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Summary

This thesis is about the following hat guessing game first described by Winkler [17]. Con-
sider a group of n players situated at the vertices of a graph G. An adversary gives each
player a hat coloured one of g possible colours. The players are unable to see the colour of
their own hat, but each player can see the hat colour of their neighbours in G. The players
are asked to simultaneously make a guess on the colour of their own hat, according to a
predetermined guessing strategy based solely on the hat colours each player can see. The
players win if at least one of them correctly guesses their hat colour, otherwise the adversary
wins. Is it possible for the players to devise a strategy which guarantees they win regard-
less of how the adversary places the hats? Clearly, if the players have a winning strategy
on the graph G for g colours, then the same strategy must also be winning for any number
of colours less than g. This motivates us to define the hat guessing number HG(G) of G, a
parameter first introduced by Farnik [6].

Definition. Let HG(G) be the maximum q such that the players have a winning strategy
when playing the hat guessing game on the graph G with q colours.

Bosek et al. [3] showed an upper bound on the hat guessing number using a partition
into independent sets. We show that the same bound holds when V, ..., V; partition the
vertices into sets that induce directed acyclic graphs. This implies that for any arc a of the
complete graph K,, we have that HG(K,,—a) = n—1, whereas HG(K,,) = n. Furthermore, we
give a family of graphs for which choosing a partition into the minimum number of inde-
pendent sets may be arbitrarily worse than choosing a different partition into independent
sets, when applying the bound.

Szczechla. [16] have shown the hat guessing number for cycles. They formulate strate-
gies to show that HG(Cy4) = 3 and HG(Cs,,) = 3 in a complex coordinate system. We refor-
mulate those same strategies and show that they are winning without using this coordinate
system.

The winning strategy for C, can be generalised to obtain the following result. For an odd
prime power ¢, let M a maximum matching in the complete graph K. Then HG (K11 -
M)=gq.

On a more general and technical note, we define a notion of equivalence of strategies
to try revealing some of the inherent symmetries of the problem. For example, reassigning
individual strategies according to an automorphism of the graph does not change whether
the collective strategy is winning. We also obtain a notion of uniqueness of a winning strat-
egy, which we conjecture to be a strong, but rare, property.
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Introduction

This thesis is about the following hat guessing game first described by Winkler [17]. Con-
sider a group of n players situated at the vertices of a graph G. An adversary gives each
player a hat coloured one of g possible colours. The players are unable to see the colour of
their own hat, but each player can see the hat colour of their neighbours in G. The play-
ers are asked to simultaneously make a guess on the colour of their own hat, according
to a predetermined guessing strategy based solely on the hat colours each player can see.
The players win if at least one of them correctly guesses their hat colour, otherwise the ad-
versary wins. Is it possible for the players to devise a strategy which guarantees they win
regardless of how the adversary places the hats?

Consider for example two people, Alice and Bob, that can see each other, so G = K>.
Each get a hat coloured either red or blue, so g = 2. Alice’s strategy will be to guess that their
hat has the same colour as Bob’s hat. Bob’s strategy will be to guess that their hat has the
colour that Alice’s hat does not have. This strategy ensures that either Alice or Bob correctly
guesses the colour of their own hat, regardless of what the colours of the hats are. Indeed,
if both hats are red or both hats are blue, then Alice guesses correctly, and if one of the hats
is red and the other blue, then Bob guesses correctly. This strategy can be generalised to a
strategy for the hat guessing game on the complete graph K;, with n colours.

Example 1.1. Let vy, vy, ..., V,—1 be the players situated on the vertices of K,,. Let0,1,...,n—1
be the possible colours of the hats. Given a colouring c : {vy, vy,...,Vp-1} — {0,1,...,n—1},
player v;’s strategy will be to guess that the colour of their hat is

n-1
i— Y  c(v)) (mod n). (1.1)
j=0,j#i

Note that player v; guesses correctly precisely when Z;:& c(vj) =i (mod n). Seeing as this
must hold for some i €{0,1,...,n— 1}, we know that this player v; will guess correctly.

Clearly, if the players have a winning strategy on the graph G for g colours, then the
same strategy must also be winning for any number of colours less than g. This motivates
us to define the hat guessing number HG(G) of G, a parameter first introduced by Farnik
[6].



2 1. Introduction

Definition 1.2. Let HG(G) be the maximum q such that the players have a winning strategy
when playing the hat guessing game on the graph G with q colours.

In Chapter 2, we give an overview of known results on the hat guessing number. This is
not an exhaustive overview, but meant as an introductory guide. In the rest of the thesis we
go more in depth on some of the results and add our own remarks and analyses. Starting
in Chapter 3 with a bound based on partitioning the vertices of a graph into independent
sets. We show how to adapt this result for directed graphs and show that a minimum par-
tition into independent sets is not necessarily the best choice of partition when applying
the bound. Next, in Chapter 4, we look at the strategies that show the lower bound for the
hat guessing number of cycles. The strategy on the 4-cycle can be generalised to show the
hat guessing number of another family of graphs. For an odd prime power ¢, let M be a
maximum matching in the complete graph K., then we show, in Chapter 5, that the hat
guessing number of the graph K1 — M obtained by removing the edges in M from K,
is HG(K44+1 — M) = g. In Chapter 6, we determine the hat guessing number for all on 5 or
fewer vertices using the known literature. Finding the hat guessing numbers of all 6 vertex
graphs remains an open problem. In Chapter 7 we explore the symmetries of the hat guess-
ing game by introducing notions of equivalence and uniqueness of strategies. We conclude
by discussing possible avenues for further research in Chapter 8.



Overview of Known Results

In this chapter we give an overview of results from the literature that the writer deemed
significant. Some of these results will be discussed in more detail in later chapters. Firstly,
in Section 2.1, we provide a more formal definition of the hat guessing number. Next, in
Sections 2.2 and 2.3, we discuss general lower and upper bounds respectively. Note that
the former are achieved via constructions and the latter via non-existence proofs. Finally,
in Section 2.4, we discuss graphs for which we have exact results.

2.1. Formal Definition

We formalise the hat guessing game as follows. Let G = (V, E) a graph, whose vertices are
often referred to as players, and let g a positive integer. Then the hat guessing game on G
with g available colours will be denoted (G, ). Let I a set of size g, whose elements are
called colours. An element of T'V assigns a colour to each player and is thus a colouring
of G. The colour assigned to a player is the colour of their hat. An individual strategy for
player v is a function f, : TV — I which is required to only depend on the colours assigned
to the neighbours of v. A collective strategy, or simply a strategy, is a collection consisting
of an individual strategy for each player. A strategy f is winning if for any colouring c e 'V
there exists a player v € V such that f,(c) = c¢,. A hat guessing game (G, q) is winning if
there exists a winning strategy for the game and losing otherwise. The hat guessing number
HG(G) of a graph G is the largest g such that the game (G, g) is winning.

2.2. Lower Bounds

The most trivial, though not very useful, lower bound is that for any graph G the hat guess-
ing number is HG(G) = 1. Seeing as any graph contains a vertex and there is just a single
colour, the strategy where all players guess the one available colour is a winning strategy.
In case G is an empty graph, this lower bound is tight.

Another trivial, but this time useful, lower bound follows from the observation that any
strategy that is winning for a hat guessing game on a subgraph H of G is also winning for G.
More precisely, if we have a winning strategy g for the game (H, g), then we can construct
a strategy f for the game (G, g) by using the strategy g on the subgraph H and guessing an
arbitrary colour for all vertices outside of H. This new strategy f is clearly winning, as the

3



4 2. Overview of Known Results

strategy g is winning. We obtain the following bound.
Theorem 2.1. For a graph G and a subgraph H < G, we have HG(G) = HG(H).

By this theorem, any lower bound for a graph implies a lower bound on a lot of other
graphs. For example, as shown in Chapter 1, the hat guessing number of a complete graph
on n vertices is HG(K,) = n (Feige [7]), so we get a lower bound based on the size of a
maximum clique in a graph.

Theorem 2.2. For a graph G with clique number w(G), we have HG(G) = w(G).

This bound is not tight in general. In fact, in general, the hat guessing number is not
bound by any function of the clique number. Alon et al. [1] show that the hat guessing

.....

.....

Another general lower bound is based on the lexicographic product of graphs. Consider
a graph G and replace all of its vertices by copies of another graph H, where edges in G
become complete connections between the corresponding copies of H. The result is the
lexicographic product Gx ; H. Formally, its vertices are the pairs (u, v) of vertices from G and
H respectively, where (1, vo) ~ (11, v1) if and only if uy ~ u; or uy = u; and vy ~ v;. Kokhas
and Latyshev [14] [Theorem 3.2] replace a single vertex by H at a time and concludes a
result about a variant of the hat guessing game where the number of available colours may
be different per player. The special case of the following result where H is a clique was also
shown by Gadouleau and Georgiou [9].

Theorem 2.3. For graphs G and H, we have HG(G x; H) = HG(G) - HG(H).

2.3. Upper Bounds

From the lower bound based on subgraphs, Theorem 2.1, it follows that the hat guessing
number of a disconnected graph G is at least the maximum of the hat guessing numbers
of the connected components. Now suppose that we have a strategy for the game (G, g)
where ¢ is strictly larger than the maximum of the hat guessing numbers of the connected
components. Then each connected component of G can be coloured such that each of its
players’ guesses are fixed and incorrect. The concatenation of these colourings is a colour-
ing of G where every player guesses incorrectly. We conclude that we need only consider
connected graphs.

Theorem 2.4. For a disconnected graph G with connected components Gy,..., Gy, we have
HG(G) = max <<k {HG(G;)}.

The subgraph bound can also be reinterpreted as an upper bound. In this way, any up-
per bound on the hat guessing number of a graph will result in an upper bound on the hat
guessing number of its subgraphs. For example, the hat guessing number of the complete
graph is HG(K};) < n [4]. Seeing as any graph is the subgraph of a complete graph we obtain
the following general upper bound.

Theorem 2.5. For a graph G on n vertices, we have HG(G) < n.



2.3. Upper Bounds 5

It turns out that complete graphs are the only graphs for which this bound is tight. The
hat guessing number of the complete graph with an edge removed is HG(K;, —e) < n —
1. Seeing as any non-complete graph is the subgraph of a complete graph with an edge
removed we obtain the following general upper bound.

Theorem 2.6. For a non-complete graph G on n vertices, we have HG(G) < n—1.

This result is a corollary of a result by Bosek et al. [3]. They use a counting argument to
give the following bound on the hat guessing number using a partition into independent
sets.

Theorem 2.7. Let V1,..., V) a partition of the vertices of a graph G into | independent sets.
Suppose that for some positive integer k we have

I (1. 1\IVil
l—z(%) <1. 2.1
i=1

Then HG(G) < k.

One could, for example, take a partition of the vertices into as few independent sets as
possible, thus certifying the chromatic number of the graph. This results in the following
bound.

Theorem 2.8. For a graph G on n vertices, for n large enough, and with chromatic number
x(G) =2, we have

HG(G) =

1(G)In (A2 )

This choice of partition is not always optimal, which will be discussed in Chapter 3,
where we will also take a closer look at the proof for the general bound and a version for
directed graphs.

The hat guessing number can also be bound by the maximum degree A. The following
theorem is considered part of the folklore and follows from Lovész’s local lemma, see [6].

Theorem 2.9. For a graph G with maximum degree A, we have HG(G) < eA, where e is the
base of the natural logarithm.

However, one cannot bound the hat guessing number from below by the maximum
degree. This is shown by the hat guessing number of a star graph S, consisting of one
vertex of degree n and n vertices of degree 1. We have HG(S,) < 2. In fact, Alon et al. [1]
have shown that degree 1 vertices do not increase the hat guessing number in general.

Theorem 2.10. For a graph G with at least 2 edges and a vertex v of degree 1, we have
HG(G) = HG(G-).

Note that this bound is always tight by the subgraph bound, Theorem 2.1, since G— v is
a subgraph of G.

Another graph parameter we can use to bound the hat guessing number is the size of a
minimum vertex cover. The following bound is implied by a theorem by Gadouleau [8].



6 2. Overview of Known Results

Theorem 2.11. For a graph G with minimum size of a vertex cover 1(G), we have HG(G) <
1+379 .

The last general bound is tentatively related to the degeneracy of a graph and was shown
by He and Li [11] (Lemma 4).

Theorem 2.12. Let G be a graph with vertices ordered v1,...,v,, and define t; fori=1,...n
recursively by

=1+ H l‘j,
l/j~l),'
Jj<i

where the empty product is 1. Then HG(G) < max{fy,..., t,}.

Lastly, Gadouleau and Georgiou [9] showed that the complete bipartite graph K, ,, has
hat guessing number HG(K}, ;) < min{n+1,m+1}.

2.4. Exact Results

From the above general results, we can immediately derive some exact values of hat guess-
ing numbers. We have seen that HG(K},,) = n and HG(K};) < n and thus HG(K,,) = n. We
have also seen that HG(K,, —e) <n—1and K,,-; < K, — e, so HG(K;, —e) = n—1. Seeing as
leaves do not increase the hat guessing number, it follows that HG(T) = 2 for any tree T.

There are also a number of graphs for which the exact value has been calculated using
methods specific to those graphs. For example, He et al. [12] showed that the complete bi-
partite graph K3 3 has hat guessing number HG(K33) = 3, thereby showing that the above
mentioned bound HG(K,,;) < min{n + 1, m + 1} is not always tight.

The hat guessing number of cycle graphs is also known. We have the following theorem
by Szczechla. [16]. In Chapter 4 we discuss the strategy that shows the lower bound.

Theorem 2.13. For any positive integer n = 2 we have

ifn=4o0rn=0 (mod3),

3
HG(C,) =
(Cn) {2 else.

Cactus graphs are graphs where no two cycles share an edge and thus they are in a sense
a combination of cycles and trees. This is reflected in their hat guessing number, as can be
seen in the following theorem by Chizewer et al. [5].

Theorem 2.14. For a cactus graph G we have

4 if G contains two Cs,
HG(G) =43 ifG contains two cycles or Cy or Csy, but no two Cs, (2.2)
2 if G contains at most one cycle, but no C4 or Csy,.

The smallest example of a cactus graph with hat guessing number 4 is 2 copies of K3
that share a vertex. This is an example of a windmill graph. In general, the windmill Wy, ,
is the graph consisting of n copies of Kj sharing a vertex. He et al. [12] have shown the
following two theorems on the hat guessing number of windmills.
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Theorem 2.15. For k =2, n=log,(2k —2) we have HG(W}, ) =2k —2.
Theorem 2.16. Forn =1, d =2 we have HG(Wyn_gn-1,1 ,) = d".

They also showed that the general bound using the size of a minimum vertex cover,
Theorem 2.11, turns out to be tight in the case of books. A book B,, ; with n pages and a
spine of size d is the complete connection between K; and an independent set of n ver-
tices. Note that 7(B,, 4) < d, because the spine of the book connects to all edges. Also note
that 7(B,, 4) = d, because the spine with a single page form a d + 1 clique. So, 7(B;, 4). He
et al. [12] give a strategy on books showing the corresponding lower bound, resulting in the
following theorem.

Theorem 2.17. For large enough n in terms of d we have HG(B,, 4) =1+ Z?zl i,



Partition Into Independent Sets Bound

In this chapter we take a more in depth look at the upper bound based on a partition into in-
dependent sets, Theorem 3.1. We have restated the theorem below for convenience. Firstly,
in Section 3.1, we give the proof of this theorem in detail and show what this implies about
the hat guessing game on directed graphs. Lastly, in Section 3.2, we give an example of a
graph where taking a partition into independent sets that certify the chromatic number is
not the best choice.

Theorem 3.1. Let Vi,..., V] a partition of the vertices of a graph G into | independent sets.
Suppose that for some positive integer k we have

RN
-y (u) <1. (3.1)
s\ k

Then HG(G) < k.

Note that this bound is generally not tight and in some cases quite bad. Consider for
example an even cycle Cy, and recall that its hat guessing number is HG(C»;) < 3. Let
V1, U2,..., U2, be its vertices, where v; is adjacent to v;;; fori =1,2,...,2n—1 and vy, is ad-
jacent to v;. We can partition the vertices into independent sets by taking all vertices with
an even index in one set and all vertices with an odd index in another set. The theorem’s
condition then reads

k—-1\"
22— <1.

k

Solving for k gives the equivalent condition k > (1 —27")~1, However, as n approaches
oo, the right hand side approaches oo as well, whereas the hat guessing number of Cy,, is
constant.

3.1. Partition into DAGs

The hat guessing game still makes sense when the graph is a directed graph, though we
need to replace neighbours by out-neighbours. That is to say, an individual strategy for a
strategy may only depend on the out-neighbours of that vertex. When considering directed
graphs, the partition into independent sets bound can be generalised to partitions into
directed acyclic graphs (DAGs). To see this we need to take a closer look at the proof of the

8



3.1. Partition into DAGs 9

partition into independent sets bound. This proof can be seen as a generalisation of the
upper bound of HG(K},), which we will give first.

Proof. HG(K},) < n+1, [4] Fixsome strategy for the game (K},, n + 1). For each vertexve V,
it's guess gets fixed by a colouring of V' \ {v}. So, there exist exactly (n+1)"~! colourings of
V where v guesses correctly. By the union bound, there are at most n(n+1)"~! colourings
where someone guesses correctly. However, there are (n + 1)” ways to colour the vertices
of K, with n+ 1 colours and (n+1)" > n(n+ 1)""!. Therefore, there exists a colouring such
that each player guesses incorrectly and the game (K}, n + 1) is losing. O

Proof. of Theorem 3.1, [3] Fix some strategy for the game (G, k). Consider the players
in an independent set V; of G. Their guesses get fixed by a colouring of V'\ V;. So, there
exist exactly (k — 1)!Vilk!VI=IVil colourings where none of the players in V; guess correctly.
Conversely, there exist exactly k!V! — (k — 1)!Vil k!VI=IVil colourings where at least one player
in V; guesses correctly. By the union bound, there are at most

l Vi Vil 2.IVI=1Vil VI L(k-1 i
(61— ey ) = (z_z( k) )

i=1

colourings where someone guesses correctly. Note that the total number of colourings of G
with k colours is k'V!. For a winning strategy to exist the total number of colourings has to
be at most the number of colourings for which someone guesses correctly. If this is not the
case, that is, when the condition in the theorem is satisfied, then no winning strategy can
existand HG(G) < k. O

Note that we use the fact that V; is independent to bound the number of colourings
where no player guesses correctly. A colouring of V' \ V; fixes the guesses of the players in
Vi, because the guesses of players in V; may not depend on the colours of players in V;.
Therefore, each player in V; has k — 1 potential colours that make it guess incorrectly, for
each colouring of V' \ V;.

Now let V; be such that the subgraph G[V;] of G on the vertices in V; is a DAG. Let s
be a sink of this DAG. A colouring of V' \ V; no longer necessarily fixes the guesses of all
vertices in V;, but it does still fix the guess of s. So, given a colouring of V' \ V;, there are k-1
ways to colour s such that s guesses incorrectly. Now consider the set V; \ {s}. It induces
another DAG, which again has a sink, call it ¢. A colouring of (V'\ V;) u{s} such that s guesses
incorrectly still does not necessarily fix all the guesses of vertices in V;, but it does fix the
guess of . So, given such a colouring, there are k — 1 ways to colour ¢ such that ¢ guesses
incorrectly. We can repeat this argument until we have emptied the set V;, at which point
we have found that there are (k — 1)!Vil k!VI=1Vil colourings where none of the players in V;
guess correctly. Seeing as this is the exact same number we found in the case where V;
was an independent set, we can continue the proof as before. This results in the following
theorem.

Theorem 3.2. Let V1,..., V] a partition of the vertices of a directed graph G into | sets that
each induce a DAG. Suppose that for some positive integer k we have

1 _ 1\ Vil
- Z (%) <1. (3.2)
i=1



10 3. Partition Into Independent Sets Bound

Then HG(G) < k.

From the partition into independent sets bound, Theorem 3.1, it follows that for any
edge e of K,, we have HG(K,, — e) < n— 1, which implies that any non-complete graph on
n vertices has hat guessing number at most n — 1. Indeed, we have n — 2 independent sets
of size 1 and 1 independent set of size 2. For k = n, Condition (2.1) thenreads n—1— (n —
2=l (”7_1)2 = % < 1, which clearly holds. Theorem 3.2 implies that this also holds in
the case where e is an arc of Kj,, thus implying that any non-complete directed or mixed

graph on n vertices has hat guessing number at most n — 1.

3.2. Chromatic Number Bound Not Optimal

As a special case of the partition into independent sets bound we have the chromatic num-
ber bound, Theorem 2.8, which we have restated below for convenience. One might won-
der whether choosing a partition certifying the chromatic number is always the best choice
of partition into independent sets. This turns out to not be the case, as we will show later
in this section. The knowledge that the hat guessing number can be bound by a function of
the chromatic number is valuable regardless.

Theorem 3.3. (/3]) For a graph G on n vertices, for n large enough, and with chromatic
number x(G) = 2, we have

HG(G) =

1(G)In A2 )

Let us first consider a partition into independent sets P = (V1,...,V;) and a refinement
Q of P. We will show that P gives bounds at least as good as Q using the partition into
independent sets bound. Note that it suffices to show that for any positive integer k we
have

IZEDY (k—;l)lm <1QI- ) (%)IUI, (3.3)

UeP UeQ
as this implies that condition (2.1) is easier to satisfy. Without loss of generality we may
assume that Q = (W}, W,, V5,...,V}), where Wy, W5 # &, WU W, =V}, and Wi nW, = @.
Equation (3.3) then reduces to

k—1\"l k—1\Ml k—1\Wl
_1_(7) 5_(_) —(T) or equivalently

k
(1_(7) )(1_(—) )20, as |Vi| = |Wq| +|Wha|.

This holds, because % <1.

This shows that we always want a minimal partition into independent sets, that is, we
want a partition that is not a strict refinement of another partition into independent sets.
It is not yet clear whether a minimum partition is optimal. The following example gives a
graph with two minimal partitions, where the minimum partition, certifying the chromatic
number, gives a worse bound than the other partition.
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Figure 3.1: A sketch of the graph constructed from K; and @g. The edges between K; and &g have been
omitted, instead the red, dashed lines show the non-edges.

Example 3.4. We are going to construct a graph G from a clique Ky of size 4 and an in-
dependent set Jg of size 8. Partition the vertices of Jg into 4 sets of size 2, say V(Jg) =
Viu Vo u V3 U Vy. Number the vertices of Ky like V(Ky) = {vy, V2, U3, V4}. Fori€ [4], u € V(Jsg)
letvi~uifueV;.

Note that the chromatic number ¥ (G) of G is at least 4, since G has K4 as a subgraph. Fur-
thermore, the sets {v;} U V; for i € [4] are independent and partition V(G), so x(G) = 4. Note
that this is the only way to partition the vertices into 4 independent sets, since the v; have to
be in different sets and are each connected to all but the vertices in the corresponding V;. For
k = 10 condition (2.1) then reads 4—Y;_, (%)3 > 1.08 > 1, so the condition is not satisfied
and we can not draw a conclusion using Theorem 3.1.

Now consider the partition V(G) = V(Jg) U {v1} U {ve} U{vs} U {vs}. Clearly each of these

sets is independent. For k = 10 condition (2.1) now reads 5 — (%)8 - ‘il:l (%)1 <097<1,so
the condition is satisfied and thus HG(G) < 10 by Theorem 3.1.

More generally one can construct a similar graph G,, from K,, and &,,. This graph G,
has chromatic number n as certified by the unique partition into n independent sets V (G,) =
UL, ({vitu Vy). Condition (2.1) then reads

1\3
n—n(—) <1. (3.4)

Clearly, we can also partition the vertices into the n+1 independent sets V (J2,) and {v;}
foreach i € [n]. Condition (2.1) then reads

n+1—n(E)—(E)2n<l (3.5)
k k . .

We may rewrite Condition (3.4) as

n-1 (k—lr
<|— .
n k
This can be solved for k to obtain the equivalent condition

1

—1,1/3°
1- ()

k>
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LetK = W, then the minimum positive integer k for which condition (3.4) holds is

k=[KI].

n

Suppose that for some a < 1 we have that (3.5) holds for k = aK. As n approaches oo,
we have that K approaches oo, and thus lim,,_..[K] — [aK] = limg_(1 — @)K = oo, since
1—a > 0. Therefore, the minimum partition can give an arbitrarily worse bound than the
other minimal partition in G, by taking n to be large enough.

The existence of such an « is suggested by the plot in Figure 3.2. The highlighted region is
the collection of points (n, a), such that Condition (3.5) holds for k = aK. Here n runs along
the logarithmically scaled horizontal axis and a runs along the vertical axis. For example it
seems that for « = 0.9 and n = 4 the condition is satisfied. It turns out that for any « > 0.7819
the condition is satisfied for n large enough. The precise calculations can be found in Ap-
pendix A.

Figure 3.2: The points (n, ) such that Condition (3.5) holds for k = aK.



Cycles

Let n a positive integer and consider the n-cycle C,. Szczechla. [16] showed that the hat
guessing number of C,, is as follows.

Theorem 4.1. For any positive integer n = 2 we have

3 ifn=4o0rn=0(mod3),
HG(C,) =
2 else.

Note that HG(C,,) = 2 follows from the fact that HG(K;) = 2 and K, < C;. So to show
the theorem, Szczechla. [16] showed three things. Firstly, they gave a strategy for the hat
guessing game on C4 and Cs, with 3 colours. Secondly, they showed that no cycle has hat
guessing number greater than 3. Lastly, they showed that no cycle other than C; and Cs,
has hat guessing number greater than 2. The upper bounds are shown by categorising the
potential strategies in a smart way. This is, however, quite specific for cycles and not very
useful for more general graphs. For this reason, we will focus on the strategies that show
the lower bounds for C4 and Cs,,.

4.1. The 4-Cycle

Recall from Example 1.1 in the introduction the strategy for the complete graph K,,. This
strategy is based on the observation that for any x € Z there existsan i € {0, 1,...,n—1} such
that x = i (mod n). Taking x = Z}:& c(v;) then gives a set of n equations, one for each i, of
which at least one must hold. Assigning each of these equations to one of the players gives
the strategy.

We can do something similar for the 4-cycle. Its strategy is based on the following prop-
erty of F3. Given x, y € F3 one of the following holds x =0, y =0, x+y =0, x—y = 0.
Let the 4-cycle be given as in Figure 4.1, where the vertices vy, vp, vc, Vp are coloured
A, B,C, D € [F3 respectively. Take x = A—(B+D) and y=C—-(B-D), thenx+y=B-(-A-C)
and x — y = D - (—A+ C). Assign the following strategies to the vertices for the colouring
c=(A,B,C,D).

13



14 4. Cycles

fUA(C):B_'_Dy fl}B(C):_A_C)
fVC(C):B_D) fyD(C):_A+C.

We see that v4 guesses correctlyif x =0, vgif x+y =0, vcif y=0,and vp if x—y=0. As
established above, at least one of these must hold, and thus the strategy is winning. Similar
sets of equations exist for other prime fields, these form the basis for Chapter 5.

UB Uc

VA UD

Figure 4.1: The 4-cycle with vertices v4, vg, V¢, vp coloured A, B, C, D € [F3 respectively.

4.2. The 3n-Cycle

Let N =3nandlet vy,..., vy the vertices of Cy, where v; is adjacent to v;4 fori=1,...,N—1
and vy is adjacent to v;. Take as colour set Z3 = {—1,0,1} and let g : Z3 x Z3 — Z3 be given
by

x+1 ifx=y,
glx,y)= (4.1)

X ifx#y.
Then player v;’s strategy is given by f,,(cy;_,,Cv;,,) = 8(cv,_,Cp;,,) fOr i =2,...,N—1,
player vy’s strategy is f, (cyy,Cu,) = 8(Cyy +1,€y,), and player vy's strategy is f,, (cn-1,¢1) =
glen-1,c0—1).

To show that this strategy is winning we will attempt to construct a colouring that shows
the contrary and see that we will always fail. Seeing as g(x+1,y+1) = g(x,y) + 1, we may
pick the first colour ¢ arbitrarily. From there we have three ways to pick the next colour,
either ¢, c+1, or ¢ — 1. Consider a player v; for i = 2,..., N — 1. Suppose we have picked
Cy;_, =C.

If we pick ¢,; = ¢, then we must also pick ¢,,,, = ¢, else v; guesses correctly. We have
now reached the same situation as before with an incremented index, so ¢,,,, = ¢, else v; 41
guesses correctly. This process repeats until all players with index at least i — 1 have colour
c. In case i = 2 all players have colour ¢ and for j = 2,..., N—1 player v; guesses incorrectly.
Furthermore, player v; guesses incorrectly, but player vy guesses correctly.

If instead we pick c¢,, = ¢+ 1, then we cannot pick ¢,,,, = ¢, else v; guesses correctly. So
either ¢,,,, = c+1or ¢,,,, = c—1. The former results in the remaining colours being ¢ + 1
analogous to the previous situation, where we started with c,;, = ¢. The latter results in the
same situation as we started in, that is, the colour was incremented by 1.
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If instead we pick ¢,, = ¢ -1, then either ¢,,,, =c-1, ¢;,, = ¢, or ¢;,,, = c+1. In the
first case we again continue with a constant sequence, in the second case we end up in the
previous situation, where the colour was incremented by 1, and in the third case we are
back in the situation we started in, that is, the colour was decremented by 1.

Given that we have coloured a vertex with colour x there are three ways to colour the
next vertex, either x — x—1, x — x + 1, or x — x. The first choice leaves all options open
for the next vertex, the second choice prevents us from changing to the first choice, and the
last choice forces us to continue as a constant sequence. These choices will be referred to
respectively as ‘down’, ‘up’, and ‘constant’, where we cannot choose ‘down’ after either ‘up’
or ‘constant’ and we cannot choose ‘up’ after ‘constant’.

Note that colouring v; and making these choices ensures that none of the players v;
fori =2,...,N -1 guess correctly, so it suffices to check for each starting choice and pos-
sible ending choice whether v; or vy guesses correctly. We have already seen that starting
with choosing ‘constant’ ends with ‘constant’ and results in player vy guessing correctly.
The rest of the possible starting and ending choices are given in Figure 4.2. The last two
rows of the figure show the sequences for which neither v; nor vy guess correctly in case
N £ 0 (mod 3).

UN-1 UN U1 Vs guesses correctly
‘constant’ 0 0 O O ‘constant UN
‘constant’ 0 0 0 1 ‘up’ UN
‘constant’ 1 1 0 1 ‘up’ UN
‘constant’ -1 -1 0 1 ‘up’ 121
‘up’ 1 -1 0 1 ‘up’ V1
‘constant’ 0o 0 -1 ‘down’ UN
‘constant’ 1 1 0 -1 ‘down’ UN
‘constant’ -1 -1 0 -1 ‘down’ 2
‘up’ 1 0 -1 ‘down’ 121
‘up’ 1 -1 0 -1 ‘down’ 11
‘up’ -1 0 0 -1 ‘down’ UN
‘down’ -1 1 0 -1 ‘down’ 2]

‘up’ 1 0 1 ‘up’ x if N =2 (mod 3)

‘down’ 1 O 0 -1 ‘down’ x if N=1 (mod 3)

Figure 4.2: This table shows which of the players v; and vy guess correctly for each possible start and end of
sequences, where the players v; for i =2,..., N — 1 guess incorrectly. Without loss of generality c,, = 0. The
last two rows show the sequences where neither v, nor vy guess correctly in case N # 0 (mod 3).



Complete Graph Minus Maximum
Matching

The main result of this chapter is regarding the hat guessing number of the following graph.
Let g an odd prime power and let M be a maximum matching in K;.;. We consider the

graph K,.; — M, that is, we remove the edges belonging to M. Note that the resulting

graph can also be viewed as the complete (qTH)—partite graph with parts of size 2, that is

Kg+1—M = K3, ». Since this is a non-complete graph, we have that HG(K;., — M) < g, by
Theorem 2.6. It turns out that we have equality here.

Theorem 5.1. Let g an odd prime power and let M be a maximum maitching in Kg.,. Then
HG(Ky1—M)=q.

Proof. Consider the colours to be the elements of IF ;. We base our strategy on the fact that
forany x,y € F, either x=0, y =0, or x+i-y = 0for some i € F,;\{0}. Number the vertices v,
for @ € F; U {oo} such that {vy, v_4} € M for a € F; \ {0} and {vp, vs} € M. Given a colouring
¢, let vertices vy and v, respectively guess

fr@= Y a-cwy) and f, (0= > cva)

aeF\{0} aeFq\{0}

Note that f;,, does not depend on ¢(v) and f;, does not depend on c(vy). Set x = ¢(vg) —
fu(c) and y = ¢(Vso) — fu,,(c), then x = 0 corresponds to vy guessing correctly and y = 0
corresponds to v, guessing correctly. For i € F, \ {0}, let v; guess its colour to be such that
x+1i-y=0. Substituting in the definitions of x and y and subsequently the definitions of
fuo(c) and f,_(c), this corresponds with letting v; guess

fr@=@) e +i-clvo)— Y. (a+i)-cvd)].
acF,\{0,i}

Note that f,, does not depend on c(v_;), since the coefficient of c(v_;) in the sumis i—i = 0.
Hence the given strategy is a valid strategy. To see that the strategy is also winning, note
that, as mentioned at the start of the proof, one of the following holds x = 0, y = 0, or
x+i-y=0forsome i€[F,\{0}. With the given choices of x and y, we see that vy guesses
correctly precisely when x = 0, v, guesses correctly precisely when y =0, and, for i € F; \
{0}, v; guesses correctly precisely when x +i -y =0. O

16
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Note that K411 — M is K¢+1 -free. Seeing as g is odd, we have that g + 1 even. Sup-
2
pose for the sake of contradiction that K41 — M contains a copy K of Kq1 ,. There are
2

g+1-(42 +1) = L1 1 vertices u ¢ V(K). So there at most X1 —1 vertices v € V(K) such

that {u, v} € M for some u ¢ V(K). Hence there are at least 2 vertices in V (K) not covered by
M, a contradiction.

In [4], it is asked whether there exist K;-free, g-solvable graphs which have a polyno-
mial number of vertices in g. The above shows in particular that for odd primes p there
exists a K,-free, p-solvable graph with p + 1 vertices. For a large enough positive integer
q there exists a prime p € [q, g + g*°?°] by [2]. Then g < p, so Ky+1— M is g-solvable, and
q= pT+1 +1, 80 Kpp11 — M is Ky-free. Furthermore, K1 — M has p+1 < g+ q*?° + 1 vertices.

Gadouleau and Georgiou [9] show that there exist g-solvable graphs with arbitrarily low
clique number, and at most a linear number of vertices in q. Furthermore, for any g divisi-
ble by 3, they show that there exists a g-solvable graph on 4¢/3 vertices with clique number
2q/3. Compared to our result above, this guarantees a smaller, K,-free, g-solvable graph in
general. However, for g close to an odd prime power our result gives a smaller graph.

One might wonder if the clique number could provide an upper bound to the hat guess-
ing number. However, Alon et al. [1] showed that the hat guessing number for the complete
bipartite graph K, , is HG(Ky ) = Q(n2~°W).



Smallest Cases

In this Chapter we will catalogue the hat guessing number for graphs on n vertices for n < 5.
Recall from Chapter 2 that we need only consider connected graphs, Theorem 2.4. Simi-
larly, we may omit graphs that contain a vertex of degree 1 and contain 2 or more edges,
because the degree 1 vertex may be removed without changing the hat guessing number,
Theorem 2.10. We discuss the graphs in order of increasing number of vertices.

6.1.n=1,2, or 3 Vertices

For each of the cases n = 1,2, 3 there is exactly one graph for which we need to determine
the hat guessing number.

For n =1 we only have the empty graph, which is the same as the complete graph K;.
Its hat guessing number is at least 1, because the player can guess the one available colour
and this guess will be correct. Its hat guessing number is also at most 1, because a single
guess cannot cover for 2 potential colours. So HG(K;) = 1.

The only graphs on n = 2 vertices are the complete graph K, and the empty graph, the
latter of which is disconnected. The hat guessing number of K, is HG(K>) = 2. The lower
bound is shown by the strategy in Example 1.1. The upper bound is shown in Section 3.1.
In fact, these lower and upper bounds show the more general fact that the hat guessing
number of the complete graph K, on n vertices is HG(K},) = n.

On n = 3 vertices the connected graphs are the 3-path P3 and K3, the former of which
contains a vertex of degree 1 and has 2 edges. As noted above, the hat guessing number of
Kg is HG(Kg) =3.

6.2. n = 4 Vertices

The graphs on n = 4 vertices we need to consider are Ky, C4, and K; with a missing edge,
denoted K, — e, see Figure 6.1. As usual, HG(K}y) = 4.

In Section 4.1 we have seen a winning strategy for the game (Cy, 3), so HG(Cy) = 3. See-
ing as C; is not a complete graph, we get HG(C4) < 3 from Theorem 2.6. So HG(Cy) = 3.

18



6.3. n =5 Vertices 19

This is also a special case of both Theorem 2.13 and Theorem 5.1.

Lastly, the graph K; — e shown in Figure 6.1 has hat guessing number HG(Ky — e) = 3.
The lower bound follows from the subgraph bound, Theorem 2.1, and any of the C4 or K3
subgraphs.

Figure 6.1: The complete graph on 4 vertices with a missing edge, denoted K — e.

6.3. n =5 Vertices

There are 11 connected graphs on n = 5 vertices with minimum degree 2. As usual, we have
the complete graph K5 with hat guessing number HG(Ks5) = 5. From Theorem 2.13 it fol-
lows that the hat guessing number of the 5-cycle Cs is HG(Cs) = 2. Removing an edge from
K5 results in K5 — e, a non-complete graph, which still contains a K. So HG(K5—e) = 4. The
graph in Figure 6.2 is another non-complete graph that contains K, as a subgraph. There-
fore, this graph also has hat guessing number 4.

Figure 6.2: Another non-complete graph that contains Kj as a subgraph.

The smallest example of a cactus graph is the hourglass, the result of gluing two copies
of K3 at a vertex, see Figure 6.3a. The hourglass is also known as the windmill W3 ,. Its hat
guessing number is HG(W32) = 4 and follows from either Theorem 2.14, as a cactus graph,
or Theorem 2.16, as a windmill. There are two graphs on 5 vertices, which contain W3, as a
subgraph and do not contain Ky, see Figure 6.3b and Figure 6.3c. The former is constructed
by adding any edge to Ws », the latter by adding another disjoint edge the result. The W3 »
subgraph shows that their hat guessing number is at least 4. Seeing as neither is the com-
plete graph on 5 vertices, both their hat guessing numbers are also at most 4, and thus they
both have hat guessing number exactly 4.

The last graph on 5 vertices for which the hat guessing number follows from general
results is the complete bipartite graph K 3. It has hat guessing number HG(K>3) = 3. The
lower bound follows from any of the C, subgraphs. The upper bound follows from the last
upper bound mentioned in Section 2.3. This bound says that for any bipartite graph with
parts of size m and n, the hat guessing number is at most min{m + 1, n + 1}.
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(a) The hourglass, also known as the
windmill W3 5, is the result of gluing 2
copies of K3 at a vertex. (b) The hourglass with an added edge. (c) The hourglass with two added edges.

Figure 6.3: The hourglass and two related graphs.

The three graphs on 5 vertices that are left are the house, the broken wheel, and the
book graph Bj; 3, shown in Figure 6.4. All three of these have hat guessing number either
3 or 4. Each of them contains both C; and K3 as a subgraph, either of which would show
that the hat guessing number is at least 3. None of them is the complete graph, so their hat
guessing numbers are at most 4.

Gu et al. [10] have shown the hat guessing number of these three graphs. They de-
termined a winning strategy for 4 colours on B; 3, showing that HG(B;3) = 4. They also
showed that there exists no strategy for 4 colours on the broken wheel, showing that its hat
guessing number is 3. Seeing as the house is contained in the broken wheel, its hat guess-
ing number is also 3.

(a) House (b) Broken Wheel (c) Bz 3

Figure 6.4: Three last cases



Equivalence of Strategies

Recall from Section 2.1 the formal definition of the hat guessing game. Note that we have
not specified a set of colours I'. Often I' is taken to be {0,1,...,q — 1} =: [q], Z/qZ, or F.
Whether a hat guessing game is winning or not is not dependent on the chosenT'.

Proof. Suppose, for the sake of contradiction, that the choice of I' does matter. Then there
exist a graph G, a positive integer ¢, and two colour sets I'y and I'; of size g such that the
game (G, g) is winning with colour set I'; with winning strategy f and losing with colour
set I'>. Seeing as I'y and I', are both of size g, there exists a bijection o between them. Let
T:T g —T Y apply o to each coordinate. Consider the strategy 7! o f o 7 for the game with
colour set I',. For a colouring ¢ in T} we have (1o fo1),(c) =07 (f,(T(c))) =0~ 1T 4()) =
o~ (o(cy)) = ¢y, where v is the player who guesses correctly with strategy f for the colour-
ing 7(c). We see that v guesses correctly and thus 77! o f o 7 is a winning strategy for the
game with colour set I'y, a contradiction. O

Instead of using a single universal set of colours I', one can also provide a set of colours
I', of size g for each player v. This also does not change whether a hat guessing game is
winning or not. The proof is very similar to the one above, redefine 7 to apply the bijection
o, of the different I', on the colour of player v. The rest of the proof follows as above. This
inspires us to define a notion of equivalence of strategies.

Definition 7.1. Two strategies [ and g for a game (G, q) are said to be equivalent if there
exists a bijection of colouringst :TV — 'V that preserves winning strategies and g =1 'o fo
T.

With preserves winning strategies we mean that for any strategy f for the game (G, q) we
have that f is winning if and only if 77! o f o 7 is winning. Loosely speaking, conjugation
by 7 should preserve the property of 'winningness’ of any strategy, which is the property
we care about. Note that the composition and inverses of bijections that preserve winning
strategies again preserve winning strategies.

In the proof above we have shown that for any strategy f we have 77! o f o7 is winning
whenever f is winning, where 7 is a permutation of the colour set I'. Seeing as 7! is also a
permutation of I', the converse also holds. Therefore permutations of the colour set I" are
examples of bijections that preserve winning strategies. With the note below the proof we
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can generalise this to permutations of the individual colour set I', for a player v. Another
example is automorphisms of the graph G.

In this case T permutes the entries according to an automorphism ¢ of G. Let f a win-
ning strategy, let c € 'V a colouring, and let v be the player which guesses correctly for the
colouring 7(c). Then player ¢(v) guesses correctly for the strategy 7~! o f o T and colouring
¢. Indeed, we have

(77 0 FoT)pw)(©) = Tyl (FT(O) = fo(7(6)) = T4 (€) = Cpiw)-

The converse follows from the fact that 7! again permutes the entries according to the
automorphism ¢! of G.

Conjecture 7.2. All bijections that preserve winning strategies are of the form t o m, where T
permutes entries according to an automorphism of G and n permutes the individual colour
sets of each vertex.

7.1. Uniqueness

Along with a notion of equivalence of strategies we also get a notion of uniqueness of strate-
gies. One might wonder whether there exist graphs for which the hat guessing number is
certified by a strategy which is unique up to equivalence. Showing that a strategy is the
unique winning strategy might be useful in the following ways.

Conjecture 7.3. Let G have hat guessing number HG(G) = q as shown by some winning
strategy for the game (G, q). Suppose this strategy is the unique winning strategy up to equiv-
alence of strategies. Consider the hat guessing game on G where for one of the players there
are q + 1 available hat colours, whereas there are q available hat colours for each of the other
players. This game is losing and thus HG(G) = q.

Proof. Assume that Conjecture 7.2 holds.

Given a strategy f and a player v, we can count the number of colourings of the neigh-
bourhood of v such that v guesses each of the colours. For a player v, let M,],c e N be
the vector containing the results of this counting. Note that the specifics of M{: depend on
which of the equivalent formulations for the given strategy f was chosen. Permuting the
elements of I', permutes the elements of M,],C , though it does not influence the M{: for play-
ers u # v. To account for these permutations we redefine M,]j to be the multiset containing
the results of the counting. Automorphisms of the graph G change which multiset belongs
to what player, but does not influence the multisets themselves. Under the assumption of
Conjecture 7.2 the collection of multisets M, 5 uniquely determines f up to graph automor-
phisms of G.

Now let f be the unique winning strategy for the game (G, g). Suppose we have a win-
ning strategy g for the game where player v has g + 1 available hat colours. From g we can
obtain a strategy h for the game (G, g) in the following way. Firstly, we remove a colour
co from the available hat colours I';, of v. Choose ¢y such that Mf (cp) = 1. For u # v let
h, = gu, where the neighbours of v simply restrict their domains. At this point we may use
graph automorphisms to redefine £ in such a way that le = M£ for all players u # v. If this



7.1. Uniqueness 23

is not possible, then & and f are already non-equivalent. If it is, then, for colourings ¢ such
that g, (c) = ¢y, we set h,(c) # ¢y in such a way that M f} # MJ . This is always possible, since
M&(cp) = 1. So, again h and f are non-equivalent strategies. Seeing as / is a restriction of g,
h is winning. Therefore /& and f are non-equivalent winning strategies for the game (G, g,
a contradiction. O

Conjecture 7.4. The graph G is also arc-critical, that is for any arc a of G we have HG(G —
a)<(g.

Szczechla. [16] has shown that the winning strategies for 3 colours on the cycles Cs,, for
n > 1 are unique up to permutations of the individual colour sets. The game (K3, 2) has the
strategy from Example 1.1 as unique winning strategy up to graph automorphism, which
can be seen by checking all 16 strategies. Seeing as Conjecture 7.2 holds in these cases,
it follows that Conjecture 7.3 also holds in these cases. Conjecture 7.4 also holds in these
cases.

The converses of Conjecture 7.3 and Conjecture 7.4 do not hold in general. As we have
seen in Section 3.1, HG(K;, — a) = n — 1, whereas HG(K,,) = n. Furthermore, the proof for
HG(K,) < n+1 presented in Section 3.1 still holds when there are n+1 available hat colours
for one of the players, while there are n available hat colours for each of the other play-
ers. However, the games (K3,3) and (K4,4) both have at least two non-equivalent winning
strategies. For both games one of the strategies is the strategy from Example 1.1. By inter-
preting K3 as C3 we may use the strategy from Section 4.2 for the game (K3, 3). By interpret-
ing Ky as K> x 1 K, we may use the strategy from Appendix B (a specific case of Theorem 2.3)
for the game (K4, 4). Below, we show that these strategies are indeed non-equivalent.

Proof: {K3,3) has two strategies. Let f : [Fg — [Fg be the strategy from Example 1.1, that is,

—C1—C2
floo=|1-c—c2].
2—6‘0—61

Letg: Fg — Fg be the strategy from Section 4.2, that is,

h(Cg+1,C1) i
+1 ifx=
glc)=| h(cy,c2) |, where h(x,y)= {x 1 e
h(Cl,C()—l) . lfx;éy

Suppose for the sake of contradiction that there exists a bijection 7 : Fg — [Fg that preserves
winning strategies such that g =110 for.

Note that f has order 3, thatis f3 = fo fo f = Id, where Id denotes the identity map
Id:F; — F3, ¢ — c. Indeed, we have

—C1—C2 —Cpt+C1+C2
fg(c):f2 l-co—c|=f| co—c1+c2 |=c.
2—cyp—C1 Cot+Cp—C

Seeingas g =1 'o foT, we get that
g3: (‘[_lofor)3:T_lof?’oT:T_loT:Id,

However, g3(0,0,0) = (2,2,2), a contradiction. O



24 7. Equivalence of Strategies

Proof: (Ky,4) has two strategies. Let f : Z; — Zj be the strategy from Example 1.1, that is,

—C1—C2—C3
1—CO—C2—6‘3
2—60—()1—6‘3 )
3—60—01—(32

flo)=

Let g: (Z3)* — (Z3)* be the strategy from Appendix B, that is,

(_ CUI,O; _(1 - Cuo,O - Cul,O) Cu(),l - (Cuo,O + Cul,O) cul,l)

gU() (C)

g(C) | 8 (c) _ 1- Cup,0 -(1- Cup,0 — Cul,O)Cuo,l - (CUO;O + Cul,O) Cuy 1
8uy (C) = Cuy,00 1 = (1= €py,0 = €01,0) Cvp,1 = (Cuyp,0 + €y,0) €0y 1
gu1 (C)

(1 - Cuo,O! 1- (1 - CUQ,O - Cl)l,O) Cl/o,l - (Cl/o,o + Cl)l,O) Cl/l,l)

Suppose for the sake of contradiction that there exists a bijection 7 : Zi — Zﬁ that preserves
winning strategies such that g =77 1o for.

Note that f has order 4, thatis f* = fo fo fo f =1Id, where Id denotes the identity map
Id: Z; — Z},c— c. Indeed, we have

—C]1—C2—C3 2—co+2c1+2c0+2c3 2+2c)+c1+cr+c3
3| 1—co—cC2—c3 _f2 0+2¢c)—c1+2¢c+2c3 _f l+cy+2c1+cr+c3 —c
2—Cy—C1—C3 B 24+2c)+2c1—Ccp+2c3 B O+cy+c1+2c+c3 e

3—cp—c1—C 0+2¢cy+2c1+2¢c2—c3 3+co+cy+cr+2c3

ffo=f

Therefore, the pre-image under f of cis f3(c), so f is surjective. It follows that f is bijective,
as it maps a finite set unto itself. Seeing as 7 is bijective and g = 77! o f o1, we get that g
must be bijective. However,

©0,00) ((0,0) 0,0)
0ol [an]| [oD
0,0 lo,n|~¢l0,0/
(0,0 (1,1) o,1)

a contradiction. O



Further Research

There are a lot of other questions to ask related to the hat guessing game. In this chapter
we ask those questions and refer to some sources that try to answer these questions.

8.1. Variations
The hat guessing game has a number of rules that we could alter to obtain slightly different
but related games. In this section we briefly discuss a few variations that arise this way.

The hat guessing game very naturally generalises to directed or mixed graphs. In this
case players are able to see the hat colours of their out-neighbours. In Chapter 3 we have
seen how one might generalise bounds on the hat guessing number to mixed graphs. Alon
et al. [1] talk about the hat guessing number of multipartite directed cycles and Gadouleau
[8] show an upper bound on the hat guessing number based on minimum feedback vertex
sets.

Another natural variation of the game is having a different number of colours available
for different players. For example, considering the path graph on 3 vertices Ps, there ex-
ists a winning strategy even when the middle player has a colour set of size 4 and the two
outer players have colour sets of size 2. We say that the sequence (2,4, 2) is winning for Ps.
In general, for a graph G, we consider sequences h € Z", sometimes referred to as hatness
functions. The hat guessing number corresponds with the maximum integer g such that
there exists a winning strategy on G for the constant g hatness function. This variation
has been studied by Kokhas and Latyshev [14], resulting in a strategy for the lexicographic
product of graphs, Theorem 2.3, and has been studied by Chizewer et al. [5], resulting in
the hat guessing number of cactus graphs.

We can also help the players to win the game. For example, by giving them more than
one guess. In this variation the players each guess a subset of size s of the colours and win
if the hat colour of at least one of the players is in their guessed set. Bosek et al. [3] studied
this variation and showed that the hat guessing number of graphs with sufficiently large
genus and sufficiently large girth in its genus is bounded above by a simple function in s.
Implying that the hat guessing number of planar graphs with girth at least 14 is at most 6.
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Another way of making the game easier for the players is by restricting the colour ar-
rangements available to the adversary. One could for example tell the players before hand
that the hats are going to be placed according to a proper colouring, that is, no neighbour-
ing players will have the same hat colour.

8.2. Edge-critical Graphs

A graph is said to be edge-critical for the hat guessing number if removing any edge from
the graph reduces its hat guessing number by at least 1. For example, we have seen that the
complete graph K, has hat guessing number HG(K},) = n, but removing an edge e results
in a hat guessing number HG(K}, — e) = n— 1, Theorem 2.6. Other examples include Cy,
Csy, and W3 ». These graphs form the boundary between hat guessing numbers. Any graph
containing an edge-critical graph G has hat guessing number at least HG(G) and any graph
strictly contained in G has hat guessing number less than HG(G). Knowing precisely which
graphs are edge-critical for a given hat guessing number one can determine the hat guess-
ing number of any graph by checking what edge-critical graphs it contains and is contained
in.

When considering directed and mixed graphs, one could ask: What graphs are arc-
critical, that is, for what graphs does the hat guessing number strictly decrease when re-
moving an arc? For example, we have seen that removing an arc a from K, results in a graph
with hat guessing number HG(K,, — a) = n— 1, Theorem 3.2. Clearly, arc-critical graphs are
also edge-critical. It is unclear, however, whether the converse should also hold.

8.3. Graph Operations

The main question for this section is as follows. How does the hat guessing number interact
with graph operations? For example, let U denote the disjoint union of graphs, then for any
graphs G and H, we have seen in Theorem 2.4 that HG(GU H) = max{HG(G), HG(H)}. Can
we find similar relations for graph products like the Cartesian product, the tensor product,
the strong product, and the lexicographic product?

We have seen in Theorem 2.3 that the lexicographic product provides a lower bound
on the hat guessing number HG(G x; H) = HG(G) - HG(H). It is unclear when the corre-
sponding upper bound holds. Given HG(G x; H) and HG(H), one can try constructing a
strategy for the hat guessing game on G with H%(g# colours. Suppose that HG(G x H) =
(HG(G) +1)- HG(H), then the constructed strategy would imply that HG(G) = HG(G) +1, a
contradiction. This still leaves a gap for the hat guessing number of the lexicographic prod-

uct, though it might be easier to show.

Kokhas and Latyshev [14] consider the variation of the hat guessing game where differ-
ent people have different size colour sets. In this context they show what happens if we glue
two graphs at a vertex, if we blow up a vertex into a graph, or if we connect a new vertex in
some specific ways. For what graphs do these imply something about the usual hat guess-
ing number? What other changes can we make in the graph and say something about the
hat guessing game?
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8.4. Small Open Cases

As we have seen in Chapter 6, the hat guessing number is known for all graphs on 5 or fewer
vertices. The natural next step is looking at the graphs on 6 vertices. The only new graphs
for which the hat guessing number is known are the subgraphs of the complete bipartite
graph K3 3 with hat guessing number HG(K3 3) = 3 [12]. Ignoring disconnected graphs and
graphs with minimum degree 1, there are 48 graphs on 6 vertices for which the hat guessing
number is currently unknown, all of which have hat guessing number either 3, 4, or 5.

8.5. Planar Graphs

Planar graphs are an interesting class of graphs when it comes to the hat guessing number.
We have already seen that the hat guessing number of cycles is HG(cycles) < 3, [16], and
more generally that the hat guessing number of cactus graphs is HG(cactus) < 4, [5]. It has
been conjectured that the hat guessing number of all planar graphs is bounded above by
a constant. Knierim et al. [13] have shown that the hat guessing number of outer planar
graphs, a subclass of planar graphs, have hat guessing number HG(outer planar) < 40 and
Latyshev and Kokhas [15] have constructed an example of an outer planar graph with hat
guessing number at least 22.



Finding a for which (3.5) holds with k = aK

_ 1 . . K=1 _ (n=1\1/3
Let K = m, that is K is such that X = (T)

. We want to find a such that the

following cornldition holds for k = aK and for n large enough, see Condition (3.5),

n+1—n(E)—(E)2n<1 (A.1)
r r . .

We will start by rewriting Condition (A.1), in view of which consider the following:

aK -1 1 1( 1)
=]1-—=—|a——
akK aK « K

Ho-ro-2)

a—-1 I(K—l)
= — 4 — | —

a a K
a—1 1(n—1)”3
=—+— .
a a n

Condition (A.1) then becomes

2
n n(n—l)”?’ (a—l l(n—l)m)n
——— - +— <0.
a al\l n «a al\l n

Define the functions f, g as

r=1-(1-4]",
n 1 2n
g(n) = Ef(n) - (1 - Ef(n)) :

Then Condition (A.1) corresponds to g(n) < 0. Note that it suffices to find a such that
lim, ., g(n) <0, as we then get that the condition is satisfied for n large enough. In view
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of calculating this limit note that lim,,_. f (1) = 0, furthermore, in view of using L'Hopital’s

rule, note that
LN NS

n

We calculate the limit of g(n) in two steps. Firstly,

lim g1(n) = lim = f(n)
Q)
Can— 1/n

L/:Hl lim %f(n)

a n—oo —1/n?

1 . 1( 1)‘2’3 1

=—lim -|1-—
a n—oo 3 n

where L' H denotes an application of L'Hopital’s rule. Secondly,
1 2n
lim g,(n) = r}ggo(l - Ef(”))

log(1-1
_exp(Z lim g “f(n)))

n—o0 1/n

Fexp|2 lim — ~dn/ ()
n—oo _ _2( f(n))

1 1-1 2/3
:exp(—E lime‘((l—”) = e 3,

where L' H denotes an application of UHépital’s rule, exp(x) = e*, and log is the natural
logarithm. Putting these together we obtain

1
hm g(n) = hm gl(n) - 11m gz(n) 2 —e 3a

We find that lim,,_.., g(n) < 0 whenever a > 0.781917. Therefore, Condition (A.1) holds for
example for a = 0.9, k = aK, and n large enough.



A Strategy on K x; K

We present a strategy on K, x K, based on [14]. Consider the colours to be the elements of
Z3. Each player guesses the first coordinate of their colour according to a winning strategy
for the game (K>, 2) looking at the first coordinates of the players in the copy of K, they be-
long to. Let G and H be the copies of K,. Given a colouring c € (Zg)“, let v, respectively u,
be the player in G, respectively H, who correctly guesses the first coordinate of their colour.

View G x H as a copy of the graph K, with vertices G and H, see Figure B.1. The guess
for the second coordinate is going to be the same among all players in the same copy of K.

Figure B.1: The complete connection between two copies of K.

The players in G and H guess the second coordinate of their colour according to a win-
ning strategy for the game (K3,2) on the big K». In this game, the colour of G, respectively
H, is the second coordinate of v, respectively u. Note that the players in G know which of
the players in H is the winner u, because they know which player has what strategy and can
see the colours of the players in H. Similarly, the players in H know which of the players in
Gisv.

Seeing as we use a winning strategy for the game on the big K5, either G or H correctly
guesses their colour. Seeing as the colours of G and H are the second coordinates of v and
u respectively, either v or u correctly guesses the second coordinate of their colour. Both
v and u already correctly guess the first coordinate of their colour, therefore either v or u
correctly guesses both coordinates of their colour, and thus the strategy is winning.

Let us explicitly construct this strategy g : (Z%)4 - (Z%)4 using the strategy from Example
1.1 for the games (K>,2). Let v, v; be the players in G and ug, u; the players in H. For a
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colouring c € (Z%)‘l, denote the first, respectively second, coordinate of a player w’s colour
as cy,0, respectively c,,1. As above, suppose that, given a colouring c € (Zg)“, v and u are
the players who correctly guess the first coordinate of their colour in G and H respectively.

Then g is as follows.

8gn )| _ (I_CVO.O’ _Cu,l)
guo(C) B (_Cul,Oy 1_Cv,l)
gu, () (l—cuo,o, 1—cy'1)

glo) =

Based on the strategies for the first coordinates we can determine explicitly what c,,;
and ¢,,; are. Note that

V=10V9 <= Cyy0+Cp,0=0,
V=V] < Cy0t+Cy0=1,
U= Uy < Cyyo+Cy0=0,
U=U] < CyyotCy0=1

Therefore,

CU,I = (]- - CU(),O - CUI,O)CU(),I + (CUQ,O + CUI,O)Cl}l,l)

Cul1= (1- Cuy,0 — Cul,O)CuO,l + (CuO,O + Cul,O)Cul,l-
Substituting c,,; and c,,; into our expression for g we obtain

(_ Clll,Or _(]- - Cuo,() - Cul,O)Cuo,l - (Cuo,O + Cul,O) Cul,l)

gl/() (C)
g(c) _ ng (C) _ 1- CU(),O; _(1 - Cu(),O - Cul,O)Cuo,l - (Cuo,O + Cul,O) Cu1,1
8u, (€) = Cuy,00 1= (1= €yy,0 = €1y,0) €1 — (Cuyp,0 + Cuy,0) €y 1
gu1 (C)
(1 - Cu(),Oy 1- (1 - CU(),O - Cl)l,O) CU(),l - (CU(),O + CU1,O) CU],I)
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