
Date: 09/08/23

Supervisors: Dr. Jiatao Ding

Dr. Cosimo Della Santina

Vassil Atanassov

Curriculum-Based Deep Reinforcement Learning
for Explosive Jumping in Quadruped Robots

MSc Robotics Thesis

Curriculum-Based Deep Reinforcement Learning for
Explosive Jumping in Quadruped Robots

Master of Science Thesis

For the degree of Master of Science in Robotics at Delft University of
Technology

Vassil Atanassov

Student Number.: 5501709

Supervisors: Dr. C. Della Santina, TU Delft

Dr. J. Ding, TU Delft

Thesis Committee: Dr. C. Della Santina, TU Delft

Dr. J. Ding, TU Delft

Dr. J. Kober, TU Delft

Dr. A. Sharifi Kolarijani, TU Delft

Submission Date: August 9, 2023

Department of Cognitive Robotics,

Faculty of Mechanical, Maritime and Materials Engineering,

Delft University of Technology

Acknowledgements

I would first like to thank both of my supervisors Dr. Jiatao Ding and Dr. Cosimo Della Santina for all of their amazing

guidance and support throughout my Master’s degree, and especially during my Master’s project. I would also like to

thank my colleagues and friends who not only helped me with numerous experiments throughout the last couple of

months, but with whom I shared many pleasant chats and productive discussions over lunch and afternoon coffee. Last,

but not least, I am also thankful for all of my friends and my family who supported me throughout this adventure and

made my life in the Netherlands truly amazing!

Vassil Atanassov

August 9, 2023

1

Curriculum-Based Deep Reinforcement Learning

for Explosive Jumping in Quadruped Robots
Vassil Atanassov

Abstract—Legged animals possess extraordinary agility with
which they can gracefully traverse a wide range of environments,
from running through grasslands to jumping across cliffs and
climbing nearly vertical walls. Inspired by this, in this work,
we use Deep Reinforcement Learning to give legged robots the
ability to perform a diverse set of highly explosive and agile
jumps. Unlike other works, our approach is not constrained to
imitating a reference trajectory. We instead use curriculum-based
learning to progressively learn more challenging tasks, starting
from a vertical high jump and then generalising to forward and
diagonal jumps. In the final curriculum stage, the robot learns to
leap over barrier-like obstacles or to land on them, conditioned
on the desired jumping distance and the object’s dimensions.
We show that such an approach can produce a wide range of
robust and precise motions, which we thoroughly and successfully
validated in several indoor and outdoor real-world experiments
on the Unitree Go1 robot. In our real-world experiments, we
show a forward jump of 90cm, exceeding previous records
for similar robots reported in the literature. Additionally, we
investigate the effects of incorporating bio-inspired parallel elastic
actuators to improve the jumping performance further. This
resulted in smoother motions, much softer landings with lower
joint velocities and larger jumps. Finally, we present and analyse
the limitations of our method and introduce exciting directions
for future work to address them.

I. INTRODUCTION

Robotics has the exceptional promise to revolutionise

many aspects of the world, from exploring intricate cave

systems and scaling complex mountains to reducing the risk

to human lives in hazardous environments and benefiting

conservation efforts through autonomous environmental

monitoring. However, amidst this remarkable variety of

possibilities a great challenge still remains - how can such

machines seamlessly traverse the complex environments

around us?

We can see that through millions of years of evolution,

legged animals have adapted to locomote with ease across the

highly complex and discontinuous environments that are found

in nature. Goats, for example, are capable of scaling nearly

vertical mountainsides, and gracefully leaping across chasms

several times their body length. Furthermore, traversing stairs,

steps and curbs that are commonly found in human-developed

environments is also seemingly effortless for most kinds of

legged animals. While science and engineering have drawn

inspiration from animals in their development of legged

robots, the software capabilities to mimic even a fraction of

this behaviour have not been seen in robotics to date.

Traditionally, legged locomotion control has been viewed

through the lens of optimal model-based control, where

Fig. 1. The Go1 performing an outdoors 50cm long jump across soft grassy
terrain under our proposed method.

a model of the system’s dynamics and its interaction

with the environment are used to produce desired control

inputs. However, achieving a balance between computational

efficiency and the accuracy provided by detailed full-order

models has proven to be a challenging task. Real-time

operation is achieved through linearisations around certain

assumptions like zero pitch and roll [1], or by decoupling the

complex optimisation problem into two distinct reduced-order

dynamics- and kinematics-based components [2].

Furthermore, many existing methods employ various heuristics

in the choice of parameters, such as the set of possible contact

points, contact phases and durations, in order to make the

problem more tractable [3]. These heuristics are used to

simplify the problem but can result in conservative and

sub-optimal performance that fails to generalise well to a

wider range of motions. As is often the case, these parameters

can vary strongly, depending on the gait and type of motion,

and thus further complicate the problem.

Recently there has been a drive towards exploring Machine

learning, and a subset of it known as Reinforcement Learning

(RL) in particular, as an alternative approach. Such methods

substitute optimising over a cost function, subject to given

mathematical models, for optimising a given reward through

trial and error. While manually-defined heuristics can still

be part of this reward function, many works instead have

tried to learn from nature and incorporate more intuitive and

bio-inspired terms, like energy minimisation [4, 5] or directly

through imitation of the motion of real animals [6]. Learning-

based methods have shown impressive generalisation and

robustness capabilities [7–10], and have recently begun

fusing internal and external sensor information to seamlessly

traverse highly irregular mountainous environments [11–14].

Adaptation modules [8, 15, 16] have further allowed legged

robots to exhibit varying behaviours that are conditioned on

environmental parameters (like ground friction, restitution,

etc.), rather than learning a single conservative policy for

every type of terrain. Recent work has drawn more inspiration

from animal locomotion and built visuomotor policies [17–19]

that directly map environmental visual observations to desired

2

+

PD Controller

Robot
Low-level
Control
10 kHz

Policy
50 Hz

Desired joint position
 deviations

Command
Jump Toggle

Joint positions
Joint velocities
Previous actions
Base linear velocity
Base angular velocity
Base quaternion
Contact states

Observations

User input

Fig. 2. Control diagram of the system. The observations ot include user-
controller (in green) and a history of system states (in yellow). The policy
is parameterised by a neural network (shown in blue) and outputs desired
actions at+1 which are added to the nominal joint angles qnom. The desired
joint angles are then tracked via a low-level PD controller which computes
torques for the system to follow.

actions. Such works show that directly linking exteroception

to locomotion can greatly improve the capabilities of legged

robots acting in the real world.

In this work we tackle the challenge of enriching robots with

the motor intelligence and agility to achieve similar feats to

those of animals. Through a curriculum-based end-to-end deep

reinforcement learning approach, we push the agent towards

learning on its own how to best execute a given jump without

relying on prior motion references. By conditioning the policy

on the desired landing location, our approach can produce a

wide range of motions with just a single policy. Furthermore,

we incorporate partial knowledge of the obstacles in the

environment as a proxy for vision and condition our neural

network-based policy on this information. This leads to

the robot learning different manoeuvres depending on the

location and size of the obstacle, making its jumps much

more efficient and robust. To further bridge the gap between

robots and animals, we evaluate the effect of adding elastic

elements in parallel with the actuators, which can serve a

similar function to biological tendons.

Our main contributions can then be summarised as follows:

• We propose a curriculum-based end-to-end Deep Rein-

forcement Learning (DRL) framework that generalises

across a wide range of jumps with a single policy and

does not require motion capture data or a reference

trajectory.

• We successfully and extensively validate our approach

on the Unitree Go1 platform in the real world, across a

variety of jumps, both indoors and outdoors. Our policy

can produce forward jumps of up to 90cm, which, to the

best of our knowledge, is greater than any other state-of-

the-art controllers for this category of quadruped robots.

• We incorporate environmental obstacle information into

the policy in the final curriculum stage which further

enhances the mobility of the robot.

• We evaluate the benefits of adding springs in parallel

with the actuators (PEA) to produce smoother and more

accurate motions with softer landings.

II. RELEVANT LITERATURE

A. Model-based control

Model-based control has been the staple for legged

locomotion and has pushed the boundaries of what legged

robots can do over the last few decades. For standard

locomotion and less complex manoeuvres simplified models

have shown to be sufficient [1, 20, 21]. The benefit of

these models is much faster computation time, in some

cases online and even in a low-frequency model-predictive

fashion. However, in highly agile locomotion any deviations

from the expected behaviour must be handled during the

relatively short stance (on-ground) phase, lest they lead to

unexpected and potentially catastrophic behaviour throughout

the control-limited flight phase. During this aerial phase, the

robots cannot adapt their trajectory, due to the lack of contact

forces with the environment. While it is possible for them

to modify their orientation by modulating their joint angles

and therefore shaping their inertia, very few works tackle this

[22, 23] due to computational complexity and robot design

choices (e.g. most of the mass is concentrated in the body).

This has led to the common decoupling of the locomotion

task into two modules - planning and tracking. The large

computational overhead of trajectory optimisation of motion

plans, based on accurate whole-body models, subject to a

large number of kino-dynamic constraints, can then be done

offline, and only the tracking of these plans is done in real-

time [24, 25]. In order to reduce the computational expense,

some choose to manually define the contact phases and

durations at the cost of optimality [24] or use a reduced-order

model to optimise over these parameters [25]. Even then, such

methods can take over several minutes to plan a reference

trajectory, depending on the complexity of the problem [25].

Recently Mastalli et al. [26] demonstrated highly agile online

locomotion through Differential Dynamic Programming-based

model predictive control. However, their approach still relies

on a contact schedule produced by a separate planner module.

Similarly, [27] has shown contact-rich behaviour, but has

only been verified for simpler single-leg systems and requires

a predefined set of possible contact points. Contact-implicit

optimisation [28, 29] is a promising direction to remedy this,

but real-time performance has not yet been achieved.

B. Reinforcement learning-based control

In contrast, goal-conditioned reinforcement learning (RL)

presents a promising solution by offloading the computational

complexity to offline training, enabling swift and versatile

online performance. Several pioneering works in locomotion

RL [6–10, 14, 15] have demonstrated outstanding results

in achieving high-speed and robust locomotion, capable of

adapting to variations in the environment and the dynamics

of the system. However, research in realising highly agile

behaviours has been more limited. In one of the early works

that tackled this, Peng et al. [30] showed that Imitation

Learning (IL) [31] can be a powerful tool in leveraging

demonstrations to learn to perform various acrobatic motions,

like backflips. This has since become one of the de facto

3

methods of learning more agile motions in literature, due to

the relative difficulty in defining reward functions for such

behaviours [6, 32–35]. These methods can rely on animal

motion capture data [6, 36], on trajectories generated through

optimal control [32, 33, 37], or manually created reference

motions [34, 38]. To address the challenges associated

with imitation learning, such as the selection of states to

mimic and managing conflicting objectives, an emerging

approach has been proposed called Generative Adversarial

Reinforcement Learning (GAIL) [39]. This approach has

proven highly effective and versatile at replicating the overall

trends observed in the reference set, while also adapting

them to real-world systems [40–42], even when dealing with

partially incomplete and rough demonstrations [38].

One of the main disadvantages of imitation-based methods

is that they have so far shown a limited ability to generalise

beyond the imitation domain. In the realm of locomotion,

one approach to handle this is to encode these motions in

a low-level reusable locomotion module, which can then

be controlled by a more general and separate task-specific

high-level controller [43–45]. Within agile jumping literature,

on the other hand, very few works have demonstrated

such generalisation capabilities. Furthermore, many of the

aforementioned works rely on learning a separate policy for

each unique type of motion, rather than a common task- or

goal-conditioned policy.

Several methods have been proposed that do not rely

on a reference trajectory or motion prior. In [17], a high-level

motion planning module is trained to produce desired centre

of mass trajectories for small hops, conditioned on visual

inputs and then tracked by a model-based controller. Similarly,

in [46] deviations to reference trajectories generated by a

non-linear optimal trajectory [25] are learned, providing

better generalisation to out-of-training domains. Rudin et

al. [23] show cat-like jumping in low gravity by using a

more complex reward function but without requiring the

imitation of motion clips. However, their approach has not

yet been verified on Earth-like gravitational conditions.

Concurrent work [34] also used multi-stage training on the

Cassie robot to learn imitation-based vertical jumping, and

then transferred that knowledge to forward jumping. While

similar to our approach, however, there are a couple of

significant differences - we do not require any reference

trajectories and we learn a single policy for the whole task.

Rather than directly imitating a dataset, [47] use a variational

auto-encoder (VAE) to encapsulate motion capture data into

a latent space for a DRL policy. They combine that with a

Bayesian diversity search to discover viable take-off states

for athletic vaulting strategies.

C. Curriculum Learning

Within machine learning, curriculum learning (CL) [48] is

a training strategy which progressively provides more chal-

lenging data or tasks as the model improves. As the name

suggests, the idea behind the approach borrows from human

education and animal training, where complex tasks are taught

by breaking them into simpler parts and then learning them

consecutively. From a mathematical perspective, the method

can be seen as a form of a continuation method, where the

convergence is guided by progressively shifting from a heavily

smoothed objective to the true objective function [48, 49]. In

legged locomotion, CL has seen wide use, mainly in terms

of terrain generation. Xie et al. [11] show how an adaptive

curriculum can be used to learn stepping stone skills much

more efficiently than other methods like uniform sampling.

Similarly, other automatic curriculum learning methods have

been proposed to vary environmental parameters based on the

performance of the agents [9, 50], rather than using a manually

specified curriculum. On the rewards side, Hwangbo et al. [7]

employ a curriculum which scales down certain rewards at

the start. This allows the policy to first learn how to locomote

and only afterwards to be polished to satisfy the additional

constraints and limits of the problem.

III. METHODOLOGY

Defining and constraining the behaviour of jumping across

specific distances is challenging as it combines two distinct

behaviours: that of "jumping" and that of reaching a desired

spatial point. Furthermore, an easily learnable local optimum

exists, where the robot could simply walk (or crawl) towards

the target point without actually jumping.

Therefore, to avoid converging to such undesired behaviour

we use curriculum-learning to divide the problem into several

smaller and simpler sub-tasks that each encapsulate aspects

of the full task while simultaneously being easier for the

agent to learn. Our implementation is shown in Fig. 3. We

combine this with a clever design of state initialisations and

perturbations, which serve to guide the agent towards the

desired behaviour.

Throughout the next several subsections we first provide

some background into reinforcement learning, followed by

an in-depth look into the curriculum, and the specific choice

of observations, action space and rewards.

A. Reinforcement Learning and MDP

Within the field of machine learning, reinforcement

learning (RL) is a method of inferring a policy π(at|st)
of how to act by constantly observing and interacting with

the environment, while receiving a reward for its behaviour

as feedback. In this framework, the problem is typically

formulated as a Markov Decision Process (MDP), where at

each step the agent interacts with the environment by taking

an action at ∈ A. Subsequently, it receives the new states

of the environment st+1 ∈ O in the form of an observation,

and the associated reward Rt that it has earned. Based on

the observed state st+1 and its policy π(at+1|st+1) the agent

can then choose a new action at+1 and repeat the process.

In this way, the RL algorithm explores the environment and

optimises behaviours that yield high rewards.

This lends itself well to robot control where we often want

to encourage a certain behaviour or accomplish a given task

but do not explicitly have a set of correct examples to learn

4

Constant

+ Forward and lateral
commands
+ Forward pushes

+ Obstacles
+ Obstacle information

Distance
curriculum

Obstacle
curriculum

+ Start in the air

Policy Policy Policy

Fig. 3. The curriculum training stages: high jump (left), long-distance jump (middle) and long-distance with obstacles (right). The latter two contain separate
difficulty curricula, varying the jump distance and obstacle height, respectively.

from. The policy can also be conditioned on some other goals

g, i.e. π(at|st, g), known as goal-conditioned reinforcement

learning. Such a policy can then learn to produce a diverse

set of behaviours depending on the specific command g
that is given. This enables the learning of multiple distinct

behaviours under a single policy.

Based on this, we can formulate an objective for the

agent: To find a policy π(a|s, g) which maximises the

cumulative sum of rewards earned over the task duration. As

often immediate rewards are more valuable than rewards in

the distant future, a discount factor γ ∈ (0, 1] is commonly

used. Mathematically, the full objective of maximising the

sum of discounted rewards J , known as the return, can be

written as:

argmax
π

J(π) = Eτ∼pπ(τ)[
T∑

t=0

γtRt|s0 = s], (1)

where Rt is the immediate reward at time t and s0 is the

initial state. The expectation of the return is taken over a

trajectory τ sampled by following the policy.

In legged robot control, we are usually interested in

continuous action spaces - where each action within the

action space A takes up a continuous value. One method of

doing that is to parameterise the policy with a neural network,

an approach known as Deep Reinforcement Learning [51].

In our case, the neural network outputs a mean value µ
and a standard deviation σ for each of the actions in the

action space. To encourage exploration throughout training

the applied action at is stochastically sampled from its

corresponding normal distribution N (µ, σ), while during

evaluation the mean value µ is used to ensure a deterministic

behaviour.

The Policy Gradient family of algorithms [52, 53] are

commonly used in Deep RL, as they directly optimise the

parametric policy based on the gradient of expected return

∇J . Within simulation-based training for quadruped robots,

one of the most popular algorithms of this family is Proximal

Policy Optimization (PPO) [54], which itself is based on

trust-region optimisation [55]. PPO uses a surrogate loss

function to approximate and clip the probability ratio between

the previous and the new policies at each update step. This

clipping is crucial for maintaining stability by preventing

excessively large update steps that may deviate from the

surrogate approximation of the true objective function. Due

to its stability, relative robustness to hyperparameter choice

and highly optimised open-source implementations, it is the

algorithm we chose for this problem. Our hyperparameter

selection is reported in the Appendix in Table VI.

B. Curriculum-based approach

In our approach, we adopt two types of curriculum - on a

local difficulty level and on a task level, as seen in Fig. 3. The

former involves progressively (and automatically) making

the environment more challenging as the agent succeeds. In

particular, whenever a robot successfully executes several

jumps, we increase the range of desired jumping distances

(and obstacles heights) that we sample from. The task-level

curriculum is, on the other hand, manually selected and

consists of training the agent for a certain number of steps

at a given task. After this, the policy is loaded onto the next

task, which might be defined differently and contains a new

set of rewards, and the training is continued. In the remainder

of this section, we will describe each of these task-level

curricula in the progressive order of training.

Stage I: High jump: The robot should first explore

what it means to jump and what actions can achieve such

explosive aerial motions. As mentioned, to learn this task we

deviate from the common reliance on a reference trajectory

5

and allow the agent to fully learn on its own how to jump.

We do this by rewarding it for being in the air and for the

maximum height it has achieved. However, a well-known

issue with such relatively sparse rewards is that the agent

needs to first learn certain behaviours (for example to squat

down and then push hard against the ground to take off)

before it can reach the reward-rich states of the environment

(i.e. being high in the air). This makes the learning process

challenging as the robot will not experience these jumping-

specific rewards in the initial stages of training. This often

leads to an early convergence to a local maximum, such as

standing in place, where the robot can safely collect some

rewards.

In imitation-based works a strategy known as reference state

initialisation (RSI) is commonly used to handle this issue

[30, 32, 33]. RSI initialises the agent at random points of the

trajectory which allows it to explore such reward-rich states

before it has learned the actions necessary to reach them, and

has been shown to boost learning rates significantly. In the

spirit of this, we utilise an initialisation strategy that samples

a random height and upwards velocity from a predefined

range, showing the robot that reaching such aerial states can

yield very high rewards.

Stage II: Long-distance jump: Once the robot has

converged to a jumping-in-place behaviour, we further train

it to perform precise forward and diagonal jumps. The

first part of the command vector g in the observations

specifies the desired landing point and orientation to create a

goal-conditioned policy. Similarly to the high jump sub-task,

we push towards exploring such motions by physically

pushing a subset of the robots in the direction of the desired

landing points once they have taken off. The push consists of

setting the planar velocity of the robot to the desired velocity

vb
x,y,des = ∆pdesx,y/∆tjump. This value is approximated

based on the distance to the target ∆pdesx,y
and the duration

of the jump, similarly to [34]. Certain parameters, like joint

friction, can greatly affect the jump height and subsequently

the flight time duration ∆tjump. Therefore we collected a

dataset of joint friction values and corresponding flight time

durations on the high jump stage and fit a line to estimate the

slope and intercept. Throughout training, we would then pick

a flight time duration ∆tjump based on the randomised value

of the joint friction (as part of the domain randomisation as

mentioned in Section III-E). It is worth mentioning that these

pushes are sub-optimal and often result in the robot landing

very roughly or even crashing close to the desired point. We

also adopt a curriculum-style sampling for desired landing

points, where successful agents are progressed to more

difficult environments where the desired jumping distance is

sampled from a greater range.

Stage III: Long-distance jump with obstacles: Once

this behaviour has been mastered, we introduce obstacles in

the environment. We have three classes of obstacles - thin

barrier-like objects, larger box-shaped obstacles and slopes.

Depending on the desired landing pose, the location of the

object and its type, the agent might need to either jump onto or

Joint positions
Joint velocities
Previous actions
Base lin velocity
Base ang velocity
Base quaternion
Contact states

Command
Jump Toggle

User
input

Sensors

Concatenate

Legend

User Input
Sensors
State Estimate

Fig. 4. The observations vector. The command g and jump toggle j are
provided by the user, while the remaining observations are either directly
read from the sensors, or estimated from sensor data.

lunge over it. While it is possible to learn a general behaviour

that can accomplish this without any exteroception, such

behaviour will be conservative, sub-optimal and potentially

much less robust. We argue that "seeing" and understanding

the world around the robot can result in a policy that adapts

the motion to better fit the scenario it has encountered. With

this in mind, we incorporate information about the distance to

the centre of the obstacles and its general dimensions (length,

width and height). In the real world, we manually specify

these parameters, however, a separate module that estimates

them from the RGBD cameras available on the robot could

be utilised. A more elegant approach, and a direction for

future work, would be to directly link these exteroceptive

sensors to the policy and remove the parameterisation of the

world around the robot.

Similarly to the previous stage, we start with obstacles

of smaller height - successful robots are then progressed

towards taller and more challenging environments and failing

ones are demoted to easier environments. To ensure that the

robot remembers the previously learned behaviour we also

randomly send a certain percentage of robots to perform a

flat terrain jump, like in Stage 2.

C. Observation and action space

Observation Space: Using a memory of previous

observations and actions is believed to allow the agent to

implicitly reason about its own dynamics and those of the

world around it [35, 56]. Similar to other works in the field

[7–10, 14, 16, 56–58] we use a concatenated history of the

last N states and actions as input to the policy. Certain works

[9, 34] have suggested combining this with a Convolutional

Neural Network (CNN) or a Recurrent Neural Network

(RNN) [37, 59, 60] to incorporate long-horizon past states.

In this case, we found that only using the last 20 states,

spanning 0.4 seconds, was sufficient for the task while also

being faster and much easier to train.

The observation space O, as illustrated in Fig. 4, consists of

the last N steps history of the base linear velocity v ∈ R3,

base angular velocity ω ∈ R3 (both in the base frame), joint

position q ∈ R12xN , joint velocity q̇ ∈ R12xN , previous

actions a−1 ∈ R12xN , the base orientation (as a quaternion)

q̄ ∈ R4xN and the foot contact states c ∈ R4xN .

The policy is also conditioned on the command g ∈ R13 and

6

Height

Width

Length

Distance Goal
Yaw

Command

Landing
pose

Obstacle
info

Fig. 5. An example of the forward jump onto an obstacle task, including
the command vector g. For the first two training stages (πI and πII) where
there are no obstacles, the obstacle information part of the command is set to
0.

jump toggle j ∈ {0, 1}. Due to the lack of long-term memory

in the feed-forward neural network, we use the jump state j
to indicate whether the robot has already jumped, similarly to

the approach in [30]. However, in our case, the jump toggle

also serves as a control switch, where the robot will remain

standing until its value has been changed, after which it will

jump.

The command g ∈ [∆pdes,∆q̄des,pobs,dimobs] is used to

condition the policy to achieve different jumps, and contains

the desired Cartesian landing position and orientation relative

to the base frame, the centre of the obstacle (if present),

also relative to the base frame, and its dimensions (height,

width, length). An illustration of this is shown in Fig. 5.

Throughout training, we sample the landing pose and obtain

the obstacle parameters from the simulation. In the real world,

the command vector is specified by the user prior to the jump.

Action Space: For the action space A ∈ R12, similarly to

other works [7, 34] we used position control, in the form of

learning desired deviations from the nominal joint positions

qnom [16, 58, 61, 62]. The benefit of this formulation is that

producing a zero action results in a standing pose, making

the learning process easier. To smooth the output actions we

used an Exponential Moving Average (EMA) low-pass filter

with a cut-off frequency of 5 Hz. The filtered actions are then

scaled down and added to the nominal joint position qnom to

generate a desired joint position qdes for the motor to track,

i.e. qdes = a + qnom. A simple feedback PD controller then

produces a desired torque at a higher frequency to be sent to

the motor, as shown in Fig. 2.

It is important to note that the policy can generate desired

joint position deviations outside the physical joint limits.

This allows us to use very low stiffness for the PD controller

(Kp = 20,Kd = 0.5) while still ensuring that large torques

can quickly be generated for the explosive motion at take-off.

To ensure the safety of the robot, however, we clip the desired

joint positions to the physical range only when the real joint

angles approach the limits.

Policy: The actor policy π and the critic are parameterised by a

shared MLP with 3 hidden layers of dimensions [256, 128, 64],
with Exponential Linear Unit (ELU) activations after each

layer.

D. Rewards

All of the rewards used for training the desired behaviour

are shown in Table I, where the task-based rewards are

shown in orange and the auxiliary regularisation rewards -

in violet. For conciseness, the short-hand notation e(|x|2) is

used to represent passing the squared error |x|2 through an

exponential kernel of the form exp(−|x|2/σ). This ensures

the reward is positive and scales it between 0 and 1. The

rewards are divided into Single and Continuous, where the

former are given once per episode (typically at the end), and

the latter - once per each simulation step that satisfies the

conditions. Three general phases of the jump are used to

describe when each reward is given. Stance (or pre-jump)

indicates that the robot has been given a command to jump

but is still on the ground. The flight phase follows the stance

and is triggered when the robot is in mid-air and has no

contact with the ground. Finally, the landing (or post-jump)

begins upon landing and lasts until the end of the episode. We

consider the event where the robot must remain standing until

it receives a jumping command as being in the post-jump

phase.

Task rewards: We use several rewards to encourage

the general behaviour associated with the task of jumping,

namely those of detecting contact (landing) after several

steps of no contact (flight), the maximum height the agent

reached, and whether it has landed at the desired position and

orientation. These rewards are only given once at the end of

the episode, which further incentivises the agent to survive

until the episode ends. Due to the sparsity of these rewards,

we introduce several other task-related objectives that bring

continuous rewards to the agent and simplify the learning

problem. These are:

• Tracking the desired linear velocity (vb
x,y,des) and yaw

angular velocity while in flight, and tracking zero angular

velocity after landing.

• Squatting down to a height of 0.2m while on the ground,

tracking a height of 0.8m in the air, and maintaining a

stance height (0.32m) after landing.

• Maintaining a constant base position and tracking the

desired orientation after landing.

In order to ensure enough clearance when jumping forward

and over obstacles, we introduce a feet clearance reward. This

reward tracks the nominal foot position (i.e. at the nominal

joint angles qnom) on the xy-plane, while simultaneously

minimising the z-distance between each foot and the centre

of mass. This results in the robot tucking its legs in close to

its body while in the air which can help prevent them from

hitting the ground during longer jumps.

Regularisation rewards: As we do not imprint any

reference motions onto the agent, we incorporate several

regularisation rewards to make sure the motion is smooth,

feasible and will not damage the robot. To this end, we

penalise the action rate and its derivative, together with any

7

TABLE I
LIST OF REWARDS USED FOR THE TRAINING. TASK REWARDS ARE GIVEN ONLY ONCE AT THE END OF THE EPISODE, WHILE CONTINUOUS REWARDS ARE

EVALUATED AT EVERY TIME STEP. THE LIGHT ORANGE COLOUR INDICATES TASK-BASED REWARDS, WHILE THE LIGHT PURPLE SHADE DESCRIBED

REGULARISATION REWARDS.

Name Type Stance Flight Landing

Landing position Single 0 0 wp(e(
∑

|pland − pdes|
2))

Landing orientation Single 0 0 wori(e(|log(q̄
−1

land
∗ q̄des|

2))

Max height Single 0 0 wh(e(|hmax − 0.9|2))

Jumping Single 0 0 wjump

Position Tracking Continuous 0 0 wp.l(e(
∑

|p− pland|
2))

Orientation Tracking Continuous wori,st(e(|log(q̄
−1

base
∗ q̄des|

2)) 0 wori,l(e(|log(q̄
−1

base
∗ q̄des|

2))

Base height Continuous wpz ,sq(e(|pz − 0.20|2) wpz ,fl(e(|pz − 0.8|2) wpz ,st(e(|pz − 0.32|2))

Base lin. velocity Continuous 0 wvx,y (e(
∑

|vx,y − vdes|
2) 0

Base ang. velocity Continuous 0 wω(e(
∑

|ω − ωdes|
2) 0.1wω(e(

∑
|ω − 0|2)

Feet clearance Continuous 0 wfeete(|pfeet − p0
feet

+ [0.0, 0.0,−0.15]|2) 0

Symmetry Continuous wsym(
∑

joint |qleft − qright|
2)

Nominal pose Continuous wq(e(
∑

joint |qj − qj,nom|2) 0.1wq(e(
∑

joint |qj − qj,nom|2) wq(e(
∑

joint |qj − qj,nom|2)

Energy Continuous wenergy(τT q̇)

Base acceleration Continuous wacc|v̇|2

Contact forces Continuous wFc

∑nf

i=0
|Fi − F̄ |

Action rate Continuous wa

∑
joint |a(t)− a(t− 1)|2

Action rate 2nd order Continuous wȧ

∑
joint |aj(t)− 2aj(t− 1) + aj(t− 2)|2

Joint acceleration Continuous wq̈

∑
joint |q̈j |

2

Joint limits Continuous wqlim

∑
joint |qj − qj,lim|2

violations of predefined soft limits for the joint position.

The instantaneous energy, computed as the dot product

between actuator torque and joint velocity, is penalised

to produce a more energy-efficient motion [4, 5]. Many

quadrupedal jumps seen in nature exhibit high left- and

right-side symmetry - we push the robot towards maintaining

this symmetry with an additional reward but do not strictly

enforce it. Finally, we noticed an emergent behaviour where

the robot would stomp its feet rapidly and in place during

the squat-down phase. A likely explanation is that the agent

has begun to overfit and learned to exploit the dynamics

of the simulator to accelerate faster towards the ground. To

discourage this, we added a small reward for maintaining

the same contact states for each foot between simulation steps.

Termination: We implement several termination conditions,

which when met reset the episode and yield a large penalty

to the agent:

• Collision between any part (other than the foot) of the

robot and the environment.

• Base height lower than 0.10m.

• Orientation error larger than 3.0 rad.

• Landing position error bigger than 15cm.

• Moving the base after landing or when told to stand in

place.

These termination conditions help constrain the agent away

from highly undesirable states, from which the agent either

cannot recover or are too distant from the desired task goal,

in order to improve the learning process.

TABLE II
DOMAIN RANDOMISATION VARIABLES AND THEIR RANGES.

Name Randomisation range

Ground friction [0.01, 3.0]

Ground restitution [0.0, 0.4]

Additional payload [-1.0, 4.0] kg

Link mass factor [0.7,1.3] x

Centre of mass displacement [-0.1, 0.1] m

Episodic Latency [0.0, 40.0] ms

Extra per-step latency [-5.0, 5.0] ms

Motor Strength factor [0.9, 1.1] x

Joint offsets [-0.02, 0.02] rad

PD Gains factor [0.9, 1.1] x

Spring Stiffness/Damping factor [0.7,1.3] x

Spring rest position [-0.1, 0.1] rad

Joint friction [0.0, 0.04]

Joint damping [0.0, 0.01] Nms rad−1

E. Domain Randomisation

In reinforcement learning (and more generally in machine

learning) it is commonly known that discrepancies between

the domain that the agent is trained on and the one it is

deployed on can lead to sub-optimal performance or even

critical failure, depending on the degree of mismatch. Domain

randomisation is a method of addressing this issue, based

on the idea that by introducing a large amount of variation

into the training domain the agent can become more robust

to domain distribution differences [59, 63, 64]. Robotics

8

has widely adopted this approach to handle inaccuracies in

the environmental and system parameters, as well as in the

model and its dynamics. To ease the domain transfer between

simulation and the real world, we implement several common

and lesser-known domain randomisation techniques. The

ground friction, restitution, and the mass of the base and each

link are sampled at random at the start of every episode. In

addition, to deal with calibration discrepancies between the

hardware and simulated motors we add a random offset to the

joint encoder values in the low-level PD controller, randomise

its proportional and derivative gains to simulate the effect

of unknown motor friction and damping, and randomise the

strength of the motors for every episode [16, 33, 62].

Unmodelled communication delays and latencies have been

shown to strongly affect the performance of learning-based

policies by reducing the stability region of the feedback

controller when deployed in the real world [4], which is

amplified in the case of high-frequency policies [65]. For

this reason, at the beginning of each episode, we sample an

observation to action latency from the range of l ∈ [0, 40] ms.

At each step, we add a small random value to the episodic

latency to mirror the effect of stochastic communication

delays. Implementation-wise, we follow a similar approach

to [4], where we continuously store the past M observations

Ot,...t−M . At every step we pick the two observations ot−l

and ot−l+1 from Ot,...t−M between which the sampled

latency l lies. Then we linearly interpolate between them to

obtain the delayed observation which can be added to the

observation history of the agent.

Randomising the friction and damping of the actuated

joints in the simulation proved to be crucial for successful

deployment. Policies that did not incorporate this would

result in much lower joint velocities throughout the take-off

phase and smaller jumps when deployed onto the real robot.

Finally, for the parallel elastic version we randomise all

of the parameters of the parallel springs - including their

stiffness, damping and rest position. While this could make

the robot rely less on storing energy in the elastic elements,

it is beneficial in terms of robustness.

IV. EXPERIMENTAL VALIDATION

In the following sections, we first show the performance of

the policy, trained on the first two curriculum stages (i.e. policy

πII , shown in Fig. 3), across several experiments - forward

and diagonal jumps, several continuous back-to-back jumps,

and jumping in the presence of environmental disturbances

and uneven terrain. We then compare the performance of

the policy after the final training stage (policy πIII) when

jumping onto and over obstacles. Finally, we train a separate

policy to investigate and show the effects of parallel elastic

actuators. To make the simulation results more realistic, during

the validation we used a constant joint friction value of 0.04,

joint damping of 0.01 Nmsrad−1 and a constant latency of

30 ms.

A. Hardware setup

We performed all of the experiments on the Unitree Go1

[66], which is a quadrupedal robot platform with three

actuators per leg that control the hip abduction/adduction,

thigh flexion/extension and calf flexion/extension. The hip and

thigh motors are capable of producing instantaneous torques

of up to 23.7 Nm and reaching a joint velocity of 30.1 rad/s.

The calf motors are more powerful and can produce torques

of up to 33.5 Nm and a maximum velocity of 20.06 rad/s.

The lightweight nature and powerful motors of the robot

make it a good potential platform for learning highly agile

motions, such as jumping.

Nevertheless, animals are capable of producing very

impressive motions without necessarily being able to achieve

high instantaneous forces with their muscles. To mimic the

biological energy storage mechanisms, we added springs

in parallel with each actuator - in a so-called Parallel

Elastic Actuator (PEA) arrangement. These uni-directional

springs allow the robot to store energy as it squats down

and then release the energy at once to achieve a more

explosive motion. Through our DRL framework, we aim to

investigate how the robot can leverage such elastic elements

to jump higher, further and land more softly. The engagement

mechanism allows us to easily enable the springs, specify

their rest positions and swap between springs with different

stiffnesses. In this work, the spring stiffness was heuristically

chosen, but other recent works [67] have shown that RL

help in generating an optimal set of parameters and it is

something we are considering as future work. Here we used

Khip = 10, Kthigh = 16, Kcalf = 20 Nm and rest positions

of 0, 0.7220,−1.4471 rad for the hip, thigh and calf joint

respectively. In section IV-H we investigate and record the

effect of the PEAs.

B. Training environment

We train our policy in the Isaac Gym simulator [68], where

we use 4096 agents and 24 environmental steps per agent

per update step, resulting in a batch size of 98304 steps. For

the vertical jump, we train for 3k iterations, while for the

forward jump without and with obstacles we train for 10k

steps each. The policy operates at a frequency of 50Hz and

the simulation runs at 200Hz. Our implementation is based

on the open-source Legged Gym by ETH Zurich [61] and

partially on some additional functionality introduced in [16].

The training was done on a desktop workstation equipped with

a single RTX 3090 GPU, and the three highly parallelised

training stages took approximately 1.4 hours, 4.1 hours and

4.8 hours, respectively.

C. Forward jumping

First, we evaluate the policy on a variety of forward

jumps. In Fig. 6 we first show a 60cm forward jump, i.e.

∆pdes = [0.6, 0.0, 0.0]. We compare the quantitative results

from the simulation to those recorded on the real robot for

9

Fig. 6. Real world (top) and simulation (bottom) execution of a forward jump with the yellow marker indicating the desired 60cm jumping distance.

0 2 4
Time (s)

0.5

0.0

0.5

An
gl

e
(ra

d)

Joint Angles

0 2 4
Time (s)

0

10
Ve

lo
cit

y
(ra

d/
s) Joint Velocities

0 2 4
Time (s)

0
10

To
rq

ue
 (N

m
)

Hip

Joint Torques

0 2 4
Time (s)

0.5
1.0
1.5

An
gl

e
(ra

d)

0 2 4
Time (s)

10

0

10

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

20

0

To
rq

ue
 (N

m
) Thigh

0 2 4
Time (s)

2

1

An
gl

e
(ra

d)

0 2 4
Time (s)

20

0

20

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

25
0

25
To

rq
ue

 (N
m

)

Calf

Measured Desired Sim Flight phase

Fig. 7. Joint angles, velocities and torques for the front right (FR) leg during the 60cm forward jump. The measurements are shown in blue, the desired
values (corresponding to the ideal PD control law for the torques) are shown in green, and the simulation results for the same jump are overlayed in red. The
flight phase for the hardware experiment is indicated by the yellow-shaded region.

the former in Figures 7 and 8. As can be seen, the real-

world behaviour closely matches the simulated prediction. One

noticeable deviation is in the peak torques at take-off - where

the measured torques deviate from both the desired torques

(based on the PD control law on the desired joint angles) and

the simulation torques. This could partially be attributed to

inaccurate torque measurements, as they are estimated from

the motor current draw, rather than dedicated torque sensors

at the joints. Furthermore, additional joint-level friction and

motor saturation could also explain the difference in torques.

We also noticed that larger joint angles for the hip and

thigh are measured upon landing in real-world tests, likely

due to poor impact modelling in the simulation. Finally, the

Euler angles show a slight variation between simulation and

hardware. We hypothesise that this mismatch is mainly due

to the aforementioned motor modelling inaccuracies, coupled

with the weight of the additional mass, which contains the

springs, shifting the centre of mass of the robot. Nevertheless,

despite these small deviations, the distance is well-tracked

and the velocity profiles of the robot match the expected

behaviour, as seen in Fig. 8, showing a good sim-to-real

adaptation. We then further pushed the robot to determine the

maximum distance it can jump across. Figure 9 illustrates a

90cm forward jump, with the target landing point shown by

the yellow marker. Interestingly, we observe a slightly more

accurate landing in the hardware compared to the simulation.

In addition, despite slipping on the soft pads as it lands,

the robot recovers quickly, showing additional disturbance

robustness. To the best of our knowledge, this is the largest

jumping distance shown by robots of similar size shown in the

literature. It is worth noting that in our approach we reward

the position of the base upon landing, rather than the feet. In

the trial, the base cleared the 90cm distance but the rear left

foot landed slightly before the white line, after which it was

moved forward when the robot stabilised itself.

In Table III we compare the maximum forward distance our

10

0 2 4
Time (s)

0

2

Ve
lo

cit
y

(ra
d/

s) Base Angular Velocity

0 2 4
Time (s)

0

1

Ve
lo

cit
y

(m
/s

) Base Velocity

0 2 4
Time (s)

0.1

0.0

0.1

Ro
ll

(ra
d)

X-axis

Base Euler angles

0 2 4
Time (s)

2.5
0.0
2.5

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

0.25
0.00
0.25

Ve
lo

cit
y

(m
/s

)
0 2 4

Time (s)

0.25
0.00
0.25

Pi
tc

h
(ra

d) Y-axis

0 2 4
Time (s)

1

0

1

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

2.5

0.0

2.5
Ve

lo
cit

y
(m

/s
)

0 2 4
Time (s)

0.1
0.0
0.1

Ya
w

(ra
d)

Z-axis

Estimated Sim Desired Flight phase

Fig. 8. Base angular and linear velocity estimates during the 60cm forward jump. The estimated values (via kinematics and the IMU) are shown in blue
and are compared to the simulation results for the same jump (in red). The flight phase for the hardware test is indicated in light yellow.

Fig. 9. Real world (top) and simulation (bottom) execution of a forward jump with the yellow marker indicating the desired 90cm jumping distance. Note
that the rear left leg was slightly behind the white line upon landing, indicating a travel distance of around 85cm.

method achieved to that of other state-of-the-art learning-

based approaches. Most of these works are either deployed

on Unitree robots (A1/Go1) or other quadrupeds of similar

size and capabilities.

D. Diagonal jumping

Next, in Fig. 10, we show the robot performing a diagonal

jump of 50cm x 30 cm with a desired yaw of 30°. The

same jump is shown from a frontal perspective in Fig. 11

(top), together with the same jump but with 0° desired yaw

(bottom). Interestingly, for the most part, the two jumps are

nearly identical, with the exception of the flight yaw velocity.

Visually, the landing precision of both tasks is very similar,

although the latter exhibits a slightly larger yaw error right

after the landing impact.

We further evaluated the performance of the robot when

TABLE III
COMPARISON BETWEEN THE LARGEST JUMP LENGTH REPORTED BY

OTHER WORKS AND OURS, ON ROBOTS OF SIMILAR SIZE. ADAPTED FROM

[69].

Method Largest jump length

TWiRl [70] 0.2m

Margolis et al. [17] 0.26m

Barkour [71] 0.5m

Yang et al. [72] 0.6m

CAJun [69] 0.7m

Ours 0.9m

prompted to jump in place and land with a desired yaw of

±60°, as shown in Figure 13. Despite some small error in

the landing position, the robot could accurately track the

11

Fig. 10. Diagonal jump of 0.5m forward and 0.3m to the left with a desired yaw of 30°, comparing the real-world (top) and simulation (bottom) results.

Fig. 11. Diagonal jump of 0.5m forward and 0.3m to the left with a desired yaw of 30° (top) and desired yaw of 0° (bottom), respectively.

0 2 4
Time (s)

2.5
0.0

Ve
lo

cit
y

(ra
d/

s) Base Angular Velocity

0 2 4
Time (s)

0

1

Ve
lo

cit
y

(m
/s

) Base Velocity

0 2 4
Time (s)

0.25
0.00
0.25

Ro
ll

(ra
d)

X-axis

Base Euler angles

0 2 4
Time (s)

0.0

2.5

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

0.5
0.0
0.5

Ve
lo

cit
y

(m
/s

)

0 2 4
Time (s)

0.00

0.25

Pi
tc

h
(ra

d) Y-axis

0 2 4
Time (s)

1
0
1

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

2

0

Ve
lo

cit
y

(m
/s

)

0 2 4
Time (s)

0.0

0.5

Ya
w

(ra
d)

Z-axis

Estimated Estimated (No Yaw) Desired Flight phase

Fig. 12. Comparison of the base angular velocity, base linear velocity and the Euler angles of the 30° yaw (blue) and 0° yaw (in green) diagonal jumps.

12

Fig. 13. Experiments showing in-place hops with desired ±60° yaw change.

0 1 2 3 4 5 6
Time (s)

0.1
0.0
0.1

Ro
ll

(ra
d)

Base Euler angles

Estimated
Desired
Flight phase

0 1 2 3 4 5 6
Time (s)

0.2

0.0

Pi
tc

h
(ra

d)

0 1 2 3 4 5 6
Time (s)

1.0

0.5

0.0

Ya
w

(ra
d)

Fig. 14. Roll, pitch, yaw angles for the −60° in-place turn. The measured
values are shown in blue and the desired - with a green dashed line.

desired yaw orientation, as indicated in the Euler angles

plots in Fig. 14. Finally, we evaluated the policy across

the whole jumping range in simulation and recorded the

success rate and tracking metrics, as shown in Fig. 15.

As can be seen from the left plot, the tracking error is

lowest for narrow jumps of forward distance up to 50cm. As

both the longitudinal and lateral distances increase, so does

the final landing error. Interestingly, the majority of failed

environments asymmetrically occur in the lower right corner

of the plot. We consider failed those environments that have

been terminated due to contact of any body part (other than

the foot) with the ground. The right plot in Fig. 15 shows

the same data but grouped by total desired distance vs actual

achieved distance. From this view, it can be seen that the

data closely follow the 45° line (i.e. ideal performance) for

the smaller jumps with the gradient slowly decreasing after

50cm. It is worth mentioning that we recorded better tracking

performance on the real hardware for the larger jumps, and

more undershooting for the shorter distances. We hypothesise

that this is due to a sim-to-real gap between the simulated

joint friction model and real friction. We summarise these

results in Table IV, grouped by the type of jump and the

forward distance. As we sampled from the same lateral range

TABLE IV
SIMULATION RESULTS FROM THE 4000 TRIALS ACROSS THE WHOLE

JUMPING RANGE. THE QUANTITATIVE DATA IS PRESENTED FOR PURELY

FORWARD JUMPS AND FOR DIAGONAL JUMPS.

Forward Distance 0.00 - 0.24 0.25 - 0.49 0.50 - 0.74 0.75 - 0.99

Success Rate Forward 1 1 1 1

Success Rate Diagonal 1 1 0.999 0.981

Mean Error Forward (cm) 2.853 4.171 9.270 17.815

Mean Error Diagonal (cm) 6.388 3.306 8.527 17.423

regardless of the distance, the policy exhibited a larger error

when performing short-distance diagonal jumps. Such jumps

are more challenging and would often require the robot to

turn a large yaw angle while also jumping to the side. In Fig.

16 we show the maximum height achieved during the jump as

a function of the distance of the jump. A noticeable trade-off

can be observed, where upwards momentum is traded for

forward momentum.

E. Rough terrain

We were interested in evaluating how well the policy per-

forms in the presence of environmental disturbances, despite

not being trained on uneven or rough ground. To this end, we

ran several experiments where small obstacles were scattered

around the robot, blindly jumping from and onto a box, and

jumping from asphalt onto a soft grassy terrain. As shown by

the top two time-lapses in Fig. 17, the policy showed strong

robustness to both soft and stiff objects that could (and did)

slip under the feet of the robot. The quadruped easily executed

the desired jump starting from the 4cm box, as well as landing

on it. It is worth emphasising that such scenarios were not

seen in simulation, as the second-stage curriculum policy had

only been trained on flat and non-discrete terrain. The policy

is also robust to changes in the ground friction, hardness and

restitution, as can be seen from the final graphic in Fig. 17

13

0.00 0.25 0.50 0.75 1.00
Desired distance x-axis [m]

0.3

0.2

0.1

0.0

0.1

0.2

0.3

De
sir

ed
 d

ist
an

ce
 y

-a
xi

s [
m

]
Tracking Performance

0.00 0.25 0.50 0.75 1.00
Desired Distance [m]

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tu

al
 D

ist
an

ce
 [m

]

Desired Distance vs Actual Distance

Sucessful Failed

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r [
cm

]

Fig. 15. Tracking performance as a function of the desired X- and Y-axis jumping distances, with the error (in cm) shown by the colour gradient (left); and
the tracking performance in terms of overall desired vs actual jumping distance (right). The environments that have been terminated are shown in red, and
the black 45° dashed line indicates the ideal tracking performance. Data is gathered from 4000 trials across the whole jumping range.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Jump Distance [m]

0.46

0.48

0.50

0.52

0.54

0.56

M
ax

 H
ei

gh
t [

m
]

Successful
Failed

Distance vs Height

Fig. 16. Trade-off between maximum height during the jump and the final
landing distance.

where the robot performs a 40cm jump from hard asphalt onto

soft earth.

F. Continuous jumping

Next, we tested the policy on a continuous jumping task

outdoors, where a new command of a 40cm forward jump is

given following each jump without resetting the robot states.

This is occasionally simulated throughout training (10% of

robots that landed successfully do not get reset before the

next episode), but not targeted by any particular rewards. This

experiment, as shown in Fig. 18, shows that the policy is robust

enough to execute a jump from a variety of different initial

states. Despite the fact that the soft ground causes some hip

angle deviation upon landing, the robot was able to execute at

least nine consecutive jumps.

G. Forward jumping with obstacles

In this subsection, we validated the performance after

completing the last curriculum stage, namely training in the

presence of obstacles and conditioning the policy on the

general dimensions and location of these obstacles. After the

last training stage, the policy was robust enough to jump on

or over obstacles of up to 10cm. In Fig. 19 we first show

the performance of the forward jumping policy πII (top row)

when prompted to jump on a box-like obstacle of 10cm. As

can be seen, the robot does not have enough height to clear

the obstacle and only partially lands on it, after which it falls

backwards. Similarly, in row 2, the robot hits the thin barrier

and crashes. On the other hand, the final policy πIII fully lands

on the box and returns to the nominal configuration (third row),

and successfully jumps over the barrier (fourth row). In most

of the jumps, the robot lands quite closely to the ground but

does not register any body contact with it. Overall the policy

was less smooth than πII , which we attribute to the agent

prioritising jump height over smoothness. It is interesting to

note that the robot adopts a more downward pitch style of

jumping in this stage. We deployed the policy on the hardware

and tested two of the scenarios - jumping over a 10cm tall thin

obstacle and landing on a 10cm box. The sim-to-real gap here

was stronger than for the second stage policy. The robot needs

to leap over 70cm due to the size of the obstacles while also

maintaining a large height to avoid hitting them. As seen in the

top row of Fig. 20 this was especially difficult for the barrier-

like obstacle where the robot had to jump 80cm. The robot

succeeded in crossing the barrier, however, its legs did touch it

after landing. Better performance was observed when jumping

onto the box, as a shorter forward distance meant the robot

14

Fig. 17. Several experiments showcasing the robustness of the policy πII to variations in the terrain: jumping across discrete hard and soft objects (rows 1
and 2), blindly jumping from and onto a small box (rows 3 and 4), and asphalt-to-grass jump (row 5).

Fig. 18. Outdoors continuous jumping, consisting of 9 consecutive jumps of 0.4m each.

15

Fig. 19. Jumping onto and over obstacles, using Stage 2 policy πII (first two row) and Stage 3 policy πIII (last two rows).

Fig. 20. Jumping over a 10cm tall, 5cm wide obstacle (top row) and jumping onto a 10cm tall box (bottom).

could achieve a larger height throughout flight. This trade-off

between flight height and desired distance was shown in Fig.

16.

H. Jumping with springs

We trained a separate policy that incorporates the parallel

elastic actuators, defined in Section IV-A. Some of the rewards

were slightly tuned in order to accommodate the presence of

springs, but the majority of them remained the same. In Fig. 21

and 22 we show the quantitative results for an 80cm forward

jump. As can be seen in Fig. 21, the thigh and calf torques

and joint velocities are much lower at the moment of landing,

as some of the energy is absorbed by the springs. This is

beneficial, as large jumps and falls can cause wear and damage

to the motors. On the other hand, the PEA version requires

higher torques during the squat-down phase (to compress the

springs). Another disadvantage of the springs is that more

energy is required to keep the legs close to the body in mid-

air, as the springs are fully compressed in that pose. The

base position and velocity profiles throughout the jump were

very similar, however, the elastic version landed closer to the

desired target while maintaining the same flight height.

16

0 2 4
Time (s)

0.5
0.0
0.5

An
gl

e
(ra

d)

Joint Angles

0 2 4
Time (s)

5
0
5

Ve
lo

cit
y

(ra
d/

s) Joint Velocities

0 2 4
Time (s)

0

20

To
rq

ue
 (N

m
)

Hip
Joint Torques

0 2 4
Time (s)

1

2

An
gl

e
(ra

d)

0 2 4
Time (s)

0

10

Ve
lo

cit
y

(ra
d/

s)
0 2 4

Time (s)
25

0

To
rq

ue
 (N

m
) Thigh

0 2 4
Time (s)

2

1

An
gl

e
(ra

d)

0 2 4
Time (s)

20

0

20

Ve
lo

cit
y

(ra
d/

s)

0 2 4
Time (s)

0

25

To
rq

ue
 (N

m
)

Calf

No Springs Springs Flight phase no springs Flight phase springs

Fig. 21. Simulation comparison of the joints angles, velocities and torques between an 80cm forward jump with (green) and without (red) springs in parallel
with the actuators.

0 1 2 3 4 5
Time (s)

0.0

0.5

Po
sit

io
n

(m
)

Base Position

0 1 2 3 4 5
Time (s)

0

1

Ve
lo

cit
y

(m
/s

)

X-axis

Base Velocity

0 1 2 3 4 5
Time (s)

0.025

0.000

0.025

Po
sit

io
n

(m
)

0 1 2 3 4 5
Time (s)

0.2

0.0

Ve
lo

cit
y

(m
/s

)

Y-axis

0 1 2 3 4 5
Time (s)

0.25

0.50

Po
sit

io
n

(m
)

0 1 2 3 4 5
Time (s)

2

0

2

Ve
lo

cit
y

(m
/s

) Z-axis

No Springs Springs Flight phase no springs Flight phase springs

Fig. 22. Simulation comparison of the base position and velocity between an 80cm forward jump with (green) and without (red) springs in parallel with the
actuators.

17

V. DISCUSSION AND FUTURE WORK

A. Motor modelling

We observed some limitations caused by less accurate

motor modelling of the system, as there was a significant

discrepancy between the simulated and observed behaviour

of the actuators, as was shown in Fig. 7. As we operate

at the limits of the hardware, any such discrepancies can

be exaggerated and drastically change the behaviour of the

system. Furthermore, unlike general locomotion, jumping ex-

hibits a long uncontrollable flight phase where these deviations

accumulate and cannot be corrected. This was seen in our

results, as the pitch angle across longer jumps deviated from

the simulation results. The simulated motors do not represent

phenomena like motor saturation, backlash and the effect of

the transmission and gear reduction ratios. We estimated the

joint friction and damping values experimentally by comparing

the simulated and real behaviours. In the future, we would like

to perform a more in-depth estimation of these parameters.

Building a more complex and accurate model of the actuators

can further improve the performance. However, this can be

challenging, especially in the case of the Go1 where most

of the motor specifications are not provided in detail by the

manufacturer.

Several works have suggested learning the motor mapping

between actions and output torque with a neural network

instead, the so-called actuator networks. In our experiments,

we tried such an approach but in our experience, it led to a

worse performance. One explanation could be that the actuator

network overfits to the motor dynamics at the operating range

of the specific task. We found that training a network on

data collected through locomotion or on only a couple of

jumps did not capture the motor dynamics of jumping well.

To successfully learn the relationship between desired and

realised control inputs, capable of executing a wide range of

jumps, we might need a more complex network or much more

data, captured across a similarly wide range of jumps. To this

end, it is a direction we would like to explore further.

B. Domain randomisation

One of the disadvantages of excessive domain

randomisation is that it can lead to more general, but

sub-optimal, behaviours [4, 8]. For example, walking on

slippery surfaces like ice requires a different gait than walking

on paved roads. A robot could learn a common locomotion

pattern that can traverse both such environments, but that

would come at the cost of speed or energy efficiency. On

the other hand, if the policy of the agent is conditioned on

certain environmental parameters, such as ground friction, it

can then learn a suite of locomotion patterns and choose the

best one depending on the type of terrain. This notion has

been explored in literature, with some works using adaptation

modules that modulate the behaviour depending on some

perceived environmental conditions [8]; or by training a

policy that learns to estimate these parameters given a history

of proprioceptive information [9, 10, 14, 16].

Our method behaves similarly to the latter, as the policy

is conditioned on a history of states. The robot could then

implicitly reason about the state of its environment based

on how its own states have evolved (and how they were

expected to change). In contrast to other locomotion works,

our approach consists of short episodes with a single jump.

This means that the robot does not get the opportunity to

explore its environment and (implicitly or explicitly) estimate

its parameters. For this reason, we believe that there will

not be much benefit in explicitly training a student-teacher

network [8, 10, 14, 16] in the learning by cheating framework

[73]. Li et al. [34] show experimental validations to the

same result in their comparison study for bipedal jumping.

Nevertheless, in the future, we would like to verify this

experimentally by comparing the two methods.

C. Jumping with momentum

If we look at the behaviour of four-legged animals

when executing a long-distance jump we can notice that

they exhibit a four-legged contact phase, followed by an

upward pitch and pure rear-leg contact at take-off. During

landing a mirrored behaviour is observed - the body is

pitching downwards and contact is first gained with the

front legs. Previous model-based control works [24, 25]

have incorporated this contact schedule into their optimisers.

It would be interesting to investigate how such behaviour

can be learned through DRL without supplying a reference

trajectory, and furthermore, validate its benefits compared to

the style of jumping exhibited here.

In addition, one of the limitations when jumping onto

obstacles was caused by the fixed initial position - starting

too close or too far from the obstacle might result in the robot

being unsuccessful. In this work, we only consider jumping

from a standstill, but as future work, it would be interesting

to investigate the effect of allowing the robot to reposition

itself prior to the jump or even transitioning from a walk or

a run into a jump.

D. Parallel elastic actuators

In the comparison between the robot with parallel elastic

actuators and the one without, we observed higher jumping

accuracy and a smoother and softer landing for the former,

at the cost of higher energy consumption during the squat-

down and flight phases. However, we would like to further

investigate the effect of the elastic elements. One direction of

future work would be to optimise the stiffness of the springs

and their rest positions throughout training. This can give

better insights into the optimal placement of the springs to

make them more energy efficient. Furthermore, it would be

interesting to validate these results on the hardware. Due to the

impact modelling mismatches mentioned earlier, the springs

could be even more beneficial in the real world where the

impacts were observed to be larger.

VI. CONCLUSION

In this work, we presented a curriculum-based end-to-end

deep reinforcement learning approach, capable of successfully

18

learning a variety of precise short- and long-distance jumps,

while also reaching the desired yaw upon landing. Unlike

many existing methods, we have achieved this through a

single policy, without the need for reference trajectories and

additional imitation rewards.

Furthermore, through extensive domain randomisation we

successfully deployed the policy onto the real system and

closely matched the expected behaviour from the simulation.

The system was robust to the noisy sensor data, especially

the foot contact sensors and the velocity state estimates. The

jumps exhibited high accuracy, both in simulation and on the

hardware, in terms of tracking the desired landing position and

orientation. Furthermore, our policy achieved a 90cm forward

jump on the Unitree Go1 robot, a distance greater than those

reported by other model- and learning-based controllers.

We demonstrated additional outdoor tests, where the robot

successfully performed nine consecutive jumps on soft grass,

without previously encountering such environments in its

training. In addition, we showed that simulating obstacles

throughout training and conditioning the policy on their

properties can enhance the mobility of the robot, allowing it

to safely leap over or land on objects of up to 10cm.

We presented the limitations of our work, mainly caused

by the discrepancy between simulated and real motors.

In the future, we would like to improve upon this aspect,

for example by training a more general actuator network.

Having demonstrated that knowledge of the environment can

improve the performance of agile locomotive controllers in

the presence of obstacles, we would like to directly link

exteroceptive sensing to the policy in the future, instead of

manually specifying the obstacle parameters. Our preliminary

work in using elastic elements in parallel with the actuators

has shown promising results and it is a direction we plan to

further explore, both for performing larger, more explosive

jumps but also for softening the landing and reducing any

potential damage to the robot.

REFERENCES

[1] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and

S. Kim, “Dynamic Locomotion in the MIT Cheetah

3 Through Convex Model-Predictive Control,” en, in

2018 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Madrid: IEEE, Oct. 2018,

pp. 1–9, ISBN: 978-1-5386-8094-0. DOI: 10.1109/IROS.

2018.8594448. [Online]. Available: https://ieeexplore.

ieee.org/document/8594448/.

[2] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body

motion planning with centroidal dynamics and full kine-

matics,” in 2014 IEEE-RAS International Conference

on Humanoid Robots, ISSN: 2164-0580, Nov. 2014,

pp. 295–302. DOI: 10 . 1109 / HUMANOIDS . 2014 .

7041375.

[3] J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Tra-

jectory Optimization With Implicit Hard Contacts,” en,

IEEE Robotics and Automation Letters, vol. 3, no. 4,

pp. 3316–3323, Oct. 2018, ISSN: 2377-3766, 2377-

3774. DOI: 10 . 1109 / LRA . 2018 . 2852785. [Online].

Available: https : / / ieeexplore . ieee . org / document /

8403260/.

[4] J. Tan et al., Sim-to-Real: Learning Agile Locomotion

For Quadruped Robots, arXiv:1804.10332 [cs], May

2018. DOI: 10 . 48550 / arXiv . 1804 . 10332. [Online].

Available: http://arxiv.org/abs/1804.10332.

[5] Z. Fu, A. Kumar, J. Malik, and D. Pathak, Minimizing

Energy Consumption Leads to the Emergence of Gaits

in Legged Robots, arXiv:2111.01674 [cs], Oct. 2021.

DOI: 10.48550/arXiv.2111.01674. [Online]. Available:

http://arxiv.org/abs/2111.01674.

[6] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan,

and S. Levine, Learning Agile Robotic Locomotion

Skills by Imitating Animals, arXiv:2004.00784 [cs], Jul.

2020. DOI: 10 . 48550 / arXiv . 2004 . 00784. [Online].

Available: http://arxiv.org/abs/2004.00784.

[7] J. Hwangbo et al., “Learning agile and dynamic motor

skills for legged robots,” Science Robotics, vol. 4,

no. 26, eaau5872, Jan. 2019, Publisher: American Asso-

ciation for the Advancement of Science. DOI: 10.1126/

scirobotics.aau5872. [Online]. Available: https://www.

science.org/doi/full/10.1126/scirobotics.aau5872.

[8] A. Kumar, Z. Fu, D. Pathak, and J. Malik, RMA: Rapid

Motor Adaptation for Legged Robots, arXiv:2107.04034

[cs], Jul. 2021. DOI: 10 . 48550 / arXiv . 2107 . 04034.

[Online]. Available: http://arxiv.org/abs/2107.04034.

[9] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and

M. Hutter, “Learning quadrupedal locomotion over

challenging terrain,” Science Robotics, vol. 5, no. 47,

eabc5986, Oct. 2020, Publisher: American Associa-

tion for the Advancement of Science. DOI: 10 .1126/

scirobotics.abc5986. [Online]. Available: https://www.

science.org/doi/10.1126/scirobotics.abc5986.

[10] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P.

Agrawal, Rapid Locomotion via Reinforcement Learn-

ing, arXiv:2205.02824 [cs], May 2022. DOI: 10.48550/

arXiv.2205.02824. [Online]. Available: http://arxiv.org/

abs/2205.02824.

[11] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne,

“ALLSTEPS: Curriculum-driven Learning of Stepping

Stone Skills,” en, Computer Graphics Forum, vol. 39,

no. 8, pp. 213–224, 2020, ISSN: 1467-8659. DOI:

10 . 1111 / cgf . 14115. [Online]. Available: https : / /

onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14115.

[12] N. Rudin, D. Hoeller, M. Bjelonic, and M. Hutter,

Advanced Skills by Learning Locomotion and Local

Navigation End-to-End, arXiv:2209.12827 [cs], Sep.

2022. DOI: 10 . 48550 / arXiv . 2209 . 12827. [Online].

Available: http://arxiv.org/abs/2209.12827.

[13] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and

D. Pathak, Coupling Vision and Proprioception for

Navigation of Legged Robots, arXiv:2112.02094 [cs],

Jul. 2022. DOI: 10.48550/arXiv.2112.02094. [Online].

Available: http://arxiv.org/abs/2112.02094.

[14] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun,

and M. Hutter, “Learning robust perceptive locomotion

for quadrupedal robots in the wild,” Science Robotics,

vol. 7, no. 62, eabk2822, Jan. 2022, Publisher: Ameri-

https://doi.org/10.1109/IROS.2018.8594448
https://doi.org/10.1109/IROS.2018.8594448
https://ieeexplore.ieee.org/document/8594448/
https://ieeexplore.ieee.org/document/8594448/
https://doi.org/10.1109/HUMANOIDS.2014.7041375
https://doi.org/10.1109/HUMANOIDS.2014.7041375
https://doi.org/10.1109/LRA.2018.2852785
https://ieeexplore.ieee.org/document/8403260/
https://ieeexplore.ieee.org/document/8403260/
https://doi.org/10.48550/arXiv.1804.10332
http://arxiv.org/abs/1804.10332
https://doi.org/10.48550/arXiv.2111.01674
http://arxiv.org/abs/2111.01674
https://doi.org/10.48550/arXiv.2004.00784
http://arxiv.org/abs/2004.00784
https://doi.org/10.1126/scirobotics.aau5872
https://doi.org/10.1126/scirobotics.aau5872
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://www.science.org/doi/full/10.1126/scirobotics.aau5872
https://doi.org/10.48550/arXiv.2107.04034
http://arxiv.org/abs/2107.04034
https://doi.org/10.1126/scirobotics.abc5986
https://doi.org/10.1126/scirobotics.abc5986
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://www.science.org/doi/10.1126/scirobotics.abc5986
https://doi.org/10.48550/arXiv.2205.02824
https://doi.org/10.48550/arXiv.2205.02824
http://arxiv.org/abs/2205.02824
http://arxiv.org/abs/2205.02824
https://doi.org/10.1111/cgf.14115
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14115
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14115
https://doi.org/10.48550/arXiv.2209.12827
http://arxiv.org/abs/2209.12827
https://doi.org/10.48550/arXiv.2112.02094
http://arxiv.org/abs/2112.02094

19

can Association for the Advancement of Science. DOI:

10.1126/scirobotics.abk2822. [Online]. Available: https:

/ / www . science . org / doi / full / 10 . 1126 / scirobotics .

abk2822.

[15] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon,

and I. Havoutis, “RLOC: Terrain-Aware Legged Lo-

comotion Using Reinforcement Learning and Optimal

Control,” IEEE Transactions on Robotics, vol. 38, no. 5,

pp. 2908–2927, Oct. 2022, Conference Name: IEEE

Transactions on Robotics, ISSN: 1941-0468. DOI: 10.

1109/TRO.2022.3172469.

[16] G. B. Margolis and P. Agrawal, Walk These Ways: Tun-

ing Robot Control for Generalization with Multiplicity

of Behavior, arXiv:2212.03238 [cs, eess], Dec. 2022.

DOI: 10.48550/arXiv.2212.03238. [Online]. Available:

http://arxiv.org/abs/2212.03238.

[17] G. B. Margolis et al., Learning to Jump from Pixels,

arXiv:2110.15344 [cs], Oct. 2021. DOI: 10.48550/arXiv.

2110.15344. [Online]. Available: http://arxiv.org/abs/

2110.15344.

[18] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, Legged

Locomotion in Challenging Terrains using Egocentric

Vision, arXiv:2211.07638 [cs, eess], Nov. 2022. DOI:

10.48550/arXiv.2211.07638. [Online]. Available: http:

//arxiv.org/abs/2211.07638.

[19] W. Yu et al., “Visual-Locomotion: Learning to Walk on

Complex Terrains with Vision,” en, in Proceedings of

the 5th Conference on Robot Learning, ISSN: 2640-

3498, PMLR, Jan. 2022, pp. 1291–1302. [Online].

Available: https: / /proceedings.mlr.press/v164/yu22a.

html.

[20] M. Chignoli and S. Kim, Online Trajectory Optimiza-

tion for Dynamic Aerial Motions of a Quadruped Robot,

arXiv:2110.06330 [cs], Oct. 2021. DOI: 10.48550/arXiv.

2110.06330. [Online]. Available: http://arxiv.org/abs/

2110.06330.

[21] H.-W. Park, P. M. Wensing, and S. Kim, “Jumping

over obstacles with MIT Cheetah 2,” en, Robotics and

Autonomous Systems, vol. 136, p. 103 703, Feb. 2021,

ISSN: 0921-8890. DOI: 10.1016/j.robot.2020.103703.

[Online]. Available: https : / / www. sciencedirect . com /

science/article/pii/S0921889020305431.

[22] V. Kurtz, H. Li, P. M. Wensing, and H. Lin, “Mini

Cheetah, the Falling Cat: A Case Study in Machine

Learning and Trajectory Optimization for Robot Acro-

batics,” in 2022 International Conference on Robotics

and Automation (ICRA), May 2022, pp. 4635–4641.

DOI: 10.1109/ICRA46639.2022.9812120.

[23] N. Rudin, H. Kolvenbach, V. Tsounis, and M. Hut-

ter, “Cat-like Jumping and Landing of Legged Robots

in Low-gravity Using Deep Reinforcement Learning,”

IEEE Transactions on Robotics, vol. 38, no. 1, pp. 317–

328, Feb. 2022, arXiv:2106.09357 [cs], ISSN: 1552-

3098, 1941-0468. DOI: 10.1109/TRO.2021.3084374.

[Online]. Available: http://arxiv.org/abs/2106.09357.

[24] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and

S. Kim, “Optimized Jumping on the MIT Cheetah 3

Robot,” in 2019 International Conference on Robotics

and Automation (ICRA), ISSN: 2577-087X, May 2019,

pp. 7448–7454. DOI: 10.1109/ICRA.2019.8794449.

[25] C. Nguyen and Q. Nguyen, Contact-timing and Tra-

jectory Optimization for 3D Jumping on Quadruped

Robots, 2022. [Online]. Available: https : / / arxiv. org /

abs/2110.06764.

[26] C. Mastalli et al., Agile Maneuvers in Legged Robots:

A Predictive Control Approach, arXiv:2203.07554 [cs,

eess], Jul. 2022. DOI: 10 . 48550 / arXiv. 2203 . 07554.

[Online]. Available: http://arxiv.org/abs/2203.07554.

[27] I. Chatzinikolaidis and Z. Li, “Trajectory Optimiza-

tion of Contact-rich Motions using Implicit Differential

Dynamic Programming,” English, IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 2626–2633, Apr.

2021, Publisher: Institute of Electrical and Electron-

ics Engineers Inc., ISSN: 2377-3766. DOI: 10 . 1109 /

LRA . 2021 . 3061341. [Online]. Available: https : / /

www. research . ed . ac . uk / en / publications / trajectory -

optimization- of- contact- rich- motions- using- implicit-

di.

[28] M. Posa, C. Cantu, and R. Tedrake, “A direct method

for trajectory optimization of rigid bodies through con-

tact,” en, The International Journal of Robotics Re-

search, vol. 33, no. 1, pp. 69–81, Jan. 2014, ISSN: 0278-

3649, 1741-3176. DOI: 10 . 1177 / 0278364913506757.

[Online]. Available: http://journals.sagepub.com/doi/10.

1177/0278364913506757.

[29] I. Chatzinikolaidis, Y. You, and Z. Li, “Contact-Implicit

Trajectory Optimization using an Analytically Solvable

Contact Model for Locomotion on Variable Ground,”

IEEE Robotics and Automation Letters, vol. 5, no. 4,

pp. 6357–6364, Oct. 2020, arXiv:2007.11261 [cs],

ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.2020.

3010754. [Online]. Available: http://arxiv.org/abs/2007.

11261.

[30] X. B. Peng, P. Abbeel, S. Levine, and M. van de

Panne, “DeepMimic: Example-guided deep reinforce-

ment learning of physics-based character skills,” ACM

Transactions on Graphics, vol. 37, no. 4, 143:1–143:14,

Jul. 2018, ISSN: 0730-0301. DOI: 10 . 1145 / 3197517 .

3201311. [Online]. Available: https://doi.org/10.1145/

3197517.3201311.

[31] S. Schaal, “Learning from Demonstration,” in Advances

in Neural Information Processing Systems, vol. 9, MIT

Press, 1996. [Online]. Available: https://papers.nips.cc/

paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-

Abstract.html.

[32] M. Bogdanovic, M. Khadiv, and L. Righetti, “Model-

free reinforcement learning for robust locomotion using

demonstrations from trajectory optimization,” Frontiers

in Robotics and AI, vol. 9, 2022, ISSN: 2296-9144.

[Online]. Available: https://www.frontiersin.org/articles/

10.3389/frobt.2022.854212.

[33] Y. Fuchioka, Z. Xie, and M. van de Panne, OPT-

Mimic: Imitation of Optimized Trajectories for Dy-

namic Quadruped Behaviors, arXiv:2210.01247 [cs],

Nov. 2022. DOI: 10.48550/arXiv.2210.01247. [Online].

Available: http://arxiv.org/abs/2210.01247.

https://doi.org/10.1126/scirobotics.abk2822
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://www.science.org/doi/full/10.1126/scirobotics.abk2822
https://doi.org/10.1109/TRO.2022.3172469
https://doi.org/10.1109/TRO.2022.3172469
https://doi.org/10.48550/arXiv.2212.03238
http://arxiv.org/abs/2212.03238
https://doi.org/10.48550/arXiv.2110.15344
https://doi.org/10.48550/arXiv.2110.15344
http://arxiv.org/abs/2110.15344
http://arxiv.org/abs/2110.15344
https://doi.org/10.48550/arXiv.2211.07638
http://arxiv.org/abs/2211.07638
http://arxiv.org/abs/2211.07638
https://proceedings.mlr.press/v164/yu22a.html
https://proceedings.mlr.press/v164/yu22a.html
https://doi.org/10.48550/arXiv.2110.06330
https://doi.org/10.48550/arXiv.2110.06330
http://arxiv.org/abs/2110.06330
http://arxiv.org/abs/2110.06330
https://doi.org/10.1016/j.robot.2020.103703
https://www.sciencedirect.com/science/article/pii/S0921889020305431
https://www.sciencedirect.com/science/article/pii/S0921889020305431
https://doi.org/10.1109/ICRA46639.2022.9812120
https://doi.org/10.1109/TRO.2021.3084374
http://arxiv.org/abs/2106.09357
https://doi.org/10.1109/ICRA.2019.8794449
https://arxiv.org/abs/2110.06764
https://arxiv.org/abs/2110.06764
https://doi.org/10.48550/arXiv.2203.07554
http://arxiv.org/abs/2203.07554
https://doi.org/10.1109/LRA.2021.3061341
https://doi.org/10.1109/LRA.2021.3061341
https://www.research.ed.ac.uk/en/publications/trajectory-optimization-of-contact-rich-motions-using-implicit-di
https://www.research.ed.ac.uk/en/publications/trajectory-optimization-of-contact-rich-motions-using-implicit-di
https://www.research.ed.ac.uk/en/publications/trajectory-optimization-of-contact-rich-motions-using-implicit-di
https://www.research.ed.ac.uk/en/publications/trajectory-optimization-of-contact-rich-motions-using-implicit-di
https://doi.org/10.1177/0278364913506757
http://journals.sagepub.com/doi/10.1177/0278364913506757
http://journals.sagepub.com/doi/10.1177/0278364913506757
https://doi.org/10.1109/LRA.2020.3010754
https://doi.org/10.1109/LRA.2020.3010754
http://arxiv.org/abs/2007.11261
http://arxiv.org/abs/2007.11261
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/3197517.3201311
https://papers.nips.cc/paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html
https://papers.nips.cc/paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html
https://papers.nips.cc/paper/1996/hash/68d13cf26c4b4f4f932e3eff990093ba-Abstract.html
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212
https://www.frontiersin.org/articles/10.3389/frobt.2022.854212
https://doi.org/10.48550/arXiv.2210.01247
http://arxiv.org/abs/2210.01247

20

[34] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,

and K. Sreenath, Robust and Versatile Bipedal Jumping

Control through Multi-Task Reinforcement Learning,

en, arXiv:2302.09450 [cs, eess], Feb. 2023. [Online].

Available: http://arxiv.org/abs/2302.09450.

[35] X. Huang et al., Creating a Dynamic Quadrupedal

Robotic Goalkeeper with Reinforcement Learning,

arXiv:2210.04435 [cs, eess], Oct. 2022. DOI: 10.48550/

arXiv.2210.04435. [Online]. Available: http://arxiv.org/

abs/2210.04435.

[36] Q. Yao et al., Imitation and Adaptation Based on

Consistency: A Quadruped Robot Imitates Animals

from Videos Using Deep Reinforcement Learning,

arXiv:2203.05973 [cs], Mar. 2022. DOI: 10 . 48550 /

arXiv. 2203 . 05973. [Online]. Available: http : / / arxiv.

org/abs/2203.05973.

[37] F. Yu, R. Batke, J. Dao, J. Hurst, K. Green, and

A. Fern, Dynamic Bipedal Maneuvers through Sim-to-

Real Reinforcement Learning, arXiv:2207.07835 [cs],

Jul. 2022. DOI: 10.48550/arXiv.2207.07835. [Online].

Available: http://arxiv.org/abs/2207.07835.

[38] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grim-

minger, and G. Martius, Learning Agile Skills via Ad-

versarial Imitation of Rough Partial Demonstrations,

arXiv:2206.11693 [cs], Nov. 2022. DOI: 10 . 48550 /

arXiv. 2206 . 11693. [Online]. Available: http : / / arxiv.

org/abs/2206.11693.

[39] J. Ho and S. Ermon, Generative Adversarial Imitation

Learning, arXiv:1606.03476 [cs], Jun. 2016. DOI: 10.

48550/arXiv.1606.03476. [Online]. Available: http: / /

arxiv.org/abs/1606.03476.

[40] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and

A. Kanazawa, AMP: Adversarial Motion Priors

for Stylized Physics-Based Character Control,

arXiv:2104.02180 [cs], May 2022. DOI: 10 .

1145 / 3450626 . 3459670. [Online]. Available: http :

//arxiv.org/abs/2104.02180.

[41] A. Escontrela et al., Adversarial Motion Priors Make

Good Substitutes for Complex Reward Functions,

arXiv:2203.15103 [cs], Mar. 2022. DOI: 10 . 48550 /

arXiv. 2203 . 15103. [Online]. Available: http : / / arxiv.

org/abs/2203.15103.

[42] E. Vollenweider, M. Bjelonic, V. Klemm, N. Rudin,

J. Lee, and M. Hutter, Advanced Skills through Multiple

Adversarial Motion Priors in Reinforcement Learning,

arXiv:2203.14912 [cs], Mar. 2022. DOI: 10 . 48550 /

arXiv. 2203 . 14912. [Online]. Available: http : / / arxiv.

org/abs/2203.14912.

[43] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne,

“DeepLoco: Dynamic locomotion skills using hierarchi-

cal deep reinforcement learning,” ACM Transactions on

Graphics, vol. 36, no. 4, 41:1–41:13, Jul. 2017, ISSN:

0730-0301. DOI: 10.1145/3072959.3073602. [Online].

Available: https://doi.org/10.1145/3072959.3073602.

[44] X. B. Peng and M. van de Panne, “Learning locomo-

tion skills using DeepRL: Does the choice of action

space matter?” In Proceedings of the ACM SIGGRAPH

/ Eurographics Symposium on Computer Animation,

ser. SCA ’17, New York, NY, USA: Association for

Computing Machinery, Jul. 2017, pp. 1–13, ISBN: 978-

1-4503-5091-4. DOI: 10.1145/3099564.3099567. [On-

line]. Available: https : / / doi . org / 10 . 1145 / 3099564 .

3099567.

[45] S. Bohez et al., Imitate and Repurpose: Learning

Reusable Robot Movement Skills From Human and

Animal Behaviors, arXiv:2203.17138 [cs], Mar. 2022.

DOI: 10.48550/arXiv.2203.17138. [Online]. Available:

http://arxiv.org/abs/2203.17138.

[46] G. Bellegarda and Q. Nguyen, Robust Quadruped

Jumping via Deep Reinforcement Learning,

arXiv:2011.07089 [cs, eess], Mar. 2021. DOI:

10 . 48550 / arXiv . 2011 . 07089. [Online]. Available:

http://arxiv.org/abs/2011.07089.

[47] Z. Yin, Z. Yang, M. van de Panne, and K.

Yin, Discovering Diverse Athletic Jumping Strategies,

arXiv:2105.00371 [cs], May 2021. DOI: 10 . 48550 /

arXiv. 2105 . 00371. [Online]. Available: http : / / arxiv.

org/abs/2105.00371.

[48] Y. Bengio, J. Louradour, R. Collobert, and J. Weston,

“Curriculum learning,” in Proceedings of the 26th An-

nual International Conference on Machine Learning,

ser. ICML ’09, New York, NY, USA: Association for

Computing Machinery, Jun. 2009, pp. 41–48, ISBN:

978-1-60558-516-1. DOI: 10 .1145/1553374 .1553380.

[Online]. Available: http:/ /doi.org/10.1145/1553374.

1553380.

[49] X. Wang, Y. Chen, and W. Zhu, A Survey on Curriculum

Learning, arXiv:2010.13166 [cs], Mar. 2021. DOI: 10.

48550/arXiv.2010.13166. [Online]. Available: http: / /

arxiv.org/abs/2010.13166.

[50] R. Wang, J. Lehman, J. Clune, and K. O. Stanley, Paired

Open-Ended Trailblazer (POET): Endlessly Generating

Increasingly Complex and Diverse Learning Environ-

ments and Their Solutions, arXiv:1901.01753 [cs], Feb.

2019. DOI: 10 . 48550 / arXiv . 1901 . 01753. [Online].

Available: http://arxiv.org/abs/1901.01753.

[51] V. Mnih et al., Playing Atari with Deep Reinforcement

Learning, arXiv:1312.5602 [cs], Dec. 2013. DOI: 10 .

48550 / arXiv. 1312 . 5602. [Online]. Available: http : / /

arxiv.org/abs/1312.5602.

[52] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,

“Policy Gradient Methods for Reinforcement Learning

with Function Approximation,” in Advances in Neural

Information Processing Systems, vol. 12, MIT Press,

1999. [Online]. Available: https://papers.nips.cc/paper/

1999 / hash / 464d828b85b0bed98e80ade0a5c43b0f -

Abstract.html.

[53] S. M. Kakade, “A Natural Policy Gradient,” in

Advances in Neural Information Processing Sys-

tems, vol. 14, MIT Press, 2001. [Online]. Avail-

able: https : / / papers . nips . cc / paper / 2001 / hash /

4b86abe48d358ecf194c56c69108433e-Abstract.html.

[54] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and

O. Klimov, Proximal Policy Optimization Algorithms,

arXiv:1707.06347 [cs], Aug. 2017. DOI: 10 . 48550 /

http://arxiv.org/abs/2302.09450
https://doi.org/10.48550/arXiv.2210.04435
https://doi.org/10.48550/arXiv.2210.04435
http://arxiv.org/abs/2210.04435
http://arxiv.org/abs/2210.04435
https://doi.org/10.48550/arXiv.2203.05973
https://doi.org/10.48550/arXiv.2203.05973
http://arxiv.org/abs/2203.05973
http://arxiv.org/abs/2203.05973
https://doi.org/10.48550/arXiv.2207.07835
http://arxiv.org/abs/2207.07835
https://doi.org/10.48550/arXiv.2206.11693
https://doi.org/10.48550/arXiv.2206.11693
http://arxiv.org/abs/2206.11693
http://arxiv.org/abs/2206.11693
https://doi.org/10.48550/arXiv.1606.03476
https://doi.org/10.48550/arXiv.1606.03476
http://arxiv.org/abs/1606.03476
http://arxiv.org/abs/1606.03476
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/3450626.3459670
http://arxiv.org/abs/2104.02180
http://arxiv.org/abs/2104.02180
https://doi.org/10.48550/arXiv.2203.15103
https://doi.org/10.48550/arXiv.2203.15103
http://arxiv.org/abs/2203.15103
http://arxiv.org/abs/2203.15103
https://doi.org/10.48550/arXiv.2203.14912
https://doi.org/10.48550/arXiv.2203.14912
http://arxiv.org/abs/2203.14912
http://arxiv.org/abs/2203.14912
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3072959.3073602
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.1145/3099564.3099567
https://doi.org/10.48550/arXiv.2203.17138
http://arxiv.org/abs/2203.17138
https://doi.org/10.48550/arXiv.2011.07089
http://arxiv.org/abs/2011.07089
https://doi.org/10.48550/arXiv.2105.00371
https://doi.org/10.48550/arXiv.2105.00371
http://arxiv.org/abs/2105.00371
http://arxiv.org/abs/2105.00371
https://doi.org/10.1145/1553374.1553380
http://doi.org/10.1145/1553374.1553380
http://doi.org/10.1145/1553374.1553380
https://doi.org/10.48550/arXiv.2010.13166
https://doi.org/10.48550/arXiv.2010.13166
http://arxiv.org/abs/2010.13166
http://arxiv.org/abs/2010.13166
https://doi.org/10.48550/arXiv.1901.01753
http://arxiv.org/abs/1901.01753
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/1999/hash/464d828b85b0bed98e80ade0a5c43b0f-Abstract.html
https://papers.nips.cc/paper/2001/hash/4b86abe48d358ecf194c56c69108433e-Abstract.html
https://papers.nips.cc/paper/2001/hash/4b86abe48d358ecf194c56c69108433e-Abstract.html
https://doi.org/10.48550/arXiv.1707.06347

21

arXiv. 1707 . 06347. [Online]. Available: http : / / arxiv.

org/abs/1707.06347.
[55] J. Schulman, S. Levine, P. Moritz, M. I. Jordan,

and P. Abbeel, Trust Region Policy Optimization,

arXiv:1502.05477 [cs], Apr. 2017. DOI: 10.48550/arXiv.

1502.05477. [Online]. Available: http://arxiv.org/abs/

1502.05477.

[56] Z. Li et al., “Reinforcement Learning for Robust Pa-

rameterized Locomotion Control of Bipedal Robots,”

in 2021 IEEE International Conference on Robotics

and Automation (ICRA), ISSN: 2577-087X, May 2021,

pp. 2811–2817. DOI: 10 . 1109 / ICRA48506 . 2021 .

9560769.

[57] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan,

and S. Levine, Legged Robots that Keep on Learning:

Fine-Tuning Locomotion Policies in the Real World,

arXiv:2110.05457 [cs], Oct. 2021. DOI: 10.48550/arXiv.

2110.05457. [Online]. Available: http://arxiv.org/abs/

2110.05457.

[58] L. Smith, I. Kostrikov, and S. Levine, A Walk in the

Park: Learning to Walk in 20 Minutes With Model-

Free Reinforcement Learning, arXiv:2208.07860 [cs],

Aug. 2022. DOI: 10.48550/arXiv.2208.07860. [Online].

Available: http://arxiv.org/abs/2208.07860.

[59] X. B. Peng, M. Andrychowicz, W. Zaremba, and P.

Abbeel, “Sim-to-Real Transfer of Robotic Control with

Dynamics Randomization,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA), ISSN:

2577-087X, May 2018, pp. 3803–3810. DOI: 10.1109/

ICRA.2018.8460528.

[60] J. Siekmann et al., Learning Memory-Based Control for

Human-Scale Bipedal Locomotion, arXiv:2006.02402

[cs], Jun. 2020. DOI: 10 . 48550 / arXiv . 2006 . 02402.

[Online]. Available: http://arxiv.org/abs/2006.02402.

[61] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning

to Walk in Minutes Using Massively Parallel Deep

Reinforcement Learning,” en, in Proceedings of the

5th Conference on Robot Learning, ISSN: 2640-3498,

PMLR, Jan. 2022, pp. 91–100. [Online]. Available:

https://proceedings.mlr.press/v164/rudin22a.html.

[62] G. Ji, J. Mun, H. Kim, and J. Hwangbo, “Concur-

rent Training of a Control Policy and a State Esti-

mator for Dynamic and Robust Legged Locomotion,”

IEEE Robotics and Automation Letters, vol. 7, no. 2,

pp. 4630–4637, Apr. 2022, Conference Name: IEEE

Robotics and Automation Letters, ISSN: 2377-3766.

DOI: 10.1109/LRA.2022.3151396.

[63] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba,

and P. Abbeel, Domain Randomization for Transferring

Deep Neural Networks from Simulation to the Real

World, arXiv:1703.06907 [cs], Mar. 2017. DOI: 10 .

48550 / arXiv . 1703 . 06907. [Online]. Available: http :

//arxiv.org/abs/1703.06907.

[64] F. Sadeghi and S. Levine, CAD2RL: Real Single-Image

Flight without a Single Real Image, arXiv:1611.04201

[cs], Jun. 2017. DOI: 10 . 48550 / arXiv . 1611 . 04201.

[Online]. Available: http://arxiv.org/abs/1611.04201.

[65] S. Gangapurwala, L. Campanaro, and I. Havoutis,

Learning Low-Frequency Motion Control for Robust

and Dynamic Robot Locomotion, arXiv:2209.14887

[cs], Sep. 2022. DOI: 10 . 48550 / arXiv . 2209 . 14887.

[Online]. Available: http://arxiv.org/abs/2209.14887.

[66] Unitree Go1 – UnitreeRobotics. [Online]. Avail-

able: https : / / shop . unitree . com / products /

unitreeyushutechnologydog - artificial - intelligence -

companion- bionic- companion- intelligent - robot - go1-

quadruped-robot-dog.

[67] F. Bjelonic et al., “Learning-based Design and Control

for Quadrupedal Robots with Parallel-Elastic Actua-

tors,” en, IEEE Robotics and Automation Letters, vol. 8,

no. 3, pp. 1611–1618, Mar. 2023, arXiv:2301.03509

[cs], ISSN: 2377-3766, 2377-3774. DOI: 10.1109/LRA.

2023.3234809. [Online]. Available: http://arxiv.org/abs/

2301.03509.

[68] V. Makoviychuk et al., Isaac Gym: High Performance

GPU-Based Physics Simulation For Robot Learning,

arXiv:2108.10470 [cs], Aug. 2021. DOI: 10 . 48550 /

arXiv. 2108 . 10470. [Online]. Available: http : / / arxiv.

org/abs/2108.10470.

[69] Y. Yang et al., CAJun: Continuous Adaptive

Jumping using a Learned Centroidal Controller,

arXiv:2306.09557 [cs], Jun. 2023. DOI: 10 . 48550 /

arXiv.2306.09557. [Online]. Available: http://arxiv.org/

abs/2306.09557.

[70] L. Smith et al., Learning and Adapting Agile

Locomotion Skills by Transferring Experience, en,

arXiv:2304.09834 [cs], Apr. 2023. [Online]. Available:

http://arxiv.org/abs/2304.09834.

[71] K. Caluwaerts et al., Barkour: Benchmarking Animal-

level Agility with Quadruped Robots, en, May 2023.

[Online]. Available: https://arxiv.org/abs/2305.14654v1.

[72] Y. Yang, X. Meng, W. Yu, T. Zhang, J. Tan, and B.

Boots, “Continuous Versatile Jumping Using Learned

Action Residuals,” en, in Proceedings of The 5th Annual

Learning for Dynamics and Control Conference, ISSN:

2640-3498, PMLR, Jun. 2023, pp. 770–782. [Online].

Available: https://proceedings.mlr.press/v211/yang23b.

html.

[73] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, Learn-

ing by Cheating, arXiv:1912.12294 [cs], Dec. 2019.

DOI: 10.48550/arXiv.1912.12294. [Online]. Available:

http://arxiv.org/abs/1912.12294.

APPENDIX A

REWARD SCALES

Table V shows the scales for each term in the reward

function, for each of the three training stages respectively.

APPENDIX B

PPO HYPERPARAMETERS

In this section we present the hyperparameters for the PPO

reinforcement algorithm (see Table VI).

https://doi.org/10.48550/arXiv.1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.1502.05477
https://doi.org/10.48550/arXiv.1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
https://doi.org/10.1109/ICRA48506.2021.9560769
https://doi.org/10.1109/ICRA48506.2021.9560769
https://doi.org/10.48550/arXiv.2110.05457
https://doi.org/10.48550/arXiv.2110.05457
http://arxiv.org/abs/2110.05457
http://arxiv.org/abs/2110.05457
https://doi.org/10.48550/arXiv.2208.07860
http://arxiv.org/abs/2208.07860
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.1109/ICRA.2018.8460528
https://doi.org/10.48550/arXiv.2006.02402
http://arxiv.org/abs/2006.02402
https://proceedings.mlr.press/v164/rudin22a.html
https://doi.org/10.1109/LRA.2022.3151396
https://doi.org/10.48550/arXiv.1703.06907
https://doi.org/10.48550/arXiv.1703.06907
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.48550/arXiv.1611.04201
http://arxiv.org/abs/1611.04201
https://doi.org/10.48550/arXiv.2209.14887
http://arxiv.org/abs/2209.14887
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog
https://shop.unitree.com/products/unitreeyushutechnologydog-artificial-intelligence-companion-bionic-companion-intelligent-robot-go1-quadruped-robot-dog
https://doi.org/10.1109/LRA.2023.3234809
https://doi.org/10.1109/LRA.2023.3234809
http://arxiv.org/abs/2301.03509
http://arxiv.org/abs/2301.03509
https://doi.org/10.48550/arXiv.2108.10470
https://doi.org/10.48550/arXiv.2108.10470
http://arxiv.org/abs/2108.10470
http://arxiv.org/abs/2108.10470
https://doi.org/10.48550/arXiv.2306.09557
https://doi.org/10.48550/arXiv.2306.09557
http://arxiv.org/abs/2306.09557
http://arxiv.org/abs/2306.09557
http://arxiv.org/abs/2304.09834
https://arxiv.org/abs/2305.14654v1
https://proceedings.mlr.press/v211/yang23b.html
https://proceedings.mlr.press/v211/yang23b.html
https://doi.org/10.48550/arXiv.1912.12294
http://arxiv.org/abs/1912.12294

22

TABLE V
REWARD SCALES FOR THE THREE CURRICULUM STAGES.

Name Scale Stage 1 Scale Stage 2 Scale Stage 3 Kernel σ

Landing position wp 4.0 30.0 30.0 0.05

Landing orientation wori 4.0 30.0 30.0 0.05

Max height wh 40.0 100.0 100.0 0.05

Termination wterm -0.04 -0.04 -0.04 0.0

Jumping wjump 1.0 4.0 4.0 0.05

Position Tracking wp,tr 0.06 0.06 0.06 0.001

Orientation Tracking wori,tr 0.12 0.12 0.12 0.05

Base height squat wpz ,sq 0.24 0.24 0.24 0.005

Base height flight wpz ,fl 2.0 2.0 2.0 0.1

Base height landing wh_st 0.4 0.4 0.4 0.005

Tracking Linear vel wvx,y 0.1 0.6 0.6 0.05

Tracking Angular vel wω 0.01 0.1 0.1 0.05

Feet clearance wfeet -0.4 -0.4 -0.4 0.0

Symmetry wsym -0.06 -0.06 -0.06 0.05

Nominal pose wq 0.16 0.24 0.24 0.1

Energy usage wenergy -2e-4 -2e-4 -2e-4 0.0

Change of contact wcontact 0.0 0.4 0.4 0.0

Feet contact forces wFc
-0.1 -0.1 -0.1 0.0

Action rate wa -2e-3 -2e-3 -2e-3 0.0

Action rate second order wȧ -2e-3 -2e-3 -2e-3 0.0

Joint acceleration wq̈ -2e-8 -2e-8 -2e-8 0.0

Joint limits wqlim -0.2 -0.2 -0.2 0.0

TABLE VI
PPO HYPERPARAMETER CHOICE.

Hyperparameter Value

Discount Factor 0.99

Value Loss Coefficient (α1) 1.0

Entropy Coefficient (α2) 0.01

Ratio Clip 0.2

Learning rate 1e-3

GAE parameter 0.95

Num of epochs 5

Num of mini batches 4

Num of envs 4096

Num of steps per env 30

	Introduction
	Relevant Literature
	Model-based control
	Reinforcement learning-based control
	Curriculum Learning

	Methodology
	Reinforcement Learning and MDP
	Curriculum-based approach
	Observation and action space
	Rewards
	Domain Randomisation

	Experimental Validation
	Hardware setup
	Training environment
	Forward jumping
	Diagonal jumping
	Rough terrain
	Continuous jumping
	Forward jumping with obstacles
	Jumping with springs

	Discussion and Future work
	Motor modelling
	Domain randomisation
	Jumping with momentum
	Parallel elastic actuators

	Conclusion
	Appendix A: Reward scales
	Appendix B: PPO Hyperparameters

