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Abstract—In their pursuit to maximize their return on in-
vestment, cybercriminals will likely reuse as much as possible
between their campaigns. Not only will the same phishing
mail be sent to tens of thousands of targets, but reuse of
the tools and infrastructure across attempts will lower their
costs of doing business. This reuse, however, creates an effective
angle for mitigation, as defenders can recognize domain names,
attachments, tools, or systems used in a previous compromisation
attempt, significantly increasing the cost to the adversary as it
would become necessary to recreate the attack infrastructure
each time.

However, generating such cyber threat intelligence (CTI) is
resource-intensive, so organizations often turn to CTI providers
that commercially sell feeds with such indicators. As providers
have different sources and methods to obtain their data, the
coverage and relevance of feeds will vary for each of them. To
cover the multitude of threats one organization faces, they are
best served by obtaining feeds from multiple providers. However,
these feeds may overlap, causing an organization to pay for
indicators they already obtained through another provider.

This paper presents a privacy-preserving protocol that allows
an organization to query the databases of multiple data providers
to obtain an estimate of their total coverage without revealing
the data they store. In this way, a customer can make a
more informed decision on their choice of CTI providers. We
implement this protocol in Rust to validate its performance
experimentally: When performed between three CTI providers
who collectively have 20,000 unique indicators, our protocol takes
less than 6 seconds to execute. The code for our experiments is
freely available.

Index Terms—private set union, mpsu-ca, indicator of com-
promise, threat intelligence

I. INTRODUCTION

In their pursuit to maximize their return on investment,
cybercriminals will likely reuse as much as possible between
their campaigns. Crafting one phishing email takes effort, but
sending it out with small customization such as the salutation
is trivial. Assembling a malicious attachment and setting up
the server infrastructure to act as a command & control system
requires time and is costly, but shared across many phishing
emails this cost becomes marginal. Unless the adversary is
aiming to compromise a high value target, where the cost
of accomplishing breach is irrelevant, we can thus assume
specific artefacts to reappear across compromization attempts.

This modus operandi – the reuse of tools, techniques and
practices across individual intrusion attempts – is also an

effective leverage a defender can apply for protection. By iden-
tifying elements that were used in the context of one intrusion
attempt, such as e-mail addresses, server IPs, fingerprints of
network traffic, components included in the malware binary,
and filtering for all of these so-called indicators of compromise
(IoC), future intrusion attempts are more effectively stopped
by recognizing one of the previously detected indicators. As
a result, the adversary must reinvent the wheel and replace
the bulk of the machinery for each attempt, which greatly
increases the cost of doing business to the offender.

While each organization could develop a corpus of such
information, it is more effective to include indicators observed
by third parties, with the rationale that adversaries would reuse
parts of the machinery not only across individual intrusion
attempts against a particular organization, but across several
operating in the same sector or country. Although recognized
as desirable [1], the process of information sharing and collab-
orative threat intelligence generation is hampered by privacy
laws and the risk that data shared for comparison purposes
may be abused by a malicious participant in the group. For
this reason, organizations today typically rely on external cyber
threat intelligence providers, which analyse adversaries, their
behaviour and tools, and provide a feed against payment [2].

The recent attention on cyber threat intelligence (CTI) has
also brought a surge in companies offering such feeds, and
studies such as [3] have called into question the quality and
relevance of the information provided by many intelligence
providers. As also the resources of CTI providers are limited,
not only may their threat intelligence show biases towards
certain sectors, adversaries or geographical areas, the intelli-
gence between multiple providers may overlap significantly
[4]. Hence, defenders want to select multiple providers to
cover the multitude of threats they face, while making sure
their data is sufficiently distinct. This in turn raises a security
and privacy dilemma. Certainly, the CTI provider is unlikely
to open up its intelligence database for evaluation purposes, as
it is selling the data within it. Similarly, an organization that
keeps a local list of indicators may refrain from sharing these
with the CTI provider. The dilemma may result in defenders
simply buying some feeds, rather than those that contribute
most in terms of both relevance and coverage [5].

We address this with a new privacy-preserving protocol that
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securely assesses the total coverage of datasets across multiple
databases without revealing the data itself. The protocol lets a
customer query the database of several CTI providers to obtain
an estimate of how many unique indicators they possess col-
lectively, with the possibility of including their local indicators
in the query. This functionality is that of a multi-party private
set union-cardinality (MPSU-CA) protocol, which considers n
parties who have a set of at most k elements, and computes the
cardinality of their union without revealing those input sets.
By querying multiple combinations of providers, the customer
can make an informed decision about which providers to buy
from. For example, choosing the combination that provides
the most unique indicators for the lowest price.

For many years, MPSU-CA protocols have been researched.
However, to our knowledge, all protocols require at least three
stages [6], [7]. Here we define a stage to be a part of the
protocol where each party must have been online in order to
advance to the next. In our approximate MPSU-CA protocol, a
CTI provider only has to take two actions, of which one action
only has to be performed every time their set changes. While
the result is not exact, the estimate can be made arbitrarily
accurate at the cost of computation and bandwidth.

Our protocol is based on the homomorphic ElGamal cryp-
tosystem, which we instantiate in such a way that all parties
– the queried CTI providers and the customer – are necessary
to decrypt. At its core, the protocol uses a shuffle-decrypt
protocol that lets parties simultaneously shuffle and decrypt.
During this stage every party has to be online only once. To
our knowledge, this is a novel protocol that may also be of
independent interest. As an optimization, our protocol enjoys
smaller key sizes, smaller ciphertexts and faster computation
by using elliptic curves rather than integers. In short, our
contributions are as follows:
• A provably secure, efficient MPSU-CA protocol, enabling

customers to make an optimal selection of CTI providers
• The protocol requires few interactions since CTI

providers only have to encrypt their set once and param-
eters can be fine-tuned for speed or accuracy

• An open-source proof-of-concept implementation

II. RELATED WORK

There already exist works proposing a multi-party private
set union-cardinality. However, these works require the parties
to participate for multiple stages of communication. By such
a stage, we refer to a part of the protocol where a party must
have been online to proceed. We discuss four works in this
domain and state the number of stages they require.

One of the first multi-party private set union protocols was
given by Frikken [6], as well as an extension to the union-
cardinality. The idea is to encode the sets of elements as
the roots of polynomials. After multiplying the polynomials
together, the roots of the resulting polynomial are the elements
in the original sets. By encrypting the coefficients of the
polynomials using a homomorphic threshold cryptosystem,
no party can distill the information contained within the
polynomials, while allowing for polynomial multiplication and

evaluation. Each party takes a turn in evaluating the encrypted
polynomial that is passed around, in a way that finally returns a
set of numbers corresponding to the total number of elements.
Elements that result in 0 are duplicates, while unique elements
result in a random number. Then, one can count the amount of
random numbers to reveal the union-cardinality. The protocol
takes 6 stages and relies on the Paillier cryptosystem.

Burkhart et al. [8] propose SEPIA, which is a library for se-
curely aggregating multi-domain network data using Shamir’s
secret sharing. They provide a protocol for the distinct-count
problem, which is identical to a set union-cardinality. They
encode each party’s set as a bitset, which is a vector of zeroes
and ones: If element 1 is in the set, they set the first bit to 1. If
element 2 is in the set, they do the same for the second bit, and
so forth. They invert the bitsets, compute the AND operation
between them, and return the number of possible elements
minus the total sum of the aggregated inverted bitset. The AND
and sum operations are executed using secret sharing. Due to
the AND operation, the number of rounds of interaction in the
protocol scales logarithmically with the number of parties n.
By using bitsets, the protocol also scales with the number of
possible elements, instead of with a pre-determined number
such as when using Bloom filters.

Blanton & Aguiar [9] propose a general framework for pri-
vate set and multiset operations, which relies on the possibility
for elements to be sorted. Their work is based on secret sharing
and makes of several sub-protocols, including oblivious sorting
and secure comparisons. The number of stages required to run
this protocol depends on the choice of these sub-protocols.

Debnath et al. [7] propose an intersection-cardinality pro-
tocol using (n, n)-exponential ElGamal, so the parties can
generate a public key without a trusted dealer. The protocol has
every party encode their sets as a Bloom filter, then aggregate
these to get the Bloom filter corresponding to the intersection.
The leader selects those encrypted bins corresponding to the
elements in its set and aggregates them. The parties then take
turns shuffling the ciphertexts, after which they collaboratively
decrypt. The leader can simply count the number of bins
that were 0. This protocol leaks the size of the leader’s
set because it only submits those bins corresponding to the
leader’s elements to shuffle and decrypt. The protocol requires
3 stages of communication.

III. PRELIMINARIES

Now we explain Bloom filters, the ElGamal encryption
scheme over elliptic curves and our security assumptions. Our
notation is given in the following table:

Sets & Bloom filters EC-ElGamal Other

k Max. set size G Cyclic group n Number of parties
m Number of bins q Order of G Pi Party i
h Number of hashes ski Secret key of Pi

c
≡ Comp. indistinguishable

F Filled bins pki Public key of Pi πi Permutation function of Pi

N Inserted elements 〈α, β〉 ElGamal ciphertext κ Comp. security parameter
X̂ Bloom filter of X y Randomness λ Stat. security parameter
p Selectivity ratio O Identity element ∈R Random element
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A. Bloom filters

A Bloom filter contains m bins, and each element is
assigned to one or more of those bins using h ≥ 1 hash
functions. All bins of the Bloom filter start at 0, but when
it is chosen by a hash function it is set to 1 and we say that it
is ‘filled’. Bloom filters with the same m and hash functions
can then be combined using AND and OR operations to perform
set intersections and unions, respectively. Due to this property,
both approximate private set operations [10] and multi-party
private set operations [11], [12] based on Bloom filters have
already been proposed.

Assuming h perfect and independent hash functions that
perfectly distribute elements over the m bins, we express
the expected number of false positives when performing k
membership queries. We provide two lemmas:

Lemma 1. The probability that a given bin in the Bloom filter
is still 0 after N inserted elements is:

Pr [bin is 0] =

(
1− 1

m

)hN
≈ exp

(
−hN
m

)
What follows, is the Bloom filter’s false positive rate εN :

Lemma 2. The probability εN that a random element is
included in the set encoded by a Bloom filter is:

εN ≈
(
1− exp

(
−hN
m

))h
Since Bloom filters are approximations, it is only possible

to estimate the number of elements that one encodes, rather
than exactly. It suffices to count the number of filled bins
F and to know the Bloom filter’s parameters. Note that the
distribution of the number of filled bins given the number
of inserted elements N is binomial, following the probability
from Lemma 2:

Pr [F = F | N = N ] ∼ B
(
m,

(
1− exp

(
−hN
m

)))
(1)

Theorem 3. The expected number of elements encoded by a
Bloom filter with F filled bins is given by:

E [N | F ] ≈ −m
h

ln

(
1− F

m

)
(2)

Proof. The probability for a bin to be 1 is expected to be equal
to the ratio of filled bins Pr [bin is 1] = F

m . It follows that:

F

m
≈ 1− exp

(
−hN
m

)
(3)

N ≈ logexp(− h
m )

(
1− F

m

)
(4)

≈
ln
(
1− F

m

)
ln
(
exp

(
− h
m

)) (5)

≈ −m
h

ln

(
1− F

m

)
For use later, we define the cardinality function for Bloom

filters as CARDINALITY(F ) ≈ E[N |F ]. Unfortunately it is

hard to give guarantees about this estimation because the re-
versed conditional probability of Equation 1 is not a binomial.
In fact, the distribution is asymmetric and it gets wider for a
larger number of filled bins F . It is proportional to:

Pr [N = N | F = F ] ∝ Pr [bin is 1]
F
Pr [bin is 0]

m−F (6)

Since estimation of the cardinality of the cardinality only
involves the number of filled bins, one can shuffle the bins
of a Bloom filter to obscure the elements encoded within it
but retain the ability to estimate its cardinality. This forms the
basis of our MPSU-CA protocol.

B. ElGamal over elliptic curves

The ElGamal cryptosystem allows the use of any group G in
which the DDH assumption holds [13], here noted additively:

Definition 1 (Decisional Diffie-Hellman). The DDH assump-
tion states that given ag and bg for some random a, b ∈ Z|G|,
abg is computationally indistinguishable from some r ∈R G.

For some elliptic curve groups, DDH is assumed to hold:
in this work, we use the Montgomery curve Curve25519 [14].
This curve has a co-factor of 8, which means that the prime
order subgroup that we actually use in cryptographic applica-
tions is one eight of the size of the total group. However, when
implementing protocols, it is possible to introduce bugs related
to these co-factors. For this reason, we use a highly-optimized
abstraction that allows us to use a curve with a co-factor to
realize a prime-order group [15], [16], so there is no co-factor.
Additionally, this technique allows for faster equality checks.1

C. Threat model & security assumptions

We consider adversaries in the semi-honest model, so the
parties perform the protocol according to its specifications.
They do try to learn as much as possible. We allow for n− 1
parties to collude. No secure channels are required, but we
assume the channels are lossless. The security of the protocol
is implied by the DDH assumption.

IV. SHUFFLE-DECRYPT PROTOCOL

When shuffling and decryption are performed separately
using a threshold cryptosystem, the shuffling requires each
party to sequentially permute the ciphertexts and re-randomize
them, then the decryption requires each party to partially
decrypt in parallel. If a party is unavailable in any of those
two stages, the protocol cannot progress. By shuffling and
decrypting in one pass, we require parties to be online for only
one stage and we save the parties from sending unnecessary
messages. This comes at the cost of sending along at most n
more curve points for each ciphertext to be decrypted.

For our protocol we adapt the ElGamal cryptosystem to
behave like an (n, n)-cryptosystem. The intuition behind the
protocol is to let each party in turn shuffle the ciphertexts
and ‘peel back’ one layer of encryption. At the same time,
such a party re-randomizes the ciphertexts to ensure that

1https://ristretto.group/details/equality.html
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the ciphertexts they received are indistinguishable from those
they send to the next party. More specifically, this protocol
is an aggregate-shuffle-decrypt protocol, since the first step
homomorphically aggregates the ciphertexts.

A. Protocol description

To ease interpretation we use additive notation and a special
notation for vector indexing: for a vector x, x[i] denotes the ith
element of x. Additionally, q is the order of the cyclic group
G of the ElGamal cryptosystem generated by g. Finally, each
party Pi has a secure permutation function πi( ) that takes a
vector like x and returns a permuted vector of the same length.
We assume that each party has a secret key sk i ∈R Zq and a
corresponding public key pk i ← sk ig known to all parties.The
leader is P1, without loss of generality.

Aggregate-shuffle-decrypt protocol
1) Each party Pi for i = 1, . . . , n sends m cipher-

texts of messages Mi to the leader P1, encrypted
with their own public key pk i using randomness
yi[j] ∈R Zq , and for j = 1, . . . ,m:

〈αi[j], βi[j]〉 = 〈yi[j]g,Mi[j] + yi[j]pk i〉

2) Leader P1 constructs a vector of tuples α[j] =
〈α1[j], . . . , αn[j]〉 and β[j] =

∑n
i=1 βi[j], and

sends them to party Pn.
3) In turn, each party Pi for i = n, . . . , 2 shuffles

and partially decrypts the ciphertexts, sending
the results to the next party Pi−1:
• Party Pi uses permutation function πi to

permute α← πi(α) and β ← πi(β).
• Party Pi removes its corresponding entry

from each tuple in α and randomizes it so
that α[j] becomes:〈
α1[j] + y′i,1[j]g, . . . , αi−1[j] + y′i,i−1[j]g

〉
,

for j = 1, . . . ,m, using randomness
y′i[i
′] ∈R Zq .

• Party Pi partially decrypts each β[j] and
uses the same randomness y′i[i

′] to compute:

β[j]← β[j]− sk iαi[j] +

i−1∑
i′=1

y′i,i′ [j]pk i′

4) Leader P1 decrypts M = β[j] − sk1α1[j] for
j = 1, . . . ,m.

B. Correctness

Let us denote the composition of permutations as ◦, and
the final permutation as π = π1 ◦ · · · ◦ πn. To prevent
complicated notation, we say that when these permutation
functions are supplied with an index, that index is mapped to
the permuted index. Then, the protocol is considered correct
when it holds that M [π(j)] = M1[j] + · · · + Mn[j] for all

j = 1, . . . ,m. Since the permutation functions shuffle both α
and β according to the same permutation, their elements are
not shuffled relative to each other. For this reason we provide
a correctness proof where all permutation functions are the
identity function, to ease notation.

Theorem 4. When all permutation functions are the identity,
it holds that M [j] =

∑n
i=1Mi[j] for every j = 1, . . . ,m.

Proof. After step 4, we can express ai[j] as:

αi[j] = yi[j]g +
n∑

i′=i+1

y′i′,i[j]g (7)

Combining steps 3 and 4, and substituting β[j] =
∑n
i=1 βi[j]:

M [j] =
n∑
i=1

βi[j]−
n∑
i=1

sk iαi[j] +
n∑
i=1

i−1∑
i′=1

y′i,i′ [j]pk i′ (8)

=
n∑
i=1

Mi[j] +
n∑
i=1

yi[j]pk i −
n∑
i=1

yi[j]pk i−

n∑
i=1

n∑
i′=i+1

y′i′,i[j]pk i +
n∑
i=1

i−1∑
i′=1

y′i,i′ [j]pk i′ (9)

=

n∑
i=1

Mi[j]−
n∑
i=1

n∑
i′=i+1

y′i′,i[j]pk i+

n∑
i=1

n∑
i′=i+1

y′i′,i[j]pk i (10)

=
n∑
i=1

Mi[j]

C. Security
To underline the security of the aggregate-shuffle-decrypt

protocol, we prove that even with n − 1 colluding parties,
at least for one honest party its outputs are computationally
indistinguishable from randomness. As a result, none of the
other parties can learn how the inputs were shuffled. For an
argument about the confidentiality of the ciphertexts we refer
the reader to the paper by ElGamal [13]. In our proof, we
denote the inputs α and β for an honest party as αin and βin,
and its outputs as αout and βout.

Theorem 5. For an honest and non-colluding party Pi, for
each index j = 1, . . . ,m it holds that αout[j]

c≡ r and βout[j]
c≡

r′ where r, r′ ∈R Zq .

Proof. We express the outputs of party Pi in terms of its
inputs:

αout[j]← αin[j] + y′i,i′ [j]g (11)

βout[j]← βin[j]− sk iαi[j] + . . . (12)

Since y′i,i′ [j] ∈R Zq and is only known to this party, y′i,i′ [j]g
is statistically indistinguishable from randomness. Thereby,
αout[j]

c≡ r. Moreover, since sk i ∈ Zq and is only known
to this party, for any other party sk iαi is computationally
indistinguishable from randomness by the DDH assumption.
So, βout[j]

c≡ r′.
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D. Efficiency

We denote the number of ciphertexts by m. In the first
step, each party performs m ElGamal encryptions, which takes
O(mκ) operations. Then, in step 2, the leader sums mn curve
points, which takes mnκ operations. In step 3, each party
performs a permutation, which we deem to be negligible in
terms of its runtime. Additionally, assistant Pi randomizes
m(i−1) curve points, which takes at most O(mnκ), and par-
tially decrypts, which also takes at most O(mnκ) operations.
The same goes for the leader in step 4. So, each party performs
O(mnκ) operations asymptotically. Additionally, each party
sends at most O(mnλ) bits during steps 2 & 3.

V. MPSU-CA PROTOCOL

As explained in Section III-A, to compute the union of mul-
tiple Bloom filters, we combine them using an OR operation:
we let parties encode a 0 as the identity and 1 as randomness,
so that when aggregated, the result is only 0 when all inputs
were 0. The identity is O, denoting the point at infinity of an
elliptic curve group. Here, leader P1 is the querying customer.
If the customer has a local set of indicators, they can join the
protocol, otherwise they can submit the empty set.

MPSU-CA protocol
1) All parties Pi for i = 1, . . . , n encode their set

Xi as Bloom filter X̂i.
2) All parties Pi for i = 1, . . . , n take part in

the aggregate-shuffle-decrypt protocol with the
bins of X̂i, where:

Mi[j] =

{
O ∈ GT if X̂i[j] = 0

r ∈R GT if X̂i[j] = 1

3) The leader P1 extracts M , counts the points for
which it holds that M [j] 6= O as F , and returns
z ←CARDINALITY(F ).

As an optimization, rather than encrypting a randomly
generated element, a party chooses two random elements
for alpha and beta. Also note that an intersection-cardinality
protocol follows similarly by inverting the bins of the Bloom
filter and checking for M [j] = O.

A. Selectivity

The probability distribution of the cardinality estimates for
a Bloom filter becomes wide when the number of filled
bins is large, as discussed in Section III-A. To prevent poor
estimates for highly-filled Bloom filters, one could increase
the size of the Bloom filter m abundantly, but this would
increase computation and communication. As an alternative,
we introduce ‘selectivity’, inspired by sketches. Instead of
encoding every element from a party’s set in the Bloom
filter, we only insert an element with a specific probability
p, called the selectivity ratio. This is not a coin toss, but it is
deterministically decided by a public hash function. A simple

way to achieve p = 50% is to only insert elements of which
the hash starts with 0. In the case where p = 100%, it functions
like a regular Bloom filter. We accommodate for selectivity in
the final estimate. Again, we use E [N ] as our estimate, which
can be derived in the same way as in Theorem 3:

Lemma 6. The expected number of elements encoded by a
Bloom filter with F filled bins and a selectivity ratio p is
given by:

E [N ] ≈ −pm
h

ln

(
1− F

m

)
B. Efficiency

The computation of this protocol is based on the aggregate-
shuffle-decrypt protocol, since we deem the operations per-
formed in step 1 and 3 to be negligible. Each party computes
O(mnκ) operations, and sends O(mnλ) bits. So, the total
complexities are O(mn2κ) and O(mn2λ), respectively.

C. Use in practice

Since the shuffle-decrypt protocol requires a party to create
ciphertexts using their own public key, a company has to
perform encryption only once for one set of IoCs and one
set of Bloom filter parameters, after which the customer can
initiate comparisons between any providers. If they agree with
the query, they take part in the shuffle-decrypt protocol, which
only requires one action. They can also disagree, for example
because they do not agree who is querying, the number of
involved parties is too low, or the Bloom filter is too large,
which would require more compute. We assume that providers
otherwise act faithfully, motivated by a financial incentive.

VI. RESULTS

We evaluate the performance of an implementation2 of
our approximate MPSU-CA protocol in Rust on sets of IP
addresses in the context of buying cyber threat intelligence.
We stress that the protocol is not restricted to IP addresses.

A. Setup

To evaluate the performance of our MPSU-CA protocol,
we perform 20 repetitions of experiments using different
parameters. We measure the time it takes to encrypt, the time it
takes to perform the shuffle-decrypt protocol and we keep track
of the estimated cardinalities. We executed all experiments on
a 64-bit Unix machine with an Intel i7-1065G7 processor with
8 cores at 1.30GHz. We run all parties sequentially on a single
core. This is not detrimental to performance, though, since
the shuffle-decrypt must be performed sequentially anyways.
It does affect the encryption stage. We analyze two scenarios:
• Scenario A: Three parties with 10, 000 elements each,

whose union contains 20, 000 elements, see Table I.
• Scenario B: Five parties with 20, 000 elements each,

whose union contains 50, 000 elements, see Table II.
For each of the scenarios we evaluate the performance using

a Bloom filter with m = 10, 000 bins, and a higher accuracy

2The code is available at: https://github.com/jellevos/mpsu-ca
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TABLE I
RESULTS FOR SCENARIO A AVERAGED OVER 20 EXPERIMENTS

Lower accuracy Higher accuracy
p = 1 p = 1

2
p = 1

4
p = 1 p = 1

2
p = 1

4

Bins m 10,000 5,000 2,500 50,000 25,000 12,500
Encryption [s] 1.4 0.7 0.4 12.2 6.0 3.0
Shuffle-decrypt [s] 4.4 2.3 1.1 21.8 11.0 5.4
Estimate mean 19,986 19,925 20,069 19,995 20,011 20,061
Standard deviation ±251 ±386 ±418 ±62 ±136 ±285

TABLE II
RESULTS FOR SCENARIO B AVERAGED OVER 20 EXPERIMENTS

Lower accuracy Higher accuracy
p = 1 p = 1

2
p = 1

4
p = 1 p = 1

2
p = 1

4

Bins m 10,000 5,000 2,500 50,000 25,000 12,500
Encryption [s] 1.5 0.8 0.4 17.5 8.7 4.4
Share-decrypt [s] 12.0 6.1 3.0 60.0 30.4 15.0
Estimate mean 49,539 49,510 50,771 50,066 50,081 50,065
Standard deviation ±1,284 ±1,364 ±2,381 ±165 ±307 ±490

Bloom filter with m = 50, 000 bins. For each combination of
parameters we also vary the selectivity ratio p between 100%,
50% and 25%, and adjust the number of bins accordingly. We
set the number of hash functions h = 1 to make the probability
distributions for higher cardinalities as narrow as possible. In
all experiments, the setup and aggregation stages took at most
100 milliseconds together, so we omit them from the tables.

B. Scenario A

See Table I. In the higher accuracy case with a larger Bloom
filter, run time increases but the standard deviation decreases.
Also, run time of the shuffle-decrypt stage scales roughly
linearly with the number of bins m. As a sign of validation,
the estimated mean is indeed centered around 20,000.

C. Scenario B

See Table II. While run time for p = 100% in the higher
accuracy case takes more than a minute, we see that the
selectivity ratio p = 25% with m = 12,500 brings it down
to less than 20 seconds, while keeping a standard deviation
of only 490, which is significantly better than the case where
m = 10,000 and p = 100%: by being more selective, less bins
are filled so the probability distribution stays more narrow.

VII. CONCLUSION

We propose an MPSU-CA protocol that lets organizations
compare the lists of indicators sold by CTI providers to find
a combination of providers that offer a set with relevant
indicators, without too much overlap. As such, they can
better protect themselves against cyber criminals. Our protocol
takes only two stages, or just one stage if they publish their
encrypted set in advance, as compared to previous work which
requires at least three. Even for a total of 100,000 elements, an
organization gets an accurate estimate of the unique number
of indicators within 20 seconds.
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