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Abstract:
Iterative learning control (ILC) involves a trade-off between perfect, fast attenuation of iteration-invariant
disturbances and amplification of iteration-varying ones. The aim of this paper is to develop a nonlinear
ILC framework that achieves fast convergence, robustness, and low converged error values in ILC. To
this end, the method includes a deadzone nonlinearity in the learning update, which uses the difference
in amplitude characteristics of repeating and varying disturbances to modify the learning gain for each
error sample. A criterion for monotonic convergence of the nonlinear ILC algorithm is provided, which
is used in combination with system measurements to select suitable design parameters. The proposed
algorithm is validated using simulations, in which fast convergence to low error values is demonstrated.

Keywords: Iterative learning control, variable-gain control, nonlinear control, feedforward control,
mechatronic systems

1. INTRODUCTION

Iterative learning control (ILC) is capable of attenuating re-
peating disturbances completely, yet it also amplifies iteration-
varying disturbances. In ILC, the input that compensates the
repeating disturbances is updated iteratively over a series of
repeated experiments, resulting in high performance (Bristow
et al., 2006). To achieve this, it is essential that the ILC algo-
rithm meets criteria for (monotonic) convergence, taking into
account robustness against model uncertainty (Oomen, 2020).
In addition to these convergence requirements, the design of
ILC controllers should be aimed at achieving small errors in a
limited number of iterations.

The aim of achieving small errors in a limited number of
iterations while meeting criteria for robust monotonic con-
vergence leads to trade-offs and performance limitations in
ILC. In particular, a limiting factor in the performance of ILC
is that while iteration-invariant disturbances are compensated,
iteration-varying disturbances such as noise are amplified up to
a factor two (Butcher et al., 2008; Oomen and Rojas, 2017). In
standard linear time-invariant (LTI) ILC approaches, including
frequency-domain ILC (Blanken and Oomen, 2020) and lifted
norm-optimal ILC (Gunnarsson and Norrlöf, 2001), limiting
the amplification of iteration-varying disturbances typically re-
sults in both reduced attenuation of iteration-invariant distur-
bances (Bristow et al., 2006) and slower convergence (Butcher
et al., 2008).

� This work is part of the research programme VIDI with project number
15698, which is (partly) financed by the NWO.

LTI ILC approaches offer limited possibilities to reduce the
amplification of iteration-varying disturbances, because only
frequency-domain characterizations are possible and therefore
trade-offs cannot be avoided. In Butcher et al. (2008), multiple
methods are proposed for frequency-domain ILC, including
using a low-pass robustness filter or reducing the learning gain.
While low-pass robustness filters are commonly used in ILC to
achieve convergence (Bristow et al., 2006; Oomen, 2020) using
these filters to attenuate noise may also lead to reduced atten-
uation of repeating disturbances and is therefore undesirable.
A small learning gain achieves both a small error and minimal
amplification of the iteration-varying disturbances, but at the
cost of slow convergence. In norm-optimal ILC (Gunnarsson
and Norrlöf, 2001), increasing the weights on the 2-norm of the
input and the change in input has effects similar to respectively
using a robustness filter and reducing a learning gain.

Instead of LTI ILC strategies, which are limited in the presence
of iteration-varying disturbances, time-varying ILC strategies
have been proposed. In Butcher et al. (2008), the learning gain
is systematically reduced based on the iteration number, result-
ing in a time-varying system in the iteration domain. While
this approach effectively limits the amplification of iteration-
varying disturbances, convergence is slow. In Oomen and Rojas
(2017), a sparse ILC algorithm is proposed that achieves time-
varying ILC within one trial. To this end, the standard norm-
optimal ILC criterion is extended by a convex relaxation of the
�0-norm of the input signal that enforces sparsity. This approach
reduces the amplification of iteration-varying disturbances sig-
nificantly while retaining fast convergence properties. In con-
trast to norm-optimal ILC, the input update that minimizes the
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criterion in sparse ILC cannot be obtained in closed form, and
instead an optimization problem is solved at each iteration.
Because of the lack of closed-form expressions of the ILC
controller, tuning for robustness is challenging in this approach.

Iteration-invariant and iteration-varying disturbances often have
typical and different amplitude characteristics, which can be ex-
ploited in the design of ILC. The idea is to use nonlinear filters
that essentially aim to filter out the low-amplitude iteration-
varying disturbances. This idea relates to approaches that use
nonlinear filters to create variable-gain feedback controllers,
see, e.g., Heertjes and Steinbuch (2004) or the performance
analysis in Pavlov et al. (2013). In Heertjes and Tso (2007),
a related idea is proposed by adding a deadzone to the learning
filter for lifted ILC without a robustness filter. In Heertjes et al.
(2009) a low-pass filter is added to the learning filter, but as
shown by Bristow et al. (2006) this implementation does not in-
crease the robustness against model uncertainty. In addition, the
Lyapunov-stability based analysis only provides a condition for
convergence that cannot guarantee monotonic convergence, and
therefore excessive learning transients may occur (Longman,
2000). The approach cannot be applied to frequency-domain
ILC and it does not allow for the introduction of a robustness
filter along the lines of Bristow et al. (2006).

Although significant steps have been taken towards ILC algo-
rithms that achieve both fast convergence and limited amplifica-
tion of iteration-varying disturbances, a closed-form approach
that enables the use of robustness filters and for which condi-
tions for monotonic convergence are available is still lacking. In
this paper, a nonlinear ILC algorithm is developed that includes
a deadzone in the learning filter for frequency-domain ILC.
This results in an ILC algorithm with learning gains that vary
over trials, as well as within a single trial. Explicit expressions
of the ILC filters are available, and monotonic convergence cri-
teria are provided. The proposed approach achieves fast conver-
gence, robustness against model uncertainty, strong attenuation
of repeating disturbances and limited amplification of iteration-
varying disturbances. The contribution of this paper consists of
the following elements.

• A nonlinear ILC algorithm containing a learning filter
with deadzone is introduced, that achieves fast conver-
gence, robustness, strong attenuation of repeating distur-
bances, and limited amplification of iteration-varying dis-
turbances.

• A condition for the monotonic convergence of nonlinear
frequency-domain ILC is provided, which is reminiscent
of existing LTI ILC convergence conditions and which can
be checked based on measured frequency response data.

• The approach is validated in simulations.

This paper is structured as follows. In Section 2, the problem is
introduced. In Section 3, the potential for nonlinear ILC is illus-
trated. In Section 4 the nonlinear ILC algorithm is introduced
and conditions for monotonic convergence are given. The ap-
proach is validated using simulations in Section 5. Conclusions
are given in Section 6.

Notation: Throughout, ‖x‖2 =
√∑∞

i=−∞ |xi|2 < ∞ denotes
the �2-norm for x ∈ �2. The L∞-norm for discrete-time transfer
functions is denoted by ‖G‖L∞ = supω∈[0,2π) |G(eiω)| for
a rational transfer function G ∈ RL∞. The power spectrum
of signal x is defined as in (Ljung, 1999, Section 2.3) and is
denoted by φx.
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2. PROBLEM FORMULATION

In iterative learning control (ILC) an input signal is updated
iteratively in order to learn to attenuate repeating disturbances.
In case of parallel ILC, the learned input signal is a feedforward
signal, as illustrated in Fig. 1. For a SISO discrete-time linear
time-invariant (LTI) system, this leads to a system of the form

ej = r − Jfj − vj , (1)
which is operating iteratively with error ej ∈ �2 in iteration
j ∈ Z≥0, iteration-invariant disturbance r ∈ �2, feedforward
signal fj ∈ �2 and iteration-varying disturbance vj ∈ �2. In the
parallel ILC configuration with reference yd and measurement
noise ṽj , as shown in Fig. 1, r = Syd with S = (1 + PC)−1,
vj = Sṽj and J = SP .

While standard ILC can attenuate the iteration-invariant distur-
bance r completely, it may also amplify the iteration-varying
disturbances vj , such as noise, up to a factor two. This is further
illustrated in Section 3. The amplification of iteration-varying
disturbances can be reduced by reducing the learning gain,
resulting in slow convergence.

The aim of this paper is to develop a frequency-domain iterative
learning control (ILC) method that achieves both small con-
verged errors and fast convergence. In general, for applications
for which ILC is useful, the amplitude of iteration-invariant
disturbances is higher than that of the iteration-varying dis-
turbances. The main idea is to use this difference in ampli-
tude characteristics to distinguish between iteration-invariant
disturbances, which should be attenuated, and iteration-varying
disturbances, which should not be amplified. In particular, a
nonlinear deadzone is used to apply different learning gains
based on the signal amplitude, leading to a learning gain that
is time-varying within one iteration. In addition, as the er-
ror reduces over iterations, the learning gain is automatically
decreased. Through this automated time-and iteration-varying
learning gain, fast convergence to small errors is achieved.

3. POTENTIAL FOR NONLINEAR ILC

In this section the potential for nonlinear ILC is illustrated.
First, frequency-domain ILC is introduced. Secondly, the trial-
varying disturbances in standard ILC are analyzed, and thirdly
the achievable performance of nonlinear ILC is estimated.

3.1 Frequency-domain iterative learning control

When iterative learning control (ILC) is applied to system (1),
input signal fj is updated iteratively according to

fj+1 = Q(fj + αLej), (2)

with learning filter L, which is chosen to approximate J−1,
robustness filter Q, which is typically a zero-phase low pass
filter, and learning gain α which is typically chosen to be
∈ (0, 1]. In the case where vj = 0 ∀ j, (1) can be substituted in
(2) to give the feedforward iteration

fj+1 = Q(1− αLJ)fj − αQLJr. (3)
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criterion in sparse ILC cannot be obtained in closed form, and
instead an optimization problem is solved at each iteration.
Because of the lack of closed-form expressions of the ILC
controller, tuning for robustness is challenging in this approach.

Iteration-invariant and iteration-varying disturbances often have
typical and different amplitude characteristics, which can be ex-
ploited in the design of ILC. The idea is to use nonlinear filters
that essentially aim to filter out the low-amplitude iteration-
varying disturbances. This idea relates to approaches that use
nonlinear filters to create variable-gain feedback controllers,
see, e.g., Heertjes and Steinbuch (2004) or the performance
analysis in Pavlov et al. (2013). In Heertjes and Tso (2007),
a related idea is proposed by adding a deadzone to the learning
filter for lifted ILC without a robustness filter. In Heertjes et al.
(2009) a low-pass filter is added to the learning filter, but as
shown by Bristow et al. (2006) this implementation does not in-
crease the robustness against model uncertainty. In addition, the
Lyapunov-stability based analysis only provides a condition for
convergence that cannot guarantee monotonic convergence, and
therefore excessive learning transients may occur (Longman,
2000). The approach cannot be applied to frequency-domain
ILC and it does not allow for the introduction of a robustness
filter along the lines of Bristow et al. (2006).

Although significant steps have been taken towards ILC algo-
rithms that achieve both fast convergence and limited amplifica-
tion of iteration-varying disturbances, a closed-form approach
that enables the use of robustness filters and for which condi-
tions for monotonic convergence are available is still lacking. In
this paper, a nonlinear ILC algorithm is developed that includes
a deadzone in the learning filter for frequency-domain ILC.
This results in an ILC algorithm with learning gains that vary
over trials, as well as within a single trial. Explicit expressions
of the ILC filters are available, and monotonic convergence cri-
teria are provided. The proposed approach achieves fast conver-
gence, robustness against model uncertainty, strong attenuation
of repeating disturbances and limited amplification of iteration-
varying disturbances. The contribution of this paper consists of
the following elements.

• A nonlinear ILC algorithm containing a learning filter
with deadzone is introduced, that achieves fast conver-
gence, robustness, strong attenuation of repeating distur-
bances, and limited amplification of iteration-varying dis-
turbances.

• A condition for the monotonic convergence of nonlinear
frequency-domain ILC is provided, which is reminiscent
of existing LTI ILC convergence conditions and which can
be checked based on measured frequency response data.

• The approach is validated in simulations.

This paper is structured as follows. In Section 2, the problem is
introduced. In Section 3, the potential for nonlinear ILC is illus-
trated. In Section 4 the nonlinear ILC algorithm is introduced
and conditions for monotonic convergence are given. The ap-
proach is validated using simulations in Section 5. Conclusions
are given in Section 6.

Notation: Throughout, ‖x‖2 =
√∑∞

i=−∞ |xi|2 < ∞ denotes
the �2-norm for x ∈ �2. The L∞-norm for discrete-time transfer
functions is denoted by ‖G‖L∞ = supω∈[0,2π) |G(eiω)| for
a rational transfer function G ∈ RL∞. The power spectrum
of signal x is defined as in (Ljung, 1999, Section 2.3) and is
denoted by φx.
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2. PROBLEM FORMULATION

In iterative learning control (ILC) an input signal is updated
iteratively in order to learn to attenuate repeating disturbances.
In case of parallel ILC, the learned input signal is a feedforward
signal, as illustrated in Fig. 1. For a SISO discrete-time linear
time-invariant (LTI) system, this leads to a system of the form

ej = r − Jfj − vj , (1)
which is operating iteratively with error ej ∈ �2 in iteration
j ∈ Z≥0, iteration-invariant disturbance r ∈ �2, feedforward
signal fj ∈ �2 and iteration-varying disturbance vj ∈ �2. In the
parallel ILC configuration with reference yd and measurement
noise ṽj , as shown in Fig. 1, r = Syd with S = (1 + PC)−1,
vj = Sṽj and J = SP .

While standard ILC can attenuate the iteration-invariant distur-
bance r completely, it may also amplify the iteration-varying
disturbances vj , such as noise, up to a factor two. This is further
illustrated in Section 3. The amplification of iteration-varying
disturbances can be reduced by reducing the learning gain,
resulting in slow convergence.

The aim of this paper is to develop a frequency-domain iterative
learning control (ILC) method that achieves both small con-
verged errors and fast convergence. In general, for applications
for which ILC is useful, the amplitude of iteration-invariant
disturbances is higher than that of the iteration-varying dis-
turbances. The main idea is to use this difference in ampli-
tude characteristics to distinguish between iteration-invariant
disturbances, which should be attenuated, and iteration-varying
disturbances, which should not be amplified. In particular, a
nonlinear deadzone is used to apply different learning gains
based on the signal amplitude, leading to a learning gain that
is time-varying within one iteration. In addition, as the er-
ror reduces over iterations, the learning gain is automatically
decreased. Through this automated time-and iteration-varying
learning gain, fast convergence to small errors is achieved.

3. POTENTIAL FOR NONLINEAR ILC

In this section the potential for nonlinear ILC is illustrated.
First, frequency-domain ILC is introduced. Secondly, the trial-
varying disturbances in standard ILC are analyzed, and thirdly
the achievable performance of nonlinear ILC is estimated.

3.1 Frequency-domain iterative learning control

When iterative learning control (ILC) is applied to system (1),
input signal fj is updated iteratively according to

fj+1 = Q(fj + αLej), (2)

with learning filter L, which is chosen to approximate J−1,
robustness filter Q, which is typically a zero-phase low pass
filter, and learning gain α which is typically chosen to be
∈ (0, 1]. In the case where vj = 0 ∀ j, (1) can be substituted in
(2) to give the feedforward iteration

fj+1 = Q(1− αLJ)fj − αQLJr. (3)

In frequency-domain ILC, it is assumed that the duration of
an iteration is infinite and infinite-time signals are used. With
this assumption, it is possible to design and analyze the ILC
algorithm using transfer function expressions. Since the system
J in transfer function form is invertible, the error iteration for a
frequency-domain ILC update of the form (2) is given by

ej+1 = (1−Q)r +Q(1− αJL)ej . (4)
The following lemma gives a the convergence condition for
noise-free frequency domain ILC.
Lemma 1. The sequence of error iterates {ej} is monotonically

convergent in the �2-norm ‖x‖2 =
√∑∞

−∞ |xi|2 < ∞ if the
mapping from ej to ej+1 is a contraction, which is the case if

‖Q(1− αLJ)‖L∞

= sup
ω∈[0,2π)

|Q(eiω)(1− αL(eiω)J(eiω))| < 1. (5)

Essential in this condition is that it allows for non-causal filters
Q and L (Oomen and Rojas, 2017, Theorem 2), and that it
can be evaluated based on frequency-response measurements
of J(eiω) such that differences between the model and the
measured system can be taken into account directly.

3.2 Amplification of iteration-varying disturbances in ILC

Consider the ILC system (1) with update (2). To analyze the
propagation of the iteration-invariant and iteration-varying dis-
turbances r and vj over iterations, it is assumed that Q and L are
chosen such that the the sequence of error iterates {ej} is con-
vergent. In addition, assume that iteration-varying disturbance
vj = Hnj , where nj is i.i.d. zero-mean white noise and H is
monic and bistable (Ljung, 1999). Then, for f0 = 0, the error
for iteration j is given by (Oomen and Rojas, 2017, Lemma 5)

ej =

(
1− J

1−Q(1− αLJ))j

1−Q(1− αLJ)
QαL

)
r − vj (6)

− J

j−1∑
n=0

(Q(1− αLJ)nQαLvj−n−1) .

For j → ∞, the spectrum of the converged error is given by

φe∞ =

∣∣∣∣
1−Q

1−Q(1− αLJ)

∣∣∣∣
2

φr+ (7)
(
1 +

|αJQL|2
1− |Q(1− αLJ)|2

)
φv,

with φr and φv the spectra of the iteration-invariant disturbance
r and the iteration-varying disturbance v, respectively. For the
simple case with Q = 1 and L = J−1, it is clear that the
first term in (7) is equal to zero, such that the spectrum of the
resulting converged error is given by

φe∞ =

(
1 +

α2

2α− α2

)
φv. (8)

For learning gain α = 1, this gives φe∞ = 2φv , i.e., the
iteration-varying part of the error is amplified by a factor 2 by
ILC. For α → 0, this effect is mitigated and φe∞ → φv . This is
the smallest achievable spectrum, since ILC cannot compensate
for the unknown iteration-varying disturbance vj in iteration j.

While reducing α reduces the spectrum of the converged error,
it also reduces the convergence speed significantly. In addition,
reducing α ∈ (0, 1] when Q �= 1 may increase the contribution
of the spectrum of the iteration-invariant disturbance to the
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Fig. 2. Error 2-norm over iterations for α = 1 ( ), 0.5 ( ),
0.2 ( ) and 0.1 ( ), averaged over 20 realizations. Small
learning gains lead to lower converged errors at the cost of
slower convergence.

error. To illustrate this, consider the case with Q �= 1 and
L = J−1, such that

φe∞ =

∣∣∣∣
1−Q

1−Q(1− α)

∣∣∣∣
2

φr +

(
1 +

|αQ|2
1− |Q(1− α)|2

)
φv.

(9)
In this case reducing α ∈ (0, 1] reduces the term 1 − Q(1 −
α) in the numerator of the term before φr, thus increasing
the contribution of φr to φe∞ . It is therefore, in general, not
desired to choose α ≈ 0. In Fig. 2 the effect of reducing α is
illustrated using simulation results that are further elaborated
upon in Section 5. It is shown that for high values of α, the
convergence is fast but the converged error is relatively high.
Reducing the learning gain reduces results in slow convergence,
but the converged error is reduced significantly since iteration-
varying disturbances are amplified less.

3.3 Estimating iteration-varying disturbances

The achievable performance of ILC is determined by the size
of the iteration-varying disturbances in a system, which can
be estimated easily based on a series of standard-operation
experiments. Consider a series of ne experiments on the system
(1) with fj = 0 ∀ j. The output of each experiment is given by

ej = r − vj (10)
with r the iteration-invariant part of the disturbances, and vj a
realization of the iteration-varying disturbances. An estimate r̂
of the invariant part of the disturbances is given by the sample
mean of the error signal over ne experiments (Oomen, 2020):

r̂ =
1

ne

ne−1∑
j=0

ej = r − 1

ne

ne−1∑
j=0

vj . (11)

Then, for each experiment ej an estimate of the iteration-
varying disturbances is given by

v̂j = r̂ − ej . (12)
This gives several realizations of the iteration-invariant part of
the error. These realizations indicate the best performance that
can be achieved through ILC, because ILC can never attenuate
iteration-varying disturbances. In addition, they can be used to
design the deadzone nonlinearity that is introduced in the next
section, as is further illustrated in the simulations in Section 5.
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Fig. 3. Deadzone nonlinearity with γ = 1, δ = 1.

4. NONLINEAR ILC

In the previous section the trade-off between limited amplifica-
tion of iteration-varying disturbances and convergence speed
in standard ILC was illustrated. In this section, the learning
filter in ILC is extended by a deadzone, resulting in a nonlinear
ILC algorithm that removes this trade-off. First, the algorithm is
introduced and secondly a convergence criterion is developed.

4.1 Nonlinear ILC algorithm

To achieve both fast convergence and limited amplification of
varying disturbances, a deadzone nonlinearity is included in
the feedforward update. Through this filter, different learning
gains are applied to the error signal based on amplitude char-
acteristics. Small learning gains are applied to low-amplitude
iteration-varying disturbances, resulting in limited amplifica-
tion, and high learning gains are applied to high-amplitude
iteration-invariant disturbances, resulting in fast attenuation.

The nonlinear frequency-domain ILC update for a system of the
form (1) is given by the following expression.

fj+1 = Q(fj + αLej + Lϕ(ej)), (13)
with ϕ(ej) a deadzone nonlinearity, illustrated in Fig. 3, which
is applied to each sample k of ej(k) according to

ϕ(ej(k)) =

{
0, if |ej(k)| ≤ δ(
γ − γδ

|ej(k)|

)
ej(k), if |ej(k)| > δ.

(14)

Deadzone ϕ(ej) is a static nonlinearity that satisfies an incre-
mental sector condition, i.e., for scalars e1 and e2, it holds that

0 ≤ ϕ(e1)− ϕ(e2)

e1 − e2
≤ γ. (15)

This property enables the analysis of the convergence of the
nonlinear ILC algorithm, as is shown in Section 4.

Note that any type of static nonlinearity that satisfies an incre-
mental sector condition can be used in the feedforward update
(13). In this paper, a deadzone is used because it can distinguish
based on signal amplitudes to apply varying gains. However, for
other purposes different nonlinearities could be considered.

4.2 Convergence of frequency-domain nonlinear ILC

Next, a condition for the monotonic convergence of frequency-
domain ILC with a deadzone is developed. To analyze the
convergence of algorithm (13), consider the situation with vj =
0∀j. Then, the feedforward and error iterations that follow from
the update law (13) are given by

fj+1 = αQLr +Q(1− αLJ)fj +QLϕ(r − Jfj), (16)
ej+1 = (1−Q)r +Q(1− αJL)ej −QJLϕ(ej). (17)

The following theorem gives a condition for the monotonic
convergence of the sequence of iterates {ej} in nonlinear ILC.
Theorem 2. The sequence of iterates {ej} for system (1) with
feedforward update (13) converges monotonically in terms of
the �2-norm to a fixed point e∞ if∥∥∥Q

(
1− αJL− γ

2
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

< 1, (18)

with γ, α > 0.

The following lemma is an auxiliary result used in the proof of
Theorem 2.
Lemma 3. After a loop transformation, the feedforward update
with ϕ(ej) satisfying sector condition (15) is equivalent to

fj+1 = Q
(
fj +

(
α+

γ

2

)
Lej + Lϕ̃(ej)

)
, (19)

ϕ̃(ej) = ϕ(ej)−
γ

2
ej , (20)

with ϕ̃(ej) satisfying the symmetric sector condition:

−γ

2
≤ ϕ̃(e1)− ϕ̃(e2)

e1 − e2
≤ γ

2
. (21)

Proof. [Proof of Theorem 2] By the Banach fixed-point theo-
rem, the sequence {ej} converges monotonically to a unique
fixed point if the mapping F(ej) = ej+1 is a contraction map-
ping (Kreyszig, 1978, Chapter 5). Mapping F is a contraction
in the �2-norm if there exists a number ρ < 1 for which

‖F(e1)−F(e2)‖2 ≤ ρ‖e1 − e2‖2. (22)
Next,
‖F(e1)−F(e2)‖2 = (23)
‖Q(1− αJL)e1 − JLϕ(e1)−Q(1− αJL)e2 + JLϕ(e2)‖2
= ‖Q(1− αJL)(e1 − e2)−QJL(ϕ(e1)− ϕ(e2))‖2.

Using the loop transformation of Lemma 3,

‖F(e1)−F(e2)‖2 = ‖ Q
(
1−

(
α+

γ

2

)
JL

)
(e1 − e2)

−QJL(ϕ̃(e1)− ϕ̃(e2))‖2
≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)
(e1 − e2)

∥∥∥
2

+ ‖QJL(ϕ̃(e1)− ϕ̃(e2))‖2 ,
≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

‖e1 − e2‖2
+ ‖QJL‖L∞ ‖ϕ̃(e1)− ϕ̃(e2)‖2 , (24)

through application of the triangle inequality and multiplicative
property for matrix norms, and (Zhou et al., 1996, Theorem
4.4). From (21), it follows that for each entry of e1 and e2,

|ϕ̃(e1(k))− ϕ̃(e2(k))| ≤
γ

2
|e1(k)− e2(k)|. (25)

Therefore, it also holds that

‖ϕ̃(e1)− ϕ̃(e2)‖2 ≤ γ

2
‖e1 − e2‖2. (26)

Using this inequality,

‖F(e1)−F(e2)‖2 ≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

‖e1 − e2‖2

+
γ

2
‖QJL‖L∞

‖e1 − e2‖2 (27)

≤
(∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

)
‖e1 − e2‖2

It follows that the mapping F is a contraction if∥∥∥Q
(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

≤ ρ (28)

with ρ < 1. �
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4. NONLINEAR ILC

In the previous section the trade-off between limited amplifica-
tion of iteration-varying disturbances and convergence speed
in standard ILC was illustrated. In this section, the learning
filter in ILC is extended by a deadzone, resulting in a nonlinear
ILC algorithm that removes this trade-off. First, the algorithm is
introduced and secondly a convergence criterion is developed.

4.1 Nonlinear ILC algorithm

To achieve both fast convergence and limited amplification of
varying disturbances, a deadzone nonlinearity is included in
the feedforward update. Through this filter, different learning
gains are applied to the error signal based on amplitude char-
acteristics. Small learning gains are applied to low-amplitude
iteration-varying disturbances, resulting in limited amplifica-
tion, and high learning gains are applied to high-amplitude
iteration-invariant disturbances, resulting in fast attenuation.

The nonlinear frequency-domain ILC update for a system of the
form (1) is given by the following expression.

fj+1 = Q(fj + αLej + Lϕ(ej)), (13)
with ϕ(ej) a deadzone nonlinearity, illustrated in Fig. 3, which
is applied to each sample k of ej(k) according to

ϕ(ej(k)) =

{
0, if |ej(k)| ≤ δ(
γ − γδ

|ej(k)|

)
ej(k), if |ej(k)| > δ.

(14)

Deadzone ϕ(ej) is a static nonlinearity that satisfies an incre-
mental sector condition, i.e., for scalars e1 and e2, it holds that

0 ≤ ϕ(e1)− ϕ(e2)

e1 − e2
≤ γ. (15)

This property enables the analysis of the convergence of the
nonlinear ILC algorithm, as is shown in Section 4.

Note that any type of static nonlinearity that satisfies an incre-
mental sector condition can be used in the feedforward update
(13). In this paper, a deadzone is used because it can distinguish
based on signal amplitudes to apply varying gains. However, for
other purposes different nonlinearities could be considered.

4.2 Convergence of frequency-domain nonlinear ILC

Next, a condition for the monotonic convergence of frequency-
domain ILC with a deadzone is developed. To analyze the
convergence of algorithm (13), consider the situation with vj =
0∀j. Then, the feedforward and error iterations that follow from
the update law (13) are given by

fj+1 = αQLr +Q(1− αLJ)fj +QLϕ(r − Jfj), (16)
ej+1 = (1−Q)r +Q(1− αJL)ej −QJLϕ(ej). (17)

The following theorem gives a condition for the monotonic
convergence of the sequence of iterates {ej} in nonlinear ILC.
Theorem 2. The sequence of iterates {ej} for system (1) with
feedforward update (13) converges monotonically in terms of
the �2-norm to a fixed point e∞ if∥∥∥Q

(
1− αJL− γ

2
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

< 1, (18)

with γ, α > 0.

The following lemma is an auxiliary result used in the proof of
Theorem 2.
Lemma 3. After a loop transformation, the feedforward update
with ϕ(ej) satisfying sector condition (15) is equivalent to

fj+1 = Q
(
fj +

(
α+

γ

2

)
Lej + Lϕ̃(ej)

)
, (19)

ϕ̃(ej) = ϕ(ej)−
γ

2
ej , (20)

with ϕ̃(ej) satisfying the symmetric sector condition:

−γ

2
≤ ϕ̃(e1)− ϕ̃(e2)

e1 − e2
≤ γ

2
. (21)

Proof. [Proof of Theorem 2] By the Banach fixed-point theo-
rem, the sequence {ej} converges monotonically to a unique
fixed point if the mapping F(ej) = ej+1 is a contraction map-
ping (Kreyszig, 1978, Chapter 5). Mapping F is a contraction
in the �2-norm if there exists a number ρ < 1 for which

‖F(e1)−F(e2)‖2 ≤ ρ‖e1 − e2‖2. (22)
Next,
‖F(e1)−F(e2)‖2 = (23)
‖Q(1− αJL)e1 − JLϕ(e1)−Q(1− αJL)e2 + JLϕ(e2)‖2
= ‖Q(1− αJL)(e1 − e2)−QJL(ϕ(e1)− ϕ(e2))‖2.

Using the loop transformation of Lemma 3,

‖F(e1)−F(e2)‖2 = ‖ Q
(
1−

(
α+

γ

2

)
JL

)
(e1 − e2)

−QJL(ϕ̃(e1)− ϕ̃(e2))‖2
≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)
(e1 − e2)

∥∥∥
2

+ ‖QJL(ϕ̃(e1)− ϕ̃(e2))‖2 ,
≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

‖e1 − e2‖2
+ ‖QJL‖L∞ ‖ϕ̃(e1)− ϕ̃(e2)‖2 , (24)

through application of the triangle inequality and multiplicative
property for matrix norms, and (Zhou et al., 1996, Theorem
4.4). From (21), it follows that for each entry of e1 and e2,

|ϕ̃(e1(k))− ϕ̃(e2(k))| ≤
γ

2
|e1(k)− e2(k)|. (25)

Therefore, it also holds that

‖ϕ̃(e1)− ϕ̃(e2)‖2 ≤ γ

2
‖e1 − e2‖2. (26)

Using this inequality,

‖F(e1)−F(e2)‖2 ≤
∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

‖e1 − e2‖2

+
γ

2
‖QJL‖L∞

‖e1 − e2‖2 (27)

≤
(∥∥∥Q

(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

)
‖e1 − e2‖2

It follows that the mapping F is a contraction if∥∥∥Q
(
1−

(
α+

γ

2

)
JL

)∥∥∥
L∞

+
γ

2
‖QJL‖L∞

≤ ρ (28)

with ρ < 1. �
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Fig. 4. Bode diagram of the system ( ) and a low-order
approximation ( ).

Remark 4. The loop transformation to a symmetric sector con-
dition in Lemma 3 is used to reduce the conservativeness of
the convergence condition in Theorem 2, which is caused by
the triangle inequality used to separate the norms in (24). If this
transformation is omitted and the original non-symmetric sector
condition is used instead in Equations 25 and 26, this results in
the much more conservative convergence condition

‖Q (1− αJL)‖L∞
+ γ ‖QJL‖L∞

≤ 1. (29)

The convergence condition in Theorem 2 recovers several use-
ful properties of the standard frequency-domain ILC conver-
gence condition (Lemma 1). First, Theorem 2 uses L∞-norms
which can be evaluated easily using model knowledge or mea-
sured frequency-response data of the system. Second, the con-
dition allows the use of a robustness filter Q, which can be
designed intuitively because the norms can be visualized using
Bode diagrams. Third, the L∞-norms allow the use of non-
causal filters, thus enabling the use of zero-phase filtering for
Q, and a non-causal L ≈ J−1 that enables preview.

5. SIMULATION EXAMPLE

In this section the addition of a deadzone in frequency-domain
ILC is validated and illustrated in simulations. First, a suitable
choice of deadzone parameters is made. Then, simulation re-
sults are given and lastly it is illustrated that a less conservative
convergence criterion could lead to even better performance.

The system used in simulation is the carriage of an industrial
flatbed printer for which high- and low-order models are avail-
able. The high-order model represents the true system, which is
approximated by the low-order model, resulting in a model mis-
match at high frequencies, see Fig. 4. To ensure convergence in
the linear case with α = 1, the Q-filter is chosen as a first-order
lowpass filter with a cutoff frequency of 100 Hz. The reference
is shown in Fig. 5 and in the simulations Gaussian white noise
with a variance of 0.005V2 is added to the plant input, resulting
in the mean and noise estimates shown in Fig. 7. For each ILC
configuration, the results are averaged over 20 realizations.

5.1 Selection of the deadzone parameters

To implement the deadzone ϕ(ej) in (14), the parameters γ
and δ should be chosen. The gain γ of the deadzone can be

0 1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

Time [s]

Po
si

tio
n

[m
]

Fig. 5. Reference used in the simulations.
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Fig. 6. Bode magnitude plots of Q

(
1− αJL− γ

2JL
)

with
L∞ = 0.5720 ( ) and γ

2QJL with L∞ = 0.4224 ( ).
Since 0.5720 + 0.4224 < 1, the system with α = 0.3,
γ = 0.7 meets the convergence condition of Theorem 2.

compared to the learning gain α in the linear case, in the sense
that it influences the convergence speed and the amplification of
iteration-varying disturbances. In contrast to the linear learning
gain, nonlinear gain γ is only applied to errors outside of the
deadzone. Since these errors are typically caused by iteration-
invariant disturbances which should be attenuated fast, γ should
be chosen as close to 1 as possible without compromising
the convergence condition in Section 4. In addition, to limit
the amplification of iteration-varying disturbances, the linear
learning gain α should be chosen close to 0. In Fig. 6 examples
of the Bode diagrams of the two terms in the convergence
condition are shown for α = 0.3, γ = 0.7, and it is shown
that for these parameters, the convergence condition is met.

The deadzone width δ should be chosen such that learning is
only applied to iteration-invariant disturbances based on their
amplitude, i.e., it should be chosen such that ϕ(vj) ≈ 0. To
determine δ, the amplitude of the iteration-varying disturbances
is estimated using a series of ne = 20 standard-operation
experiments with fj = 0 on the system, as explained in
Section 3. This results in an estimate r̂ of the iteration-invariant
disturbances and 20 estimates v̂j of different realizations of the
iteration-varying part of the error, as shown in Fig. 7.

The estimates of vj are used to determine a suitable value of
δ that filters out the desired percentage of iteration-varying
disturbances. Note that for values slightly larger than δ the gain
is very small, because of the shape of the deadzone, see Fig. 3.
Therefore, it is typically not necessary to choose δ such that it
includes all iteration-varying disturbances. Based on Fig. 7, the
deadzone width is chosen as δ = 5× 10−6 m.

5.2 Comparison between linear and nonlinear ILC

Two combinations of the linear learning gain α and the non-
linear gain γ are applied in simulation. For linear ILC, smaller
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Fig. 7. Mean r̂ of the error signal over 20 iterations ( ) and
the noise estimates v̂j for j = 1, 2, ..., 20. The black lines
indicate the interval [−5×10−6, 5×10−6], which contains
most of the noise.
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Fig. 8. Error 2-norm for linear ILC with α = 1 ( ), 0.5 ( )
and 0.2 ( ) and nonlinear ILC with α = 0.1, γ = 0.9
and δ = 5 × 10−6 ( ) and α = 0.3, γ = 0.7 and
δ = 5 × 10−6 ( ). Nonlinear ILC removes the trade-off
between convergence speed and converged error.

values of α ∈ (0, 1] result in slower convergence and lower
errors, see Section 2 and Fig. 2. In Fig. 8 it is shown that non-
linear ILC removes this trade-off between convergence speed
and converged error value. For α = 0.1 and γ = 0.9, nonlinear
ILC matches the convergence speed of linear ILC with α = 1
for the first iteration. After that, it converges in six iterations to
the error value that linear ILC only achieves after 25 iterations
with α = 0.2. Thus, adding a deadzone to frequency-domain
ILC results in both fast convergence and small errors due to
limited amplification of the iteration-varying disturbances.

5.3 Conservativeness of the convergence criterion

The convergence criterion of Theorem 2 is a sufficient condition
for monotonic convergence, and in some cases it is conserva-
tive. This is shown by comparison of the results for two differ-
ent configurations for nonlinear ILC. For α = 0.3, γ = 0.7
the convergence criterion is met, as shown in Fig. 6. However,
in Fig. 8 it is shown that for α = 0.1, γ = 0.9 a comparable
convergence speed leads to an even smaller converged error.
For this second configuration, ‖Q

(
1− αJL− γ

2JL
)
‖L∞ =

0.5651 and ‖γ
2QJL‖L∞ = 0.5431, such that the convergence

criterion in Theorem 2 is not met. The illustrated conservative-
ness of the convergence criterion requires further research.

6. CONCLUSIONS

In this paper, a nonlinear frequency-domain ILC algorithm is
developed that achieves both fast convergence and a small con-
verged error in the presence of iteration-varying disturbances.
The approach removes the traditional trade-off between conver-
gence speed and amplification of iteration-varying disturbances
in ILC through a deadzone nonlinearity, which applies various
learning gains to different elements of the error signal depend-
ing on their magnitude. A condition for monotonic convergence
of the frequency-domain algorithm is given that enables the use
of robustness filters and that can be evaluated using measured
frequency-response data of the system. The proposed algorithm
is validated using simulations, in which fast convergence to
small errors is demonstrated. Future research will be aimed
at reducing the conservativeness of the convergence criterion,
extension of the approach to time-domain ILC with robustness
filters, and experimental implementation.
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