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ABSTRACT
The twenty first century is the century of data. Machine learning data and driven methods start to lead the way in many fields. In this con-
tribution, we will show how symbolic regression machine learning methods, based on genetic programming, can be used to solve fluid flow
problems. In particular, we will focus on the fluid drag experienced by ellipsoidal and spherocylinder particles of arbitrary aspect ratio. The
machine learning algorithm is trained semisupervised by using a very limited amount of data for a specific single aspect ratio of 2.5 for
ellipsoidal and 4 for spherocylindrical particles. The effect of the aspect ratio is informed to the algorithm through what we call previous
knowledge, for example, known analytical solutions in certain limits, or through interbreeding of different flow solutions from the literature.
Our results show good agreement with literature results, while they are obtained computationally faster and with less computing resources.
Also, the machine learning algorithm discovered that for the case of prolate spheroids, the difference between the drag coefficients perpendic-
ular and parallel to the flow in the high Reynolds number regime only depend on the aspect ratio of the geometry, even when the individual
drag coefficients still decrease with increasing Re.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5116183., s

I. INTRODUCTION

Fluid mechanics is one of the most widely investigated topics
in scientific literature due to its wide range of applications, ranging
from spacecraft design to bacterial flows. Fluid flow is described by
the Navier-Stokes equations. Due to the strong nonlinear nature of
these equations, finding analytical or numerical solutions imposes a
challenging task. The most popular numerical schemes used for solv-
ing the Navier-Stokes equations are finite difference,1 finite volume,2

finite element,3 and lattice Boltzmann4 schemes. For more accurate
numerical schemes, finer grids and smaller time steps must be used,
which leads to an increase in the computational time and usage of
more computational resources. Even with the introduction of par-
allelization into computational fluid mechanics (CFD) algorithms,
the algorithms start to reach their peak performance for two rea-
sons. The first reason is that the algorithms themselves seem to have
reached their peak, making it increasingly difficult to find higher
order, more accurate discretization schemes.5 The second reason is
the limitation of the computing capacity due to the restrictions that
physical laws enforce onto the computer hardware.6

In the last 50 years, an enormous amount of data has been
generated related to fluid mechanics problems, either from exper-
iments or from computer simulations. As a result of this substan-
tial increase in the available data, our understanding of different
fluid mechanics problems has improved significantly.7 The data
take different forms, such as simple datasets stored in computer
hard drives or as analytical solutions8 and mathematical correla-
tions,9 or as graphical images.10 Most of these data are available on
the World Wide Web, through scientific journals, or in scientific
libraries and are readily accessible. With the increasing availability of
data, data driven methods of machine learning start to gain substan-
tial ground in the field of predicting the outcome of fluid dynamics
problems. Machine learning methods used in fluid mechanics take
different forms such as nonlinear regression,11 neural networks,12

combined smooth particle hydrodynamics (SPH) with regression,13

symbolic regression,14,15 and finding the governing differential equa-
tions by using sparse identification of nonlinear dynamics.16,17 All
these methods of machine learning use enormous amounts of data,
which are sometimes very expensive to obtain computationally or
experimentally.
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However, machine learning can also be employed to find accu-
rate correlations from relatively sparse datasets. The purpose of this
paper is to show how accurate predictions in the field of fluid dynam-
ics can be made by feeding machine learning methods a low amount
of high quality measurements. As a leading example, we will focus
on correlations for hydrodynamic forces on a single axisymmetric
nonspherical particle, which is a classical fluid mechanics problem
with a wide range of applications in different engineering disciplines.
Before introducing our machine learning approach, it is insight-
ful to first give an overview of the more classical theoretical and
computational fluid dynamics approaches.

During the previous decades, lots of research efforts have
focused on the flow behavior of particulate suspensions. Particulate
suspensions are interesting because of their wide range of appli-
cations, ranging from blood to controlling the flow behavior of
biomass, pastes, and ceramics. Researchers tend to investigate the
flow behavior of a single particle first, before introducing the com-
plicating factor of particle interactions. The simplest case is fluid
flow around a single sphere in the Stokes regime, i.e., at a vanish-
ingly small Reynolds number Re≪ 1. Stokes18 found the analytical
solution for the velocity field and the drag force. After this ground
breaking work, Oseen19 extended the analysis to include the effects
of fluid inertia for small but finite Re numbers, and he obtained an
analytical solution for the drag coefficient, which was found to be
logarithmically dependent on Re. Using the method of asymptotic
expansion, Proudman and Pearson20 extended the work of Oseen
to Reynolds numbers of order 0.1. For higher Reynolds numbers,
analytical methods cease to exist, and the only tool available is direct
numerical methods as in Ref. 21. There are additional hydrodynamic
forces such as lift and torque, which are especially important for
nonspherical particles. As for the case of spherical particles, there is
a very limited number of analytical solutions for very small Reynolds
number and mostly for highly symmetric and high aspect ratio parti-
cles. Examples include cylinders,22,20 prolate ellipsoids,23 and oblate
ellipsoids.24 For higher values of Re, as for the case of spherical par-
ticles, numerical methods are utilized to elucidate the flow around,
and forces on, nonspherical particles. The first numerical results for
spheroids were obtained by Pitter et al.25 for oblate spheroids and
by Masliyah and Epstein26 for oblate and prolate spheroids. They
solved the steady state form of the Navier- Stokes equations using a
finite difference scheme. They obtained the drag coefficient for the
case of a particle oriented parallel to the flow, for Re up to 100, and a
very limited set of aspect ratios. For higher Re > 100, there is a lim-
ited number of investigations for certain particle shapes and aspect
ratios. Vakil and Green27 solved the flow around a circular cylin-
der for 1 < Re < 40 and a range of aspect ratios between 1 and 20
using the commercial software Fluent, which uses the finite volume
method. They obtained results for the drag and lift coefficients for
different orientations of the particle relative to the flow. They sum-
marized their results in two sets of correlations and showed that the
maximum value for the lift to drag ratio occurs at an angle of attack
between 40○ and 50○ for nearly all aspect ratios tested. Using a sim-
ilar approach, Ouchene et al.28 investigated prolate spheroids, over
a wide range of aspect ratios from 1 to 32, at much higher Re (up to
Re = 240). They presented correlations for the drag, lift, and torque,
as a function of Re, angle of attack, and aspect ratio. Zastawny
et al.29 investigated the flow around four different particles, two
prolate spheroids of aspect ratios 1.25 and 2.5, an oblate spheroid

with aspect ratio 0.2, and a fiber particle with aspect ratio 5. They
used the immersed boundary to solve the fluid flow around the par-
ticle for Re up to 300 and provided correlations for the drag, lift,
and torque coefficients. These correlations contain multiple fitting
parameters and are specific for each particle shape. Sanjeevi et al.30

investigated flow around nonspherical particles for even higher Re
up to 2000, well beyond the steady state regime, using a lattice
Boltzmann scheme combined with a second order immersed bound-
ary method. They investigated prolate spheroids with aspect ratio
2.5, oblate spheroids with aspect ratio 0.4, and fibers with aspect
ratio 4. They were careful to make the correlations consistent with
known physical limits for very low and very high Re. Their cor-
relations are similar to those of Ref. 29. They found that in the
Stokes regime, the lift and torque coefficients show a symmetric
dependence on the angle of attack with a maximum at 45○, while at
higher Re, this dependence becomes slightly skewed, related to the
appearance of unsteady flow patterns.

In all the above works, the correlations were obtained by sug-
gesting a functional (analytical) form with fit parameters that best
describe the measured drag, lift, and torque coefficients. The opti-
mization of the parameters is relatively easy, e.g., by application
of a nonlinear optimization routine that minimizes the root mean
square (rms) error between measurement and correlation predic-
tion. However, the choice of the functional form itself is still largely a
matter of trial-and-error. In this paper, we will use machine learning,
specifically symbolic regression, to solve the issue of functional form
selection. Symbolic regression uses concepts akin to genetic evolu-
tion by random mutations, interbreeding, and natural selection to
find the best functional form. This is done without user interference,
with one exception: the user needs to define the so-called function
space of possible functions and operations on these functions. We
will illustrate our approach by focusing on the drag experienced by
fibers and prolate particles. We will use only a limited amount of
data from Ref. 30 combined with some previous literature knowl-
edge for the training purpose. To the best of our knowledge, this is
the first time that generalized regression equations for the drag coef-
ficients for a wide range of Re, aspect ratios and angle of attacks are
obtained in this way. There are a number of novelties in this work.
The first one is a new form of correlations for the drag coefficient of
fibers and prolate spheroids for different Reynolds number, angles of
attack, and aspect ratios. The second one is the way they are obtained
from a very small set of data. We will show how symbolic regression
is able to predict the role of particle aspect ratio, i.e., the role of a
latent variable that was not explicitly varied in the original dataset,
by choosing the function space based on functional forms suggested
by previous (literature) knowledge. We believe that our method can
be used more generally to solve a variety of fluid mechanics problems
in a faster way compared to the trial-and-error method mentioned
above. The final novelty of this work is that it shows that symbolic
regression can find new hidden physics related to the evolution of
the drag coefficient of nonspherical particles that will be reported
for the first time.

II. METHODOLOGY
The main computational tool that we will use in the current

investigation is symbolic regression suggested by Koza,31 part of
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the genetic programming ecosystem. The main purpose of sym-
bolic regression is to find symbolically the mathematical relationship
between a set of independent variables x = {x1, x2, x3, . . .} and depen-
dent variables y = {y1, y2, y3, . . .}. It achieves this goal by searching
the function space, in a way similar to biological evolution, by means
of mutation and crossover, as exemplified in Fig. 1. As an evolu-
tionary algorithm, symbolic regression is based on a fitness function.
Its primary purpose is to minimize the difference between the cur-
rent values of the dependent variables and the predicted ones. The
mathematical functions that will have a better fitness will survive
the extreme process of evolution. In most applications that we are
aware of,32,33 symbolic regression learned about the problem with a
supervised way of learning because each independent variable in the
training set was varied to some extent with a corresponding value
for the dependent variable. The philosophy of symbolic regression
is different from that of other regression methods such as linear
and nonlinear regression. Symbolic regression solves the problem
by itself (it is sometimes said that it writes its own computer pro-
gram) by finding the appropriate function that relates the indepen-
dent variables to the dependent variables. In contrast, in traditional
regression methods, the algorithm is finding the values of the coeffi-
cients of a predefined mathematical function that defines the relation
between the input and output variables.

In this paper, we explore the potential of using symbolic regres-
sion with semisupervised learning. In our case, the independent
variables are the Reynolds number Re, angle of attack ϕ, and aspect
ratio pa, while our only dependent variable is the drag coefficient CD.

FIG. 1. Example of the mutation process of a mathematical function log(1 + sin(x))
–log(1 + sin(x3)).

However, in our training dataset, we have only data for a single value
of pa for each geometry of the particle that we consider. This sit-
uation resembles the case of semisupervised learning because there
are no corresponding values of CD for multiple for values of pa. The
aspect ratio will act in our case as a latent variable, which the sym-
bolic regression algorithm will learn about in a semisupervised way.
We achieve this by providing the symbolic regression algorithm with
functional forms that couple pa to independent variables that are
varied in the training dataset. In the current investigation, the train-
ing data are composed of the results reported by Sanjeevi et al.30 In
particular, the data consist of only 57 values of the drag coefficient
CD (for various values of Re and particle orientation) for a single
aspect ratio [pa = 4.0 for the spherocylinder (fiber) and pa = 2.5 for
the ellipsoid]. We feed the algorithm relations for the dependence on
pa based on (elements of) analytical solutions valid in certain limits
of the independent parameters. Those relations will help the algo-
rithm detect a generalized relation of how CD is varying with all the
independent variables, including pa.

The applicability of the current algorithm depends on two main
factors, the accuracy of the dataset that will be used for training and
the availability of the functional forms. For example, this algorithm
is an excellent candidate to be used for fluid mechanics problems
that are associated with the creeping flow and laminar flow regimes.
Those flow regimes are rich in terms of analytical solutions and
high fidelity data. The predictability accuracy of the algorithm will
depend on both the accuracy of the training dataset and the func-
tional forms that are provided. The algorithm follows the following
steps:

● Provide mathematical formulations related to the flow prob-
lem at hand to the symbolic regression algorithm. Func-
tional forms are available as analytical solutions or informa-
tion from the literature.

● The symbolic regression algorithm will generate a “soup”
of mathematical relations through mutations and inter-
breeding.

● The mean square error of the generated mathematical forms
is tested 1

N ∑
N
i=1(y − f (xi))

2, where N is the number of the
data points in the training dataset, y is the dependent vari-
able from the training dataset, and f (xi) is the predicted
function. Also, the complexity fitness of each function will
be checked. If the fitness conditions are met, the algorithm
will supply the mathematical forms to the user; otherwise, it
will go to the second step.

We use Eureqa software15 as the symbolic regression platform.
We use a randomly selected 70% of the dataset for training and the
remaining 30% for validation, and we use the square error fitness
function plus a fitness function that measures the complexity of the
mathematical form. Here and in the following, log denotes the nat-
ural algorithm. Finally, we emphasize that the definition that we use
for CD is

CD =
∣FD∣

1
2ρf ∣u∞∣

2 π
4 d

2
eq

, (1)

where FD is the drag force exerted by the fluid on the particle, ρf
is the fluid density, u∞ is the uniform velocity of the fluid far away

AIP Advances 9, 115218 (2019); doi: 10.1063/1.5116183 9, 115218-3

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

from the particle, and deq is the diameter of the volume equivalent
sphere.

III. RESULTS
In Subsections III A and III B, we will present the results for

the two different types of particles that we consider in this paper,
namely, spherocylinders (fibers) and prolate spheroids. The results
will include correlations for the drag as a function of the Reynolds
number, the angle of attack, and the aspect ratio of the geometry
of the particles. In Subsection III C, we will explore what happens
when we interbreed different solutions obtained from different flow
solutions.

A. Spherocylinder (fiber) particles
We will give an extensive description of the way we arrived

at the final correlation. As stated in the Introduction, our goal is
to obtain a drag correlation that takes into account also the effect
of particle aspect ratio, using data that were generated for a single
aspect ratio. Because of the limited amount of data and more impor-
tantly because one of the parameters is not varied in the database,
we have to explore the literature for appropriate relations, which will
help the algorithm to find the best relation that can fit the data. First,
we added an extra column for the value of the aspect ratio (pa = 4.0)
to the data given by Sanjeevi et al.30 As a first trial, we will assume
the following functional form for CD:

CD = f (ϕ, log(Re),Re, sin2
(ϕ), pa). (2)

We choose log(Re) and sin2(ϕ) in our initial guess for the functional
form for theCD because according to the literature,20 for Oseen flows
and beyond, log(Re) is an essential ingredient of the functional space
that describes CD and the same applies to sin2(ϕ).34,30 However, if
we use this form of the function as initial input to the genetic pro-
gramming algorithm, we get a number of correlations, without the
appearance of pa, in their structure. This result is logical because
pa is not varied in the original data. To better guide the symbolic
regression algorithm, we need to guess first about the shape of the
functional dependence of CD on the aspect ratio. A good start is
to look at the Stokes flow regime. We will first assume that CD is
inversely proportional to log(pa), as indicated by Cox.35 The new
initial functional form is

CD = f(ϕ, log(Re),Re, sin2
(ϕ),

1
Re log(pa)

). (3)

After the algorithm reaches a steady state, it proposes several equa-
tions, among them is the following:

CD = 2.2 + 4.0 × 10−4Re + 1.7 sin(ϕ)2 +
(35.2 + 9.7 sin(ϕ)2

)

(Re log(pa))

− 0.3 log(Re) − 0.1 sin(ϕ)2 log(Re). (4)

We note that it is still important to use our physical knowledge
to distill the appropriate relations because the algorithm provides
us with many possible equations in each run, some of which do
not agree with known physics in certain limits. For example, one
solution that also describes the data well is

CD = 0.2 + 1.7 sin(ϕ)2 + 2.0(
1.0

Re log(pa)
)

2

+
(36.4 + 9.7 log(Re) + 3.1π sin2

(ϕ))
(Re log(pa))

− 0.1 sin2
(ϕ) log(Re).

(5)

In Eq. (5), as Re→ 0, the leading term becomes proportional to Re−2,
which violates the linearity of the Stokes flow analytical solution, and
thus, this solution is inadmissible. Equation (4) shows that the aspect
ratio dependence appears only on the fourth term that represents the
Stokes regime. However, this is may be due to the functional depen-
dence that has been selected in Eq. (3), where the aspect ratio only

appears in the term
1

Re log(pa)
. To further investigate if the aspect

ratio effect will appear in another term in the fitting function, we
conducted a new run with the following initial function:

CD = f(ϕ, log(Re),
1

Re log(pa)
,

Re
log(pa)

, sin(ϕ)2
). (6)

This time we obtained the following equation for the drag
coefficient:

CD = 3.7 + sin(ϕ)2 + 0.07 log(Re)2

+
(34.3 + 9.9 sin2

(ϕ) − 0.47 log(Re))
(Re log(pa))

− log(Re). (7)

In Eq. (7), the dependency on the aspect ratio appears only in the
Stokes flow term and is very similar to Eq. (4).

In Sec. II, we showed the steps by which we have obtained a fit-
ting relation for the drag coefficient that takes into account the effect
of the aspect ratio from a limited number of data points and from a
single aspect ratio. However, to validate the derived dependence on
the aspect ratio, we turn to the literature for numerical data for fibers
or similar shapes such as cylinders. The only data that we found are
for cylindrical particles of aspect ratios 2, 5, 10, and 20 by Vakil and
Green.27 We extracted the drag coefficient data from their Fig. 17
digitally and fed them to Eureqa with the following initial function:

CD = f(log(Re),
1

Re log(pa)
,

Re
log(pa)

, sin2
(ϕ), pa). (8)

We add a general dependency on pa to ensure that we capture all the
forms of the drag coefficient dependence on the aspect ratio. Nev-
ertheless, the best function that fits the data from Ref. 27 takes the
following form:

CD = 1.4 + 7.3 sin2
(ϕ) + 0.4 sin2

(ϕ) log(Re)2

+
(15.1 − 5.7 sin2

(ϕ))
(Re log(pa))

− 0.3 log(Re) − 3.4 sin(ϕ)2 log(Re).

(9)

The form of Eq. (9) has a lot of similarities with Eq. (7), especially
with respect to the functional dependence on the aspect ratio, which

is identical. The
1

log(pa)
dependence of CD in both cases shows that

we captured correctly the dependence of CD on pa in Eq. (7), which
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TABLE I. Coefficients for Eq. (10).

Coefficients Equation (10)

a0 3.7270
a1 1.0
a2 0.070
a3 34.467
a4 9.993
a5 0.470

arose from a single aspect ratio dataset. The difference between
Eqs. (7) and (9) could be due to several reasons. Among them is the
slight difference in the geometry between the fiber and cylindrical
particles and also the range of Re used in both cases.

Until now, we showed the process of deriving a generalized fit-
ting equation from a low volume of data. We will choose Eq. (7) as a
general equation that represents the variation of CD with ϕ, Re, and
pa. All the coefficients that appeared in the previous equations were

approximated to the first decimal for displaying purposes. To have
a more accurate form of Eq. (7), we will rewrite it in the following
form:

CD = a0 + a1 sin2
(ϕ) + a2 log(Re)2

+
(a3 + a4 sin(ϕ)2

− a5 log(Re))
(Re log(pa))

− log(Re), (10)

where the values of the coefficients are listed in Table I. To prove the
validity of Eq. (10), we will test its predictions against the available
data from the literature for different Re, ϕ, and pa.

The first test we did was to compare the results of Eq. (10) with
those of Sanjeevi et al.,30 the source of our training data. The com-
parison is shown in Fig. 2. For low Re, the agreement is quite close.
For higher Reynolds numbers, the difference between the predic-
tion of our correlation (10) and that of Ref. 30 is increasing. How-
ever, the overall relative error for the whole Re range investigated is
about 3%, which is acceptable. For high (within our range of applica-
tion) Re, the values of CD get smaller, and thus, any small difference
between the data of Ref. 30 and our data can amplify the relative

FIG. 2. Comparison between the results of Eq. (10) and
those of Sanjeevi et al.30 for different Re, ϕ, and pa = 4.
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error easily. To further evaluate the applicability of Eq. (10), we will
compare it with the results of Zastawny et al.29 for their fiber geom-
etry with pa of 5. In comparison, we also added the results of Ref. 30
for pa = 4 to see if Eq. (10) is biased toward the data that had been
used to obtain the correlation. What we see is the opposite: Eq. (10)
captures very well the data of Ref. 29 for all Re tested, as shown in
Fig. 3, and the average relative error between Eq. (10) and the results
of Ref. 29 is about 6% for the whole Re used, while the relative dif-
ference between the data of Refs. 29 and 30 (caused by the difference
in aspect ratio) is about 15%. For the case of Re = 1.0, the predic-
tions of Eq. (10) and the data of Ref. 29 are close, while those of Ref.
30, corresponding to a lower aspect ratio, are higher than the for-
mer two. This interesting observation shows that Eq. (10) captures
fairly well the effect of the variation of the aspect ratio. The overall
results of Fig. 3 show that the geometry of the fiber plays a signif-
icant role mostly in the Stokes flow regime, which agrees with our
previous statement. Furthermore, we believe that Eq. (10) applies to
higher Re than the ones considered in Fig. 3. However, there are no
data available for high Re for a fiber geometry other than Ref. 30. For
a further exploration of the validity of Eq. (10), we will compare its

predictions against those of Vakil and Green27 for cylindrical parti-
cles. We selected two aspects ratios 10 and 20, which are 2.5 times
and 5 times, respectively, longer than the original particle of Ref. 30,
which the training data are based on. By the selection of the current
aspect ratios, we have the opportunity to test Eq. (10) far from the
original geometry that it is derived from, thus putting a solid ground
for its generic form. We believe that the difference in the geometry
of the fiber and cylindrical particle will impose some difference in
the predicted CD. Nevertheless, Fig. 4 shows fairly good agreement,
especially for the case of pa = 10 where the average relative error is
7%. Even though, for the case of pa = 20, the deviations are slightly
higher, especially in the low Re regime, the overall relative error is
about 15%. These comparisons show that Eq. (10) is approximately
applicable to a wide spectrum of Re, ϕ, and pa. We will return to the
CD dependency on the aspect ratio pa in Sec. IV.

B. Prolate spheroids particles
Prolate spheroids exhibit more complex behavior than

fibers when it comes to the way that they interact with the

FIG. 3. Comparison between the results of Eq. (10) and
those of Zastawny et al.,29 pa = 5, and Sanjeevi et al.,30

pa = 4, for different Re and ϕ.
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FIG. 4. Comparison between the results of Eq. (10) and
those of Vakil and Green27 for different Re and ϕ.

surrounding fluid. Their drag coefficient shows a complex functional
dependency with the aspect ratio of their geometry.34 We will first
impose the CD formula for the case of ϕ = 0 derived analytically by
Ref. 23 and for flow conditions that correspond to Oseen flow, which
has the following form:

CD,ϕ=0 =
2πB

Re(1 − e2
1)
(1 +

BRe
24

+
B2Re2 logRe

360
), (11a)

e1 =

√

(1 −
b2

a2 ), (11b)

B = 24e3
1((1 + e2

1) log
1 + e1

1 − e1
− 2e1)

−1
. (11c)

Here, e1 is the eccentricity of the geometry of the particle, a is the
semimajor axis, b is the semiminor axis, and B is a constant that
depends on eccentricity. The shape of our first initial function is

CD = f(ϕ,(
1
Re
)(1 +

BRe
24

+
B2Re2 logRe

360
),Re, logRe, sin(ϕ)2

),

(12)

where we used B = 4.698 for the dataset of Ref. 30. After feeding this
dataset to the symbolic algorithm, we obtained several relations, but
most of them were nonphysical because of the appearance of the Re2

term in the denominator, so we excluded them. The one with higher
accuracy and with physical significance is

CD = 0.2 + 1.3e−0.01Re + 0.7 sin(ϕ)2

+
24.2 + 4.7 sin(ϕ)2

Re
− 9.3 × 10−5Re. (13)

The interesting observation from Eq. (13) is the absence of any
dependence of CD on the geometrical parameter B. It shows that the
signature of geometrical parameters from Eq. (11) is very weak, and
this is why it cannot be detected by the genetic algorithm. This weak-
ness of detection may be a result of the fact that Eq. (11) is valid only
for a single angle of attack (ϕ = 0.0), while the dependency for other
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angles of attack is not known. Another interesting observation from
Eq. (13) is that the genetic algorithm will skip the initial functions
if it finds that they are not relevant to the training data. This shows
that the algorithm is not biased to the mathematical formulas that
are given as an initial guess but only to the ones that are relevant to
the training data.

After our first failed attempt to find the aspect ratio depen-
dency of CD, we turned to the Stokes solution for flow over prolate
particles,34 which has the following form:

CD,ϕ=0 =
24ka0

Re
, (14a)

ka0 =
8
3
p
− 1

3
a
⎛

⎝

−2pa
pa + 1

+
2p2

a − 1
p2
a − 1

log
pa +
√
p2
a − 1

√
p2
a − 1

⎞

⎠

−1

, (14b)

CD,ϕ=90 =
24ka90

Re
, (14c)

ka90 =
8
3
p
− 1

3
a (

pa
p2
a − 1

+
2p2

a − 3
p2
a − 1

log(pa +
√

p2
a − 1))

−1

, (14d)

CD = CD,ϕ=0 + (CD,ϕ=90 − CD,ϕ=0) sin2 ϕ. (14e)

Based on this, we chose the following initial function:

CD = f(ϕ, paRe, pa log(Re), sin2
(ϕ),

×
(ka0 + (ka90 − ka0) sin(ϕ)2

)

Re
,Re, log(Re), log(Re)2

), (15)

where ka0 and ka90 are the functions given by Eqs. (14b) and (14d),
respectively. For the dataset of Ref. 30, there is only a single aspect
ratio pa = 2.5 for which ka0 = 0.9615 and ka90 = 1.146. By this way, we
feed Eureqa the analytical Stokes solution for a single prolate particle
and help the genetic algorithm to find accurate relations beyond its
training data. We obtained the following relation for CD:

FIG. 5. Comparison between the results of Eq. (16) and
those of Zastawny et al.,29 Sanjeevi et al.,30 and Ouchene
et al.28 for different Re, ϕ, and pa = 2.5.
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CD = a1 + a2 sin(ϕ)2 + a3 log(Re)2 + ∑
i=2
i=1 Ai

Re
+ a7 log(Re), (16a)

A1 = a4(ka0 + (ka90 − ka0) sin(ϕ)2
), (16b)

A2 = a5 + a6 log(Re)2. (16c)

We test the validity of Eq. (16) by comparing its results with
those of Refs. 30, 28, and 29, as shown in Fig. 5. For the case of
Re = 0.1, Eq. (16) matches the results of Ref. 30, and the CD val-
ues from Ref. 28 are in close proximity with our results, while those
of Ref. 29 are significantly lower. This discrepancy in the results
may be attributed to the grid size used by Zastawny et al.,29 as
discussed in Ref. 30. However, as Re is increasing, the CD values
of Ref. 29 are getting closer to the predictions by Eq. (16) and to
those of Ref. 30, while those of Ref. 28 are lower than the rest, espe-
cially at high values of ϕ. Interestingly, the CD values of Ref. 29 for
Re = 1000 and 2000, even though they are coming from a correlation
for Re up to 300, are in close agreement with our results and those of
Ref. 30.

Prolate spheroids give a rare opportunity to explore the valid-
ity of a generalized CD formula because of the existence of many
test cases in the literature. The real test of Eq. (16) is its capability to
predict the results of Ref. 28 for different aspect ratios, Re, and ϕ. We
decided to choose two aspects ratios, 10 and 15, both of which are far
larger than the aspect ratio of 2.5 of the initial training dataset, and
two Reynolds numbers, 1 and 100, which cover flows with strong
viscous effects and flows dominated by inertial fluid forces. The vari-
ation of CD is shown in Fig. 6. Equation (16) predicts quite closely
the results for the case of Re = 1 for both pa selected. As Re increases
to 100, our results start diverting from those of Ref. 28. However, the
overall average relative error for the selected Re regime is 13.7% and
15.7% for pa = 10 and 15, respectively, which is within an accept-
able range, given the very large difference with the pa of the training
set. We believe that the good agreement of Eq. (16) with the data of
Ref. 28 for low Re is mainly due to the initial function that we
propose in Eq. (15), which contains the Stokes flow analytical solu-
tion for flow over a prolate spheroid. Thus, the symbolic regression
algorithm had sufficient ingredients to uncover the general solu-
tion around and beyond the Stokes regime. We can explain the
divergence of our data from those of Ref. 28 by the two following

FIG. 6. Comparison between the results of Eq. (16) and
those of Ouchene et al.28 for different Re, ϕ, and pa = 10
and 15.
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reasons. First, Eq. (16) loses its accuracy as it departs from its orig-
inal geometry. Second, the data of Ref. 30, used to obtain Eq. (16),
were obtained from a different numerical scheme than that of
Ref. 28. We believe that both reasons are essential, and we will
explore them both, starting with the second one, while the first one
will be explored in Sec. IV.

We believe that the second reason may play a significant role
in the deviation. As shown in Fig. 5, the CD values of Ref. 28 are
deviating from our results and those of Ref. 30, especially as Re is
increased. This is reflected in the results of Eq. (16) in Fig. 6. We
believe that Eq. (16) has inherited the characteristics of CD predicted
by the numerical scheme used in Ref. 30, which is different from that
used by Ref. 28. What we mean by the solver characteristics is how
much error is propagated into the numerical scheme by a finite grid
size and time step, for example. We come to this conclusion because
Eq. (16) and the results of Ref. 28 have the same overall trend in
which the CD is increasing as the value of the pa is increased. The
last test for Eq. (16) is the examination of its behavior for the case
of pa = 1.25. This ellipsoid has many features similar to the spheri-
cal geometry and can be considered as another extreme case for an

ellipsoidal geometry. It also gives us a rare opportunity to com-
pare our results with those obtained from two different numerical
schemes. The comparison of the results of Eq. (16) and those of Refs.
29 and 28 plus the Stokes flow analytical solution Eq. (14) is shown
in Fig. 7. For the cases of Re = 0.1 and 1, which are adjacent to the
Stokes flow regime, we make two observations. The first observation
is that for Eq. (16) and the results from Ref. 28, the values of CD
are higher than the Stokes flow solution. The other observation is
that for the results from Ref. 29, the CD values are lower than those
of the Stokes flow solution for almost the whole range of angles of
attack.29 We believe that for Re = 0.1 and 1.0, Eq. (16) and Ref. 28
are the two solutions that capture the variation of CD most accu-
rately because they produce values of CD that are higher than the
Stokes flow solution [Eq. (14)]. This is in agreement with the avail-
able theory, which states that for Oseen flows and beyond, the CD is
higher than for Stokes flow. The CD predictions of Ref. 29 are signifi-
cantly diverting from those of Eq. (14), so we conclude with a strong
certainty that they do not represent physical reality. This shows
that Eq. (16) significantly outperforms a direct numerical scheme,
which was designed to solve the problem of flow over an ellipsoid

FIG. 7. Comparison between the results of Eq. (16) and
those of Ouchene et al.,28 Zastawny et al.,29 and Stokes
flow solution [Eq. (14)] for different Re, ϕ, and pa = 1.25.

AIP Advances 9, 115218 (2019); doi: 10.1063/1.5116183 9, 115218-10

© Author(s) 2019

https://scitation.org/journal/adv


AIP Advances ARTICLE scitation.org/journal/adv

particle. This outperformance is not only with respect to accurate
predictions of CD but also with respect to the computational time
and resources used to obtain the predictions. For our predictions,
we just used a personal laptop computer and less than an hour of
computational time. For simulations similar to those of Ref. 29, usu-
ally use a powerful workstation or a computer cluster with several
cores must be used for several hours.

As we are moving toward the fluid inertial regime (higher
Re), the results of the three numerical schemes are approaching
each other, especially at low angles of attack. There is a divergence
between our results and those of Refs. 28 and 29, especially at higher
angles of attack. The average relative error for the whole Re regime
between our results and those of Ref. 28 is 8.9%, while it is 21.5%
compared to Ref. 29. We believe that this divergence is the result
of the different numerical schemes used in the investigations, and
it is difficult to assess which numerical scheme is more accurate.
Nevertheless, our results are closely resembling those of Ref. 28.
In Subsection III C, we will introduce a new method to interbreed
different flow solutions together. This will help explore if the differ-
ent flow numerical schemes are the reason for the deviation between
the data of Refs. 28 and 29 and the results of our Eq. (16).

C. Discrete interbreeding of different flow solutions
We will first make the assumption that the characteristics of

the numerical schemes are stored in the mathematical formula-
tions that represent their results, such as mathematical correla-
tions. Discrete interbreeding of different flow solutions (DIDFS) is
the process of selecting specific mathematical terms (we call them
genes or elements) from a specific numerical scheme solution and

inserting them as initial functions in the symbolic regression algo-
rithm to drive a regression equation for a different numerical
scheme. We want to emphasize that DIDFS is different from the
crossover process that was mentioned before, since the latter is
part of the internal structure of the symbolic regression algorithm.
We will use the interbreeding method only for ellipsoidal particles
because of the existence of more information on how CD varies with
pa in the literature compared to the spherocylinder case. Interbreed-
ing will help to inherit some numerical scheme characteristics to
different numerical schemes, without introducing any noise to the
data that will be used for training of the symbolic regression algo-
rithm. We want to point out that we will use the same data that
have been utilized for deriving Eq. (16) to obtain a new ecosystem
of equations for CD.

In our first test of interbreeding, we will try to merge some of
the flow numerical scheme properties of Refs. 28 and 30 by supply-
ing mathematical functions that describe the behavior of the for-
mer numerical scheme as initial functions for the symbolic regres-
sion analysis of the latter numerical scheme. We start by creating a
database of values of CD from the correlation provided by Ref. 28 for
Re ranging between 0.2 and 220 and pa between 2 and 32. After this,
the data will be used for regression analysis with an initial function
of the following form:

CD = f(
1
Re

,Re, log(Re), pa, pa log(Re), log(Re)2,
√
pa, sin(ϕ)2

).

(17)
The symbolic regression algorithm obtains the following formula
for CD:

CD = 0.489 + 0.137 sin(ϕ)2 +
(3.296 + 6.28

√
pa + 15.723 sin(ϕ)2 + 0.6160pa sin(ϕ)2 log(Re)2

− 0.901pa sin(ϕ)2
)

Re
. (18)

Now we will inject some of the numerical scheme characteris-
tics of Ref. 28 into the numerical scheme of Ref. 30. The inter-
breeding process will be done by selecting the mathematical func-
tions (6.28

√
pa, (0.616pa − 0.901pa log(Re)2

)) (gene 1), 6.28
√
pa

(gene 2), 0.616pa − 0.901 log(Re)2(gene 3), −0.901pa (gene 4), and
(
√
pa, (pa + pa log(Re)2

) (gene 5), which are part of Eq. (18) as
initial functions for the symbolic regression algorithm that will
use the dataset of Ref. 30 [i.e., similar to Eq. (16)] to search for
a new functional form of CD. We selected those different parts
of Eq. (18) because they represent how the CD varies with the
aspect ratio. Those mathematical formulas will act as genes that
will carry that information. We used a very generic way of select-
ing the genes, based on each functional element in the addition
that forms Eq. (18), including their coefficients (except for gene 5,
for reasons that we will discuss below). This is the most straight-
forward path that someone can take if the flow problem in hand
is complex. However, a more in-depth investigation is needed to

find the optimal way of selecting genes, which will maximize the
amount of physics that will be learned by the symbolic regression
algorithm and minimize the time needed to learn those physics. The
reason that we divided the functional form dependence of Eq. (18)
on pa in different genes is because we wanted to explore their indi-
vidual effect on the learning process of the symbolic regression
algorithm. For gene 5, we took only the functional form of the
aspect ratio dependence and we replaced all its coefficients by 1. In
this way, we wanted to test the predictive ability of DIDFS for the
case that we only supply the functional form. The symbolic regres-
sion algorithm will search the functional space for similar functions
using the data of Ref. 30 [i.e., similar to Eq. (16)] for training. The
mathematical formula of CD that will contain similar functions as
those that represent the genes of Ref. 28 will be selected. We will first
inject gene 1, which is composed of the complete mathematical for-
mulation that represents the variation of CD with pa, and the initial
function is

CD = f(ϕ,Re,
6.28
√
pa

Re
,
(0.616pa log(Re)2

− 0.901pa)
Re

,Re, log(Re), pa, sin(ϕ)2
). (19)
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We obtained the following equation for CD:

CD = a1 + a2Re + a3 sin(ϕ)2

+
(a4
√
pa + a5 sin(ϕ)2√pa)

Re
+ a6 log(Re)2. (20)

The coefficients of Eq. (20) are listed in Table II. In the following
steps, we will inject genes 2, 3, and 4 individually. For the case of
gene 2, the initial function is

CD = f(ϕ,Re,
6.28
√
pa

Re
,Re, log(Re), pa, sin(ϕ)2

). (21)

We obtained the following equation for the CD:

CD = a1 + a2Re + a3 sin(ϕ)2

+
(a4
√
pa + a5 sin(ϕ)2√pa)

Re
+ a6 log(Re). (22)

For the case of gene 3, the initial function is

CD = f(ϕ,Re,
0.616pa log(Re)2

Re
,Re, log(Re), pa, sin(ϕ)2

). (23)

The equation for the CD is

CD = a1 + a2 sin(ϕ)2 + a3 log(Re)2 +
A1

Re
+ B1, (24a)

A1 = a4 + a5 sin(ϕ)2 + a6pa log(Re)2 log(Re), (24b)

B1 = a7 log(Re) + a8 sin(ϕ)2 log(Re). (24c)

For case of gene 4, the initial function is

CD = f(ϕ,Re,
−0.901pa

Re
,Re, log(Re), pa, sin(ϕ)2

). (25)

The formula for CD is

CD = a1 + a2Re + a3 sin(ϕ)2 +
(a4pa + a5pa sin(ϕ)2

)

Re
+ a6 log(Re)2.

(26)
Finally, the initial function for the case of gene 5 is

TABLE II. Coefficients for Eqs. (16) and (20).

Coefficients Equation (16) Equation (20)

a1 3.151 1.559
a2 0.750 0.0005
a3 0.0579 0.711
a4 25.873 15.334
a5 −2.258 3.034
a6 0.2304 −0.044
a7 −0.840 . . .

TABLE III. Coefficients for Eqs. (22) and (24).

Coefficients Equation (22) Equation (24)

a1 1.832 3.541
a2 0.0001 1.0
a3 0.748 0.059
a4 15.264 22.11
a5 3.033 4.752
a6 −0.261 −0.055
a7 . . . −0.889
a8 . . . 0.051

CD = f(ϕ,Re,
√
pa
Re

,
(pa + pa log(Re)2

)

Re
,Re, log(Re), pa, sin(ϕ)2

).

(27)
We can obtain the following equation for CD:

CD = a1 sin(ϕ)2 + a2

√√
pa
Re

+
(a3pa + a4

√
pa + a5pa log(Re)2 + a6 sin(ϕ)2√pa)

Re
. (28)

The values of the constants for Eqs. (22), (24), (26), and (28) are
listed in Tables III and IV. Before proceeding to further analyze the
newly derived ecosystem of equations for CD, we will first compare
their results with the data of Ref. 30 (training data) and Ref. 29, for
the case of pa = 2.5, and different Re, as shown in Fig. 8. For the case
of Re = 0.1 and 300, the whole group of CD equations from differ-
ent interbreeding genes perfectly follow the data of Ref. 30, except
for the case of Eq. (22), which at Re = 300 slightly overpredicts the
results of Ref. 30. Moving to flows where the inertia of the fluid is
dominant (Re = 1000), we observe that the different fitting equations
for CD are segregated into two groups, the first one follows accu-
rately [Eqs. (22), (24), and (28)] the data of Ref. 30, while the second
[Eqs. (20) and (26)] underpredicts the values of Ref. 30, especially
at low values of ϕ, and closely follows those of Ref. 29 for higher
values of ϕ. However, when Re is increased further to 2000, all the
fitting equations for the CD from the discrete interbreeding process
are following in a close manner the results of Ref. 30. We believe
the predictive discrepancies that we observe from Eqs. (20) and (26)
could be due to the choice of the fitness function. It seems that the
square error function did not converge appropriately in some cases
when it has to deal with small values. Overall, the new ecosystem of

TABLE IV. Coefficients for Eqs. (26) and (28).

Coefficients Equation (26) Equation (28)

a1 1.565 0.713
a2 0.0005 4.154
a3 0.734 0.161
a4 9.698 12.762
a5 1.919 0.161
a6 −0.044 3.0341
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FIG. 8. Comparison between the results of different predic-
tors of CD, Zastawny et al.29 and Sanjeevi,30 for different
Re, ϕ, and pa = 2.5.

equations for CD predicts accurately the data that are used for their
training.

All the recent derived expressions for CD from the interbreed-
ing process are carrying elements of the numerical schemes used to
obtain the data of Ref. 30 (Lattice Boltzmann) and Ref. 28 (finite
volume), and also they do not contain any elements of the Stokes
flow solution. We will first investigate the learning behavior of the
new ecosystem of CD equations for the case of pa = 10 and differ-
ent Re values. For Re = 0.1, where the viscous forces are dominant,
the predicted correlations for CD are grouped in three groups. The
first group, which only includes Eq. (24), is in close proximity with
the values of Ref. 28, as shown in Fig. 9. Moving to the remaining
two groups of equations, we see that the predictions of Eqs. (20),
(22), and (28) are close to each other, and they overpredict the
results of Ref. 28 by an average of 40%, while the last group that
only includes Eq. (26) overpredicts the results of Ref. 28 by an aver-
age of 160%. For the case of Re = 1.0, the trend is quite similar to
that of Re = 0.1, except that the predictions of Eqs. (20), (22), and
(28) are getting closer to those of Ref. 28. As we move to the iner-
tial flow regime, Re = 100 and 150, we see that the CD correlations
that were significantly overpredicting the values of Ref. 28 are now

significantly closing the gap, and Eq. (28), especially at high angles
of attack. At the same time, the predictions of Eq. (24) are drifting
away from those of Ref. 28. The mosaic of the different predictive
behaviors that we see in Fig. 9 shows the importance of the inter-
breeding genes in the process of learning and that different genes
enhance the learning process at different flow regimes. The depen-
dency of Eq. (18) on pa is divided into different genes in such a way
that each gene will carry different amounts of information about
the pa dependency. We can see that role of gene 3 was essential
for Eq. (24) to learn about the low Re regime, which is difficult
because in this regime CD varies significantly with the aspect ratio.
This difficulty is reflected in the significant overprediction of the
other set of equations. Surprisingly, Eq. (20), which has been derived
from gene 1, containing all information of the pa dependency, could
not achieve reasonable accuracy in this regime. This shows that
using a gene that contains the complete mathematical information
about a latent variable such as pa in our case does not guarantee
that the symbolic regression algorithm will learn effectively about
this variable in the whole spectrum of mathematical and physical
regimes the training data may contain. Equations (20) and (22) have
similar predictive behavior, which shows that equations that are
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FIG. 9. Comparison between the results of different predic-
tors of CD and those of Ouchene et al.28 for different Re, ϕ,
and pa = 10.

derived from genes that contain partial information about the latent
variable can have similar performance with those that are derived
using genes that contain the whole information.

In order to check the observations that we made from the pre-
vious test case, we will test the same set of equations for the case
of pa = 1.25 and different Re, as shown in Fig. 10. As we expected,
Eq. (24) captures accurately the behavior of Ref. 28 for the low Re
regime. However, the trio of equations [Eqs. (20), (22), and (28)]
follows quite closely the approximate independence of ϕ observed
in Ref. 29 at Re = 0.1 and 1.0. This is surprising because the trio
of equations did not get any training by the data of Ref. 29 or
got any genes neither from their numerical schemes nor from the
Stokes solution. This agreement shows that the trio of the mentioned
equations and the drag resulting from the numerical schemes of
Ref. 29 share some common genes. However, there is a question
that may be raised: what if the proposed genes are just over-fits?
The answer to the this question can be inferred from the variation
of the set of CD equations derived from DIDFS with pa. The gen-
eral trend of Eq. (14), and that of Ref. 28, is that CD is increasing as
pa is increasing in the low and high Re regimes. The same behav-
ior has been captured by the new ecosystem of CD equations. The

interesting thing about the equations of CD derived from DIDFS is
that they only learned about the effect of the aspect ratio through
the genes (mathematical formulations) that are given as initial func-
tions to the symbolic regression algorithm. This demonstrates that
the genes that were selected encode in their mathematical structure
the evolution of real physical phenomena and cannot be considered
as overfits. As for the inertial flow regime, we observe that the pre-
dictions of most of the equations are quite similar, except that of
Eq. (28) whose prediction is close to that of Ref. 28 at very high
angles of attack.

The structure of Eq. (20) carries elements of the numerical
schemes used to obtain the data of Ref. 30 (lattice Boltzmann) and
Ref. 28 (finite volume). In addition, it is not carrying any elements
or genes (used here as a metaphor) from the Stokes flow analytical
solution. We have to mention that neither the data of Ref. 28 nor
the data of Ref. 30 contain any elements of a pure Stokes flow solu-
tion since the starting Re for both cases is 0.1. Our next quest is to
obtain a regression equation for CD that contains elements of the
solutions of numerical schemes from Refs. 30 and 28, including the
elements of the Stokes flow solution. We first impose the following
initial function:
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FIG. 10. Comparison between the results of different pre-
dictors of CD and those of Ouchene et al.28 and Zastawny
et al.29 for different Re, ϕ, and pa = 1.25.

CD = f(ϕ,Re,
6.28
√
pa

Re
,
(0.616pa − 0.91pa log(Re)2

)

Re
,Re, log(Re), pa, sin(ϕ)2,

ka0 + (ka90 − ka0) sin2 ϕ
Re

, ka0, ka90). (29)

It was challenging to obtain a regression equation for CD that con-
tains the trio of the elements that we are looking for, and we obtained
only one equation that satisfied the condition that we set, which is

CD = a1 + a2 sin(ϕ)2 + ∑
i=2
i=1 Ai

Re
+ a5 log(Re), (30a)

A1 = a3ka0 + a3ka90 sin(ϕ)2 + a4
√
pa, (30b)

A2 = a3 ka90 sin(ϕ)2. (30c)

The coefficients of Eq. (30) are listed in Table V. Equation (30)
shows that the gene numerical scheme of Ref. 28, namely, 6.28

√
pa

Re

and (0.61pa−0.91pa log(Re)2)
Re , played a minor role in its fabric. On the

contrary, the genes of the Stokes flow solution ka0+(ka90−ka0) sin2 ϕ
Re had

an overwhelming influence on the final CD formulation. This may
explain the troublesome finding of an appropriate expression for
CD. It seems that the genes for the analytical Stokes solution are in

TABLE V. Coefficients for Eq. (30).

Coefficients Equation (30)

a1 1.739
a2 0.740
a3 25.929
a4 −0.493
a5 −0.231
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conflict with the genes of the numerical scheme.28 We observed from
the previous results that different equations can predict quite well
the CD0 and CD90. We will use this observation and we will also take
advantage of the sin(ϕ)2 dependency of CD

36 for prolate spheroids
to construct a new hybrid equation for CD from Eqs. (16) and (28).
In this newly constructed equation, the CD0 component comes from
Eq. (16) and the CD90 component from Eq. (28) (since the latter gives
good predictions at high ϕ),

CD = CD0Eq.(16) + (CD90Eq.(28) − CD0Eq.(16)) sin(ϕ)2. (31)

For now on, we will focus on the high Re regime since in this regime
we see the most significant deviation between our equations that we
develop for CD and those of Ref. 28. We selected two pa values, 8 and
15, to test the predictive capabilities of Eqs. (30) and (31). For the
case of pa = 8, we see that Eq. (16) is predicting quite accurately the
results of Ref. 28 for both Re, as shown in Fig. 11. We see also that
Eqs. (20) and (30) predict with great precision the values of CD at
high angles of attack for both Re used. This shows that using discrete
interbreeding with the Stokes solution leads to better predictions at
high angles of attack compared to Eq. (16). However, Eqs. (20) and

(30) overpredict the values of CD at low values of ϕ for reasons that
we cannot explain, while Eq. (31) slightly overpredicts the values of
CD at very high values of ϕ. If we increase the aspect ratio to 15, we
see that the equations that result from DIDFS have better predictions
for high angles of attack compared to those of Eq. (16). However,
their predictions are less accurate compared to the case of pa = 8.
On the other hand, the CD values from Eq. (31) almost match the
values of CD from Ouchene et al.,28 for both Re considered, which
shows that Eq. (31) can be used as a good predictor equation for CD
for aspect ratios ranging from 10 to 15 and for the whole range of Re
considered. However, Eq. (31) loses its accuracy as pa increases. We
report errors for the proposed models for the following two cases
of Re = 200: for pa = 8 and 15. Furthermore, errors are reported
with respect to the range of ϕ sampled. Table VI shows that Eq. (31)
has the highest accuracy. However, surprisingly, Eq. (16), which is a
result of a single aspect ratio, performs better than Eqs. (20) and (30),
which carries in its structure genes from the CD variation of Ref. 28.
Generally, DIDFS helped to enhance the predictive capacity at cer-
tain regimes of the problem. This explains the predictive success of
Eq. (31) as a mix between Eqs. (16) and (28), which is a product of
the DIDFS process. Based on the work discussed, we find that the

FIG. 11. Comparison between the results of different pre-
dictors of CD and those of Ouchene et al.28 for different Re,
ϕ, and pa = 8 and 15.
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TABLE VI. The relative error between different CD predictor equations and the data
of Ouchene et al.28 for prolate spheroids at Re = 200.

pa = 8 (%) pa = 15 (%)

Equation (16) 8 22
Equation (20) 20 27
Equation (30) 19 21
Equation (31) 16 6

previous knowledge in the form of genes accelerate the convergence
of the symbolic regression algorithm. This observation is consistent
with that of Schmidt and Lipson,37 who recommended to use previ-
ous knowledge to accelerate the convergence of symbolic regression
algorithms. Similarly, Loiseau and Brunton38 concluded that for the
nonlinear dynamics sparse identification to give physical results, it
also has to be supplied with some physical insights.

In summary, we carefully examined the effect of the charac-
teristics of the numerical scheme on the predictive performance
of CD correlations. We concluded that the numerical scheme

characteristics played an essential role to enhance the predictive
behavior of CD predictors. However, we still do not have a corre-
lation that can predict with great accuracy for the whole spectrum of
Re and pa the results of Ref. 28. We still believe that Eqs. (10) and (16)
represent most of the physics related to fluid flow over spherocylin-
drical and prolate spheroids, respectively. However, there may be
some missing physics that we could not discover due to the extreme
sparsity of the data that we used. In Sec. IV, we will try to explore
the physics that those equations describe and try to improve their
predictive capability.

IV. THE DISCOVERY OF NEW PHYSICS
Up to this point, most of this paper was dedicated to obtaining

predictive equations for CD without paying significant attention to
the physics that may evolve out of them. In this section, we will try
to explore the physics that those equations are implying.

Equations (10) and (16) are the first correlations in the liter-
ature that show that CD for nonspherical particles is a function of
different log(Re) powers and 1

Re . Another interesting observation is
that theCD for both shapes consists of similar functions for the terms

FIG. 12. The variation of CD0, CD90, and CD90
CD0

from the data

of Sanjeevi et al.30
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that do not involve 1
Re . In addition, the values of the coefficients for

the non- 1
Re terms are similar, for example, their average relative dif-

ference is about 14%. This perhaps surprising result may imply that
both prolate spheroid and spherocylindrical particles could behave
in a similar fashion at high Re. For Eqs. (10) and (16), if we take the
asymptotic limit for Re → ∞, the CD0 and CD90 depend only on Re
but not on pa. The most interesting finding of the CD correlations
is that CD90 − CD0 at Re → ∞ is constant, and it is dependent nei-
ther on Re nor on pa, which is reflected in the constant values of the
coefficients a0 and a2 for Eqs. (10) and (16), respectively. First, we
will test these assumptions for the original data of Sanjeevi et al.,30

which have been used to obtain Eqs. (10) and (16). What we observe
for CD0 and CD90 for both geometries is that they are both decreas-
ing with Re, as shown in Fig. (12), and their ratio is increasing with
Re. The interesting behavior is that CD90 − CD0 reaches an asymp-
totic behavior well before CD90 itself. Interestingly, both geometries
share nearly the same Re at which the asymptotic region for CD90 −

CD0 starts. Equations (10) and (16) predicted the asymptotic value of
CD90 − CD0 for the data of Ref. 30 with great accuracy. To the best
of our knowledge, we are the first to report such behavior, which is
of great importance since it will help us to significantly reduce the
number of expensive runs that are needed to explore the high Re
regime.

The discovery of this new physics is attributed mainly to the
symbolic regression machine learning algorithm, which searched for
billions of mathematical formula combinations that helped signif-
icantly to find an optimum formula that describes the physics of
the phenomena in a simple way. However, this discovery would
never been achieved, if we did not select log(Re) and log(Re)2 as
initial guess functions following the suggestion of Proudman and
Pearson,20 who stated that CD will be a function of the powers of
log(Re) multiplied by powers of Re. The failure of previous investiga-
tions28–30 to report the asymptotic behavior of CD90 − CD0 is mainly
because of the complex nature of their correlations. Up to now, we
tested the new physics that we extracted from Eqs. (10) and (16) on
a single aspect ratio particle. Now we will examine the same physics
for different aspect ratios.

From Figs. 3 and 6, we can see that CD0 from the results of
other investigations28,29 at different pa matches our predictions. This
is strong evidence that at high Re, the CD0 is solely dependent on Re
but not pa, and surprisingly, the values for CD0 are similar for both
geometries that we used in the current investigation. However, if we
just look at the same figures we observe that CD90 does depend on pa
and Re, which the current equations fail to predict. This leads one to

assume that CD90 − CD0 may also dependent on Re and pa as well.
What made us think in the beginning that the form of Eqs. (10) and
(16) captures the overall physics of the problem was that Eqs. (9)
and (18) show nearly the same physics as our derived equations in
which CD0 and CD90 only depend on Re but not on pa for a high
inertial regime. It is true that in Eq. (9), the CD90 − CD0 at high
Re depends also on log(Re)2. However, this equation is derived for
1 <Re < 40, which is in the lowerRe end. As for Eq. (18), the symbolic
algorithm failed to show any dependency of C90 on pa or Re, even
though the data that used for its derivation were from the higher
Re(<200) end. Also, Eq. (18) showed that CD90 − CD0 is constant and
does not depend on pa or Re.

We will take the case of the prolate spheroid to investigate fur-
ther why we did not get any dependency of CD90 on pa or Re because
we have a suitable amount of data from different sources to com-
pare with. We will assume that CD90 − CD0 is just depending on pa,
not on Re. Then, we will create a mixed dataset that contains data
of CD90 − CD0 for different values of pa from the data of Refs. 28–30
for Re = 200, which we believe is suitable for CD90 − CD0 to reach an
asymptotic value. We get the following equation from the symbolic
regression algorithm:

CD90−CD0 = 0.091+0.066pa+0.153 log(pa)−
0.0321 log(pa)
log(log(pa))

. (32)

We will modify Eq. (16) by equating Eq. (32) with a2 resulting in the
following equation:

CD = a1 + a2 sin(ϕ)2 + a3 log(Re)2 + ∑
i=2
i=1 Ai

Re
+ a7 log(Re), (33a)

A1 = a4(ka0 + (ka90 − ka0) sin(ϕ)2
), (33b)

A2 = a5 + a6 log(Re)2, (33c)

a2 = 0.091 + 0.066pa + 0.153 log(pa) −
0.0321 log(pa)
log(log(pa))

. (33d)

Equation (33) is a modified version of Eq. (16) with the same coef-
ficients, except that of a2. However, our efforts will not stop here,
and we will use the DIDFS to obtain an equation for CD through
interbreeding the data of Ref. 30, with the Stokes flow solution, and
Eq. (32). The initial function is

CD = f(ϕ, paRe,
(ka0 + (ka90 − ka0) sin(ϕ)2

)

Re
,Re, log(Re), log(Re)2,(0.091 + 0.066pa + 0.153 log(pa) −

0.032 log(pa)
log(log(pa))

) sin(ϕ)2
). (34)

We obtained the following equation for CD:

CD = a1 + a2Re + (a3 + a4pa + a5 log(pa) + a6
log(pa)

log(log(pa))
)

× sin(ϕ)2 +
a7(ka0 + ka90 sin(ϕ)2

− ka0 sin(ϕ)2
)

Re
+ a8 log(Re)2. (35)

The coefficients of Eq. (35) are listed in Table VII. Equation (35) is
not similar to that of Eq. (16), and we may have introduced some
noise in the data, since the gene for the CD90 − CD0 came from three
different sources.20–30

To test the validity of our assumption on the variation of CD90 −

CD0, Eqs. (33) and (35) will be tested extensively for different cases,
especially for the high Re regime. We will compare our predictive CD
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TABLE VII. Coefficients for Eq. (35).

Coefficients Equation (35)

a1 1.539
a2 0.005
a3 0.091
a4 0.006
a5 0.153
a6 −0.032
a7 25.28
a8 −0.0438

equations with three additional sources. The first one is Ke et al.,39

who conducted lattice Boltzmann simulations for two prolate
spheroids (pa = 2 and 2.5) for 10 <Re < 200 but also provided a corre-
lation for CD as a function of pa that is built from data from spheres,
oblate, and prolate spheroids. The second source is also from lattice

Boltzmann simulations provided by Hölzer and Sommerfeld40 for
the case of a prolate spheroid with pa = 1.5 for a range of Re between
0.3 and 240. The final source is a generalized equation derived also
by Hölzer and Sommerfeld41 by fitting experimental and theoretical
data for different particle shapes.

For the case of pa = 15, Eqs. (33) and (35) capture with great
accuracy the results of Ref. 28 for the whole range of ϕ and the
two Re considered, as shown in Fig. 13. The relative error between
Eq. (33) and the results of Ref. 28 for Re = 200 is about 6.0% and
that of Eq. (35) is about 10%. While the results of Ref. 39 under-
predict the values of Ref. 28 at low angles of attack, they overpre-
dict them at high angles of attack. Their relative difference with the
results of Ref. 28 is about 27%. This is not surprising since the cor-
relation of Ref. 39 is based on two aspect ratios 2 and 2.5, which
may, therefore, be accurate only in that range. However, the sur-
prising observation is that Eq. (16) has a better relative error of
22% (Table VI) than that of the correlation derived in Ref. 39, even
though it is derived from a single aspect ratio (pa = 2.5) and the
Stokes flow solution. The predictions of Hölzer and Sommerfeld41

gave an average relative error of 17%, which is good for an equation

FIG. 13. Comparison between the results of different pre-
dictors of CD and those of Ouchene et al.,28 Hölzer and
Sommerfeld,41 and Ke et al.39 for different Re, ϕ, and
pa = 15 and 25.
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that is derived for general arbitrary nonspherical shape. However,
its accuracy is deteriorating with an increase in Re and does not
also reveal the physics that governs the evolution of the drag force
for nonspherical particles. For the case of pa = 25, Eqs. (33) and
(35) gave the best predictions with just 5% relative error for each of
them at Re = 200. On the other hand, the relative error for Eq. (16)
is deteriorated to 35%, the relative error of Hölzer and Sommer-
feld41 remains nearly constant at 18%, similar to the case of pa = 15,
and the relative error of the Ke et al.39 correlation is reduced
to 19%.

We now move to geometries with lower aspect ratios as in
Fig. 14. For those cases, we have the opportunity to compare our
results with the results of additional numerical solvers. For the case
of pa = 1.25, we observe that the results of Refs. 28, 39, and 41 are
close to each other, while the results of Eqs. (33) and (35) are in a
very close proximity with those of Ref. 29. The reason why our data
reassemble those of Ref. 29 and not Ref. 28 is because in the dataset
that we used to derive Eq. (32) the values of CD90 − CD0 for pa < 2.5
are obtained from the data of Ref. 29. The reason for this selection
is because we believed that the data of Ref. 29 are more accurate

than Ref. 28 for small aspect ratios. However, we also wanted to
test if the statement that CD90 − CD0 is independent of Re for the
inertial regime and still holds for the results of Ref. 29. The results for
the case of pa = 1.25 shows without doubt that CD90 − CD0 depends
only on pa and not on Re for the data of Ref. 29. Similar behavior for
the CD90 − CD0 variation is observed also for the numerical results
of Ref. 40. Furthermore, our results of Eq. (35) resemble better their
numerical results than their own correlation.41

From Figs. 13 and 14, we proved that CD90 − CD0 only depends
on pa but not on Re in the inertial regime for prolate spheroids. We
have great confidence that the same law applies to other sufficiently
smooth axisymmetric nonspherical particles such as spherocylin-
ders or oblate spheroids. We believe that the CD90 − CD0 asymptotic
behavior could be independent of the sin(ϕ)2 dependency of the
drag, which has been observed for these types of particles.36 The first
evidence of this statement came from recent results of Pierson et al.42

They conducted simulations for finite cylinders for an aspect ratio of
3, for 25 < Re < 250, and for different angles of attack. They reported
that the CD in the inertial regime does not vary according to sin(ϕ)2

law. However, if we inspect their Fig. 22, we found that CD90 − CD0

FIG. 14. Comparison between the results of different predic-
tors of CD and those of Ouchene et al.,28 Zastawny et al.,29

Hölzer and Sommerfeld,41 Hölzer and Sommerfeld,40

and Ke et al.39 for different Re, ϕ, and pa = 1.25 and 1.5.
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TABLE VIII. Comparison between the results of different CD predictors with the results
of Ouchene et al.28 for pa = 15.

Equation Relative Equation Relative
CD

28 ϕ Re (33) error (%) (35) error (%)

0.582 0 150 0.660 13.22 0.760 30.42
1.47 π

4 150 1.42 3.47 1.52 3.22
2.36 π

2 150 2.18 7.58 2.28 3.46
0.47 0 200 0.52 10.61 0.60 25.86
1.28 π

4 200 1.27 0.56 1.34 5.02
2.09 π

2 200 2.02 3.10 2.09 0.27

for both Re = 75 and 100 is about 0.55. This shows that CD90 − CD0
reaches an asymptotic value, which does not depend on Re similar
to the prolate spheroids. However, in the current investigation, we
could not shed light on the physical nature of Eq. (32). As for our
second finding that CD0 is only dependent on Re, it is clear that it
is held. For example, CD0 is 0.5 for Re = 200, regardless of pa or the
numerical solver. Table VIII contains more information about the
accuracy of Eqs. (33) and (35).

After the extensive verification of our correlations in the high
Re regime, we will compare our results with those of Andersson
and Jiang43 for the case of pa = 6.0. Andersson and Jiang43 used the
immersed boundary method as their numerical method of choice,
and in their investigation, they were only interested in the low Re
regime. The comparison is listed in Table IX. In general, our results
are within 10% from those of Ref. 43, except for the case of ϕ = π

2
where the deviation jumps to 24.7%. This deviation is due to the dif-
ferent numerical schemes used to generate the data that helped in
the derivation of Eqs. (16) and (35) and those of Ref. 43. In the lit-
erature, there is a great need for a bench mark investigation that will
compare the results of CD for different numerical schemes for dif-
ferent particle shapes and Re and set the standards for an accurate
solution. This will help in training the machine learning algorithms,
thus obtaining a more accurate prediction out of them. The inter-
esting part of the results of Table IX is that Eq. (16) performed
very well in regimes well above the Stokes flow, even though it was
derived from data for a single pa = 2.5. This shows that the symbolic
regression algorithm learned about the flow regime beyond Stokes
flow.

TABLE IX. Comparison between the results of different CD predictors with the results
of Andersson and Jiang43 for pa = 6.

Equation Relative Equation Relative
CD

43 ϕ Re (16) error (%) (33) error (%)

138.39 0 0.181 150.07 8.40 151.95 9.79
174.22 π

4 0.181 178.16 2.2 179.40 2.9
203.44 π

2 0.181 206.33 1.3 206.86 1.6
2.54 0 18.17 2.725 7.08 2.686 5.74
3.59 π

4 18.17 3.335 7.10 3.290 8.03
5.17 π

2 18.17 3.944 23.71 3.893 24.70

V. CONCLUSIONS
We demonstrated the feasibility of using a symbolic regression

machine learning method for solving a very specific problem of pre-
dicting the fluid drag felt by ellipsoidal and spherocylinder particles.
The way that we used the symbolic regression algorithm is far from
being just as a fitting tool as in Ref. 32. On the contrary, the way
that it learned about the data was semisupervised. For example, it
found the dependence of CD on the aspect ratio pa even though this
was a latent variable, i.e., a variable that was not varied in the ini-
tial dataset given to the algorithm for training. We presented a set of
new drag correlations that we believe are valid in the high Re regime
and for different pa of the particle geometry, which is a substantial
extension of the current correlations that exist in the literature. We
also showed how the DIDFS method helps to insert the characteris-
tics of one numerical scheme into another. We also presented new
physics partially discovered by the machine learning algorithm. We
found that CD90 − CD0 in the high Re regime depends only on pa,
while CD0 depends only on Re at the same conditions. In our opin-
ion, one of the main findings of the current research is that it is
possible to construct generic drag correlations from the Stokes flow
solutions, which were already known from the 1950s and a handful
of data obtained in the current century. We end with the following
recommendations:

● We believe that we can improve even further the accuracy of
our correlations by finding new ways of training the algo-
rithm. A way to speed up the learning by the symbolic
regression algorithm is by changing the initial functional
forms during the execution period of the algorithm.

● The genetic algorithm on which symbolic regression is based
may be customized to suit fluid mechanics problems.

● More complex problems in fluid dynamics could be taken
into account to understand the volume of the train-
ing data needed, the complexity of the initial functions,
and the number of latent variables that we can solve at
once.

● The machine learning method that we used can be an excel-
lent candidate to find a generalized formula for the resis-
tance tensor of arbitrary shape particles. The resistance
tensor is the main component that controls the hydrody-
namics of a particle in the Stokes flow regime. We know the
resistance tensor for simplified shapes, while we use numer-
ical techniques to calculate it for more complex geometries.
We believe that using the results from both theoretical and
numerical techniques as previous knowledge for symbolic
regression will help to formulate an accurate mathematical
picture of a general flow resistance tensor. This will help
shed more light on the general physics and will also help in
the application of Stokesian dynamics based methods44 to
more complex geometries.
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