ¼ r � R, in which r defines the radial
coordinate, i.e. the ring occupies the space R� h=2 6 r 6 Rþ h=2
where h is the thickness of the ring. The in-plane radial and cir-
cumferential displacements of the ring with respect to the unde-
formed configuration are designated by w z; h; tð Þ and u z; h; tð Þ,
respectively. The stiffnesses of the radial and circumferential
springs per unit area are designated as kr and kc , respectively. Fur-
thermore, q is the mass density of the ring, E is the Young’s mod-
ulus, G is the shear modulus, m is the Poisson’s ratio, k and l are the
Lamé constants. In addition to R and h, the geometrical parameters
are: A is the cross-sectional area, I is the cross-sectional moment of
inertia, b is the width of the ring.

The high-order model of the ring developed in Lu et al. (2019) is
employed. Plane strain configuration is assumed for the model. The
external load is incorporated in the governing equations by the
Hamilton’s principle. The technique of solving the governing equa-
tions is demonstrated in this section as well.

2.1. Complete description of the problem

To include external loading in the governing equations by the
Hamilton’s principle, the work done by the external loads needs
to be formulated. Considering a radial load F h; z; tð Þ that is uni-
formly distributed over the ring width as shown in Fig. 1, the vari-
ation of the work done by this load reads
Z t2

t1

dW dt ¼ b
Z t2

t1

Z h=2

�h=2

Z 2p

0
dW inrdhdzdt

¼ b
Z t2

t1

Z h=2

�h=2

Z 2p

0
F h; z; tð Þdwrdhdzdt: ð1Þ

The load is applied along the width on the outer ring surface
and thus is given as F h; z; tð Þ ¼ P h; tð Þd z� h=2ð Þ in which d is the
Dirac function. Note that h is the polar coordinate of the non-
rotating coordinate system. It is assumed that the ring experiences
a uniform radial expansion due to steady rotation before the load is
applied. The radial displacement w is defined as positive when it
points outward and the positive direction of the circumferential
displacement u is defined as counter-clockwise. Then Eq. (1)
becomes
ð2Þ



Fig. 1. A rotating ring on elastic foundation subjected to a stationary load: left figure for front view; right figure for side view.
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The high-order model is adopted from Lu et al. (2019). For the
expressions of the kinetic and potential energies and detailed
derivation of the governing equations one is referred to
Appendix A and Lu et al. (2019). According to Lu et al. (2019),
the displacement fields are expressed as polynomial functions of
the thickness z:

w z; h; tð Þ ¼
Xl¼N1

l¼0

wl h; tð Þzl; u z; h; tð Þ ¼
Xq¼N2

q¼0

uq h; tð Þzq ð3Þ

in which l; q are integers and l P 0; q P 0. N1 and N2 are the orders
of the polynomials of the displacement fields. Therefore, the varia-
tion of the radial displacement at the outer surface of the ring,

namely d wjz¼h=2

� �
in Eq. (2) is given by

d wjz¼h=2

� �
¼
Xl¼N1

l¼0

dwl h=2ð Þl: ð4Þ

The derivation of the homogeneous governing equations of the
high-order model can be found in Lu et al. (2019). Adding the
external loading terms at the right-hand side of the homogeneous
governing equations, the equations of motion that govern the
small vibrations about the static equilibrium in the radial direc-
tion are:

R h
2
�h
2

Ilin1 zl
� �

dzþ q
R h

2
�h
2

r v
_

1 þXv 0
1 �Xv2

� �
zl

� �
dz

þ f lin1 � f lin2 �1ð Þl
� �

h
2

� �l
¼ � h

2

� �l
P h; tð Þ Rþ h=2ð Þ; l ¼ 0;1;2;3 . . .N1ð Þ:

ð5Þ

The linearised equations of motion in the circumferential direc-
tion are (Lu et al., 2019):

R h
2
�h
2

Ilin2 zq
� �

dzþ q
R h

2
�h
2

r v
_

2 þXv20 þXv1

� �
zq

� �
dz

þ f lin3 � f lin4 �1ð Þq
� �

h
2

� �q ¼ 0; q ¼ 0;1;2;3 . . .N2ð Þ:
ð6Þ

The details of the expressions for Ilin1 ; Ilin2 ; f lin1 through f lin4 and the
velocities v1 and v2 of a differential element of the ring in radial
and circumferential directions in the left-hand side of Eqs. 5,6
can be found in Appendix B as well as in Lu et al. (2019). The cou-
pling caused by rotation is similar to the classical low-order theory
for rotating thin rings (Cooley and Parker, 2014) regarding the con-
tributions of rotation to the gyroscopic, stiffness and centripetal
operators. Due to the closeness of the ring, the load applies period-
ically with a spatial period of 2p. The dynamic responses need to
comply with the periodicity condition, i.e.:

wd z;0; tð Þ ¼
Xl¼N1

l¼0

wld 0; tð Þzl ¼ wd z;2p; tð Þ ¼
Xl¼N1

l¼0

wld 2p; tð Þzl;

ud z;0; tð Þ ¼
Xq¼N2

q¼0

uqd 0; tð Þzq ¼ ud z;2p; tð Þ ¼
Xq¼N2

q¼0

uqd 2p; tð Þzq:

ð7Þ
Eq. (7) can be rewritten as

wd z;0; tð Þ �wd z;2p; tð Þ ¼
Xl¼N1

l¼0

wld 0; tð Þzl �
Xl¼N1

l¼0

wld 2p; tð Þzl

¼
Xl¼N1

l¼0

wld 0; tð Þ �wld 2p; tð Þ½ �zl ¼ 0

ð8Þ

and

ud z;0; tð Þ � ud z;2p; tð Þ ¼
Xq¼N2

q¼0

uqd 0; tð Þzq �
Xq¼N2

q¼0

uqd 2p; tð Þzq

¼
Xq¼N2

q¼0

uqd 0; tð Þ � uqd 2p; tð Þ� 	
zq ¼ 0

ð9Þ

For Eqs. 8 and 9 to be valid for all values of z, each component of
the displacement expansion should satisfy the same periodicity
condition:

wld 0; tð Þ ¼ wld 2p; tð Þ; uqd 0; tð Þ ¼ uqd 2p; tð Þ: ð10Þ
The subscript ‘d’ in Eqs. (7)–(10) stands for the dynamic dis-

placements and is hereafter omitted for the sake of brevity. Eqs.
(5)–(10) complete the description of a rotating ring subjected to
a stationary load under plane strain assumption.

The solutions will be sought for in dimensionless form. The fol-
lowing dimensionless parameters are introduced (Graff, 1975):

k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI= EAð Þp

; �k ¼ k=R; �c ¼ n�k; �x ¼ xk=c0; �v ¼ RX=c0;
�kr ; �kc
� � ¼ kr ; kcð Þk2= Ehð Þ; W0e ¼ w0e=R; �h ¼ h=�k; s ¼ c0t=k;

ð11Þ

where c0 ¼ ffiffiffiffiffiffiffiffiffi
E=q

p
is the speed of the longitudinal wave in the rod,

I ¼ bh3
=12 is the cross section area moment of inertia and �k is the

non-dimensional radius of gyration. �h and s are the dimensionless
angle and temporal variables, respectively. Introducing a dimensionless



322 T. Lu et al. / International Journal of Solids and Structures 202 (2020) 319–337
coordinate �z ¼ z=h in the radial direction, the dimensionless dis-
placements are defined as

W �z; �h; s
� � ¼ w z; h; tð Þ=R; U �z; �h; s

� � ¼ u z; h; tð Þ=R ð12Þ
and therefore

Wl
�h; s
� � ¼ hl wl h; tð Þ=R; Uq

�h; s
� � ¼ hq uq h; tð Þ=R;

l ¼ 0;1;2;3 . . .N1; q ¼ 0;1;2;3 . . .N2ð Þ:
ð13Þ

in the dimensionless coordinate system �z; �h; s
� �

.

2.2. The classical low-order model

The equations that govern vibrations of a rotating ring sub-
jected to a stationary load from the classical theory in space-
fixed coordinate are (Cooley and Parker, 2014):

qh€wþ 2qhX _w0 � _uð Þ � qhX2 wþ 2u0 �w00ð Þ þ D
R4

w0000 � u000ð Þþ
K
R2

wþ u0ð Þ þ r0
hh

R2
u0 �w00ð Þ þ krw ¼ �P h; tð Þ;

qh€uþ 2qhX _u0 þ _wð Þ � qhX2 u� 2w0 � u00ð Þ þ D
R4

w000 � u00ð Þ�
K
R2

w0 þ u00ð Þ þ r0
hh

R2
u�w0ð Þ þ kcu ¼ 0:

ð14Þ
where D ¼ Eh3

=12 is the bending stiffness, K ¼ Eh is the membrane
stiffness. r0

h is the initial hoop stress caused by rotation given by

r0
h ¼ qR2X2

1þ krR
2=K � qR2X2=E

: ð15Þ

The periodicity conditions must be satisfied:

w 0; tð Þ ¼ w 2p; tð Þ; u 0; tð Þ ¼ u 2p; tð Þ: ð16Þ
Eqs. (14)–(16) complete the description of the problem using

the classical thin ring model.
Eq. (14) can be rewritten in dimensionless form as

W ;ss þW ;�h�h�h�h þ N þ �v2
� �

W ;�h�h þ �k2 þ �kr � �k2�v2
� �

W þ 2�vW ;�h�s

��kU;�h�h�h þ �kþ �kN � 2�k�v2
� �

U;�h � 2�k�vU;s ¼ �P �h; s
� �

;

U;ss � �k2 þ 1� �v2
� �

U;�h�h þ �kc � �k2�v2 þ �k2N
� �

U þ 2�vU;�h�s þ �kW ;�h�h�h

� �kþ �kN � 2�k�v2
� �

W ;�h þ 2�k�vW ;s ¼ 0

ð17Þ
using the same dimensionless parameters introduced in Eq. (11).
The subscripts ‘‘�h” and ‘‘s” denote derivatives with respect these
variables. P is the dimensionless force. The dimensionless hoop ten-
sion is given by

N ¼ �v2 �k2

�k2 þ �kr � �v2 �k2
: ð18Þ

In Eq. (17) only low order terms (the displacements at the mid-
dle surface of the ring) remain, i.e.

W �h; s
� � ¼ w0 h; tð Þ=R; U �h; s

� � ¼ u0 h; tð Þ=R: ð19Þ
The dispersion relation of the classical model in the space-fixed

coordinate system is

�x2��k2��c4��kr þ �v2�k2�N�c2þ �v2�c2þ2�v �x�c
� �

� �x2��c2��k2�c2��kcþ �v2�k2�N�k2þ �v2�c2þ2�v �x�c
� �

� �k�c3þ�k�cþ�k�cN�2�v�k �x�2�v2�c�k
� �2 ¼0:

ð20Þ

which is obtained by substituting

W �h; s
� � ¼ Aei�c�hþi �xs; U �h; s

� � ¼ Bei�c�hþixs ð21Þ
into the homogeneous part of Eq. (17) and taking the determinant
of the coefficient matrix.

2.3. The method of the images: application to a point (line) load

In engineering practice, the load applied to a rotating ring is
very often assumed as a point load, e.g. the tyre-ground contact
load to a pneumatic tire (Padovan, 1976) and the wheel-rail con-
tact load to a flexible train wheel (Metrikine and Tochilin, 2000).
In this section, the dynamic response of a rotating ring subjected
to a stationary point load of harmonically varying amplitude is
considered. In plane strain assumption, the point load is actually
a line load distributed along the width of the ring. Assuming fur-
ther that the load is applied at h ¼ 0 and
P h; tð Þ ¼ P0 exp iXf tð Þd Rþ h=2ð Þhð Þ. Eq. (2) then reads

ð22Þ

The dimension of P0 is N.m��1 and d is the Dirac delta function.
The right hand side of Eq. (5) becomes

R h
2
�h
2

Ilin1 zl
� �

dzþ q
R h

2
�h
2

r _v1 þXv01 �Xv2ð Þzl� �
dz

þ f lin1 � f lin2 �1ð Þl
� �

h
2

� �l
¼ � h

2

� �l
P0 exp iXf tð Þd hð Þ; l ¼ 0;1;2;3 . . .N1ð Þ:

ð23Þ

whereas the first equation of Eq. (14) reads

qh €wþ 2qhX _w0 � _uð Þ � qhX2 wþ 2u0 �w00ð Þ þ D
R4

w0000 � u000ð Þ
þ K

R2
wþ u0ð Þ þ r0

hh

R2
u0 �w00ð Þ þ krw ¼ � P0 exp iXf tð Þ

R d hð Þ:
ð24Þ

The method of the images has been first applied to study the
steady-state response of an elastic ring subjected to a moving load
in Metrikine and Tochilin (2000). The idea of this method is that
the response of a bounded (in our case ring-like) system to a single
load is equivalent in the linear framework to the response of a part
of an infinitely long system (described by the same equations) sub-
jected to an infinite set of loads. In other words, the method uti-
lizes the fact that the periodic boundary conditions are satisfied
by introducing additional loads as shown in Fig. 2. These loads
are called images since their locations are normally mirrored to
the real load with respect to the boundaries. In the considered case,
to satisfy the periodicity of the displacements, one should intro-
duce infinitely many equivalent loads at a fixed distance 2p from
each other. By doing so, Eq. (23) can be rewritten as

R h
2
�h
2

Ilin1 zl
� �

dzþ q
R h

2
�h
2

r _v1 þXv01 �Xv2ð Þzl� �
dz

þ f lin1 � f lin2 �1ð Þl
� �

h
2

� �l ¼ �P0 exp iXf tð Þ h
2

� �lXþ1

j¼�1
d hþ 2pjð Þ;

l ¼ 0;1;2;3 . . .N1ð Þ:
ð25Þ

The linearised equations of motion in the circumferential direc-
tion, namely Eq. (6) remains unchanged. In Eq. (25), the periodicity
condition Eq. (7) is now captured by the summation of infinitely
many equidistant loads. Due to complexity, the dimensionless
forms of Eqs. (25) and (6) from the high-order model are not
explicitly given here.

The stationary line load along the width in the plane strain
high-order model degenerates to a point load in the classical
low-order rotating thin ring model. Performing similar derivations
for the classical model, the first equation in Eq. (17) becomes



Fig. 2. Method of the images for an axially moving ‘‘extended ring”.
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W ;ss þW ;�h�h�h�h þ N þ �v2
� �

W ;�h�h þ �k2 þ �kr � �k2�v2
� �

W þ 2�vW ;�h�s � �kU;�h�h�h

þ �kþ �kN� 2�k�v2
� �

U;�h � 2�k�vU;s ¼ �P0 exp i�Xfs
� �Xþ1

j¼�1
d �hþ 2pj=�k
� �

ð26Þ
in which the periodicity condition is enforced by a summation of
infinitely many loads. In addition, �Xf ¼ Xf k=c0 is the dimensionless
frequency of the load and P0 ¼ P0

�k= Ehð Þ is the dimensionless load
amplitude.

Since the problem is linear, the exact solution is the summation
of the responses to all the individual loads and all the loads gener-
ate equivalent displacement fields but with a spatial shift. More
specifically, it suffices to obtain the response of the axially moving
‘‘extended ring” to a single load and then sum up this response infi-
nitely many times accounting for the spatial shift 2p. One of the
main advantages of the method of the images is that the aforemen-
tioned infinite summation can be computed analytically, using the
formulae of an infinite geometric progression (Metrikine and
Tochilin, 2000).

Considering a single load, the dimensionless form of Eqs. (25)
and (6) can be solved by means of application of the integral Four-
ier transform. Defining this transform as

~
W
�

�x;�c
l

~
U
�

�x;�c
q

8><
>:

9>=
>; ¼

Z þ1

�1

Z þ1

�1

Wl

Uq


 �
exp �i�c�h� i �xs

� �
dsd�h ð27Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
and �c; �x; �h; s are defined in Eq. (11). Applying the

above transformation to the dimensionless form of Eqs. (25) and
(6), one obtains a set of algebraic equations

Ca ¼ f ð28Þ
in which C is the coefficient matrix, a is the displacement vector and
f is the force vector. The matrix and vectors are given in Appendix C.

All the unknown displacement components can be solved for
using the Cramer’s rule, i.e.

~~W �x;�c
l ¼ det Clð Þ

det Cð Þ ¼
2pP0d �x��Xfð ÞDwl

D

~~U �x;�c
q ¼ det CN1þ1þqð Þ

det Cð Þ ¼ 2pP0d �x��Xfð ÞDuq

D

ð29Þ

Matrix Cl is formed by replacing the lth column of C by the force
vector f whereas CN1þ1þq is the matrix C whose N1 þ 1þ qð Þth col-
umn is replaced by f. The expressions D;Dwl and Duq can be
obtained by using any symbolic computation software. In addition,

D ¼ det Cð Þ ð30Þ
is the dispersion relation of the rotating ring using the high-order
model.
The next step is to invert the obtained solutions Eq. (29) to the
time and space domain by using the inverse Fourier transform
(Metrikine and Tochilin, 2000):

Ws
l
�h; s
� � ¼ P0

2p exp i�Xfs
� � Rþ1

�1
Dwl

�Xf ;�cð Þ
D �Xf ;�cð Þ exp i�c�h

� �
d�c

Us
q
�h; s
� � ¼ P0

2p exp i�Xfs
� � Rþ1

�1
Duq �Xf ;�cð Þ
D �Xf ;�cð Þ exp i�c�h

� �
d�c

ð31Þ

where �h is the distance from the load. The integral in Eq. (31) can be
evaluated by employing the residue theorem (the superscript ‘‘s”
stands for single load):
Ws
l
�h; s
� � ¼

iP0 exp i�Xfs
� �X

p

Bp
wl exp i�cp�h

� �
if �h > 0

�iP0 exp i�Xfs
� �X

n

Bn
wl exp i�cn�h

� �
if �h < 0

8>><
>>: ð32Þ

Us
q
�h; s
� � ¼

iP0 exp i�Xfs
� �X

p

Bp
uq exp i�cp�h

� �
if �h > 0

�iP0 exp i�Xfs
� �X

n

Bn
uq exp i�cn�h

� �
if �h < 0

8>><
>>: ð33Þ

in which:

Bp
wl ¼

Dwl
�Xf ;�cpð Þ

@
@�c D �Xf ;�cð Þð Þj�c¼�cp

; Bp
uq ¼

Duq �Xf ;�cpð Þ
@
@�c D �Xf ;�cð Þð Þj�c¼�cp

;

Bn
wl ¼

Dwl
�Xf ;�cnð Þ

@
@�c D �Xf ;�cð Þð Þj�c¼�cn

; Bn
uq ¼

Duq �Xf ;�cnð Þ
@
@�c D �Xf ;�cð Þð Þj�c¼�cn

:
ð34Þ

�cn denotes the roots of equation D �Xf ; �c
� � ¼ 0 with negative imagi-

nary part, whereas �cp denotes the roots of the same equation with
positive imaginary part.

After obtaining the solutions in the time domain for the single
load case, the exact solution can be found as an infinite summation
of terms with the spatial shift 2p, namely

Wl
�h; s
� � ¼ Xþ1

j¼�1
Ws

l
�hþ 2pj=�k; s
� �

; Uq
�h; s
� �

¼
Xþ1

j¼�1
Us

q
�hþ 2pj=�k; s
� �

: ð35Þ

Substituting Eqs. 32,33 into Eq. (35), both Wl
�h; s
� �

and Uq
�h; s
� �

consist of a sum of a geometric progression with infinite number of
terms. Following the same procedure as in Metrikine and Tochilin
(2000), the summation can be further simplified and the analytical
expressions of the displacements of the ring can be derived as
(Metrikine and Tochilin, 2000)
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Wl
�h;s
� � ¼

iP0

X
p

Bp
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exp i�cp�hð Þ
1�exp i2p�cp=�kð Þ

"

�
X
n

Bn
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exp i�Xfs
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ð36Þ
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ð37Þ
The real part of the above-given solution should be taken if the

time signature of the load is given as P tð Þ ¼ P0 cos Xf tð Þ , whereas
the imaginary part corresponds to P tð Þ ¼ P0 sin Xf tð Þ. The total
dimensionless displacements are

W �z; �h; �s
� � ¼XN1

l¼0

�zlWl
�h; �s
� �� �

; U �z; �h; �s
� � ¼XN2

q¼0

�zq Uq
�h; �s
� �� �

: ð38Þ
2.4. Approximation of the Dirac function by Gaussian distribution

When a line load along the out-of-plane direction is applied to a
two-dimensional elastic medium, the assumptions of linear elas-
ticity are inevitably violated in the vicinity of the loading point
(Murakami, 2016), as well as for the high-order theory presented
here. This is an intrinsic problem of this type of higher-order the-
ories, not only for rings, but also for shells, beams, etc. and for both
static and dynamic loads. For stiff rings (soft foundation), such as
rings made of steel, the sharp changes at the loading point of
higher order terms are not obvious. This is due to the fact that the
deformation caused by the concentrated force is balanced primarily
Fig. 3. Classical model, �v ¼ 0; �kr ¼ 1� 10�6; �kc ¼
by the foundation (the excitation of n ¼ 1 mode as will be shown in
the following section). For soft rings (stiff foundation), the force
causes much greater elastic deformations in the ring than the defor-
mation of the foundation. Therefore, the violation becomes apparent.
In order to circumvent this problem, one may realistically assume
that a contact patch exists on the ring and thus distributed forces
are applied on the ring. A Gaussian distribution can be used to spec-
ify the distribution of tractions within the contact patch. The dis-
placements under the loading position become smooth if a
distributed force is applied instead of a concentrated one. Using a
normalized Gaussian distribution, the load represented by Dirac
function can be replaced by a distributed load in the following
manner:

P tð Þd hð Þ ¼ P tð Þffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � h2

2r2

 !

¼ P0 exp iXf tð Þffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � h2

2r2

 !
: ð39Þ

The integrals of the left-hand side and right-hand side of Eq.
(39) from �p to p both equal to P tð Þ. Consequently, Eq. (31),
namely the dynamic response of the ring under a single load,
becomes

Ws
l
�h; s
� � ¼ 1

2p exp i�Xfs
� � Rþ1

�1
P �cð ÞDwl

�Xf ;�cð Þ
D �Xf ;�cð Þ exp i�c�h

� �
d�c

Us
q
�h; s
� � ¼ 1

2p exp i�Xfs
� � Rþ1

�1
P �cð ÞDuq �Xf ;�cð Þ

D �Xf ;�cð Þ exp i�c�h
� �

d�c
ð40Þ

where P �cð Þ is the dimensionless form of the Fourier transform of

P0ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p exp � h2

2r2

 !
ð41Þ

in the wavenumber domain. Eq. (40) can be evaluated by direct
numerical integration considering proper truncation of �c to obtain
convergent results. After obtaining the dynamic response of the ring
to a single load, the total response is given similarly to Eq. (35) by
proper truncation of the number of images (mirrored load). Note
that the dynamic responses caused by any form of distributed
loads can be solved in the same manner as the load of Gaussian
distribution.

2.5. Consideration of damping

The energy dissipation in the rotating ring can be considered in
two ways. One way is to treat the foundation as Kelvin–Voigt ele-
1� 10�9: (a) Displacements; (b) Ring shape.
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ments with spring and dashpot in parallel. In this case, one can
include the viscous damping of the foundation directly by
replacing

kr ! kr þ rw
@

@t
þX

@

@h

� �
; kc ! kc þ ru

@

@t
þX

@

@h

� �
: ð42Þ

Another dissipation mechanism is the internal damping in the
ring material. When one considers high values of �kr (stiff founda-
tion), one is equivalently considering soft materials like rubbers
and polymers. In this case, one needs to take into account their
Fig. 4. Classical model, �v ¼ 0:2; �kr ¼ 1� 10�6; �kc ¼

Fig. 5. Displacements and deformation patterns of the ring for �kr ¼ 1� 10�6; �kc ¼ 1� 10�

(only the displacements at middle surface are shown). The ring shapes are scaled by 10
viscoelastic properties since the energy is dissipated mainly by
the material itself. To this end, the following internal damping
is introduced:

E� ¼ E 1þ f @=@t þX@=@hð Þð Þ ð43Þ
where f is the hysteresis loss factor of the material. The shear mod-
ulus changes accordingly to

G� ¼ E�

2 1þ mð Þ ¼ G 1þ f @=@t þX@=@hð Þð Þ: ð44Þ

The Lamé constants can be obtained accordingly.
1� 10�9: (a) Displacements; (b) Ring shape.

4 and �v ¼ 0 resulting from: (a) and (b) Classical model; (c) and (d) High-order model
.
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3. Steady-state response of a rotating ring under a stationary
line (point) load

The steady-state response of a rotating ring under a stationary
load is studied in this section for different system parameters. It
has been shown in Lu et al. (2019) that the in-plane free vibrations
of a rotating ring can be unstable. Therefore the parameters of the
ring-foundation system are chosen such that the free vibrations are
always stable at the rotational speeds which are of interests and
therefore the steady-state response exists. The dimensionless
parameters �kr and �kc which represent the ratios of the stiffness
of the foundation to the stiffness of the ring itself are of significant
importance. Low values of �kr and �kc imply that the ring itself is stiff
compared to the elastic foundation, for example, a steel ring. In
contrast, high values of �kr and �kc indicate that the ring is soft in
comparison with the elastic foundation, for example, a ring made
of rubber-like material. In the following, the steady-state responses
of the two configurations are investigated. In the sequel,
N1 ¼ N2 ¼ 5 are chosen for truncating the displacement field
expansions in Eq. (3). The convergence of this choice has been
tested.

3.1. Soft foundation (stiff ring)

A ring supported by soft springs can correspond to the case that
the foundation flexibility is high comparing to that of the ring. In
this subsection, the following dimensionless parameters are cho-
sen: �kr ¼ 1� 10�6; j ¼ h=R ¼ 0:1; P0 ¼ 1� 10�5. The ring is
assumed to rest on a viscoelastic foundation, see Eq. (42). A coefficient
Fig. 6. Displacements and deformation patterns of the ring for �kr ¼ 1� 10�6; �kc ¼ 1� 1
model (only the displacements at middle surface are shown). The ring shapes are scaled
n is introduced to represent the ratio of the viscous damping to the
stiffness of the foundation. The ratios are defined as follows:

nw ¼ rw

kr
; nu ¼ ru

kc
: ð45Þ

For simplicity, the same ratio is applied in both the radial and
circumferential directions, namely nw ¼ nu ¼ n ¼ 5� 10�3s. The
Poisson’s ratio is chosen to be m ¼ 0:3 which refers to a steel ring.

The steady-state response predicted by the classical model is
studied first. Fig. 3 shows the static response of a stationary ring
subjected to a radial point load with constant magnitude according
to the classical model Eq. (14). Fig. 4 shows the quasi-static
response of the same ring subjected to the same load; but now
the ring rotates at �v ¼ 0:2. From Fig. 3, it can be seen that the cir-
cumferential displacement is almost a perfect sinus, whereas the
radial displacement is of a cosinusoidal shape. The ring exhibits a
translational rigid body-like motion in the direction of the applied
force governed mainly by the n ¼ 1 mode. As for �v ¼ 0:2, the ring
experiences a static radial expansion caused by rotation. The
response is still mainly governed by the n ¼ 1 mode. In this case,
predictions of the high-order model are not shown because the
responses calculated from the classical model and the high-order
model are very similar; the responses predicted by the high-
order model are just slightly smaller. When the applied load is
varying harmonically, e.g. P sð Þ ¼ P0 cos �Xfs

� �
, many higher modes

can be excited. The difference between the classical model and
the high-order model are more obvious in this case but still mar-
ginal provided that the frequency of excitation is about or lower
than the first cut-off frequency of the system.
0�4 and �v ¼ 0:2 resulting from: (a) and (b) Classical model; (c) and (d) High-order
by 10.
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The influence of circumferential springs can be assessed by
comparing Figs. 3–6. Higher �kc suppresses the responses in both
the radial and circumferential directions effectively. As expected,
the effect on circumferential displacement is more significant.

3.2. Stiff foundation (soft ring)

In this configuration, the material itself is soft relative to the
foundation. Again j ¼ h=R ¼ 0:1 is assumed and the Poisson’s ratio
is chosen to be m ¼ 0:4. When soft materials like rubbers or poly-
mers are considered, the viscoelastic properties are better captured
Fig. 7. Responses predicted using the classical (left) and high-order (right) models for �v ¼
displacements; (e) and (f) Ring deformation. The ring deformations are scaled by 5.
by the loss factor of the material given by Eq. (43). Here f ¼ 0:002
is employed. In addition, �kc ¼ 0:1; �kr ¼ 0:01 are chosen to represent
a stiff foundation. The resonance speeds corresponding to this set
of parameters are discussed in Lu et al. (2019). It has been shown
in Lu et al. (2019) that there exists a critical speed after which
wave-like patterns occur for a rotating ring subjected to a station-
ary load with constant magnitude. The critical speed, namely the
minimum resonance speed is about �v ¼ 0:5 for the chosen param-
eters (Lu et al., 2019). The dimensionless magnitude of the force is
selected to be P0 ¼ 0:002. Hereafter, the point load is approximated
by Gaussian distribution Eq. (39) with r ¼ 0:01.
0; �kr ¼ 0:01; �kc ¼ 0:1: (a) and (b) Radial displacements; (c) and (d) Circumferential
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3.2.1. Dynamic response under a constant load
Fig. 7 presents the displacements and deformation patterns for

�v ¼ 0 (statics) using the classical and the high-order models. Only
the middle surface displacements are predicted using the classical
low-order model, whereas the displacements at the inner, middle
and outer surfaces are shown for the high-order model hereafter.
The through-thickness variation of the radial displacement is sig-
nificant only in the vicinity of the loading area. The high-order
model predicts greater circumferential displacement than that of
the classical model. It is interesting to see that the circumferential
displacement at the outer surface has a different sign than that at
the middle and inner surfaces. The responses are localized around
and symmetric with respect to the load in this static case as shown
in Fig. 7(e) and (f).
Fig. 8. Responses predicted using the classical (left) and high-order (right) models for �v ¼
displacements; (e) and (f) Ring deformation. The ring deformations are scaled by 5.
Fig. 8 presents the displacements and deformations for a sub-
critical speed �v ¼ 0:3 based on the classical model and the high-
order model. The chosen rotational speed is lower than the critical
speed related to resonances and thus no wave-like deformations
are expected. The response of the ring rotating at �v ¼ 0:3 is also
localized, however it is not symmetric with respect to the load
because of the effect of damping. The influence of higher order cor-
rections is of significance now. As shown in Fig. 8(a) and (b), the
high-order model results in smaller radial displacements. Although
the circumferential displacements at the middle surface calculated
using the classical and high-order model are similar, the circumfer-
ential displacements at the inner and outer surfaces are signifi-
cantly larger than that at the middle surface computed from
high-order model.
0:3; �kr ¼ 0:01; �kc ¼ 0:1: (a) and (b) Radial displacements; (c) and (d) Circumferential
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According to Lu et al. (2019), the ring rotates super-critically at
speed �v ¼ 0:7 since this speed is higher than the minimum reso-
nance speed predicted both by the classical model and the high-
order model. From Fig. 9(a-d), it can be seen that waves are gener-
ated in the ring that rotates with �v ¼ 0:7. In the area which corre-
sponds to negative circumferential angle (also called ‘‘leading
edge” as defined in Chatterjee et al. (1999)) in Fig. 9, the waves
are shorter, whereas waves have larger wavelengths in the area
corresponding to positive circumferential angle (also called ‘‘trail-
ing edge” as defined in Chatterjee et al. (1999)) in Fig. 9. When
damping is small (f ¼ 0:002), the positive-travelling waves and
the negative-travelling waves interfere as shown in (a) and (c) of
Fig. 9 as predicted using the classical model.
Fig. 9. Responses predicted using the classical (left) and high-order (right) models for �v ¼
displacements; (e) and (f) Ring deformation. The ring deformations are scaled by 5.
A comparison of Fig. 9(a) and (c) with Fig. 9(b) and (d) shows
that the higher order corrections play an important role in the
steady-state response when the ring rotates at super-critical
speeds. The high-order model predicts much smaller wave-like
radial displacement with larger wavelengths in the trailing edge.
Unlike the prediction using the classical model shown in Fig. 9
(e), it is clear from Fig. 9(f) that the response in the leading edge
decays significantly. This is consistent with the experiments which
were done for rolling tires, in which the stationary deformation
patterns exist only in the trailing edge (Chatterjee et al., 1999;
Cho et al., 2007). Note that for the chosen parameters, namely
�kr ¼ 0:01; �kc ¼ 0:1, the steady-state responses predicted using the
classical model and the high-order theory all showwave-like patterns
0:7; �kr ¼ 0:01; �kc ¼ 0:1: (a) and (b) Radial displacements; (c) and (d) Circumferential
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although the deformation patterns are significantly different. How-
ever, if other parameters are chosen the responses from both mod-
els can also differ largely. For example, as shown in Lu et al. (2019)
the resonance speeds computed from the classical model and the
high-order theory can be completely different and therefore the
steady-state responses predicted by both models are expected to
be distinct.

3.2.2. Dynamic response under a harmonic load
When considering the steady-state response of a rotating ring

to a stationary harmonic point load, insights can be gained by
Fig. 10. Dispersion curves, �kr ¼ 0:01; �kc ¼ 0:1: (a) �v ¼ 0, Classical model; (b) �v ¼ 0, High-
Classical model; (f) �v ¼ 0:7, High-order model.
analysing the dispersion curves obtained from the governing equa-
tions derived in a space-fixed coordinate system. The dispersion
relations of the classical low-order model and the high-order
model are given in Eqs. (20) and (30), respectively. Fig. 10 shows
the dispersion curves of the same ring parameters as used above.
The results are calculated for the three rotational speeds discussed
previously. The dashed horizontal lines �Xf in Fig. 10 correspond to
the excitation frequency of the load. This frequency determines the
deformation patterns of the ring. One crossing point between this
line and the dispersion curves means one wave excited. The fol-
lowing observations can be made:
order model; (c) �v ¼ 0:3, Classical model; (d) �v ¼ 0:3, High-order model; (e) �v ¼ 0:7,
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i) The dispersion curves are symmetric with respect to the fre-
quency axis for a stationary ring whereas this symmetry is bro-
ken when the ring rotates.
ii) For the stationary and sub-critically rotating case, waves are
generated only when the excitation frequency of the load
exceeds a critical value. This critical frequency occurs when
the horizontal line �Xf is tangent to the dispersion curve. For
the stationary ring case, the critical frequency is the first cut-off
11. High-order model, displacements under a harmonic load, �v ¼ 0:3; �kr ¼ 0:01; �kc ¼ 0:1;
Ring deformation. The ring deformation is scaled by 5.

12. Convergence check of the displacements at different positions of the ring for �v ¼ 0
ial displacement; (c) Circumferential displacement.
frequency. However, the critical frequency has a lower value than
the first cut-off frequency of the corresponding stationary ring
case when the ring rotates sub-critically.
iii) For the stationary and sub-critically rotating case, similar
steady-state responses are expected regardless of the choice
of models if the excitation frequency is not too high. Taking
sub-critical speed �v ¼ 0:3 as an example, if one assumes the fre-
quency of the load to be �Xf ¼ 0:15, two waves are excited since
f ¼ 0:002; �Xf ¼ 0:15: (a) Radial displacement; (b) Circumferential displacement;

:7; �kr ¼ 0:01; �kc ¼ 0:1; f ¼ 0:002: (a) Static radial expansion due to rotation; (b)
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there are two intersections between the load frequency line and
the dispersion curves as shown in Fig. 10(c–d). The crossing
points in Fig. 10(c) and (d) are located at similar places. Thus,
the waves generated are expected to be similar. Note that the
dispersion analysis is based on the undamped case, the actual
displacements predicted by the classical and high-order model
may differ to some extent since the same damping value may
have quantitatively different effect on the actual responses
according to different models. The displacements and ring
deformation pattern for this case are shown in Fig. 11 using
the high-order model.
iv) When the ring rotates super-critically (Fig. 10(e–f)), the
intersections between the dispersion curves and the horizontal
axis confirm that waves are excited by a stationary load at zero
excitation frequency, namely �Xf ¼ 0. Unlike the stationary and
sub-critically rotating case, the waves predicted by the classical
and the high-order models are no longer similar for any fre-
quency since the crossing points of the excitation frequency
and the dispersion curves predicted by these models are
different.

3.3. Discussion on the convergence of higher order terms for the
dynamic responses

In previous sections, N1 ¼ N2 ¼ 5 is chosen to obtain the
dynamic responses of a rotating ring subjected to a stationary ring.
The convergence of the dynamic response for the choice of
N1 ¼ N2 ¼ 5 is checked. It is not necessary to have the same number
Fig. 13. Comparison of resonance speeds, h=R ¼ 0:1; �kc ¼ 0:001 using the high-order mod
Red dotted lines for rotating ring case: (a) �kr ¼ 0:001; (b) �kr ¼ 0:01; (c) �kr ¼ 0:1; (d) �kr ¼
referred to the web version of this article.)
of terms for the radial and circumferential displacements. It should
be mentioned that the terms needed depend on the system param-
eters and the type of loadings, the rotational speeds, etc. Therefore,
there is no unique choice of terms for all situations. The general
idea for the choice of terms is that, the more complicated distribu-
tions of stress and displacement along the thickness, the more
terms are needed. One also needs to first check the convergence
for the static equilibrium before examining convergence of the
dynamic responses.

As an example of the convergence check, the case in Fig. 9,
namely �kr ¼ 0:01; �kc ¼ 0:1 and �v ¼ 0:7, is plotted in Fig. 12. The
convergence examinations are done for the axisymmetric radial
expansion due to rotation and the maximum dynamic response
caused by the stationary load for different locations on the ring.
The number of terms of circumferential displacement does not
influence the convergence for the rotation-induced static expan-
sion only has radial deformations. One can see that up to N1 ¼ 3
the static expansion converges. After the convergence of the static
expansion is assured, the convergence of the dynamic responses is
examined. As shown in Fig. 12(b–c), the choice of N1 ¼ N2 ¼ 5
gives convergent results for both the radial and circumferential
displacements although it is not the minimum requirement.

4. Resonance: rotating ring versus moving load

Two configurations of loading situation of a ring structure are
of interest in practice: (i) a stationary ring subjected to a circum-
ferentially moving constant load and (ii) a rotating ring under a
el with increasing stiffness of radial springs. Grey dashed line for moving load case;
0:5. (For interpretation of the references to colour in this figure legend, the reader is
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stationary constant load. In this section, resonance speeds and
steady-state responses for both cases are compared. The aim of this
comparison is to show to what extent these two cases can be trea-
ted as equal. The corresponding high-order stationary ring model
used for comparison is obtained by setting X ¼ 0 for the high-
order rotating ring model.

4.1. Resonance speeds

The load speeds causing resonance of a stationary ring sub-
jected to a constant point load moving circumferentially are well
known (Bogy et al., 1974; Metrikine and Tochilin, 2000; Forbes
and Randall, 2008; Soedel, 1975):

X ¼ xn=n ð46Þ
in which n is the circumferential mode number and n P 1. The min-
imum resonance speed (the critical speed) is the lowest value of Eq.
(46). Eq. (46) is rather transparent and can be interpreted straight-
forwardly since the periodically applied moving load expressed by
Dirac function d h�Xtð Þ can be represented by a Fourier series as
(Leung and Pinnington, 1987)

d h�Xtð Þ ¼ 1
2p

þ 1
p
X1
n¼1

cos nh� nXtð Þ; ð47Þ

the loading has components with frequencies equal to nX. There-
fore one expects resonance when xn ¼ nX, which yields Eq. (46).
Fig. 14. Comparison of resonance speeds, h=R ¼ 0:1; �kc ¼ 0:1 using the high-order model w
dotted lines for rotating ring case: (a) �kr ¼ 0:001; (b) �kr ¼ 0:01; (c) �kr ¼ 0:1; (d) �kr ¼ 0:5
referred to the web version of this article.)
Resonance speeds of a rotating ring subjected to a stationary
constant load satisfy the condition �xn ¼ 0 in which �xn is the nat-
ural frequency calculated in a space-fixed reference system (Lin
and Soedel, 1988; Soedel, 2004; Lu et al., 2019; Lu et al., 2017;
Lu and Metrikine, 2015). By substituting �x ¼ 0 into the frequency
equation (Lu et al., 2019), one can solve for resonance speeds for
each circumferential wavenumber.

It is worth mentioning that resonance occurs only for certain
parameters of a rotating ring subjected to a stationary load of con-
stant magnitude. Figs. 13 and 14 show the comparisons of reso-
nance speeds, as functions of the mode number, between moving
load and rotating ring case with different values of the foundation
stiffness. The lower abscissa in each plot is the dimensionless
wavenumber which is given by �c ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI= EAð Þp

=R as shown in Eq.
(11), whereas the upper abscissa is the corresponding discrete cir-
cumferential mode number n. All the chosen parameters represent
relatively stiff foundation (soft ring) configuration since only in
this case resonance speeds of rotating rings exist.

In Figs. 13(a) and 14(a) the upper limit of the plots is set at
�v ¼ 1 and therefore only the lowest branch of resonance speeds
is shown. The reason is that at higher speeds, the predictions of
other branches are not accurate since the static expansion
approaches extremely high value. Generally, rotation stiffens the
ring, therefore, the resonance speeds of rotating ring case are
higher than those in the moving load case as shown in
Figs. 13(a) and 14(a). With increasing �kr , the resonance speeds
for the two lower branches of both cases become close, except in
ith increasing stiffness of radial springs. Grey dashed line for moving load case; Red
. (For interpretation of the references to colour in this figure legend, the reader is



334 T. Lu et al. / International Journal of Solids and Structures 202 (2020) 319–337
the lower wavenumber ranges as shown in Figs. 13(a) and 14(a)
and (b)–(d). For the two higher branches of resonance speeds,
the differences are still noticeable.

The tangential stiffness �kc has a more profound influence on the
resonance speeds for the lower mode (wave) numbers. For small
tangential stiffness of the foundation, divergence instability of
mode n ¼ 0 may occur for rotating rings as shown in Fig. 13(b–
d). However, for higher values of both �kc and �kr , the resonance
speeds of the moving load case and rotating ring case are closer
even for lower mode numbers as shown in Fig. 14.

The minimum resonance speed in Figs. 13 and 14 is a critical
speed at which a wave-like steady-state deformation pattern is ini-
tiated. For the parameters shown in Figs. 13(c–d) and 14(c–d), the
critical speed converges to the Rayleigh wave speed with increas-
ing wavenumber and a Rayleigh wave resonance is expected when
a stationary constant load is applied (Rabier and Oden, 1989;
Karttunen and von Hertzen, 2013).
4.2. The maximum deflection of the ring versus velocity

The maximum displacement at the middle surface (Dmax is

defined as max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

0 þ u2
0

qn o
) of a rotating ring with the same

parameters as used in Section 3.2 is shown in Fig. 15(a). Three
damping coefficients are chosen. As expected, higher damping
value reduces the displacement and suppresses resonance peaks
that correspond to higher frequencies.

The maximum displacement of the ring using rotating ring-
stationary load model is compared with that predicted using the
corresponding stationary ring-moving load model in Fig. 15(b).
For the chosen parameters, the resonance speeds of both cases
are quite similar as shown in Fig. 14(b). However, the responses
are different under the same load as shown in Fig. 15(b), especially
when the relative speeds between the load and the ring exceed the
minimum resonance speed. The rotation of the ring stiffens the
ring, resulting in smaller responses. A similar problem, namely
the dynamic response of a cylinder cover in relative motion with
a load is studied in Karttunen and von Hertzen (2014). It is con-
cluded that the effect of rotation is of no importance. However,
the moving load on stationary ring and the rotating ring under sta-
tionary load cases can only be considered equivalent when the rel-
ative speeds between the ring and the load are low or the
responses are mainly governed by the n ¼ 1 mode. In general,
these two cases need to be distinguished. Firstly, if resonance
speeds exist, these can be very different in the two cases under
consideration as shown in Figs. 13(a) and 14(a), which will result
in different dynamic responses. Secondly, even for system param-
eters which result in similar critical speeds, e.g. Fig. 14(b), the
Fig. 15. Maximum deflection at the middle surface versus velocity, �kr ¼ 0:01; �kc ¼ 0:1: (
ring and moving load cases.
responses under the same load can be different due to the rotation
effects as is shown in Fig. 15(b).
5. Conclusions

The steady-state response of a rotating ring on an elastic foun-
dation subjected to a stationary load is investigated in this paper. A
high-order rotating ring model which accounts for the through-
thickness variations of stresses and displacements is used in the
framework of plane strain assumption. The method of the images,
which gives a semi-analytical solution to the problem, is applied to
obtain the dynamic response. The predicted stationary deforma-
tion pattern of a super-critically rotating ring subjected to a con-
stant stationary load confirms the experimentally observed
stationary deformation patterns in rolling tyres, not only qualita-
tively; also the predicted deformation patterns around the ring
and the experimental observation are in agreement.

The characteristics of the response to a line(point) load with
constant magnitude are highly dependent on the ring parameters
and the stiffness of the foundation. The dimensionless parameter
�kr , defined as the ratio of the stiffness of the elastic foundation to
the bending stiffness of the ring, is found to have dominant influ-
ence on the response. For a stiff ring with soft foundation (low
value of �kr), the response is mainly governed by the modes with
low mode numbers, especially the n ¼ 1 mode. Thus, for a stiff ring
subjected to a stationary constant load, both the classical model
and the high-order model give similar predictions of the dynamic
response since higher order corrections influence mostly the ring
deformation at higher modes.

For soft rings on stiff foundation (large �kr) subjected to a con-
stant stationary load, resonance speeds exist. Physically speaking,
high value of �kr means that the ring is very flexible in comparison
with the supporting elastic foundation. When the ring rotates at
speeds lower than the minimum resonance speed (sub-critically),
the deformation is localised around the loading point. Viscosity
causes asymmetry of the ring deformation pattern with respect
to the load. When the ring rotates super-critically, waves are gen-
erated in front of and behind the load. This is the first time such
waves are predicted using a rotating ring model with rotation-
induced hoop tension being properly considered. In the leading
edge, waves have shorter wavelengths and higher frequencies. In
the trailing edge, waves with longer wavelengths are excited. The
amplitudes of those are larger than the ones in the leading edge.
The high frequency waves in the leading edge are sensitive to
damping in the ring and almost disappear at realistic damping val-
ues. This is exactly what is observed in experiments with rolling
tyres. In the super-critically rotating case, the high-order model
a) rotating ring case with various damping values; (b) Comparison between rotating



T. Lu et al. / International Journal of Solids and Structures 202 (2020) 319–337 335
and the classical one give considerably different predictions of the
response. When a stationary harmonic load is applied, for the sta-
tionary ring and sub-critically rotating ring case, the classical
model can be used in a certain frequency range. However, waves
predicted by the classical model and by the high-order model are
different for all excitation frequencies in the case of a super-
critically rotating ring.

The equivalence of the rotating ring under a stationary constant
load case and a stationary subjected to a moving constant load case
are investigated by comparing their resonance speeds, as well as
the steady-state responses. This issue is rarely discussed in the lit-
erature. In the few references where two cases are studied, they are
considered as equal. It is found that these two cases need to be dis-
tinguished even for system parameters which result in similar crit-
ical speeds in this work.
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Appendix A. Energy expressions

To derive the complete equations of motion and the boundary
conditions, we make use of Hamilton’s principle, i.e.

d
Z t2

t1

Sþ V � T �Wð Þdt ¼
Z t2

t1

dSþ dV � dT � dWð Þdt ¼ 0 ðA:1Þ

where S is the strain energy, T is the kinetic energy, V is the poten-
tial energy stored in the elastic foundation and W is the energy
input from external load as shown in Eq. (1).

The variation of strain energy is given by

dS ¼ dS1 þ dS2 þ dS3 ðA:2Þ
in which dS1 is the variation of the strain energy associated with cir-
cumferential strain, dS2 is the addition to that due to a non-zero
radial strain, and dS3 is the strain energy related to shear strain.

Integrating dS1 between two time instants, t1 and t2, one obtainsZ t2

t1

dS1 dt ¼ b
Z t2

t1

Z h=2

�h=2

Z 2p

0
rh dehð Þrdhdzdt: ðA:3Þ

The integration of dS2 from t1 to t2 gives

Z t2

t1

dS2 dt ¼ b
Z t2

t1

Z h=2

�h=2

Z 2p

0
rr derð Þrdhdzdt: ðA:4Þ

The integration of dS3 from t1 to t2 reads

Z t2

t1

dS3 dt ¼ b
Z t2

t1

Z h=2

�h=2

Z 2p

0
shr dchrð Þrdhdzdt: ðA:5Þ

In Eqs. (A.3)–(A.5):

rr

rh

srh

8><
>:

9>=
>; ¼

2lþ k k 0
k 2lþ k 0
0 0 l

2
64

3
75

er
eh
crh

8><
>:

9>=
>; ðA:6Þ

and (Stein, 1986)
eh ¼ e0 þ 1
2

bð Þ2; er ¼ w;r þ 1
2

u;rð Þ2; chr ¼ 1�w;rð Þu;r � bg ðA:7Þ

where

e0 ¼ u0
r þ w

r ;b ¼ u
r � w0

r ;g ¼ 1� e0;
u;r ¼ @u

@r ¼ @u
@z ;w;r ¼ @w

@r ¼ @w
@z :

ðA:8Þ

The prime stands for the partial derivative with respect to h
whereas the subscript ; rð Þ stands for the partial derivative with
respect to r.

The velocity vector of a differential element of the ring in the
space-fixed frame reads

_r ¼ _wþ w0 � uð ÞXð Þiþ _uþ r þwþ u0ð ÞXð Þj ðA:9Þ
in which i and j are unit vectors in the radial and circumferential
directions, respectively. The overdot represents partial derivative
with respect to time. Integration over time of the kinetic energy
variation can be evaluated asZ t2

t1

dT dt ¼ qb
2

Z t2

t1

Z h=2

�h=2

Z 2p

0
d _r � _rð Þrdhdzdt: ðA:10Þ

The variation of the potential energy stored in the elastic foun-
dation includes two parts, namely

dV ¼ dV1 þ dV2 ðA:11Þ
in which dV1 is related to the radial springs which connect the inner
surface of the ring to its hub while dV2 to the shear tangential
springs. The integration over time of dV1 and dV2 yieldsZ t2

t1

dV1 dt ¼ b
Z t2

t1

Z 2p

0
kr wrdwð Þjz¼�h=2

� �
dhdt ðA:12Þ

andZ t2

t1

dV2 dt ¼ b
Z t2

t1

Z 2p

0
kc ur duð Þjz¼�h=2

� �
dhdt: ðA:13Þ

Upon substitution of Eqs. (A.3)–(A.13) and (1) to (A.1) and by
following basic variational calculus, one can obtain the governing
Eqs. 5,6 after linearisation. For detailed derivations using the
Hamilton’s principle one is referred to Lu et al. (2019).

Appendix B. Expressions in Eqs. 5,6

Under the plane strain assumption, the expressions for

Ilin1 ; Ilin2 ; f lin1 through f lin4 in Eqs. 5,6 are given by Lu et al. (2019):

Ilin1 ¼ rlin
h þ r0

h bð Þ0 � rrlin
r

� �
;r � shr gð Þ0½ �lin;

Ilin2 ¼ � rlin
h

� �0 þ r0
h b� r r0

r

� �
u;r

� 	
;r� shr gð Þlin� rshr 1�w;rð Þ½ �;r

n olin

f lin1 ¼ r 2lþ kð Þ @w
@r þ k u0 þwð Þ� 	jz¼h=2;

f lin2 ¼ r 2lþ kð Þ @w
@r þ k u0 þwð Þ � krwr

� 	jz¼�h=2;

f lin3 ¼ G r�weð Þ 1�we ;rð Þ
r w0 � uð Þ þ Gr 1þ we;rrð Þ2

� �h

þk rwe ;r þwe
� ��u;rgjz¼h=2;

f lin4 ¼ G r �weð Þ 1�we ;r
� �
r

w0 � uð Þ þ Gr 1þ we;rrð Þ2
� �h


þk rwe ;r þwe
� ��u;r � kcurgjz¼�h

2
: ðB:1Þ

The expressions with superscript ‘‘lin” in Eq. (B.1) are the lin-
earised versions of the corresponding expressions. we is the
axisymmetric radial expansion caused by rotation which is given
as:
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we zð Þ ¼
Xl¼N1

l¼0

wel zl: ðB:2Þ

The radial expansion we zð Þ is a function of the rotational speed
and is solved in Lu et al. (2019). The stresses r0

r and r0
h are pre-

stresses caused by rotation in radial and circumferential directions,
respectively. From the Hooke’s law Eq. (A.6), the prestress in radial
direction is given by

r0
r ¼ 2le0r þ k er0 þ e0h

� � ðB:3Þ
and in circumferential direction it reads

r0
h ¼ 2le0h þ k er0 þ e0h

� � ðB:4Þ
where the strains caused by rotation are
1

1

e0r ¼ @we

@r
; e0h ¼ we

r
: ðB:5Þ

The velocities v1 and v2 in Eqs. 5,6 are related to the vibrational
velocities, namely (Lu et al., 2019)

v1 ¼ _wþ w0 � uð ÞXð Þ; v2 ¼ _uþ u0 þwð ÞXð Þ: ðB:6Þ
Appendix C. The coefficient matrix, displacement and force
vectors

The coefficient matrix C is of the order
N1 þ N2 þ 2ð Þ � N1 þ N2 þ 2ð Þ. The displacement vector a and the
force vector f are of the order N1 þ N2 þ 2ð Þ � 1.
2 3
Du00 Du01 � � � Du0q � � � Du0N2

Du10 Du11 � � � Du1q � � � Du1N2

..

. ..
. � � � ..

. � � � ..
.

Dul0 Dul1 � � � Dulq � � � DulN2

..

. ..
. � � � ..

. � � � ..
.

DuN10 DuN11 � � � DuN1q � � � DuN1N2

Du N1þ1ð Þ0 Du N1þ1ð Þ1 � � � Du N1þ1ð Þq � � � Du N1þ1ð ÞN2

Du N1þ2ð Þ0 Du N1þ2ð Þ1 � � � Du N1þ2ð Þq � � � Du N1þ2ð ÞN2

..

. ..
. � � � ..

. � � � ..
.

Du N1þqþ1ð Þ0 Du N1þqþ1ð Þ1 � � � Du N1þqþ1ð Þq � � � Du N1þqþ1ð ÞN2

..

. ..
. � � � ..

. � � � ..
.

Du N1þN2þ1ð Þ0 Du N1þN2þ1ð Þ1 � � � Du N1þN2þ1ð Þq � � � Du N1þN2þ1ð ÞN2

77777777777777777777777777775

:
C ¼

Dw00 Dw01 � � � Dw0l � � � Dw0N1

Dw10 Dw11 � � � Dw1l � � � Dw1N1

..

. ..
. � � � ..

. � � � ..
.

Dwl0 Dwl1 � � � Dwll � � � DwlN1

� � � ..
. � � � ..

. � � � ..
.

DwN10 DwN11 � � � DwN1 l � � � DwN1N1

Dw N1þ1ð Þ0 Dw N1þ1ð Þ1 � � � Dw N1þ1ð Þl � � � Dw N1þ1ð ÞN1

Dw N1þ2ð Þ0 Dw N1þ2ð Þ1 � � � Dw N1þ2ð Þl � � � Dw N1þ2ð ÞN1

..

. ..
. � � � ..

. � � � ..
.

Dw N1þqþ1ð Þ0 Dw N1þqþ1ð Þ1 � � � Dw N1þqþ1ð Þl � � � Dw N1þqþ1ð ÞN

..

. ..
. � � � ..

. � � � ..
.

Dw N1þN2þ1ð Þ0 Dw N1þN2þ1ð Þ1 � � � Dw N1þN2þ1ð Þl � � � Dw N1þN2þ1ð ÞN

66666666666666666666666666664
ðC:1Þ
All the entries can be obtained by any symbolic computation
software. The displacement vector in frequency-wavenumber
domain is given as

a ¼
~
W
�

�x;�cð Þ
0

~
W
�

�x;�cð Þ
1 � � � ~

W
�

�x;�cð Þ
l � � � ~

W
�

�x;�cð Þ
N1

~
U
�

�x;�cð Þ
0

~
U
�

�x;�cð Þ
1

� � � ~
U
�

�x;�cð Þ
q � � � ~

U
�

�x;�cð Þ
N2

2
64

3
75

T

:

ðC:2Þ
The force vector is given by

f ¼ Pw0 Pw1 � � � Pwl � � � PwN1 Pu0 Pu1 � � � Puq � � � PuN2½ �T :
ðC:3Þ

Since the load is only applied in the radial direction

Pwl ¼ �2pP0 d �x� �Xf
� �

; l ¼ 0;1;2;3 . . .N1ð Þ; ðC:4Þ
whereas

Puq ¼ 0; q ¼ 0;1;2;3 . . .N2ð Þ; ðC:5Þ
meaning that all the components acting in the circumferential
direction are null.
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