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Abstract

The transportation sector continues decarbonizing with the increasing number of Electric Vehicles (EVs)
replacing gasoline and diesel cars every year. However, the integration of vast amounts of EVs introduces
complexities in energy distribution and grid stability. Charge Point Operators (CPOs), positioned at the
intersection of EVs and the grid, play a critical role in managing these complexities. They ensure that the
charging infrastructure meets the needs of both EV users and the grid, highlighting the importance of smart
charging strategies.

In this thesis, a smart charging approach is proposed from the point of view of a CPO. The proposed approach
aims to optimize the charging schedules for EVs parked at a commercial building’s parking lot. The objective
of the optimization problem is to minimize the Power Setpoint Tracking (PST) error, which indicates the
error between the contracted energy in the day-ahead market by the CPO and the aggregated consumption
of charging stations the next day. This optimization involves complex sequential decision-making, where
the uncertain nature of EV arrivals and departures demands a fast and adaptive solution. Thus, this thesis
proposes a Markov Decision Process (MDP) formulation and solves it using the Deep Deterministic Policy
Gradient (DDPG) algorithm to minimize the PST error by scheduling the charging of EVs. DDPG is chosen
for its ability to efficiently handle complex problems with continuous state and action spaces, making it ideal,
considering the uncertainties inherent to the arrival of EVs and the charging process. Additionally, DDPG’s
application in a commercial building’s parking lot, where EV arrival and departure patterns are usually con-
sistent, further solidifies DDPG as a strong alternative.

Evaluating the proposed DDPG approach with alternative benchmarks, such as the uncontrolled “charge
as fast as possible” (CAFAP) and the optimal solution obtained through a Mixed Integer Non-Linear Pro-
gramming (MINLP) formulation, signifies DDPG’s superior performance in several metrics. Specifically, it
outperforms the CAFAP algorithm by achieving a reduction in PST error by an average of 34% for a parking
lot with 10 chargers over 12 hours of charging for a day. This highlights DDPG’s efficacy in optimizing EV
charging schedules over the CAFAP algorithm. Moreover, DDPG’s model benefits from the ability to be
trained offline with historical data and deployed online once trained. This approach allows for rapid, dynamic
rescheduling of charging in real-world operations, offering speed advantages over the theoretically optimal
solution, which requires prior knowledge of arrival and departure times and State of Charge (SoC) of EVs. All
experiments validating these findings were conducted within the EV2Gym, a Gym environment specifically
designed to simulate the EV charging scenarios.

Lastly, this thesis contributes to the field by demonstrating how RL, through the use of DDPG, can optimize
PST for EV charging in a commercial building’s parking lot. By offering a detailed comparison with other
algorithms and showcasing the scalability and adaptability of DDPG, the research provides valuable insights
for CPOs and stakeholders in the energy sector.
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1
Introduction

The goal of achieving net-zero emissions by 2050 carries significant challenges, including technological,
regulatory, and societal obstacles. It requires large-scale integration of Renewable Energy Sources (RES),
decarbonization of industries, and enhanced grid infrastructure, which should be more resilient and adaptive.
Therefore, it can be stated that the global energy landscape will continue to evolve and will be transformed
completely [1]. Parallel to the ongoing transition, the market share of electric vehicles (EVs) increases yearly.
According to the International Energy Agency (IEA), EVs accounted for less than 5% of global new car sales
in 2020, 9% in 2021, and rose to 14% in 2022 [2]. In addition to the continuous increase of EV sales, new
regulations to ban cars with internal combustion engines (ICE) will take place in the next decade in Europe
with an exception for ICEs operating on carbon-neutral fuels [3][4]. As a result, the steady growth in EV
adoption will continue, and it will bring opportunities and challenges to the energy industry.

As the number of EVs increases, power grids will face challenges in meeting this demand, especially con-
sidering RES-dominated grids in the coming years. Nevertheless, there are advantages to the large-scale
integration of EVs as they can act as dynamic energy storage units and can be used for grid stability and
peak-load shaving through smart charging and Vehicle-to-Grid (V2G) technologies [5][6]. Furthermore, V2G
technology benefits both EV users and the power grid by reducing the proportion of high-cost generators
in peak times and by compensating the EV users for their services [7]. However, due to the number of
uncertainties in the EV charging environment, such as EV arrival time and dynamic electricity prices [8],
the stakeholders are accountable for implementing state-of-the-art (SotA) optimization techniques. As EV
aggregators and Charge Point Operators (CPOs) are the intermediate entities between power grids and EV
users [9], this study focuses on the problem from their point of view.
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1.1. EVs and Their Role Beyond Transportation 2

1.1 EVs and Their Role Beyond Transportation
In 2022, the transportation sector accounted for 20.7% [10] of CO2 emissions globally, 48% of it was due
to transport by cars and vans which makes them responsible for approximately 10% of global CO2 emis-
sions in 2022 [11]. EVs are one of the alternatives to ICE cars alongside Fuel Cell Electric Vehicles (FCEVs)
for reducing emissions. However, their entry into the market has been slow over the past several decades [12].

EVs can be investigated as Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs).
BEVs operate with a battery pack and an electric motor. PHEVs also contain both components as BEVs,
however, additionally, they have an ICE and a gas tank as well, which is why they produce CO2. Therefore,
PHEVs can be considered a transition technology from ICEs to BEVs, but they are not a promising alternative
to achieving zero carbon emissions in the transportation sector. On the other hand, BEVs are the flagship
of transitioning the land transportation sector to have zero emissions.
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Figure 1.1: EV sales and charging stations in the Netherlands between the years 2010-2022 (data retrieved from [13])

EV sales and charging stations worldwide have been increasing in the last decade [13]. As an overview,
in Figure 1.1, EV sales and cumulative installed charging station numbers can be observed for the Nether-
lands. It can be seen that PHEV sales were much more than BEVs in the early 2010s, however with the
improvements in battery technology and building trust towards BEVs in society, BEV sales rose starting
from 2017. This phenomenon can also indicate that PHEVs are the transition technology between ICEs
and BEVs as mentioned before in this section. Furthermore, EV adoption has increased continuously. This
increase is projected to continue by doubling the quantity in 2022 by reaching around 210,600 sales per year
in 2028 [14]. As a result, EV adoption has been growing and is forecasted to grow exponentially in this decade.

Charging stations are the other side of the medallion of EV integration. Their availability is one of the
main concerns when large-scale EV implementation is considered. It is worth mentioning that research con-
ducted for Nordic countries highlights that public charging infrastructure is the third main concern against
EV adoption after range and price [15]. Favourably, public charging stations have increased with EVs in the
Netherlands as shown in Figure 1.1, and additionally are expected to continue increasing in the following
years by almost doubling their quantity to 221,900 by 2028 [14].

It is worth noting that charging stations for EVs are not just limited to public areas. They can actually be
categorized by location, such as public, home, and work. Additionally, charging stations can be classified as
either fast or slow depending on their charging speed capability and the current type, whether AC or DC. AC
charging is categorized into three levels based on voltage, Level 1, Level 2, and Level 3, with Level 3 having
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1.1. EVs and Their Role Beyond Transportation 3

the highest charging voltage. Level 1 and 2 chargers can be installed privately at home or workspace, whereas
establishing Level 3 chargers, which necessitate distinct wiring and transformers, requires authorization from
utility services and is typically done at public charging stations [16]. By considering EVs and the charging
station characteristics mentioned, assumptions differ for formulating EV charging optimization problems that
aim to enable the efficient use of EVs for EV owners, grid, and EV aggregators or CPOs. In the next Section
1.1.1, EVs’ role beyond sustainable transportation is investigated by introducing smart charging and their
V2G capabilities.

1.1.1 Smart Charging and V2G Capabilities
As the adoption of RES and EVs continues to rise, power grids will encounter vital challenges in stability and
resiliency. Thus, to maintain power quality and grid resiliency, EVs’ potential should be discovered. EVs
have significant potential as a flexibility source for the grid, as they spend around 95% of the day parked at
home or work and not in use [17]. This can be achieved through approaches such as smart charging and V2G
capabilities. Thus, this section aims to explore how EVs can be integrated into the power grid efficiently by
enabling the advantages of smart charging and V2G, and the challenges within are discussed.

Uncontrolled charging of EVs can lead to line overloading, so exposing the power grid to increased vulnera-
bility [18]. This issue becomes even more important in grids with high penetration of photovoltaic systems
(PVs), as they are more susceptible to disturbances [19]. In such scenarios, uncontrolled EV charging worsens
the grid’s fragility, increasing the risk of more significant problems and instability. To mitigate these risks, it
is crucial to adopt advanced optimization techniques. These techniques can be designed not just to prevent
the overloading of power lines but also to ensure the satisfaction of EV users. The objective of the problems
can vary. Smart charging emerges as a key solution in this context. It involves managing the charging load
of EVs in alignment with the grid’s balancing needs. EV aggregators play an important role in this process
by providing balancing capacity to the grid. They are examined further in Section 1.2.1.

Smart charging can be done effectively through the use of Power Setpoint Tracking (PST). This method
allows EV aggregators and CPOs to allocate energy capacity in a controlled manner, instead of uncontrolled
charging. In simple terms, PST is the way in which CPOs operate their EV fleet to ensure that they deliver
the contracted power in the market or the power support directly contracted by the Distribution System
Operators (DSOs). EV aggregators and CPOs can make these contracts in the day-ahead market, planning
for the distribution of energy to EVs in the subsequent day’s specific time frames. The electricity market
dynamics are investigated briefly in Section 1.2. Such strategic allocation not only prevents overloads by
shifting demand but also contributes to maintaining the overall stability of the grid, ensuring that the EVs’
load is managed efficiently under allowed power limits.

Beyond their primary function in transportation, and additionally smart charging, EVs hold a third promising
capability known as V2G. This concept expands into broader applications such as Vehicle-to-Home (V2H),
Vehicle-to-Building (V2B), Vehicle-to-Vehicle (V2V), and Vehicle-to-Everything (V2X), representing the var-
ious roles that EVs can play in energy management. The specific designation of these technologies varies
based on the destination and purpose of the energy and flexibility they provide. V2G allows the bi-directional
energy exchange between EVs and the power grid. This technology not only includes EV charging but also
enables EVs to support and stabilize the grid. By controlling the energy stored in EV batteries, bi-directional
V2G significantly enhances the flexibility available to power utilities, playing a crucial role in improving the
reliability and resilience of the power system [20]. However, while V2G provides greater grid flexibility com-
pared to smart charging, it also poses challenges concerning battery health. Rapid charging and discharging
cycles associated with V2G can accelerate battery degradation, as indicated in [21]. These findings suggest
that the frequent use of V2G technology might need to be balanced against its long-term impact on battery
health and lifespan.

To sum up, smart charging and V2G are both promising concepts for benefiting large-scale EV integration,
yet they present distinct tradeoffs. Smart charging primarily focuses on optimizing the timing and rate of EV
charging to align with grid demands, reducing peak loads and load valleys without discharging the vehicles.
Its primary advantage lies in its simplicity and lower impact on battery health, as it avoids the ongoing
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1.2. Electricity Market Actors and Dynamics 4

charge-discharge cycles that can shorten battery lifespan. In contrast, V2G offers a more dynamic solution
by enabling bi-directional energy flow between EVs and the power grid. This allows EVs to not only draw
energy for charging but also supply energy back to the grid, providing greater flexibility and support for
the grid, which is crucial in a RES-dominated grid. However, this comes at the cost of decreasing the EVs’
battery life due to more frequent charging and discharging cycles, potentially leading to quicker battery degra-
dation. Therefore, while V2G offers broader benefits for grid management and energy optimization, it must
be evaluated against the implications for battery lifespan, which is not a concern in the case of smart charging.

1.2 Electricity Market Actors and Dynamics
In this section, firstly, the dynamics of the Dutch electricity market are examined briefly, with an emphasis
on identifying and understanding the key actors and their roles. Subsequently, the role of EV aggregators
and CPOs’ in the market is investigated by explaining their operational roles and their capabilities for imple-
menting optimization techniques to benefit EV grid interaction in Section 1.2.1.

Roles within the electricity system can be categorized into three areas as physical, administrative, and mar-
ket. Figure 1.2 shows an overview of the Dutch electricity market with the key actors. At the bottom of
Figure 1.2, the physical layer can be observed, it is related to the direct handling of electricity production,
transportation, and consumption. In the administrative area, there are entities responsible for managing the
interactions between consumers, the market, and grid operators, they can be seen in the blue boxes in which
black arrows are connected. These actors oversee tasks like monitoring energy consumption, production,
and customer billing. Lastly, the market domain includes various market platforms that facilitate all these
transactions [22], as it can be seen in the green wholesale market box in Figure 1.2.

Figure 1.2: Dutch electricity market concept including an EV aggregator (Figure is adapted from [23] in accordance with this study)

In the physical layer of the electricity system, electricity producers and consumers directly interact with the
grid, by creating demand and supply. As it can be observed from Figure 1.2 in light blue rectangle boxes, the
physical layer includes generation, transmission, distribution, and consumer aspects such as load, generation,
and storage. Key to managing these are the Transmission System Operators (TSOs) and DSOs. TenneT
is the Dutch TSO and is responsible for the high-voltage grid, focusing on maintaining a balance between
electricity supply and demand and inspecting the grid’s planning, maintenance, and expansion. Additionally,
TenneT is also responsible for connecting the Dutch grid to the European grid [24] for the import and export
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of electricity. On the other hand, DSOs manage regional distribution grids. DSOs are responsible for the
delivery of electricity from high-voltage to the end users and handle regional grid planning, construction,
maintenance, and operation of medium and low-voltage grids. They also connect new grid participants
and measure consumption for smaller consumers [22]. In addition to TSOs’ and DSOs’ physical layer re-
sponsibilities, their job description and influence on the grid also make them actors in the administrative area.

In the administrative area, Balance Responsible Parties (BRPs) hold financial responsibility for ensuring
balance in their energy portfolios and interacting with balancing markets for grid stability. Furthermore,
electricity suppliers deal with consumer contracts and participate in various markets to meet supply needs.
Additionally, Balance Service Providers (BSPs) support grid balance and congestion management. Aggrega-
tors, meanwhile, gather small-scale production and consumption for larger market engagement [22], which
makes aggregators crucial players in demand management within their capabilities.

Market area, can be divided into four categories as forward, day-ahead, intraday, and balancing markets
according to the duration between the contracted time of capacity and the actual delivery time of electricity.

In the forward market, consumer companies are contracting and reserving a capacity for their future in
weeks, months, or years. They sign bilateral contracts with the suppliers, and this is usually profitable and
applicable for large consumer companies in sectors such as chemicals and steel production, which require
high amounts of energy, and usually, these consumers can foresee how much energy they will need.

Secondly, in the day-ahead market, power capacity is contracted for the next day, 24 hours, with a distinct
price for each hour. This trade is done by auction. Supplier and consumer companies bid in the market for
each hour of the next day. According to the offered energy amount and bid prices, market clearing happens
before the next day, thus the price is determined marginally. It is worth mentioning that, EV aggregators
are highly active actors in the day-ahead market for reserving the next day’s energy amount with a lower
price in comparison to the price they might get in the intraday market. That is where price forecasting for
the next day becomes a vital aspect for bidding precisely to prevent getting higher electricity price offers.

Consecutively, in the intraday market, participants have the flexibility to modify their spot market positions
until five minutes before the actual delivery of electricity. Generally, purchasing electricity in the intraday
market tends to be costlier compared to the day-ahead market. The intraday market operates every hour
of the week, so it allows participants to change their positions immediately in response to new information
[24].

Lastly, the balancing market is where three actors of the electricity system, the TSO, BRPs and BSPs
work together to keep the power system stable. The frequency of the system is the indicator of its stability.
However, the level of frequency varies according to the standards of different grids around the world, in
this regard, the European grid requires 50 Hertz, that is why the balancing market aims to keep the grid
frequency at 50 Hertz steadily in the Netherlands. The balancing market is built on three main pillars:
balancing responsibility before the generation, providing balancing services during the operation, and settling
imbalances after the system is online [25].

The balance responsibility is about planning and scheduling how much electricity will be produced for each
Program Time Unit (PTU) on the delivery day. Deviations from the scheduled program would result in
recompenses during the imbalance settlement step [25]. Consequently, BRPs communicate their production
plans to TSOs with the objective of adhering closely to these plans, thereby mitigating the potential for
incurring additional costs associated with imbalances.

Furthermore, the provision of balancing services involves offering and utilizing services to achieve real-time
energy balance in the system. These services come in various forms, including balancing energy and reserve
capacity. For instance, balancing energy services may involve upward or downward regulation, depending
on whether there is a need for more or less power. Conversely, an example of reserve capacity is the use of
EV aggregators. These aggregators can manage vast amounts of EVs by employing them as Virtual Power
Plants (VPPs) to contribute to the system’s balance.
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The final pillar, imbalance settlement, is about sorting out the costs when there is a difference between
planned and actual electricity use. When these differences are a result of deviations from the BRPs’ sched-
ules, they are financially accountable to the TSO, as the TSO is the main buyer of these balancing services
from BSPs. Additionally, it is worth mentioning that, the price for this difference, called the imbalance price,
is determined for each PTU [25].

Lastly, fixing imbalances involves three stages as primary, secondary, and tertiary reserves, and they are
distinguished by their activation times and functions. Primary reserves respond within seconds to initial
supply-demand mismatches to prevent frequency deviations. If imbalances continue, secondary reserves are
activated for a duration of one to several minutes to restore the system frequency. For longer-lasting devi-
ations, tertiary reserves are employed, which are capable of being activated for several minutes to hours to
return the operation to schedule.

This section presented the actors involved in the Dutch electricity market and how they cooperate. The focus
is on key actors like TSOs, DSOs, BRPs and BSPs. Various electricity markets are covered, from long-term
contracts in forward markets to real-time adjustments in intraday markets. The balancing market’s critical
role in maintaining grid stability is also discussed. The following section will provide more detailed informa-
tion on the specific roles and functions of EV aggregators and CPOs within this market framework.

1.2.1 EV Aggregators Role
EV aggregators are the intermediate actors between the market and the end-user, which is why they hold a
crucial position for integrating EVs into the power grid. Numerous research findings, including those by Lund
et al. [26], indicate that end users typically show minimal enthusiasm for actively managing their assets. In
addition to that, according to the EV aggregator model of Kempton et al. [27], individual EV owners are
unable to participate in bidding within the electricity market or conduct transactions with electrical utilities,
primarily due to their lower power capacity. Thus, EV aggregators occur as a solution. Another proposition
for EV aggregators is highlighted in [28], EV aggregator compiles the driving profiles of users to establish
a VPP. This system predicts the number of vehicles likely to be connected to the grid at various times
throughout the day and also predicts the available electrical energy and power capacity; thus, the capacity of
connected EVs can be used for grid services. Additional research [16] suggests that to integrate a substantial
number of EVs into the grid effectively, the introduction of EV aggregators is essential due to the market
impact of a single EV being minor and unpredictable, but this can be enhanced by collectively operating
EVs through an aggregator, similar to Kempton’s model. To sum up, it can be concluded that one of the
primary purposes of aggregators is their capability to link their customers’ assets to the market with minimal
transaction costs. As de Vries [29] states, the essential strategy lies in employing advanced automated and
optimized solutions to capitalize on the flexibility offered by customers and doing so without compromising
their operational efficiency.

Next to EV aggregators, CPOs also play an essential role in EV-grid integration. They both serve distinct
yet similar services. CPOs are primarily focused on the infrastructure, installing, operating, and maintaining
EV charging stations. A key aspect of their role is to manage the hardware of charging stations, along with
the related software for user authentication, billing, and remote monitoring. EV aggregators, on the other
hand, are more active in market interactions. Despite these distinct roles, there is potential overlap, particu-
larly in areas of smart charging and grid management. Just like EV aggregators, CPOs are also capable of
implementing EV smart charging concepts.

In this study, the concepts of smart charging will be explored under the assumption that a smart charging
solution is implemented by a CPO controlling a charging station located in a commercial building’s parking
lot. The concerning area inside the Dutch Electricity Market framework in Figure 1.2 is shown in the light-
blue box, which includes the CPOs and the EV2Gym Simulator [30]. Consequently, the subsequent sections
will frequently use the term “CPO” to refer to both CPOs and EV aggregators since they are practically
similar under the assumptions of this study.
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1.3 Research Objectives
In this section, the main research question is outlined, accompanied by several questions. These questions
were created to explore different aspects of the objective and to address the challenges in the field through
a structured approach.

The uncertainties in EV charging caused by unpredictable driving behaviours and fluctuating electricity prices
pose significant challenges for EV charging optimization problems. Reinforcement Learning (RL) algorithms
are recognized as effective approaches for addressing complex sequential decision-making problems. Further-
more, CPOs are capable of directly controlling the charging process of EVs and applying these optimization
methods, taking into account the power grid’s constraints and the EV users’ requirements. The goal of this
study is to tackle the problem of scheduling EV charging sessions in a parking lot located in a workplace using
RL algorithms. The smart charging algorithm’s aim is to optimize the EV charging schedules in real-time to
meet the power set point specified by the contracted power capacity of a CPO. Therefore, the main research
question can be formulated as follows:

How to effectively optimize the charging schedules of EVs to meet the CPO’s contracted power setpoint in
a workplace setting using RL algorithms?

1.3.1 Research Questions
1. What are the key characteristics and constraints of the model-free online EV charging problem in the
context of a workplace parking lot?

2. What are the key factors influencing the performance of the Deep Deterministic Policy Gradient (DDPG)
algorithm in optimizing power setpoint tracking (PST) for EV smart charging?

3. How do RL-based smart charging methods improve upon or differ from mathematical optimization meth-
ods used for smart charging in managing the energy demands and grid interactions of EVs?

4. How does the applied RL method scale with the varying number of EV chargers?

1.4 Thesis Outline and Methodology
This thesis presents a comprehensive exploration of EV charging approaches from the CPOs’ point of view,
focusing on RL methods while comparing them to classic optimization techniques. Chapter 2 delves into
the SotA EV charging optimization approaches. It begins with an examination of Classic and Metaheuristic
optimization methods in Section 2.1, discussing their application and capabilities in EV charging. The chap-
ter then continues with RL approaches in Section 2.2, initially providing an overview of RL principles before
specifically addressing its application in the context of EV charging in Section 2.2.2.

Chapter 3 outlines the methodology and modeling approaches used in this study. It describes the simulation
environment for testing and analysis, followed by a detailed discussion of the DDPG algorithm in Section
3.2, highlighting its advantages and implementation in the context of this dissertation.

The paper then progresses to Chapter 4, which starts with a case study, “Charging at Work”. This case study
is designed to provide practical insights and real-world applicability of the discussed EV charging strategies,
particularly showcasing the implementation and outcomes of the DDPG approach. This chapter analyzes
the data obtained from the case studies, comparing the performance of the proposed DDPG algorithm with
mathematical optimization and an uncontrolled “charge as fast as possible” (CAFAP) scenario. This analysis
aims to conclude the efficacy and practicality of the RL approach in EV smart charging. Chapter 4 ends
with the discussion part in Section 4.2.

Finally, Chapter 5 concludes the thesis, summarizing the key findings and offering recommendations based
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on the research. This chapter aims to provide a clear understanding of the potential and limitations of the
studied EV charging approaches and suggests directions for future research.
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2
State of the Art EV Charging

Approaches

This chapter provides an overview of the current EV charging/discharging optimization techniques. Firstly in
Section 2.1, EV charging optimization techniques are examined briefly, in specific classic and metaheuristic
approaches. Following that in Section 2.2, RL approaches of the EV charging scheduling problem are
investigated in detail and there is an overview of the literature at the end of the chapter in Table 2.1.

2.1 EV Charging Optimization
Optimization is described as the mathematical process of identifying the inputs for functions with variable
values, which are aimed to be either maximized or minimized, and are subject to a range of constraints
[31]. In EV charging, the objective can vary from profit maximization of charging stations to minimizing
peak load or maximization of renewable usage to minimization of charging costs. In this regard, various
optimization strategies have been employed to solve EV charging scheduling problems. These strategies can
be examined under three categories: Classic, Metaheuristic, and Machine Learning (ML), each with distinct
strengths and weaknesses based on their capabilities and the characteristics of the problems they aim to solve.

Various studies have shown that the optimization strategies mentioned above can yield promising results.
Starting with Classic Optimization, which is usually based on solvers that rely on the estimation of the gra-
dient of the objective function, in [32], the problem was formulated as a Mixed Integer Linear Programming
(MILP) problem. The MILP formulation was used to optimize the profits of a public charging station with
PV and a Battery Energy Storage System (BESS) by forecasting the PV output from historical energy gener-
ation of PVs in a specific time frame and EV arrival times by normalized EV power demand data. As a result
of the optimization and integration of BESS, the daily profits of the station increased by 82.8%. Similarly,
in [33], EV charging/discharging rate and schedule were formulated as a MILP problem. Differently, this
problem was formulated for a community forming a microgrid with PVs and a BESS. It was found that
33.4% operational cost reduction is possible for the system by using the proposed optimization technique.
Furthermore, van der Meer et al. [34] achieved 118% charging cost reductions turning costs into profits, in
comparison to uncontrolled charging, for one charging point at a workplace by formulating the EV charging
scheduling as a MILP problem for profit maximization and PV utilization. Besides the MILP formulation,
Ioakimidis et al. [35] formulated an EV charging/discharging scheduling problem as Linear Programming
(LP) for peak load shaving and valley filling of the consumption of a non-residential building. As a result,
peak power consumption was decreased, varying from 4% to 20% according to the number of participating
cars. These studies highlight how Classic optimization with different problem formulations, like MILP and
LP, improves profits, reduces costs, and manages energy use in EV charging. However, due to the constantly
changing demands for EV charging and the variability of RES, Classic Optimization may not always provide
the most effective solution. In this case, RL can be a valuable alternative by offering a flexible framework that
can adapt to real-time changes in EV charging and fluctuating RES. By utilizing a trial-and-error learning
mechanism, RL can optimize charging schedules in an environment where traditional methods may struggle
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to account for the complexities and uncertainties inherent to EV charging optimization problems.

Nevertheless, Metaheuristic Optimization is widely used, similar to Classic Optimization, for solving EV
charging scheduling problems. Metaheuristics sample solutions and evolve them using various approaches to
develop higher-quality solutions. However, in contrast to Classic Optimization, Metaheuristics do not guar-
antee convergence or optimality. Wang et al. [36], introduced an Ant Colony Optimization (ACO) for 500
EVs to fill load valleys at the transformer level. This resulted in a decrease in the peak valley difference by
74.8%. Moreover, Celli et al. [37], deployed a Particle Swarm Optimization (PSO) to reduce peak load and
losses in the grid by controlling charging/discharging schedules of 200 EVs through an EV aggregator. As a
result, peak load was reduced by around 10% and losses by 3%. Considering the scales of these problems,
it can be stated that Metaheuristic Optimization methods, like ACO and PSO, are effective in large-scale
scenarios. However, Metaheuristics may not always adapt efficiently to the uncertainties in the EV charging
environment. On the other hand, RL has the potential to offer a better approach to EV charging optimization.
RL can adapt and learn continuously and adjust strategies in real-time based on energy supply and demand
data. This makes RL a promising alternative for dealing with the complexities of EV charging optimization.

As an outcome, Classic Optimization of EV charging with problem formulations such as MILP, LP, Non-
Linear Programming (NLP) and their variants are designed to provide optimal solutions. However, they often
face limitations, particularly in terms of scalability and their ability to handle highly complex problems due to
uncertainties such as EVs’ arrival time, departure time, and electricity prices. There also occurs a trade-off
between solving a problem faster or with higher accuracy. In this regard, Classic Optimization can require
high memory capacity and longer times to solve a complex problem. In contrast, metaheuristic approaches
offer more flexibility and are generally better suited for complex, large-scale problems; however, they usually
can not guarantee convergence or finding the global optimal solutions. This trade-off makes Metaheuristics
particularly valuable in situations where an optimum solution is less critical than a faster and reasonably
effective one.

The third category, ML Optimization, particularly RL techniques, is showing potential in providing solutions
to the challenges associated with EV charging. In real-world scenarios, accurately modelling randomness is
difficult due to various external factors, such as difficulties in modelling driving behaviours and fluctuating
electricity prices. As Qui et al. [38] state, RL addresses the challenges in modelling randomness by adopting
a data-driven approach; thus, it does not rely on exact models of uncertainties but learns from experiences
by getting a vast amount of interactions within the created simulation environments to train the RL models.
Furthermore, in RL, the model learns the best actions through exploration and exploitation, allowing it to
manage and optimize charging schedules with respect to the algorithm’s objective. The objective can be
maximizing the use of RES, reducing costs, or minimizing PST error, which is the proposed objective in this
thesis. In addition to the ability to have variable objectives, RL can balance different goals, such as reducing
costs while managing peak demand, thanks to its multi-objective optimization capability. This capability
makes RL a more comprehensive approach to solving EV charging problems. Moreover, RL’s adaptability
and learning ability make it a promising alternative for modelling uncertainties inherent in EV charging. The
next Section 2.2, is focused on these RL techniques to improve the approach to solving EV charging problems.

2.2 Reinforcement Learning Approaches
In this section, firstly ML techniques are explained briefly in Section 2.2.1. Following that the mathematical
framework of RL, Markov Decision Process (MDP) is examined. Consecutively, value-based and policy-based
RL methods are discussed briefly. Finally, the advantages and limitations of RL methods for EV charging
are investigated further in Section 2.2.2. This chapter ends with Table 2.1, concluding the literature review
by highlighting SotA RL approaches in the literature which represents an outlook on EV charging with RL
techniques.

2.2.1 Reinforcement Learning
RL is one of the three branches of Machine Learning (ML) with Supervised (SL) and Unsupervised Learning
(UL). RL differs from the remaining ML branches in several aspects. In SL, models are trained with labeled
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data sets, with the purpose of accurate classification or prediction of results. These models can measure
their performance and learn by comparing labelled inputs and outputs to their results. [39]. Consecutively,
in UL, there are no labelled data sets; in fact, they are used for grouping and examining data sets without
labels. Thus, their goal is to recognize patterns in data sets [39]. Unlike these methods, in RL, an agent
takes actions in an environment to maximize its cumulative reward, so the agent is not told which action
to take, on the contrary, it must learn which actions are and will be the most rewarding by trial and error
[40]. Therefore, RL is considered a model-free method and can find policies and strategies by utilizing itself
through trial and error in various environments without prior knowledge. MDP is the mathematical ground
of RL, and it is explained under Section 2.2.1 to show how an MDP can be formed.

Markov Decision Process
MDP is a classic approach to sequential decision-making, where actions impact both immediate and future
rewards, necessitating a balance between short-term gains and long-term benefits [40]. It can also be de-
scribed as the mathematical framework of RL.

Figure 2.1: Markov Decision Process

Figure 2.1 demonstrates the flow of an MDP. The agent is the decision maker. It interacts with the environ-
ment through actions, (at), which in turn change the agent’s state from st to st+1 and rewards the agent
based on a predefined reward function (rt). In the simulation’s following episodes or next-time steps, the
agent retains its previous state (st), the taken action (at), the received reward (rt), and a state transition
function, p(st+1|st, at). The state transition function is used by the environment to produce the subsequent
states, and eventually, it serves as a link that maps the combination of the current state (st) and the taken
action (at) to a resulting new state (st+1). Through these interactions, the agent learns to find an optimal
policy which πt(a|s) is the probability that at = a and st = s, creating a probability distribution across all
possible actions (a) in the state (s). While applying this policy, MDP continues until the defined step or
episode limit.

Additionally, the agent also stores a discount factor γ ∈ [0, 1], which is used to tune the amount of rewards
that the agent can get in the later episodes of the simulation to find a balance between exploration and
exploitation in the environment. The cumulative discounted reward is calculated with Equation (2.1) below:
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1 (2.1)

Having the discount factor value 1 indicates that the future rewards are as valuable as the present rewards.
Thus, the agent is more prone to exploring than exploiting. On the other hand, if the agent exploits too
soon, with a small discount factor, then the result might converge without exploring the environment enough,
which might result in not obtaining the targeted results. Overall, the agent’s goal is to maximize its total
discounted rewards by acting upon the environment and ultimately seeking to discover an optimal policy
that maximizes this reward. Following that, a state-value function determines how good it is for the agent
to be in a given state and is defined to represent the expected return using policy π with Equation (2.2).
Eπ denotes the expected value given that the agent follows policy π.

Vπ(s) = Eπ[Gt|St = s] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]
, for all s ∈ S (2.2)

Besides the state-value function, the action-value function determines how good it is to perform a given
action in a given state. It shows the value of taking an action a starting from state s, by following a policy
π considering the expected return. It is denoted as Qπ(s, a) and can be observed from Equation (2.3).

Qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[ ∞∑
k=0

γkRt+k+1

∣∣∣St = s,At = a

]
(2.3)

MDPs are utilized in various RL approaches. These approaches can be divided into two categories as
value-based and policy-based. While value-based methods maximize the action-value functions, policy-based
methods directly optimize the policy itself, thus they are categorized by a fundamental difference. RL tech-
niques within these categories are briefly discussed in the following sections.

Value Based Methods
Value-based methods focus on estimating the state-value and action-value functions in an environment to de-
termine the best policy for an agent. In the value-based category, Q-learning is an algorithm for action-value
function learning. It directly approximates the optimal action-value function. In addition to Q-learning, the
Deep Q-Network (DQN) uses Deep Neural Networks (DNNs) [41] to approximate the action-value function.
Furthermore, this category also includes algorithms like State-Action-Reward-State-Action (SARSA) and fit-
ted Q-iteration. These methods are actively used in EV charging problems, as can be observed in Table 2.1.

One crucial difference between value-based and policy-based RL techniques is their ability to operate in both
discrete and continuous state and action spaces. Discrete and continuous action spaces can be summed up
with a simple analogy question. For discrete action spaces, the question is “Which direction should I move?”
on the other hand, for continuous action spaces, it is “How fast should I move?”. Q-learning becomes highly
ineffective when applied to tasks requiring continuous action spaces, as it is significantly affected by the
curse of dimensionality [41]. DQN overcomes Q-learning’s discrete state space limitation by using DNNs
with parameters to approximate the Q-value function in a continuous state space [38][41]. Additionally, in
such cases, alternative approaches like policy-based methods or actor-critic methods might be more suitable.

Policy Based Methods
Policy-based methods offer a different approach compared to value-based methods. These methods, directly
optimize the policy that an agent follows to make decisions. As Qui et al. [38] state the main advantage of
the policy-based methods is that they focus on directly achieving the desired outcome, unlike value-based
methods, which indirectly optimize performance through self-consistency equations by training the action-
value function Qπ(s, a). This indirect approach often leads to instability and various failure modes. On the
other hand, when value-based methods are successful, they tend to be more sample efficient, reusing data
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more effectively than policy-based methods [38].

Methods in the policy-based category include Actor-Critic methods that combine policy-based and value-
based strategies. Soft Actor-Critic (SAC) is an off-policy algorithm that optimizes a stochastic policy.
Furthermore, Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO) both aim
to balance policy updates with stability in learning. Additionally, DDPG is effective for high-dimensional
problems with continuous state and action spaces [42], thus it is a promising alternative to experiment on
EV charging problems.

2.2.2 Reinforcement Learning in EV Charging
EV charging problems mainly focus on finding more efficient and profitable ways to charge EVs, taking into
account various constraints such as user satisfaction and grid compliance. These problems can be cate-
gorized into three main areas. The first one is mobility, which considers whether the EVs are moving or
connected to a charging station. If the EVs are parked, the associated challenges are referred to as the static
problem. In contrast, if they are on the road, the challenges are referred to as the dynamic problem. The
second area is optimization, which distinguishes between online and offline approaches. The offline approach
assumes that the operator has complete knowledge of the system, while the online approach has to deal
with uncertainties in the environment. In terms of RL, in the offline approach, the RL model is not trained
during the operation; on the contrary, the RL model is trained continuously in the online approach. The
third area is the control method, which determines whether the charging process is managed centrally or in a
decentralized manner. In a centralized manner, CPOs can solve the EV charging optimization problem for sev-
eral charging stations, while in a decentralized manner, each station finds the optimal solution for its location.

Nevertheless, these characteristics of the EV charging problem cause various dynamics and lots of uncertain-
ties. Numerous studies [43][44][45] have been conducted to model the behaviour of EV users to solve the
dynamic problem concerning the mobility category of EV charging problems. These efforts aim to address
the dynamic problem by more accurately predicting the potential for charging and discharging. However, the
significant uncertainties involved in dynamic charging in contrast to static charging, such as traffic conditions
and modelling user behaviour, greatly complicate the problem-solving process.

RL, a model-free and online learning method, can capture various uncertainties through numerous interac-
tions with the environment and adapt to state conditions in real time [46]. As a result, using advanced
RL algorithms to solve various EV charging optimization problems has attracted attention in recent years,
leading to many outstanding research papers and important findings. In Table 2.1, there is an overview of
the studies in the literature about RL applications for solving the EV charging problem.

The objectives of studies in the literature vary from maximizing the profits of either CPOs or EV owners
to meeting the scheduled target load. Wan et al. [47], for instance, formulated a problem to tackle the
challenge of maximizing EV owner profits also by exploring V2G capabilities. A proposed Deep RL (DRL)
method was used to solve the problem for a residential EV charger, and it learned to charge one EV when the
electricity prices are low and discharge when they are high, which maximizes the EV owner’s profit and helps
load flattening. However, in this study, discrete charging/discharging levels were used. Thus, it does not
represent the EV charging problem completely. Additionally, another research by Hao et al. [48] proposed a
DQN algorithm to minimize EV owners’ costs, similar to the previous study by Wan et al.. Differently, the
charging schedule was made with information on the real-world driving patterns of EV users. It was found
out that the EV users could pay 98% less compared to the charge as soon as possible (CASAP) scenario.
However, also in this study, discrete action spaces were used, and thus, it does not completely represent the
continuous action spaces of the EV charging problem. As Mnih et al. [41] stated, in contrast to value-based
RL, policy-based RL methods like DDPG show great potential to overcome continuous action problems and
result in better scores on real-time tasks.

The last research included in Table 2.1 for residential settings, by Qui et al. [49], explores profit maximization
for EV aggregators by combining DDPG and a strategy called Prioritized Experience Replay (PER), as they
named PDDPG. By using this method, they aimed to model the problem in multidimensional continuous
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state and action spaces which outperformed the DQN, DDPG, and Q-learning methods for a scale of 1000
residential EV chargers.

Furthermore, for public charging, Wang et al. [50], aimed for profit maximization of a public charging station
using Future Reserving SARSA. Different from most of the other methods, the proposed method does not
need distributional information, and it showed 138.5% higher profit than methods such as Greedy policy or
SAA-based Monte Carlo sampling techniques. Furthermore, Zhang et al. [51], proposed a method called
charging control DDPG (CDDPG) which aimed to minimize EV users’ charging costs while satisfying the
desired battery capacity. The proposed method outperformed DDPG and DQN. Similarly, Li et al. [52],
proposed a DDPG algorithm with additional adjustments. The proposed recurrent DDPG (RDDPG) method
showed promising results in terms of scalability, and it was claimed that the method can be applied to larger
scales without retraining the model, which is a significant outcome.

As an example of applied value-based methods, Lee et al. [53], proposed a DQN method to reduce charging
costs while flattening the load of a specific charger. It was assumed that a charging pattern should be
extracted from a specific charger, highlighting that EV user patterns vary according to different locations.
Hence, it might not be very effective to use a trained model within a specific location for another location.
On the other hand, finding a charging pattern for each charger would be more effective for finding local
optimal solutions [53]. However, by this decentralized approach, the grid service capabilities of large-scale
EVs can not made use of.

In contrast to the mentioned research, Sadeghianpourhamami et al. [54], did not focus on profits or costs
but on meeting the target load schedule by proposing a fitted Q-learning method. Thus it is much more
similar to the proposed method PST in this study. Furthermore, Sadeghianpourhamami et al. also targeted
optimizing several charging stations with different characteristics in a centralized and scalable manner.

In summary, the research detailed in Table 2.1 points to a common goal in the EV charging field, making
the process more profitable and cost-effective. These studies show that smarter systems capable of adjusting
to the inherent uncertainties of the EV charging problem are required. Value-based RL methods served as a
starting point; however, the trend is shifting towards more complex methods such as DDPG and its variants
due to their ability to better emulate the EV charging problem by handling the continuous state and action
spaces, considering the continuous charging levels of EVs. The adoption of these advanced methods is crucial
for addressing the uncertain nature of EV charging.
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Table 2.1: Literature Review of Reinforcement Learning Algorithms in EV Charging Landscape

Author Objective Charger Location
and number

Method Performance
Evaluation

Mobility V2G

Wan et al., 2018
[47]

Maximization of EV
owner profits and
satisfaction

Residential, 1 DRL Fitted Q iteration,
Theoretical
limit(YALMIP)

Static Yes

Wang et al., 2018
[50]

Profit maximization
of a public charging
station

Public Future Reserving
SARSA

SAA-based on
Monte Carlo
sampling techniques-
Greedy policy

Static No

Hao et al., 2023 [48] Minimize EV owner
charging costs

Residential DQN Theoretical
optimum, Greedy,
DQN with known
departure time,
CASAP(Charging
asap)

Dynamic Yes

Li et al., 2023 [52] Reduce EVs
charging cost for the
CPO

Public Recurrent - DDPG Uncontrolled,
Day-ahead
scheduling, DQN,
DDPG, MA-DDPG

Static Yes

Sadeghianpourhamami
et al., 2020 [54]

Meeting target load
schedule(DR) within
groups of charging
stations, PSPT

Public, 10 stations,
50 stations

Fitted Q-iteration Theoretical
optimum,
uncontrolled
charging

Static No

Lee et al. 2020 [53] Reducing charging
costs and increasing
load-shifting
capability of a
specific charger

Public, 1 DQN with KDE Uncontrolled Static Yes

Zhang et al., 2021
[51]

Minimizing user’s
charging expense

Public, 1 CDDPG DDPG, DQN Static Yes

Qui et al., 2020 [49] Profit maximization
of EV aggregator

Residential, 1000 PDDPG DQN, DDPG,
Q-learning

Dynamic Yes
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3
Methodology and Model

This chapter delves into the problem formulation first in Section 3.1, including a description of the simulation
environment and the mathematical model of the PST problem. Consecutively, the proposed RL method,
DDPG, and how it was used for the specific PST problem is explained in Section 3.2, also including state
and reward functions and the hyperparameters of the DDPG algorithm.

3.1 Problem Formulation - Power Setpoint Tracking
PST is a crucial way of scheduling EVs’ charging by a CPO. CPO is responsible for buying energy to maintain
the operation of its respective chargers. The energy is usually bought in the day ahead market by a CPO and
allocated to EVs the next day via EV chargers. Thus, CPOs run their optimization algorithms to find out how
much energy they should contract in the day ahead market for various objectives such as maximization of
profits or EV owner’s satisfaction. According to the amount of contracted energy, CPOs determine a power
setpoint for a specific time frame of the next day, which is disaggregated to EVs by scheduling their charging
process. It is essential to disaggregate the energy carefully to avoid exceeding the power setpoints. If the
CPO exceeds the power setpoints, then the CPO has to make a tough decision: either purchase additional
energy at a higher cost in the intra-day or balancing market or accept the risk of unsatisfied EV users due to
their EVs not being fully charged. This situation highlights the necessity of finding a way to minimize the
PST error by scheduling EV charging.

Minimization of the PST error is the second optimization that CPOs need to do after the determination
of power setpoints to maintain profitable operations. Furthermore, minimizing the PST error can prevent
any imbalance, allowing money to be saved by charging EVs when electricity prices are lower and avoiding
charging during peak price times. It is important to note that optimizing the amount of power to be traded
in the energy market is outside the scope of this thesis. The focus here is solely on the disaggregation of
energy once such a power setpoint is defined.

Figure 3.1 illustrates the formulation of this study. In Figure 3.1, a CPO is shown that contracts energy
in the day ahead electricity market. This CPO is responsible for 10 EV chargers in a commercial building’s
parking lot concerning a workplace. Given the location of this parking lot, it is assumed that EVs will be
arriving after 6 am and departing before 6 pm on weekdays only, aligning with typical office hours and days.
This assumption is made to tailor the optimization more closely to a workplace setting.

In order to train the RL algorithm and test different scenarios for the described EV charging problem, a
digital environment is required. For this research, a realistic V2G Gym simulator called EV2Gym [30] was
used to obtain results. The logo of EV2Gym can also be seen between the CPO and the EV chargers in
Figure 3.1. The following Section 3.1.1 will describe the EV2Gym simulator and explain how the specific
PST problem for a workplace is implemented in this simulator.
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Figure 3.1: Operation of the CPO

3.1.1 Simulation Environment
EV2Gym is a flexible simulator designed to test different algorithms, focusing on how well they perform
for EV charging/discharging problems. As can be understood from its name, it is also capable of evalu-
ating V2G scenarios. It is built as a Gym environment [55], which is a toolkit of OpenAI utilized for RL
algorithms. Furthermore, EV2Gym stands out due to its adjustability for employing different algorithms for
various scenarios. The configuration settings of EV charging simulations, such as the number of chargers and
transformers, EV and charger specifications, and the transformer current limits, can be adjusted according
to the characteristics of scenarios. Moreover, the environment uses only open source data; however, custom
data like electricity prices or EV behaviour can be implemented in the EV2Gym Simulator to customise EV
charging/discharging problems. Additionally, it has the capability of saving the replays to make comparisons
for evaluating the performance of the deployed algorithm by comparing it with other alternative algorithms
or with the optimal solutions obtained by using the Gurobi Solver [56].

Power Setpoints
The calculation of power setpoints is a crucial part of the PST problem. The accuracy of power setpoints is
essential for optimally solving the PST problem and training the RL agent by introducing flexibility for the
charging of EVs. It is worth noting that determining power setpoints is the initial optimization challenge
faced by CPOs, who must predict and secure the necessary amount of energy to contract in the day ahead
electricity market. Although this optimization is beyond the scope of this study, mentioning it highlights
the practical importance of precise power setpoint calculations. In response to this challenge, this research
proposes a method designed to minimize the PST error with realistic power setpoints generated for each
step of the simulation’s duration.

The calculation of power setpoints is shown in the Pseudocode 1. To explain the process in detail, the
calculation begins by creating an array of power setpoints, initialized to zero and intended to represent the
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required power for each timestep in the simulation. Consecutively, for every timestep of the simulation, the
arrival of new EVs is checked, and the needed additional energy is calculated based on the difference between
the battery capacity of each EV and their SoC, which is called Depth of Discharge (DoD) of EVs. Then, the
calculated required energy for each EV is multiplied by a flexibility factor (κ) introduced in the simulation
to enable EV charging flexibility. In the next step, the calculated amount of energy with the flexibility factor
is randomly distributed throughout each EV’s duration of stay by using the normalized electricity prices as
weights. This approach aims to get realistic power setpoints to be used to train the RL agent but does
not represent an optimization methodology to define optimal power setpoints. For each EV, the function
also respects the minimum and maximum charging powers allowed by both the EV’s specifications and the
charging station’s limits. If any of the power setpoints fall outside these limits, a redistribution of power is
carried out across the EVs’ duration of stay, ensuring that every point adheres to the minimum and maximum
limits of each EV and charging station.

Lastly, the generated power setpoints undergo median smoothing to mitigate abrupt variations, resulting in
a charging schedule that is both realistic and feasible for implementation. In the next Section 3.1.2, the
mathematical model of the formulated PST error minimization problem is explained in detail. The created
mathematical model is also used to solve the PST error minimization problem optimally by forming a Mixed
Integer Non-Linear Programming (MINLP) problem.

Algorithm 1 Calculation of Power Setpoints
1: Initialize an array of size number of time steps to represent power setpoints
2: for time step = 1 to T do
3: Check for new EV arrivals
4: for each EV arrival do
5: Required energy ← Calculate the required energy for each EV for charging to the desired SoC level

(80%)
6: Adjusted energy ← Required energy ×κ
7: for Remaining staying time = time step to departure time do
8: Distribute adjusted energy to time steps using electricity prices as weights.
9: end for

10: end for
11: end for
12: Apply median smoothing to power setpoints

3.1.2 Mathematical Model
A mathematical model should be formulated to show the objective and constraints of the PST error mini-
mization problem by EV charging scheduling. Table 3.1 presents the list of parameters used in the problem
formulation, and these terms will be referenced throughout the rest of this Chapter 3.

The PST problem for the formulated scenario, charging at a workplace, simulation length T consists of
48 discrete t time steps, representing 15-minute intervals, leading to 12 hours in total. The problem was
designed to optimize charging between 6 am and 6 pm, aiming to resemble real-world conditions for a
workplace. Additionally, i represents each charging station for EVs to connect and is part of the set of
charging stations C. The set of charging stations (C) are connected to a transformer to introduce power
limits (P tr, P

tr) to the simulation. Furthermore, there is a set of EVs indicated by H set and each EV by
j, to have a distribution of different EVs according to their proportion in the total number of registrations
in the Netherlands by 2023. The EV specifications are shown in Table 3.2 at the end of this Chapter 3.
Lastly, the binary variable u is introduced to show if an EV is connected to a charging station i at time step t.
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Table 3.1: List of parameters

Model Parameters Symbol Range - Value
Simulation Timescale ∆t 1 Step - 15 minutes

Simulation Length T 48 Steps - 12 hours
Power Setpoint Flexibility Factor κ 5%

EV Min. & Max. Charging Power (kW) P ch, P
ch 0, 22

Min. & Max. Battery Capacity (kWh) E,E 32, 75
Charge Efficiency η 90%
Battery Capacity at Arrival (kWh) Earr

SoC (%) 0 - 1
Time of Arrival & Time of Departure (t) tarr, tdep 6:00 am - 6:00 pm
Set of EVs Hj

Charging Station Min. & Max. Charging Station Current (A) Ich, I
ch 0, 56

Charging Power (kW) P ch

Voltage (V) & Phases V, ϕ 230, 3
Transformer Min. & Max. Power (kW) P tr, P

tr 0, 60
Set of Connected Charging Stations Ci 10

Charging Related Power Setpoints (kW) P set

Parameters Total Charging Power (kW) P tot

Binary Variable for Charging ui,t 0, 1

Objective Function
The objective function of the PST problem is to minimize the squared difference between the power setpoints
(P set

t ) and the total charging power (P tot
t ) at each time step. The algorithm controls the charging current

Ichi,t at each time step t and charging station i, while t ∈ T and i ∈ C.

min
Ich
i,t

∑
t∈T

(
P set
t − P tot

t

)2 (3.1)

Constraints
The power at each time step t and charging station i is calculated by the Equation (3.2). The controlling
current Ichi,t is multiplied by the voltage V , phases ϕ, charging efficiency η, and with the binary variable ui,t

to indicate if an EV is connected to a charging station i.

P ch
i,t = Ichi,t · V ·

√
ϕ · η · ui,t ∀i, ∀t (3.2)

The total charging power P tot
t at step t is the sum of charging power at each charging station i, shown with

the Equation (3.3).

P tot
t =

∑
i∈C

(
P ch
i,t

)
∀i, ∀t (3.3)

The calculated total charging power P tot
t at step t complies with the transformer’s lower and upper limits,

P tr
t , P

tr
t as shown by the Equation (3.4).

P tr
t ≤ P tot

t ≤ P
tr
t ∀t (3.4)

The charging current of each connected EV (Ichi,t) complies with the minimum (Ichi ) and maximum (Ichi )
current limits of each charging station i, shown with the Equation (3.5).

Ichi ≤ Ichi,t ≤ I
ch
i ∀i, ∀t (3.5)

Next to the constraints related to charging stations and the transformer, there are several EV-related con-
straints and equations. The energy inside each EV (Ei,j,t) connected at charging station i at step t complies
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with each EV’s varying lower and upper battery capacity constraints, Ei, Ei, with respect to its model j as
shown in Equation (3.6).

Ei,j ≤ Ei,j,t ≤ Ei,j ∀i, ∀t (3.6)

The batteries’ energy, SoC, changes according to the Equation (3.7). The charging power P ch
i,t is multiplied

with the ∆t and added to the energy level in the previous time step indicated with Ei,j,t−1.

Ei,j,t = Ei,j,t−1 +
(
P ch
i,t

)
·∆t ∀i, ∀t (3.7)

The charging power at charging station i at time step t complies with each EV model’s different minimum
and maximum charging power limits, P ch

j , P ch
j .

P ch
j ≤ P ch

i,j,t ≤ P
ch
j ∀i, ∀j, ∀t (3.8)

The arrival time of EVs is known. Therefore, the energy level of each EV at its arrival at a charging station
i is indicated by Earr

i,t in Equation (3.9).

Ei,t = Earr
i,t ∀i, ∀t|t = tarri (3.9)

The binary variable ui,t at Equation (3.10) indicates if an EV is connected to a charging station i at time
step t.

ui,t ∈ {0, 1} ∀i, ∀t (3.10)

3.2 Proposed RL Formulation
This section outlines the learning and implementation processes of the proposed DDPG algorithm within
the EV2Gym environment [30]. Initially, the design of the state and action space is detailed in Section
3.2.1, highlighting the components of the state function and the implementation of continuous actions in
the environment. Following this, the alternative reward functions are introduced in Section 3.2.2. The DDPG
algorithm’s structure, its operational workflow, and learning performance are then elaborated in Section 3.2.3.
While the design of the state and reward function is critical for training the DDPG algorithm, the hyperpa-
rameters are equally important, which is explored in Section 3.2.4. The hyperparameters section includes
an examination of essential hyperparameters such as the learning rate (α), target network update rate (τ),
action noise (N ), discount factor (γ), mini-batch size (M), replay buffer size (R), and the dimensions of
the utilized DNNs.

3.2.1 State and Action Spaces
The design of the state and action spaces is critical for the success of the algorithms in RL. It is essential
to include only the variables that are relevant and useful in the state function, which enables the RL agent
to learn more efficiently, considering the reduced complexity of its input variables. Keeping the size of the
state vector in balance is also essential. If too many variables are included in the state vector, it may cause
complexity again and result in longer computation times. On the other hand, if too few variables are included,
it may not provide enough information for the agent to learn. Therefore, the state function variables should
include only the minimum number of essential variables that directly influence the agent’s ability to predict
future states and make decisions to find an optimal policy.

After extensive experimentation with various state representations the one presented here provided the best
results. The proposed state of the PST problem has 3 variables regardless of the number of charging stations
and an additional 3 variables which initialize when an EV is connected to a charger i. When an EV is not
connected, zeros replace these 3 variables to keep the state vector size constant. The total size of the state
vector is 3 + 3C for each time step t, C being the total number of chargers. The 3 variables, regardless of
the number of charging stations, are the environment’s normalized time step t/T , power setpoint P set

t , and
the total power usage P tot

t−1. The remaining 3 variables that concern the number of charging stations C are
EVs’ normalized arrival and departure times tarr/T, tdep/T and SoCt of each EV at step t. It is aimed to
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simplify the state space and improve the consistency of time perception by utilizing normalized time in the
state vector, enhancing the DDPG agent’s ability to learn optimal policies effectively. Additionally, it should
be noted that using normalized time as a component of the state representation is a novel contribution of
this study. Finally, these variables together form the state vector:

st = [ tT , P
set
t , P tot

t−1,
tarr
i

T ,
tdepi

T , SoCi,t] ∈ S, i ∈ C

Actions inside the environment are taken with respect to the constraints mentioned between the Equations
(3.2) and (3.10). The charging of EVs is controlled by the charging current Ichi,t. The actions take continuous
values between 0 and 1 to adjust the charging levels for each charging station, with 0 being not charging at
all and 1 being charging at full power, leading to an action vector at ∈ [0, 1] for each charger. Hence, the
action vector of the environment is the size of the total number of chargers, C, formulating the action vector:

at = [0, 1]C ∈ A

3.2.2 Reward Function
RL agents aim to identify the best policy for actions based on the rewards they get from interacting with
the environment. These agents focus on enhancing their total discounted reward over time, representing
their overall success. As such, the structure of the reward function plays a significant role in the RL agent’s
learning process. The objective function of the PST problem, as mentioned in Equation (3.1), is formulated
for the RL agent’s reward function. The first reward function R1 in Equation (3.11) is very similar to the
objective function of the mathematical optimization problem. It calculates the negative squared difference
between the power setpoints and the total power usage at each time step of the simulation. The reward is
negative because the agent tries to maximize its total discounted reward throughout the simulation.

R1 = −(P set
t−1 − P tot

t−1)
2 (3.11)

The second proposed reward function introduces an additional factor named “charge power potential”, with
the goal of incorporating the charging requirements of EVs into consideration. Ipoti,t represents the total
potential of charging based on the number of EVs connected, considering their SoCs and both the current
and power limitations of the connected EVs and charging station i. The calculation of the charge power
potential is performed using Equation (3.12).

P pot
t =

∑
i∈C

(Ipoti,t ) · V ·
√
ϕ · η ∀i, ∀t (3.12)

Given that the actual charging demand may fall below the calculated power setpoints, this function seeks to
minimize the difference between actual power usage and the power setpoints, or the charge power potential,
whichever is lower. This approach ensures a more efficient matching of charging power to charging demand.
The proposed reward function is shown with the Equation (3.13).

R2 = −(min(P pot
t−1, P

set
t−1)− P tot

t−1)
2 (3.13)

The performance of both reward functions is investigated in Section 4.1. The remaining experiments are
done with the selected reward function that yielded the best outcome, reward function R2.

3.2.3 DDPG Algorithm
The DDPG algorithm is a model-free, off-policy actor-critic algorithm designed for environments with con-
tinuous state and action spaces. Using discrete action spaces for EV charging problems was mentioned in
the literature as a limitation in several researches [47][48]. Therefore, the DDPG algorithm is considered
a more promising alternative for solving EV charging problems than RL algorithms such as DQN and Q-
learning. Furthermore, DDPG offers a deterministic approach to finding the best policy. As Silver states
[42], deterministic policy gradient algorithms can outperform their counterparts, which use stochastic policy
algorithms, such as SAC. Hence, the DDPG algorithm is selected among other RL algorithms to solve the
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PST problem.

Figure 3.2 shows the formulation of the PST problem and the interactions the RL agent takes in the envi-
ronment. Here is a detailed explanation of how the algorithm operates:

Figure 3.2: DDPG’s operation

Step 1: Initialization
Initialize the actor-network µθ(s), parameterised by θ that maps states to actions, S → A, and the critic
network Qφ(s, a), parameterised by φ that estimates the Q-value of state-action pairs, Qφ(s, a). The actor
outputs a deterministic action µθ(s) for the current state st, whereas the critic does the policy evaluation
task. The critic assesses the actor policy by estimating the Q-value function, Qφ(s, a). This estimation is
made by minimizing the loss function, Lφ shown with the Equation (3.14). By continuously minimizing the
loss function and updating the actor-network parameters θ, the actor policy π improves, leading to better
results. However, this updating process takes part in the learning step.

L(φ) = (rt + γQφ(st+1, µ(st+1))−Qφ(st, at))
2 (3.14)

Initialization continues with target networks µ′
θ(s) and Q′

φ(s, a) for the actor and critic to provide stable
targets. Then, a replay buffer to store transition tuples (st, at, rt, st+1), for breaking the correlation between
samples, is initialized.

Step 2: Exploration and Experience Collection
For each time step t, the agent selects an action µθ(st) using the actor-network for the current state st and
adds an Ornstein–Uhlenbeck (OU) noise [57] Nt for exploration. As Hollenstein et al. [58] state, introducing
an action noise and its type and scale have a crucial effect on RL agents for learning. After adding the noise,
the algorithm executes action at in the environment to observe the next state st+1 and receive the reward rt.
Following that, the algorithm stores the transition (st, at, rt, st+1) in the replay buffer R. The parameter
weights for the actor and critic networks update only after collecting a sufficient number of experience replays
in the replay buffer. In our experiments, the RL agent begins its learning process once 100 transitions have
been collected in the proposed DDPG algorithm.
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Step 3: Learning
The replay buffer R has the capacity to store a number of transitions. In the proposed approach, this
capacity is selected as 106. When the replay buffer is full, the oldest samples are discarded so the agent
can learn from the latest experiences. Because DDPG is an off-policy algorithm, the replay buffer can be
large, allowing the algorithm to benefit from learning across a set of uncorrelated transitions [59]. Then,
the algorithm samples a mini-batch of a total of M transitions (sb, ab, rb, sb+1) from the replay buffer R
to update actor and critic network weights. Then, for each sampled transition, the algorithm calculates the
target Q-value as shown in Equation (3.15), where γ is the discount factor. The discount factor affects the
importance of immediate and future rewards.

yb = rb + γQ′
φ(sb+1, µ

′
θ(sb+1)) (3.15)

Consecutively, the algorithm updates the critic network by minimizing the loss between its predicted Q-values,
Qφ(sb, ab) and the target Q-values Q′

φ(sb+1, µ
′
θ(sb+1)) shown with the Equation (3.16).

Lφ =
1

M

∑
b

(yb −Qφ(sb, ab))
2 (3.16)

Later, the actor policy is updated using the sampled policy gradient aimed at actions that maximize the
critic’s predicted Q-values according to Equation (3.17).

∇θµ =
1

M

∑
b

∇aQφ(sb, µθ(sb))∇θµθ(sb) (3.17)

After the actor policy update, the weights for both the main and target of the actor and critic networks are
updated. Here, αµ represents the learning rate in the gradient ascent process for updating the actor network
and αQ denotes the learning rate for the gradient descent process applied to the online critic network in
Equations (3.18) and (3.19).

θ ← θ + αµ∇θµ (3.18)

φ← φ− αQ∇φL(φ) (3.19)
Lastly, the weights of the target networks µ′

θ and Q′
φ are updated towards the main networks using a soft

update τ as shown by the Equations (3.20) and (3.21).

θ′ ← τθ + (1− τ)θ′ (3.20)

φ′ ← τφ+ (1− τ)φ′ (3.21)
Step 4: Repeat
Repeat the process for each time step and episode, allowing the policy to converge towards the optimal
policy that maximizes the expected return, which is mean rewards. Finally, the algorithm saves the trained
RL model after the defined number of episodes is reached. The total number of episodes indicated by U to
train the RL agent is selected as 25,000.
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Pseudocode of the DDPG Algorithm
The explained consecutive steps of the DDPG algorithm are represented in Pseudocode 2 below:

Algorithm 2 DDPG algorithm - Training Process
1: Initialize actor µ and critic network Q with weights θ and φ.
2: Initialize target networks Q′ and µ′ with weights θ′ ← θ, φ′ ← φ
3: Initialize replay buffer R
4: for episode = 1, . . . ,U do
5: Receive initial observation state s1, including normalized time step, power setpoints, SoC of connected

EVs, and EV arrival and departure times.
6: Initialize a random OU noise N for action exploration
7: for t = 1, . . . , T do
8: Select action at = µθ(st) +Nt according to the current policy and exploration noise
9: Execute action at and observe reward rt and observe new state st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample a random minibatch of M transitions (sb, ab, rb, sb+1) from R
12: Set yb = rb + γQ′

φ(sb+1, µ
′
θ(sb+1)

13: Update critic by minimizing the loss: Lφ = 1
M

∑
b(yb −Qφ(sb, ab))

2

14: Update the actor policy using the sampled policy gradient:
∇θµ = 1

M

∑
b∇aQφ(sb, µθ(sb))∇θµθ(sb)

15: Update the actor and critic networks:
θ ← θ + αµ∇θµ
φ← φ− αQ∇φL(φ)

16: Update the target networks:
θ′ ← τθ + (1− τ)θ′

φ′ ← τφ+ (1− τ)φ′

17: end for
18: end for
19: Save the trained model after reaching U episodes

3.2.4 Hyperparameters
Hyperparameters are a set of parameters that determine the learning process of the RL agent. They play a
vital role in how the agent learns to make decisions that maximize its long-term rewards by finding an optimal
policy. Utilized hyperparameters and their effect on the learning process of the RL agent are explained in
this section.

Learning Rate (α): The learning rate of an RL agent refers to the speed at which it updates both the
main and target networks of its actor and critic. A higher learning rate means that the agent learns faster
and makes more significant updates. However, this can result in overshooting or missing an optimal policy.
Conversely, a lower learning rate means that learning is steadier but slower, and more time may be required
to converge on the optimal policies.

Replay Buffer Size (R): The replay buffer size determines how many of the past replays the RL agent can
store to learn from. A larger replay buffer allows the agent to learn from a wider range of its tuple, including
past states, actions, rewards and past subsequent states.

Action Noise (N ): Introducing noise to the actions increases the environment exploration of the RL agent.
This increased exploration can help the agent discover optimal policies that would not have been discovered
otherwise. It is important to note that the type and amount of noise introduced can have a significant
impact on the degree of exploration undertaken by the agent.
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Figure 3.3: Mean rewards with different action noises N

Figure 3.4: Actor Loss Figure 3.5: Critic Loss

In the graphs presented in Figures 3.3, 3.4, and 3.5, the results of experiments conducted with three different
action noise (N ) values can be observed. The green line, which represents the highest noise level, shows that
the most variation in the agent’s rewards, especially in critic loss. It can be deduced that a higher degree of
variation indicates that the agent is more prone to exploration.

Deep Neural Networks Architecture: The actor and critic networks are used by the agent to make deci-
sions and evaluate its actions. Thus, the size of the DNNs plays a vital role in the agent’s ability to learn
the dynamics and complexity of the environment. If the size of the DNNs is small, they may not capture
the complexity of the environment. Conversely, if they are large, they may not capture the relationships
between states and actions. In this research, the DNNs’ sizes implemented can be seen in Figure 3.6. The
actor network has 128 neurons in each of its main and target networks. Figure 3.6 also shows that the
input of the actor network is the state vector, which consists of |3+ 3C| variables as shown in Section 3.2.1.
After passing through the 128-128 sized main and target networks, the actor network outputs the actions,
consisting of C neurons, each neuron indicating the action taken for each EV charger. The state and action
vectors are then combined and used as the input of the critic network. These two inputs pass through the
critic network to form the Q-value function. As a result, the size of the DNNs is a crucial hyperparameter
that significantly impacts the RL agent’s learning process.
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Figure 3.6: DNNs architecture

Minibatch Size (M): The minibatch size is the number of experiences that the agent uses to update its
parameters (θ, φ). Using a larger batch size can make learning more stable by averaging out noise and
outliers in the replay buffer. However, it also increases the risk of exploiting a sub-optimal solution because
the agent may not explore the environment sufficiently.

Soft Update (τ): The soft update parameter, denoted by τ , plays a crucial role in ensuring stable learning.
It determines the pace at which the target networks are updated with the weights from the actor and critic
networks. A smaller value of τ leads to incremental changes, which helps maintain training stability by avoid-
ing sudden shifts in policy that could result from more aggressive updates. The value of τ lies between 0 and 1.

Discount Factor (γ): The discount factor, denoted by γ, decides the worth of future rewards in comparison
to immediate ones. Its value ranges between 0 and 1. A discount factor of 1 means that each reward during
the simulation is equally valuable for the agent’s learning process.

Hyperparameters are crucial for training an RL agent to learn an optimal policy and produce accurate test
results. Although some hyperparameter values lead to convergence of the return, the mean reward curve,
they may not perform well during testing due to reaching sub-optimal policies. Therefore, it is important to
check if the agent learned an optimal policy during training and test the saved RL model with evaluation
replays to check if it is capable of achieving reliable results. It is worth noting that some hyperparameter
values may not lead to any convergence in the mean reward curve of the agent. The evaluation of results
achieved with various hyperparameter sets is shown in Appendix A. Lastly, the testing of the hyperparam-
eters with actual scenarios is done in the next Chapter 4 in Section 4.1 by first explaining the case study
parameters in Table 4.1 and comparison metrics in Table 4.2.

Open Source Data
For the PST workplace problem, the EV spawn rate, time of stay and energy required were determined
using distributions derived from the ElaadNL data [60] on EVs in the Netherlands. Only weekday data was
used to ensure a more realistic and specific analysis of EV behaviours in a workplace context. Additionally,
to determine the power setpoints, electricity prices were obtained from open source data of the European
Network of Transmission System Operators for Electricity (ENTSO-e) [61] between the years 2015-2023.

Yunus Emre Yılmaz Master of Science Thesis



3.2. Proposed RL Formulation 27

Furthermore, based on consecutive surveys conducted by Rijksdienst voor Ondernemend Nederland (RVO),
the total number of registered BEVs in the Netherlands in 2023 are obtained as shown in Table 3.2 with
their specifications such as battery capacity and maximum charging power. The distribution of EVs charging
in the parking lot is based on their proportion in the total number of registered BEVs in the Netherlands.
By combining EV specifications with actual electricity pricing and real EV usage patterns for a workplace
setting, the simulation becomes more realistic and applicable to real-life situations.

Table 3.2: Total number of registered BEVs in the Netherlands in 2023 [62, 63, 64, 65]

BEV Model Registrations 2023 NL Battery Capacity (kWh) Max AC
Charge Power (kW)

Tesla Model 3 45545 57.5 11
Kia Niro 23105 64.8 11
Volkswagen ID.3 19950 58 11
Hyundai Kona 17752 64 11
Tesla Model Y 16186 57.5 11
Skoda Enyaq 16165 58 11
Peugeot 208 14017 46.3 7.4
Renault Zoe 14008 52 22
Volkswagen ID.4 13283 77 11
Volvo XC40 12520 66 11
Nissan Leaf 11977 39 3.6
Tesla Model S 10899 75 11
Volkswagen Golf 10019 32 7.2

In Chapter 3 the formulation of the PST minimization problem specific to a workplace was introduced, and
the corresponding mathematical model was detailed in Section 3.1.2. Subsequently, the design of the state
and action spaces was delved into in Sections 3.2.1 and 3.2.2. The DDPG algorithm’s functionality at each
step of the process was then described. This was followed by an explanation of the hyperparameters used, as
outlined in Section 3.2.4. Consecutively, the open-source data utilized to train the RL agent was described
before delving into the case study in the next Chapter 4.
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Results and Discussions

In this chapter, the performance of the proposed DDPG algorithm for solving the PST error minimization
problem from the CPO’s perspective is presented. A case study is conducted in Section 4.1, where the PST
problem is formulated for a workplace parking lot with a total of 10 EV chargers, as explained in Chapter 3, in
the Problem Formulation Section 3.1. DDPG’s performance is then investigated in terms of complying with
transformer power limits in Section 4.1.3, followed by an investigation of the proposed algorithm’s scalability
with the number of decision variables (chargers) in Section 4.1.4. Finally, the chapter ends with a discussion
of the proposed DDPG algorithm’s capabilities and limitations considering the achieved results in Section 4.2.

4.1 Case Study - Charging at Work
The problem’s properties are explained in detail in Chapter 3, in the Problem Formulation Section 3.1. In
short, the charging of EVs is controlled by a CPO to ensure profitable operation by PST. The CPO buys
energy in advance from the day-ahead market and allocates it for the following day’s EV charging sessions.
Once the energy is contracted, the CPO assigns a power setpoint for each time step of the upcoming day. For
this case study, the time step was chosen as 15 minutes, considering the wholesale market energy contracting
time steps. This power setpoint must be adhered to by scheduling the EV charging sessions accordingly.
Deviating from these power setpoints can lead to buying additional energy at higher rates in the intraday
market or risking customer dissatisfaction due to partially charged EVs. To prevent such scenarios, the CPO
tries to minimize the PST error by scheduling EV charging sessions.

4.1.1 Training and Testing Settings
Table 4.1 displays the parameters of the case study. The time step, represented by t, refers to the duration
of each simulation step. The simulation length, denoted by T , is the duration of one replay, which is 12
hours in total. This is due to the fact that EV arrival and departure times are constrained between 06:00
and 18:00. This limitation aims to simulate real-world conditions and improve the RL agent’s learning by
training the agent with similar EV patterns.

Furthermore, data from ElaadNL [60] gives the EV arrival patterns, duration of stay, and charging needs
for a workplace, while electricity prices are drawn from ENTSO-e’s open-source data [61]. This information,
combined with specific EV data from the RVO’s surveys shown in Table 3.2 in the previous chapter, ensures
to provide practical information on the PST problem in the workplace.

Additionally, the power setpoints are determined with a 5% flexibility margin, which is denoted by κ. This
means that the CPO contracts 5% more energy in the day-ahead market than the total charging demand for
the subsequent day for each replay.
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Table 4.1: Case Study Parameters

Parameters Symbol Value Range
Time step t 1 15 minutes
Simulation length - One replay T 48 720 minutes - 12 hours
EV arrival and departure times ElaadNL data [60] 06:00-18:00
Electricity prices c ENTSO-e [61]
EV models Hj BEVs in NL in 2023 from Table 3.2
Number of chargers Ci 10
Power setpoint flexibility κ 5%
Transformer limit P

tr 60 kW

The upper limit for the transformer power, denoted as P tr, is determined by multiplying the highest achieved
level of power setpoints in the replays by 2. These power setpoints are determined with respect to the total
charging demand and are described in detail in Chapter 3 Section 3.1. This approach aims to ensure the
reliable operation of the EV chargers, given that they are located in a commercial building and are connected
to the same transformer as the building’s loads.

Baseline Algorithms
To evaluate the performance of the proposed DDPG algorithm, it is crucial to compare its results against
those of other established approaches. For this purpose, two benchmark algorithms have been selected. The
first benchmark is an optimal solution that relies on precise information regarding the arrival and departure
times of EVs as well as their SoC. It is worth mentioning that while the optimal algorithm will achieve
theoretically optimal results, practically, it is not possible to achieve these results due to uncertainties such
as arrival and departure times and SoC of EVs. The second is a baseline scenario labelled “charge as fast as
possible” (CAFAP), in which EVs initiate charging immediately upon connection and drawing the maximum
power permitted by either the EV or the connected EV charger.

Table 4.2: Comparison Metrics

Metric Symbol Equation
Squared Tracking Error ϵtr

∑
t∈T (P

set
t − P tot

t )2

Energy Tracking Error (kWh) |ϵtr|
∑

t∈T |P set
t − P tot

t | ·∆t

User Satisfaction (%) ϵusr 1
|E| ·

∑
k∈E

SoCk

SoC∗
k

Power Tracker Surplus (kW) ϵsur
∑

t∈T max((P tot
t − P set

t ), 0)

Transformer Overload (kW) ϵov
∑

t∈T max((P tr
t − P

tr
), 0)

The comparative analysis utilizes various metrics, which are detailed in Table 4.2. One key metric is the
squared tracking error (ϵtr). This metric is not only the objective function for the mathematical optimization
problem formulation but also similar to the reward function for the proposed DDPG algorithm with a slight
difference. The agent is designed to maximize the negative value of this reward, which underscores its sig-
nificance as a comparison metric. Another metric, the energy tracking error, symbolised by |ϵtr|, determines
the aggregate energy error for a replay, a day of charging, by multiplying the PST error at each time step
with the error duration and summing the resulting energy error in kWh units.

Furthermore, the user satisfaction metric, denoted by ϵusr, reflects the increase in EVs’ SoC and shows how
much of the EV’s battery is full with respect to the desired SoC level (SoC∗

k) which is determined as 80%.
This threshold ensures that the charging process does not adversely impact battery lifespan. Ultimately, if
the battery is not charged until the desired SoC (80%) before the EV’s departure, user satisfaction decreases
to the ratio of the EV’s SoC (SoCk) at departure divided by the desired SoC (SoC∗

k). The average sum of
this calculated value for each served EV k gives the user satisfaction for one charging session. Additionally,
the power tracker surplus metric (ϵsur) measures the extent to which actual charging exceeds the power
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setpoints at each simulation step, with the result expressed in kW units.

The final metric is the transformer overload metric (ϵov), which indicates the total amount of charging power
that exceeds the determined transformer power limit. The results obtained with respect to the transformer
overload metric are investigated explicitly in Section 4.1.3.

The RL agent is trained using the case study parameters listed in Table 4.1. To train the agent, a sufficient
number of replays (episodes) are determined as 1,200,000 time steps of 15 minutes each, summing up to
25,000 episodes. This forms a total of 25,000 days consisting of 12 hours each. The agent’s learning per-
formance is evaluated based on its return, which means the mean reward’s convergence and maximization.
However, this value alone is insufficient to choose the hyperparameter values and the reward function due
to the possible convergence of the agent by a sub-optimal policy. Therefore, a set of 100 random replays
consisting of only weekdays are created with the same case study parameters listed in Table 4.1. These
100 random replays are then tested using three benchmark algorithms: the trained RL model named DDPG,
an uncontrolled CAFAP algorithm, and the Optimal result achieved by a MINLP formulation of the PST
problem that assumes complete knowledge of the problem, such as EV arrivals and departures, which is not
realistic. However, it can provide an experimental optimal boundary for the best performance. The results
obtained from these approaches are then evaluated based on the comparison metrics listed in Table 4.2.

Reward Function Determination
Two reward functions come forward as promising alternatives for the PST problem. R1, as shown in Equation
(3.11), is the negative squared difference between power setpoints and total power usage in the previous
step of the simulation. On the other hand, the second proposed reward function R2 utilizes one additional
term named charge power potential in its formula as presented in Equation (3.13). The reward is the nega-
tive squared difference between the power usage and the minimum of power setpoint and the charge power
potential in the previous step. As can be seen from Figure 4.1, both of the reward functions maximized the
mean reward and converged in the training duration.

Figure 4.1: Mean rewards during training suggesting that both reward functions converged, necessitating further analysis to complete
the reward function selection

After training, the trained models should be evaluated based on their performance using comparison metrics.
The performances of R1 and R2 are shown in Table 4.3, where the reward functions are compared with
CAFAP and MINLP optimal charging for a total of 100 replays. The use of R2 results in significantly lower
squared tracking error and energy tracking error compared to R1. Moreover, R2 performed 74% better
over R1 in terms of power tracker surplus metric. However, R1 performed better than R2 in terms of user
satisfaction metric. Yet, having an average user satisfaction of 86% and improving all other metrics by
reducing the PST error makes R2 a more acceptable choice compared to a slightly higher user satisfaction
obtained by R1. Therefore, R2 is selected as the reward function of the DDPG algorithm for the rest of this
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experimental results chapter.

Table 4.3: Reward functions evaluation

Algorithm Squared Tracking Error (kW 2) Energy Tracking Error (kWh) User Satisfaction (%) Power Tracker Surplus (kW )
ϵtr |ϵtr| ϵusr ϵsur

Average Std Average Std Average Std Average Std
CAFAP 12045.21 3689.83 150.19 23.40 1.00 0.00 290.20 45.56
DDPG - R1 10201.09 3724.10 139.65 25.13 0.94 0.02 208.32 46.57
DDPG - R2 6311.55 2165.49 110.43 20.24 0.86 0.03 53.68 24.87
Optimal - MINLP 194.75 110.58 12.63 4.66 0.98 0.01 0.00 0.00

After the determination of the reward function with the hyperparameters shown in Table 4.4, the model’s
hyperparameters are tuned further. The RL model is trained on more than 100 varied hyperparameter sets,
and the tested hyperparameter sets are shown in Appendix A to find the best set. Furthermore, convergence
of the mean reward is observed in several of these tests. However, convergence of the mean reward does
not always mean that the agent has found an optimal policy; convergence can also happen due to finding a
sub-optimal policy. Therefore, the performance of the trained model is evaluated on 100 randomly generated
replays, according to the defined comparison metrics shown in Table 4.2. The results are shown in the next
Section 4.1.2.

Table 4.4: Best reward function search hyperparameter set

Replay Buffer (R) Minibatch (M) Discount factor (γ) Soft update (τ) Learning rate (α) Noise (N ) Actor N (µθ) Critic N (Qφ)
1000000 64 0.99 0.001 0.001 0.1 128-128 64-64

After testing and training with over 100 hyperparameter sets, the best results are obtained with the hyperpa-
rameters listed in Table 4.5. There is a slight difference in the chosen hyperparameter set compared to the
ones in Table 4.4 because a slight decrease in the PST error was obtained by utilizing the hyperparameter
set in Table 4.5. This is achieved by increasing the action noise (N ) to increase the agent’s exploration
rate and decreasing the soft update (τ) to prevent updating the target networks too quickly with increased
exploration noise. This resulted in a better balance between the action noise and target update.

Table 4.5: Selected hyperparameter set

Replay Buffer (R) Minibatch (M) Discount factor (γ) Soft update (τ) Learning rate (α) Noise (N ) Actor N (µθ) Critic N (Qφ)
1000000 64 0.99 0.0005 0.001 0.2 128-128 64-64

In Figure 4.2, the mean rewards achieved by using the selected hyperparameter set can be observed. It can be
seen that the mean rewards start to converge after the 5000th episode; however, to guarantee convergence,
the training lasted 25,000 episodes. Additionally, it can be observed that the mean rewards converged to a
higher number in comparison to the level achieved in Figure 4.1. This result also suggests that the selected
hyperparameter set might outperform the training hyperparameter set.
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Figure 4.2: Mean rewards from 10 training sessions with selected hyperparameter set

4.1.2 Results
The trained RL model was evaluated using 100 replays to compare its performance with the selected CAFAP
and Optimal-MINLP charging algorithms. Comparison metrics were used for the evaluation. Figure 4.3
shows the variations in charging approaches among all the algorithms. It is important to note that Figure
4.3 represents data from only one replay, while the evaluation of the hyperparameters and the DDPG algo-
rithm is based on average values derived from 100 replays. Table 4.6 at the end of this section summarizes
the obtained average values and their standard deviations for 100 replays.

Figure 4.3: Power setpoints and actual power usage from one replay outputs the charging power alongside with predetermined power
setpoints at each 15-minute time step throughout a day for three benchmark algorithms

Regarding Figure 4.3, the CAFAP algorithm is designed to charge EVs as quickly as possible. However, this
approach tends to overshoot the power setpoints and inefficiently utilizes the contracted energy, as shown
in the first plot. This overshooting not only leads to higher costs for the CPO when buying energy in the
intraday market, but it may also pose risks to the transformer of the commercial building. On the other
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hand, the DDPG algorithm aims to minimize the PST error by extending the charging duration rather than
charging immediately. This strategy optimizes energy usage and reduces potential costs and risks associated
with power overshoots.

Lastly, the Optimal charging algorithm, which is calculated using the Gurobi Solver, is capable of achieving
the theoretical optimum in terms of minimizing the PST error for the formulated problem setup. However,
it is worth noting that due to the inherent uncertainties in EV charging, such optimal outcomes are not
possible to achieve in practical scenarios.

To thoroughly evaluate algorithm performances, it is essential to consider multiple replays, typically around
100, and analyze the average values followingly. This approach is necessary to make an accurate assessment
using the comparison metrics. It is also crucial to understand how the RL model, once trained, behaves in
randomly generated replays within its training environment.

The first metric, which is the squared tracking error, is compared across all algorithms according to their
performance for each replay in Figure 4.4. This metric is also the objective function that the Optimal algo-
rithm aims to minimize, and it is very similar to the reward function of the DDPG. Therefore, it is important
to make a comparison using this metric. The results indicate that the DDPG algorithm outperformed the
CAFAP algorithm consistently in almost all replays. However, the Optimal algorithm performed better than
both DDPG and CAFAP in terms of performance. This is an expected result due to the Optimal algorithm,
the theoretical optimal for the formulated problem setup.

Figure 4.4: Squared tracking error throughout 100 evaluated replays

Following the evaluation of each replay, the average squared tracking error and its standard deviation obtained
from 100 replays are compared in Figure 4.5. It can be observed that the DDPG algorithm outperformed
CAFAP with a significant difference in their average performance. The highest value of DDPG, which is an
outlier, is at the same level as the average of CAFAP. On the other hand, the Optimal performed better
than both as expected.
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Figure 4.5: Averages and standard deviations of squared tracking error throughout 100 evaluated replays

After comparing the squared tracking error, another important metric, energy tracking error was analyzed for
all three algorithms in Figures 4.6 and 4.7. This metric shows the exact deviation from the contracted power
setpoints, and thus, it is particularly important. Similar to the squared tracking error results, the proposed
DDPG algorithm outperformed the CAFAP algorithm significantly in almost every replay.

Figure 4.6: Energy tracking error throughout 100 evaluated replays

Furthermore, the DDPG achieved much lower energy tracking errors than CAFAP, averaging around 50 kWh
less per replay, as shown in Figure 4.7 and in Table 4.6. Once again, the Optimal benchmark algorithm
demonstrated superior performance, surpassing both DDPG and CAFAP in minimizing deviations from power
setpoints.

Figure 4.7: Averages and standard deviations of energy tracking error throughout 100 evaluated replays
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It is important to evaluate how well each algorithm manages to stay within or exceed the power setpoints.
The power tracker surplus is one such comparison metric. The power setpoints represent the planned power
levels for charging EVs, and exceeding them will result in profit loss for the CPO and may also cause capacity
issues for the transformers in commercial buildings. Figure 4.8 shows that for every replay the DDPG algo-
rithm managed to perform much better than CAFAP in terms of adhering to the power setpoints. This result
was expected because CAFAP prioritizes charging as fast as possible without considering the power setpoints.

Figure 4.8: Power tracker surplus throughout 100 evaluated replays

Moreover, it is worth noting that the lowest power tracker surplus obtained by CAFAP is actually an outlier
and it exceeds the maximum value obtained by the DDPG, as can be seen from Figure 4.9. On the other
hand, the lowest tracker surplus of DDPG is equivalent to the average of the Optimal. This indicates that
DDPG outperforms CAFAP by a significant margin, and in some instances, it even performs almost as well
as the Optimal.

Figure 4.9: Averages and standard deviations of power tracker surplus throughout 100 evaluated replays

Table 4.6 provides further quantification of this difference. The DDPG algorithm exceeded the power set-
points by an average of 61.73 kW per replay, while the CAFAP algorithm significantly surpassed this, with
an average of 283.77 kW per replay. This contrast highlights a key benefit of the proposed DDPG algorithm,
which focuses on managing power usage within planned limits, unlike CAFAP’s approach, which prioritizes
speed over efficiency.

The user satisfaction metric was selected to evaluate how satisfied EV users are upon departure. As depicted
in Figure 4.10, both the CAFAP and Optimal algorithms enabled EVs to be charged to almost their full
battery capacity. This outcome is expected due to the fast charging strategy of the CAFAP and the Optimal
algorithm’s status as a benchmark.
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Figure 4.10: User satisfaction throughout 100 evaluated replays

However, the DDPG algorithm did not perform as well as the other benchmark algorithms in this metric by
achieving an average user satisfaction rate of approximately 88.6% across 100 replays as shown in Figure
4.11 and Table 4.6. This suggests that while DDPG excels in reducing metrics such as energy tracking error
and power tracker surplus, it does so at the expense of user satisfaction.

Figure 4.11: Averages and standard deviations of user satisfaction throughout 100 evaluated replays

In the context of this study, specifically in a workplace setting where charging can be scheduled during
work hours, a compromise in user satisfaction is considered acceptable. The observed minimum level of
user satisfaction from Figure 4.11 was approximately 81%, which indicates that even though DDPG may
sacrifice some user satisfaction, it still maintains a reasonably high baseline level. This decision demonstrates
a strategic trade-off between minimizing the PST error and maximizing the EV user experience. Yet, it is
worth noting that reaching almost 90% user satisfaction on average while decreasing the energy tracking er-
ror by 34% on average in comparison to CAFAP is considered a significant outcome for the DDPG algorithm.

Furthermore, despite the Optimal algorithm outperforming DDPG in all comparison metrics, DDPG stood
out in terms of speed by optimizing charging in 10 seconds for 100 replays compared to the Optimal algo-
rithm, which required 35 seconds. The difference between the calculation speeds is expected to grow with
the increasing number of chargers, which is investigated in Section 4.1.4.

Table 4.6: Performance of Algorithms

Algorithm Squared Tracking Error (kW 2) Energy Tracking Error (kWh) User Satisfaction (%) Power Tracker Surplus (kW )
ϵtr |ϵtr| ϵusr ϵsur

Average Std Average Std Average Std Average Std
CAFAP 11862.31 4278.17 147.68 25.38 0.997963 0.002 283.77 49.30
DDPG 4972.03 1753.99 97.62 18.65 0.886139 0.030 61.73 27.42
Optimal - MINLP 189.56 129.06 13.16 5.06 0.985195 0.007 0.000257 0.000582
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4.1.3 Transformer Capacity Limit
In this section, the focus is on the transformer overload metric, which gains importance in the context of
the PST error minimization problem for a workplace, considering that EV chargers are connected to the
commercial building’s transformer. Given that these EV chargers share the same transformer as the commer-
cial building, it is important to monitor and manage the power loads to avoid exceeding the transformer’s
capacity, which can lead to significant operational issues.

Typically, the power capacity of a transformer is determined based on the maximum current and voltage spec-
ifications of the connected chargers. However, in this study, a different approach is used. The transformer’s
power capacity limit is set to twice the maximum power setpoint recorded during the simulations. This
approach is used because chargers usually do not operate at their maximum charging power simultaneously.
Additionally, not all EVs require their peak charging power at the same time. Therefore, by calculating
the total charging demand for each simulation replay and taking these usage patterns into consideration, it
becomes feasible to implement the mentioned calculation of the transformer power capacity.

Furthermore, the conventional method of calculating transformer capacities often leads to oversized trans-
formers, based on theoretical maximums. This method ignores the actual usage and results in wasteful and
excessive capacity. On the other hand, the proposed approach adopts a calculated limit that reflects the
actual usage, ensuring that the transformer capacity is effectively utilized without being wasteful.

The maximum power setpoint observed throughout the simulations led to the transformer power limit being
set at 60 kW. Figure 4.12 illustrates transformer overloads for each test replay. Out of the 100 replays, only
the CAFAP algorithm resulted in overloads while the DDPG and Optimal algorithms did not. This indicates
that the proposed DDPG algorithm can effectively reduce power overshoots, which in turn enhances the
flexibility of managing other loads in the commercial building apart from just EV charging.

Figure 4.12: Transformer overloads throughout 100 evaluated replays

Additionally, the CAFAP algorithm may lead to significant power draw variations from the grid, as evidenced
in the 22nd and 30th replays reaching around 50 kW overshoots. This variation underscores the need for a
smart charging approach to avoid stressing the transformer beyond its limits.

4.1.4 Scalability of the Algorithm
In this section, the scalability of the algorithm is tested by training the same RL model with different numbers
of EV chargers using the same set of hyperparameters. Each training and testing results are categorized and
presented by the number of utilized EV chargers.

Initially, the model was trained with 3 chargers to determine whether the hyperparameters tuned for 10
chargers could still yield promising results. This step is crucial for assessing the adaptability of the model
to smaller setups. Subsequently, the model was scaled up to 20 chargers, allowing the performance with an
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increased number of chargers to be evaluated.

Finally, the model was tested with 50 chargers to test an extreme case. While the deployment of 50 EV
chargers in a commercial building is not common practice today, it was recognized that the continuous rise
in EV sales could make such a scenario feasible in the near future. Training the model with 50 chargers also
allowed for the testing of the algorithm’s ability to converge and minimize the PST error without any changes
in the hyperparameters, even at this larger scale. This experiment is key in demonstrating the robustness
and scalability of the RL model in accommodating future growth in EV integration to the grid.

3 Chargers
To begin with, the RL model was trained for 3 chargers, with all parameters being the same as the case
study that was conducted for 10 chargers. The transformer capacity limit was set at 18 kW, due to the
smaller scale of the model with only three chargers. As shown in Figure 4.13, the model’s mean rewards
converged around -40, which indicates that the model found a policy that maximizes its rewards. However,
to confirm whether this policy is beneficial for the PST minimization target, the model needs to be tested
with 100 randomly generated replays.

Figure 4.13: Mean rewards for 3 chargers from 10 training sessions

The model is tested with randomly generated replays after its training. The results indicate that the agent
found a policy that reduced the PST error while maintaining a higher user satisfaction than the 10 chargers
application. Although the agent found a sub-optimal policy, it is still effective on smaller scales. However,
the energy tracking error was not reduced as much as in the case study for 10 chargers. Nonetheless, the
results demonstrate the model’s capability to be utilized on smaller scales. Additionally, the DDPG algorithm
optimized charging schedules for 100 replays in 7 seconds, while the Optimal took 12 seconds. This is not
a significant difference, however, it should be considered that only 3 chargers were deployed. As the last
comparison metric, the model outperformed the CAFAP algorithm by decreasing the power tracker surplus
by 44.8%. Table 4.7 provides an overview of the results.

Table 4.7: Performance of algorithms for 3 chargers

Algorithm Squared Tracking Error (kW 2) Energy Tracking Error (kWh) User Satisfaction (%) Power Tracker Surplus (kW )
ϵtr |ϵtr| ϵusr ϵsur

Average Std Average Std Average Std Average Std
CAFAP 1646.925 1022.103 48.029 13.864 0.999 0.003 96.416 28.031
DDPG 1090.874 696.094 40.877 12.721 0.912 0.047 53.104 23.519
Optimal 42.631 31.338 4.439 1.868 0.972 0.013 0.001 0.001

20 Chargers
The DDPG algorithm is tested for 20 chargers to evaluate its scalability with an increasing number of EV
chargers. The limit for transformer capacity was set at 120 kW, with the same scaling ratio as the total
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number of chargers. Figure 4.14 shows that the RL agent was able to converge to a local optimal solution
with the policy it found. However, to assess how the found policy performs, it is necessary to evaluate the
results obtained from 100 replays. The mean rewards converged around -3500, which is significantly lower
than the convergence level of the case study conducted for 10 chargers. This was expected since the PST
error also increases with the number of chargers, causing an increase in all error metrics.

Figure 4.14: Mean rewards for 20 chargers from 10 training sessions

After testing the model across 100 replays, the results are summarized in Table 4.8. Notably, the average
squared tracking error decreased significantly, with the DDPG outperforming the CAFAP by a considerable
margin, even when accounting for standard deviations. Similarly, the energy tracking error metric also in-
dicates that the model surpassed CAFAP’s performance. However, the user satisfaction metric reveals a
trade-off that while the model exceeds CAFAP’s results, it does so at the expense of user satisfaction, with a
modest decline of 15%. Despite this decrease, such a reduction is considered acceptable within the context
of overall benefits.

On the power tracker surplus metric, the model significantly outperformed CAFAP, reducing power surplus
by 83%. This reduction is particularly advantageous as it can lower the high costs associated with purchasing
electricity in the intraday market by the CPO and also decrease the risks of overshooting the transformer
power limit.

It is worth noting that optimizing charging schedules for DDPG took only 14 seconds, while it took 65
seconds for Optimal. This highlights that the Optimal algorithm takes significantly more time to solve the
problem as the number of chargers increases.

Table 4.8: Performance of algorithms for 20 chargers

Algorithm Squared Tracking Error (kW 2) Energy Tracking Error (kWh) User Satisfaction (%) Power Tracker Surplus (kW )
ϵtr |ϵtr| ϵusr ϵsur

Average Std Average Std Average Std Average Std
CAFAP 47441.286 12245.394 304.328 37.773 0.998 0.002 579.625 76.324
DDPG 27134.415 6252.681 231.359 28.300 0.846 0.023 98.225 39.395
Optimal 728.261 221.944 28.645 5.340 0.986 0.003 0.000 0.000

The combined results across these metrics suggest that the algorithm successfully applied a policy for the
implementation of 20 chargers that is similar to the policy used in the earlier case study with 10 chargers.
Consequently, it can be concluded that the model is scalable, maintaining its promises with the same param-
eters as it transitions from 10 to 20 chargers.

50 Chargers
For the final scalability test, the DDPG algorithm was evaluated using a setup of 50 chargers. For this
extreme case, the transformer capacity limit was set to 300 kW. The mean reward for the algorithm is
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illustrated in Figure 4.15. Unlike the mean reward curves from other scalability tests, it is clear that the
algorithm could not find a policy that would converge to a local optimal. This result suggests that the RL
agent can not learn the greater amount of complexities due to the significantly increased number of chargers
when utilizing the same hyperparameter set. The greater complexity poses more significant challenges for the
DDPG algorithm in assessing and identifying an optimal policy. In this regard, to improve the performance
of the DDPG algorithm, hyperparameters such as action noise (N ) and the size of DNNs can be adjusted.
Lowering the action noise reduces the amount of exploration the agent does, which increases the chances
of finding a local optimal solution. On the other hand, increasing the size of DNNs can help the RL agent
capture more intricate patterns and complexities. However, it is crucial to experiment with various hyperpa-
rameter configurations to find the optimal set that can effectively learn the complexities of 50 chargers.

Figure 4.15: Mean rewards for 50 chargers from 10 training sessions

Following the training phase, the model was applied to 100 replays to evaluate its performance using the
comparison metrics, despite the poor learning performance of the DDPG algorithm. The outcomes of this
evaluation are summarized in Table 4.9, which details the results obtained from these replays.

It has been noticed that the squared tracking error decreased, but the decrease was not as significant as
in the previous case studies for 10 and 20 chargers. This is especially true when considering the standard
deviations alongside the average values. In addition to the squared tracking error, there was also a reduction
in the energy tracking error. However, this improvement came at the cost of a more substantial decrease in
user satisfaction when compared to the earlier tests with 10 and 20 chargers.

It is worth noting that the power tracker surplus metric has significantly decreased by 97%. This improvement
indicates that there has been a conscious effort to avoid charging above the predetermined power setpoint
level. However, despite these positive trends in certain metrics, the overall results suggest that the DDPG
algorithm tends to avoid charging the EVs rather than risk exceeding the power setpoint.

The outcome for 50 chargers highlights the increased complexity faced by the DDPG algorithm as the number
of chargers increases, which affects its ability to efficiently learn and implement optimal charging policies
with the selected hyperparameter set. In addition, the Optimal algorithm is also hindered by increased
complexity. Optimizing 100 replays took the Optimal algorithm 300 seconds, significantly increasing the
calculation time. Conversely, the DDPG algorithm optimized charging schedules in just 20 seconds. This
result suggests that DDPG can scale very well in terms of speed, while the Optimal algorithm suffers more
from increased complexities.
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Table 4.9: Performance of algorithms for 50 chargers

Algorithm Squared Tracking Error (kW 2) Energy Tracking Error (kWh) User Satisfaction (%) Power Tracker Surplus (kW )
ϵtr |ϵtr| ϵusr ϵsur

Average Std Average Std Average Std Average Std
CAFAP 268536.942 40664.881 745.762 55.351 0.998 0.001 1408.680 110.592
DDPG 204358.383 30494.091 640.144 48.869 0.788 0.018 41.051 33.907
Optimal 4591.651 1106.559 76.738 10.074 0.986 0.002 0.000 0.000

Finally, the box plot in Figure 4.16 shows the average and standard deviation of 100 replays for all scales of
the problem to represent the results of each scale together. As the number of EV chargers increases, the
difference between the averages also increases. Higher amounts of EV chargers also result in an increased
standard deviation, which is expected due to the larger problem scale. It can be observed that as the prob-
lem scale increases, the upper standard deviation level of DDPG aligns with the lower standard deviation of
CAFAP, except for the 3 chargers scale. This suggests that in rare cases, DDPG and CAFAP can produce
similar results in terms of energy tracking error, and, therefore, PST error.

Figure 4.16: Energy tracking error average and standard deviations of 100 replays for all scales

4.2 Discussion
This study introduces an RL approach aimed at minimizing the PST error, a frequent optimization problem
for CPOs during their operational activities. By integrating the characteristics of the EV charging environ-
ment, a DDPG algorithm was deployed to optimize the charging schedules of EVs to minimize PST error by
meeting predetermined power setpoints.

The proposed approach was compared against two benchmark algorithms, CAFAP and a theoretical optimal
derived from a MINLP formulation of the PST minimization problem. The simulation environment replicates
a commercial building’s parking lot equipped with 10 EV chargers in the Netherlands. Both the EV charging
load and the building’s other electrical loads share a common transformer, thereby necessitating a limit on
the transformer’s power capacity for charging EVs.

The training data for the DDPG algorithm comprised actual EV charging schedules from a workplace, reflect-
ing the real-world settings of the problem. The algorithm did training over 25,000 episodes, corresponding
to an equivalent number of days, utilizing these real-world data. To assess the effectiveness of the DDPG
algorithm, 100 replays were generated, each representing a 12-hour charging period in a single day between
6 am and 6 pm. The outcomes of applying the DDPG and the benchmark algorithms to these replays
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were analyzed. The results demonstrated the DDPG algorithm’s superior performance in several metrics,
especially over the CAFAP benchmark. Notably, in the case study involving 10 EV chargers, the DDPG
algorithm significantly reduced the energy tracking error by 34% in kWh per replay compared to the CAFAP
algorithm. Moreover, the DDPG reduced the power tracker surplus metric, indicating that the DDPG algo-
rithm charged EVs while exceeding 78.2% less on the power setpoints than CAFAP. This reduction is crucial
for CPOs because it decreases costs and better complies with transformer power limits.

Nevertheless, the DDPG algorithm’s strategy highlights a trade-off, achieving significant reductions in power
tracking surplus and energy tracking error but potentially at the cost of user satisfaction. Specifically, av-
erage user satisfaction dropped by 11.2% when switching from CAFAP to DDPG, with a decrease from
99.8% to 88.6% in 100 generated replays. Despite this decrease, such a level of user satisfaction may still be
considered acceptable within the context of this problem. However, this finding points to areas for further
improvement in balancing minimizing the PST error with user satisfaction in future works of this study.

Additionally, while the CAFAP algorithm outperformed the DDPG in terms of user satisfaction metric, it
is important to address the circumstances under which CAFAP might fail. In particular, when EV demand
exceeds the charging capacity, CAFAP fails, as indicated by the power tracker surplus metric. Considering
that the power capacity can not be exceeded in practice, the user satisfaction obtained by CAFAP would
decrease significantly. Thus, CAFAP’s strategy to charge EVs as fast as possible may not suffice in such
scenarios, necessitating a smarter scheduling approach like that of the DDPG algorithm. Furthermore, it is
important to note that the user satisfaction metric indicates the SoC of EVs at departure; hence, another
user satisfaction metric taking the charging prices into account might drastically change the perspective of
DDPG’s and CAFAP’s performance in terms of user satisfaction. This comparison unfolds considering that
the power setpoints are set according to the energy amounts contracted in the day-ahead market. If con-
sumption exceeds these setpoints, the CPO is responsible for acquiring additional energy from the intraday
market, which is usually more expensive than the day-ahead market. As a result, the CAFAP algorithm tends
to charge EVs with more costly energy, which can lead to decreased user satisfaction due to higher prices.

It is worth mentioning that the DDPG algorithm failed to outperform the Optimal benchmark algorithm in
any of the comparison metrics. However, it is important to note that the Optimal benchmark algorithm
requires information about EVs’ arrival and departure times and their SoC levels; thus, the results of the
Optimal algorithm give theoretical optimal results. Additionally, the required information is not practically
feasible for the CPO to obtain. On the other hand, once trained, the DDPG algorithm optimizes EV charging
schedules much faster than the Optimal benchmark algorithm.

Moreover, the DDPG algorithm was tested for scalability with varying numbers of chargers, including 3, 20,
and 50. The same hyperparameter settings were used as in the initial case study, which was conducted
for 10 chargers. The scability tests conducted using the DDPG algorithm showed that it was able to find
policies that led to the convergence of mean rewards in tests with 3 and 20 chargers. However, the mean
rewards did not converge when 50 chargers were employed. This indicates that the DDPG algorithm was
unable to capture the patterns due to the high complexity of the environment with 50 chargers using the
same hyperparameter set. It is possible to scale the DDPG algorithm with 50 chargers by adjusting the
hyperparameter set. This can be achieved by increasing the size of the DNNs to capture more complex pat-
terns. However, this process requires more computational time, especially when tuning the hyperparameters
for varied training sessions.

During the next testing phase, the DDPG algorithm was implemented to solve 100 generated replays. This
approach did not yield satisfactory results for scenarios with 3 and 50 chargers. However, the 20-charger
scenario produced similar results to the case study with 10 chargers, indicating that the proposed algorithm
effectively scales up to 20 chargers without changing any hyperparameters. The DDPG algorithm can also
be scaled down or up by adjusting the utilized hyperparameter sets, but this comes at the cost of increased
computational burden, as mentioned.
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5
Conclusion and Recommendations

Four research questions were determined at the beginning of this study alongside a research objective. In
this chapter, firstly the determined research questions are answered in detail in Section 5.1.1. Consecutively
the main research question related to the research objective of this thesis is explained and answered in detail
in Section 5.1.2. The chapter ends with the recommendations in Section 5.2, which gives directions for the
future work of this study.

5.1 Conclusion
5.1.1 Answers to the Research Questions
1. What are the key characteristics and constraints of the model-free online EV charging problem in the
context of a workplace parking lot?

The problem is formulated in Chapter 3, Section 3.1 for a workplace parking lot. One of the key charac-
teristics is the predictable nature of EVs’ arrival and departure times, which align with fixed working hours.
Typically, EVs arrive after 6 am and depart before 6 pm. This predictability leads to the training and testing
of the DDPG algorithm using actual arrival, departure times, and SoC data. Additionally, the transformer
power limit was recognized as a key characteristic. In the context of the formulated problem, the transformer
power limit was used as a metric and was determined differently than a traditional approach. It was deter-
mined by taking the reduced and intermittent energy demand during the charging hours into consideration.
Unlike traditional power limit calculations that calculate a power limit by taking the maximum current and
voltage levels of the chargers into consideration, this approach adjusts the transformer power limit better to
suit the specific usage patterns of a workplace environment. This helps to optimize both energy usage and
infrastructure efficiency.

2. What are the key factors influencing the performance of the Deep Deterministic Policy Gradient (DDPG)
algorithm in optimizing power setpoint tracking (PST) for EV smart charging?

The performance of the proposed DDPG algorithm is affected by several key factors. These can be catego-
rized by environmental and algorithmic related factors. Environmental factors such as the configuration of
charging infrastructure, EV models, used data, variability in EV arrival and departure times, and fluctuations
in electricity prices play crucial roles. Secondly, the performance of the DDPG algorithm is heavily dependent
on the design of the state and action spaces, reward function, and appropriate tuning of hyperparameters.
These steps are crucial in determining the performance outcome of the algorithm. Therefore, careful consid-
eration and selection of these design elements are fundamental to finding a promising policy for the DDPG
algorithm.

3. How do RL-based smart charging methods improve upon or differ from mathematical optimization meth-
ods used for smart charging in managing the energy demands and grid interactions of EVs?
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The proposed DDPG algorithm and a MINLP formulation of the PST problem have shown distinct outcomes
in their application to the problem. The MINLP approach offers a theoretically optimal solution, incorporat-
ing detailed parameters such as arrival and departure times and the SoC of the EVs. In contrast, the DDPG
algorithm, once trained, demonstrated its effectiveness in addressing the PST minimization problem and out-
performed an uncontrolled charging benchmark algorithm, CAFAP. Notably, the DDPG algorithm quickly
allocated power to 10 chargers in about 10 seconds, compared to 35 seconds for the MINLP solution. This
speed advantage extended to larger scenarios as well; for 50 chargers, the DDPG algorithm took about 20
seconds to allocate power, while the MINLP required approximately 300 seconds. These results highlight the
DDPG algorithm’s capability for less computational burden during operation and faster decision-making and
show that when the complexity of the problem increases, the computational burden of MINLP exponentially
increases. It is worth noting that while the DDPG algorithm is faster, it did not reach the highest possible
performance in all metrics compared to the theoretical optimal solution provided by the MINLP formulation.

4. How does the applied RL algorithm scale with the varying number of EV chargers?

In Chapter 4 Section 4.1.4, the scalability of the DDPG algorithm was examined in detail. The findings indi-
cated that a sub-optimal policy was found across different scales, due to the convergence of mean rewards
in all scales except for the extreme 50 chargers case. Additionally, some challenges were revealed during a
detailed analysis of the performance during 100 replay tests. It was found that the smallest and the largest
models underperformed, indicating scalability issues at these extremes. Interestingly, it was observed that
doubling the number of EV chargers from 10 to 20 did not negatively impact the performance, implying
that the algorithm can scale up to twice its initial size without modifications to the algorithm’s parameters,
except for adjusting the size of the state and action space. This suggests that robust scalability was achieved
for moderate increases in scale, although further experiments in the hyperparameters, state space and reward
function are needed for larger scales with better results to increase user satisfaction while decreasing the
PST error.

5.1.2 Research Objective
How to effectively optimize the charging schedules of EVs to meet the CPO’s contracted power setpoints in
a workplace setting using RL algorithms?

This study began with a literature review to investigate the optimization of EV charging using various meth-
ods, with the main focus on RL algorithms. As such, the dynamics of the Dutch electricity market were also
researched to ensure that the proposed solution is applicable in the real world for all stakeholders. Thus,
the problem is formulated from the point of view of CPOs. The problem was then framed in the context
of a workplace to emphasize the RL algorithm’s capability to identify EV usage patterns. The limitations
of RL algorithms were identified after the literature review, particularly with respect to discrete state and
action spaces, which are inherent in RL algorithms like Q-learning and DQN. Therefore, the DDPG algorithm,
which offers continuous state and action spaces, was selected to avoid these limitations. A V2G simulator
called EV2Gym was used to run simulations and test the algorithm. The DDPG algorithm was incorporated
into the EV2Gym simulation environment using the stable baselines library. A methodology was then formu-
lated to test the proposed approach fairly. The algorithm was trained with real-world open-source data for
tuning, and then it was applied to 100 generated random replays that the algorithm had not been trained
on before. The algorithm’s performance was evaluated using several comparison metrics with benchmark
algorithms such as CAFAP and theoretical optimal provided by a MINLP formulation of the PST problem.
It was found that the trained DDPG algorithm performed better than the CAFAP algorithm in terms of
minimizing the PST error objective, even at the expense of user satisfaction. However, the decrease in
user satisfaction was found to be acceptable, at only 11%, while the PST error decreased by 34%. This
study shows that by disaggregating the contracted energy capacity of a CPO, the proposed DDPG algorithm
can significantly reduce CPO costs and improve compliance with grid constraints at CPO’s charging stations.
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5.2 Recommendations
The recommendations for the future work of this study are highlighted as bullet points in this section below:

• In the case study with 10 chargers, the results showed that using the DDPG algorithm reduced PST
error but decreased user satisfaction. To improve this, further tests can be conducted by including a
charging priority variable or user satisfaction in the state and reward functions.

• It took approximately 3 hours to complete one training session for 10 EV chargers. Optimizing the
DDPG algorithm will decrease this computational burden, making experimentation less effortful.

• Electricity prices can be implemented to the user satisfaction metric to highlight the significance of
charging prices and how they affect EV users’ satisfaction in practice. Incorporating this will present
the advantages of the DDPG algorithm over CAFAP drastically.

• Automating the training of the DDPG algorithm can involve gradually adjusting hyperparameters for
various state and reward functions. This enables scanning a larger space of possible hyperparameter
sets to identify an optimal policy that minimizes the PST error while ensuring EV users remain satisfied.

• A new approach can be introduced to increase DDPG’s learning performance by sampling mini-batches
according to a priority strategy.

• The open source data used in the DDPG algorithm was sourced from the Netherlands. The algorithm
can be tested in various settings globally to evaluate its performance and robustness.

• Using continuous state and action spaces provides a more accurate representation of the EV charging
process. However, this approach also increases the complexity of the RL algorithm required to learn
the process. Alternatively, other RL algorithms that use discrete state and action spaces, such as DQN,
can be used to compare the performance with DDPG.

• The simulation’s resolution can be enhanced from 15 minutes to 1 minute for more precise calculation
of metrics such as the cost of electricity. This will help in accurately determining the total cost of the
PST error for CPOs.

• Implementing V2G scenarios to the formulated case study can be interesting. However, it is worth
mentioning that the problem will get more complex.
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A
Appendix A: Hyperparameters Tuning

This section explains the hyperparameter tuning process and the rationale behind the selected hyperparam-
eter set. Table A.1 shows several hyperparameter sets utilized in the case study for 10 chargers. The
table details each hyperparameter set used for each training and testing of the DDPG algorithm, with the
first trained RL model serving as the starting point. The table starts with the 67th test since the problem
was initially resolved utilizing a simple EV model before implementing different EV models registered in the
Netherlands. Additionally, the power setpoint flexibility parameter was maintained at a constant value for the
tests displayed in the table. However, power setpoint flexibility varied for other tests not included in this table.

Table A.1: Hyperparameter set alternatives

Test name P. Setpoint Minibatch Replay Buffer Discount Soft Noise Actor N Critic N E. Tracking E. Tracking Mean Reward
Flexibility (%) M R Factor γ Update τ N Network Network Error (kWh) Error Std Convergence

DDPG67 5 64 1000000 0.99 0.001 0.1 128 64 113.93 19.20 -1250
DDPG91 5 64 1000000 0.99 0.001 0.1 128 - 64 128 - 64 125.33 21.11 -1000
DDPG92 5 64 1000000 0.99 0.001 0.1 64 - 32 64 - 32 126.91 20.89 -1100
DDPG93 5 64 1000000 0.99 0.001 0.2 128 64 110.79 22.24 -1100
DDPG94 5 64 1000000 0.99 0.001 0.05 128 64 129.02 21.62 -1000
DDPG95 5 64 1000000 0.99 0.002 0.1 128 64 127.27 22.33 -1200
DDPG96 5 64 1000000 0.99 0.0005 0.1 128 64 116.94 20.03 -950
DDPG98 5 64 50000 0.99 0.001 0.1 128 64 117.68 19.44 -1200
DDPG99 5 64 100000 0.99 0.001 0.1 128 64 130.64 20.31 -900
DDPG100 5 64 1000000 0.99 0.001 0.3 128 64 126.92 21.62 -1000
DDPG101 5 64 1000000 0.99 0.001 0.4 128 64 139.94 21.36 -1000
DDPG102 5 64 1000000 0.99 0.0005 0.2 128 64 97.62 18.65 -1000
DDPG103 5 128 1000000 0.99 0.001 0.2 256 128 120.12 19.73 -1000
DDPG104 5 128 1000000 0.99 0.001 0.2 256 - 128 256 - 128 129.72 22.53 -800
DDPG107 5 64 1000000 0.85 0.0005 0.2 128 64 107.40 18.27 -1200
DDPG108 5 64 1000000 0.995 0.0005 0.2 128 64 131.04 19.62 -850

After the RL agent is trained for 25,000 episodes, its mean reward’s convergence is checked and following
that its performance is evaluated in the testing phase by utilizing the agent for 100 randomly generated
replays. The energy tracking error metric was the main comparison metric for tuning the hyperparameters
after the convergence of the mean reward because it directly shows the PST error in the kWh unit. As it can
be seen from Table A.1, although the mean rewards of each model converge, the outcomes obtained in the
testing phase are very different in terms of PST error minimization. This result highlights the importance of
the testing phase of the algorithm.

The first hyperparameter set in Table A.1, DDPG67 was considered to be the first promising model. The
reward function test was also done by using the hyperparameter set of DDPG67. However, consecutively,
better results were obtained in terms of PST error minimization in the testing phase.

During the training of the RL agent, several hyperparameters are tuned to achieve optimal results. One such
hyperparameter is the minibatch size (M), which was found to be effective when set to half the size of the
actor network. This helps the agent to identify patterns and discover optimal policies.
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The replay buffer (R) size is another important hyperparameter that was experimented with. Smaller sizes
than 106 were tested, but the results (DDPG98-DDPG99) did not show any significant improvement despite
both of the model’s convergence.

The discount factor (γ) was also varied to see its impact on the agent’s performance. Increasing the discount
factor did not yield better results while decreasing it showed some promise but still fell short of the best
results achieved. This suggests that the earlier actions taken by the RL agent resulted in better policies.

After several experiments, it was found that it is crucial to find the right balance between the action noise
(N ) that increases exploration and the soft update (τ) that varies the updating speed of networks. In fact,
the selected hyperparameter set, painted in green in Table A.1, is found by balancing the noise and soft
update by updating DDPG67.

It appears that the set of DNN architectures did not yield satisfactory outcomes, except for the selected
architecture. This particular architecture involved using 128 neurons for both the main and target networks
of the actor and 64 neurons for both the main and target networks of the critic. Considering that both the
larger and smaller DNN architectures did not yield promising results, this suggests that the selected DNN
sizes are appropriate for the size and complexities of the formulated PST problem for 10 chargers.
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