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In-plane vibration of rotating rings using a high order the-
ory

Tao Lu1,∗, Apostolos Tsouvalas1, and Andrei Metrikine1

1Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN
Delft, The Netherlands

Abstract. In-plane dynamics of rotating rings on elastic foundation is a topic
of continuous research, especially in the field of tire dynamics. When the inner
surface of a ring is connected to a stiff foundation, the through-thickness vari-
ation of radial and shear stress needs to be accounted for. This effect is often
overlooked in the ring models proposed in the literature. In this paper, a new
high order theory is developed for the in-plane vibration of rotating rings whose
inner surface is connected to an immovable hub by distributed springs while
the outer surface is stress-free. The high-order terms are chosen such that the
boundary conditions at the inner and outer surfaces are satisfied at all times.
Instability, which is usually overlooked in the literature, is predicted using the
present model. Resonant speeds are investigated, at which modes appear as a
stationary displacement pattern to a space-fixed observer. The exact satisfac-
tion of boundary conditions at the inner and outer ring surfaces together with
the through-thickness variation of the radial and shear stresses are shown to be
of significant importance when the ring rotates at high speeds or is supported
by relatively stiff foundation.

1 Derivation of governing equations

As is shown in Fig. 1, the model consists of a flexible ring of rectangular cross-section and
distributed radial and circumferential springs (designated as kr and kc) that connect the inner
surface of the ring to an immovable axis. The ring rotates at an angular speed Ω. A space-
fixed coordinate system (r, θ) is adopted. It is assumed that the mean radius of the ring is R.
To simplify mathematical expressions, an auxiliary coordinate z is introduced as z = r −R, in
which r defines the radial coordinate, i.e. the ring occupies the space R−h/2 ≤ r ≤ R+h/2, in
which h denotes the thickness of the ring. The radial and circumferential displacements of the
ring are designated by w(z, θ, t) and u(z, θ, t), respectively. Furthermore, ρ is the mass density
of the ring, E is the Young’s modulus, A is the cross-sectional area and I is the cross-sectional
moment of inertia, and b is the out-of-plane width of the ring.

The displacements w(z, θ, t) and u(z, θ, t) of a differential element of the ring are defined
by

w(z, θ, t) = w0(θ, t) + zw1(θ, t) + z2 w2(θ, t) (1a)

u(z, θ, t) = u0(θ, t) + z φ1(θ, t) + z2 φ2(θ, t) + z3 φ3(θ, t) (1b)
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Figure 1. A rotating ring on an elastic foundation

in which w0(θ, t) and u0(θ, t) are the radial and circumferential displacements of the middle
surface, respectively. The terms w1(θ, t), w2(θ, t), φ2(θ, t) and φ3(θ, t) are high order correc-
tions of the radial and circumferential displacements which enable one to take into consider-
ation the through-thickness variation of the radial and shear stresses.

According to [1], the nonlinear strain-displacement relation for the circumferential strain
εθ, the radial strain εr and the shear strain γθr of a differential element in the ring are given by

εθ = ε0 +
1
2

(β)2, εr = w,r +
1
2

(u,r)2, γθr = (1 − w,r)u,r − β η, (2)

with:

ε0 =
u′

r
+
w

r
, β =

u
r
− w

′

r
, η = 1 − ε0,

u,r =
∂u
∂z
= φ1 + 2z φ2 + 3z2 φ3, w,r =

∂w

∂z
= w1 + 2zw2.

(3)

Hereafter, the prime stands for the partial derivative with respect to θ. Please note that all
strain components are functions of (z, θ, t), e.g. εθ → εθ(z, θ, t). The in-plane motions of a
ring can either be considered as a plane strain or plane stress problem depending on the ratio
b/h. When b/h >> 1, the problem is essentially of the plane strain type. Without loss of
generality, the isotropic linear elastic stress-strain relations are [2]:


σr

σθ
τrθ

 =

2µ + λ̄ λ̄ 0
λ̄ 2µ + λ̄ 0
0 0 µ




εr

εθ
γrθ

 (4)

in which λ̄ = λ for the plane strain configuration; and λ̄ = 2µλ/(2µ + λ) = E ν/(1 − ν2) for
the plane stress case. λ and µ are the Lamé constants of the material and ν is the Poisson’s
ratio.

The inner surface of the ring is connected by means of distributed radial and circumfer-
ential springs to an immovable axis. The radial and shear stresses should be zero at the outer
surface,

σr

∣∣∣h/2 = 2µ (εr

∣∣∣h/2 ) + λ̄
(
εr

∣∣∣h/2 + εθ
∣∣∣h/2
)
= 0, (5a)

τθr
∣∣∣h/2 = µ γθr

∣∣∣h/2 = 0. (5b)

2

MATEC Web of Conferences 211, 03012 (2018) https://doi.org/10.1051/matecconf/201821103012
VETOMAC XIV



R

X

Y

x

y

w
u

z

θΩ

rkckh

ϕ
tΩ

re
θe

Figure 1. A rotating ring on an elastic foundation
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in which λ̄ = λ for the plane strain configuration; and λ̄ = 2µλ/(2µ + λ) = E ν/(1 − ν2) for
the plane stress case. λ and µ are the Lamé constants of the material and ν is the Poisson’s
ratio.

The inner surface of the ring is connected by means of distributed radial and circumfer-
ential springs to an immovable axis. The radial and shear stresses should be zero at the outer
surface,

σr

∣∣∣h/2 = 2µ (εr

∣∣∣h/2 ) + λ̄
(
εr

∣∣∣h/2 + εθ
∣∣∣h/2
)
= 0, (5a)

τθr
∣∣∣h/2 = µ γθr

∣∣∣h/2 = 0. (5b)

The inner surface of the ring is connected to foundation, thus

σr

∣∣∣−h/2 = 2µ (εr

∣∣∣−h/2 ) + λ̄
(
εr

∣∣∣−h/2 + εθ
∣∣∣−h/2

)
= kr(w0 − w1 h/2 + w2 h2/4), (6a)

τθr
∣∣∣−h/2 = µ γθr

∣∣∣−h/2 = kcu
∣∣∣−h/2 = kc(u0 − φ1 h/2 + h2 φ2/4 − h3 φ3/8). (6b)

It is assumed that w0, u0 and φ1 are independent variables, whereas w1, w2, φ2 and φ3 can
be expressed as functions of w0, u0 and φ1 by satisfying Eqs. (5-6) above:

w1(θ, t) = w1(w0, u0, φ1), w2(θ, t) = w2(w0, u0, φ1),
φ2(θ, t) = φ2(w0, u0, φ1), φ3(θ, t) = φ3(w0, u0, φ1). (7)

The velocity vector in the space-fixed frame reads

ṙ =
(
ẇ + (w′ − u)Ω

)
i +
(
u̇ + (r + w + u′)Ω

)
j = v1 i + v2 j. (8)

The vectors i and j are unit vectors in the radial and circumferential directions, respectively.
The overdot denotes a partial derivative with respect to time.

Application of Hamilton’s principle, i.e.
∫ t2

t1

∫ h
2

−h
2

∫ 2π

0
(σθ δεθ + σr δεr + τθr δγθr)r dθdzdt − ρ

2

∫ t2

t1

∫ h
2

−h
2

∫ 2π

0
δ(ṙ · ṙ)r dθdzdt

+

∫ t2

t1

∫ 2π

0

(
kr w
∣∣∣−h/2 δ(w

∣∣∣−h/2 ) + kc u
∣∣∣−h/2 δ(u

∣∣∣−h/2 )
)

(R − h/2) dθdt = 0 (9)

yields three nonlinear dynamic equations by setting the coefficients of δw0, δu0 and δφ1 equal
to zero:

∫ h
2

−h
2

(A1 I1) dz +
∫ h

2

−h
2

(A2 I2) dz +
∫ h

2

−h
2

(A3 I3) dz +
∫ h

2

−h
2

(A4 I4) dz

+ ρ

∫ h
2

−h
2

(
(v̇1 + Ω v′1 −Ω v2)A1 + (v̇2 + Ω v′2 + Ω v1)A2

)
r dz

+
(
kr c1 w

∣∣∣−h/2 + kc c4 u
∣∣∣−h/2

)
(R − h/2) = 0, (10)

∫ h
2

−h
2

(B1 I1) dz +
∫ h

2

−h
2

(B2 I2) dz +
∫ h

2

−h
2

(B3 I3) dz +
∫ h

2

−h
2

(B4 I4) dz

+ ρ

∫ h
2

−h
2

(
(v̇1 + Ω v′1 −Ω v2)B1 + (v̇2 + Ω v′2 + Ω v1)B2

)
r dz

+
(
kr c2 w

∣∣∣−h/2 + kc c5 u
∣∣∣−h/2

)
(R − h/2) = 0, (11)

∫ h
2

−h
2

(C1 I1) dz +
∫ h

2

−h
2

(C2 I2) dz +
∫ h

2

−h
2

(C3 I3) dz +
∫ h

2

−h
2

(C4 I4) dz

+ ρ

∫ h
2

−h
2

(
(v̇1 + Ω v′1 −Ω v2)C1 + (v̇2 + Ω v′2 + Ω v1)C2

)
r dz

+
(
kr c3 w

∣∣∣−h/2 + kc c6 u
∣∣∣−h/2

)
(R − h/2) = 0, (12)

where

I1 = σθ + (σθβ)′ − (τθr η)′ + τθr β, I2 = −(σθ)′ + σθ β − τθr η − (τθr β)′,
I3 = (σr − τθr u,r)r, I4 = (σr u,r + τθr(1 − w,r))r. (13)
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The coefficients A1 − A4, B1 − B4, C1 −C4 and c1 − c6 can be obtained by combining Eqs. (1)
and (7).

The nonlinear governing equations are then linearised around the static equilibrium result-
ing from rotation. The static equilibrium is solved from the nonlinear governing equations
the same way as Ref. [3]. To obtain to characteristic equation from the linearised governing
equations, it is assumed that the dynamic displacements are

w0(θ, t) = R W einθ+iωt, u0(θ, t) = R U einθ+iωt, φ1(θ, t) = Φ einθ+iωt (14)

in which ω is the natural frequency in space-fixed reference system, n is the circumferential
mode number and i =

√
−1. Substituting Eq. (14) into the linearised governing equations

yields the characteristic equation. For convenience, the following dimensionless parameters
are introduced

k =
√

EI/(EA), k̄ = k/R, γ̄ = n k̄, ω̄ = ω k/c0, v̄ = RΩ/c0, (k̄r, k̄c) = (kr, kc)k2/(Eh) (15)

where c0 =
√

E/ρ is the longitudinal wave speed of a rod, I = bh3/12 is the cross section
area moment of inertia and k̄ is the non-dimensional radius of gyration. The dimensionless
characteristic equation is then expressed by

f (ω̄, γ̄, v̄) = 0. (16)

2 Comparison with linear elasticity for the stationary ring case

To illustrate the significance of satisfaction of boundary conditions, the proposed model is
compared with the Timoshenko-type model [4] and elasticity theory for the stationary ring
case (Ω = 0). Plane strain is assumed since we consider a ring with b >> h.

Figure 2. Frequency spectrum (plane strain) for h/R = 0.1, k̄c = 0.1 and Ω = 0: (a) k̄r = 0.01; (b)
k̄r = 0.5.

The frequency spectra are plotted in Fig. 2 for two sets of foundation stiffness and for
ν = 0.4. The first three branches of the frequency spectra calculated by the elasticity theory
are plotted to compare with the Timoshenko-type theory and the high-order theory proposed
here. It can be concluded that the applicability range of the new model is much wider than
the Timoshenko-type model [4]. The Timoshenko model is not able to capture the dispersion
curves when the foundation stiffness increases as shown in Fig. 2(b) even for the lowest
branch of the frequency spectra. In contrast, the current model can accurately predict the
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The frequency spectra are plotted in Fig. 2 for two sets of foundation stiffness and for
ν = 0.4. The first three branches of the frequency spectra calculated by the elasticity theory
are plotted to compare with the Timoshenko-type theory and the high-order theory proposed
here. It can be concluded that the applicability range of the new model is much wider than
the Timoshenko-type model [4]. The Timoshenko model is not able to capture the dispersion
curves when the foundation stiffness increases as shown in Fig. 2(b) even for the lowest
branch of the frequency spectra. In contrast, the current model can accurately predict the

lowest branch in the whole range of wavenumbers. For the higher branches, the high-order
theory is valid till γ̄ ≈ 0.15 in Fig. 2(a) and γ̄ ≈ 0.32 in Fig. 2(b). To conclude, the
high-order theory which considers the boundary conditions at the surfaces and the though-
thickness variations of stresses is shown to be superior to Timoshenko-type ring models.

3 Critical speeds of rotating rings

3.1 Resonant speeds

Resonant speeds of a rotating ring are defined as the speeds at which resonances of the ring
subjected to a stationary load occur. They are the speeds which satisfy the condition ω̄ = 0
[3, 5], namely the natural frequency in the space-fixed coordinate becomes zero at these
speeds. By substituting ω̄ = 0 into the characteristic equation (16), one can solve for resonant
speeds for each circumferential wavenumber.

Figure 3. Resonant speeds for h/R = 0.1, k̄c = 0.1: (a) k̄r = 0.01; (b) k̄r = 0.5.

Figure 3 shows the resonant speeds for k̄r = 0.01 and k̄r = 0.5 whick k̄c = 0.1. Three
curves which correspond to the three dispersion curves shown in Fig. 2 exist. The vertical
dotted line in Fig. 3(a)(b) corresponds to wavenumber γ̄ = 0.15 and γ̄ = 0.32 which are
obtained from Fig. 2 marking the applicable range for the higher branches. That is to say, the
thicker solid lines are of interest from the predictions of the present high order theory. The
lower abscissa in each plot is the dimensionless wavenumber, whereas the upper abscissa is
the corresponding discrete circumferential mode number. In Fig. 3(a), the two models predict
qualitatively similar resonant speeds. The resonant speeds of the lowest branch approach the
Rayleigh wave speed at large wavenumbers. To conclude, if the foundation is relatively
soft, the first order Timoshenko correction gives accurate results on the prediction of resonat
speeds. However, it underestimates the minimum resonant speed. In Fig. 3(b), we note that
the influence of boundary conditions increases. The quantitatively different resonant speeds
predicted in Fig. 3(b) show the significance of boundary conditions for the case of stiff
foundation.

3.2 Critical speeds associated with instability

It has been shown in [3] that instability may occur for certain combination of parameters.
Divergence instability of the n = 0 rotational mode always occurs at lower rotational speeds
compared to flutter of higher modes.

In a previous study [3], it is concluded that the stiffness of the circumferential springs is
a key factor for determining the critical speed corresponding to the onset of instability. Here
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Figure 4. Critical speeds for h/R = 0.1, k̄r = 0.28: (a) k̄c = 10−2 k̄r; (b) k̄c = 10−4 k̄r.

we choose two sets of parameters, among them k̄r = 0.28 corresponds to the stiffness of radial
springs K̄r = 4 × 105 used in [3] and k̄c is different. In each figure, v̄n=0 denotes the critical
speed associated with the onset of instability of mode n = 0. Besides the resonant speeds for
higher modes, the focus is placed to the critical speeds for instability of n = 0 mode. Two
conclusions can be drawn from Fig. 4. First, the speeds that correspond to the divergence
instability are quite close to each other, regardless of the models employed. The proposed
model predicts slightly smaller critical speed of n = 0 which means that the consideration of
boundary conditions lowers the critical speeds for n = 0. Second, the critical speeds of n = 0
can be smaller than the resonant speeds of higher modes, implying that the ring may become
unstable before resonances could occur.

4 Conclusions

In this paper, the in-plane vibration of a rotating ring on a relatively stiff elastic foundation
is considered. A new high order model is developed which includes the shear deformation,
the rotatory inertia and the through-thickness variation of the radial and shear stresses. The
present model can treat both plane strain and plane stress problems, as well as stationary
rings by setting the rotational speed of the ring to zero. The boundary conditions at the
inner and outer surfaces of the ring are satisfied in an exact manner. Two types of critical
speeds are discussed. The first one corresponds to resonances of a rotating ring subjected to a
stationary load. The second one is responsible for divergence instability of the free vibration
of a rotating ring. By analysing the critical speeds using different models, it is shown that the
shear deformation and rotatory inertia are important. The influence of radial and shear stress
boundary conditions becomes significant when the foundation is relatively stiff, especially
for waves of long wavelength.
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