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Abstract—In this paper, we consider Tactile Cyber Physical
Systems (TCPS), which differ from typical CPS in that haptic
sensory feedback is included. In particular, we design and
implement a TCPS testbed, called TCPSbhed, using well-defined
components and interfaces glued together using APIs. In addition
to real connections, our testbed supports the interconnection of
components over an NS3-emulated network. The testbed also
supports the integration of applications that mimic the behaviour
of real-world embedded objects. Since controlling latency and
ensuring stability is crucial for TCPS applications, the testbed
includes tools for fine-grained characterization of latency and
control performance. Finally, through proof-of-concept experi-
ments with our testbed, we demonstrate TCPSbhed’s capabilities
to facilitate TCPS research and development.

Index Terms—Tactile Internet, Haptic communications, Step
response, Network latency.

I. INTRODUCTION

The Internet was designed primarily for exchange of data,
but over the years it has evolved into a medium for transferring
real-time audio and video as well. Recently, Fettweis and
Alamouti [1] have provided a new vision for the Internet,
referred to as the Tactile Internet, in which the Internet is also
used as a medium to transport haptic information. Exchanging
haptic information enables real-time steering and control of
remote objects. This brings forth a new type of Cyber Physical
Systems (CPS), which we refer to as Tactile Cyber Physical
Systems (TCPS). In a TCPS, an operator, called tactile master,
manoeuvres a robot, called tactile slave, remotely through
the Tactile Internet. An example of a TCPS application is
telesurgery. Here a surgeon steers a robot over the Internet
to perform surgery. The haptic feedback helps the operator to
get a feel for the physical environment and objects with which
the robot is interacting. For instance, it helps the surgeon to
assess and communicate the right amount of force to the robot
for handling surgical objects of different build and texture.

Humans noticing disputes between various sensory modes
may experience discomfort. In TCPS, this may happen due to
the delayed and asynchronous appearance of sensory feedback
of different modalities like haptic, video, audio, etc., at the
operator side, which is referred to as cybersickness. To avoid
cybersickness in TCPS, the round-trip latency should not
exceed a few milliseconds [2]. This requirement places an
upper limit on the network round-trip latency, and this value
is often reported to be Ims, although it could somewhat be
relaxed through machine learning techniques that anticipate

certain movements. Current ambitions for 5G communications
stipulate similar network latency objectives. However, even if
we assume the availability of an ultra-low latency network
in the foreseeable future, for realizing TCPS applications,
significant research is required in designing and building the
hardware, algorithms, protocols, and communication compo-
nents that accompany it [3]. Being able to measure and isolate
the latency of different components, instead of solely end-to-
end as is mostly done, is imperative. This calls for building a
testbed, as presented in this paper, where TCPS applications
and associated components can be realized and characterized.
Our main contributions are as follows: In Section II, we
present the design of our testbed, which, to the best of our
knowledge, is the first TCPS testbed. In Section III, we
propose methods to characterize component-level latencies
and step-response behaviour using our testbed. In Section IV,
we describe the implementation of the testbed and, through
experiments, demonstrate its capabilities. We list related work
in Section V, discuss potential avenues for future work in
Section VI, and conclude in Section VII. Some of our Tactile
Internet related software will be made open source at [4].

II. TESTBED DESIGN

A TCPS consists of three sub-systems: the operator end
including the tactile master, the remote end including the
tactile slave, and the Tactile Internet connecting the two end-
systems. The design of our TCPS testbed, as presented in this
section, is guided by the following feature objectives:

o Ability to measure and isolate the latency of individual
components from a live TCPS application.

o Allowing for the use of both real and emulated networks.

o Ease of use through a user-centric design, including a
graphical front-end to configure the testbed parameters
and scripts to activate the testbed components.

A. Component-Level Design

The components of our testbed are shown in Figure 3 and
are described below.

The tactile master represents the human operator while the
tactile slave represents the robot being controlled.

We use embedded computing boards at both the tactile
master and the tactile slave sides. The board on the master
side, termed ms embsys, houses sensors and algorithms to
capture the kinematic motions of the master. It also contains



audio/video display devices and haptic actuators to convey
haptic feedback information to the master. The board on the
slave side, termed ss embsys, houses actuators and algorithms
to drive the robot and the audio, video, and tactile sensors that
capture its manoeuvres. ms embsys and and ss embsys could
also be emulated in software; the emulated versions are called
ms embsys-app and ss embsys-app, respectively.

ms com is the master-side communication component that
connects ms embsys to the Internet. Similarly, ss com connects
ss embsys to the Internet on the slave side.

We also use a computer, referred to as srv, to cater to differ-
ent TCPS applications with varying degrees of complexity in
sensing and actuation algorithms. srv provides insight into the
actual computing power required by the embedded computers
of TCPS applications.

The testbed supports two modes of network operation:
deployment mode and emulation mode. In deployment mode,
ms com, ss com, and srv are connected through a real network.
In emulation mode, these components are connected through
an emulated network realized in a desktop PC, called emu,
running a network emulator.

B. Design of Data-paths

In our work, we support four data-flow types, namely
kinematic, haptic, audio, and video flows. Figure 1 details the
data-path in emulation mode. The design of the deployment
mode is identical except that it does not have the emulator
component emu. Here, ms com, ss com, and srv have one IP
interface each. Each may have its own IP address, or they may
share a common IP address if realized within a single PC. All
data-flows pass through the IP interface.

The emulator (emu) has two IP interfaces which are used
to join ms com and srv components through the emulated
network. In the current version of the testbed, the interfaces
between the ms com, emu, srv, and ss com are UDP based.
Other transport protocols can also be supported by modifying
the receive() and send() APIs discussed in Section II-C. The
interfaces between ms embsys and ms com and between ss com
and ss embsys depend on the type of used embedded device
and could be USB, serial, PCI, or UDP based.
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Figure 1. Data-path in emulation mode. Here, emu is placed between ms com
and srv. Alternatively, one can also place the emu between srv and ss com.

The data-path also consists of edge-Tx and edge-Rx mod-
ules. They are located at the TCPS edge components ms com
and ss com. The edge-Tx is used to duplicate the transmitted
data packets for reliability. The duplicate packet count and the
interval are parameterized. The edge-Rx is used at the receiving

side to drop the redundant packets (identified via the packet
sequence number).

C. API Framework Design
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Figure 2. Set of generic APIs to realize the TCPS forward and backward
data-flow paths. (1) represents the forward path for the kinematic data. (2),
(3), and (4) represent the backward paths for the haptic, audio, and video
data, respectively.

To enable the quick realization of TCPS applications, we
have designed a set of generic application programming inter-
faces (APIs), following a layered framework. Figure 2 details
these APIs and their framework as explained below.

1) receive() and send(): The receive() reads data from
connected physical sensors or adjacent TCPS components. At
the ms embsys end, the API reads data from the kinematic
sensors attached to the operator. And at the ss embsys end,
the API reads data from position sensors and haptic sensors
mounted on the robotic arm. In both cases, depending on the
type of sensors in use, the API should have the necessary
analog and digital capabilities to read data. At the ms com
and ss com, the API reads data from the embedded boards
ms embsys and ss embsys, respectively, or from embsys-apps.
The data in this interface are coded using embedded protocols,
e.g., I12C, SPI, UART, USB, etc. in case of ms embsys and
ss embsys, or using network transport protocols, e.g., UDP,
TCP, RDP, RUDP, etc. in case of embsys-apps. At the srv,
the receive() reads data from both ms com and ss com,
running network transport protocols. The send() transmits data
to connected physical actuators or adjacent TCPS components.
Like the receive(), its design depends on the TCPS component
on which it resides, the embedded/network protocol in use, and
the type of sensor/actuator in use.

2) code() and decode(): Message formats and coding meth-
ods vary for different testbed components. The code() codes
the data in the prescribed message format and coding method.
It is then sent to the interface through the send(). The decode()



does the opposite, it extracts the data from the output of the re-
ceive(). Specific to audio and video flows are the audio.code(),
audio.decode(), video.code(), and video.decode() APIs.

3) kinematics() and inverse_kinematics(): These APIs run
the kinematics and inverse-kinematics algorithms used to
capture the operator’s pose and then to recreate this pose with
the robot, respectively. For computing the operator’s pose,
the kinematic() uses data from the kinematic sensors. The
inverse-kinematic() processes the computed pose to generate
commands to drive the robotic actuators.

4) sense() and feedback(): The sense() does calibration,
scaling, and filtering of the haptic data received from the haptic
sensors mounted on the robotic arm. The feedback() uses the
processed haptic data to drive haptic actuators at the operator
end.

D. Network Emulation

We use NS3 [5] to emulate realistic network topologies
in emu. Across this emulated network, we create emulation
channels to communicate with the real network devices ms
com and srv (see Figure 1). The emulator allows setting link
type, latency, bandwidth, packet error rate, error model, etc.,
to emulate diverse realistic scenarios. We set these using a
GUI as explained in Section II-F.

E. Tactile Slave Simulation

Due to cost and resource constraints, researchers may be
interested to simulate the tactile slave component. This
motivated us to support the integration of the Virtual-Robot
Experimentation Platform, V-REP, with our testbed [6]. For
this, we have developed a ss embsys-app to interface the V-
REP scenes with ss com.

FE. User Interface Design

To use the testbed, a user has to first set the configuration
through a GUI This includes (a) selecting the mode of
testbed operation (emulation or deployment), (b) assigning
resources (e.g., PCs) and IP addresses to ms com, emu, srv,
and ss com, (c) defining the interface type, addresses and port
numbers to realize the data-path, (d) defining the embedded
device type (real or emulated) in use, and (e) configuring
the network emulator settings such as delay, bandwidth, error
model, and error rate. All the configuration details are stored
in a spreadsheet for ease of use. The spreadsheet is located
inside the testbed run-directory, which is copied to different
components, see Section IV-A.

IIT. LATENCY AND STEP RESPONSE CHARACTERIZATION

In this section, we explain how we can use the testbed to
perform latency and step response characterization.

A. Latency Characterization

Since a TCPS may consist of multiple distributed compo-
nents, it is important to get an insight into the performance
of each component. For example, the reaction time of a
remote robotic arm to a user command has to be measured
to budget for end-to-end latencies over a production network.

This requires a tool similar to ping with enhanced support
for TCPS. Such a tool should measure processing delay and
actuation delay in addition to the network latencies.

Our testbed can be used as an in-situ latency test ecosystem
with the help of an external test PC and ping points. Ping
points are locations in the forward/backward data paths where
we need to examine the latency values. Each TCPS component
can have multiple ping points. A test PC, see Figure 3,
issues ping commands targeting a particular ping point and
then measures the time it takes for the echo to arrive. This
process is repeated multiple times and for multiple ping
points. Ping commands are UDP-based wrappers around data
commands: they contain data which the ms embsys and ss
embsys components expect. This means that the system is fully
functional while the test is in progress and, hence, the latency
numbers we obtain are representative of the TCPS under test.

In Figure 3, the test PC inserts the ping commands in the
kinematic data path through ms com, bypassing ms embsys
which does not have an IP address. Thus the resultant ping
trajectory of the kinematic data path does not cover the latency
between ms embsys and ms com. As a solution, we propose
using the ping trajectory of the haptic data path to measure
and isolate the forward kinematic latencies involved between
ms embsys and ms com.
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Figure 3. In-situ latency test. Direction of ping commands targeting ping
point ss_embsys_entry is marked. Only ping points in the forward kinematic
data path are shown.

B. Step Response Characterization

We can model a TCPS application using control system
elements. In this model, the tactile master acts as the controller
and the tactile slave as the device being controlled. The haptic
data comprises the feedback to this controller and the kine-
matic data forms the controller output. With this control model
in place, it is possible to evaluate the control performance of
the TCPS application using classical control-theoretic meth-



Haptic Data

Figure 4. Sample step response profile with normalized haptic data. Step
change is simulated at ¢p.

ods. In our work, we use the step response method to profile
the control performance of TCPS applications [7], [8].

To perform the analysis, we have created two embsys-apps;
one is connected to the ms com and the other to ss com.
The ss embsys-app at the ss com replaces the tactile slave.
It takes kinematic data from the master side, kin, as input
and simulates haptic data (pressure) as a linear function of the
kinematic data; hap = s(t) x kin, where the scaling factor
s(t) is set to 1 for 0 < ¢ < tg and to 1/c¢ for ¢ > ¢o. This is
to simulate a step change in the pressure. The ms embsys-app
at the ms com end senses this step change through the haptic
data path. It then sends commands over the kinematic data
path to nullify this change. Predefined Proportional Integral
(PD) controller equations are used for this purpose [9]. Using
a logger tool in ss embsys-app, we record the step response
profile of the haptic data, see Figure 4. We define ¢, as the
time taken by the step response to rise from (1/c) units at
to to (1/c¢+0.9(1 —1/c)) units. Overshoot is defined as the
peak percentage fluctuation in the step response relative to
(1 — 1/¢) units. Both t, and overshoot are affected by the
characteristics of the TCPS components and the network.

Both rise-time (¢,) and overshoot depend on the TCPS
component and network characteristics (latency, jitter, packet
drops, etc.), e.g., both may increase with network latency.
Further, each TCPS application can withstand rise-times and
overshoots up to certain values depending on operator hand
speed and accuracy requirements. For instance, a certain rise-
time may suit an application with slow operator hand move-
ment, but may not be suitable for another application with
faster operator hand movement. Similarly, an overshoot value
may be tolerable for an application requiring less accuracy, but
may not for another application requiring more accuracy. We
thus see that our step response metrics can be used to judge
suitability of a TCPS for a certain application. Alternatively,
given an application, our testbed can be used to prescribe
TCPS components and network characteristics to meet the
rise-time and overshoot requirements.

IV. TESTBED IMPLEMENTATION AND DEMONSTRATION
In this section, we describe the implementation aspects of
the testbed and further demonstrate its capabilities.
A. Implementation

To implement the end systems, two desktop PCs, PC1 and
PC2, running Ubuntu OS and two Programmable System on
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Figure 5. Emulated network topology in emu.

Chip (PSoC) boards were used [10]. We realized ms com in
PC1 and srv and ss com in PC2. We realized ms embsys and
ss embsys in the PSoC boards. The embedded boards and
their communication components were connected using a full-
duplex UART link operated at a baud rate of 1 Mbps.

a) Network Emulation: For the network portion, we used
deployment and emulation modes. In the deployment mode,
PC1 and PC2 were connected over a physical network infras-
tructure. For the emulation mode, we considered an emulated
network between PC1 and PC2, which was realized through
emu hosted in a third desktop PC, PC3. We connected PC1 and
PC2 through PC3. The network topology we emulated in emu
is shown in Figure 5. We set various parameters (e.g., latency,
error rate, link selection, etc.) through the GUI as described
in Section II-F.

b) API Framework: We used Python scripts to code
the APIs in ms com, ss com and srv. For implementing the
API framework, we used looping functions to construct the
forward and backward data flows. We used the multiprocessing
package of Python to run these looping functions concurrently.
For the ms embsys and ss embsys components, we used C
code specific to PSoC to realize the APIs. For implementing
the video flow, we used the Python Open-CV library [11].
We used this library to capture video frames from the USB
camera connected to ss com. We encoded these frames in JPEG
format to reduce size. We then used the Python pickle library
to serialize these JPEG frames before sending them to ms
com. At the ms com, we deserialized and decompressed the
frames and displayed them on a connected LCD screen. For
high-definition video transmission, we split the frames into
multiple sub-frames and repeated the above process. We used
the Python PyAudio library [12] to capture audio frames from
the microphone connected to ss com. After serializing these
frames, we sent them to ms com. At ms com, we deserialized
the frames and played them on a connected speaker.

c) Embsys-Apps: The following embsys-apps are cur-
rently supported.

o End-users may not have an electronic glove to wear and
control the remote robot [3]. To cater to their needs,



we developed ms-embsys-app-mouseController. The state

machine in this embsys-app maps the movements of a

normal computer mouse in the X-Y plane to a virtual

hand movement in X-Y-Z space. For this, we mapped
the X-Y movement of the mouse to the hand wrist-X-

Y movement. Y movement of the mouse, while the left

button is in the pressed state, is mapped to the wrist-Z

movement. Additionally, the scroll wheel of the mouse is
used to mimic the hand palm grip posture. Scroll up and
down movements are mapped to mimic the hand palm
closure and open actions. In the embsys-app, to read the

mouse movements, Python pynput library was used [21].

o ss-embsys-app-microphone and ms-embsys-app-speaker
are for recording and playing the audio at the ss com
and ms com sides, respectively.

o ss-embsys-app-Camera and ms-embsys-app-Display are
for recording and playing the video at the ss com and ms
com sides, respectively. When using V-REP for simulat-
ing the remote-side robot, ss-embsys-app-desktopCamera
is used. This is for recording V-REP scenes.

o For running step response experiments, ms-embsys-
app-PIController and ms-embsys-app-steplnput are used.
They simulate the PI controller and haptic step change at
the master and slave side respectively.

o When using V-REP to simulate the remote-side robot, ss-
embsys-app-vrep is used. This is for interfacing ss com
with the V-REP scene.

d) Tools: At present, we support the following two tools.

1) Latency Characterizer The tool sends and receives ping
commands to carry out TCPS latency experiments. At
the end of the experiments, it summarizes the results
with statistical data and graphs relating to latency, inter-
packet delay, and packet drops.

2) Step Response Analyzer This tool reads the raw data gen-
erated by the step response experiments and measures
the ¢, and overshoot. Also, the tool classifies the step
response profiles as good or bad depending on whether
t,- and overshoot are within given specifications. This is
useful for assessing the percentage of good step curves
and thus the reliability of the TCPS.

e) Run-Directory: We use scripts ms com.py, emu.py,
server.py, and ss com.py, corresponding to different testbed
components to read the configuration (see Section II-F) and
realize the data-paths (see Section II-B) using the APIs (see
Section II-C). The scripts, the API libraries, and the testbed
tools are stored in a run-directory, which is copied in various
components (see Figure 6).

B. Demonstrations

1) Deploying an End-to-End TCPS Application: A proto-
type of a simple TCPS application is described in [13]. There,
a remote robotic arm (PhantomX [14]) is controlled to pick and
place lego blocks by a human operator wearing a tactile glove.
We have deployed this TCPS application on our testbed. This
was done by updating the APIs in Figure 2 to the correspond-
ing algorithms described in [13]. Additionally, we substituted

—@user interface
ms_com.py
emu.py
server.py
ss_com.py

Figure 6. Testbed run-directory.
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the tactile glove with a haptic mouse, to demonstrate the
testbed’s ability to substitute components. The haptic mouse is
an ordinary USB mouse with an eccentric rotating mass motor
for the purpose of applying haptic feedback [15]. We used
the ms-embsys-app-mouseController to track the operator hand
movements. At the robotic end, we mounted pressure sensors
on the PhantomX gripper wings. This is to sense the pressure
when the robot holds an object. Since we are dealing with a
real network, through the testbed user interface, we configured
the testbed in deployment mode. We further enabled the four
supported data-paths, kinematic, haptic, audio, and video. The
operator hand movements were sent over the kinematic data-
path. Pressure, audio, and video data were streamed from
the robotic end to the operator, over the haptic, audio, and
video data-paths, respectively. For streaming and displaying
audiovisual data, we used ss-embsys-app-microphone and ms-
embsys-app-speaker for audio, and ss-embsys-app-camera and
ms-embsys-app-display for video. We illustrate this application
in Figure 7.

Figure 7. Demonstration of a TCPS application: a human operator guides a
robotic arm to pick and place Lego blocks.

2) Isolating TCPS Component and Link Latencies: The
Latency characterization method described in Section III-B is
designed for isolating TCPS component latencies from a single
central location. In the following, we demonstrate how the tool
latency characterizer can be used for this purpose. For the
demonstration, we configured the testbed in deployment mode
as described in Section IV-A. Using the latency characterizer
at the tactile master side, we sent Np;,, ping commands to
various ping points in the forward kinematic data-path. We
selected Nping SO as to restrict the error in the computed
average latency to be within +/-5% at 95% confidence. We



sent the ping commands at an interval exceeding the maximum
expected Round Trip Time (RTT) of the TCPS. This is to
prevent packet drops affecting the latency calculation. At ping
intervals smaller than RTT packets get dropped at the interface
between ss com and ss embsys. This is due to little buffering
space in the memory-constrained ss embsys.

Figure 8 presents the average latency for different ping
points in the forward kinematic data path, corresponding to
the entry/exit locations in the testbed components. We had
not enabled audiovisual streams. The latency depends on the
location of the ping point in the data path. The farther the ping
point is from the data source, the higher its latency will be.
This is evident from Figure 8. From this figure, we can infer
the interface/component latencies and actuation delay of the
robot. For instance, d; is the latency of srv and J5 is the latency
of the UART interface connecting ss com and ss embsys.

a) Estimating Robot Actuation Delay: In Figure 8, the
latency that corresponds to the ping point ss_embsys_exit(1)
does not include the robot actuation delay. Instead, the ping
packets targeting ss_embsys_exit(1) were sent back as soon as
the actuation commands embedded in the ping message were
extracted and sent to the joint motors of the robot. However,
if we hold the ping packets until the robot moves to the
commanded position, as is the case with ss_embsys_exit(2),
then the difference in latency numbers between the ping points
ss_embsys_exit(1) and ss_embsys_exit(2) corresponds to the
robot actuation delay. In this case, 63 = 110ms corresponds
to the actuation delay of the robot in moving its end-effector
position by lem back and forth. This corresponds to an
estimated actuation speed of 0.09m/s. For this experiment,
we used a V-REP model of the PhantomX robot instead of a
physical one. We interfaced the V-REP scene containing the
robot model with the ss com module of our testbed using ss-
embsys-app-vrep.
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Figure 8. Average latency for different ping points.

3) Selective Enabling of Data-Paths: To study the effect of
one modality on another the testbed supports selective enabling
and disabling of data-paths. To demonstrate a use case, we
conducted the following experiment. We studied the effect
of video on latencies in the kinematic data path. For this,
we isolated the TCPS component latencies in the kinematic
data-path with and without the video data-path enabled. In the

experiment, the video frame rate was 30fps with frame size
of 60KB. We have plotted the results in Figure 9. We find
that, with video, the average latency reduces. This decrease
in average latency is non-intuitive, but can be attributed to
application-layer overhead and interrupt coalescence at the
network interface card (NIC) [16]. Interrupts to CPU are
not generated by the NIC for every short packet it receives,
rather it accumulates the received packets until they cross a
threshold (or a time-out happens), after which an interrupt is
generated. In our case, when the video is enabled, the video
packets (being large in size) cause the threshold to cross more
frequently. This results in the NIC generating interrupts more
often, thereby reducing latency. Thus in TCPS applications, to
improve latency of kinematic and haptic data paths, we need
to disable the interrupt coalescence feature in NIC cards along
the transmit path from tactile master to tactile slave.
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Figure 9. Effect of video on average latencies.

4) Step Response Experiments: In this section, we demon-
strate how to extract and analyze the control performance
of TCPS applications. For this demonstration, we operated
the testbed in emulation mode as described in Section IV-A.
We ran the step response experiments as described in III-B.
For this, we connected ms-embsys-app-PIController and ss-
embsys-app-steplnput at the ms com and the ss com side,
respectively. We captured the step response profile of our
TCPS application against different RTT and packet drops
simulated in NS3. We have plotted the results in Figure 10. Our
results show that RTT and packet drops affect the step response
profile. Any application prescribes limits on overshoot and
t.. It is now possible to determine the maximum RTT and
packet drop rate to keep the overshoot and ¢, below the
prescribed values. For instance, for the implemented TCPS
and the sample PI controller coefficients in use, packet drops
must not exceed 30% if the maximum allowed overshoot is
20% (see graph 3 in Figure 10).

5) Testbed Component Placement: The testbed allows for
flexible placement of its components through the user inter-
face. A sample of these placement possibilities are demon-
strated in Figure 11. In scenario (A) all components are placed
in a single PC. This helps the TCPS application developers.
In our work, we used this placement during the development
of APIs and different embsys-apps. Scenario (B) is used for
emulating network scenarios, for testing and characterizating
TCPS applications. In this paper, (B) was used to generate
the results of Figure 10. Scenarios (C) and (D) are used
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for deploying and testing the TCPS applications across a
real network. Towards the demonstration of (C), we placed
PC1 and PC2 in two universities: Indian Institute of Science
(Bangalore, India) and Delft University of Technology (Delft,
the Netherlands). We captured the jitter in the intercontinental
TCPS by plotting the latency associated with ping point
srv_entry (see Figure 12).

V. RELATED WORK

To the best of our knowledge, we are the first to have
developed a TCPS testbed. We, however, did find testbeds for
specific CPS applications [17], [18], [19], [20], [21]. They
are built for a specific use case and as such cannot be used
for realizing TCPS applications. None of these aforementioned
testbeds employ methods to automate component-level latency
characterization nor extract control performance of the realized
application, which are key contributions of our paper. Specific
to latency characterization, open/commercial tools do exist
that characterize the latency between networking nodes [22],
[23], [24]. These tools, however, do not characterize the
non-networking latencies like sensing, actuation, execution of
code, etc. In TCPS applications, both networking and non-
networking latencies are equally critical. This motivated us
to design the latency and step response characterization tools
described in this paper.

VI. DISCUSSION

In this section, we discuss our initial experience with the
testbed and present possible future research directions in the
area of TCPS.

e In a TCPS, transmitting video can result in jitter in
the kinematic data (see Section IV-B3) depending on its
quality and frame rate. This can lead to control loop
instabilities and consequently cybersickness. The jitter
further increases if the video frame rate is modulated to
optimize the transmitted data based on the tactile master’s
hand dynamics, i.e., if the video frame rate is increased
when the operator’s hand speed increases and is decreased
when the hand speed subdues. A possible way to mitigate
the increase in jitter is to isolate the video and kinematic
data traffic in the network layer, application layer, and

TCP/IP stacks in terms of network links used, buffers
used, processor times being granted, etc.

o Buffering of network packets at the NIC card, kernel
layer, and application layer can increase latency. Since
a TCPS has a tight round-trip latency requirement, to
support TCPS flows, priority should be given to serving
high-frequency TCPS interrupts at the NIC, kernel, and
application layers rather than avoiding these by buffering.
Eliminating buffering will be helpful to TCPS flows, but
will be detrimental for other use cases. An open challenge
is to design the buffering and interrupt schemes in such
a way that they support both TCPS and non-TCPS flows
simultaneously.

e An RTT less than 1ms is necessary only for TCPS
applications in which the tactile master is expected to
make rapid hand movements up to 1m/s, the natural limit
on human hand speed. In applications like telesurgery,
where the hand movement speed is an order less than
1m/s, a round trip latency of even 10ms could be
acceptable.

o Cybersickness is not the only concern in TCPS appli-
cations. Stability also plays a critical role. Apart from
the TCPS components, stability also depends on network
QoS metrics like latency, jitter, and packet drops (see
Section IV-B4). It is thus desired to develop a model to
determine for what combinations of the QoS parameter
values a TCPS with a prescribed specification is stable.
The model will be useful in making architectural and
design choices for the implementation of a TCPS. Also
desired is an evaluation method and a metric that can
grade and compare different TCPS implementations by
simultaneously accounting for stability, cybersickness,
and TCPS use-case specifications.

¢ The overhead introduced by network emulators, like NS3,
are in the order of a few milliseconds. Though this
value is acceptable for some TCPS scenarios, the over-
head can be detrimental in emulating TCPS applications
that require sub-millisecond RTT. Thus the developers
of network emulators need to ensure that the emulator
overhead is within the sub-millisecond range to ensure
compatibility with TCPS. The same applies to the tactile
slave simulators.

VII. CONCLUSION

We have proposed and implemented a testbed design for
Tactile Cyber Physical Systems (TCPS) applications. The main
objective of our testbed, called TCPSbed, is to enable the quick
prototyping and evaluation of TCPS applications. We have
equipped our testbed with tools to assess latency and control-
loop performance, which are critical TCPS characteristics.
Our latency characterization tool can extract and isolate the
TCPS latency, not only end-to-end, but also per component and
interface, alongside with other QoS parameters like jitter and
packet drops. Our step response analyzer can return a measure
of the TCPS control-loop performance. Through a proof-of-
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Figure 12. Latency histogram of ping point srv_entry for an intercontinental
TCPS setup.

concept implementation and corresponding experiments, we
have been able to analyze several parts of a TCPS application.

In the same vein as many open wireless networking testbeds,
we have built our TCPS testbed modularly, such that it can
be easily used and modified others in the future. For example,
our intercontinental experiment is evidence that our testbed
can be used remotely and that it can be ported to different
locations. We have created a GitHub page https://github.com/
tactileinternet/ to, in due course, provide open source access
to several of our Tactile Internet software repositories.
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