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Abstract

Design decisions which are made in the preliminary ship design phase have a significant influence on the
performance and total cost of a ship. These design decisions are mostly made with very little knowledge of
the ship design problem. In fact, it is the personal experience of the naval architect which plays a significant
role in this phase of the design process. In the world of rapidly increasing possibilities with artificial
intelligence it is hard to imagine that these decisive design choices are based on a naval architect’s personal
experience. Especially when one takes into account the large capital and operational costs of ships.

The development of C-Job’s Maritime Intelligence Tool (MIT) in 2019 has shown that reference data
can better be exploited in this phase of the ship design process. As a result, theoretical reductions of
the resistance and weight of the vessel go up to 19% and 10% respectively, using this tool. When the
availability of reference data is limited, the trustworthiness of this tool cannot be guaranteed. This is
especially unfavourable at the boundaries of a design space, as it is expected that novel and innovative
ship design can be found here. Thus, in order to support naval architects in all regions of a design space,
a solution must be found.

First, research is done into design approaches in the preliminary ship design phase. In this research,
naval architects of C-Job with different backgrounds were interviewed. During these interviews it became
clear that time, budget and customer ambitions are important motives in this phase. As a result, a lot of
ship design decisions in the preliminary ship design phase are based on the naval architect’s personal expe-
rience. The more the design is developed, the more insight is gained into the complexity of that ship design.
As a result, more design decisions could be based on this gained insight, instead of the personal experience.

During these interviews, challenges were identified and discussed that the naval architects face, before
the Maritime Intelligence tool can be used in practice. Based on these challenges a list of tool requirements
was determined and potential solutions were sought. Three solutions were found to be promising for
this thesis. These were serial hybrid modelling, parallel hybrid modelling and constrained black box
identification. The parallel hybrid model is chosen, primarily because of the independent operations of
the data-driven sub-model (Black Box model) and the knowledge-driven sub-model (White Box model)
in a parallel hybrid model.

There are two requirements for parallel hybrid modelling. The first requirement is a method to
estimate a ship design parameter. The second requirement is the availability of the true values of the same
design parameter of reference vessels. These were both only available for the design parameter lightship
weight. In the proposed parallel hybrid model, the white box model is used to estimate the lightship
weight. Thereafter the black box model is trained to predict the difference between this estimation and
the actual lightship weight, based on reference data.

The proposed parallel hybrid model is subjected to multiple experiments to assess the performance.
The R2-score and 10-fold cross validation are used to determine the performance. First the performance
of the white box, black box and parallel hybrid model is discussed. Thereafter, the relation between the
availability of reference data and the predicting capability is researched. The final experiment was to
research the performance of the three different models in interpolation and extrapolation gaps.

Based on these experiments it was concluded that for a training data set of 50 reference vessels or
smaller, the parallel hybrid model was the best model. For larger training data sets, the black box and par-
allel hybrid model performed similarly. For interpolation and extrapolation problems the white box model
should be chosen. Additionally, a method is presented to update the used white box model. As a result, it is
expected that high performance scores can also be obtained without the use of artificial intelligence tools.
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1
Introduction

In this master thesis a solution is sought to improve the preliminary ship design phase by expanding the
capabilities of designing ships based on data of reference vessels. This research is conducted at C-Job Naval
Architects. In this introduction first an overview is given of C-Job’s projects. Secondly, the importance of
the preliminary ship design phase will be explained as well as the potential improvements of this design
phase using a new developed tool. Thereafter a problem statement will follow which has led to this research.
Finally, the research questions will be presented and the lay-out of this thesis will be given.

1.1. About C-Job Naval Architects
C-Job Naval Architects (C-Job) is the largest independent ship design and engineering company in the
Netherlands. The company has been involved in a broad range of sectors like dredging, heavy lift, offshore
(wind), ferries and superyachts. In both new-build and conversions or modifications C-Job has played
a leading or supportive role in the design process. This could be for the entire design process but also
for a part of the process. Some recent projects are shown in Figures 1.1a and 1.1b. C-Job was responsible
for the full design scope of the Atlantic Dawn 4400 DWT heavy lift vessel for CIG Shipbuilding. For the
Texelstroom project, C-Job was responsible for the initial, concept and basic design. Initial and concept
design can be considered as the preliminary design and basic design is also referred to as contract de-
sign. Multiple definitions are used in literature to describe the different phases of the design process. In
Section 1.2, three design phases are defined that will be used in this thesis.

(a) Atlantic Dawn (b) Texelstroom

Figure 1.1: Some recent projects of C-Job Naval Architects (from C-Job (2020))
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10 1. Introduction

1.2. Ship design process
The ship design process consists of three phases; the Preliminary Design Phase, Contract Design Phase
and Detailed Design Phase. Each phase has a specific goal.

The goal of the Preliminary Design Phase is to find a balance between customer ambition (needs),
available budget and possible design solutions [14]. Based on the requirements from the client, a concept
exploration is performed. This is to explore possible design solutions and to get an idea of how design
solutions relate to design requirements from the client. This is done to be able to select the most desirable
design solution for the client. This selection is mainly based on technical and economical aspects of the
design, but also company policy can play a large role [13].

This design solution is then worked out in more detail the Contract Design Phase. This means
sufficient detail to describe a contract and determine a contract price [14]. Also the contracts of materials
and equipment are discussed in this phase. This is done after a preliminary lay-out of systems has been
designed. As the shipyard has its own suppliers of materials and systems, this more detailed design phase is
mostly undertaken by, or in close co-operation with, the shipyard who assesses producibility and cost [14].

In the final phase, the Detailed Design Phase, the contract design is translated into a design definition
that is suitable for production [14]. That means that production drawings have to be made for every detail.
Therefore this phase claims a large part of the entire design process.

The preliminary ship design process can be described by the design spiral of Evans (1959) [17]. This is
shown in Figure 1.2a. The design spiral starts with the general arrangement (G.A.) of the vessels as input
for the design spiral, i.e. the main particulars of the vessel have already been chosen. This spiral addresses
multiple aspects of the ship design during each iteration. After some iterations a final design solution can
be determined by the naval architect.

A slightly different design spiral is presented by Erikstad and Levander (2012) [15] in Figure 1.2b.
This design spiral is a more comprehensive presentation of the preliminary ship design process. In this
spiral, determining the Mission and Function of the vessel is part of the design process, after which the
general arrangement can be determined. This indicates that multiple general arrangements or design
solutions can satisfy the requirements from the customer. As initial sizing is the most crucial phase in
determining the overall configuration [3], a thorough design space exploration should be done in order
to find a configuration which bests fulfils the (Mission & Function) requirements. The determination
of suitable main dimensions, block coefficient and the arrangement concept is considered as the most
important step in this phase [40]. van Bruinessen et al. (2013) [37] mention that with Evans’ design spiral,
the design choices which have the most impact are made before the design spiral commences. Therefore,
a naval architect should use the design spiral provided by Erikstad and Levander where it is more likely
that multiple different design configurations will be explored.

(a) Evans (1959) (b) Erikstad & Levander (2012)

Figure 1.2: General ship design spirals

Generally, based on the requirements of the customer a few design solutions are explored by the naval
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architect. The customer can then choose a concept which will go to the next phase, the contract phase.
It is also possible that only one design solution is explored, when the budget for a project is limited.
This will be continued in Section 2.2. This means that the project success is very dependent on the
experience of the naval architect. Andrews (1998) [3] describes that the manner in which an individ-
ual selects, creates or produces his initial ideas of the overall design can have a significant bearing
on the end product. A designer’s personal experience can thus have a significant influence on the
end product and its success. The project success is defined by the performance and the total cost of
the vessel. This is visualised by Mavris and Delaurentis (2000) in Figure 1.3. As can be seen, most
of the performance and committed cost of the design are locked-in in the preliminary design phase.
This is all done with little design problem knowledge. Therefore, it is essential to have good design
methods in the preliminary ship design phase that support the naval architect in making the right de-
cisions.

Figure 1.3: A generic design timeline (from [11])

1.3. Maritime Intelligence Tool
To support its naval architects, C-Job has an in-house developed marine reference tool called the Maritime
Intelligence Tool (MIT). This tool consists of a database of around 170.000 ships and approximately 130
data fields. Its purpose is to analyse and compare the ship data from the database, with the ship data
of a novel ship design. Using this tool, an analysis of existing ship designs can be done quickly. This
provides insight in the initial sizing of the new vessel. Secondly, the results of calculations and simulations
of C-Job’s naval architects can be benchmarked with data from the database. A recent addition to this tool
is a machine learning algorithm, which is able to predict ship parameters for a novel ship design based
on the data of existing vessels.

The first step of this tool is reference vessel selection. This is done by the naval architect. Here, a
type of ship or multiple types of ship can be selected. Corresponding data of these vessels is then loaded
into a design space. This data consists of main particulars, engine power, lightship weight, deadweight,
but also more specific parameters such as hopper volume. Secondly, based on data from these ships,
polynomial regression models can be determined. These regression models will be used to estimate
various parameters of a design solution.

Thereafter, a genetic evolutionary algorithm is used to find advantageous parameters to optimise
design solutions. The proposed solutions of this multi-objective optimisation problem are then plotted on
a Pareto-front. An example of this can be seen in Figure 1.4. In this figure the green dots represent 508 exist-
ing passenger vessels. First, a machine learning model is trained based on this data. After that, two objec-
tives were determined for a new passenger vessel. The first is to minimise the Maximum Continuous Rating
(MCR) and the second objective is to maximise the deadweight. The minimal MCR was chosen because
there is no data available about the resistance of a vessel. But as lower resistance means a lower required
MCR, it is sufficient to take MCR instead of resistance in this (low-detail) stage of the design process. A
lower MCR means lower cost, because of lower fuel usage and lower engine purchasing cost. The other ob-
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jective, to maximise the deadweight, or the payload, is chosen because a higher cargo capacity means more
earnings per transport. Therefore, both objectives are important in the overall performance of the vessel. It
can be seen that, considering these two objectives, the proposed solutions out-perform the existing vessels.

Figure 1.4: Existing vessels versus design solution proposed by the MIT

There are two important advantages of such a tool. It is less time-consuming compared to a naval
architect doing the calculations. And secondly, this tool is able to explore large amounts of design solutions.
Therefore it is more likely that a global optimal design solution will be found, instead of a local optimal
design solution [30, 31].

The MIT provides an optimised design solution for a certain design problem by learning from previous
designs. This can be done in a few minutes. The optimised design solution can be used as a starting point
for the design process. In Figure 1.5 this starting point is described as the initial design. The difference
with the traditional design method is significant. Currently, a starting point or initial design is based on the
experience of the naval architect, or based on (a) reference vessel(s). This will be discussed in Section 2.2.
Instead, the initial design can be based on data, calculations and optimisation techniques by using the MIT.

Figure 1.5: Design Phases at C-Job
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1.4. Problem Statement
The Maritime Intelligence Tool from C-Job is able to predict advantageous ship parameters of a novel ship
design based on the data of existing ships. As already mentioned, the tool uses polynomial regression
models to determine the relations between ship parameters. These models are quite accurate when there
is enough data in the design space. Unfortunately, for regions of the design space where data is limited,
the regression models give incorrect solutions. In order to find novel design solutions, it is important
to explore many regions of the design space, even though there are less existing ships in these regions.
Therefore possible errors or gaps in the data should be sufficiently evaluated and dealt with.

A gap in the data can exist because of two reasons. The first reason is because of practical issues. For
example, inland waterway ships have to deal with limitations caused by bridges and locks. Therefore one
will find a lot of vessels concentrating in regions with same width, length or depth. In Figure 1.6 this can
be seen. In this figure the Draught and the Breadth (Moulded) can be seen of crude oil tankers. The ships
in the upper right corner of this graph are limited by the Panamax dimensions. In this graph the Panamax
maximum width of 32.3 can be seen. This is a popular region of the design space. In between these
popular regions one can find a gap in the design space, with the result that the polynomial regression
models are inaccurate in this region.

Figure 1.6: Gaps in data

The second reason is that a region is located at the boundaries of a design space. These areas can be
considered as more challenging design solutions. Novel ships with a specific purpose are often found on
the boundaries of the physical possibilities and thereby on the boundaries of the available data (i.e. the
empty regions in the design space). In order to explore novel design solutions it is important that the tool
also produces accurate results at the boundaries of a design space.

1.5. Research goal and focus
The goal for this research is to develop a method that deals with gaps in the design space and helps
make predictions more accurate in those regions. With this method the MIT should be much more
trustworthy and usable for the naval architect. Also, the integrity of the proposed design solution towards
the boundaries of the design space can thus be ensured and exploited.

It is expected that a method that supports the current Maritime Intelligence Tool with additional data
or known formulas will improve the results of the MIT. It is essential that the feasibility of these results or
design solutions is ensured. Thereafter, the naval architect should be provided with sufficient knowledge
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of the presented design solutions to make well-advised design decisions.
To support this research goal, the following main research question is determined.

“How can a ship designer better explore gaps in a design space, generated using data of reference
vessels, to make predictions of the main parameters of a novel ship design solution more accurate?

The following sub-questions will support the main research question and will also form the basis for the
plan of approach.

1. How does a naval architect make well-advised design decisions in an early stage of C-Job’s current
design process?

2. How can this be done in C-Job’s future reference based design approach?

3. What are the important gaps in the design space?

4. What are leading principles in designing a model that deals with these gaps?

5. How can these principles be converted into a model, that improves the quality of the design so-
lutions produced by C-Job’s current Maritime Intelligence Tool and using its database as a design
space?

6. How can one determine if a design solution is feasible and optimal?

1.6. Thesis lay-out
This section describes how this thesis is structured. In Chapter 2 the design approaches are discussed.
These are approaches that have been described in literature or approaches that are currently used in
practice. Also C-Job’s vision for its future design approach will be discussed together with the challenges
that lie ahead. In Chapter 3 a list of requirements will be presented for the new tool. Thereafter several
potential solutions will be explained and evaluated based on the requirements. One solution will be
chosen and further developed into a model. How this model works exactly will be described in Chapter 4.
This chapter will also describe some performance metrics that are used to evaluate the model. Chapter 5
describes the experiments that have been done and the results of these experiments. These results will be
discussed quantitatively and qualitatively. Lastly, in Chapter 6 the main research question will be answered
and a conclusion of this research will be given. Also, the contribution of this research, the limitations of
the research and recommendations for future research are given in this chapter.
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This chapter aims to answer the first research question. First, preliminary ship design methodologies from
literature will be described. From this, information will be derived which is considered important for a
naval architect to make well-advised decisions in an early stage of the ship design process. Section 2.2 then
discusses how preliminary ship design is done at C-Job. This is done for the current design approach, but also
for the future approach. For the future approach there are still some challenges to overcome. In Section 2.4,
additional literature will be discussed that could be useful in this research. After this, a conclusion will be
drawn about the main challenges for this research.

2.1. Preliminary ship design approach in literature
The goal of the preliminary design phase is to find a balance between customer ambition (needs), available
budget and possible design solutions [14]. After the requirements of the client are set, naval architects start
developing technically feasible design solutions based on the operating environment and the requirements.
In Molland (2008) [28] a very brief description of the design process of a ship is given (See Figure 2.1).

To determine whether or not a design can be considered as technically feasible, Molland (2008)
describes a preliminary design path This can be seen in Figure 2.2. As can be seen, in a ship design process,
several aspects of a ship design are covered sequentially. At several design aspects a feedback arrow can be
seen. Here it is checked if the design meets the requirements or that the design needs to be adapted. Once
a design meets the requirements for all these design aspects, a design can be considered as technically
feasible. Other methods like Andrews (1998) [3], Molland (2008) [28] and Papanikolaou (2019) [29], are
about the same.

According to Molland (2008), a design is considered technically feasible if the design meets the fol-
lowing principle requirements [28]:

1. Adequate in size and arrangement for intended service - Implies ability to carry a specific ed
volume of cargo and have adequate space for machinery, fuel and crew etc.

2. Floats at correct draught - Implies sum of weights of lightship and deadweight equals force due
to buoyancy (function of ship form)

3. Floats upright - Implies adequate stability
4. Achieves correct speed - Implies satisfactory estimates of resistance and propulsive power (plus

margins) and installation of suitable engine(s).
5. Is structurally safe/ sound - Implies structural design with the ability to withstand forces in the

marine environment; typically built to the requirements of a classification society
6. Meets requirements for manoeuvring, coursekeeping and seakeeping - Implies choice of suit-

able hull form

15



16 2. Design Approach

7. Meets international standards of safety and reliability - Meets requirements of IMO

Figure 2.1: Overall flow path ship design process
(from [28])

Figure 2.2: Preliminary Design Path
(from [28]

Empirical versus parametric methods
With an approach as described in Figure 2.2 the main dimensions and the basic form characteristics
can be determined. This can be done with two methods, the relational (or empirical) method and the
parametric method [29].

In the empirical method estimations of the main dimensions is based on data of similar built vessels.
Papanikolaou (2019) [29] describes that a variation of this method is the use of empirical design formulas
deduced through regression fitting. Interpolation between comparative data is in general seamless, whilst
extrapolation may prove problematic; unless for small exceedance of boundary limits it is possible.

Watson (1998) [40], Schneekluth and Bertram (1998) [18], Andrews (1998) [3], Molland (2008) [28] and
Papanikolaou (2019) [29] all describe such empirical design equations. With these equations the naval
architect can rapidly estimate certain values in the preliminary ship design phase. The variables in the
equations usually have a physical justification, and the relationships will be ‘ calibrated ’ for different
ship types. An interesting remark is made by Watson (1998). He mentions that some relations have an
economical justification (e.g. the ratio L/B), instead of a physical justification (e.g. the ratio’s B/D and T/D).

As empirical relations are based on knowledge which is derived from previous work, it is important
to handle these relations carefully. It is the duty of a naval architect to update such empirical relationships
whenever possible [28]. Therefore, the date of publishing should be taken into account when using these
equations.
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When comparative data from similar ships is lacking, a study needs to be conducted from scratch
to find the best main dimensions and form characteristics. In this case the naval architect builds a
parametric model in which different aspects of the design have been taken into account. In such a
model the ship’s main design parameters are rationally related to the ship’s performance (physical and
economic characteristics). This multi-objective model is then optimised to determine the desirable main
dimensions and form characteristics. [29]

Deadweight versus capacity determined designs
A distinction is made in literature between deadweight determined designs and capacity / space deter-
mined designs. A deadweight design approach is determined by the weight of the cargo. This is typical
for oil tankers, bulk ore carriers and most cargo vessels. For a capacity design approach, the dimensions
of the vessels are primarily determined by the volume of the cargo. This is the case for container vessels,
ferries and most naval vessels. [3, 28]

In the deadweight design approach in preliminary ship design the deadweight, range and speed are
considered as the main requirements. Capacity, stability, freeboard and others are treated as ’checking’
or constraint requirements [28]. In the capacity design approach the capacity and the deadweight are
swapped. Molland (2008) [28] gives design strategies for all of these requirements in his book. This includes
empirical formulas and ship type specific values, such as steel mass divided by deadweight.

2.2. Preliminary ship design approach at C-Job
This section addresses the preliminary ship design phase in practice at C-Job. First the current design
methods that are used by naval architects (NA) will be discussed in Section 2.2. These methods are
derived from interviews. These 30 minutes to 1 hour interviews were held via a video-call. The content
of this section has been verified by the naval architects. This section aims to answer research question
: "How does a naval architect make well-advised design decisions in an early stage of C-Job’s current design
process?". Secondly, the future methods will be discussed in Section 2.3. Due to recent research it is clear
that current preliminary ship design methodologies can be partly automated and improved.

The interviews were carried out with the following naval architects from C-Job.

Name Function Years of experience Date of communication Reference in text

de Vries, N. Lead NA 6 2020, June 4 1

van den Ing, A. Lead NA 15 2020, June 17 2

Houwaart, K. Lead NA 6 2020, June 19 3

Frontera, R. NA 5 2020, July 23 4

Table 2.1: Background information interviewees

Determine starting point
To get insight in the main dimensions of the new vessels multiple methods are used at C-Job, namely:

• Perform reference study and determine trend lines
• Start with requirements and perform own calculations
• Study literature and select relevant equations
• Adapt a convenient reference vessel

In the first method, a reference study is conducted to determine trend lines and variances 1,3. This
reference study is done in RefWeb, the database of C-Job. Using these trend lines the first parameters can
be estimated. Depending on the experience of the naval architect and the expected uncertainty of some
parameters, an estimation of the parameters could be done conservatively, optimistically or somewhere
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in between.
An other method is to start with one or more of the requirements from the customer 2,3. For example,

the payload that the vessel should be able to transport and the stability that needs to be guaranteed. With
basic calculations, that are mainly based on rules of thump and the experience of the naval architect, the
main dimensions can be determined as well.

A third method is to study literature 4. An advantage of studying literature instead of reference vessels
to design a new vessel, is that the new design is not limited by what has already been done before. In
literature a lot of empirical formulas are given that can be used in preliminary ship design. These equations
can be based on a certain ship type, but they can also be based on a data-set. This last feature means
that one can customise a certain parameter based on a set of selected reference vessels. These empirical
formulas can already give the naval architect an accurate idea of the magnitude of these parameters in
the early stage of the design process.

A final method, which can be considered as a low-budget method, was to take one reference vessel
as a starting point and to adapt this design until all requirements for the novel design are met 4.

A conclusion can be drawn about these different methods for determining the main dimensions of the
design. Performing a thorough concept exploration (i.e. exploring the entire design space) is too expensive
in terms of time, but is sometimes required. This results in the fact that most of the time one, the most
promising, design solution is worked out in more detail. The method that is used to do this highly depends
on the background and skills of the naval architect. This results in four main approaches which are
used in practice; reference study, own calculations, empirical formulas and adaptation of a reference
vessel.

Design strategy
Thereafter the naval architect adapts the initial design in an iterative process until all the requirements
from the customer are met. As explained in Section 1.2, this iterative process can be described by the
design spirals of Evans (1959) [17] and Erikstad and Levander (2012) [15]. In practice, this iterative process
depends on the requirements and the type of vessel 2,3. For example the hopper volume is important for a
dredging company. Therefore, in the design process of a dredger the first requirement to meet is the hopper
volume 3. For a passenger vessel an important requirement is the seakeeping of the vessel and therefore
the hydrodynamics should be evaluated in an early stage of the design process 4. Also the different load-
cases that are applied to a vessel should be taken into account 2. The load-cases can differ significantly
for a heavy lift vessel with a crane for example. This influences the stability of the vessel. A last example
of this is given by Watson (1998) [40]; the cargo handling of a Ro-Ro ship must be considered at an early
stage in the design process, whereas most aspects of the cargo handling of a tanker can be dealt with quite
late in the design process. Thus, it is up to the naval architect to understand which design requirements
are critical for a ship design and to determine which design strategy best fits this design problem.

This strategy depends on the experience and skills of the naval architect. Andrews (1998) [3] describes
this as the nature of the designer’s personal ’stamp’ which is relevant to the overall design process. This
differs amongst the naval architects at C-Job. Some naval architects choose to build a model right away.
This is done in NAPA 3 or DELFTShip 4 for example. NAPA can be used for hull form design and stability
analysis, but also structural design. DELFTShip focuses more on hull modelling and stability analysis.
Other naval architects did their calculations in EXCEL from which a model can be derived.

Thus, the design method that is used in this iterative design process depends on the type of ship, the
requirements from the customer and the experience and skills of the naval architect. That means that
design methods can differ significantly per project.
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Determine final design
At some point in the iterative design process the naval architect determines that a final design has been
reached. During the interviews it was clear that once all the requirements from the customer are met,
a final design is reached 2,3,4. A design could be further optimised, if the clients budget would allow it
3,4. Also the evaluation of a design solution is done in this way. If the requirements are met, and the
calculations are correct, then the design is considered as a feasible design 3. Based on insight that is
acquired during the project, a naval architect can determine that a design is both feasible and desirable
1,2,3. This is acquired by evaluating the requirements from the customer2,3, performing own calculations
1,3 and from iteratively developing the design 3. From these activities a naval architect gets a feeling of
how requirements and possible design solutions are interrelated.

Also the assessment of a design solution was based on the experience of the naval architect. All naval
architects wanted insight into the design problem by looking at the calculations. Different aspects of
the design were evaluated, because of personal background and interest. These different aspects were
power generation and distribution 1, stability2 and seakeeping 4. For example, the installed power can be
estimated from a reference study and trend lines. To determine if such an estimation is reasonable, one
should look at the power demand from the main components. If the distribution between propulsion,
systems and margins is reasonable, then a naval architect can determine that a design is feasible 1. The
same goes for stability, which has already been explained. The naval architect can only determine whether
the stability is sufficient,when insight has been gained about the load-cases that are taken into account 2.

A conclusion can be drawn about assessing design solutions and selecting a final design solution.
For both assessing the feasibility and selecting a design solution applies, this is done on the basis of
insight which is gained during the design process. When a design is feasible and all requirements from
the customer have been met, then a design is considered as the final design solution.

Conclusion
After conducting the interviews with naval architects from C-Job, it was clear that the design process is
highly dependent on the experience of the naval architect. This determines how one chooses a starting
point for the design process and also what the design strategy will be. A final design is found when all the
requirements from the customer have been met. The feasibility of this design is determined by the naval
architect, which is done on the basis of own calculations and modelling. To reduce time and cost, the
naval architect focuses on the most promising concepts, rather than to fully develop multiple concepts
and to compare the outcome 2. Although understandable, this can be seen as a disadvantage, as it is likely
that innovative or better design solutions are missed using the current design methods.

After Sections 2.1 and 2.2, where preliminary design methods in literature and in practice at C-Job
have been discussed respectively, the first research question can be answered.

Research question 1

How does a
naval architect make well-advised design decisions in an early stage of C-Job’s current design process?

In the preliminary design phase the naval architect needs an understanding of the requirements and their
effect on a design solution. As requirements are often conflicting, it is this understanding which aids the
designer in making appropriate trade-offs. Based on the requirements and the personal experience of
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the naval architect a design strategy is chosen that best fits a certain design project. Four methods have
been described that are used to determine a starting point of the design process:

• Perform reference study and determine trend lines
• Start with requirements and perform own calculations
• Study literature and select relevant equations
• Adapt a convenient reference vessel

These different methods all represent a different level of how wide and thorough the initial search for
a design solution is. As is concluded after some interviews, most of the naval architects at C-Job start their
design process with an already focused initial search, which is directed towards the most promising areas
of a design space. By performing own calculations the naval architects gain insight into the design process
and the design itself. Literature describes a lot of empirical and parametric calculation methods that
can be used in this stage of the design process. Next to gaining insight, based on these calculations and
by comparing the results with reference vessels, the naval architects can determine if a design solution
is feasible or not. In literature some requirements have been described to determine the feasibility of a
design solution. To conclude, every naval architect determines his own design strategy. This will lead to
different design processes and different designs, depending on who is designing. Also the limited time
and budget contribute to this.

2.3. Future design approach at C-Job
As mentioned in Section 2.2, exploring the entire design space is too time-expensive. Therefore only a few
design solutions are explored in the current situation. The current method is based on traditional design
spirals presented by Evans (1959) [17] and Erikstad and Levander (2012) [15]. A naval architect performs
each calculation by hand and after a few iterations a possible design solution has been reached. To find
an optimal design solution it is essential to explore a significant part of the design space. But as there are
many variables in a ship design the current method quickly becomes impossible for a naval architect to
do by hand. C-Job has developed the Accelerated Concept Design method [31] to solve this process more
efficiently.

Accelerated Concept Design
The Accelerated Concept Design (ACD) methodology is represented by the design circle in Figure 2.3. In
this method the design spiral is replaced by a circle with multiple layers. These layers represent a level of ac-
curacy. The more one enters the centre of the circle, the more accurate the calculations will be. On the other
hand, the computational time increases significantly with the accuracy of those calculations. An example
of the meaning of these levels is given for the resistance; Level 1 - Holtrop Mennen estimates, Level 2 -
Potential flow calculations, Level 3 - Viscous flow calculations, Level 4 - Model testing in towing tank.

The ACD circle represents a holistic design methodology that deals with decision variables, constraints
and objectives simultaneously. This methodology is different compared to the traditional design spiral,
where different aspects of the design are addressed sequentially. With the use of automated software
and a multi-objective optimization algorithm it is possible to make decisions about these design aspects
simultaneously. De Winter (2019) [31] mentions that this algorithm considers the entire design space
which makes it more likely that a globally optimal solution will be found. This is clearly an advantage
compared to the current design methods that are described in Section 2.2. Also Parsons (2009) [30]
mentions that such an algorithm has the major advantage that they can have a very high probability
of locating the global optimum and not just one of the local optima if they are present in a particular
problem. The algorithm which is used by De Winter is the Constrained Efficient Global Optimization
(CEGO) algorithm [41]. This algorithm is designed for optimizing multiple objectives at the same time.

De Winter (2019) [31] mentions that using such a holistic multi-objective optimisation method, de-
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Figure 2.3: Accelerated Concept Design Circle [31]

signs can be improved significantly. In his paper an experiment is described where a Trailing Hopper
Suction Dredger (THSD) design is optimised by the ACD framework. In this experiment the generated
design solutions had a Level 2 accuracy. The proposed design solutions are then compared with the
original design. The results are plotted in Figure 2.4. In this plot the green dots represent the optimised
design solutions. One can see that the optimised solutions out-perform the original design in terms of
resistance coefficient and steel weight. The objectives for this optimisation problem were to minimise
both the resistance and the steel weight. The marked designs, which are the original design and the most
interesting optimised design solution, are compared. The proposed solution had a 19% smaller resistance
coefficient and a steel weight that was 14% less compared to the original design. This shows the potential
of the holistic multi-objective optimisation method.

Figure 2.4: Results of optimization experiment by the ACD framework [31]

Maritime Intelligence Tool
The MIT is an elaboration of the ACD methodology. Looking at Figure 2.3 the MIT can be seen as a tool
in the outer layer of the design circle, Level 1. As mentioned, the multi-objective optimisation algorithm
considers the entire design space when starting a new design project. As calculation time rapidly increases
with each level it is not possible to evaluate every design solution with a high level of accuracy. Therefore
it is essential to have accurate estimation methods, belonging to an outer (high speed) level of the design
circle. With accurate methods and high calculation speed it is possible to explore and evaluate a large
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amount of design solutions. This makes it more likely that a globally optimal design solution is found.
In this way, the MIT provides a design solution to the naval architect which has already been optimised
for certain design objectives.

There also some disadvantages of such a tool. The MIT can be considered as a black box model. A
black box model extracts knowledge directly from data, with a few assumptions about the true under-
lying process behaviour [5]. Therefore this is an empirical method. Duarte et al. (2004) describes two
disadvantages of a black box tool. The first is that such a purely empirical method only permits limited
extrapolation beyond the domain of the data from which they were derived. The second is that any
mechanistic knowledge that may be available about the process and its underlying physics are ignored,
thereby potentially resulting in unreasonable results. Duarte et al. propose a method with increased
extrapolation capabilities which takes into account any available (mechanistic) knowledge. This solution
will be discussed in Section 3.2.

Challenges faced by C-Job naval architects
Despite the potential of the MIT, there are some challenges to overcome before the tool can be used
in practice. These challenges are pointed out by naval architects from C-Job during interviews. The
statements made in this paragraph have been verified by the naval architects.

First, the proposed solutions of the tool should comply with the laws of physics, basic principles of
naval architecture and other governing ship design rules and regulations. An example of this is the law of
Archimedes in formula 2.1. Currently, for some design solutions this equation is not satisfied. The reason
is that such formulas or knowledge are not included in the MIT method. In the current MIT method the
displacement of a ship design is not calculated with this formula, but it is predicted. Therefore, a method
should be found that ensures that such equations are satisfied, so that the proposed design solutions
comply with the rules of physics.

5=L·B ·T ·Cb (2.1)

Secondly, the lack of used equations and calculations in the MIT-approach also limits the naval
architect’s ability to asses a design solution and its technical feasibility 1,2,3,4. As mentioned in Section 2.2,
it is essential to have insight in the design process in order to assess a design solution. This means assessing
whether a design solution is technically feasible or not, but also to determine how well requirements from
the customer are met. Currently, the MIT performs a feasibility assessment based on an isolation algorithm.
The idea behind this algorithm is that deviating data points, or anomalies, are more susceptible to isolation
and hence have short path lengths [21]. A ’path length’ can be interpreted as the number of criteria one
has to determine in order to isolate a data point. An example can be seen in Figures 2.5a and 2.5b. Each of
the horizontal and vertical lines in these figures can be seen as a criterion to separate the data. It is clear the
data point x0 is easier to isolate. Based on its short ’path length’ this data point is classified as deviating and
therefore as infeasible. Deviating design solutions are isolated using this algorithm. However, a deviating
design solution can be feasible. An example of such a ship can be seen in Figure 2.6. One can imagine that
because of the large breadth (approx. 70m.) of the Ramform Titan compared to its length (approx. 104
m.), this design deviates from other designs. Thus, such a design is easily isolated, and thereby incorrectly
classified as infeasible, using the isolation algorithm method. Hence, a disadvantage of this method is that
innovative design solutions, which are per definition deviating from other designs, are easily filtered out.

Also some remarks were made about the presentation of the results. The results are currently plotted
on a Pareto-front. The interpretation of such a result should be done carefully 2. For example, the two
objectives ’minimise resistance’ and ’minimise steel weight’ have already been mentioned in this report.
An optimal design solution is not only about minimal resistance and minimal steel weight. A design
solution with minimal steel weight and resistance could be interpreted as the most basic version of all
design solutions 2. That means that the design has no additional features like a crane or extra living space
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(a) Isolating data point xi (b) Isolating data point x0

Figure 2.5: Different path lengths using the isolation algorithm (from [21]

Figure 2.6: Ramform Titan (from gcaptain.com)

for the crew. For some features, this problem could be solved by redefining the optimisation problem.
At the reference selection step, the naval architect can select vessels that have a crane on-board, as the
crane-option is one of the data fields in the database. In this way, the MIT takes into account the extra
space and steel weight that come with the crane-option. For extra living space for the crew on the other
hand, this is more difficult. This is because in order to say something about such features, a 3D model
is often required. One can imagine that building a 3D model of every design solution in the design space
is impossible as computational time would increase significantly.

2.4. Other relevant literature
In this section, other literature that is deemed relevant for this thesis will be discussed. This is literature
regarding mathematical methods that improve the preliminary ship design phase. Mathematical meth-
ods are chosen as these make it possible to explore a significant amount of design solutions within a
reasonable time. Together with the conclusions of Sections 2.1, 2.2 and 2.3, a gap in literature and current
available methods will be pointed out.

Artificial intelligence definitions
In this section a brief introduction will be given on artificial intelligence and its different methods. In
Figure 2.7 these methods can be seen as well as their relation to each other.

All techniques that try to mimic human intelligence are considered as artificial intelligence (AI). This
can be done using logic, if-then rules, decision trees and machine learning (ML) for example. Other
than logic, if-then rules and decision trees, machine learning does not make use of predetermined rules.

https://gcaptain.com/kongsberg-deliver-full-navigation/
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A machine learning model structures data, learns from the data and then applies what it has learnt to
make informed decisions. Using statistical techniques this model is able to improve tasks with experience.
Although a ML model is able to improve itself, it only looks at data in the way it is programmed to do so.
This is a difference with deep learning. In deep learning (DL) an algorithm adapts itself, when exposed to
different patterns in data. As deep learning is based on neural networks, it takes a lot of processing power
to get trained. Secondly a lot of training data is needed to feed a neural network. [20]

Figure 2.7: Artificial Intelligence (from IBM (September 2020))

Determination of main particulars based on reference data
In Claussen et al. (2001) [10] a method is described how the determination of the main particulars can
be eased in the initial ship design stage given a type of ship and a few parameters. Empirical relations
are derived from a database of 87.000 ships, using three different methods. In the first method a simple
regression analysis is carried out to fit functions to statistical data. In the second and third method, the
data is used to learn a Bayesian network and a neural network, respectively, to encode the relations
between the characteristics.

A case study is done for the determination of the main parameters of a container vessel. Based on
data of existing container vessels, relations are derived that relate TEU capacity to a main characteristic.
For the simple regression and the neural network this relation is given in terms of a continuous function
based on the least squares method. For the Bayesian network the relation between parameters is given
in terms of a network topology and corresponding probability tables.

Claussen et al. [10] show that the neural network has the smallest average percentage of error of all
three methods. However, due to the scattered and sparse data in a range, the prediction of parameters
differs for the three methods. In such a range, for example at the boundaries of a data set, the neural and
Bayesian network have the best predicting capabilities.

A disadvantage of a neural network is that it must be trained for each combination of input data
separately [10]. This means that neural networks need a lot of training data. As the MIT has to deal with
regions of the design space, where (training) data is limited, this is undesirable.

A Bayesian network is a probabilistic description of the problem. Such a description can be seen in Fig-
ure 2.8. In this network, the characteristics of a container vessel are predicted based on the cargo capacity
(TEU). In a Bayesian network each variable is discretised and each interval holds an equal amount of ships.
As a result, dense parts of the distribution is finely discretised, whereas sparse regions are represented
by fewer and longer intervals [10]. This means that the accuracy of the Bayesian network is lower in these
regions. To obtain a high accuracy, also for the Bayesian Network, a lot of (training) data is needed.

https://www.ibm.com/blogs/systems/ai-machine-learning-and-deep-learning-whats-the-difference/
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Figure 2.8: Bayesian network for a container vessel (from [10])

Optimisation methods in preliminary ship design
In Zalek (2007) [43] a hull form is optimised for both smooth water powering and sea-keeping perfor-
mance using an advanced evolutionary algorithm. In this research an initial design is provided by the
U.S. Navy’s Advanced Surface Ship Evolution Tool synthesis model (ASSET, 2005). This design is then
optimised for smooth water powering and sea-keeping performance, two conflicting criteria. To maintain
the validity of the parent ship analysis performed by ASSET and to make sure that the final hull would
still meet the mission effectiveness provided by ASSET, a maximum allowable deviation was set for hull
form parameters and variables [30].

First the objectives are transformed into mathematical minimisation criteria. For the power minimi-
sation criterion, formula 2.2 is used for example. The actual meaning of these parameters is irrelevant,
but what is important is the following: this formula is predetermined by the user and the actual values are
to be derived from solving the optimisation problem. This is a clear difference compared to the current
method of the MIT, where such formulas are not predetermined. In the current MIT, for every objective
and constraint a machine learning model is trained based on reference data. This model is significantly
more complex than formula 2.2, as more variables are taken into account.

FPW R(x)=w1
PBEreq(x)

PBEreq(xo)
+w2

PBSreq(x)

PBSreq(xo)
+w3

Vmax(xo)

Vmax(x)
(2.2)

The optimisation problem that was used can be seen in formula 2.3. Five criteria are used, from which
two are based on the two objectives; minimal required power (FPW R) and minimal inoperability (FSK ).
One of the additional criteria was a penalty term to force weight to equal the displacement. In this way,
Archimedes law is always satisfied.

minF (x)=min{FPW R(x),FSK (x),D(x),H(x),G(x)} (2.3)

Solutions are obtained using a multi-criterion evolutionary algorithm. That means that an initial pop-
ulation was randomly generated. The highest ranking design solutions were then added to an archive. Via
mutation and a survival of the fittest method new non-dominated solutions were derived. With the final
non-dominated solutions a Pareto front can be approximated. A global optimal design solution is deter-
mined by finding a design solution nearest to the Utopian design solution. This can be seen in Figure 2.9.

Using this method a global optimal design solution is found within the created design space. This
design space is already a specific region of a wider design space as it is based on the (detailed) design
solution provided by ASSET and taking into account a 15% allowable deviation for certain variables and
parameters. This limitation was imposed to provide assurance that the final hull would still meet the
mission effectiveness provided by ASSET [30].
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Figure 2.9: Pareto front in normalised criterion space (from [43])

Duchateau (2016) [14] describes a method for interactive evolutionary concept exploration in preliminary
ship design phase. The goal of this research is to find better design solutions in the preliminary ship
design phase, by performing an interactive concept exploration, where human and algorithms work
together. Because of this interactivity, the human expert is able to gradually build up knowledge about the
design problem and adjusts or expands the requirements accordingly. A search algorithm or optimisation
algorithm can then refine its search for interesting design solutions.

In this thesis, first a distinction is made between sequential (point-based) exploration and concur-
rent (set-based) exploration. These two methods can be seen in Figure 2.10. Duchateau mentions that
advances in computational power and ship synthesis models have shifted concept exploration methods
from point-based approaches, where only few design solutions can be generated and explored, to more
automated concurrent approaches, where many solutions can be generated and assessed simultaneously.
The proposed progressive method is both sequential and concurrent. Concurrent in the way that design
solutions are being generated simultaneously and sequential because, after one round of exploration,
requirements are adjusted and an algorithm runs a second sound of exploration. This will continue until
the most desirable design solution is found. An example of this is shown in Figure 2.11. As can be seen
a wide area of a design space is covered in the initial global search. Then, in two steps, this search is
narrowed down to a local search. Through human evaluation and feedback, requirements can be adjusted
or added after the initial global search.

The implemented genetic search/optimisation algorithm is the NSGA-II algorithm by Deb et al.
(2002) [1]. This algorithm is used together with constraints and objectives to search for and generate
design solutions [14]. Duchateau mentions that the randomness introduced by the search algorithm’s
genetic operations, ensures sufficient diversity in overall size and arrangement of the vessels. This con-
tributes in generating a large and diverse set of design solutions from which a designer can explore and
pick interesting options. This corresponds to the goal of this thesis.



2.4. Other relevant literature 27

(a) Sequential (point-based) exploration (b) Concurrent (set-based) exploration

Figure 2.10: Two main approaches to concept exploration (from [14])

An advantage of the progressive search method can be related to one the challenges that is mentioned
in Section 2.3. To asses a design solution it is essential to have insight in the design process. A progressive
method makes use of insight which the user or decision maker has gained during the search algorithm’s
progress [14]. Therefore, with every step insight is gained, the search area is narrowed down and new
design solutions are assessed.

A difference with this thesis is that the design space exploration is based on generated data or design
solutions, instead of data of reference vessels. The method presented by Duchateau focuses on gaining
insight into the design problem and deriving "What it is we are looking for", by performing an interac-
tive design space exploration. In this thesis, the exploration phase focuses on learning from previously
designed vessels and generating new designs based on that knowledge. As this should be done as fast
as possible, thereby allowing a large number of design solutions to be explored, the human interaction,
as proposed by Duchateau, is undesirable.

(a) Initial global search (b) Refined global search (c) Local search

Figure 2.11: Graphical representation of a type of progressive search process (from [14])

Incremental versus radical innovative design solutions
In Garcia and Calantone (2002) [32] a distinction is made between incremental and radical innovation.
Based on these terms, two examples are given in van Bruinessen et al. (2013). These examples can be seen
in Figures 2.12a and 2.12b respectively.

The difference between incremental innovation and radical innovation is that incremental innovation
is developed from existing knowledge and creates very little design space with known and familiar bound-
aries. Radical innovation on the other hand starts with a clean sheet of paper. Therefore the duration and
the number of iterations of radical design projects is high [37].

For this thesis, a conclusion can be drawn about the level of innovation of the proposed design
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solutions. As the basis of this thesis is to design novel ships based on data of existing ships, the resulting
design solutions are always a derivation of previous vessels. For radical innovation, a different approach
is required, which is based on the functional requirements of the vessel only [37]. Therefore, in this thesis
only incremental innovative design solutions are sought.

(a) Incremental innovation (b) Radical innovation

Figure 2.12: Different levels of innovation (from [37])

2.5. Conclusion
The current design methods at C-Job are strongly dependent on the experience of the naval architect,
the type of ship, the customer requirements, time and customer budget. To decrease the human effort
in the design process, the Accelerated Concept Design methodology has been developed. In this holistic
design methodology all objectives, constraints and variables are dealt with simultaneously. The first step
in this methodology, should be covered by the MIT, which performs a thorough reference study and makes
predictions about advantageous main characteristics of a novel vessel.

The current method which is used in the MIT, does not meet the required predicting accuracy, es-
pecially in regions of the design space where data is limited. Also the neural and Bayesian method as
described in [10] do not meet this requirement.

A second disadvantage is the difficulty to accept a design solution if it is produced by a black box model,
which is per definition hard for a human to understand. To improve this, a naval architect should be able
to see that a design solution meets certain ship design rules and regulations. If this is the case, a design
can be considered as feasible. Literature describes some feasibility requirements. The method proposed
by Duchateau (2016) [14] solves this problem, but the need for human interaction is a disadvantage.

The naval architect should search for incremental innovative design solutions only, using the MIT,
because the proposed design solutions are always a derivation of previous work. For radical innovative
designs a different approach is required. The second remark is that the results of the MIT should be
handled with care. A naval architect should understand the requirements and the (different) purpose(s)
of the vessel in order to choose which design is desirable.

To conclude, the method which is currently used in the MIT is a fast reference-study method with
significant potential to improve the design process. To use this method in practice the gap between the
data-based MIT method and the traditional knowledge-based method needs to be addressed.
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Method Exploration

This chapter aims to find a method that will potentially solve the problem that is stated in Section 1.4
and deals with the challenges as discussed in Section 2.3. To do this, first a list of requirements is given. In
Section 3.2, several potential methods are discussed. Finally, in Section 3.3, these methods will be compared
to the requirements and one method is selected to be used for the rest of this research.

3.1. Requirements
In order to deal with the challenges that are mentioned in Section 2.3 and to improve the usability of
the MIT, a list of requirements is set up. With the newly added method the MIT should meet these
requirements. The requirements and a short explanation can be found in this section.

Ability to deal with data-sparse and data-abundant regions of a design space - As the tool should be
able to cover the entire design space, it must be able to deal with regions with sufficient data, but
also regions with limited data.

The results of the MIT should comply with the laws of physics and other governing (basic) ship design rules -
The law of Archimedes is an example of a governing equation that should be satisfied. As mentioned
in Section 2.3, this is currently not the case. Also other more empirical equations or basic ship
design rules should be complied with. These equations can be found in the literature, as mentioned
in Section 2.1. This must ensure that the boundary between technically feasible and infeasible
design solutions is clear. In literature this requirement is used more often, but the term ’technically
feasible solution’ is also referred to as ’reasonable solution’ [9] or ’believable solution’ [4].

The new method should provide insight - This requirement is twofold. First, insight in the design
method should be obtained. This is possible when it is clear to the naval architect which cal-
culations are done to come to a solution. Secondly, as mentioned in Section 2.1, the requirements
can differ per type of ship. Based on these requirements, a naval architect should assess a design
solution. If insight is given into how well the primary requirements and constraint requirements
are met, it is easier to accept a design solution.

The new method should be a fast method - As the new method will be located in the outer layer of the
design circle, as presented in Figure 2.3, it should have a high speed. Only with low computational
time it is possible to consider a significant amount of design solutions. The method should provide
the naval architect with the results within a reasonable time. The naval architect should be able
to adjust and re-run the optimisation problem a couple of times a day. Approximately 15 minutes
is considered to be a reasonable duration.
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Ability to deal with feedback - Once the results have been plotted, it could be that the naval architect
wants to adjust several designs and to see what the consequence are. For example, the length can
be increased, to increase the cargo hold volume. As the machine learning model has already been
trained, it is possible to use this model to generate a design with predetermined dimensions. In this
case the naval architect would bypass the optimisation routine, to derive a specific design solution.
The generated results can than be plotted and compared to the initially generated results.

3.2. Potential solutions
In this section possible solutions are discussed. As mentioned in Section 2.3, there are some disadvantages
of a black box tool. Duarte et al. (2004) [5] describe that approaches that combine the mechanistic ("White
Box") models with those of the empirical ("Black Box") techniques, integrating the best of both paradigms,
could be useful. Such approaches are called "Grey Box" modelling. They aim to achieve good extrapolation
properties, some degree of process behaviour rationalisation, ease of model development and focused
phenomenological parameter fitting [5]. Because grey box modelling seems to cover the gap between
the traditional design (White Box) method and the current (Black Box) MIT method, this will be the area
to search for possible solutions in this thesis.

This is supported by Estrada-Flores et al. (2006) [16]. They state that grey box modelling or a semi-
physical neural model may be regarded as a trade-off between a knowledge-based model and a black
box model. They mention a neural model specifically, but this can also be a machine learning model. In
this approach a priori knowledge concerning the process is used and it relies on parameterised functions,
whose parameters are estimated from experimental data [42]. This estimation is done to deal with the
unknown parts of the process [6]. In Estrada-Flores et al. a refrigeration system is modelled. This can be
done in a very complex manner; considering all the variables and factors affecting refrigeration plants.
This might result in a highly accurate model but also high development cost, long computation times
and/or considerable amounts of data required from the user. A simplified model of the refrigeration
system may provide less insight in the process and may be less accurate than the previous complex model.
In the proposed solution a balance is found for the complexity/accuracy trade-off. Hence, this solution
benefits from both models’ advantages. In the proposed solution Fourier’s Law (see formula 3.1) is used
as a first-principle heat transfer equation. This is part of the white box model. The authors state that the
true process is not covered by this formula only. To model lesser-understood relationships in the process,
a black box model is used. In this black box equations are developed from statistical techniques and
experimental data. In this thesis, the experimental data is the data of existing vessels.

q=−k A
dθ

dx
(3.1)

An advantage of this type of modelling is mentioned by Oussar and Dreyfus (2001) [42]. Since a larger
amount of prior knowledge is used in the design of a semi-physical model than in the design of a black-box
model, a smaller amount of experimental data is required to estimate its parameters reliably. This is
interesting for two reasons. The first is that it could possibly make the MIT more accurate and faster, as
some knowledge has already been included before the black box model starts learning the relation between
input data and output. Secondly, in regions of the design space, where less data of existing ships is available,
it could be possible to still produce accurate results, as less data is required with grey box modelling.

Sohlberg and Jacobsen (2008) [6] divide grey box modelling into five main branches. These are con-
strained black box modelling, semi-physical modelling, mechanistic modelling, hybrid modelling and
distributed parameters systems. In literature these terms alternate and there is also not a clear difference
between them. Therefore, in the next section only two clearly different branches are described. The
first is hybrid modelling, which consists of serial and parallel hybrid modelling [16, 6] and the second is
constraint black box identification [6].
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Serial hybrid modelling
The serial hybrid modelling approach involves an empirical model which is fed with operating data used
to estimate parameters and a mechanistic model [5]. Within serial hybrid modelling two approaches can
be found.

In the first approach the use of a black box sub-model precedes the use of a white box sub-model [16]
(see Figure 3.1). This approach is illustrated in Figure 3.1. The first sub-model is fed with data. This data
is used to estimate parameters which are then provided to the white box sub-model. Here the estimated
parameters are the input for a knowledge-based formula that describes the process [5, 16].

Figure 3.1: Serial hybrid modelling approach 1 (from [16])

In the other approach the use of the white box model precedes the use of the black box model (see
Figure 3.2). In this approach the aim is to obtain a correlation between a white box parameter and a
second parameter not included in the white box. First, a knowledge-based formula is used to estimate a
characteristic Yi , for multiple input values Xi . The resulting values are then regressed against an unknown
variable (Zi ) and a black box model relating Yi and Zi would be obtained [16].

Figure 3.2: Serial hybrid modelling approach 2 (from [16])

Estrada-Flores et al. [16] mention one disadvantage of serial hybrid modelling. Serial hybrid modelling
consists of two stages. First a white box model and then a black box model, or vice versa. The uncertainty
in the individually estimated input variable is not carried through to the second stage. This causes a loss
of information, which results in less accurate estimates of the regression parameters.

Several examples of grey box modelling can be found in literature. Often this type of modelling is
used to model biochemical or mechanical processes. Schubert et al. (1994) [35] model yeast cultivation
with a serial hybrid modelling approach. In Acuña et al. (1999) [2] the same approach is used to model
bioprocesses kinetic rate expressions. In Zwart et al. (2020) [44] a neural network is fed with an initial
estimate based on the physics-based model. Using this method the trim of a vessel is optimised based
on operational voyage data.
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Parallel hybrid modelling
The parallel hybrid modelling approach consists of a knowledge-based white box model, which is used to
estimate process behaviour, while an empirical black box model aims to forecast the corrections that have
to be added to the white box model predictions to obtain the true process behaviour [5, 16, 6]. As the white
box and black box sub-model are both fed with the same data simultaneously, there is no loss of informa-
tion between these two sub-models [5, 16]. As mentioned, this latter is a disadvantage in serial hybrid mod-
elling. The parallel hybrid structure can be seen in Figure 3.3. For the output of this approach it is clearly vis-
ible that the white box estimate θa and the black box correction ψ̂ are only depending on the input data t .

Figure 3.3: Parallel hybrid approach (from [16])

Thompson and Kramer (1994) [25] present a more extensive structure, as can been in Figure 3.4.
This structure can be seen as both parallel and serial. Compared to Figure 3.3, the black box model
(Artificial Neural Network) is based on the input data and on the output of the white box model (Default
Mathematical Model).

Figure 3.4: Parallel hybrid approach (from [25])

In literature some other examples of parallel hybrid modelling are given. Su et al. (1992) [19] use this
method to model a chemical reactor system. Shum and Myers (1996) [33] propose parallel structure for
octane control in platforming units. In Van Can et al. (1996) [38] it is used to model and control a laboratory
pressure vessel. In Duarte (2004) [5] a difference is mentioned about how the correction can be done in
parallel hybrid modelling. In Su et al. the correction is done at the end of a time horizon of interest, whereas
in Duarte this correction is done continuously. In this case the mechanistic model captures the essence
of the dynamics of the system (e.g. speed of response etc.) while the main function of the empirical model
is to correct the actual values predicted over the, often, wide range of operating conditions encountered
during transient operation [5]. In Leifson et al. (2008) [23] both serial and parallel hybrid modelling are used
to predict the vessel fuel consumption. Both show more accurate results compared to the white box model.
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Constrained black box identification
Constrained black box identification (CBBI) uses a black box model where specific parameters, which are
estimated using measured data, are constrained based on physical relations [6]. This could be interesting
for this research project. An example of such a physical relation is the law of Archimedes. McDonald
(2010) [27] describes that unacceptable combined options are removed to ensure that options are ’bal-
anced’. As an example he mentions that a constraint on weight vs. displacement could be used to remove
Archimedially unbalanced designs. This could be useful in this thesis. Also other physical constraints,
as mentioned by Watson (1998) [40], can be included. These are for example the ratios B/D and T/D, as
mentioned in Section 2.1.

3.3. Evaluation of solutions
The goal of combining white and black box models is to improve the accuracy and to make sure that
generated design solutions will correctly be classified as feasible or infeasible. The new grey box model
should be a fast method.

In literature a lot of equations are described. Some of these equations are meant to describe a process
as well as possible. Other equations define a bandwidth or range in which a process will occur. The first
type of equations have a lot in common with the serial or parallel hybrid modelling. The goal of these
approaches is to describe a process as well as possible using First Principle rules, and to estimate the
unknowns with an empirical black box method. As the second type of equations are about constraining
the process, the black box identification method seems useful.

In Table 3.1 the potential solutions are qualitatively assessed based on the requirements. For some re-
quirements there are some clear differences in the performance of the potential solutions e.g. the ability to
deal with data limited areas. The CBBI model is comparable to the current model used in the MIT; both are
only based on data. The difference is that the CBBI model is constraint, which means that some knowledge
is taken into account in this model. In regions of a design space with limited data, the CBBI model will,
although constrained, still perform poorly. The serial hybrid model is assumed to perform better as it takes
into account both the data and knowledge. On the other hand, as these two models are connected in series,
they are also very dependent. In the parallel hybrid modelling approach the data and knowledge model are
connected in parallel. This means that they work independently, which is an advantage. As the amount of
available data differs per situation, also the applicability of the models differ. For regions with limited data
the model should rely more on knowledge instead of data and for regions with sufficient data vice versa.

Both the hybrid modelling methods contain a black box model and a separate white box model. The
white box model contains all the relevant knowledge, described in a mathematical form. As this model
is understandable to a naval architect, this increases the insight in the design process.

Method requirements
Serial hybrid

modelling
Parallel hybrid

modelling
Black box

identification

Deal with data limited areas medium good bad
Comply with laws and rules medium medium medium
Provide insight in design method good good medium
Speed medium good good
Ability to deal with feedback good good good

Table 3.1: Evaluation of solutions based on method requirements

Mainly because of the independent operations in the parallel hybrid model, this approach is preferred,
compared to the other two models. This independence makes sure that a parallel hybrid model can
perform well in both data-sparse and data-abundant regions of a design space. As the constrained black
box identification method is a very simple and clear method to include constraints, this can be used to
take into account constraints like the law of Archimedes.
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Based on the tool requirements, several potential solutions have been explored. Parallel hybrid modelling
is chosen as the most promising method to solve the problems that C-Job’s naval architects face, in order
to make well-advised design solutions in the future reference-based design approach. With this, research
question 2 can be answered.

Research question 2

How can a naval
architect make well-advised design decisions in C-Job’s future reference-based design approach?

Based on Chapter 2, a list of requirements is determined for the new tool. In these requirements, the
current design approaches have been taken into account as well as the challenges that lie ahead for the
future design approach. These requirements are the following

1. Ability to deal with data-sparse and data-abundant regions of a design space
2. Results should comply with the laws of physics and other governing (basic) ship design rules
3. The new method should provide insight
4. The new method should be a fast method
5. Ability to deal with feedback

Based on these requirements some potential solutions have been explored and evaluated. It shows
that parallel hybrid modelling is the most promising solution for the problems defined in this thesis.
The advantage of this type of modelling is that the available knowledge can be included in a white box
model. Using this white box model an estimation can be done about the magnitude of certain parameters.
Based on data of reference vessels a machine learning model can be trained to learn about the differences
between this estimation and the ’true’ values (i.e. the data of reference vessels). This knowledge can then
be used to correct the first-principle white box model.

An advantage of this method is that the white box model is constructed by a naval architect. In this
model the naval architect can define all the relevant equations and rules. This provides the insight in the
design process that is required. Next to that, by including these equations and rules, the naval architect
can ensure the feasibility of the proposed design solution.

By requiring that the new method must be a fast method, the naval architect is able to run the op-
timisation problem, explore the results, redefine and re-run the optimisation problem. Using this method
the first step in the current design method, which is finding a starting point, is done by the MIT. Therefore
it is possible to explore a significant amount of feasible design solutions in a reasonable amount of time,
which increases the possibility of finding better design solutions compared to the current method.
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Methodology

This chapter describes the method that is used in this thesis. First a general description of the model will be
given in Section 4.1. Secondly, the resource of the reference data is discussed in Section 4.2. After that, every
component of this model will be explained in more detail. This is first the White Box model in Section 4.3.
In this section different empirical methods are compared qualitatively and quantitatively. The best methods
are then chosen to be implemented in the white box model. Thereafter a description of the black box model
will follow in Section 4.4. This section elaborates on which technique is used to train the black box model
and how this works. In Section 4.5, a brief explanation will follow about how the white box and black box
model work together. Finally, Section 4.6 describes different methods to assess the performance of a model.

4.1. General model description
As can be seen in Figure 3.3, the result of a parallel hybrid model is a summation of the results of two
models; the white box result and the black box result. Equation 4.1 [5] represents this summation. The
white box result is an estimated value of a parameter, based on formulas. The black box model corrects
this estimation, based on statistics. In literature different symbols are used for each component of the
parallel hybrid model. In this thesis, the same symbols are used as those in Figure 3.3.

θ̂a =θa(t)+ψ̂(t) (4.1)

The first term θa(t) is the estimated value of a certain parameter, determined by the white box model.
The second term ψ̂(t) is the black box model correction. The hat (ˆ) above this term means that it is based
on statistics, instead of formulas. In order to predict ψ̂(t), first a black box model needs to be trained with
data before it can be used. This means that the proposed parallel hybrid model works in two phases; a
training phase and a prediction phase.

Training Phase - This phase can be seen in Figure 4.1. First, training data is selected. This training data
contains data of the independent variables and the dependent variable, or the design parameter,
that one wants to predict. First, based on the independent variables, a white box model is used
to calculate θa(t). This term contains the estimated values of the dependent variable. A black box
model is then trained to learn the difference between the estimated value of a design parameter and
the true value of this parameter. For the training data, the estimated values of a design parameter
θa(t) are subtracted from the true valuesΦ, according to Formula 4.2 [5]. Thus, ψ̂(t) contains the
absolute differences between the true and the estimated value of a design parameter.

A black box model can then be trained. First, the independent variables and the dependent variables
need to be defined. The dependent variable is the ψ̂(t), this is the term that should be predicted.
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The independent variables are all the variables that have influence on the ψ̂(t). These variables are
defined by the naval architect. Now that the independent and dependent variables are defined, a
black box model can be trained. How this works exactly is described in Section 4.4. The result is
a model that makes a prediction ψ̂(t), only based on the independent variables.

ψ(t)=Φ − θa(t) (4.2)

Figure 4.1: General description of a Parallel Hybrid model - Training phase

Prediction Phase - The trained model can now be used in the prediction phase. This phase can be seen
in Figure 4.2. In the prediction phase, new data is used. This is the test-data. Which portion of
the data is used for the training phase and the prediction phase will be explained in the following
sections. The values of the independent variables of the test data-set are used as input for both the
white box and the black box model. The white box model again estimates θa(t), but now the black
box model immediately predicts the correction ψ̂(t). The estimation and the predicted correction
are then summed according to equation 4.1. This gives the term θ̂a, which is the Parallel Hybrid
model prediction.

Figure 4.2: General description of a Parallel Hybrid model - Prediction phase

Example
To make the parallel hybrid model more clear, the lightship weight (LSW) of the vessel will be used as an
example. This aspect is chosen because the true values as well as knowledge of the formulas are required
for parallel hybrid modelling. For the lightship weight aspects, both the formulas and the true LSW values
are available.

In the training phase, first an estimation of the lightship weight is done based on formulas. This is done
for every reference vessel that is selected for the training data-set. The input data which is required for these
white box formulas differ per formula, but for the lightship weight it is mostly dependent on the length,
breadth, depth and block-coefficient. The white box formulas are further described in Section 4.3. Sec-
ondly, the difference between the true and the estimation lightship weight is found by using equation 4.3.
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ψLSW =ΦLSW − θLSW (4.3)

TheψLSW will be fed to the black box model as the dependent variable. The independent variables
are defined by the naval architect, but it is obvious to use variables that define the dimensions of the
vessels, such as length, breadth, depth and block-coefficient. Also, variables that have significant influence
on the lightship weight are selected as independent variables, such as the Maximum Continuous Rating
(MCR). The MCR has influence on the engine size and therefore also contributes to the total lightship
weight. Thus, for the dependent variable [lightship weight] the independent variables are [length, breadth,
depth, block-coefficient, MCR].

This trained model can be used in the prediction phase. In this phase the independent variables of
new and unseen vessels are fed to the white box model and black box model simultaneously. The white
box model makes an estimation for the lightship weight based on formulas and the black box model
predicts the difference between this estimation and the true value. The total prediction is calculated by
summing the results of both models as is shown in equation 4.4.

θ̂LSW =θLSW (t)+ψ̂LSW (t) (4.4)

4.2. Reference data
The reference data that will be used in this thesis is collected from Sea-web, a database from IHS Markit [26].
During this thesis several problems were found in this database, including:

1. Database contained duplicates and sister vessels
2. Certain parameters were calculated instead of registered
3. Reference data was found unreliable after performing calculations

Each of these problems will be described in the following sub-sections and a solution will be given
about how to deal with these problems.

4.2.1. Duplicates and sister vessels
During this project, it became clear that the database contained a lot of similar vessels. This could for
example mean that the database contained multiple sister vessels, but also that the exact same vessel
was in the database multiple times. Thus, there are two types of vessels that have been removed from
the database:

1. Exact duplicates
2. Sister vessels

The reason to delete exact duplicates from the database is clear. A certain vessel should be in the
database just once. There are a couple of arguments for deleting the sister vessels. The first argument
is that there is no extra knowledge to learn from sister vessels. A second argument has to do with potential
overfitting of the black box model. If a black box model learns from data of ten sister vessels and one other
vessel, one can imagine that this automatically puts more weight on the data of the sister vessels, leading
to an overfitted model. A third argument has to do with how the model’s performance will be assessed. If
a model has been trained to predict the lightship weight, with data of reference vessels, it basically means
that the model already knows what the lightship weight is of all those reference vessels. Therefore, it is
easy to predict the lightship weight of a sister vessel, because it has already seen the lightship weight of
a sister vessel during the training phase. Thus, to make sure that training- and test-data do not contain
similar vessels, the first of the sister vessels will be retained and the rest will be deleted. This argument
is further described in Section 4.6.2.
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The exact duplicates are deleted using a Python function. In this function, the user defines the vari-
ables where duplicate values should be found. If a vessel is an exact duplicate of another vessel, for all
these variables, the first vessel in the database is retained and the rest is deleted. The variables that are
used to find duplicates are

1. Gross tonnage
2. Length between perpendiculars
3. Breadth overall
4. Depth
5. Draught
6. MCR

The margins which are used to find similar vessels are shown in Table 4.1. If the difference between
two vessels was smaller than the margins for all the mentioned variables, then only the first vessel was
retained. The variables are chosen because vessel owners are obliged to report Gross tonnage, length
between perpendiculars, breadth moulded and depth. Therefore it was assumed that these values in the
database are correct.

It was noted that a certain vessel can be available in different versions. This could mean that the
dimensions are identical with another vessel, but that the MCR was different. The same vessel is in that
case available with different engines. The difference in engine type was also observed in the lightship
weight value, as the weight of the engine is part of the lightship weight. Therefore, duplicate vessels that
have a different MCR, and therewith a different engine weight, are not removed from the database.

As can be seen in Table 4.1, the margins are constant. They are independent of the ship’s size. These
values are determined by looking at the dataset and searching for sister vessels. After a few iterations, it
was noted that, by using these values as margins, similar sister vessels were filtered out of the database.
An improvement of this method is to make the margins dependent of the size of the vessels, but for the
database that is used in this thesis, the constant values are sufficient.

Variable Margin

Gross tonnage 15 tonnes
Length 1 meter
Breadth 0.5 meter
Depth 0.5 meter
MCR 10 kW

Table 4.1: Margins for finding similar vessels

The result of this cleaning method can be seen in Table 4.2. First, the initial amount of reference data
for a certain ship type is given. Thereafter follows how much the data set reduced in size after the two
cleaning steps; delete the duplicates and delete the sister vessels. Thus, the amount of data that is left,
after deleting the sister vessels, is the data set that is usable for the MIT.

This means that more than half of the database consisted of bulk carriers. For other ship types this
is of the same order.
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Bulk carrier General Cargo Oil Tanker Container ship

Initial data set 2903 3030 187 964
Duplicates deleted 883 474 22 175
Sister vessels deleted 804 989 33 336
Remaining vessels 1216 1567 132 453

Table 4.2: Reducing size of the data set due to cleaning

4.2.2. Registered or calculated values
Not all the values in the database were officially registered values. During this project, it became clear
that some of the parameters were calculated values. Two important parameters for this thesis, the block-
coefficient and the lightship weight, were calculated using Formulas 4.5 and 4.6 respectively. These
calculations were done by C-Job’s naval architects. The O in these formulas is the displacement in cubic
meters, the Lpp is the length between perpendiculars, the Bmoulded is the moulded breadth and the
draught is represented by T . The 4 - term in Equation 4.6 is also the displacement, but now expressed
in tonnes.

CB= O
Lpp·Bmoulded·T

(4.5)

LSW =4 − DWT (4.6)

To deal with this problem, first, the source of the different parameters was checked. Tables 4.3 and 4.4
describe which parameters were given in the database from IHS Markit. The Deadweight Tonnage (DWT)
and the displacement 4 were both registered in the IHS Markit database. Using Formula 4.6, the lightship
weight can be calculated. As this formula is the definition for lightship weight, the obtained value for
lightship weight is assumed to be the true value as well.
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Table 4.3: Registered dimension data from IHS Markit from (from [26])

Table 4.4: Registered tonnage data from IHS Markit (from [26])

This poses a challenge for this thesis as these values contradict two requirements for parallel grey box
modelling, namely:

Knowledge-based formulas - These are required to estimate a design parameter, using the white box
model.

True values - These are required for training a black box model to learn the difference between the white
box model estimation of a design parameter and the true value of that design parameter.

For other interesting design parameters, such as resistance and stability, these knowledge-based
formulas were available. The problem is that the true values of these design parameters are not available.
The true resistance can be obtained from sea trials, and the stability can be obtained from an inclining
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test. The true values might be available for ship owners themselves, but for competitive reasons these
are obviously not shared. Therefor, the decision was made to focus on predicting the lightship weight in
this thesis. In the rest of this thesis, only the lightship weight design parameter will be discussed.

4.3. White Box model
Multiple white box models have been assessed in this thesis. Three groups of methods have been distin-
guished in literature, namely:

1. Generic method
2. Ship type specific methods
3. Generic ship type specific method

These different methods will be described below. First, the generic method will be discussed in Sec-
tion 4.3.1. Section 4.3.2 will describe many ship type specific methods. In this section a conclusion will
be drawn about what ship types can and should be tested with the parallel hybrid modelling approach.
Thirdly, a method is presented which is both generic and ship type specific in Section 4.3.3. In Section 4.3.4
a method is described on how to validate the results of all the weight estimation methods.

4.3.1. Generic method
First, a generic formula is used. This formula, Formula 4.7 (Indian Maritime University Visakhapatnam,
2017) [39] is only dependent on the deadweight (DWT) of the vessel. An advantage of this formula is that
it is applicable to every ship type. Because of that, it is expected that this method is not as accurate as
ship type specific methods.

WLS, generic=1128·
(

DWT

1000

)0.64

(4.7)

4.3.2. Specific methods
Literature describes multiple empirical formulas which are more specific to a certain ship type, or a certain
component of the lightship weight. These components can be seen in Formula 4.8. The steel weight
consists of structural steel of the hull, the superstructure and the weight of the outfit steel. Outfit steel
consists of the machinery foundations, supports, masts, ladders and handrails for example. The outfitting
and equipment weight includes deck machinery. The machinery weight consists of the main engine,
auxiliary machinery, propeller and shaft.

Table 4.5 provides information of these formulas specific for a weight component. The gaps in the
table mean that methods to estimate a specific weight component corresponding to a specific ship are
not found in literature.

WLightship=WSteel+WOutfitting & Equipment+WMachinery , or

WLS=WS+WO&E+WM
(4.8)

Criteria for selecting weight estimation methods
The methods from Table 4.5 were assessed based on three criteria, namely:

Applicability in wide range of ship dimensions - The method should be applicable for a large range of
ship dimensions. For example the method from Det Norske Veritas (DNV) (1972) [29] for calculating
the steel weight of tankers is only applicable for ship with a length in between 150 and 480 meters,
a length/breadth ratio between 5 and 7 and a length/depth ratio between 10 and 14. This is the
case for most of the tankers in the database, but these limitations should be taken into account.
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The steel weight calculation method from Sato [29] seems advantageous in this case, because it
doesn’t have these dimension-limitations.

Applicability in an early stage of the ship design process - Some methods are based on variables that
are not yet known in this stage of the design process. The Watson & Gilfillan (1976) [29] method
to calculate the steel weight for example uses the number, height and length of the deck-houses
and superstructures. Another example is the method from Buxton (1976) [29] that can be used
to calculate the machinery weight. For this method, information is required about the propeller
(single-propeller / twin-propeller). This is not yet available in this stage of the design process, nor is
it available in the database. Therefore, these methods are less suitable to be implemented in the MIT.

Availability of reference data - The amount of available reference data for a ship type is important, be-
cause in order for a black box model to perform well, sufficient data is required. 100 reference
vessels were chosen as the minimum amount of reference data per ship type. In the chosen black
box model the reference data set will be distributed across 100 different samples. These samples
need to be different in order to get a well performing black box model. For a reference vessel data
set of 100 and higher, it is expected that these samples are indeed different. This will be explained
in detail in Section 4.4.
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Ship type Structural steel Outfiting & Equipment Machinery

Generic Watson & Gilfillan (1976),
Watson (1998)

Watson & Gilfillan (1977)
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

General cargo Schneekluth (1985) Schneekluth (1985),
Papanikolaou (2019)

Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Dry Cargo

Schneekluth (1985),
Wehkamp-Kerlen (1985),
Watson & Gilfillan (1976),
Harvald & Jensen (1992),

Danckwardt(1961)

Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Bulk carrier
Hurrey J.M. (from [39]),

DNV (1972),
Murray (1965)

Papanikolaou (2019)
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Container
Schneekluth (1985),

Chapman K.R. (1969),
Miller D. (1968)

Jensen (1992),
Papanikolaou (2019)

Schneekluth (1985),
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Oil tanker DNV (1972),
Sato (1967)

Schneekluth (1985)
Papanikolaou (2019)

Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Ropax Papanikolaou (2019) Papanikolaou (2019)
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Tanker DNV (1972),
Harvald & Jensen (1992)

Papanikolaou (2019)
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Reefer Carreyette (1976)
Munro-Smith (from [39]),
Watson & Gilfillan (1976),

Buxton (1976)

Table 4.5: Empirical formulas for lightship weight components in literature

Selected methods
Based on the criteria, methods for four ship types were selected to be further assessed. The reason for
this is that, for these ship types, there were useful weight estimation methods available and there was
sufficient reference data available. The ship types that were chosen are

1. Bulk carrier
2. General cargo ship
3. Oil tanker
4. Container ship

For each weight group, the paragraphs below will give the formulas that are used per ship type. The
symbols that are used in these formulas are explained in Table 4.6. The goal is to find the best formulas
to estimate the lightship weight for each ship type. Thus, after assessing these formulas quantitatively,
one estimation method per ship type will be implemented in the white box model as a part of the parallel
hybrid model. How these formulas are assessed quantitatively, will be explained in Section 5.2.
To calculate the steel weight (WS) multiple formulas have been used. These formulas per ship type can
be found in Table 4.7.
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Symbol Meaning Symbol Meaning

LOA Length overall CB Block-coefficient
LBP Length between perpendiculars 4 Displacement (tonnes)
BOA Breadth overall BHP Brake Horse Power (kW)
D Depth of hull RPMENG Engine rpm
T Draught MCR Maximum Continuous Rating (kW)

Table 4.6: Used symbols and their meaning

Shiptype Method Formula

Bulk carrier Murray (1965) 4.9
General cargo ship Wehkamp-Kerlen (1985) 4.10

Watson & Gilfilan 1976 4.11
Oil tanker Det Norske Veritas (1972) 4.12

Sato (1967) 4.13
Container ship Chapman (1969) 4.14

Miller (1968) 4.15

Table 4.7: Formulas for steel weight of different ship types

WS, Bulk=0.0328·LOA
1.65·

(
BOA+D+T

2

)
·
(

CB

2
+0.4

)
(4.9)

WS, General cargo=0.0832·A ·e−5.73· A· 10−7
, where

A= LBP
2 · BOA · CB

1
3

12

(4.10)

WS, General cargo=CB
2
3 ·LBP · BOA

6
·D0.72· 0.002·

(
LBP

D

)2

+1 (4.11)

WS, Tanker=4·
(
αL+αT ·

(
1.009−0.004· LOA

BOA

)
·0.06·

(
28.7−LOA

D

))
, where

αT =0.029+0.00235·4·10−5 , for 4 < 6·105

αT =0.0252·(4· 10−5)0.3
, for 4 => 6·105

αL =
(
0.054+0.004· LOA

BOA

)
·0.97

0.189·
(
100· LOA

D

)0.78

(4.12)
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WS, Tanker=
(

CB

0.8

) 1
3 ·

(
5.11·LBP

3.3·BOA

D
+2.56·LOA

2·(BOA+D)2
)
·10−5 (4.13)

WS, Container=0.0209· LBP
1.759· BOA

0.712· T 0.374 (4.14)

WS, Container=0.000435 ·(LOA ·BOA ·T )0.9 · (0.675+0.5·CB ) ·
(
0.00585·

(
LOA

T
−8.3

)1.8

+0.939

)
(4.15)

For the outfitting & equipment weight (WO&E ) component a general formula is used. This is formula 4.16,
which has been described in Papanikolaou (2019) [29]. The KOT -term is given for multiple ship types.
These can be found in Table 4.8. As can be seen, the KOT -term for the bulk carrier is described as a formula.
Papanikolaou gives the KOT for bulk carrier with a length around 140 meters and a length around 250
meters. The corresponding values for KOT are up to 0.25 and 0.18 respectively. In this thesis the KOT is
assumed to be linearly dependent of the length. Based on this assumption, a linear relation is determined,
which can be seen in Table 4.8.

A second remark is that all the values of KOT in this table are conservative values. In Papanikolaou
(2019) [29], a range is given for KOT , instead of one value. One reason to choose one value instead of a
range is that the model would not become too complex. The second reason is that a step in a later stage
of the Accelerated Concept Design process is the optimization step. As is shown in De Winter (2019) [31],
reductions of steel weight can go up to 14% by using the ACD method. This is a result of the optimization
step. Thus, this step has much more influence on the steel weight than for example the outfit coefficient.
Therefore, in this stage of the design process, a conservative value was chosen for KOT , i.e. the maximum
value of the range given by Papanikolaou.

WO&E =KOT · LOA · BOA (4.16)

Shiptype KOT

Bulk carrier 0.3391−0.000636364·LOA

General cargo ship 0.45
Oil tanker 0.28
Container ship 0.38

Table 4.8: Outfit & Equipment coefficients

Two formulas have been used for the machinery weight (WM ) component. These are Formulas 4.17 and 4.18.
These formulas are given by Watson & Gilfillan (1976) [29] and by Murrirosmith [39] respectively. For-
mula 4.17 is a summation of the main machinery weight, the first term, and the auxiliary weight com-
ponent, the second term.

WM =
(

MCR

RPMENG

)0.84

· RPMENG· 12+ MCR0.7· 0.69 (4.17)

WM = BHP

10
+200 (4.18)
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Assessment of different methods
Different combinations of the above mentioned ship type specific weight estimation methods will be
tested. As there is no data available of the individual weight components, one cannot test the performance
of each formula individually. Only data of the total lightship weight is available. Therefore the approach
to find the best formulas is to try different configurations of formulas, and measure how well the total
lightship weight can be estimated.

4.3.3. Generic ship type specific method
Thirdly, a method was found that is both generic and ship type specific. This is a method from D’Almeida
(2009) [12]. D’Almeida gives a generic formula for each component, independent of the ship type. Thus,
an advantage of this method is that is is applicable to all ship types. This method is also ship type specific,
because the formula also consists of ship type specific components. The coefficients are statistically
determined. For the machinery weight component, the coefficients are based on the type of propulsion
plant and not on the type of ship. A second advantage is that the method from D’Almeida is from 2009.
Thus, it is the most up-to-date formula and therefore it is expected to be the most accurate.

For the steel weight Formula 4.19 is used. The coefficients k1, k2, k3 & k4 are ship type specific and
can be found in Table 4.9. For L, the length overall is used and for B the moulded breadth is used.

WSteel=k1·Lk2·Bk3·Dk4 (4.19)

The weight for the equipment can be found using formula 4.20. The coefficients k5 & k6 are also ship
type specific and can be found in Table 4.9.

WEquipment=k5·(L·B ·D)k6 (4.20)

Coefficient Bulk Oil tanker Container General Cargo

k1 0.0328 0.0361 0.0293 0.0313
k2 1.6000 1.6000 1.760 1.675
k3 1.0000 1.000 0.712 0.850
k4 0.2200 0.2200 0.374 0.280
k5 6.1790 10.820 0.1156 0.5166
k6 0.48 0.41 0.85 0.75

Table 4.9: Coefficients for weight calculations (D’Almeida (2009) [12])

Finally, the machinery weight can be calculated with formula 4.21. This formula is dependent on the
propulsion plant. D’Almeida gives four options, which can be seen in Table 4.10. PMCR is the propulsive
power [bhp].

WMachinery=k7·PMCR
k8 (4.21)

4.3.4. Validation of estimated weight components
Multiple formulas have been described in this chapter. These formulas will be tested with the available
data to find the best formulas. To ensure the reliability, the estimation of each weight component will
be compared to a weight ratio. Figure 4.11, from Strohbusch (1971), Schneekluth (1985) and updated by
Papanikolaou (2011) [29], gives typical percentages for weight groups.
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Type k7 k8

Diesel (2 stroke) 2.41 0.62
Diesel (4 stroke) 1.88 0.60
2 x Diesel (2 stroke) 2.35 0.60
Steam Turbine 5.00 0.54

Table 4.10: Coefficients for machinery weight formula based on type of propulsive plant (D’Almeida (2009) [12]

First, in column 1 and 2, the lower and upper limits are given in terms of deadweight, unless stated oth-
erwise. For vessels within this range of deadweight, typical percentages are given for the percentages dead-
weight : displacement (column 3), steel weight : lightship weight (LSW) (column 4), outfitting weight : LSW
(column 5) and machinery weight : LSW (column 6).

Based on column 3, the typical range for lightship weight : displacement can be calculated, according
to Formula 4.22. To be clear, to calculate the upper limit for the percentage lightship weight : displace-
ment, one should use the lower limit for the percentage deadweight : displacement in Formula 4.22. This
calculation provides a typical range for the percentage lightship weight : displacement.

WLS

4 =100−DWT

4 (4.22)

Thereafter, the typical ranges for each of the weight components can be calculated according to For-
mula’s 4.23, 4.24 and 4.25 . To be clear, to calculate the lower limit of the percentage steel weight : lightship
weight for example, one should use the lower limit for the percentage lightship weight : displacement
in Formula 4.23.

WST

4 =WLS

4 · WST

WLS
(4.23)

WO&E

4 =WLS

4 · WO&E

WLS
(4.24)

WM

4 =WLS

4 · WM

WLS
(4.25)

Thus, the white box model, containing the weight estimation formulas, will be validated using Ta-
ble 4.11. This can be done for the lightship weight and for each of the weight components.



48 4. Methodology

Table 4.11: Typical sizes and percentages of weight groups of main merchant ship types (from [29])

4.4. Black Box model
In order to choose a black box model, the tool requirements of Section 3.1 need to be taken into account.
One of the requirements is that the tool should provide insight into the design process to naval architects.
Therefore, it is beneficial to not use a too complex machine learning techniques in the black box model.

Another requirement is that the method should be a fast method.
Thereafter, the model should be robust for outliers. An example of such an outlier is the vessel Ram-

form Titan, which is shown in Figure 2.6. The machine learning model should not put too much weight
on these somewhat odd vessels. A second advantage of this robustness, is that a machine learning model
is not sensitive to errors in the database.

Multiple machine learning models have been explored. These models can be found in Table 4.12.
These models were assessed based on the requirements. As can be seen, the random forest regression
model is expected to be the appropriate model based on these requirements.
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Random forest model Decision Tree k-Nearest Neighbour

Complexity Ok Ok Complex
Speed Good Good Not good

Robustness Good Not good Not good

Table 4.12: Assessment of different black box models

Random Forest Regression model
The black box model that is used is the Random Forest Regression model [7]. It is the Author’s first known
application of the Random Forest Regression model in ship design.

In a random forest model, many decision trees are used to predict a design parameter, such as lightship
weight. Each decision tree gives a prediction of this design parameter. All the predictions are thereafter
averaged to get one ensemble-averaged prediction. By averaging the results of each individual decision
tree the variance of the prediction will reduce [36]. Decision trees are ideal for this method, because they
can capture complex interaction structures in data [36]. As mentioned in Duchateau (2016) [14], early
stage ship design is complex because of the large amount of continuous and discrete interrelated variables,
constraints and objectives. It is expected that, using a decision tree method, these interrelations can be
captured in a relatively simple manner.

Breiman (2001) [7] mentions that random forests are an effective tool in prediction. He men-
tions two advantages. The first is that because of the Law of Large Numbers, Random Forests do
not overfit. This has to do with the large number of uncorrelated decision trees that are used in
this model. The decision trees are uncorrelated because for each decision tree, a different sample
of the data is used. Another advantage is that the model is accurate and stable, when the right kind
of randomness is applied when constructing these decision trees. This means a sufficiently random
distribution of the data across the different samples and secondly, randomness when the splits in a
decision tree are determined. This latter will be further explained in sub-section Decision Tree. The
accuracy of a random forest regression model is also a result of the large amount of decision trees
that are used. In general, the more trees in the forest, the more robust the prediction is and thus,
the higher the accuracy. By default, 100 decision trees are constructed in a random forest regression
model [22].

Decision Tree
A decision tree can be used for regression and classification problems. The aim of a regression tree is to
partition the data into smaller, more homogeneous groups [24]. In the context of this thesis, homogeneous
groups mean a group with similar reference vessels. An example of a decision tree can be found in Fig-
ure 4.3, given in James et al. (2009) [36]. This tree is used for a regression problem. The goal of this tree is to
predict the salary of a baseball player, based on the number of years that he has played in the major leagues
and the number of hits that he made in the previous year. The salary can be seen as the dependent variable
and the number of years and hits can be seen as the independent variables. The decision tree consists
of a series of splitting rules, starting at the top of the tree. The splitting rules are based on the independent
variables as can be seen in Figure 4.3. The prediction of the salary follows at the bottom of the decision tree.

In the same manner a data set of reference vessels can be split. An example of this can be seen in
Figure 4.4. The variables years and hits are now replaced by the variables length, breadth and draught
for example. The dependent variable salary is replaced by the design parameter lightship weight. Each
decision tree will hereby be a reflection of a sample of the reference data. Based on this sample data, an
algorithm determines how data can be split in two, at each node. For example, there are 100 vessels in the
sample. 50 vessels are larger than 75 meter length and the other 50 are smaller. Then the algorithm can
define the split-condition: L>75. This example can be seen in Figure 4.4. Now the length is chosen as a
first split, but this can be any of the independent variables. A decision tree algorithm determines the ’best
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Figure 4.3: Example Decision Tree (from [36])

splits’ using a Gini index [8]. By default, the Scikit Learn module uses the Gini index [22]. Basically, the Gini
index method makes sure that the data is homogeneously distributed amongst the leaves of the decision
tree. The Gini index varies between zero and one, where a Gini index score of 0 means that all elements of
the data belong to a certain class. A Gini index of 1 means that the data is randomly distributed amongst
the leaves. The ’best split’ is the split with the lowest Gini index. The following example illustrates how
this works. Let’s say we have a splitting rule which puts 10 balls in a leaf and these 10 balls all have the
same colour, red. Then the Gini index is zero, because all the balls belong to a certain class, in this case
colour. But if we have a splitting rule which puts 5 red balls and 5 blue balls in a leaf, then the Gini index
is 1. This means that data is distributed randomly. This is undesired as the aim for regression groups is
to partition data into smaller and more homogeneous groups [24].

In this manner an algorithm determines how data should be split at each node. This goes on until a
leaf of the decision tree only contains one data point, or one reference vessel in this case. Thus, according
to the split-rules that the algorithm has defined, it can now make a prediction for the lightship weight,
given that sample of the reference data.

Figure 4.4: Decision tree example 2

Ensemble averaged prediction
The prediction for an individual decision tree is thus very dependent on the sample of training data.
Therefore, in random forest regression models a large number of decision trees is used, all based on a
random sample of training-data. The predictions of all the individual trees are ensemble-averaged, which
makes the prediction significantly less dependent of one particular training data sample. The formula
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for the ensemble-averaged prediction can be seen in Formula 4.26 [36]. In this manner, such a model
can predict the lightship weight of a novel vessel for example, based on reference data.

f̂ B
RandomForest (x)=

B∑
b=1

Tb(x) (4.26)

The variance of the ensemble averaged prediction of all trees is lower than the variance of the pre-
diction of each individual tree [7, 24]. This means that the difference between the predicted value and the
actual value is smaller. In other words, the ’Average All Predictions’ as is shown in Figure 4.5 outperforms
each individual prediction, in this case prediction 1 until prediction 600. As already mentioned, in the
proposed hybrid model, 100 decision trees are constructed in each random forest regression model. This
is a default value.

Figure 4.5: Random Forest mode (from: medium.com (2019))

4.5. Parallel hybrid model
In the proposed parallel hybrid model the above mentioned white box- and black box model are used.
In this model the first white box model is used to provide an estimation of a parameter, such as lightship
weight or resistance. Thereafter the model calculates the difference between the estimation and the true
values of this parameter using Formula 4.2.

The calculated differences are fed to the black box model as the dependent variable. The independent
variables are defined by the naval architect and depend on the parameter that will be predicted. For
lightship weight the independent variables should at least contain the dimensions of the vessel. For the
resistance of the vessel one can imagine that the service speed and the frontal - and wetted surface are
important. Therefore the independent variables should at least contain the waterline length, the breadth,
the draught and the service speed. With both the dependent and independent variables fed to the black
box model, the model can be trained. This is the training phase.

In the prediction phase, the calculated estimation of the white box model and the predicted correction
of the black box model are summed according to Formula 4.1. The result is the parallel hybrid model
prediction of a certain design parameter, such as the lightship weight and the resistance.

https://medium.com/swlh/random-forest-and-its-implementation-71824ced454f
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4.6. Performance of model
To measure the performance of the white box, black box and parallel hybrid model two performance
measurements techniques have been used. These will be explained in the following sub-sections.

4.6.1. Performance metrics for regression models
There are three main metrics to measure the performance of a regression model. These are

1. R2 [24]
2. Root Mean Square Error (RMSE) / Mean Square Error (MSE) [24]
3. Mean Absolute Error (MAE) [34]

The R2-method shows how much of the variation in the dependent variable can be explained by the
model. Thus, an R2 value of 0.75 implies that the model can explain three-quarters of the variation in
the outcome [24], i.e. the dependent variable. The R2 is calculated with Formula 4.27. In this formula yi

represents the actual value of one dependent variable, ȳ represents the average value of all the dependent
variables and ŷi is the estimated value of ship i . The closer the R2 score is to one, the smaller the difference
between the actual and the predicted value and thus the better the model. Therefore, the R2-method is
a good method to evaluate how good a model is, i.e. how good a model fits the data. The R2-score is not
a measurement for accuracy of the model.

However, one of the limitations of the R2-method is that it is possible that a worse model leads to a
higher score. This has to do with the potential overfitting of a model. This is explained in Figure 4.6. The
blue line represents the true relation between two variables, and the dots represent true values. The values
can be better approximated with the red curve, and thus this model has a higher R2-score. Still, it is not
a better model than the blue line as it doesn’t capture the true (linear) relation. As a result, a model can
fit very well to the (training) data that is used to build the model, but may fit very poorly to new (testing)
data. Basically, overfitting means that a model becomes more complex than the process that one wants
to model. The possibility of overfitting needs to be taken into account when the R2-scores are assessed.
An indication of overfitting is when the R2-score for training data is significantly higher than the R2-score
for unseen testing data.

An advantage of this method on the other hand is that one is able to compare the performance
of different models, because the performance is presented in a relative manner. This means that the
performance of a lightship weight model and a resistance model can be compared immediately.

R̂2=1−
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳi )2 (4.27)

Figure 4.6: Overfitting model

The Root Mean Square Error-method (RMSE) is a method that represents the standard deviation of
the difference between the predicted values and the true values. Compared to the R2-method this method
provides an absolute value on how much the predicted values deviate from the true values, instead of
a relative value. Therefor the RMSE-method is a good method to determine the accuracy of a model. To
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calculate the RMSE the equation 4.28 is used.

RMSE=
√√√√ 1

n
·

n∑
j=1

(
y j − ŷ j

)2 (4.28)

The Mean Absolute Error-method (MAE) represents the average of the absolute difference between
the predicted values and the true values. The MAE is calculated via formula 4.29. Compared to the MSE or
RMSE method, the MAE is more robust to outliers or large errors. This means that a model that produces
some large errors can have a good MAE score. This is undesirable, because a model is desired that has
little error for all the estimations.

MAE= 1

n
·

n∑
j=1

|y j − ŷ j | (4.29)

Conclusion
R2- method is a common method to compare the performance of different models. This is possible
because the performance is given as a relative value. This is an advantage. Thereafter, the R2-method is
relatively easy to interpret. A goal of this thesis is that the proposed parallel hybrid model will be accepted
by the naval architects. Thus, good interpretability is an advantage.

Therefore the R2- method will be used to assess the performance of the empirical formulas. The for-
mulas with the best performance will be selected for the further development of the parallel hybrid model.

4.6.2. Performance metrics for machine learning models
In machine learning models, data is often split in training-data and test-data. The reason for this is that if
a model has been trained to predict the dependent variable based on the independent variables, it already
knows the answers to that particular data set, the training data set. Therefore, to tell something about
how well a model can predict the dependent variable, it should be tested with data that it doesn’t already
know. Three validation methods that deal with this problem will be discussed.

The first is k-fold cross-validation [24]. In k-fold cross validation samples are randomly partitioned
into k sets of roughly equal size. The model is trained based on the data of the first fold or subset of the
data. The rest of the subsets are used to test the data. For k=10, thus in 10-fold cross validation, 90% of
the data is used for training and 10% for testing. As k gets larger, the larger the portion of the data that
is used for training. This leads to a more accurate prediction. Literature describes that 5 and 10 are usual
values for k [24]. The predicted values for the test-data are then compared to the true values. Using the
R2-method, a score for this prediction can be obtained. In 10-fold cross validation, this is done 10 times
for 10 different sets of training and test data. An example of this can be seen in Figure 4.7. This is an
example of 4-fold validation. As can be seen, each data point is used both for training and testing.

The scores for each prediction are thereafter averaged. This is done to make sure that the predictive
capability converges to a constant value and is not dependent on the set of training and test data that
is used. A luckily chosen combination of training and test-data can, for instance, lead to a low error and
high predictive capability and vice versa.

The second validation method is the Leave One Out-method [24]. In this method one data point is
left out of the training-set. This means that the model uses nearly all the available data to train. More
training data generally means a more accurate model. On the other hand, the performance of the model
using this method, is very dependent on how well one data point fits in this model. So this method
calculates the performance of a model, but with low certainty that it is the true performance. 10-Fold
cross validation deals with this problem. First, by taking a large data-set as testing data and secondly, by
using different combinations of training and test data.

Finally, data can be manually split into Train & Test data. The goal of this method is to force a
particular distribution of training data and test data. This method is interesting because one of the
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Figure 4.7: k-fold cross validation

research questions is about how well the model performs in data sparse areas of design space. In other
words, in using the Train & Test split method one can select an area in the design space and put all the
available data in the test data set. A model can thereafter be trained with all other available data. The
resulting performance gives a good indication of how well the model performs in data-sparse areas. A
naval architect can then determine if this performance it good enough, and if this model can be used in
the ship design process.

Conclusion
The 10-fold cross validation will be used to determine how good the black and grey box models are. This is
because the performance is measured multiple times for different sets of training and test data. Therefore
this is a good method to measure the performance of the model, independent of the data that is used
for training or testing.

Based on the Train & Test split method, different sets of training and test data will be chosen to measure
the performance of the model in different situations. Situations that reflect some ship design problems
that are mentioned already in Chapter 2. For example, designing a new vessel in a data-abundant region
of the design space.

4.7. Conclusion
In this chapter, an overview is given about how the proposed parallel hybrid model is constructed. All
the different sub-models have been discussed.

First of all the white box model was discussed. Different methods were explored that are able to predict
the lightship weight of a ship, or a certain weight component of the lightship weight. Methods were found
for different ship types. Based on the applicability of these methods and the availability of reference data,
it was chosen to test four ship types. These are the bulk carrier, the general cargo ship, the oil tanker and
the container ship. The different weight estimation methods for these ship types will be assessed with the
R2-method. This method expresses the performance of the weight estimation methods as a relative value.
Based on this performance, one weight estimation method is selected for each ship type. These methods
are implemented in the white box model. The performance of this model describes the performance of
methods that were already available in literature. This is important when the performance of the black
box and parallel hybrid model are assessed as well. Based on this one can tell if the ship design process
has thus been improved by this research.

Secondly the black box model was described in detail. As a black box model the Random Forest
Regression Model is used. In this method 100 uncorrelated decision trees are randomly constructed. The
individual predictions of each tree are ensemble averaged in order to derive the prediction of the entire
random forest model. This prediction out-performs any of the predictions of the individual decision trees.

The white box can now be used to estimate the lightship weight for four ship types and the black box
model can be trained to predict the correction that should be applied, based on the data. This approach
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is the parallel hybrid modelling approach.
The performance of both the black box model and the parallel hybrid model are assessed with the

10-fold cross validation. This gives a good and robust indication of the models’ performances. The Test
& Train split method will be used to simulate certain situations in the ship design process. For example,
how well can a model predict the lightship weight in a region of a design space where data is lacking.





5
Experiments & Results

This chapter will describe the experiments that have been conducted in order to test the proposed model.
First, an explanation is given about each experiment and their goal. Secondly, the performance of the current
design approach will be determined, i.e. the white box model. The same will be done for the black box
model approach and the proposed parallel hybrid model approach. Based on this performance assessment
a conclusion can be drawn about whether or not the proposed solution is an improvement of the current
design approach and an improvement of the initial Maritime Intelligence Tool.

5.1. Design of experiments
To evaluate the model and its components, the following questions have been determined that should
be answered based on experiments.

What is the performance of the white box model? - The answers to this question will give insight into
how accurate the methods are that are currently used to estimate the lightship weight. Based on
these results, methods will be selected that will be used in the white box model. This experiment
is described in Section 5.2.

What is the performance of the black box model and the parallel hybrid model? - The performance of
the black box model and parallel hybrid model should be determined to compare it with the per-
formance of the white box model. In this way one can compare three different design approaches,
namely

1. A design approach based on knowledge (White box model)
2. A design approach based on statistics (Black box model)
3. A design approach based on statistics and knowledge (Parallel hybrid model)

A description of this experiment and the results are given in Section 5.3.

How do these models perform with a smaller training set? - The current MIT performs well when suf-
ficient data is available, but when the available data is lacking, the performance drops significantly.
This should be examined and compared to the performance of the proposed parallel hybrid model
in a similar situation. It is expected that a model that is based on both data and on knowledge, i.e.
the parallel hybrid model, performs better in this case. That would mean that a parallel hybrid
model performs better at the boundaries of a design space. That is beneficial, because it is expected
that novel and innovative ship designs are located in these boundary regions. This experiment is
described in Section 5.4.

57
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What is the performance of the model in interpolation and extrapolation gap areas? - This experiment
is similar to the previous experiment, namely to measure the performance of the model in a region
where data is lacking. The difference is that in this experiment specific data is selected for the
training and the test data set, based on one of the variables, e.g. length or deadweight. This means
that the focus is not on reducing the size of the training set, but on predicting the lightship weight
of vessels without any similar vessels in the training data set. In this way, gaps in a design space
are manually created. These are interpolation gaps and extrapolation gaps. This experiment will
be further explained in Section 5.5.

When should a naval architect rely on which model? - This questions will be answered qualitatively,
based on all the experiments that are conducted. Therefore, first the results of the first two ques-
tions will be discussed in a different perspective in Section 5.6. It is important to compare the results
of these different questions, because that will give a good indication of the overall performance of
the different models. After that, a naval architect is able to choose a model that best deals with a
certain problem in ship design. This question will be answered in Section 5.7.

For each experiment, first a description of the experiment will be given. Thereafter follow the results of
that experiment and a discussion of these results. Finally, a conclusion will be given for each experiment
containing the most important findings.

5.2. Performance white box model
The goal of this experiment is to determine the performance of multiple weight estimation methods. As
mentioned in Section 4.6, to measure the performance of the estimation methods, the R2-method is used.

Experiment
In this experiment the choice was made to test multiple combinations of weight estimation methods and
measure the total performance. To do this, a method was chosen for each of the three weight components
(steel, outfitting & equipment and machinery), a prediction was done for each component and the results
were summed. The result is a prediction for the lightship weight, for which a R2-score can be determined.
The different combinations of methods and their R2-score can be found in Table 5.1 for each ship type.
Based on these scores, methods will be selected for implementation in the white box model.

Ideally, one would measure the performance of each weight estimation method individually. As a
result, a naval architect is able to select the best weight estimation method for each weight component.
However, this was not possible, because there was no reference data available in the database for each
weight component.

Results
The results of this experiment can be found in Table 5.1. The best R2-scores are printed in bold. There
are three remarks to this table.

First of all, it was expected that the values for the R2-scores varied between 0 and 1. As can be seen
in Table 5.1, this is not the case for experiment 12, 13, 14, 15, 20 and 21. The combinations of estimation
methods in these experiments lead to a negative R2-score. A negative R2-score means that the model does
not follow the trend in the data and the model fits worse than a horizontal line.

An explanation for the negative scores is that the methods are outdated. These methods are the
methods from DNV (1972), Sato (1967) and Miller (1968) for steel weight. These methods are empirically
derived and based on ship data that was available at the time. Since that time, ship sizes have increased
significantly. This development can be seen in Figure 5.1 for container ships. With this increase in ship
size, also the longitudinal bending moments increase significantly, and thus, significantly more structural
steel is required. In other words, the lightship weight of today’s large ships are very hard to estimate based
on reference data from approximately 1970. As the steel weight is the largest component of the light ship
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weight, the performance of a model is also mostly determined by the performance of the steel weight
estimation method. For a crude oil tanker the steel weight is approximately 80% of the lightship weight
and for a container ship this is around 65% [29].

Secondly, it is noticeable that the method from D’Almeida (2009) also performs relatively well for all
ship types. This method is also the youngest as it is from 2009. Thus, unlike the methods from DNV (1972),
Sato (1967) and Miller (1968), most of the new and larger ships are taken into account in D’Almeida (2009).
Not surprisingly, this leads to a better fitting model and thus to a higher R2-score.

Thirdly, the generic method has a higher performance than was expected. As mentioned in Sec-
tion 4.3.1, it is expected that a generic method, which is thus applicable to every ship type, would perform
worse than a ship type specific method. As can be seen in experiment 5 and 11, this is not the case.

Experiment WST WO&E WM R2-score

Bulk carrier
1 Generic method - - 0.5774
2 Murray Papanikolaou Watson 0.714
3 Murray Papanikolaou Munro-Smith 0.7649
4 D’Almeida D’Almeida D’Almeida 0.6017

General cargo ship
5 Generic method - - 0.8322
6 Wehkam-Kerlen Papanikolaou Watson 0.6999
7 Wehkam-Kerlen Papanikolaou Munro-Smith 0.7528
8 Carreyette Papanikolaou Watson 0.0679
9 Carreyette Papanikolaou Munro-Smith 0.1755

10 D’Almeida D’Almeida D’Almeida 0.8077
Oil tanker

11 Generic method - - 0.8843
12 DNV Papanikolaou Watson -2.1399
13 DNV Papanikolaou Munro-Smith -1.9702
14 Sato Papanikolaou Watson -0.3219
15 Sato Papanikolaou Munro-Smith -0.2133
16 D’Almeida D’Almeida D’Almeida 0.6997

Container Ship
17 Generic method - - 0.6084
18 Chapman Papanikolaou Watson 0.4934
19 Chapman Papanikolaou Munro-Smith 0.5949
20 Miller Papanikolaou Watson -1.6282
21 Miller Papanikolaou Munro-Smith -1.371
22 D’Almeida D’Almeida D’Almeida 0.8942

Table 5.1: R2-scores for different combinations of ship type specific methods and the generic method
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Figure 5.1: Development of container ship size (from Shipping and Freight Resource, 2021)

https://www.shippingandfreightresource.com/port-congestion-causes-and-impact-on-global-trade/
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Finally, to give an idea of the accuracy of the white box model, in Figures 5.2, 5.3, 5.4, 5.5 the estimated
values for lightship weight are plotted against the real values. Ideally, the estimated values and the real
values are equal, which would put a dot on the diagonal line in the scatter plot. As can be seen in the
figures, for all the ship types most of the dots are below the diagonal line. This means that the white box
model mostly underestimates the lightship weight.

Figure 5.2: White box model results - Bulk carrier Figure 5.3: White box model results - General cargo ship

Figure 5.4: White box model results - Oil tanker Figure 5.5: White box model results - Container ship

Conclusion
Based on the results of the performance tests of the weight estimation methods, the best methods are
selected for further implementation in the white box model. The selected methods per ship type can be
found in Table 5.2. These methods are referred to as the white box model for the rest of this report.

Ship type WST WO&E WM

Bulk carrier Murray Papanikolaou Munro-Smith
General Cargo Ship Generic method - -
Crude Oil Tanker Generic method - -
Container Ship D’Almeida D’Almeida D’Almeida

Table 5.2: Selected methods per ship type
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5.3. Performance of black box model and parallel hybrid model
In this section the performance of the black box model and the parallel hybrid model will be discussed.
The goal is to determine how the performances of the white box model, black box model and parallel
hybrid model relate to each other.

Experiment
As is mentioned in Section 4.6.2, a model should not be tested with the same data that it has been trained
with. In k-fold cross validation, multiple random combinations of training-data and test-data are used
to measure the predicting capability or performance of the model. As mentioned in Kuhn & Johnson
(2016) [24], by choosing k = 10, it can be expected that the measurement for the performance is sufficiently
accurate.

The black box model and the parallel hybrid model are tested with 10-fold cross validation. For each
ship type all the available reference data is used in the 10-fold cross validation method. In this method, 90%
of the input data will be used to train the model and 10% of the data will be used for testing. This is done
10 times, for different sets of training and test data and the resulting performance scores will be averaged.

Results
In Table 5.3 the results of this experiment can be found. First the size of the training data set and test
data set are given. Secondly, the 10-fold cross validation scores are given for the black box model and the
parallel hybrid model. The white box R2-score is added for comparison.

Ship type Train data Test data Black Box Parallel Hybrid White Box

Bulk carrier 1095 121 0.936 0.942 0.765
General Cargo Ship 1411 156 0.967 0.952 0.832
Crude Oil Tanker 119 13 0.923 0.922 0.884
Container Ship 408 45 0.932 0.943 0.894

Table 5.3: 10-fold cross validation scores for different models and ship types

First of all, looking at the scores in Table 5.3 for the black box model and the parallel hybrid model,
it can be seen that those are all quite high. As mentioned in Section 5.2, an R2-score of 1 means that a
100% of the variance of the outcome can be explained by the model, which means that it is a good model.
All the black box and parallel hybrid model R2-scores are higher than the score for the white box model,
although it is not far off.

Secondly, for both the general cargo ship and the container ship, the score of the parallel hybrid model
is higher. It was expected that the parallel hybrid model had a higher score than the black box model, for
each ship type. This seems a bit strange, but it should be noted that the differences between the scores
are very small. In fact, it is so small that the differences can be neglected. The reason for this is that the
distribution of training and test data still has got influence on the 10-fold cross validation score. The
influence is limited, by choosing k = 10 in k-fold cross validation, but still it can be seen. In Section 5.4
an example of this is given.

Thirdly, comparing the size of the training data set with the 10-fold cross validation scores for the
black box model, it can be seen that the larger the training data set, the higher the score. The 10-fold cross
validation scores of the black box model are plotted against the size of the training data set in Figure 5.6.
This result was expected. The relation between the size of the training set and the performance of the
model will be described in more detail in Section 5.4

And finally, these scores for performance are still a bit abstract. The scores are determined by a 10-fold
cross validation method, which uses the R2-method to calculate the error. The R2-score is a measurement
for the fitness of the model to the reference data, but it is not a measurement for absolute accuracy.
To give a better idea of the accuracy, the predictions for lightship weight by the black box model and
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Figure 5.6: Size of training data set versus the 10-fold cross validation score for a black box model

the parallel hybrid model are plotted against the true values for lightship weight. This can be seen in
Figures 5.7, 5.8, 5.9, and 5.10, for the bulk carrier, general cargo ship, oil tanker and the container ship
respectively. It can be seen that the plots for the black box model and the parallel hybrid model are
quite similar. This is also expected because the 10-fold cross validation scores are similar. It is especially
interesting to compare these plots with the white box model plot.

Thus, taking the bulk carrier as an example, Figures 5.7a and 5.7b are compared to Figure 5.2. It can
be seen that the dots are much closer to the diagonal line, which represents a perfect model. This is also
the case for the general cargo ship, oil tanker and the container ship. For these figures the same reference
data is used to make estimations with the white box model, as is used to make predictions with the black
box model and parallel hybrid model. Thus, by comparing these figures it is clear that both the black box
model and the parallel hybrid model outperform the white box model, as the data in these figures is much
more concentrated near the diagonal. Based on Figures 5.7a and 5.7b, significant differences between
the black box model and parallel hybrid model cannot be seen.

(a) Black box model result (b) Parallel Hybrid model result

Figure 5.7: Lightship weight predictions - Bulk carrier
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(a) Black box model result (b) Parallel Hybrid model result

Figure 5.8: Lightship weight predictions - General cargo

(a) Black box model result (b) Parallel Hybrid model result

Figure 5.9: Lightship weight predictions - Oil tanker

(a) Black box model result (b) Parallel Hybrid model result

Figure 5.10: Lightship weight predictions - Container ship

Conclusion
The 10-fold cross validation scores for the black box model and the parallel hybrid model are quite high.
By comparing these scores to the white box model score and by comparing the plotted results for the
three models, it can be concluded that the black box model and the parallel hybrid model outperform
the white box model for each ship type.

Thereafter, by comparing the scores and plotted results from black box model and the parallel hybrid
model scores, little difference can be seen. It is expected that these differences are negligible as it is
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expected that it is primarily due to the distribution of training and test data. This distribution is about
which reference vessels are in the training data set and test data set. It is not about the ratio between
training data set size and test data set size. In Section 5.4 this further explained.

5.4. Influence of the training data set size
As is mentioned in Section 1.4, the initial MIT, which is a data-based model, performs badly when data
is lacking. In this experiment the goal is to determine how the performance of this model is influenced
by the amount of available data. This will be done for the black box model and the parallel hybrid model.

Experiment
In this experiment the size of the training data set is varied from 1% until 99% of the data. In the first
iteration, 1% of randomly selected data is used to train a model. The trained model will be tested with
all other available data and the R2-score is calculated. This is done ten times with different samples of
training data and the R2-scores are averaged. This is similar to 10-fold cross validation. As mentioned
in Section 4.6.2, this is done to make the performance independent of which data is used as training data
and test data. This is repeated until the last iteration where 99% of the data is used for training and 1%
of the data is used for testing the trained model. The distribution of data is shown in Figure 5.11. The blue
curve represents the size of the training data set. In the first few iterations the step was 1%. The step size
was increased for larger size of the training set. This was done in order to reduce calculation time. It was
possible to do this, because, after some experiments, it was clear that the performance converged to a
certain value. Therefore, a small step size was not required.

The size of the training data set will be referred to as NTrain and the size of the test data set will be
referred to as NTest

Figure 5.11: Distribution of data over the training- and test data set

Results
The results of this experiment are plotted in Figures 5.12, 5.13, 5.15 and 5.16. These are the results for the
bulk carrier, container ship, oil tanker and general cargo ship respectively. In these graphs the averaged
R2-scores are plotted against NTrain. The blue curve represents the black box model and the red curve
the parallel hybrid model.

Figure 5.12 shows what one would expect. With a small NTrain, the parallel hybrid model performs
significantly better that the black box model. As NTrain increases, the performances of both models
converge to a constant value. Although the figure shows that the parallel hybrid model performs better
over the entire range, it should be noted that the differences are very small for a larger NTrain.

Figure 5.13 shows the result for container ships. It is similar to Figure 5.12, only in this graph the curves
go up a little bit at an NTrain of around 400. This increase in performance can be neglected, because it
is a result of the random distribution of data across the training and test set. When either NTrain or NTest

becomes small, the influence of the random distribution increases.
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Figure 5.12: Increasing the NTrain of the bulk carrier

Figure 5.13: Increasing the NTrain of the container ship

This influence of the random distribution is shown in Figures 5.14a and 5.14b. These figures are the
results of the same experiment as Figure 5.13, but the y-axis scale differs. As can be seen in Figure 5.14a,
at an NTrain of approximately 25 the performance decreases first before it increases. In general, the higher
the NTrain, the higher the performance so this decrease in performance should not be there. Secondly,
this happens again for NTrain of approximately 325 and higher. Here the performance decreases again.
Figure 5.14b shows the results of the same experiment as in Figure 5.14a, but now a different random
distribution is chosen. In this graph the decrease in performance is gone. Thus, when assessing the perfor-
mance for small training or NTest one should take into account the influence of the random distribution.
Based on Figures 5.14a and 5.14b, it is clear that for either a small training or test data set size ( < 75
reference vessels ), the random distribution has influence on the performance scores. Therefore, in this
case, performance score differences lower than 0.03 should be neglected.
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(a) Random state 1
(b) Random state 2

Figure 5.14: Increasing the NTrain of the container ship

For the oil tanker results in Figure 5.15, this influence can also be seen. The decrease in performance
at an NTrain of 120 is a result of the random distribution. For an NTrain higher than 25 approximately, the
two models perform equally. For small NTrain it is clear that the parallel hybrid model outperforms the
black box model for small NTrain.

Figure 5.15: Increasing the NTrain of the oil tanker

Finally, the result for the general cargo ship in Figure 5.16. In this experiment the black box model
outperforms the parallel hybrid model on almost the entire range of NTrain. Even though the difference
in performance is little, this was not expected. Different random states have been tried, but each time
the black box model outperformed the parallel hybrid model. Thus, the random state was not the cause.
It is expected that the chosen white box model is a reason for this behaviour. As can be seen in Figure 5.3,
the white box model for the general cargo ship first overestimates the lightship weight. For larger vessels,
this model underestimates the lightship weight. Thus, the correction that should be applied, should first
be negative and then positive. This inconsistency might result in that the parallel hybrid model performs
worse than the black box model. It should be noted that the difference between the models is very small
and might be negligible.
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Figure 5.16: Increasing the NTrain of the general cargo ship

Figure 5.17: Increasing the NTrain of the general cargo ship - only small NTrain

Conclusion
Based on the results a few conclusions can be drawn from the performance of the black box model and
the parallel hybrid model for different sizes of the training data set.

First of all, the parallel hybrid model performs better for small sizes of the training data set. This can
be seen for all the experiments, thus for all ship types. Even for the smallest size of the training set that
is used in the experiments, the performance of the parallel hybrid model is at least 0.8 approximately. This
in contrast to the black box model which shows a significant decrease in performance for smaller sizes
of the training data set. Thus, the parallel hybrid model is more consistent over the entire range of training
data set sizes than the black box model.

Secondly, when the size of the training data set increases the performance of the black box model will
converge to the performance of the parallel hybrid model. For the general cargo ship the black box model
outperforms the parallel hybrid when the size of the training data set increases. The differences between
the performance of the black box model and the parallel hybrid model on the other hand are relatively
small. Therefor is it difficult to draw a hard conclusion on this matter or to point out what the actual cause
of these differences is. Thus, in general for all ship types, it is clear that the performances of both models
converge to a maximum value.



5.5. Performance of model in gaps of the design space 69

Finally, Figure 5.18 shows the results for the four different ship types. These are the same results as
is shown already in the section, but the performances of larger training data set size are left out. Based
on the graphs in this figure one can determine when to use the black box model and when the parallel
hybrid model. In general, for training data set size smaller than approximately 50 reference vessels, a
naval architect should use the parallel hybrid model. For higher training set sizes both models perform
practically the same. The black box model performance for all ship types is stable for training set sizes
higher than approximately 35. Thus, this is the smallest size for a training data set when a naval architect
wants to use the black box model.

(a) Bulk carrier (b) General cargo ship

(c) Oil tanker (d) Container ship

Figure 5.18: Results for four ship types, focused on the small training data set sizes

5.5. Performance of model in gaps of the design space
The goal of this experiment is to assess the performance of the black box model and parallel hybrid model
in areas of the design space where there is no data. In this experiment the focus is not on the size of the
training data set, but on predicting the lightship weight of innovative and novel ships. These vessels are
considered to be outside the boundaries of a design space. Thus, in this experiment the lightship weight
of ships outside these boundaries will be predicted and the performance of the model will be determined.
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Experiment
In this experiment specific reference vessels are selected for the train data set and test data set. This
is the ’manually split into Train & Test Data’ - method that is mentioned in Section 4.6.2. Two types
of gaps will be used.

Interpolation As mentioned in Section 1.5, a goal of this thesis is to ensure the feasibility of design
solutions in the entire design space. The interpolation gap experiment focuses on gaps
within the boundaries of the design space. Because of ship size limitations, due to bridges
and locks for example, it is often found in the data that ships are concentrated near a certain
limit. Just above this limit, one will not find a lot of vessels. In this experiment a gap will be
created in between groups of data. A few examples are shown in Figure 5.19. A model will
be trained with data located in the blue areas. Data in the red area will be used for testing.
The area in between the blue and red areas is added to force that test data is outside the
boundaries of the train data set.

In Figure 5.19, multiple interpolation gap areas can be seen. From left to right, it can be seen
that gap area increases. It is expected that the larger the interpolation gap area, the smaller
the performance of the model. This will be tested.

Extrapolation As mentioned in Section 1.4 it is expected that novel and innovative design solu-
tions are located at the boundaries of a design space. The extrapolation experiment focuses
on these boundary regions and especially on regions outside the boundaries of the design
space. In this experiment a limit will be determined which represents a boundary. A model
will be trained with all available data up to this limit. The model will be tested with data
above this limit. This can be seen in Figure 5.20. The red areas represent the gap areas, where
the available reference data will be used for testing.

In Figure 5.20, multiple extrapolation gap areas can be seen. From left to right, it can be
seen that the distance from training area and the testing area is increased. It is expected that
when the distance between the training area and the testing area increases, the performance
of the model will decrease and it will decrease at a higher rate as well.

Figure 5.19: Interpolation: Increasing the gap

Figure 5.20: Extrapolation: Increasing the distance between train and test data
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Instead of performing this experiment for multiple ship types, one ship type is chosen for this exper-
iment. The first reason for this is that the black box and parallel hybrid models for the different ship type
perform quite similar. Therefor it is expected that the results for this experiment for different ship types
is similar as well. The bulk carrier will be used in this experiment. This is done because there is a lot of
data available for the bulk carrier. Secondly, looking at the figures in Section 5.4, it can be seen that the
models for the bulk carrier have the most smooth curves (see Figure 5.12) and hence they are considered
the most stable models as well.

For this experiment it is more interesting to vary the limits that will be used to divide data into the
training or test data set. In this way the inter- and extrapolation power of the models can be measured.
The choice was made to divide the data based on two variables.

Length between perpendiculars This is a ship size variable. As already mentioned, the ship size is influ-
enced by size limitations. As the lightship weight is significantly influenced by the length between
perpendiculars, the choice was made to vary this ship size variable.

Deadweight The biggest component of the deadweight is the payload. The payload, i.e. the cargo, can be
containers, crude oil, dredged sand or heavy lift cargo. Shipowners want to maximise the payload,
but they want to minimise the dimensions of the vessel. The latter is to reduce the purchasing cost,
due to less steel, and to reduce the fuel cost, due to less resistance. The deadweight will be used to
divide data in the extrapolation gap test. After this test it will be clear how well the model performs
when it predicts the lightship weight of ships that have an unseen and higher deadweight.

To eliminate the influence of the random distribution, as is discussed in Section 5.4, in this experiment
only training and test data set sizes are used from 50 reference vessels or larger.

Results
Interpolation
First, the results will be given for the interpolation experiments. For each experiment, first, a table will
be given containing the settings of that experiment and the resulting performance scores. The settings
are the limitations that are used to divide the data. This leads to a distribution of the data in the sets Train
A, Test, or Train B. Train A represents the part of the data set that is left from the test area, i.e. left from
the red area in Figure 5.19. Train B represents the part of the data right from test area. Basically, reference
vessels located left from the test area are smaller vessels and reference vessels located right from the test
area are larger vessels. This distribution is given so that it is clear that both Train A and Train B contains
a sufficient amount of reference vessels, namely at least 50.

In Tables 5.4, 5.5 and 5.6 the settings and results of the three interpolation tests are given. These cor-
respond with Figures 5.21, 5.22 and 5.23. The performance scores in these tables are determined by
calculating the R2-score of the predicted values for the lightship weight of reference vessels located in the
gap area. These are all the reference vessels in the red areas in Figure 5.19.
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Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 150 165 102
Train B 175 ∞ 687

Results
Model Performance score

Black box model -0.023
Parallel hybrid model 0.168

Table 5.4: Interpolation Lpp - Test 1

Figure 5.21: Interpolation Lpp - Test 1

Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 150 175 350
Train B 185 ∞ 369

Results
Model Performance score

Black box model 0.286
Parallel hybrid model 0.478

Table 5.5: Interpolation Lpp - Test 2

Figure 5.22: Interpolation Lpp - Test 2



5.5. Performance of model in gaps of the design space 73

Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 150 200 808
Train B 210 ∞ 210

Results
Model Performance score

Black box model -0.169
Parallel hybrid model 0.598

Table 5.6: Interpolation Lpp - Test 3

Figure 5.23: Interpolation Lpp - Test 3

The results of the three interpolation tests are given in Table 5.7. As can be seen, for all the tests
the parallel hybrid model outperforms the black box model, as the performance scores are higher. A
surprising result is that the performance score for the parallel hybrid model increases from interpolation
test 1 to interpolation test 3. This is surprising because the gap is enlarged across these tests, as is shown
in Figure 5.19. It was expected that the performance would decrease.

An explanation for this possibly lies in the size of data set Train A and Train B. Looking Tables 5.4, 5.5 and 5.5,
it can be seen that the ratio of data set sizes Train A : Train B develops from approximately 1 : 6 in test
1, to 1 : 2 in test 3. As a result, the model is trained mainly with reference vessels in set Train B. Basically,
too much weight is put on the reference vessels in Train B relative to Train A, leading to a bad score. In
test 3 the distribution of data across Train A and Train B is more equal. This means that the model sees
about the same amount of smaller reference vessels (Train A) during the training phase as it sees larger
reference vessels (Train B), reducing the chance of overfitting. This should lead to a better prediction for
both the black box model and the parallel hybrid model.

However, as can be seen in Table 5.7, this effect cannot be seen for the black box model. The perfor-
mance of the black box does not improve across test 1, 2 and 3. So the previous explanation does not
explain the results in this table.

A second reason for these results is that the random forest regression model is not the appropriate
model for interpolation test. This will be further explained in the following extrapolation experiment
results paragraph.
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Model Interpolation 1 Interpolation 2 Interpolation 3

Black box model -0.023 0.286 -0.169
Parallel hybrid model 0.168 0.478 0.598

Table 5.7: Performance scores of 3 interpolation tests Lpp

Extrapolation
For the extrapolation gap tests, first, results are given for gaps that are created based on the length between
perpendiculars variable. In Tables 5.8, 5.9 and 5.10, the settings and the results can be found. These
correspond with Figures 5.24, 5.25 and 5.26, respectively. The performance scores in these tables are
determined by calculating the R2-score of the predicted values for the lightship weight of reference vessels
located in the gap area. These are all the reference vessels in the red area’s in Figure 5.20.

Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 150 170 186

Results
Model Performance score

Black box model -3.092
Parallel hybrid model 0.494

Table 5.8: Extrapolation Lpp - Test 1

Figure 5.24: Extrapolation Lpp - Test 1
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Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 170 190 543

Results
Model Performance score

Black box model -7.453
Parallel hybrid model 0.386

Table 5.9: Extrapolation Lpp - Test 2

Figure 5.25: Extrapolation Lpp - Test 2

Settings
Set Lower limit (m) Upper limit (m) Size data set

Train A 0 140 114
Test 190 210 93

Results
Model Performance score

Black box model -8.434
Parallel hybrid model 0.475

Table 5.10: Extrapolation Lpp - Test 3

Figure 5.26: Extrapolation Lpp - Test 3
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In Table 5.11 the results of these three experiments are summarised. It can be seen clearly that for
the extrapolation test the performance of both models decreases, when the distance between the training
data set and the test data set is increased. Secondly, it is noticeable that the black box model performance
is significantly worse than the parallel hybrid model.

Model Extrapolation 1 Extrapolation 2 Extrapolation 3

Black box model -3.092 -7.453 -8.434
Parallel hybrid model 0.494 0.386 0.475

Table 5.11: Performance scores of 3 extrapolation tests

By comparing Figures 5.24, 5.25 and 5.26 an explanation for this is found quickly. Looking at the
results for the black box model, it can be seen that the predicted values for lightship weight are constant,
approximately 7000 tonnes. It can be concluded that the black box model has no extrapolating power at
all. Thus, the chosen black box model, the random forest regression model, is not the appropriate model
for this type of test.

This can also be seen when the results for the white box model and the parallel hybrid model are
compared. The distribution of the green and red dots, which correspond to the white box model and the
parallel hybrid model respectively, is similar. The only difference is a translation upwards. Thus, in the
parallel hybrid model, the black box model correction which is applied to the white box model estimation,
is constant. This is also a result of the absent extrapolating power of the random forest regression model.

An explanation can be found in Section 4.4. Assume that for an extrapolation test data is split into
a training set and a test set, based on a length between perpendiculars of 100 meters. A random forest
regression model distributes the training data in different samples and starts building the decision trees.
At each node of these trees, training data is split based on one of the independent variables. The length
between perpendiculars is one of the independent variables. Thus, a splitting rule at a node of a decision
tree can be "Length between perpendiculars > 99 m.". In the testing phase for an extrapolation problem, all
reference vessels meet this criteria and thus, most of these vessels will follow the same path in the decision
tree, leading to the same prediction for lightship weight. This prediction is equal to the lightship weight
of the largest vessel that the random forest regression model has seen in the training phase.

For interpolation this works the same. The only difference is that in interpolation, there are two
splits based on independent variables. In the testing phase, the predictions that are made for the testing
reference vessels are equal to the ensemble average lightship weight of training reference vessels located
at either the upper limit of training set Train A, or the lower limit of training set Train B. Thus, also for
interpolation problems the random forest regression model is not the appropriate model if one splits the
data based on an independent variable.

Thus, it can be concluded, that a random forest regression model is not the appropriate model for
interpolation and extrapolation tests if one splits the data based on an independent variable. Therefore,
further discussion of the results in Table 5.11 is not necessary.

Secondly, the results are given for gaps that are created based on the deadweight variable. The settings
and the resulting performance scores can be found in Tables 5.12 and 5.13. These tables correspond with
Figures 5.27 and 5.28.

The results confirm the conclusion about the extrapolating power of a random forest regression model,
that is drawn based on the previous extrapolation tests. Also in Figures 5.27 and 5.28, it can be seen that
the distribution of green and red dots, corresponding with the white box model and the parallel hybrid
model results, is similar. This means that only a constant correction is applied to the white box model
estimation in the parallel hybrid model.

Although the Deadweight is not one of the independent variables, one can imagine that there is a
strong relationship between the deadweight and the independent variables [Length between perpen-
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diculars, Breadth, Depth, Block-coefficient]. Thus, the results for the extrapolation of deadweight and
extrapolation of length between perpendiculars are comparable.

Comparing the performance scores in Tables 5.12 and 5.13, it can be seen that the parallel hybrid
model does not outperform the black box model. This is in contrast to the previous extrapolation tests.
The explanation is that the white box model does not perform well either.

Settings
Set Lower limit (tonnes Upper limit (tonnes) Size data set

Train A 0 30000 370
Test 35000 40000 145

Results
Model Performance score

Black box model -0.201
Parallel hybrid model -0.055

Table 5.12: Extrapolation DWT - Test 1

Figure 5.27: Extrapolation DWT - Test 1
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Settings
Set Lower limit (tonnes Upper limit (tonnes) Size data set

Train A 0 30000 370
Test 40000 50000 145

Results
Model Performance score

Black box model -0.163
Parallel hybrid model -0.643

Table 5.13: Extrapolation DWT - Test 2

Figure 5.28: Extrapolation DWT - Test 2

Conclusion
Based on the interpolation gap test it can be concluded that the parallel hybrid model outperforms the
black box model. A surprising result was that the performance of the parallel hybrid model increased when
the gap was enlarged. Because of a well performing white box model, as part of the parallel hybrid model,
a performance score in interpolation test 3 of approximately 0.6 seems reasonable. The performance
score for interpolation test 1 is much lower than expected, namely approximately 0.17.

It is expected that this is a result of overfitting of the parallel hybrid model. This means that, in the
parallel hybrid model, the estimation by the white box model, is over-corrected by the black box model.
It is expected that this is a result of the unequal data set sizes of Train A and Train B. Further testing is
required to confirm this.

Looking at the results for the extrapolation gap test there is only one conclusion to be drawn. The
random forest model is not the appropriate model for extrapolation problems. This is because this model
has no extrapolating power. Therefore, a well performing parallel hybrid model can only be the result
of a well performing white box model.
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5.6. Reflection
In this chapter the performance of different models, the white box, black box and the parallel hybrid model
is assessed under different circumstances. The current design approach as mentioned in Section 2.2 is
mostly represented by the white box model, as this model consists of empirical formulas. The results
of this chapter show that, by using an advanced machine learning tool, a higher performance can be
obtained. Although this is a good result of this research, the results should also be placed into perspective.

Comparing the R2-scores for experiment 5 and 10, in Section 5.2, it is noticeable that the scores are
quite close. These are the scores for the generic method and the D’Almeida method. A deeper look is
taken into these results. In Figures 5.29a and 5.29b, the estimated values for lightship weight are plotted
against the real values, for the generic method and the D’Almeida method respectively. It can be seen that,
although the R2-score is higher for the generic method, the spreading of data is also higher. The relation
between the estimated values and the true values is more constant for the D’Almeida method.

(a) Generic method result ( R2-score = 0.8322 ) (b) D’Almeida method result ( R2-score = 0.8077 )

Figure 5.29: Deeper look into the white box model performance for the general cargo ship

In the ’old fashioned’ design approach, a naval architect will therefore prefer the D’Almeida method.
By manually tuning the D’Almeida method, a method can be obtained that has a higher accuracy. In
other words, more dots near the diagonal line. As mentioned, the relation between the estimated values
and the true values seems to be constant. Thus, this constant, or the correction factor, can be calculated.
This is shown in Figure 5.30a. First, the red line is placed over the data. This line represents a corrected
D’Almeida model. Assuming that the red line is the diagonal, it can be seen that for a true value of 15000
ton, the corresponding estimation is approximately 11650 ton (lower horizontal arrow). Based on the
black diagonal the corresponding estimation is 15000 ton (upper horizontal arrow). The correction factor
can be found with formula 5.1.

Correction factor= 15000

11650
=1.28755 (5.1)

Thus, by using the D’Almeida method to estimate the lightship weight and by multiplying the results
with the correction factor, a better model is obtained. This model can be seen in Figure 5.30b. It can be
seen that this model outperforms the generic method (Figure 5.29a) and the original D’Almeida method
(Figure 5.29b). The corresponding R2-scores are given in Table 5.14. It can be seen that the R2-score for
the correction D’Almeida method is the highest.

Comparing the score for the corrected D’Almeida method with the black box and parallel hybrid
scores in Table 5.3, it can be seen that the performance is quite similar. Thus, by using the D’Almeida
method and by applying a simple correction, it is also possible to obtain a high performance score for
the general cargo ship.
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(a) Derive a correction factor
(b)

Bakker corrected D’Almeida method result ( R2-score = 0.9328 )

Figure 5.30: Correcting the D’Almeida method

Method R2-score

Generic method 0.8322
D’Almeida method 0.8077

Corrected D’Almeida method 0.9328

Table 5.14: R2-scores for the generic method, D’Almeida method and the corrected D’Almeida method

5.7. Which model to choose ?
As mentioned in Section 5.1, it must be clear for a naval architect which model performs best in
a certain ship design situation. Based on the previous experiments the following conclusions are
drawn.

Based on experiments 1 and 2 it can be concluded that the black box and parallel hybrid model clearly
outperform the white box model when there is sufficient reference data available. Thus, in that case, a
naval architect should rely on the black box or parallel hybrid model.

After experiment 3 it was clear that when the training data set size reduced, the performance of the
black box model reduced significantly, whereas the performance of the parallel hybrid model was relatively
constant. It was concluded that for a training data set smaller than 50 reference vessels, a naval architect
should rely on the parallel hybrid model. For a training data set larger that 50 reference vessels, the naval
architect can choose either the black box model or the parallel hybrid model as the performances were
similar.

In experiment 4, it became clear that the random forest model was not the appropriate model for
interpolation and extrapolation problems. Therefore, a naval architect should rely on the white box
model.

Thus, depending on the situation, the advanced machine learning methods (i.e. black box model and
parallel hybrid model) which are presented in this thesis are an improvement of the current ship design
approach that is used by C-Job’s naval architects (i.e. the white box model), because one is able to obtain
higher performance scores. Therefore, these methods should be used in practice to design future ships.

In Table 5.15 and Figure 5.31 an example of this is shown for future bulk carriers. In Table 5.16 and
Figure 5.32 an example of this is shown for future container ships. In both tables it can be seen that a
model has been trained with reference vessels built between 1980 and 2005. Thereafter, the model was
tested with reference vessels built between 2010 and 2018. The sizes of the training and test set can be seen
in the tables as well. The performance scores are given for the white box model, black box model and the
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parallel hybrid model. To be clear, the white box model performance score is calculated for the reference
vessels in the test set only. Thus, these are slightly different than the white box model performance scores
that were given in Table 5.3.

As can be seen in these table, there is a gap in build year between the training data set and the test
data set. One can image that the vessels that are build in 2006 do not differ a lot of the vessels that are
build in 2005. Therefore, it is assumed to be relatively easy to predict the lightship weight of vessel build
in 2006, based on reference vessels build before 2006. By including a significant gap between the test and
train data set, it is assumed that vessels in the test data set are also slightly different from the reference
vessels in the training data set. This is because research and developments between 2005 and 2010 has
been taken into account in the design of reference vessels that are built from 2010.

In the results section of these tables, it can be seen that the performance score for the black box and
the parallel hybrid model are indeed higher than the performance of the white box model. Thus, naval
architects should use the black box or the parallel hybrid model, instead of the white box model, to design
future ships based on reference data of existing ships.
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Settings
Set Lower limit (build year) Upper limit (build year) Size data set

Train A 1980 2005 552
Test 2010 2018 187

Results
Model Performance score

White box model 0.709
Black box model 0.733
Parallel hybrid model 0.851

Table 5.15: Extrapolation build year - Bulk carrier

Figure 5.31: Predicting the lightship weight of future ships - Bulk carrier

Settings
Set Lower limit (build year) Upper limit (build year) Size data set

Train A 1980 2005 278
Test 2010 2018 31

Results
Model Performance score

White box model 0.716
Black box model 0.823
Parallel hybrid model 0.838

Table 5.16: Extrapolation build year - Container ship

Figure 5.32: Predicting the lightship weight of future ships- Container
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5.8. Validation
White box model
The results of the white box model can be validated using the typical range of weight groups that are given
in Table 4.11. The range for the percentage lightship weight : displacement, of the four ship types are
given in Table 5.17.

Ship type Limits Lightship weight/4
(tonnes) (%)

Lower Upper
Bulk carrier A 20000 50000 15-26
Bulk carrier B 50000 200000 13-20
General cargo ship 5000 15000 20-35
Oil tanker 25000 120000 14-22
Container ship A 10000 15000 26-35
Container ship B 15000 165000 24-35

Table 5.17: Ratio lightship weight- displacement. Based on Table 4.11 from [29]

These are used to see if the estimated values of the lightship weight are within these ranges. This is
also done for the true values for lightship weight. In Figures 5.33, 5.34, 5.35 and 5.36 the results can be
seen for the bulk carrier, general cargo ship, oil tanker and container ship, respectively. In these figures the
percentage of lightship weight : displacement is plotted against the displacement. The black horizontal
lines indicate the typical range of the percentage lightship weight : displacement. The red dots represent
the true values of the lightship weight of the reference vessels and the blue dots represent the estimated
value for those vessels, according to the white box model.

(a) Deadweight tonnage [20000, 50000] (b) Deadweight tonnage [50000, 200000]

Figure 5.33: Bulk carrier
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Figure 5.34: General cargo - Deadweight tonnage [5000, 15000]

Figure 5.35: Oil tanker - Deadweight tonnage [25000, 120000]

(a) Deadweight tonnage [10000, 15000] (b) Deadweight tonnage [15000, 165000]

Figure 5.36: Container ship

Comparing these figures, it is noticeable that for a lot of reference vessels, the actual lightship weight : dis-
placement ratio is higher than the upper limit for this ratio, mentioned in Table 5.17. Thus, the upper limit
of this ratio is not representative for the available reference data.

In Table 5.18, the results are given. In this table a portion is given for how much of the real data is in the
typical range for the ratio lightship weight : displacement. This is also done for the estimated data. It can
be seen that for the bulk carrier and the container ship, almost all estimated ratios lightship weight : dis-
placement is in the typical range. Therefore, according to Table 4.11, these estimations are feasible and the
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estimation method is validated. For the oil tanker and the general cargo a smaller portion of the estimated
values is in the typical range. As already mentioned, the upper limit does not represent the available
reference data very well.

For the oil tanker and the general cargo ship the choice was made to validate the results based on
the comparison between the true ratios and the estimated ratios. Thus, if the estimated ratio light-
ship weight : displacement are similar to the true ratios, than this estimation is considered as feasible.
As can be seen, for both the oil tanker and the general cargo ship, most of the estimated ratio can be
considered as feasible using this method. Only for the smaller general cargo ships the estimated ratios
lightship weight : displacement are significantly higher than the true values for this ratio.

Thus, the white box model overestimates the lightship weight for smaller general cargo ships. This was
already seen in Figure 5.3. Based on Figure 5.34 it is clear that the white box model for smaller general cargo
ships can not be validated according to Table 4.11. Further research is required to validate these results.

Ship type Total1 Validation set2 Real data Estimated data

Bulk carrier A 1216 649 0.534 0.997
Bulk carrier B 1216 410 0.734 0.980
General cargo ship 1567 818 0.595 0.496
Oil tanker 132 104 0.356 0.192
Container ship A 453 65 0.477 0.969
Container ship B 453 281 0.815 0.922
1 The total amount of reference vessels per ship type that are available in

the database. These can be found in Table 4.2
2 This is the amount of reference vessels that were within the range for

deadweight tonnage given in Table 5.17

Table 5.18: Reference
vessels and the portion of those vessels that are within the typical range for lightship weight, as mentioned in Table 5.17

Black box model and parallel hybrid model
The black box and the parallel hybrid model are validated using the 10-fold cross validation method. The
results of this method can be found in Table 5.3. Based on these high performance scores, both the black
box model and the parallel hybrid model are validated.

5.9. Conclusion
In Section 5.1 a brief explanation was given of which questions will be answered in this chapter. Four
questions were answered quantitatively by performing experiments and one question was answered in
a qualitative manner.

First the performance of the white box model was discussed. For the white box model, several weight
estimation methods were found in literature. The performance of these method was expressed by a
R2-score. The methods with the highest score were chosen to be implemented in the white box model.
The performance of these methods, and thus the performance of the white box model, gives an indication
of the performance of weight estimation methods that are currently used in ship design. Primarily because
of the age of several methods, the performance score was quite low. The generic weight estimation method
and the D’Almeida method from 2009 performed best in general.

Secondly, the performance of the black box model and the parallel hybrid model was discussed. The
performance of these models was determined with the 10-fold cross validation method. It was clear that
both the black box and the parallel hybrid model outperformed the white box model, as the performance
scores were higher. This is mainly because there was sufficient training data available for all four types
of ship. The performance of the black box and parallel hybrid was similar for the amounts of training data
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that was used in this experiment.
In the third experiment, the size of the training data set was varied. In this experiment it was clear that

the performance of the black box and parallel hybrid model differed when the size of the training data set
became smaller. In general, the conclusion was drawn that for a training data set smaller than 50 reference
vessels, the parallel hybrid model clearly outperformed the black box model. Where the performance of
the black box model clearly decreases for smaller training data sets, it can be seen that the performance of
the parallel hybrid model is much more consistent for different sizes of the training data set. For a training
data set size larger than 50 reference vessels, the performance of these two models was similar.

Thereafter, the performance of the black box and the parallel hybrid model was assessed in both
interpolation gaps and extrapolation gaps. In these experiments the manually split Train & Test data
method was used, which is described in Section 5.3. It became clear that the Random Forest Regression
model is not the appropriate model for extrapolation problems. To determine whether this is also the
case for the interpolation problem, some extra research is required. In general the parallel hybrid model
performed better than the black box model for interpolation problems. But, the performance score
increased when the size of the gap increased. This is the opposite of what one would expect. It is expected
that the distribution of data across Train A and Train B has influence on the performance scores which
were presented for the interpolation test.

Section 5.6 placed the results of these four experiments into a different perspective. In this section an
’old fashioned’ design approach was described. The result was that with a relatively simple correction of
the D’Almeida method, it was also possible to obtain a higher performance score. This performance score
was comparable with the performance of the black box and parallel hybrid model. One can argue that
there is no need for an advanced machine learning tool if high performance scores can also be obtained
by applying simple corrections to the white box models.

Taking this different perspective into account as well, the last question could be answered qualitatively.
That question was "When should a naval architect rely on which model?". Based on the experiments the
answer to this question can be summarised as follows:

Training data set size < 50 reference vessels: Parallel hybrid
Training data set size > 50 reference vessels: Black box or parallel hybrid
Interpolation or extrapolation problems: White box

This means that the current design approach, which is represented by the white box model, is outdated
and can be replaced by a more advanced method like black box modelling or parallel hybrid modelling.

On the other hand, some additional research is required in order to determine whether the parallel
hybrid model and black box model also clearly outperform the white box models, which are corrected
using a simple method. In Section 5.6, it is shown that this is not the case for the general cargo ship. It
is expected that updating the ship type specific coefficients of the D’Almeida method, higher performance
scores can easily be obtained.

Finally, to validate the results in this chapter two methods were used. To validate the white box model
results, the predicted lightship weight : displacement ratio was compared with a typical range for this
ratio, depending on the ship type. Most of these predicted ratios were in the typical range and thus, these
predictions can be considered as validated. Secondly, if it was outside the typical range, the predicted ratio
was compared with actual lightship weight : displacement ratios. If these values were comparable, than
these predictions were also considered as validated. Almost all predicted lightship weight: displacement
ratios were validated in this manner. Only the validation of the predictions for the smaller general cargo
vessels should be questioned. By choosing the (corrected) D’Almeida method instead of the generic
method, it is expected that this problem is solved.

Based on the results of this chapter, research question 5 and 6 can be answered.
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Research question 5

How can these principles be converted into a model, that improves the quality of the design solutions
produced by C-Job’s current Maritime Intelligence Tool and using its database as a design space?

As is shown in Chapter 5, the quality of the predictions of the lightship weight has been improved, by using
a parallel hybrid model. When less reference data is available this model has proven to perform better
than the white box model and the black box model. As mentioned in Section 5.7, based on a training
data set size of 50 reference or less, the parallel hybrid model outperforms the black box model and the
white box model. Thus, in this situation the parallel hybrid model is an improvement of both the current
Maritime Intelligence Tool (MIT) prediction and the current estimation methods.

With a training data set size larger than 50 reference vessels, the black box model and parallel hybrid
model perform similarly. This was also expected because the black box model performs better when there
is more reference data available.

For interpolation and extrapolation problems another black box model should be found in order to
improve the current MIT. In this thesis, the random forest regression model is used as the black box model.
Unfortunately, this model turns out to be an inappropriate model for interpolation and extrapolation prob-
lems. Thus, according to the results of Chapter 5 a white box model should be chosen for these problems.

Besides the proposed parallel hybrid model, another method is presented in Chapter 5. This method is
the method of D’Almeida, but now the k1 coefficient is corrected. It is shown that with a simple correction
it is possible to obtain high performance scores without using a black box model or a parallel hybrid
model. Therefore it is expected that

Research question 6

How can one determine if a design solution is feasible and optimal?

Papanikolaou (2019) [29] describes several typical ranges for certain weight ratios. These are given per
type of ship. These ratios are lightship weight : displacement, but also steel weight : lightship weight,
machinery weight : lightship weight and outfitting&equipment weight : lightship weight.

First of all, the feasibility of the predicted ratio lightship weight : displacement is assessed based on the
typical range of this ratio, provided by Papanikolaou. As can be seen in Section 4.3.4, most of the predicted
ratios are within the typical range. However, also some predicted ratios are outside this typical range.

As can be seen, this is also the case for some actual ratios of lightship weight : displacement. Therefore,
a second feasibility check was done by comparing the predicted ratios with actual ratios. It can be con-
cluded that these were quite similar. Therefor most of the predicted ratios lightship weight : displacement
are considered feasible.

Only for the smaller general cargo vessels the predicted ratios had different values compared to the
actual ratios lightship weight : displacement. Thus, the feasibility of these results should be question.
To solve this problem, a different white box model should be chosen, namely the corrected D’Almeida
method. This is discussed in Section 5.6.
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Unfortunately, in this thesis only the lightship weight design parameter has been discussed. The
optimal design solution is therefore a design solution with a small value for the lightship weight, or a low
lightship weight : displacement ratio. This means that the deadweight : displacement is high. As most
of the deadweight consists of the payload, a high deadweight : displacement is beneficial for a ship owner.
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Conclusion

This chapter will conclude this research. First, the research questions will be restated in Section 6.1. There-
after, in Section 6.2 the major findings are discussed for each chapter. After that, the contribution of this
research to science is discussed in Section 6.3. Section 6.4, gives the limitation of this research. Lastly,
based on the research questions, the major findings, the contribution and limitations of this research, some
recommendations will be done for future research in Section 6.5.

6.1. Research questions
In Chapter 1, it was discussed that advanced machine learning tools are very promising tools to improve
the preliminary ship design phase. The development of C-Job’s Maritime Intelligence Tool (MIT) has
shown that the data of reference vessels can better be exploited in this phase of the ship design process.
Therewith, naval architects can better be supported in making design choices for a novel ship design.

Although the MIT shows significant potential, its accuracy rapidly decreases when less reference data
is available. This is especially unfavourable at the boundaries of a design space, as it is expected that novel
and innovative ship designs are located at the boundaries. To better support the naval architect in all areas
of the design space, the following main research question was determined for this thesis.

“How can a ship designer better explore gaps in a design space, generated using data of reference
vessels, to make predictions of the main parameters of a novel ship design solution more accurate?

To answer this question, six sub-research questions were determined. These questions and their answers
can be found in Appendix A.

6.2. Major findings
Chapter 2 - Design Approach
The current design methods at C-Job are strongly dependent on the experience of the naval architect,
the type of ship, the customer requirements, time and customer budget. To decrease the human effort
in the design process, the Accelerated Concept Design methodology has been developed. In this holistic
design methodology all objectives, constraints and variables are dealt with simultaneously. The first step
in this methodology, should be covered by the MIT, which performs a thorough reference study and makes
predictions about advantageous main characteristics of a novel vessel.

The current method that is used in the MIT does not meet the required predicting accuracy, especially
in regions of the design space where data is limited. Also the neural and Bayesian method as described
in [10] do not meet this requirement.

A second disadvantage is that it is difficult to accept a design solution if it is produced by a black box
model, which is per definition hard for a human being to understand. To improve this, a naval architect
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should be able to see that a design solution meets certain ship design rules and regulations. If this is
the case, a design can be considered as feasible. Literature describes some feasibility requirements. The
method proposed by Duchateau (2016) [14] solves this problem, but the need for human interaction is
a disadvantage.

The naval architect should search for incremental innovative design solutions only, using the MIT. This
is because the proposed design solutions are always a derivation of previous work. For radical innovative
designs a different approach is required. The second remark is that the results of the MIT should be
handled with care. A naval architect should understand the requirements and the (different) purpose(s)
of the vessel in order to choose which design is desirable.

To conclude, the method that is currently used in the MIT is a fast reference-study method with
significant potential to improve the design process. To use this method in practice the gap between the
data-based MIT method and the traditional knowledge-based method needs to be addressed.

Chapter 3 - Method Exploration
Based on Chapter 2, a list of requirements is determined for the new tool. In these requirements, the
current design approaches have been taken into account, as well as the challenges to lie ahead for the
future design approach. These requirements are the following

1. Ability to deal with data-sparse and data-abundant regions of a design space
2. Results should comply with the laws of physics and other governing (basic) ship design rules
3. The new method should provide insight
4. The new method should be a fast method
5. Ability to deal with feedback

Based on these requirements some potential solutions have been explored and evaluated. It shows
that parallel hybrid modelling is the most promising solution for the problems defined in this thesis.
The advantage of this type of modelling is that the available knowledge can be included in a white box
model. Using this white box model an estimation can be made about the magnitude of certain parameters.
Based on data of reference vessels a machine learning model can be trained to learn about the differences
between this estimation and the ’true’ values (i.e. the data of reference vessels). This knowledge can then
be used to correct the first-principle white box model.

An advantage of this method is that the white box model is constructed by a naval architect. In this
model the naval architect can define all the relevant equations and rules. This provides the insight in the
design process that is required. Next to that, by including these equations and rules, the naval architect
can ensure the feasibility of the proposed design solution.

By requiring that the new method must be a fast method, the naval architect is able to run the op-
timisation problem, explore the results, redefine and re-run the optimisation problem. Using this method,
the first step in the current design method, which is finding a starting point, is done by the MIT. Therefore
it is possible to explore a significant amount of feasible design solutions in a reasonable amount of time,
which increases the possibility of finding better design solutions compared to the current method.

Chapter 4 - Methodology
In Chapter 4, an overview is given of how the proposed parallel hybrid model is constructed. All the
different sub-models have been discussed.

First of all, the white box model was discussed. Different methods were explored which are able to
predict the lightship weight of a ship, or a certain weight component of the lightship weight. Methods
were found for different ship types. Based on the applicability of these methods and the availability of
reference data, it was chosen to test four types of ships. These are the bulk carrier, the general cargo
ship, the oil tanker and the container ship. The different weight estimation methods for these ship types
will be assessed with the R2-method. This method expresses the performance of the weight estimation
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methods as a relative value. Based on this performance, one weight estimation method is selected for
each ship type. These methods are implemented in the white box model. The performance of this model
describes the performance of methods that were already available in literature. This is important when
the performance of the black box and parallel hybrid model are assessed as well. Based on this one can
tell if the ship design process has thus been improved by this research.

Secondly the black box model was described in detail. As a black box model the Random Forest
Regression Model is used. In this method 100 uncorrelated decision trees are randomly constructed. The
individual predictions of each tree are ensemble averaged in order to derive the prediction of the entire
random forest model. This prediction out-performs any of the predictions of the individual decision trees.

The white box can now be used to estimate the lightship weight for four ship types and the black box
model can be trained to predict the correction that should be applied, based on the data. This approach
is the parallel hybrid modelling approach.

The performance of both the black box model and the parallel hybrid model are assessed with the
10-fold cross validation. This gives a good and robust indication of the models’ performances. The Test
& Train split method will be used to simulate certain situations in the ship design process. For example,
how well a model can predict the lightship weight in a region of a design space where data is lacking.

Chapter 5 - Experiments & Results
In Chapter 5, a brief explanation was given of which questions will be answered in this chapter. Four
questions were answered quantitatively by performing experiments and one question was answered in
a qualitative manner.

First, the performance of the white box model was discussed. For the white box model, several weight
estimation methods were found in literature. The performance of these method was expressed by a
R2-score. The methods with the highest score were chosen to be implemented in the white box model.
The performance of these methods, and thus the performance of the white box model, gives an indication
of the performance of weight estimation methods that are currently used in ship design. Primarily because
of the age of several methods, the performance score was quite low. The generic weight estimation method
and the D’Almeida method from 2009 performed best in general.

Secondly, the performance of the black box model and the parallel hybrid model was discussed. The
performance of these models was determined with the 10-fold cross validation method. It was clear that
both the black box and the parallel hybrid model outperformed the white box model, as the performance
scores were higher. This is mainly because there was sufficient training data available for all four ship
types. The performance of the black box and parallel hybrid was similar for the amounts of training data
that was used in this experiment.

In the third experiment, the size of the training data set was varied. In this experiment it was clear that
the performance of the black box and parallel hybrid model differed when the size of the training data set
became smaller. In general, the conclusion was drawn that for a training data set smaller than 50 reference
vessels, the parallel hybrid model clearly outperformed the black box model. Where the performance of
the black box model clearly decreases for smaller training data sets, it can be seen that the performance of
the parallel hybrid model is much more consistent for different sizes of the training data set. For a training
data set size larger than 50 reference vessels, the performance of these two models was similar.

Thereafter, the performance of the black box and the parallel hybrid model was assessed in both
interpolation gaps and extrapolation gaps. In these experiments the manually split Train & Test data
method was used, which is described in Section 5.3. It became clear that the Random Forest Regression
model is not the appropriate model for extrapolation problems. To determine whether this is also the
case for the interpolation problem, some extra research is required. In general the parallel hybrid model
performed better than the black box model for interpolation problems. But, the performance score
increased when the size of the gap increased. This is the opposite of what one would expect. It is expected
that the distribution of data across Train A and Train B has influence on the performance scores which
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were presented for the interpolation test.
Section 5.6 placed the results of these four experiments into a different perspective. In this section an

’old fashioned’ design approach was described. The result was that with a relatively simple correction of
the D’Almeida method, it was also possible to obtain a higher performance score. This performance score
was comparable with the performance of the black box and parallel hybrid model. One can argue that
there is no need for an advanced machine learning tool if high performance scores can also be obtained
by applying simple corrections to the white box models.

Taking this different perspective into account as well, the last question could be answered qualitatively.
That question was "When should a naval architect rely on which model?". Based on the experiments the
answer to this question can be summarised as follows:

Training data set size < 50 reference vessels: Parallel hybrid
Training data set size > 50 reference vessels: Black box or parallel hybrid
Interpolation or extrapolation problems: White box

This means that the current design approach, which is represented by the white box model, is out-
dated and can be replaced by more a more advanced method like black box modelling or parallel hybrid
modelling.

On the other hand, some additional research is required in order to determine if the parallel hybrid
model and black box model also clearly outperform the white box models, which are corrected using a
simple method. In Section 5.6, it is shown that this is not the case for the general cargo ship. It is expected
that by updating the ship type specific coefficients of the D’Almeida method, higher performance scores
can easily be obtained.

Lastly, to validate the results in this chapter two methods were used. To validate the white box model
results, the predicted lightship weight : displacement ratio was compared with a typical range for this
ratio, depending on the ship type. Most of these predicted ratios were in the typical range and thus, these
predictions can be considered as validated. Secondly, if it was outside the typical range, the predicted ratio
was compared with actual lightship weight : displacement ratio’s. If these values were comparable, than
these predictions were also considered as validated. Almost all predicted lightship weight: displacement
ratio’s were validated in this manner. Only the validation of the predictions for the smaller general cargo
vessels should be question. By choosing the (corrected) D’Almeida method instead of the generic method,
it is expected that this problem is solved.

Conclusion on main research question
Based on the main findings and conclusions of each part of this research, the main research question can
be answered.

A ship designer can better explore the design space by using a parallel hybrid model, instead of a
white box model or a black box model.

But, in interpolation or extrapolation gap areas, a naval architect should use a white box model, mainly
because the random forest regression model is not the appropriate model for these problems.

Thereafter, the white box models are outperformed, primarily because of the age of the formulas that
are used.

6.3. Contribution of this research
In this research, advanced machine learning tools have been used to improve the ship design process
in the preliminary ship design phase. This means that this ship design thesis has a lot of common ground
with data science. Throughout this research, decisions were made based on these two perspectives; the
ship design perspective and the data science perspective.

By taking both perspectives into account at each decision, it became clear that design methods that
are common in ship design, are outdated from a data science point of perspective. One of these design
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methods is to find reference vessels and to determine a regression model (i.e. trend-line) between param-
eters. This is for example the trend-line between length and the lightship weight. Based on reference data
a trend-line is easily found in Excel using the TREND-function. This function also presents a R2-score
for the trend-line that is determined, to indicate the performance of this regression model.

Based on a data science perspective, some improvements for this method are found in this thesis. In
the above mentioned example, a regression model is trained with reference data. The performance score
that is presented, indicates how well the model fits the training data. It tells a naval architect how well the
lightship weight of the already seen reference vessels can be predicted, but it doesn’t say anything about
the predicting capability of the model for unseen vessels. Thus, by assessing a model’s performance based
on unseen vessels, a much more realistic value of the performance can be derived. Therefore, 10-fold
cross validation is a very useful performance measurement tool.

With 10-fold cross validation and the R2-score, three models are compared in this thesis, which
represent three different design approaches, namely:

1. A design approach based on knowledge (White box model)
2. A design approach based on statistics (Black box model)
3. A design approach based on statistics and knowledge (Parallel hybrid model)

It is concluded that a design approach only based on knowledge is outdated in most situations. With
more advanced machine learning techniques (i.e. the black box model and the parallel hybrid model),
the reference-based design approach in preliminary ship design is taken to a higher level.

Although it is still hard to derive what exactly happens inside a machine learning model, with sufficient
testing it is possible to validate this model. This is done by 10-fold cross validation and the train test split
method. By averaging the performance scores of the model for different distributions training and test
data, it is possible to approximate the actual performance of this model very well.

Lastly, this thesis describes the conditions that a naval architect should use in order to choose the
appropriate model to solve a certain ship design problem.

6.4. Limitations
This research also has some limitations that should be taken into account. First, the limitations with
regards to the performance of the models are discussed.

In Section 5.3, it was shown that the white box models are outperformed by the black box model
and the parallel hybrid model. As is shown in Table 5.1, it is clear that the white box model is primarily
outperformed, because its estimation methods date from 1970 approximately. Vessels that are built before
1970 are significantly smaller than today’s vessels. A reason that these methods do not perform very well
is that the estimation methods are empirically derived from reference vessels of that time. Thus, it should
be questioned whether it is the difference in type of modelling, or the difference in the age of the method,
that leads to a better performance. Although the white box model is based on knowledge, its estimation
methods are in fact empirically derived from reference vessels older than approximately 1970. Therefore,
it is expected that the age of these estimation methods limits the strength of the conclusion in Section 5.3,
that the black box and parallel hybrid model outperform a white box model.

Thereafter, the conclusion on the interpolation and extrapolation gap experiment in Section 5.5, is
limited by the fact that the random forest regression model is not the appropriate model for interpolation
and extrapolation problems. This doesn’t mean that any machine learning model is inappropriate for
these problems. It is expected that other machine learning models have a better extrapolation power than
the random forest regression model.

Currently, the proposed model is also limited based on the type of ship. For only four types of ships
there was sufficient reference data available, as well as estimation methods. These were the bulk carrier,
the general cargo ship, oil tanker and container ship. On the other hand, between the different ship types,
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not a significant difference in performance was found. Therefore it is expected that also the lightship
weight for other types of ship can be predicted. Section 6.5 describes how this can be done.
Secondly, there are some limitations of the proposed parallel hybrid model in general. In this thesis, only
the lightship weight design parameter is discussed. The reason for this is the availability of estimation
methods of a design parameter and the availability of the true values of the same design parameter. Es-
timation methods are available for more design parameters, such as the resistance, stability, motions and
cost. Unfortunately the actual values of these design parameters are not publicly shared for competitive
reasons. Therefore, the proposed parallel hybrid model is mainly interesting for companies, which have
sufficient data available of the true values of these design parameters.

Secondly, there is a difference in how much data is required to obtain a good performing black box
model or parallel hybrid model and how much data is required to validate these models. Although the
parallel hybrid model performs relatively well for all sizes of the training data set, this doesn’t mean that
it can also be used when little data is available. Validation of these advanced machine learning models
can only be done when there is sufficient data available. As it is difficult for humans to understand what
actually happens inside these machine learning models, extensive testing the quality of predictions is
required in order to validate such a model.

6.5. Recommendations for future research
Based on the Section 6.2, 6.3 and 6.4 some recommendations are determined for future research.

First, the white box model should be updated. In Section 5.6, a method is described about how
to update the estimation methods that are currently used in the white box model. It is expected that
with the updated estimation methods, it is possible to obtain high performance scores with the white
box model. In Section 5.6 a method is presented that only updates the coefficient k1. Using a poly-
nomial fit function it is possible to find all the updated coefficients k1,k2,k3 and k4, based on the
reference data. The following steps need to be undertaken in order the confirm the conclusions of this
research:

1. Update ship type specific coefficients of the D’Almeida method; k1, k2, k3 and k4
2. Determine R2-scores of the updated D’Almeida method
3. Plot predictions against true values to get A better understanding of the actual performance
4. Compare the update white box model results with the results of the black box model and parallel

hybrid model for different experiments
5. Determine which model should be used in which situation based on these results

An advantage of this method is that, as the D’Almeida method uses a generic formula, it can be used
for all types of ships. Only the coefficients have to be derived.

A second recommendation is that in order to determine the performance of a model, one should use
more performance metrics than only one, namely; the R2-score. As mentioned in Section 5.2, the generic
method performed better than the D’Almeida method, for a general cargo ship. However, by plotting the
estimated values of the lightship weight against the true values, it became clear that the generic method
was not the appropriate model for this type of ship. Thus, the scatter plot estimated values - true values
provides a different insight in the performance of a model, which should be taken into account.

Thereafter, it is recommended to use a different machine learning model, as a black box model, for
interpolation and extrapolation problems. First, further research is required on the extrapolation power
of other machine learning models, in order to recommend a certain machine learning model.



A
Answers to research questions

Research question 1

How does a
naval architect make well-advised design decisions in an early stage of C-Job’s current design process?

As mentioned by Duchateau (2016), the goal of preliminary ship design is to find a balance between
customer ambition (needs), available budget and possible design solutions. In order to do this the designer
needs an understanding of the requirements and their effect on a design solution. As requirements are
often conflicting, it is this understanding which aids the designer in making appropriate trade-offs. Based
on the requirements and the personal experience of the naval architect a design strategy is chosen that
best fits a certain design project. Four methods have been described that are used to determine a starting
point of the design process:

1. Perform reference study and determine trend lines
2. Start with requirements and perform own calculations
3. Study literature and select relevant equations
4. Adapt a convenient reference vessel

These different method all represent a different level of how wide and thorough the initial search for
a design solution is. As is concluded after some interviews, most of the naval architects at C-Job start their
design process with an already focused initial search, which is directed towards the most promising area’s
of a design space. By performing own calculations the naval architects gain insight into the design process
and the design itself. Literature describes a lot of empirical and parametric calculation methods that
can be used in this stage of the design process. Next to gaining insight, based on these calculations and
by comparing the results with reference vessels, the naval architects can determine if a design solution
is feasible or not. In literature some requirements have been described to determine the feasibility of a
design solution. To conclude, every naval architect determines his own design strategy. This will lead to
different design processes and different designs, depending on who is designing. Also the limited time
and budget contribute to this.
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Research question 2

How can a naval
architect make well-advised design decisions in C-Job’s future reference based design approach?

Based on chapter 2, a list of requirements is determined for the new tool. In this requirements, the current
design approaches have been taken into account as well as the challenges to lie ahead for the future
design approach. These requirements are the following

1. Ability to deal with data-sparse and data-abundant regions of a design space
2. Results should comply with the laws of physics and other governing (basic) ship design rules
3. The new method should provide insight
4. The new method should be a fast method
5. Ability to deal with feedback

Based on these requirements some potential solutions have been explored and evaluated. It shows
that parallel hybrid modelling is the most promising solution for the problems defined in this thesis. The
advantage of this type of modelling is the available knowledge can be included in a white box model. Using
this white box model an estimation can be done about the magnitude of certain parameters. Based on
data of reference vessels a machine learning model can be trained to learn about the differences between
this estimation and the ’true’ values (i.e. the data of reference vessels). This knowledge can then be used
to correct the first-principle white box model.

An advantage of this method is that the white box model is constructed by a naval architect. In this
model the naval architect can define all the relevant equations and rules. This provides the insight in the
design process that is required. Next to that, by including these equations and rules, the naval architect
can ensure the feasibility of the proposed design solution.

By requiring that the new method must be a fast method, the naval architect is able to run the op-
timisation problem, explore the results, redefine and re-run the optimisation problem. Using this method
the first step in the current design method, which is finding a starting point, is done by the MIT. Therefore
it is possible to explore a significant amount of feasible design solutions in a reasonable amount of time,
which increases the possibility of finding better design solutions compared to the current method.

Research question 3

What are the important gaps in the design space?

In the thesis, the important gaps in a design space are the interpolation and the extrapolation gaps in a
design space. Interpolation gaps are often determined by limitations for ship size, due to locks, canals and
bridges for example. As a result, one will find a lot of reference vessels with PANAMAX dimensions, and
less reference vessels with a size a little larger than PANAMAX. However, for Neo-PANAMAX sized vessels,
which are larger than PANAMAX, another concentration of reference data can be found again. In between
PANAMAX and Neo-PANAMAX there is an interpolation gap. The proposed model must be able to make
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prediction in this gap, based on the PANAMAX and Neo-PANAMAX sized reference vessels for example.
As mentioned in Section 1.4 it is expected that novel and innovative design solutions are located at

the boundaries of a design space. Ship designs located in an extrapolation gap are expected to be larger,
or have a higher cargo capacity than other reference vessels in the data base. Therefor these areas of th
design space might be interesting for ship owners.

Other gaps in a design space can for example be in the breadth of different vessels. A reason for this
can be that there a mono hulls and catamarans in the database. These gaps will not be considered. The
first reason is that in this thesis the goal is to search for incremental innovative design solutions. The
difference between a mono hull and a catamaran is part of radical innovation, as these designs are totally
different. A second reason is that the first step in the maritime intelligence tool is the selection of reference
data by the naval architect. By selecting either mono hull vessels or catamarans, a gap in between these
types of ships will not be present in the design space, generated by reference data.

Research question 4

What are leading principles in designing a model that deals with these gaps??

This research question has already been answered by the research question 2. Leading principles in
designing a new model is that the tool requirements are satisfied. These requirements are

1. Ability to deal with data-sparse and data-abundant regions of a design space
2. Results should comply with the laws of physics and other governing (basic) ship design rules
3. The new method should provide insight
4. The new method should be a fast method
5. Ability to deal with feedback

Based on these requirements the parallel hybrid model has been selected as the most promising solution.
There are two requirements for parallel hybrid modelling, namely:

1. Estimation methods for a design parameter
2. True values of the same design parameter

These requirements reflect the principle of parallel hybrid modelling. Using the estimation methods the
value of a design parameters is estimated. This works for every region of the design space where the
estimation method is applicable. Thus, there is no need for reference data. The true values of a design
parameter are used to correct for any error that is made by an estimation method. For this, sufficient
reference data is required in order for a black box model to perform well. To be clear, this black box model
is a sub-model of the parallel hybrid model.

Unfortunately, only the lightship weight design parameter satisfied these requirements. Therefore,
only the prediction of the lightship weight will be assessed in this thesis, in both data-sparse and data-
abundant regions of a design space.
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Research question 5

How can these principles be converted into a model, that improves the quality of the design solutions
produced by C-Job’s current Maritime Intelligence Tool and using its database as a design space?

As is shown in Chapter 5, the quality of the predictions of the lightship weight has been improved, by using
a parallel hybrid model. When less reference data is available this model has proven to perform better
than the white box model and the black box model. As mentioned in Section 5.7, based on a training
data set size of 50 reference or less, the parallel hybrid model outperforms the black box model and the
white box model. Thus, in this situation the parallel hybrid model is an improvement of both the current
Maritime Intelligence Tool (MIT) prediction and the current estimation methods.

With a training data set size larger than 50 reference vessels, the black box model and parallel hybrid
model perform similarly. This was also expected because the black box model performs better when there
is more reference data available.

For interpolation and extrapolation problems another black box model should be found in order to
improve the current MIT. In this thesis, the random forest regression model is used as the black box model.
Unfortunately, this model turns out to be an inappropriate model for interpolation and extrapolation prob-
lems. Thus, according to the results of Chapter 5 a white box model should be chosen for these problems.

Besides the proposed parallel hybrid model, another method is presented in Chapter 5. This method is
the method of D’Almeida, but now the k1 coefficient is corrected. It is shown that with a simple correction
it is possible to obtain high performance scores without using a black box model or a parallel hybrid
model. Therefore it is expected that

Research question 6

How can one determine if a design solution is feasible and optimal?

Papanikolaou (2019) [29] describes several typical ranges for certain weight ratios. These are given per
type of ship. These ratios are lightship weight : displacement, but also steel weight : lightship weight,
machinery weight : lightship weight and outfitting&equip weight : lightship weight.

First of all, the feasibility of the predicted ratio lightship weight : displacement is assessed based on the
typical range of this ratio, provided by Papanikolaou. As can be seen in Section 4.3.4, most of the predicted
ratios are within the typical range. However, also some predicted ratios are outside this typical range.

As can be seen, this is also the case for some actual ratios of lightship weight : displacement. Therefore,
a second feasibility check was done by comparing the predicted ratios with actual ratios. It can be con-
cluded that these were quite similar. Therefor most of the predicted ratios lightship weight : displacement
are considered feasible.

Only for the smaller general cargo vessels the predicted ratios had different values compared to the
actual ratios lightship weight : displacement. Thus, the feasibility of these results should be question.
To solve this problem, a different white box model should be chosen, namely the corrected D’Almeida
method. This is discussed in Section 5.6.
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Unfortunately, in this thesis only the lightship weight design parameter has been discussed. The
optimal design solution is therefore a design solution with a small value for the lightship weight, or a low
lightship weight : displacement ratio. This means that the deadweight : displacement is high. As most
of the deadweight consists of the payload, a high deadweight : displacement is beneficial for a ship owner.
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Personal Reflection

2020, it turned out to be a strange year. In January 2020 I contacted Thijs Müller from C-Job Naval Architect
to ask if there would be room at C-Job for a graduate intern. An enthusiastic meeting followed quite
quickly and the foundation was laid for this thesis. As I knew C-Job and its Research and Development
team already from my time as a working student, I looked forward to the internship very much.

Then COVID arrived and everything changed. From one moment to the other the country went into
lockdown, shops closed, sport clubs closed, events were cancelled and everybody had to stay at home
as much as possible. As a freelancer in the event sector, this had quite some consequences for me. Long
story short, it was challenging for me personal to start a graduation internship from home in this new
situation and to stay focused.

I think that especially when you start with a new project, a lot of 5 minute chats, coffee conversations
and talking with many different colleagues, will help you to kick start this project. I missed this in the
initial phase of my project. As everyone was struggling to adapt to the COVID situation, people, including
myself, forgot how important these conversations are. Not only to help you gain new insights in your
project, also to help you to NOT think about your project for a moment. I made the mistake that at some
moments, the only thing I did was working on my thesis. There was nothing else to do and I experienced
quite some pressure to finish it as soon as possible.

During the summer, I was allowed to come to the office in Hoofddorp five days a week. From the first
day at the office my productivity increased significantly. A good office lighting, an ARBO-responsible chair,
air conditioning, a large desk with the correct height, meeting new colleagues, good coffee, not working
in the same room where you sleep and a different environment. Yes, you suddenly realise how important
these aspects all are. By the end of the summer I finished the literature review and it was rewarded with
an 8. This meant a lot to me, especially with the COVID-situation in mind and how challenging the start
of my project has been.

Also during the summer, I took quite a radical decision to leave my student room in Delft and move
to Texel. It turned out to be the best decision of the past year. Literally and figuratively, I had more space
which helped me a lot to not think about the thesis for a moment and to start the new week with a fresh
head again.

In the last couple of months of the project I was able to finish quite some work. The more I started
to understand my project, the easier it was to work from home. And the more I did besides working on
the thesis, the more efficient my working days became.

Now that graduation is near and the project is nearly finished, I must say that I am proud of the
final result. I think that this report gives a nice overview of the possibilities of solving ship design prob-
lems with data science techniques. Also, it describes the challenges that arise from both a ship design
perspective and a data science perspective. Therefore, I believe that this report is very useful when
steps are undertaken to further implement black box or parallel hybrid modelling in the ship design
process.

To conclude, I have some tips based on my experiences for students who are about to start their thesis:

1. Take your time to read literature and don’t worry too much about the end product. A good literature
review will save you time when writing your final report.

2. Organise meetings with all the stakeholders. These are your supervisors of the company and TU
Delft. Especially in the starting phase of your project it will help you to get everyone pointed in the
same direction.
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3. When your working days become less efficient, don’t spend more time on your project, spend less.
Turn off your computer and do something else that you enjoy.

4. Create a planning with sufficient detail. At least determine one task per day. It can be a small task,
but it will help you to move forward. To be able to check off tasks feels good.
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