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ABSTRACT
This study aims to model traffic flow under weak lane based heterogonous
(mixed) traffic conditions. Unlike homogeneous traffic, when a follower
(subject) vehicle in mixed traffic moves closer to its leader vehicle, it tends
to adjust its longitudinal movement or change its lane and acts discretely.
Due to this phenomenon, traffic flow modeling under such conditions is
always challenging. A new driver behavioral logic is conceptualized for the
vehicles’movementwithin a combinationof surrounding vehicles. Inwhich
the followingbehaviorwasdissectedwith the lateral shift distancebetween
vehicles. Two car-followingmodels for homogeneous traffic conditions, the
IDM and Gipps models were adapted with relevant lateral behavior param-
eters to different vehicle classes under mixed-traffic conditions. The new
driving behavior logic was incorporated externally in place of default logic.
The results showed that the performance of the adaptedmodelswas better
accurate than the classical models.
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Introduction

The car-following model is one of the most relevant notions in modeling the following behavior
among the vehicles. Simultaneously, with the stochastic nature of driving behavior, the following
behavior is a complex phenomenon in traffic science. To understand this, researchers developed sev-
eral car-followingmodels tomimic traffic behavior in thepast. Pipes (1953) related the follower’s speed
(subject) vehicle to the gap with the leader vehicle and modeled the following behavior, an initial
attempt in traffic-flow modeling. Researchers formulated different car-following models to replicate
the following behavior andmodel the traffic flow (Forbes et al. 1959; Gazis, Herman, and Rothery 1961;
Gazis, Herman, and Potts 1959). To a certain extent, these models replicated the following behavior
on an aggregate level. The substantial human involvement in driving following behavior logics has
led to the concept of various car-following models for replicating traffic dynamics; particularly at the
micro level (Wiedemann1974;Newell 1961; vanWinsum1999; Laws 1981; Tanget al. 2017; Gipps 1981;
Treiber, Hennecke, and Helbing 2000).

Given themicroscopic nature, understanding the following behavior among the vehicles demands
time–space data of the vehicles. With the data constraints, the performance of car-following models
was initially limited to specific traffic scenarios. Considering the importance of the following behavior,
numerous studies (Johansson andRumar 1971; Toledo, Koutsopoulos, andBen-Akiva 2003;Wanget al.
2015) are attempted and integrated with traffic flow modeling for better insights. The main objective
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is to devise/develop the followingmodels whichmay be confirmed realistically to the field conditions.
With the advent and availability of computing techniques, numerous following behavior studies are
performed over time, for example, which includes human elements (van Winsum 1999), the impact
of road infrastructure (Oviedo-Trespalacios et al. 2017), drivers perspective (Boer 1999), the impact of
road tunnels in following behavior (Yeung andWong 2014). Simultaneously, researchers also revealed
the importance of studying the vehicles’ lateralmovement behavior (Zheng 2014; Toledo, Koutsopou-
los, and Ben-Akiva 2009; Hidas 2002; Keyvan-Ekbatani, Knoop, and Daamen 2016; Li et al. 2016). This
has also led tomodeling different lane-change driving behavior, particularly under homogeneous and
lane-based traffic conditions in developed countries.

With advancements in technology,microscopic traffic simulation plays a considerable role in traffic
flow modeling. The simulation tools assembled with different behavioral rationalities, such as car-
following models (mostly psycho-physical models), lane-change logics, and gap-acceptance models,
as a combined package. This provides a considerable opportunity formodeling driving behavior using
simulation experiments and offers countless chances of mimicking real-field conditions reasonably
well. Numerous studies were reported, including evaluation of freeway control (Ben-Akiva et al. 2003;
Ngoduy 2012), emissions (Jie et al. 2013; Guzman and Orjuela 2017; Zhu, Lo, and Lin 2013), ramp con-
trol (Antonov and Kurlov 2002; Xu et al. 2019), pedestrian flow (Løvås 1994; Lee et al. 2018), and safety
assessment (Lima Azevedo et al. 2015). With other numerous outcomes, traffic flow studies are also
taken up to the next level based on microsimulation tools. Simultaneously, it has resulted in high
customization options in simulation models and diversely rich plenteous microscopic field inputs
to provide well-calibrated models in the simulation process. However, capturing such microscopic
interactions among vehicles from real-field conditions advocates the development of a high-quality
vehicular trajectory database that may better capture the traffic stream’s driver responses reasonably
well.

Thus, studying the following behavior warrants high-quality trajectory data, where the vehicular
positions from the traffic must be tracked with the smallest possible update interval. Assessing this
research gap, the United States (US) Federal Highway Administration (FHWA), as a part of the NGSIM
project, developed a vehicular trajectory dataset using automated image processing tools at differ-
ent locations for a trap length of 400–600m for different classes of roadway facilities (FHWA 2007).
NGSIM dataset acts as one of the prime sources in understating the following behavior under lane-
based homogeneous traffic conditions prevailing in the US. On these lines, numerous studies were
performed, oscillations in following behavior (D. Chen et al. 2012), latent class functions (Koutsopou-
los and Farah 2012), deep learning (Zhang et al. 2019), modeling autonomous following behavior
(Rahmati et al. 2019).

In the present work, to refer weak lane-discipline heterogeneous traffic conditions, the authors
adopted the term ‘mixed traffic.’ At the same time, the authors are not referring to the mixed traf-
fic of autonomous and human-driven vehicles. To understand the driving behavior in mixed traffic
conditions, research attempts (Venkatesan, Gowri, and Sivanandan 2008; Mallikarjuna and Rao 2011)
were carried in recent times. In this direction, Kanagaraj et al. (2015) highlighted the importance of
lateral behavior in mixed traffic conditions. On similar lines, studies (Das et al. 2020; Raju et al. 2018)
highlighted the smaller vehicle’s lateral maneuverability in impacting the traffic stream conditions.
Further, researchers (Paul et al. 2021) inferred that segregating smaller vehicles inmixed traffic streams
can improve road networks’ safety and efficiency. On similar lines, few other studies reported substan-
tial lateral behavior of vehicles and smaller vehicles’ dominance in the traffic stream (Bharadwaj et al.
2016; Raju et al. 2018). In this domain (Sharath and Velaga 2020; Raju, Arkatkar, and Gaurang 2019),
highlighted the importance of surrounding vehicles’ can impact the vehicle’s movement in a mixed
traffic stream. Further, a study by Patil et al. (2021) explicitly highlights the importance of surrounding
vehicles in surrogate traffic safety. Simultaneously, researchers attempted to calibrate the established
car-following and lane-change models of homogeneous traffic for mixed-traffic data, including (Raju,
Arkatkar, and Joshi 2020; Raju, Arkatkar, and Gaurang 2019).



TRANSPORTMETRICA B: TRANSPORT DYNAMICS 3

Figure 1. The methodological framework adopted in the study.

In the case of mixed-traffic conditions prevailing in India, different vehicle categories exist on the
roads. This is also coupled with ensuing weak lane discipline that results in complex interactions
among the vehicles. This may be attributed to many possible combinations of longitudinal and lat-
eral gaps as a function of the static and dynamic characteristics. Under these conditions, even the
well-established car-following models tend to underperform. As a result, the benefits of traffic flow
modeling concepts tend to remain underutilized, and studies have not succeeded in inducing the
real, naturalistic sense of mixed-traffic movement. Thus, modeling of mixed-traffic conditions forms a
clear research gap. Given the research gaps pronounced from the literature review, it is realized that
the study of driving behavior under homogeneous andmixed-traffic conditions is amust formodeling
traffic flow precisely. Accordingly, the research work is devised in three stages, as shown in Figure 1.
The initial stage is about the identification of the study section, followed by trajectory data develop-
ment. In the second stage, driving behavior logic is conceptualized, and the selected driving behavior
models are customized with the lateral movement of the vehicles in the surrounding of the subject
vehicle. Based on the field trajectory data, the customized driving behaviormodels arewell-calibrated.
In the final stage of the work, to model the mixed traffic conditions, the calibrated driving behavior
models are coded in the micro-simulation tool PTV VISSIM, 11.0. Further, the models’ performance is
evaluatedboth atmicroscopic hysteresis aswell asmacroscopic levels, and thedetailed results are pre-
sented, demonstrating the complexity involved in capturing longitudinal and lateral driving behaviors
simultaneously under mixed-traffic conditions.

Study Section

An experiment was designed to address the challenges in traffic flow modeling under mixed-traffic
conditions, considering diverse roadway and traffic conditions. A segment on the western express-
way in India was considered for this purpose. A wide variation in traffic flow existed, ranging from
free-flow to near-capacity flow, and stop-and-go conditions in the congested regime. Video graphic
surveys were conducted, andmacroscopic plots were developed. Further, high-quality trajectory data
were developed at three different flow levels for this section to sense driving behavior. In considering
the ineptness of automated image processing tools under heterogeneous (mixed) traffic conditions,
a semi-automated image processing tool was used to develop trajectory data (Vicraman et al. 2014).
In improving themarginal noise in the developed trajectory data, smoothening techniques were used
(Venthuruthiyil and Chunchu 2018; Raju et al. 2017). For better readability, the details of the selected
study section’s trajectory data are presented in Table 1. The selected study sections’ snapshots fol-
lowed by the developed time–space plots of vehicles observed during real field conditions on the
western expressway are shown in Figure 2. Six dominant vehicle categories were observed over the
selected road sections: Motorized three-wheelers, Motorized two-wheelers, Buses, Cars, Trucks, and
Light commercial vehicles (LCV).
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Table 1. Details of the study section.

Traffic flow parameters

Study section
Trap

length (m)
Road

width (m)
Traffic flow
classification

Traffic
compositiona

Avg.
speed
(kmph)

Avg. flow
PCU/h V/C

No. of
vehicles
tracked

Duration
of

trajectory
data

(minutes)

Western Express-
way (Multilane
Urban Roads)

120 17.5 Flow-1 15/35/5/40/2/3 65 4800 0.4 1080 15

Flow-2 20/29/2/45/1/3 42 10120 0.85 1715 15
Flow-3b 17/25/5/45/3/4 20 3500 < 1 660 10

bStop and go conditions.
aTraffic composition in order of motorized three-wheelers/motorized two-wheelers/bus/car/truck/LCV.

Figure 2. Snapshots of the study section (top) and time-space plots of vehicles (bottom) on the western expressway for different
flow levels.

Modeling driving behavior

Undermixed-traffic conditions, the presence of different vehicle categories and the ensuingweak lane
discipline inevitably results in numerous complex interactions. As a result, even the well-established
car-following and lane-changemodelsmay not be directly used inmodeling such conditions. As such,
various drivingbehavior-relatedparameters are not adequately studied for such conditions. For exam-
ple, consider two vehicles are interacting in a traffic stream (leader–follower pair), let the leader be
relatively slower than the follower. Under homogeneous lane-disciplined traffic, the follower vehicle
will match the leader vehicle speed and tends to change the lane to have a comfortable movement.
However, in the case of mixed-traffic conditions with non-lane-based traffic behavior, given the same
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scenario, the subject vehicle will most likely shift laterally for its comfort to pass its leader vehicle.
The extent of the subject vehicle’s lateral movement depends on the surrounding vehicles present
in the stream and the lateral freedom available for maneuvering. This unique phenomenon under
mixed-traffic conditions can be attributed to the car-following models’ low performance for lane-
based conditions. Suchmodels cannot explain the longitudinalmovement in combinationwith lateral
shifting simultaneously.

To address the research gap, a driving behavior logic was developed to model driving behav-
ior under mixed-traffic conditions. Instead of discretizing the following and lane-change behavior as
homogeneous traffic conditions, the selected car-following models were adapted, where the subject
vehicle is mostly influenced by the surrounding vehicles present in its surrounding zone.

Consider a leader–follower vehicle pair in a mixed traffic stream, having a longitudinal space of y,
and the center of the follower is shifted to the right concerning the center of the leader (lateral shift)
with a distance L, as shown in Figure 3. Let Lc be the comfortable lateral distance of the subject vehicle
to pass its leader vehicle.When the leader vehicle is comparativelymoving slower than its subject (less
than the subject’s desired speed) as a result of mixed traffic conditions, the subject vehicle tends to
move in either to the left or to the right of the subject vehiclewith anglesα orβ , respectively, as shown
in Figure 3. With the availability of lateral freedom, the probability that the subject vehicle selects the
right movement with a lesser angle β is higher than selecting the left movement with a higher angle
α. Considering this phenomenon, both lateral and following behaviors of vehicles will be formulated
in the same model. The angles α or β are given by

α = tan−1
[
L + Lc + 0.5wL

y

]
(1)

β = tan−1
[
L + Lc − 0.5wL

y

]
(2)

wherewL is the width of the leader vehicle. The angle of the subject vehicle for preferred longitudinal
movement, θ , is given by

θ = min{|α|, |β|} (3)

On the other hand,with various surrounding vehicles in the picture, the behavior of the subject vehicle
can be miscalculated by considering only a single leader vehicle. To better understand the vehicular
movement phenomenon, traffic-flow movements over the road section were thoroughly observed.
It was found that the subject vehicle is mainly influenced by its surrounding vehicles, and it tends to
comeout of its surrounding vehicles and laterallymove to any available space on the road. This behav-
ior is illustrated in Figure 4 by the locations of the subject vehicle (motorized two-wheeler, marked in
yellow) over different time frames.

Considering the above phenomenon in Figure 4, it was planned to identify the surrounding vehi-
cles over the subject vehicle, for this a surrounding zone of length ‘l’ andwidth ‘m’ for a subject vehicle
was specified as shown in Figure 5. Based on this premise, five possible combinations of surrounding
vehicles can be identified in the present study for a given subject vehicle. Figure 5 depicts the sur-
rounding vehicle designations as leading and adjacent along with their relative sides based on their
respective position concerning the subject vehicle.

Based on the type of vehicles in the surrounding zone, there can be potential five different sur-
rounding vehicles with 24 combinations. Note that the scenario in Figure 3 is explained only for a
single leader–follower pair with a lateral shift where the vehicle acquires the minimum angle when
the subject vehicle is experiencing a delay. Based on the observed phenomenon in Figure 4, when the
subject vehicle faces the discomfort of not having its desired speed due to the surrounding vehicles,
it tends to move away from its surrounding vehicles. Based on the combination of the surrounding
vehicles, the direction of the subject vehicle at that instant is specified so that when the vehicle is not
moving at its desired speed, it tends to switch its lateral position over the road space.When the subject
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Figure 3. Concept of angular longitudinal movement of the subject follower vehicle.

Figure 4. Subject vehicle locations in the traffic stream (highlighted) in different time frames.

is not having any surrounding vehicles, it tends to move at its desired speed. When only the leader is
ahead, the subject vehicle finds theminimum angle formovement. Furthermore, the subject finds the
appropriate gap to pass those vehicles with the surrounding and leader vehicles. Based on the combi-
nation of vehicles in the surrounding zone of the subject vehicle, the preferred direction ofmovement
(shown as a bold arrow) is explained in Figure 6.

Discussion on car-followingmodel selection

Numerous car-following and lane-changing behavior models were reported in the literature (Pourab-
dollah et al. 2017; C. Chen et al. 2010; Yang et al. 2018). It was observed that both Intelligent Driving
Model (IDM) and Gippsmodel are reported as one of the robustmodels inmodeling traffic conditions.
A few researchers (Milanés and Shladover 2014; X. Chen et al. 2010) reported that the IDM couldmodel
autonomous vehicles. Considering their performance in modeling driver behavior and their robust
mathematical formulation, both IDMandGippsmodels are chosen in thepresent study tomodel driver
behavior in mixed-traffic flow conditions.
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Figure 5. Identification of surrounding vehicles for the subject vehicle.

Figure 6. Preferred direction of the subject vehicle in combination with surrounding vehicles.

Intelligent drivingmodel (IDM)

To model the behavior of vehicles, Treiber, Hennecke, and Helbing (2000) proposed the IDM. In addi-
tion, numerous studies adopted the IDM for modeling prevailing traffic conditions (Derbel et al. 2013;
Derbel et al. 2018; Eggert, Damerow, and Klingelschmitt 2015; Laquai et al. 2013). In general, the IDM
expresses the accelerationof a subject vehicle as a functionof its desiredmaximumacceleration. Based
on the subject vehicle’s current speed and available gap with its leader vehicle, the desiredmaximum
accelerationof the vehicle is estimated in suchway that the vehicle attains its desired speedunder free-
flow traffic conditions and avoids collision by restricting its acceleration to maintain a minimum safe
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gap with its leader vehicle. Let the following variables of the subject vehicle be denoted as: desired
maximum acceleration of vehicle amax , speed v, desired speed V , tentative minimum gap Smin, and
distance gap between the leader and subject vehicles S.

Thus, the acceleration of the subject vehicle a is given as

a = amax ×
[
1 −

( v

V

)δ

−
(
Smin

S

)2
]

(4)

The minimum desired gap among the vehicles Smin at jam conditions is given by

Smin = s0 + s1

√
v

V
+ Tv + v�v

2
√
amaxb

(5)

where δ is the acceleration parameter, s0 is the gap at jam conditions, s1 is the gap factor, T is the
reaction time of driver, and b is the comfortable deceleration (positive value). Then, based on the core
logic formulation of IDM, the boundary conditions are assessed as follows

when
{

v → V
S → null

}
a = 0 (6)

when
{

v → 0
S → null

}
a = amax (7)

when
{

v < V
S > Smin

}
a < b (8)

when
{

v < V
S → Smin

}
a = b (9)

From the preceding formulation, it noted that the acceleration of a subject vehicle is quantified in
such a way that the vehicle always tends to maintain the desired speed V under free-flow conditions
and decelerates to avoid the minimum gap Smin from its leader vehicle. As per IDM, the acceleration
of the subject vehicle is accessed based on the speed ratio (v/V) and the distance gap ratio (Smin/S) for
the longitudinal movements of the vehicles.

Gippsmodel

Another potentialmodel, named theGippsmodel(Gipps 1981), was considered tomodelmixed-traffic
behavior. Unlike IDM, the Gippsmodel is amulti-regimemodel, conceptualized based onmaintaining
a safe time gap from the leader vehicle. Some studiesmodified the classical Gippsmodel formodeling
prevailing traffic conditions (Gunay 2007; Yang et al. 2013; Papathanasopoulou and Antoniou 2015).
In general, the following behavior of vehicles is expressed using two phases (acceleration and deceler-
ation), and the driver’s response is quantified accordingly. The basic concept involved in the model is
that when the subject vehicle is not under the influencing zone of the leader vehicle, the subject vehi-
cle tends to maintain its desired speed using acceleration (modeled as acceleration phase). Whereas,
if the subject vehicle is under the influence of the leading vehicle, it tends to maintain a safe time gap
from the leading vehicle through acceleration and deceleration. The desired speed constraint fitted
from field data is given by

v(T) ≤ v + 2.5Tamax

(
1 + v

V

)√
0.025 + v

V
(10)

When the leading vehicle brakes to slow down, the speed limit that avoids collision was derived from
the equation of motion as

v(T) ≤ bT +
√
b2T2 − b[2(Smin) − vT − V

b
] (11)
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The boundary conditions of the Gipps model were evaluated as

when
{
v → V
T → 0

}
v(T) = v (12)

when {v → 0}

v(T) = v + 2.5Tamax

(
1 + v

V

)√
0.025 + v

V
;

v(T) = 2.5Tamax
√
0.025;

v(T) = 0.4Tamax

v(T) = amax × update interval (T = 2.5 s) (13)

when
{

v < V
S > Smin

}
v(T) ≤ bT (14)

when
{

v < V
S → Smin

}

v(T) = bT +
√
b2T2 − b[2(Smin) − vT − V

b
] (15)

v(T) = bT +
√
b2T2 − b

[
2

(
vT + 1

2
aT2

)
− vT − V

b

]
,
[
S = vT + 1

2
aT2

]

v(T) = bT +
√
b2T2 − b

[
2

(
1
2
bT2

)]
, [as S → Smin; v → 0 and a → b]

v(T) = bT +
√
b2T2 − b2T2], [as S → Smin; b → max (to avoid collision)]

v(T) = bT (16)

From the boundary conditions, the speed of a subject vehicle is given under amulti-regime formu-
lation. For example, under free flow, the subject vehicle tends to maintain its desired speed V, with
acceleration as a function of the speed ratio. On the other hand, when the subject vehicle experiences
the stimulus of other leader vehicles, it is zoned in either of the two regimes, such that the subject
vehicle maintains a minimum safe time gap from the leader vehicle. In this case, Smin plays a major
role in deciding the safe time gap.

Inducing the angular logic

Both IDM and Gipps car-following models can be used to replicate mainly the longitudinal move-
ment of vehicles. However, under mixed-traffic conditions, driving behavior is a combination of both
simultaneous longitudinal and lateral behavior as a discretely continuous phenomenon. Hence, apply-
ing these models directly may not precisely incorporate mixed traffic behavior. Therefore, in this
study, the hypothesized behavioral logic of these two car-followingmodelswas adopted formodeling
mixed-traffic behavior.

To describe the logic in a bettermanner, two vehicles are considered, as shown in Figure 7. Let Lc be
the comfortable lateral distance between the vehicles to have a passing movement for the subject, L
be the lateral shift between the vehicles, and L/Lcbe the clearance ratio.When the clearance ratio is less
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than 1, the subject vehicle must be under the influence of its leader vehicle and respond accordingly.
On the other hand, a clearance ratio equal to or greater than 1 signifies the availability of freedom for
lateral movement, in which the subject vehicle can pass its leader vehicle instead of the lane change,
as shown in Figure 7. Even withmultiple surrounding vehicles, Lc is calculated similarly. Therefore, the
classical car-following models were adapted to model the lateral behavior and thus replicate driving
behavior under mixed-traffic conditions more realistically.

Customizing IDMmodel

To induce the lateral behavior logic in the IDM, once again the formulation of IDM was examined. To
induce lateral behavior, it was envisioned to customize the IDM model. Along with v/V and Smin/S
factors, for mimicking lateral behavior, L/Lc was introduced in the IDM model. To sensitize the lateral
behavior an exponent factor β was given to L/Lc, which acts almost like δ in v/V . On these lines, the
newly customized IDM for an ideal passing behavior is given as Equations (17) and (18).

a = amax ×
[
1 −

( v

V

)δ

−
(
Smin

S

)2

+
(
L

Lc

)β
]

(17)

Again, it can be implied that the factor L/Lc should not active over the entire simulation time,
otherwise will result in desired maximum for the subject vehicle in most of the times. At the same
time, L/Lc should be activated when the subject vehicle is having lateral freedom to pass the sur-
rounding leader vehicles, instead of following them. Considering this in the present work, a dummy
coefficient ‘ω’ was factored to L/Lc. Whereas ω takes the values of either unity or zero based on
the availability of lateral freedom to the surrounding vehicles. On the lines, customized IDM is
given as

a = amax ×
[
1 −

( v

V

)δ

−
(
Smin

S

)2

+ ω

(
L

Lc

)β
]

(18)

If a > amax then a = amax (19)

On these lines, the boundary conditions of the customized IDMwere evaluated as shown in Table 2.

Figure 7. Behavior of subject vehicle at different scenarios.
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Table 2. Boundary conditions of customized IDM over different scenarios.

Boundary condition Acceleration of the vehicle Inference⎧⎨
⎩

v → V
S → null
L → null

⎫⎬
⎭ a = 0; Vehicle in free flow conditions

⎧⎨
⎩

v → 0
S → null
L → null

⎫⎬
⎭ a = amax; Vehicle is about to start from stoppage

conditions.⎧⎨
⎩

v < V
S > Smin
L → null

⎫⎬
⎭ a = amax ×

[
1 −

( v

V

)δ

−
(
Smin

S

)2
]
b < a < amax; Vehicle is under the influence of the

leader.⎧⎨
⎩

v < V
S → Smin
L → null

⎫⎬
⎭ a = amax ×

[
−

( v

V

)δ
]

Stopping conditions and vehicles
having lateral freedom.

a > b;⎧⎪⎨
⎪⎩

v < V
S → Smin
L < Lc
ω → 0

⎫⎪⎬
⎪⎭ a = amax ×

[
−

( v

V

)δ
]

Stopping conditions and vehicles not
having lateral freedom.

a > b;⎧⎪⎨
⎪⎩

v < V
S → Smin
L → Lc
ω → 1

⎫⎪⎬
⎪⎭ a = amax ×

[
−

( v

V

)δ

+ 1
]
0 < a < amax Stopping conditions, but the vehicle

having lateral freedom, due this
vehicle switches the lateral position
and maintains its speed.⎧⎪⎨

⎪⎩
v < V

S → Smin
L > Lc
ω → 1

⎫⎪⎬
⎪⎭ a = amax ×

[
1 −

( v

V

)δ

+
(

L

Lc

)β
]
0 < a < amax Vehicle switches its lateral position and

passes over its surrounding vehicles.⎧⎪⎨
⎪⎩

v < V
S → Smin
L > Lc
ω → 0

⎫⎪⎬
⎪⎭ a = amax ×

[
−

( v

V

)δ
]
a > b Vehicle follows its leader vehicle

and computes position based on
traditional IDM formulation.⎧⎪⎨

⎪⎩
v < V

S → Smin
L > Lc
ω → 1

⎫⎪⎬
⎪⎭ a = amax ×

[
1 −

( v

V

)δ

−
(
Smin

S

)2

+
(

L

Lc

)β
]
b < a < amax Vehicle follows its leader vehicle and

computes position based on new
customized IDM formulation.

It can be noted that customized IDM, with the induced lateral behavior of vehicles, the sense of
the IDM has not been changed under normal conditions, additionally at the same time with lateral
behavior in the picture, it is also able to handle mixed-traffic sense reasonably well.

Customizing Gippsmodel

Like IDM, Gipps model was tweaked to model the mixed traffic conditions. As Gipps was multi regime
car following model, in the present case it was sensed that lateral behavior comes when the vehicle is
nearing its safety distance, considering this only the safety distance part of the Gipps was tweaked. It
was noticed that safety distance part consists of deceleration factors, given the scenario of vehicle hav-
ing the lateral freedom at near safety distance conditions, the subject vehicle should not be complete
deceleration phase. To cater this, maximum acceleration amax was factored with L/Lc. Like IDM again
dummy coefficient ‘ω’ and exponent factor ‘γ ’ was conceptualized. Based on this the final customized
Gipps model is given as in equations 20 and 21

v(T) ≤ v + 2.5Tamax

(
1 + v

V

) √
0.025 + v

V
(20)
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Table 3. Boundary conditions of customized Gipps model over different scenarios.

Boundary condition Velocity of the vehicle Inference⎧⎨
⎩

v → V
S → null
L → null

⎫⎬
⎭ v(T) = V Vehicle in free-flow conditions

⎧⎨
⎩

v → 0
S → null
L → null

⎫⎬
⎭

v(T) = v + 2.5Tamax

(
1 + v

V

)√
0.025 + v

V
;

v(T) = 2.5Tamax
√
0.025;

v(T) = 0.4Tamax

v(T) = amax × update interval; [T = 2.5 s]

; Vehicle is about to start from
stoppage conditions.

⎧⎨
⎩

v < V
S > Smin
L → null

⎫⎬
⎭ v(T) = v + 2.5Tamax

(
1 + v

V

)√
0.025 + v

V
Vehicle is under the influence of
the leader.

⎧⎨
⎩

v < V
S → Smin
L → null

⎫⎬
⎭ v(T) =Min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v + 2.5Tamax

(
1 + v

V

) √
0.025 + v

V

bT +
√
b2T2 − b

[
2(Smin) − vT − V

b

] Stopping conditions and vehicles
having lateral freedom.

⎧⎪⎨
⎪⎩

v < V
S → Smin
L < Lc
ω → 0

⎫⎪⎬
⎪⎭ v(T) = bT +

√
b2T2 − b

[
2(Smin) − vT − V

b

]
Stopping conditions and vehicles
not having lateral freedom.⎧⎪⎨

⎪⎩
v < V

S → Smin
L → Lc
ω → 1

⎫⎪⎬
⎪⎭ v(T) = bT +

√
b2T2 − b

[
2(Smin) − vT − V

b

]
+ amaxT

(
L

Lc

)γ

Stopping conditions, but the
vehicle having lateral freedom,
due this vehicle switches the
lateral position and maintains its
speed.⎧⎪⎨

⎪⎩
v < V

S → Smin
L > Lc
ω → 1

⎫⎪⎬
⎪⎭ v(T) =Min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v + 2.5Tamax

(
1 + v

V

) √
0.025 + v

V

bT +
√
b2T2 − b

[
2(Smin) − vT − V

b

]
+ amaxT

(
L

Lc

)γ Vehicle switches its lateral position
and passes over its surrounding
vehicles.⎧⎪⎨

⎪⎩
v < V

S → Smin
L > Lc
ω → 0

⎫⎪⎬
⎪⎭ v(T) =Min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v + 2.5Tamax

(
1 + v

V

) √
0.025 + v

V

bT +
√
b2T2 − b

[
2(Smin) − vT − V

b

] Vehicle follows its leader vehicle
and computes position based on
traditional Gipp’s formulation.

The velocity limitation that can avoid collision, when the leading vehicle brakes to slow down was
derived from the equation of motion given as

v(T) ≤ bT +
√
b2T2 − b

[
2(Smin) − vT − V

b

]
+ amaxTω

(
L

Lc

)γ

(21)

On these lines, the boundary conditions of the tweaked Gipps model were evaluated as shown in
Table 3.

Similarly, with the inclusion of lateral behavior in the model (based on the boundary conditions)
it is noted that, the sense of the classical Gipps model did not actually change for the longitudinal
movement. Rather, the customized Gipps model can handle the lateral behavior of the vehicles more
realistically. Furthermore, it can be noted that ω plays a key role in activating the lateral importance
in the Gipps model and will be equal to either 0 or 1. Thus, the lateral movement is activated in the
model only when the subject vehicle has lateral freedom to pass its surrounding vehicles to the left or
to the right to attain its desired speed, where ω = 1. When the subject vehicle is surrounded by the
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Table 4. Direction of the follower vehicle for different surrounding vehicle combinations.

Vehicles presence in surrounding zone

Left
leading
vehicle

Leading
vehicle

Right
leading
vehicle

Left
adjacent
vehicle

Right
adjacent
vehicle ω Direction of follower vehicle at that instant

No No No No No 1 Straight movement
No Yes No No No 1 Direction to the left or right based on a minimum

angle
No Yes Yes No No 1 Direction to the left of leader, irrespective of angle.
Yes Yes No No No 1 Direction to the right of leader, irrespective of angle.
Yes Yes Yes No No 1 Direction to the left or right, based on minimum

angle to the left adjacent or right adjacent leading
vehicles.

No Yes No Yes No 1 Direction to the right of leader, irrespective of angle.
No Yes Yes Yes No 1 Direction to the right, based on right adjacent

leading vehicles.
Yes Yes Yes Yes No 1 Direction to the right, based on right adjacent

leading vehicles.
No Yes No No Yes 1 Direction to the left of leader, irrespective of angle.
No Yes Yes No Yes 1 Direction to the left of leader, irrespective of angle.
Yes Yes No No Yes 0 Direction to the left, based on left adjacent leading

vehicles.
Yes Yes Yes No Yes 0 Direction to the left, based on left adjacent leading

vehicles.
No Yes No Yes Yes 0 Direction to the left or right edge of the leader based

on minimum angle
No Yes Yes Yes Yes 0 Direction to the left or right edge of the leader based

on minimum angle
Yes Yes No Yes Yes 0 Direction to the left or right edge of the leader based

on minimum angle
Yes Yes Yes Yes Yes 0 Direction to the left or right edge of the leader based

on minimum angle

vehicles and does not have freedom to pass, ω = 0. The direction of the follower vehicle for different
surrounding vehicle combinations are presented in Table 4.

Further, it can be noted that, in the case of both IDM and Gipps models, the variables s, V, L and
ω are dependent on each other. It can be noted that both the models are originated by the pres-
ence of velocity. With the presence of V, the distance gap S comes into the picture. When the distance
gap is approaching its minimum gap, the lateral distance L will be computed. Further based on the
presence of lateral freedom, the presence of ω gets incorporated in the models. Due to this, the con-
ventional numberof combinations is notobserved in Tables 2 and3. In viewof this, basedon themodel
formulations, in the case of IDM and Gipps, about 9 and 8 combinations are observed, respectively.

Calibration of customized driving behaviormodels

The customized IDM and Gipps models are to be calibrated using data from actual field conditions to
model themixed-traffic flowbehavior. Afterwards, the calibratedmodel parameters are to be assessed
for their effectiveness. Furthermore, to compute the parameters, the surrounding vehicles for a given
subject vehicle are to be identified. In the present work based on the developed vehicular trajectory
data; programwas codedusinga tool, namedMATLAB.With thehelpof available literature (Savolainen
et al. 2012; Okuda, Sugie, and Suzuki 2018; Bärgman, Smith, and Werneke 2015), a surrounding zone
of l = 30m and m= 2.5m, was specified and surrounding vehicles are identified at each instant of
the time frame for the subject vehicle. Under homogeneous traffic conditions, where car-following
models are mostly calibrated irrespective of the vehicle category. In the present case, considering the
variation in driving behavior based on the change in the vehicle category, the driving behaviormodels
are planned to calibrate individually for each vehicle category.
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Table 5. Estimated parameters using trajectory datasets.

Parameters Motorized three-wheelers Motorized two-wheelers Bus Car Truck LCV

V(m/s) 15.49 19.91 16.81 17.98 15.69 15.91
Smin(m) 1.12 0.97 5.61 1.63 4.94 1.75
Lc (m) 0.65 0.52 1.46 1.21 1.68 0.97
amax (m/s2) 2.28 2.85 2.31 2.5 2.21 2.03
b(m/s2) −2.54 −2.94 −2.43 −2.59 −2.45 −2.23

Table 6. Calibrated parameters of models using optimization.

Model Parameters Motorized three-wheelers Motorized two-wheelers Bus Car Truck LCV

IDM δ 0.72 0.45 0.91 0.65 0.97 0.84
β 0.65 1.12 0.31 0.94 0.23 0.51

Gipps T 1.2 1.1 1.2 1.1 1.2 1.0
γ 0.59 1.19 0.45 1.05 0.53 0.71

With the help of available trajectory from varied traffic volumes over the road sections under
mixed-traffic conditions, vehicle-category wise common parameters in both the models such as V ,
Smin, Lc, amax and b are evaluted directly form the trajectory data. Considering the error in taking
extreme value, in the present case desired speed V is computed as 95th percentile velocities of vehi-
cles,minimumgap Smin as 5percentile of gaps, comfortable lateral clearance Lc is computedas average
lateral clearance of vehicles with adjacent vehicles, maximum acceleration as amax as 95th percentile
value of accelerations and b as 95th percentile value of decelerations. Based on these the parameters
are computed and reported in Table 5.

On the other hand, remaining parameters such as δ,β in IDM and T , γ in Gipps model cannot be
evaluated directly from the trajectory sets and hence, needs to be optimized. To find the optimized
values of these parameters Genetic algorithmwas chosen based on the literature (Ranjitkar, Nakatsuji,
and Kawamua 2005; Gurusinghe et al. 2002), initially, the models were coded in MATLAB optimiza-
tion tool with the objective function of minimum error in the observed response and the modeled
response. For IDM, the response is the acceleration of the vehicle, whereas, for Gipps, it is the vehi-
cle’s velocity. On this basis, optimization is repeated for numerous runs, till the variation among the
calibrated parameters from the runs found to be minimum and the calibrated parameters are given
in Table 6. To get the fine-tuned values, optimization runs were carried repetitively with a change in
population size (range of 50–500) and the number of stall generations (range of 1000–10,000).

The evaluated parameters observed that smaller vehicles, namely motorized three-wheelers, car
and motorized two-wheelers, tend to show some aggression in comparison to heavy vehicles. For
example, they maintain higher desired speeds, less gap and less lateral share. Even from the opti-
mized parameters in both the models, a similar inference was observed. For example, acceleration
exponent δ of motorized two wheelers is 0.45 and bus is 0.91, for given v/V of 0.7 in both vehicles at
free flow conditions. IDMgives 0.85 factor formotorized two-wheelers and 0.72 for bus, which signifies
the aggressiveness of smaller vehicles even at higher velocities. Further, to sense the vehicle category-
based behavior in the traffic stream, the factors of v/V , Smin/S and L/Lc are computed over different
vehicle categories using trajectory data and their cumulative probability functions are presented in
Figure 8.

For the speed ratio of Figure 8(a), it is noted that smaller vehicles (mainlymotorized three-wheelers
andmotorized two-wheelers) tend to show high variation compared to other vehicle categories. That
is, smaller vehicles tend to have higher acceleration than other vehicles at a given value of the speed
ratio. On the other hand, heavy vehicles, as they approach their desired speeds, tend tomaintain lesser
acceleration values. For the distance gap ratio of Figure 8(b), the distributions of smaller vehicles are
skewed towards the origin, which may be caused by their smaller Smin values. In the case of the clear-
ance ratio of Figure 8(c), the variations were observed for heavy vehicles such as truck, bus, car, and
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Figure 8. Cumulative probability functions of the speed, distance gap, and clearance ratios among different vehicle categories: (a)
speed ratio, (b) distance gap ratio, and (c) clearance ratio.

LCV, where the ratios are in the range of 0–0.5. On the other hand, in the case of motorized three-
wheelers and motorized two-wheelers, the values are in the range of 0–1.2, signifying the availability
of lateral freedom for these vehicles traffic stream. These results indicate the underperformance of
classical car-following models in mixed-traffic conditions.

Simulationmodeling

Further, to comprehend customizeddrivingbehaviormodels’ performance, itwasplanned to simulate
themixed traffic based on themodels. Based on the literature (Rakha andWang 2009; Brackstone and
McDonald 1999; Rakha and Crowther 2002), it was noted that simulation is performed based onmath-
ematical computations, where the calibratedmodels are numerically integrated with time to develop
the speed–density relationship. On this basis, macroscopic fundamental traffic characteristics can be
studiedwith the help of calibratedmodels. Nevertheless, to understand the logic of calibratedmodels
in a sensibleway, itwas planned to employ themicroscopic traffic simulation tools in thepresentwork.
Based on the author’s previous experiences, in the present work microsimulation tool, PTV VISSIM,
11.0, was selected tomodel the traffic. Given this, the simulationmodel was developed, and necessary
inputs such as road geometry, vehicle inputs, vehicle dimensions, desired speeds based on vehicle
category were given as inputs to the simulation models.
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In VISSIM, for driving behavior modeling, Wiedemann’s psychophysical models (Wiedemann 1974)
are used to replicate the following behavior and linear lateral share relationship with longitudinal
velocity for inducing lateral behavior. Whereas to model the mixed traffic with customized driving
models, these models have to be coded externally, for that in the present work, Application Program
Interface module (API) (Vissim, 2018) was used to induce the customized driving behavior. In External
Driver API, Dynamic Link Library (DLL) files are used as replacing the internal default behavior, the DLL
files contain aHeader file, which contains all the various libraries for the vehicle parameters and source
file, in which the behavioral logic can be coded and the entire logic to be written in C++ platform.

To induce the framed concept of driving behavior in the microsimulation tool VISSIM the behav-
ioral logic was coded so that, initially, the subject vehicle computes the surrounding vehicles in the
surrounding zone. Based on the surrounding vehicle combination, the direction of the longitudinal
movement will be assigned. With the selected value, the driving behavioral model will be activated,
and the responses of the vehiclewill be computed. Basedon the responses, the position of the vehicles
will be calculated as shown in Figure 9.

On the lines, it can be noted that as driving behavior was externally coded in VISSIM, initially due
to some glitches/bugs in the code, some irrational behavior was observed and finally, by solving
them, conceptualizedbehavioral logicwas achieved in simulation. In givingdueweightage to authors’
efforts in achieving the process, some snapshots of these trials are presented in Figure 10 and simula-
tion videos are presented in YouTube videos and URL-links for which are given in the Appendix at the
end of this manuscript.

Figure 9. The logic of coding external driving behavior within the adapted models in VISSIM.
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Figure 10. Selected snapshots of the simulation trials.

Behavior modeling: customized IDM

The conceptualized driving behavior logic was tested in VISSIM as per the simultaneous observations
of different vehicularmovements in longitudinal and lateral directions. The calibrated customized IDM
was then coded using DLL source files, and simulation runs were performed. To study the calibrated
customized IDM’s performance comprehensively, simulation models are input with varying flow lev-
els ranging from 1000 Vehicles/h to 13000 Vehicles/h with an interval of 500 Vehicles/h. To test the
calibrated model’s credibility comprehensively, vehicular trajectory data was developed from simula-
tion models over varying flow levels, with a 5-minute sample at each of the flow levels varying over
100min. Given this, longitudinal and lateral positions were noted for every 0.4 s and vehicle category
for each vehicle. The value of 0.4 s was fixed based on the actual extracted trajectory data. To under-
stand themicroscopic interaction among the vehicles,Wiedemann’s following conceptwas employed
in the present work. The plots indicating distance gaps vs. relative velocities (follower minus leader)
were made among the consecutive vehicles with any lateral overlap. It can be noted that vehicular
pairs showing good behavior will result in a perfect or most ideal hysteresis phenomenon. Based on
the developed trajectory data from simulation and the help of a MATLAB code, distance gap vs. rela-
tive velocity plots are developed. Based on the follower vehicle category, the plots are aggregated and
overlaid with the hysteresis plots from field conditions shown in Figure 11. Further, for better clarity
on the nature of variations, vehicle-category-wise relative velocity and distance gap distributions are
also compared, as shown in Figure 11. The frequency distributions are shown above and at the right
side of the relevant hysteresis plots.

In general, to understand the following behavior among the vehicles, Wiedemann (Wiedemann
1974) conceptualized a relationship between the distance gaps and the relative speeds among the
vehicles. Based on this following behavior is modeled in different threshold regimes. In line with this,
these two psychophysical following-behavior models (Wiedemann74 and 99) were developed. Based
on this, even authors from their previous studies examined the driving behavior using hysteresis plots
under India’s mixed traffic conditions. It can be noted that when the follower vehicle is moving closer
towards the leader, the distance gap will decrease. At some point, based on the follower vehicle
responses, the follower vehicle will be under the regime of its leader. Given the reaction time and
human (driver behavior) element, there will be a hysteresis phenomenon between the vehicles; on
similar lines, when the leader is moving at a higher speed than its follower, the distance gap increases
with an increase in the magnitude of relative speed. These traffic dynamics may be better compre-
hended using the following behavior among the vehicles. Hence, the hysteresis plots are studied
taking different vehicle categories as following vehicles.

From the hysteresis (Figure 11), it is observed that plots from field conditions are more symmetric
about the y-axis. On the other hand, with customized-IDM mainly at higher distance gaps, the plots
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Figure 11. Comparison of hysteresis plots: Observed data and customized IDM data.

are found to be asymmetric, as the distance gaps decrease symmetry is increased, to understand this
logic again customized IDM was inspected closely. It was identified that at higher distance gaps, the
velocity of the subject vehicle is governed by only v/V with negligible values of Smin/S and L/Lc. As
a result, the vehicle tends to be in acceleration phase to attain its desired velocity, due to which the
data is skewed towards the right-side axis. Whereas, at less distance gaps, Smin/S and L/Lc gets into a
major role andgovern the vehicle instinctswhich results into hysteresis phenomenon among the vehi-
cles and hence matches well with field observed hysteresis. This means that the modified parameters
in IDM can replicate the observed driving behavior well for relative spacing ranging from 0 to 30m.
Nevertheless, it may be noted that any car-following model’s performance, for example, customized
IDM in this case, should be reasonably good, particularly in the following zone. The following zone
considered here is based on the subject vehicle type and vehicles in surrounding of that.

Further, to assess the calibrated driving behavior model, simulation runs are performed, and
speed–flow plots are developed, and the mixed-traffic was homogenized using appropriate PCU
values (Kumar et al. 2018). Based on these, speed–flow plots are developed and overlaid over the
observed plots, as shown in Figure 12. The macroscopic plots show that the calibrated customized-
IDM replaces the traffic characteristics with less variation than observed data. The investigation on
customized IDM reveals that, in general, customized IDM falls under a single regime formulation. In
other words, it means that for a given gap, lateral overlap, and desired speed, it gives a unique value.
As a result, less variation was observed in modeled data.

Behavior modeling: Classical IDM

In the present work, to understand the importance of angular logic, the simulation runs are performed
with classical-IDM formulation, by calibrating the essential parameter δ and keeping ω as zero and
similar to previous cases, hytsreisis plots are devloped. From the hysteresis plots, it is observed that
the plots became slender compared to observed data plots. This shows that vehicles tend to behave in
uniform (perfect-following behavior) nature, as shown in Figure 13. With the classical-IDMmodel, the
subject vehicles areonly responding to their leader vehicles and lateral displacements arenot captured
well. As discussed, due to its model formulation, consistency in driving behavior was observed in the
simulation models.
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Figure 12. Comparison of speed flow plots: Observed data and customized IDM data.

Figure 13. Comparison of hysteresis plots: Observed data and classical IDM data.

Furthermore, to understand the macroscopic traffic sense, macroscopic traffic plots are developed
again, as shown in Figure 14. From the speed–flowplots, it is observed that adopting classical-IDM, the
relationship tends to be in linear form and supports literature (Treiber, Hennecke, andHelbing 2000) in
this direction. It canbeattributed touniformity indrivingbehavior (perfect-followingbehaviorwithout
lateral displacements). Due to this, even the capacity value is higherwhen comparedwith the capacity
value found for actual field conditions.

Behavior modeling: customized GIPPSmodel

Like IDM, a customized Gipps model was induced in the simulation model through DLL files, and runs
are carried out. To sense the model’s performance trajectory data was captured from the simulation
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Figure 14. Comparison of speed flow plots: Observed data and Classical IDM data.

runs, and hysteresis plots are developed, as shown in Figure 15. From the plots, it was identified that,
like IDM, even with the Gipps model at higher distance gaps, hysteresis plots tend to be asymmet-
ric. On the other hand, at less distance gap, variations in relative velocities tend to be less, and plots
become narrower, unlike IDM. It was inferred that as the Gipps model is a multi-regime formulation
model with the concept of a safety time gap, as a result, similar to IDM at free-flow conditions, vehicles
are in a free-flow regime. As distance gaps decrease, multi-regime formulation comes in to picture,
resulting in symmetric plots. Whereas, at a safe time gap, the vehicles tend to match the leader veloc-
ity with constrained lateral freedom from the leader vehicles at less distance gap. As a result, variation
in relative velocities is less in this zone, unlike in IDMmodel analysis.

Based on simulation runs adopting the customized-Gipps model, macroscopic traffic characteris-
tics were evaluated, and speed–flow plots are developed, as presented in Figure 16. It is identified
clearly that customized-Gipps models can cater to the variation of field data much reliably and indi-
cate a bettermatching pattern than customized-IDM. Themain reason, which can be attributed to this
performance of the model, is again its multi-regime formulation logic, which can mimic the variation
in flow at a macroscopic level, unlike single regime IDM.

Behavior modeling: classical GIPPSmodel

In the present work, to understand the importance of angular logic in Gipps model, again the sim-
ulation models are performed with classical Gipps model formulation, by calibrating the essential
parameter γ and keeping ω as zero. Again, trajectory data was developed, hysteresis plots are eval-
uated and compared with the respective field data for all vehicle categories. From the plots, it may
be noted that at lesser relative spacing, the hystersis plots are in slender in nature, as compared to
higher distance gaps and with varied shape from customized-Gipps. From the visualization on hys-
teresis plots, in Figure 17, it may be inferred that at higher disance gaps, the subject vehicle tends to
attain desired velocity, whereas when the distance gap decreases, vehicle will be in either in acceler-
ation phase or deceleration phase. At a distance gap under a traffic condition, near to safe time gap,
with inactive ‘L/Lc’ logic, the follower vehicle tends to match the leader vehicle, instead of passing it
with aggrssive lateral movement behavior, as a result, hystersis plots are slender in this region.
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Figure 15. Comparison of hysteresis plots: Observed data and customized Gipps model data.

Figure 16. Comparison of speed–flow plots: Observed data and customized Gipps model results.

Based on the adopted framework, macroscopic plots are again developed using the classical Gipps
model compared to the customized Gipps model. The speed–flow plots are depicted in Figure 18. It
may be noted that the capacity value is found to be lesser, and the shape is slightly skewed in nature.
At near-capacity conditions, aggressive lateral behavior plays a significant role in accommodating the
number of vehicles, thereby increasing the capacity value. In the present case, with deactivated lateral
inducing nature, it resulted in a drop in capacity and slightly changed the shape of the plot.

Results and discussions

Further to summarize the models’ performance, statistical analysis has been carried out at the micro-
scopic hysteresis level. Where relative velocity and distance gap distributions are compared among
observed data and modeled data, the chi-square test was initially performed, and the p-values are
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Figure 17. Comparison of hysteresis: Observed data and classical Gipps model results.

Figure 18. Comparison of speed flow plots: Observed data and classical Gipps model results.

reported in Table 7. The analysis showed that for customized models, the p-values range from .71 to
.92 for IDM and .71 to .96 for the Gippsmodel. Whereas, for classical models, the p-value is in the range
of .32–.75, which signifies a wide range of deviation from the actual field data in the case of classical
models. This infers that the customized models perform better in replicating the mixed-traffic flow
conditions than their classical versions.

Further, the Wilcoxon rank-sum test (Rey and Neuhäuser 2011; Harris and Hardin 2013) was con-
ducted for each of the vehicle categories between the observed and simulated microscopic data to
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Table 7. Probability (p)-values from chi-square test @ 5% level of significance.

Model Parameter Motorized three wheelers Motorized two wheelers Bus Car Truck LCV

Customized IDM Relative velocity 0.91 0.75 0.81 0.87 0.71 0.82
Distance gap 0.87 0.81 0.79 0.92 0.85 0.71

Classical IDM Relative velocity 0.61 0.52 0.73 0.69 0.45 0.59
Distance gap 0.76 0.35 0.64 0.75 0.52 0.65

Customized Gipps model Relative velocity 0.71 0.96 0.75 0.72 0.71 0.93
Distance gap 0.86 0.75 0.91 0.85 0.89 0.77

Classical Gipps model Relative velocity 0.54 0.32 0.65 0.52 0.31 0.40
Distance gap 0.65 0.34 0.60 0.61 0.45 0.49

Table 8. Wilcoxon test statistic over the models with respect to vehicle category.

Model Parameter

Motorized
three

wheelers

Motorized
two

wheelers Bus Car Truck LCV Remarks

Customized IDM Relative velocity 21 18 32 41 46 35 No mean difference exists
for all vehicle-categoriesDistance gap 32 41 18 36 51 39

Classical IDM Relative velocity 17 12 16 25 11 14 Mean difference exists
for dominant vehicle-
categories

Distance gap 15 17 21 18 32 15

Customized Gipps model Relative velocity 22 19 35 37 42 33 No mean difference exists
for all vehicle-categoriesDistance gap 27 35 16 42 35 21

Classical Gipps model Relative velocity 17 10 20 17 10 12 Mean difference exists
for dominant vehicle-
categories

Distance gap 15 19 13 15 25 16

Table 9. Comparison of macroscopic traffic characteristics.

Following Model
Free speeds
(kmph)

Optimum speed
(kmph)

Capacity
(PCU/h/direction)

Deviation from
observed capacity

value (%)

Observed data 62–70 50 11,960 –
Customized IDM 66 48 12,010 0.4
Classical IDM 60–65 35 13,500 12.8
Customized Gipps 60–70 46 11,900 −0.5
Classical Gipps 62–70 40 10,900 −8.8

test hypotheses the significant difference. The Wilcoxon table’s critical value is found to be ‘16’ at a 5
percent level of significance. To accept the null hypothesis: no variationwas found in the data. The test
statistic values should not be less than critical value 16, and test statistic values are reported in Table 8.
From the comparison, it is identified that the customized model output test statistic value is greater
than or equal to 16, which advocates no variation in data.

To compare the macroscopic characteristics, boundary conditions such as free speeds, optimum
speed and capacity values are compared as reported in Table 9.

From the comparison, as illustrated in Table 9, it is inferred that customized models replicate the
mixed-traffic flow characteristics better than their classical versions at both microscopic and macro-
scopic levels and hold much promise in developing a new framework for modeling mixed-traffic
flow conditions. Moreover, Classical IDM overestimates capacity value by about 12.8%, whereas the
classical-Gipps model underestimates capacity value by about 8.8%.

The study established that unlike under homogeneous traffic conditions, lateral behavior (lane
changing as a traffic state function) is generally discretized in nature. However, under mixed-traffic
conditions due to the presence of different vehicle categories and weak lane discipline, both lon-
gitudinal and lateral movements are discretely continuous and captured simultaneously based on
the presence of surrounding vehicles. It is witnessed that, by applying established following behavior
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models developed based on homogeneous-traffic-conditions logic will result in inaccurate outcomes,
and hence by customizing them with lateral behavior logic, their performances can be improved.

From the v/V , Smin/S and L/Lc factors over different vehicle categories undermixed-traffic stream, it
was observed thatmainly smaller vehicle categories, such asmotorized three-wheelers andMotorized
two-wheelers tends to have someextra lateral freedom in the traffic streamas compared to other vehi-
cle categories. As a result, v/V distributions of these vehicle categories are found to be substantially
varied fromother vehicle categories, similarly L/Lc values are in the range of 0–1.2 formotorized three-
wheelers and Motorized two-wheelers in comparison for other vehicles are in the range of 0–0.5. This
signifies the amount of lateral freedom available for these vehicles. Finally, it is inferred that mainly
smaller vehicles in the traffic stream, by their size and better maneuverability, play a major role in
inducing the mixed traffic conditions. Given the stochastic nature of traffic under non-lane based
mixed-traffic conditions, it may be inferred that simulation modeling can be a productive approach.
The approach can be used very well, provided simulation model is well-calibrated based on quality
traffic flow data, as demonstrated in this case using good quality vehicular trajectory data.

Based on the customized-IDManalysis, it was observed that v/V , Smin/S and L/Lc tend to govern the
subject vehicle instincts, due to its single regime formulation, less variationwas observed inmimicking
the mixed-traffic conditions at macroscopic level. Whereas with its classical formulation, customized
IDM tend to be linear in nature. These observations strongly support the idea backing IDM for coding
autonomous vehicle behavior. On the other hand, in microscopic traffic sense, It was identified that at
higher distance gaps, the velocity of the subject vehicle is governed by only v/V mainly with negligi-
ble values of Smin/S and L/Lc, as a result the vehicle will be in acceleration phase to attain its desired
velocity, due to which the data was skewed towards the right side axis. Whereas, at less distance gaps
Smin/S and L/Lc will come in to picture and govern the vehicle instincts and resulted hysteresis phe-
nomenon among the vehicles and tends to match with field hysteresis. On the other hand, in case of
micro-level hysteresis, it was observed that based on L/Lc factors the customized IDM is able to mimic
the field hysteresis phenomenon well, whereas with its classical formulation, the plots are slender in
nature, due to the ascendency of Smin/S in the model.

In the case of customized-Gippsmodel, it is witnessed that due to itsmulti-regime formulation, at a
macroscopic level, the model can replicate the variation in observed speed–flow plots better than
customized-IDM results. Simultaneously, while comparing for microscopic hysteresis phenomenon
with classical-Gipps formulation, its multi-regime nature is observed. As a result of multi-regime
logic, there is a sudden change in the shape of the hysteresis plots, particularly slenderness nature is
reflected, when the vehicular pairs are nearing the safety time gap. Whereas, adopting to customized-
Gipps model, this nature is well incorporated by inducing a parameter ratio L/Lc in the model. The
ratio governs the whole process with lateral behavior instead of directly accepting the safety time gap
with its leader vehicles. Due to this logic implemented in the customized-Gipps model, the subject
vehicles are switching laterally as a function of L/Lc ratio. Due to this logic, customized-Gipps model
can capture variations in relative velocities and distance well, even at lower distance gaps.

Conclusions

The study shows that driving behavior undermixed-traffic environment is unique nature, as it involves
simultaneous vehicular movements from different vehicle categories in longitudinal and lateral direc-
tions. Nevertheless, frameworks related to appraising thedrivingbehavior undermixed-traffic streams
are limited in the body of literature. Interestingly, in this research work, an attempt is made to modify
driving behavior logic in selected car-following formulations (IDM and Gipps) and expand them with
the dominance of lateral behavior of vehicles in the mixed-traffic stream. Given this research gap, it
is well illustrated that the performance of the subject vehicle’s lateral behavior depends on surround-
ing vehicle types and customization of critical parameters such as ratio related to lateral clearance
(L/Lc) and binary dummy variable (ω). To check the credibility of customizedmodels microsimulation
tool VISSIM 11.0 tool was deployed in the present work. With the help of trajectory data under mixed
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traffic conditions, the customized behavior model’s performance was investigated at different stages.
From research investigations, at the microscopic level, the customized versions can mimic field vari-
ation better, and the classical versions fall short in this direction. At the macroscopic level, it is well
illustrated that the customized IDM and Gipps models can replicate the observed traffic characteris-
tics more accurately with a deviation of less than 1% in observed capacity values. Whereas, Classical
IDM overestimates capacity value by about 12.8%, while classical-Gippsmodel underestimates capac-
ity value by about 8.8%. Finally, it is quite evident that the models prove their reputation in modeling
the mixed traffic conditions also with appropriate induction of lateral-behavior related parameters.
Given this, the presented research work can be considered one of the attempts to expand the body of
literature and significantly contribute to modeling traffic flow under mixed traffic conditions.
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Appendix
Coded driving behavior in simulation models along with YouTube videos

Trial 1: Initial trials for coding driving behavior: In the present trial, some vehicle abruptly stops over the road space
due to bugs in code. https://www.youtube.com/watch?v= ZKCsT0TuKx8

Trial 2: In this trial, due to some angular glitz in coding driving behavior, vehicles are randomly moving over the road
section. https://www.youtube.com/watch?v= KqF1×2zAX7c

Trial 3: In this trial, only the followingbehavior of vehicles is codedwithonpassingof vehicles. As a result, only vehicles
are following each other without any overtaking/passing. https://www.youtube.com/watch?v= ouTCEFqhOPM

Trial 4: In this trial, the conceptualized logic of driving behavior explained the paper was coded in sim-
ulation. Due to some random glitz, few vehicles are assigning a high magnitude of a longitudinal angle.
https://www.youtube.com/watch?v= YU5UoZ5h6NQ

Final code version: This is the final version of coded driving behavior with conceptualized logic, as a part of research
work IDMandGipp’smodelswere assigned formodelingdrivingbehavior. Volume1: https://www.youtube.com/watch?v
= v5xPTHl3oRQ

Volume 2: https://www.youtube.com/watch?v= tm_0FKlK19E

https://www.youtube.com/watch?v=ZKCsT0TuKx8
https://www.youtube.com/watch?v=KqF1x2zAX7c
https://www.youtube.com/watch?v=ouTCEFqhOPM
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https://www.youtube.com/watch?v=tm_0FKlK19E
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