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Supporting information for chapter 2:
Interannual aboveground vegetation

variability in the HTESSEL land surface
model

S2.1 Model experiments

Table S2.1: Details of offline model experiments

Spin-up 1993-1999 Evaluation 1999-2019
Experiment | LC LAI FCover LC LAI FCover
CTR ESA-CCI CGLS clima- k=0.5 ESA-CCI CGLS clima- k=0.5
1993 tology 1993- 1993 tology 1993-
2019 2019
TIALC ESA-CCI CGLS clima- k=0.5 ESA-CCI CGLS clima- k=0.5
annually tology 1993- annually tology 1993-
varying 2019 varying 2019
1993-2019 1993-2019
TAKS5 ESA-CCI CGLS inter- k=0.5 ESA-CCI CGLS inter- k=0.5
annually annually annually annually
varying varying varying varying
1993-2019 1993-2019 1993-2019 1993-2019
TAKV ESA-CCI CGLS inter- k vegetation | ESA-CCI CGLS inter- k vegetation
annually annually specific annually annually specific
varying varying varying varying
1993-2019 1993-2019 1993-2019 1993-2019
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S2.2 Land cover results

Table S2.2: Annual mean (2014-2018) evaporation fluxes (mm/year) with E total evaporation, F; transpiration, E
soil evaporation and Fj; interception evaporation in experiments CTR and IALC and DOLCEv3 (ounly E) for the
three cases highlighted in Fig. 2.3

Case E E E E; E E; E E; E;
CTR IALC DOLCEv3| CTR IALC CTR IALC CTR IALC
Amazon 1174 1162 1160 633 615 156 183 384 363
Lapland 202 206 252 43 49 116 112 39 41
Central Asia | 279 280 287 29 30 222 220 13 13

Table S2.3: Pearson correlation values (r) and root mean squared error (RMSE) of model monthly evaporation with
respect to DOLCEv3 evaporation, and near-surface soil moisture with respect to ESA-CCI SM. For r inter-annual
anomalies are used, for RMSE E the monthly values, and for RMSE SMj the standardized inter-annual anomalies.
The cases are highlighted in Fig. 2.3, S2.1-S2.3

Case r E|r E | RMSE RMSE r  SMg | SMy; | RMSE RMSE
CTR IALC E CTR | ETALC | CTR IALC SM, SM,
CTR IALC
Amazon 0.64 0.64 0.43 0.44 0.059 0.056 1.01 1.01
Lapland 0.56 0.56 0.28 0.27 0.034 0.034 1.33 1.33
Central Asia | 0.76 0.76 0.33 0.33 0.24 0.24 0.81 0.81
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(a) ECTR (b) AE CTR—DOLCEvV3

0 300 600 900 1200 1500  —200-160-120—-80 —40 0 40 80 120 160 200
(c) E IALC (d) AE IALC—DOLCEV3

0 300 600 900 1200 1500  —200-160-120-80 —40 0 40 80 120 160 200
(e)EDOLCEVB (f) [AE CTR— DOLCEVB] [AE IALC—DOLCEV3]

0 300 600 900 1200 1500 I =16 =12 =8 -4 0 4 8 12 16 2D

mean E (mm year™!) A E (mmyear~?)

Figure S2.1: Mean evaporation (E) for (a) CTR, (c¢) IALC and (E) DOLCEv3 for 2014-2018. (b) and (d) show
the absolute difference of mean E between CTR and DOLCEv3, and IALC and DOLCEv3. (f) is the difference
between (b) and (d).
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(a) Ar E-anomaly IALC-CTR (b) Ar SMg-anomaly IALC-CTR
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Figure S2.2: Pearson correlation difference between experiment CTR and TALC (TALC-CTR) for (a) monthly
anomaly total evaporation (F) with respect to DOLCEv3 evaporation and (b) monthly anomaly surface soil moisture
(SMs) with respect to ESA-CCI SM. Blue (red) indicates an increased (reduced) correlation in IALC compared to
CTR, white indicates small and/or insignificant r differences, and grey indicates no data points. The percentages
indicate the areal percentage of significantly changing land points, and the areal percentage of positive and negative
Ar for significant points. The boxes highlight the three regions Southern Amazon, Lapland and Central Asia with
major land cover changes. See Table[S2.1]for details of the experiments and Table[S2.2] for values in the highlighted
regions.

(a) RMSE E CTR

| B B .‘
0.0 0.2 0.4 0.6 08 1.0 -0.03 -0.018 -0.006 0.006 0.018 0.03
RMSE (mm day ™) ARMSE (mm day 1)

Figure S2.3: (a) Root mean squared error (RMSE) of model monthly evaporation in experiment CTR with respect
to DOLCEv3 with red indicating a larger RMSE. (b) The difference between RMSE in CTR and IALC (IALC-CTR)
with blue (red) indicating a reduced (increased) RMSE. The boxes highlight the three regions Southern Amazon,
Lapland and Central Asia with major land cover changes. See Table for details of the experiments and Table
for values in the highlighted regions.
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(a) RMSE SM, CTR

0.5 0.7 0.9 1.1 1.3 1.5 -0.02 -0.012 -0.004 0.004 0.012 0.02
RMSE (-) ARMSE (-)

Figure S2.4: (a) Root mean squared error (RMSE) of model monthly standardized anomalies of near-surface soil
moisture (SMs) in experiment CTR with respect to ESA-CCI SM with red indicating a larger RMSE. (b) The
difference between RMSE in CTR and IALC (IALC-CTR) with blue (red) indicating a reduced (increased) RMSE.
The boxes highlight the three regions Southern Amazon, Lapland and Central Asia with major land cover changes.
See Table [S2.1] for details of the experiments and Table [S2.2] for values in the highlighted regions.
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S2.3 Leaf area index results

(a) DJF E r IALC (b) DJF E Ar IAK5-IALC
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Figure S2.5: (a,c,e,g) Pearson correlation (r) of seasonal anomaly evaporation (E) with respect to DOLCEv3 evap-
oration in TALC and (b,d,f;h) seasonal correlation difference between TALC and TAKS5 (IAK5-TALC). Blue (red)
indicates an increased (reduced) correlation in TAK5 compared to TALC, white colors indicate small and/or insignif-
icant differences, and grey indicates no data points. The percentages indicate the areal percentage of significantly
changing land points, and the areal percentage of positive and negative Ar for significant points. See Table
for details of the experiments.
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(a) DJF SMs r IALC (b) DJF SMS Ar IAK5-1ALC
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Figure S2.6: (a,c,e,g) Pearson correlation (r) of seasonal anomaly surface soil moisture (SM;) with respect to ESA-
CCI SM in TALC and (b,d,f,h) seasonal correlation difference between IALC and TAK5 (TAK5-TALC). Blue (red)
indicates an increased (reduced) correlation in TAK5 compared to IALC, white colors indicate small and/or insignif-
icant differences, and grey indicates no data points. The percentages indicate the areal percentage of significantly
changing land points, and the areal percentage of positive and negative Ar for significant points. See Table
for details of the experiments.
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S2.4 Effective vegetation cover results

Table S2.4: Effective vegetation cover k-values for experiments IAK5 and IKAV, with associated RMSE values with
respect to the FCover data. Figures associated with the numbers are presented in Fig. 2.10.

Vegetation type k TAK5 | RMSE k TAK5 | k IAKV | RMSE k TAKV
Crops 0.5 0.042 0.458 0.036
Short grass 0.5 0.031 0.457 0.026
Evergreen Needleleaf trees | 0.5 0.098 0.351 0.038
Deciduous needleleaf trees | 0.5 0.069 0.381 0.032
Deciduous broadleaf trees | 0.5 0.081 0.396 0.053
Evergreen Broadleaf trees | 0.5 0.066 0.390 0.036
Tundra 0.5 0.028 0.375 0.018
Bogs and marshes 0.5 0.070 0.419 0.049
Evergreen shrubs 0.5 0.060 0.438 0.045
Deciduous shrubs 0.5 0.037 0.448 0.026
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(a) E IAKS (b) Arel E (IAKV-IAKS)/IAKS

0 300 600 900 1200 1500 -0.20 -0.12 -0.04 0.04 0.12 0.20
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mean E-flux (mm year™?) Are)E-flux (-)

Figure S2.7: Annual mean evaporation fluxes in experiment TAK5 with (a) total evaporation (E), (c) transpiration
(E), (e) soil evaporation (Fs) and (g) interception evaporation (E;) and the relative difference between annual
mean evaporation fluxes in experiment JAKV and TAK5 ((IAKV-TAK5)/IAKS5) for (b) E, (d) Ey, (f) Es and (h)
E;. Blue (red) indicates an increased (reduced) flux. Grey land areas indicate regions with annual mean E-fluxes

< 0.1 mm/year. See Table for details of the experiments.
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(a) SMs IAK5 (b) Are| SMs (IAKV IAKS)/IAKS

00 01 02 03 04 0.5 -0.05-0.03-0.01 0.01 0.03 0.05
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Figure S2.8: Annual mean soil moisture in experiment TAK5 with (a) near-surface soil moisture (SMs) and (c)
subsurface soil moisture (SMgp) and the relative difference between annual mean SM in experiment TAKV and
TAKS5 ((IAKV-TAKS5)/TAKS5) for (b) SM and (d) SMgp,. Blue (red) indicates an increased (reduced) soil moisture.
Grey land areas indicate regions with annual mean SM < 0.01 m3/m3. See Tablefor details of the experiments.

(a) RMSE Cigf IAK5 (b) ARMSE C,¢r IAKV-IAKS

: 12 016 0.2 -0.10 -0.06 -0.02 0.02 006 0.10
RMSE (-) ARMSE (-)

Figure S2.9: (a) Root mean squared error (RMSE) of model monthly effective vegetation cover Ceff in experiment
TAKS5 with respect to CGLS FCover with red indicating a larger RMSE. (b) The difference between RMSE in TAK5
and TAKV (TAKV-TAKS5) with blue (red) indicating a reduced (increased) RMSE. See Table for details of the

experiments.

S12



(a) RMSE Ceff IAKS - DJF (b) ARMSE Cess IAKV- IAK5 DJF
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Figure S2.10: Same as Fig. for seasonal values.
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Figure S2.11: (a) Root mean squared error (RMSE) of model monthly evaporation E in experiment IAK5 with
respect to DOLCEv3 E with red indicating a larger RMSE. (b) The difference between RMSE in TAK5 and TAKV
(TAKV-TAKS5) with blue (red) indicating a reduced (increased) RMSE. See Table for details of the experiments.
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(a) RMSE E 1AKS5 - DJF (b) ARMSE E 1AKV-IAKS - DJF
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Figure S2.12: Same as Fig. [S2.10] for seasonal values
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(a) RMSE SM IAK5 (b) ARIVISE SMIAKV-IAKS

05 07 09 T 1,3 1.5 -0.02 -0.012 -0.004 0.004 0.012 0.02
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Figure S2.13: (a) Root mean squared error (RMSE) of model monthly standardized anomalies of near-surface soil
moisture in experiment TAKS5 with respect to ESA-CCI SM with red indicating a larger RMSE. (b) The difference
between RMSE in TAK5 and TAKV (IAKV-TAK5) with blue (red) indicating a reduced (increased) RMSE. See
Table [S2.1] for details of the experiments.
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(b) ARMSE SMS IAKV—IAKS DJF
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Figure S2.14: Same as Fig. [S2.12] for seasonal values
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(a) Ar E-anomaly IAKV-IAK5 (b) Ar SMg-anom
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Figure S2.15: Pearson correlation difference between experiment IAK5 and TAKV (IAKV-TAKS5) for (a) monthly
anomaly total evaporation (F) with respect to DOLCEv3 evaporation and (b) monthly anomaly surface soil moisture
(SM;) with respect to ESA-CCI SM. Blue (red) indicates an increased (reduced) correlation in IAKV compared to
TAKS5, white indicates small and/or insignificant r differences, and grey indicates no data points. The percentages
indicate the areal percentage of significantly changing land points, and the areal percentage of positive and negative
Ar for significant points. See Table [S2.1] for details of the experiments.
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(a) DJF E r 1AK5 (b) DJF E Ar IAKV-IAKS
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Figure S2.16: (a,c,e,g) Pearson correlation (r) of seasonal anomaly evaporation (E) with respect to DOLCEv3
evaporation in TAKS5 and (b,d,f,h) seasonal correlation difference between IAK5 and IAKV (IAKV-IAK5). Blue
(red) indicates an increased (reduced) correlation in IAKV compared to IAKS, white colors indicate small and/or
insignificant differences, and grey indicates no data points. The percentages indicate the areal percentage of signif-
icantly changing land points, and the areal percentage of positive and negative Ar for significant points. See Table

[S2:3] for details of the experiments.
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Figure S2.17:

[S2:3] for details of the experiments.
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(a,c,e,g) Pearson correlation (r) of seasonal anomaly surface soil moisture (SMg) with respect to
ESA-CCI SM in TAK5 and (b,d,f,h) seasonal correlation difference between IAK5 and IAKV (IAKV-IAKS5). Blue
(red) indicates an increased (reduced) correlation in IAKV compared to IAKS, white colors indicate small and/or
insignificant differences, and grey indicates no data points. The percentages indicate the areal percentage of signif-
icantly changing land points, and the areal percentage of positive and negative Ar for significant points. See Table



S2.5 Combined results

(a) Ar E-anomaly IAKV-CTR
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Figure S2.18: Pearson correlation difference between experiment CTR and IAKV (IAKV-CTR) for (a) monthly
anomaly total evaporation (E) with respect to DOLCEv3 evaporation and (b) monthly anomaly surface soil moisture
(SMs) with respect to ESA-CCI SM. Blue (red) indicates an increased (reduced) correlation in JAKV compared to
CTR, white indicates small and/or insignificant r differences, and grey indicates no data points. The percentages
indicate the areal percentage of significantly changing land points, and the areal percentage of positive and negative
Ar for significant points. See Table for details of the experiments.
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Figure S2.19: (a,c,e,g) Pearson correlation (r) of seasonal anomaly evaporation (E) with respect to DOLCEv3
evaporation in CTR and (b,d,f,h) seasonal correlation difference between CTR and TAKV (IAKV-CTR). Blue (red)
indicates an increased (reduced) correlation in IAKV compared to CTR, white colors indicate small and/or insignif-
icant differences, and grey indicates no data points. The percentages indicate the areal percentage of significantly
changing land points, and the areal percentage of positive and negative Ar for significant points. See Table
for details of the experiments.
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Figure S2.20: (a,c,e,g) Pearson correlation (r) of seasonal anomaly surface soil moisture (SMg) with respect to
ESA-CCI SM in CTR and (b,d,f,h) seasonal correlation difference between CTR and IAKV (IAKV-CTR). Blue
(red) indicates an increased (reduced) correlation in IAKV compared to CTR, white colors indicate small and/or
insignificant differences, and grey indicates no data points. The percentages indicate the areal percentage of signif-
icantly changing land points, and the areal percentage of positive and negative Ar for significant points. See Table

[S2:3] for details of the experiments.

523

00 02 04 06 08 1.0 -0.05 -0.03 -0.01 0.01 0.03 0.05

Ar (-)



S2.6 Data and code availability

The scripts underlying this chapter are available on https://github.com /fvanoorschot /python_scripts_vanoorschot2023
or https://doi.org/10.5281 /zenodo.8254556. Data underlying this chapter is available on https://doi.org/10.5281/
zenodo.8307861.
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Supporting information for chapter 3:
Climate-controlled root zone parameters
in land surface models
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S3.1 Catchment information

Table S3.1: Study catchment characteristics (Australian Bureau of Meteorology; http://www.bom.gov.au/water/
hrs/). Soil type is based on the FAO soil map of the world (FAO, 2003) and vegetation characteristics from GLCC1.2
(ECMWF, 2016) with 77, and T the dominant low and high vegetation types and Cr, and Cy the fractional coverage
of low and high vegetation.

Catch- Station | Coordi- | Climate | Area Soil T Ty CL (-) | Cu (-)
ment ID nates region (km?) | type
East Al- | G8210010 133.332°E,| Tropical 2398 Coarse | Tall Interrup- | 0.68 0.32
ligator 12.717°S grass ted
River forest
(EA)
East G8110004 130.034°E,| Tropical 2443 Coarse | Semi- 1.00 0.00
Baines 15.766°S desert
River
(EB)
Gregory 912101A | 139.252°E, | Tropical 12652 Medium | Short 1.00 0.00
River (G) 18.643°S fine grass
Herbert 1160068 | 145.922°E, | Tropical 7487 Medium | Tall Evergreen| 0.01 0.99
River 18.491°S fine grass broadleaf
(He)
Mitchell 919003A | 144.290°E, | Tropical 7734 Coarse | Tall Interrup- | 0.43 0.57
River 16.472°S grass ted
(Mi) forest
Normanby | 105101A | 144.839°E, | Tropical 2306 Coarse | Tall Interrup- | 0.01 0.99
River 15.281°S grass ted
(No) forest
Wenlock 925001A | 142.638°E, | Tropical 3290 Medium Interrup- | 0.00 1.00
River 12.454°S fine ted
(W) forest
Abercrom-| 412028 149.325°E, | Temperate| 2631 Medium | Crops, Interrup- | 0.23 0.76
bie River 33.955°S mixed ted
(A) farming | forest
Dogwood | 422202B | 150.179°E, | Temperate| 2882 Medium | Tall Evergreen| 0.14 0.86
Creek 26.709°S fine grass broadleaf
(D)
Murrum- | 410761 149.101°E, | Temperate| 5158 Medium | Tall Interrup- | 0.16 0.84
bidgee 35.540°S fine grass ted
River forest
(Mu)
Namoi 419005 150.778°E, | Temperate| 2532 Medium | Crops, Interrup- | 0.33 0.67
River 30.678°S mixed ted
(Na) farming | forest
Paroo 424201A | 144.786°E, | Temperate| 22885 Medium | Semi- 1.00 0.00
River (P) 28.689°S desert
Avoca 408200 143.299°E, | Mediter- 2677 Medium | Crops, Interrup- | 0.79 0.21
River 36.438°S ranean mixed ted
(Av) farming | forest
Kent 604053 117.087°E, | Mediter- | 1786 Coarse | Crops, Interrup- | 0.65 0.35
River (K) 34.888°S | ranean mixed ted

farming | forest
Reedy 403209A | 146.345°E, | Mediter- | 5506 Medium | Crops, Evergreen| 0.02 0.98
Creek 36.332°S ranean fine mixed broadleaf
(R) farming
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Table S3.2: Hydrological characteristics of the study catchments with long-term (1973-2010) annual mean values
for precipitation (P), discharge (@) and potential evaporation (E},), aridity index (Ia), seasonality index (Ig), time-
lag between maximum monthly mean precipitation and potential evaporation (¢) and root zone storage capacity

estimates from the memory method (S; ym) and in the HTESSEL CTR model (S;.cTR)-

Catchment P Q Ep IA (-) IS (-) (;5 Sr,MM Sr,CTR
(mm/year) | (mm/year) | (mm/year) (mm) (mm)

EA 1539 586 953 1.31 0.97 3 389 535

EB 879 134 745 2.53 0.99 3 300 535

G 509 55 453 3.96 0.95 1 194 513

He 1140 326 814 1.46 0.70 2 409 725

Mi 854 251 603 2.05 0.89 2 410 535

No 1207 288 920 1.40 0.85 2 722 535

w 1577 472 1105 1.10 0.95 3 633 725

A 787 94 693 1.55 0.07 0 208 566

D 661 24 637 2.69 0.38 0 266 725

Mu 588 59 530 2.04 0.08 2 205 725

Na 802 84 718 1.76 0.26 0 165 566

P 417 26 392 4.38 0.37 1 125 566

Av 505 8 497 2.69 0.25 5 160 566

K 889 41 848 1.36 0.50 6 315 535

R 1243 109 1133 1.02 0.26 6 487 725
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S3.2 Model results long-term annual mean fluxes

Table S3.3: Long-term (1975-2010) annual mean reference and modeled (HTESSEL CTR and MD models) precip-
itation (P), discharge (@) and evaporation (F) fluxes in the study catchments.

P Q (mm/year) E (mm/year)
(mm/year)
Catchment| GSWP-3 Station ob- | CTR MD Water FLUX-| CTR MD
servations bal- COM
ance
EA 1429 590 423 436 839 753 1002 989
EB 788 132 176 167 656 587 612 621
G 514 50 19 42 464 434 498 471
He 1051 309 198 236 742 694 847 808
Mi 1155 231 256 264 923 622 891 883
No 1405 270 570 597 1135 765 827 801
W 1538 455 675 675 1082 900 856 857
A 769 87 69 85 682 634 702 682
D 674 25 34 36 648 586 638 635
Mu 686 60 77 96 626 464 615 590
Na 889 84 96 110 805 658 790 778
P 394 24 18 22 370 333 372 371
Av 531 7 6 20 524 449 529 511
K 1066 41 200 200 1024 730 867 866
R 1056 98 305 312 958 709 755 749

Table S3.4: Percent biases of modeled (HTESSEL CTR and MD models) long-term (1975-2010) annual mean

discharge (Q)) and evaporation (E) with for @ station observations as reference data and for E water balance and
FLUXCOM as reference data.

Q (mm/year) E (mm/year)

Station observations | Water balance | FLUXCOM
Catchment | CTR | MD CTR | MD CTR | MD
EA -28% | -26% 19.4% 17.9% 32.9% | 31.3%
EB 33% 26% -6.7% | -5.3% 4.3% | 5%
G -63% | -14% 7.3% 1.5% 14.8% | 8.6%
He -36% | -24% 14.2% | 8.9% 22.0% | 16.3%
Mi 11% | 14% -35% | -4.4% | 43.2% | 41.9%
No 111% | 121% -271% | -29.4% | 8.0% 4.6%
W 48% 48% -20.9% | -20.8% | -4.9% | -4.8%
A -20% | -2% 3.0% 0.0% 10.7% | 7.6%
D 34% 41% -1.6% | -2.0% 8.8% | 8.4%
Mu 28% 60% -1.7% -5.7% 32.7% | 27.3%
Na 14% 31% -1.8% | -3.4% 20.1% | 18.2%
P -25% | -6% 0.6% 0.2% 11.8% | 11.4%
Av -9% 196% 0.9% -2.4% 17.6% | 13.8%
K 386% | 385% -15.4% | -15.4% | 18.7% | 18.6%
R 211% | 217% -21.2% | -21.8% | 6.5% 5.6%
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S3.3 Model results monthly discharge

Table S3.5: Model performance based on monthly modeled (HTESSEL CTR and MD models) discharge fluxes
compared to station observations with Pearson correlation (r) and variability (« = omod/00obs) for monthly seasonal
climatology of discharge fluxes for the time series 1975-2010 in the study catchments. For both r and « a value of 1
corresponds to a perfect model fit. The significance test of the MD improvements compared to CTR is represented
by ** (passing 5% level) and * (passing 10% level) and additionally P-values are provided for the cases that MD

improves compared to CTR.

Monthly seasonal climatology

r () o ()
Catchment | CTR | MD P-value | CTR | MD P-value
EA 0.63 0.77%* | 0.001 0.79 0.87** | 0.045
EB 0.60 0.92*%* | <0.001 0.73 1.11* | 0.069
G 0.96 0.98 0.337 0.46 1.14** | 0.05
He 0.98 0.99 0.281 0.58 0.63* | 0.10
Mi 0.83 0.87 0.178 0.84 1.00** | 0.003
No 0.91 0.82 - 1.71 1.55%% | 0.022
)% 0.99 0.99 - 1.31 1.37 -
A 0.94 0.99 0.206 0.39 0.84** | <0.001
D 0.74 0.73 - 1.47 1.39** | 0.001
Mu 0.90 0.97 0.074 0.63 1.49 -
Na 0.21 0.62*%* | 0.022 0.76 0.72 -
P 0.92 0.98%* | 0.002 0.77 1.03** | 0.023
Av 0.88 0.95 0.319 0.55 3.64 -
K 0.75 0.95** | <0.001 3.77 5.22 -
R 0.96 0.98%* | 0.018 1.72 2.20 -

Table S3.6: Same as Table [S3.3] for inter-annual anomalies of monthly discharge.

Inter-annual anomalies
r () a ()

Catchment | CTR | MD P-value | CTR | MD P-value
EA 0.61 0.65*%* | 0.002 1.02 1.07 -
EB 0.52 0.71** | <0.001 0.79 1.06** | <0.001
G 0.85 0.86 0.39 0.47 1.65 -
He 0.86 0.87 0.342 0.68 0.74** | <0.001
Mi 0.64 0.71** | <0.001 0.93 1.09
No 0.86 0.80 - 1.52 1.39%* | <0.001
A% 0.85 0.85 - 1.35 1.39 -
A 0.83 0.90** | 0.03 0.50 0.85** | <0.001
D 0.77 0.78** | <0.001 0.91 0.93** | 0.006
Mu 0.88 0.94** | 0.007 0.84 1.45 -
Na 0.72 0.84** | <0.001 0.65 0.84** | <0.001
P 0.78 0.79 0.421 0.81 1.23 -
Av 0.67 0.71 0.255 0.81 3.39 -
K 0.62 0.76** | 0.002 2.55 3.47 -
R 0.83 0.89** | <0.001 1.72 1.99 -
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Figure S3.1: Monthly anomalies (left) and monthly seasonal climatology (right) of modeled discharge with the
HTESSEL CTR and MD models compared to discharge from station observations in the study catchments (Table
S1). Monthly anomaly discharge is presented for the time series 1990-2010 and monthly seasonal climatology is
based on the time series of 1975-2010. Note that this figure continues on the next two pages.
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S3.4 Model results monthly evaporation

Table S3.7: Model performance based on monthly modeled (HTESSEL CTR and MD models) evaporation fluxes
compared to FLUXCOM-WB with Pearson correlation (r) and variability (&« = omod/0obs) for monthly seasonal
climatology evaporation for the time series 1975-2010 in the study catchments. For both r and « a value of 1
corresponds to a perfect model fit. The significance test of the MD improvements compared to CTR is represented
by ** (passing 5% level) and * (passing 10% level) and additionally P-values are provided for the cases that MD

improves compared to CTR.

Monthly seasonal climatology

r () o ()
Catchment | CTR | MD P-value | CTR | MD P-value
EA 0.99 0.98 - 1.22 1.23 -
EB 0.99 0.99 - 1.18 1.17** | 0.004
G 0.99 0.99 - 1.40 1.45 -
He 0.99 0.98 - 0.88 0.97** | 0.015
Mi 0.98 0.97 - 0.69 0.69 -
No 0.98 0.99 0.154 0.65 0.68** | 0.002
)% 0.98 0.97 - 0.86 0.86 -
A 0.99 0.98 - 0.96 0.94 -
D 0.99 0.99 - 0.73 0.72 -
Mu 0.99 0.98 - 0.87 0.82 -
Na 1.00 1.00 - 0.79 0.75 -
P 0.98 0.97 - 0.77 0.76 -
Av 0.94 0.89 - 1.07 1.14 -
K 0.51 0.53%* | 0.031 0.60 0.64** | <0.001
R 0.99 0.99 - 0.74 0.74 0.486

Table S3.8: Same as Table[S3.4] for inter-annual anomalies of monthly evaporation.

Inter-annual anomalies
r () a ()

Catchment | CTR | MD P-value | CTR | MD | P-value
EA 0.81 0.81 - 2.12 2.16 | -

EB 0.70 0.70 - 2.57 2.57* | 0.072
G 0.82 0.83** | 0.001 3.30 3.40 | -

He 0.71 0.75** | <0.001 1.72 1.89 | -

Mi 0.83 0.83 - 1.36 1.38 | -

No 0.85 0.83 - 1.19 1.23 | -

W 0.84 0.84 - 1.20 1.21 -

A 0.86 0.86* 0.064 1.88 2.05 | -

D 0.84 0.84 - 1.52 1.64 | -
Mu 0.82 0.85%* | <0.001 1.32 1.50 | -

Na 0.79 0.80** | 0.05 1.88 2.17 | -

P 0.73 0.73 0.281 2.92 3.05 |-

Av 0.82 0.82 0.222 2.28 2.40 | -

K 0.66 0.67 0.149 2.29 2.31 -

R 0.86 0.85 - 1.46 1.51 -
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Figure S3.2: Monthly anomalies (left) and monthly seasonal climatology (right) of modeled evaporation with the
HTESSEL CTR and MD models compared to FLUXCOM-WB evaporation in the study catchments (Table S3.1).
Monthly anomaly evaporation is presented for the time series 1990- 2010 and monthly seasonal climatology is based
on the time series of 1975-2010. Note that this figure continues on the next two pages.
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S3.5 Effective root zone storage capacity

Figure S3 presents an analysis of the model S, computed using the modelled soil moisture deficits and an extreme
value analysis as done in the memory method (S; ). From this figure it is confirmed that the S, cTr estimates
implied by the model soil depth are larger than the effectively used S, in CTR (S;.crr.et) (Fig. S3c). This is
likely related to the relatively small root percentage in layer 4 prescribed from look-up tables in this layer for most
vegetation types compared to the other layers. In contrast with the finding that S; cTr is larger than Sy pv in most
catchments (Fig. S3a), the S, crTr.es is smaller than S,y in 5 tropical and 2 Mediterranean catchments (Fig.
S3b). On the other hand, the S, vy we implemented in the MD model is in general close to Sy mp et being based
on modelled soil moisture deficits in the MD model, with slightly larger deviations in the aforementioned 5 tropical
and 2 Mediterranean catchments (Fig S3d). In follow-up studies on the model S; we need to further investigate the

role of the root distribution parameter that is likely causing the apparent deviations between the soil depth based
Sy and S; et
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Figure S3.3: Model S, analysis. (a) Sy um from the memory method vs. S; ctr based on HTESSEL soil depth.
(b) Symm from the memory method vs. Sy crr.esr based on modelled soil moisture deficits. (c) Sy,cTr based on
soil depth vs. Sy crr,err based on modelled soil moisture deficits. (d) Sy mm from the memory method vs. S, MD e
based on modelled soil moisture deficits

S37



S3.6 Data and code availability

The scripts underlying this chapter are available on https://github.com/fvanoorschot /Python-scripts-van-Oorschot-2021/
or https://zenodo.org/doi/10.5281 /zenodo.11198776. Data underlying this chapter is available on https://zenodo.
org /doi/10.5281 /zenodo. 11198819
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Supporting information for chapter 4:
Influence of irrigation on root zone
storage capacity estimation
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S4.1 Catchment stratification

0.000.01 0.05 0.10
la (-)

Figure S4.1: Irrigated area fraction (I,) stratified in the four groups used in Fig. 4.7 with dots representing the
catchment outlets.

Tropical Arid Mediterranean Temperate Continental

Tropical Arid Mediterranean Temperate Continental

Figure S4.2: Climate zone stratification used in Fig. 4.8b. (a) shows all study catchments and (b) catchments with
I,00.05. The following classification based on Koppen-Geiger is used: tropical (Af, Am, Aw), arid (BWh, BWk,
BSh, BSk), temperate dry summer (Cfa, Cfb, Cfc), Mediterranean(Csa, CSb), and continental (Dfa, Db, Dfc, Dfd).
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S4.2 Additional results

s
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Figure S4.3: Catchment S, in mm for (a) the No Irrigation (NI) case, (b) the IWU irrigation case, and (c¢) the IAF
irrigation case (Table 4.1), with dots representing catchment outlets.
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Figure S4.4: Relative difference in S, (A,S; (-)) for IWU compared to TAF ((IWU-IAF)/IAF). See Table 4.1 for

details on the irrigation cases.

S4.3 Data and code availability

The scripts underlying this chapter are available on https://github.com/fvanoorschot /python_scripts_vanoorschot2024
or https://doi.org/10.5281/zenodo.11026863. Data underlying this chapter is available on https://doi.org/10.5281/

zenodo.10869653.
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Supporting information for chapter 5:
The global variability in root zone
storage capacity explained
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S5.1 Random forest model details

For the random forest model, we used the RandomForestRegressor module from the scikit-learn (version 1.0.1)
Python package (Pedregosa et al., 2011). We applied a grid search to tune the model hyperparameters namely
the maximum number of trees (nt), the maximum depth of a single tree (dmax), and the minimum number of
samples required to create a leaf (I;n). In this grid search we tested the following parameter values: n: 100, 200
and 400 dpax: 5, 10 and undefined l,;,: 1, 5 and 10 All the other hyperparameters are set to the initial values,
as explained in the RandomForestRegressor documentation: (https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html) Table S1 provides the results of the hyperparameter tuning for the
nested cross validation with 5 outer and 5 inner folds (Sect. 5.2.3). The table shows the three best (lowest test
MAD) configurations, represented by the rank, for each of the five outer cross validation (CV) folds. Based on these
results, we concluded that [,;, = 1, and dn.x=undefined provide the lowest test MAD in all cases. The differences
between the test MAD for the different values of ny are relatively small. Therefore, we selected the simplest option
with ny = 100.

Table S5.1: Hyperparameter tuning results for the nested cross validation with 5 outer and 5 inner folds (Sect.
5.2.3). A grid search has been done to find the best model parameters for the number of trees (n;) of 100, 200,
and 400; the maximum depth of a single tree (dimax) of 5, 10 or undefined; and the minimum number of samples
required to create a leaf (Iyiy) of 1, 5, and 10. The table shows the three best (lowest test MAD) configurations for
each of the five outer cross validation (CV) folds.

CV fold | Rank | n; dax loin | Train MAD | Test MAD | n train | n test
1 1 400 | Undefined | 1 13.6 36.7 2555 639
1 2 200 | Undefined | 1 13.7 36.8 2555 639
1 3 100 | Undefined | 1 13.9 36.9 2555 639
2 1 400 | Undefined | 1 13.7 37.2 2555 639
2 200 | Undefined | 1 13.8 37.2 2555 639
2 3 100 | Undefined | 1 13.9 37.6 2555 639
3 1 400 | Undefined | 1 13.9 37.1 2555 639
3 200 | Undefined | 1 14.0 37.3 2555 639
3 3 100 | Undefined | 1 14.0 374 2555 639
4 1 400 | Undefined | 1 13.8 37.0 2555 639
4 2 200 | Undefined | 1 13.8 37.1 2555 639
4 3 100 | Undefined | 1 13.9 37.2 2555 639
5 1 400 | Undefined | 1 14.0 36.5 2556 638
5 200 | Undefined | 1 14.0 36.8 2556 638
5 3 100 | Undefined | 1 14.1 36.8 2556 638
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S5.2 Cross correlation tables
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Figure S5.1: Correlation matrix for the 21 catchment descriptors described in Table 5.1. Values indicate the Pearson
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Figure S5.2: Correlation matrix for the 4 catchment descriptors described in Table 5.1. Values indicate the Pearson
correlation coefficient and blue (red) colors represent the strength of the positive (negative) correlation.
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S5.3 Model results

Table S5.2: Cross validation results for the 21-variable model using a fivefold cross validation. n indicates the
number of catchments used for training or testing, and the MAD is the mean absolute difference between the
predicted and the memory method root zone storage capacity.

Cross-validation n train n test MAD train | MAD test
fold (mm) (mm)

1 2889 723 13 34

2 2889 723 13 37

3 2890 722 13 36

4 2890 722 13 36

5 2890 722 13 33

Table S5.3: Same as Table [S5.2] for the 4-variable model.

Cross-validation n train n test MAD train | MAD test
fold (mm) (mm)

1 2889 723 15 38

2 2889 723 14 41

3 2890 722 15 39

4 2890 722 15 39

5 2890 722 15 37
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Figure S5.3: (a) Memory method root zone storage capacity (Sym (mm)). (b) Relative difference between the
4-variable model predicted and memory method: Ae1Sy = (Sy.p — Sy,m)/Sem of the evaluation data of all fivefold
cross validation models combined.
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S5.4 Global comparison of root characteristics

Table S5.4: Details of the global datasets of root characteristics used in Fig. 5.7.

ent

Reference Variable Method description Data reference

Wang-FErlandsson Root zone storage capac- | Based on cumulative water | http://dx.doi.

(2016) ity deficits, including irrigation. | org/10.5194/
Gumbel-normalized with a 20 | hess-20-1459-2016-supplem
years return period

Stocker et al. | Root zone storage capac- | Based on cumulative water | https://doi.org/10.5281/

(2023) ity deficits. Gumbel-normalised | zenodo.5515246

with a 80 year return period

Kleidon et al.
(2004)

Optimised hydrologically
active rooting depth

Estimated by optimised inverse
modelling. Hydrologically active
rooting depth is based on a max-
imization of net primary produc-
tion.

Upon request to the au-
thor

Fan et al. (2017)

Maximum depth of root
water uptake

Inverse model based on (1) soil
water supply based on hydro-
logical model using observed cli-
mate, soil properties and topog-
raphy; (2) ecosystem water de-
mand from LAI and reanalysis
atmosphere; (3) given (1) and (2)
estimate necessary depths of wa-
ter uptake to meet the demand

https://wci.
earth2observe.eu/
thredds/catalog/usc/
root-depth/catalog.html

Yang et al. (2016)

Effective
depth

plant rooting

Balance of carbon cost and ben-
efit of root development (Guswa
et al., 2008); an optimal root-
ing depth at which the marginal
carbon benefit associated with
any additional roots balances the
marginal carbon cost of those
roots

http://doi.org/10.4225/
08/5837b3aa9cb90

Schenk et al.
(2009)

95% rooting depth

Estimated rooting depths for
95% of the roots based on ob-
served rooting depths (Schenk
and Jackson, 2003)

https://daac.ornl.gov/
cgi-bin/dsviewer.pl?
ds_id=929

Schenk and Jackson
(2003)

Extrapolated 95% rooting
depths

Estimated from a  global
database of root profiles as-
sembled from the primary
literature to study relationships
of abiotic and biotic factors
associated with belowground
vegetation structure.

https://daac.ornl.gov/
cgi-bin/dsviewer.pl?
ds_id=660
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Figure S5.4: Difference maps between normalized vegetation root characteristics presented in Fig. 5.7.
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S5.5 Data and code availability

The scripts underlying this chapter are available on |https://github.com/fvanoorschot/python_scripts_global sr_
controls or https://zenodo.org/doi/10.5281/zenodo.11260711. Data underlying this chapter is available on https:

//zenodo.org/doi/10.5281 /zenodo.11259390.
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Supporting information for chapter 6:
Conclusions
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S6.1 Data and code availability

The scripts underlying this chapter are available on https://github.com/fvanoorschot/python_scripts_chapter6 or
https://doi.org/10.5281/zenodo.11235083l Data underlying this chapter is available on https://zenodo.org/doi/10.

5281 /zenodo.11235097.
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