
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Exploring the use of
FPGAs in Implantable
Medical Devices
MSc Thesis

Job van der Kleij

Exploring the use of
FPGAs in Implantable

Medical Devices
MSc Thesis

by

Job van der Kleij

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday November 21, 2024 at 9:00 AM.

Student number: 4450906

Project duration: March 1, 2023 -

November 21, 2024

Thesis committee: Dr. ir. C. Strydis Erasmus Medical Center & TU Delft, thesis advisor

Dr. ir. M.A. Siddiqi Lahore University of Management Sciences , daily supervisor

Prof. dr. ir. W.A. Serdĳn Erasmus Medical Center & TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

List of Figures

2.1 IMD layout . 4

2.2 Comparison between processor and accelerator options . 6

2.3 FPGA architecture . 7

2.4 Neural network . 9

2.5 Symmetric encryption . 9

2.6 Functionality of power gating . 10

2.7 Taxonomy tree of related works . 11

3.1 Definition of components within scenarios . 15

3.2 Tree displaying operational scenario structure . 17

3.3 Flow within the project to find results . 18

3.4 Overview of the analysis tool, which shows the separate stages used 24

4.1 Tool used for Gecko measurements . 27

4.2 PCB with test points for iCE40 measurement . 27

4.3 Overview of the analysis tool, which shows the separate stages used 30

4.4 The preprocessing stage of the tool . 31

4.5 The input stage of the tool . 31

4.6 The model stage of the tool . 31

4.7 The output stage of the tool . 32

5.1 Bar plots for AES metrics . 34

5.2 Bar plots for AES HW metrics . 34

5.3 Bar plots for PHOTON metrics . 35

5.4 Bar plots for SIMON/SPECK metrics . 35

5.5 Bar plots for CSD metrics . 35

5.6 Bar plots for spike-detector metrics . 36

5.7 Bar plots for spike-classifier metrics . 36

5.8 Bar plots for benchmark 1.1 . 37

5.9 Bar plots for benchmark 1.2 . 38

5.10 Benchmark 2.1 in practice. 38

5.11 Bar plots for benchmark 2.1 . 39

5.12 Benchmark 2.2 in practice. 39

5.13 Bar plots for benchmark 2.2 . 39

5.14 Benchmark 3.1 in practice. 40

5.15 Bar plots for benchmark 3.1 . 40

5.16 Benchmark 3.2 in practice. 40

5.17 Bar plots for benchmark 3.2 . 40

5.18 Benchmark 3.3 in practice. 41

5.19 Bar plots for benchmark 3.3 . 41

5.20 Benchmark 3.4 in practice. 41

5.21 Bar plots for benchmark 3.4 . 41

5.22 Bar plots for benchmark 4.1 . 42

5.23 Bar plots for benchmark 4.2 . 42

5.24 Comparison of the scenarios within the neural environment . 44

5.25 Comparison of the clock-gated scenarios within the cardiac environment 44

5.26 Comparison of the power-gated scenarios within the cardiac environment 44

i

List of Tables

2.1 IMD characteristics . 5

2.2 Processing-element properties . 6

2.3 MCUs used in literature, the entries are sorted by year and alphabetical afterward 11

2.4 FPGAs used in literature, the entries are sorted by year and alphabetical afterward 12

3.1 Definitions for the benchmarks . 16

3.2 Operational scenario definitions . 17

3.3 MCU characteristics . 18

3.4 FPGA characteristics . 19

3.5 Basic device characteristics . 20

3.6 Algorithm characteristics . 21

3.7 Neural network layer contents . 22

4.1 Measurement methods for devices . 26

4.2 Sampling frequencies for algorithms . 28

5.1 Definitions for the benchmarks . 37

5.2 Operational scenario definitions . 43

5.3 The results from the operational scenario . 43

ii

List of abbreviations

ARX add–rotate–XOR

ASIC Application Specific Integrated Circuit

ASIP Application-Specific Instruction set Processor

AES Advanced Encryption Standard

CLK Clock

CSD Current-Source Density

CSV Comma Separated Values

CPU Central Processing Unit

ECG electrocardiogram

EEG electroencephalogram

EMC Erasmus Medical Centre

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

HW Hardware

I/O Input/Output

IMD Implantable Medical Device

IP Intelectual Property

LFP Local Field Potential

LUT Look-Up Table

MAC Multiply and Accumulate

MCU MicroController Unit

MSB Most Significant Bit

PCB Printed Circuit Board

SRAM Static Random Access Memory

SW Software

TP Testpoint

WMD Wearable Medical Device

iii

Abstract

This thesis aims to evaluate the viability of using a Field Programmable Gate Array (FPGA) in a neural Im-

plantable Medical Device (IMD). The primary motivation for incorporating FPGAs is their potential to support

future functionalities, such as running neural networks for medical condition analysis but also advanced cy-

bersecurity algorithms. These algorithms are compute-intensive, and accelerators like FPGAs offer advantages

in terms of speed and efficiency. To assess the effectiveness of such a device, state-of-the-art MicroController

Units (MCUs) commonly used in similar applications are employed as a reference. Comparisons are made

between MCU-only platforms and hybrid platforms integrating both an MCU and an FPGA. Feasibility anal-

ysis considers operational modes and use cases based on various realistic scenarios. The results show mixed

outcomes across scenarios. Under a 100% duty cycle, the FPGA demonstrates higher efficiency, consuming less

active power than the MCU. However, at lower duty cycles, MCUs are generally more effective on average. The

use of an FPGA becomes practical when power-gating techniques are applied to minimize power consumption

during inactive periods.

iv

Contents

List of abbreviations iii

Abstract iv

Acknowledgements 1

1 Introduction 2
1.1 Motivation . 2

1.2 Thesis goal . 2

1.3 Thesis structure . 3

2 Background 4
2.1 Implants . 4

2.1.1 Real-time system . 5

2.1.2 Battery-powered . 5

2.1.3 Biological environment . 5

2.1.4 Extra processing . 5

2.2 Processing elements . 6

2.2.1 MCU . 6

2.2.2 CPU . 6

2.2.3 FPGA . 7

2.2.4 GPU . 8

2.3 Algorithms . 8

2.3.1 Medical algorithm . 8

2.3.2 Encryption algorithm . 8

2.4 Accelerator parameters . 9

2.4.1 Reconfiguration . 9

2.4.2 Gating . 9

2.4.3 Flash memory . 10

2.4.4 Cold wake-up . 10

2.5 Related work . 10

2.5.1 Exploring FPGA use in medical section . 10

2.5.2 MCUs used in IMDs . 11

2.5.3 FPGAs used in IMDs . 11

3 Design methodology 13
3.1 Experimental design . 13

3.1.1 Vocabulary . 13

3.1.2 Device choice . 14

3.1.3 Assumptions . 14

3.1.4 Scenario definition . 15

3.1.5 Flow within the project . 17

3.2 Processing elements . 17

3.2.1 MCUs . 18

3.2.2 FPGAs . 19

3.2.3 Battery . 20

3.2.4 Flash memory . 20

3.2.5 Gating device . 20

v

3.2.6 Multi-meter . 20

3.2.7 Resulting processing devices . 20

3.3 Algorithms . 20

3.3.1 Medical algorithms . 21

3.3.2 Wireless algorithms . 22

3.4 Measurements . 23

3.4.1 Throughput frequency . 24

3.4.2 Device understanding for measurements . 24

3.4.3 Setting up the measurements . 24

3.5 Analysis tool . 24

3.5.1 Target of tool . 25

3.5.2 Input . 25

4 Implementation 26
4.1 Measurements . 26

4.1.1 Simplicity Studios measurement . 26

4.1.2 Multimeter . 26

4.1.3 Comparable measurements . 26

4.2 Algorithm implementation on devices . 27

4.2.1 Algorithm design for devices . 28

4.2.2 Data transfer . 28

4.2.3 Implementation on Geckos . 28

4.2.4 Implementation on iCE40UP5K . 29

4.3 Analysis tool . 30

4.3.1 Options . 30

4.3.2 Supplying input to tool . 30

4.3.3 Overview of internal function . 30

4.3.4 Functionality . 31

4.3.5 Equations . 32

4.3.6 Outcome . 32

5 Experimental results 33
5.1 Analysis tool validation . 33

5.1.1 Validation steps . 33

5.1.2 Scenario validation . 33

5.2 Measurement results . 33

5.2.1 AES . 34

5.2.2 PHOTON . 34

5.2.3 SIMON/SPECK . 34

5.2.4 CSD . 35

5.2.5 Spike detector . 35

5.2.6 Spike classifier . 35

5.2.7 Conclusions . 36

5.3 Benchmarks . 36

5.3.1 Benchmark 1 - Using medical workloads . 37

5.3.2 Benchmark 2 - Medical workloads with encryption . 38

5.3.3 Benchmark 3 - Medical workloads with gating . 39

5.3.4 Benchmark 4 - Benchmark 3 with flash-FPGA used . 42

5.4 Operational scenarios . 43

5.4.1 Comparison of scenarios . 43

5.5 Summary . 45

6 Conclusions 46
6.1 Contributions . 46

6.2 Summary . 46

6.3 Future work . 47

6.3.1 Option 1: Partial reconfiguration . 47

6.3.2 Option 2: Thermal characteristics . 48

6.3.3 Option 3: Additional device type . 48

6.3.4 Option 4: Additional algorithms . 48

6.3.5 Option 5: Cohesive comparison for hybrid combinations of processing devices in IMDs . 48

vi

Acknowledgements

I would like to thank everyone who has supported me.

First of, from Erasmus Medical Centre and TU Delft, I would like to thank my thesis advisor, dr. ir. Christos

Strydis, whose knowledge and vision made sure that the thesis went into the right direction.

I would also like to thank the daily supervisor dr. ir. M.A. Siddiqi, who was always available to help me

through any problem that came up.

Finally, I would like to express my thanks towards my support system. My girlfriend, always ready

to support and battle for me. My family, for proof reading the thesis, their helpful advice and welcome

distractions. And finally, my friends, for always listening to my rambles. Without all of their unwavering

support, I would not have finished my thesis.

1

Chapter 1

Introduction

This thesis delves into the realm of Implantable Medical Devices (IMDs). These platforms are implanted into

the body of a patient to monitor and treat medical conditions. Once implanted, their primary function is to

operate seamlessly and perform their intended tasks from within the human body. Due to being placed inside

the human body, there are strict constraints imposed on the power consumption and heat generation .

IMDs have been in use for a considerable amount of time, evolving from basic solutions to sophisticated

devices as technology advanced. Initially, these basic solutions were developed as immediate responses to

problems, requiring minimal research. However, as knowledge expanded, so did the complexity of IMDs. For

example, the development of the pacemaker involved extensive research over many years [1]. The pacemaker

showcases a critical component of IMDs, they are safety-critical platforms. The IMD undergoes extensive

research and development before reaching practical application to ensure their safety and effectiveness.

Today, advancements in implanted electronics, particularly, have expanded the capabilities of IMDs. These

developments have enabled the use of electronics for purposes such as treating hearing impairments [2] and

automating medicine distribution, such as in the case of diabetes [3].

1.1 Motivation

The future of IMDs holds vast potential. As technology advances, it is conceivable that people may choose to

use implants to replace their biological components [4]. In the context of IMDs the goal is to stretch to new

implementations. In the near future, the goal is to employ next-generation algorithms. These algorithms can

range from new predictive analysis, to new (personalised) treatments, to machine learning [5]. Specifically

neural networks within machine learning perform an ever-increasing amount of computations, made possible

by ever increasing hardware capacity [6]. These networks, capable of performing increasingly complex tasks,

would operate on the device, requiring more computing power, often run on Graphic Processing Unit (GPU)

due to the parallel nature of the algorithm [6]. Therefore, a device or platform supported solely by a Central

Processing Unit (CPU) may no longer be sufficient. In this project, we choose to try an alternative approach, by

using an FPGA, given that it is a low-power alternative, which has benefits, befitting an IMD. Research signifies

the extensive possibilities that come with integrating machine learning into healthcare [7] , which gives rise to

an array of new possibilities, including use on an IMD.

1.2 Thesis goal

Previous works have attempted to find a definite result [8], but the research remains open-ended.

The goal, then, of this thesis work is to investigate whether if including a reconfigurable fabric in an IMD to

enhance its computing capabilities is a viable option, given the stringent resource constraints of IMDs. Based

on the thesis goal, the sub-goals are defined:

1. Find several algorithms which, combined, cover a wide range of active IMD operations.

2. Find several devices that correspond to processor types which might prove effective for an IMD.

3. Develop or alter the algorithms to work on each processor device effectively.

4. Measure performance and energy consumption across every algorithm and processor device.

5. Combine the measurements and compare the outcomes between processor devices.

2

1.3 Thesis structure

In Chapter 2, required background information is supplied. Chapter 3, introduces the experimental design,

processor types, and algorithms. In Chapter 4, details of the implementations are provided. In Chapter 5,

experimental results are presented. In Chapter 6, thesis contributions are summarised, while conclusions and

potential future work are provided.

3

Chapter 2

Background

This chapter provides the necessary information to comprehend the key concepts of this thesis. It is divided

into two sections: background information, which offers the essential knowledge to understand the core aspects

of this research, and related works, where existing research relevant to this thesis is discussed.

2.1 Implants

A solid understanding of the structure and functionality of IMDs is essential for advancements in this field.

Figure 2.1 illustrates the basic components commonly used in IMDs, starting with a MicroController Unit (MCU)

as a base component and including sensors, stimulation electrodes (or actuators), and a general-purpose

processing platform. An IMD may also feature additional processing hardware, such as accelerators or

specialised chips, to enhance their capabilities. As IMDs evolve, integrating more advanced components

continues to expand their potential applications in medical treatments.

Figure 2.1: IMD layout, contains an MCU with attached sensors and actuators connected to Input/Output (I/O)

ports of the MCU

In IMDs, modules are often employed for periodic activity. Sensors, actuators, and stimulation electrodes

are the end modules in the system, with an MCU acting as the central unit that connects to data storage and

transmission systems. These modules are crucial for the ability of the platform to interact with the body’s

physiological processes. The MCU is a compact device with a wide range of functionalities; further details

about MCUs can be found in Section 2.2.1. The most important characteristics of an IMD are listed in Table 2.1

and are further elaborated upon in the following subsections.

4

Table 2.1: Characteristics from standard implementation of an IMD

Characteristics Requirement

Real-time system Tight deadlines

Battery-powered Operate under a fixed energy budget

Biological environment Upper-limited heat dissipation and device geometries

’Extra Processing’ Deliver desired new functionality with minimal energy, heat, and size increases

2.1.1 Real-time system

A crucial concept in modern systems is that of real-time systems. These are applications that must meet strict

timing requirements to achieve their objectives. Real-time systems are commonly found in control systems,

which are designed to regulate specific phenomena. For a control system to effectively manage a phenomenon,

it must produce the correct output at precisely the right moment. If the output is delayed, it may fail to achieve

the intended or necessary effect, or it may even be counter-productive. The effectiveness of a real-time system

is measured by its ability to consistently meet deadlines. These deadlines, which repeat as long as the system

is operational, will be defined in more detail in Section 2.1.3.

2.1.2 Battery-powered

A critical aspect of the platform is the battery. The choice of battery significantly impacts the overall lifespan,

size, operating capabilities, and heat generation of the platform. Each of these factors plays a crucial role in

the final design of the IMD. To ensure the IMD functions effectively, the battery must meet specific minimum

requirements, as defined in [9]. Additionally, for use in an IMD, some options can enhance the performance of

the platform i.e., rechargeable batteries combined with the ability to harvest energy while inside the body.

2.1.3 Biological environment

The environments in which an implant is deployed can vary significantly depending on its location within or

near the body. A cochlear implant is typically situated near the brain and may be partially outside the body,

while a pacemaker is often located near the heart. Each location imposes different requirements on the IMD.

The terminology environment describes the function of the IMD. In this thesis, two types of environments are

examined: cardiac and neural environments. These environments are used to define the deadlines discussed

earlier in Section 2.1.1. The frequency for the cardiac deadline is 3 Hz [10], while the frequency for the neural

deadline is 160 Hz [11]. The frequency 𝑓 [𝐻𝑧] determines the time 𝑡[𝑠] allocated for each iteration of the

algorithm, where 𝑡 = 1/ 𝑓 .

2.1.4 Extra processing

Within an IMD platform, there is a processing space available for integrating additional functionality, typically

separate from the MCU. This space can be used to house an accelerator, such as an Application Specific

Integrated Circuit (ASIC) or a Field Programmable Gate Array (FPGA). An FPGA is particularly promising for

this role because it combines the performance benefits of an ASIC with the flexibility of a CPU or GPU. An

FPGA is flexible enough to be used for multiple implementations without having to alter the IMD, making it

an excellent candidate for further research.

Size addition
The addition of an accelerator requires additional area to be used for the additional component. Space is a

valuable resource on an IMD. Therefore an additional component requires a great deal of consideration, and

subsequent research to determine if the pros outweigh the cons. The size expectation for the device is limited

to comparable devices, as is referenced in Section 2.5.

Energy consumption
An additional component within an IMD will incur a penalty of energy consumption. Therefore, within the

context of the research, considerations need to be made to accommodate the alternate operating way for the

components in use.

Heat generation
With the previous consideration of energy consumption, additional energy usage will increase the heat

generated by the device. Within the body heat dissipation is severely limited, making it a prime requirement

to keep the patient healthy.

5

2.2 Processing elements

This section explores the different devices used as processor elements within an IMD for this thesis. The first

consideration is the various possible implant versions, as outlined in Section 2.1. In the most relevant version

of an IMD, the core component is a MCU, which incorporates a CPU. This processing unit is a highly flexible

computer core capable of generating a wide range of outputs. The platform of the MCU includes standard

computer components and offers the possibility of integrating additional components to that platform for

dedicated and efficient processing—known as accelerators (see Section 2.1.4).

Table 2.2: Processing-element properties, defined according to 5 levels [very high, high, medium, low, very

low]

Processor type Flexibility Speed Power Consumption Design speed Parallelism

General Purpose Processors

CPU Very high Very low High Medium/High Low

GPU High Medium/High High Medium/High Medium/High

Accelerators

FPGA High Medium/High Low/Medium Low/Medium Medium/High

ASIC Very low Very high Very low Very low High

Figure 2.2: Comparison between the processor and accelerator options

In Table 2.2, some processor elements are denoted, used variants in the thesis and well-known types, the

combination of these variants sketches where the options mentioned in this thesis lie. Figure 2.2 displays

how the processor types, mentioned in the table, fall within two important metrics, power consumption and

flexibility.

2.2.1 MCU

The MCU, is the platform on which all the hardware contained on a computer can be found. The crux of

the MCU platform is that it is contained within a small area, thereby being a great choice for area-limited

applications. As a result, an MCU is a great option for IMDs. Given their natural compatibility, an MCU is

often the heart of an IMD, containing most of the management and functionality of the device.

2.2.2 CPU

The CPU is the processor available on an MCU, responsible for executing basic tasks and managing other

components. It functions similarly to CPU in a computer, handling background processes and performing

computations. For efficient MCU operation, the tasks performed on a CPU should be relatively simple and

self-contained. The strength of a CPU lies in its versatility. While it may not be the fastest or most efficient

option, it can perform a wide range of functions. This flexibility, and the fact that compilation of code is fast,

is particularly valuable during the prototyping stage, where it allows for rapid development and testing. Once

an algorithm is proven on the CPU, it can be optimized for specific hardware or software platforms to improve

performance. However, this versatility comes at the cost of specialized performance. Compared to dedicated

hardware, the CPU may not excel in certain tasks. Nevertheless, its general-purpose capabilities and reasonable

cost make it a valuable component for many MCU and IMD applications.

6

2.2.3 FPGA

An FPGA is a chip that mimics an ASIC. An FPGA contains Look-Up Tables (LUTs) that are connected through

programmable interconnects, as shown in Figure 2.3. The architecture of the FPGA is therefore able to perform

different computations by using alternate configurations. Designing for an FPGA is also more time-consuming

than for a CPU. This is partly due to the specialised hardware description language required and partly due

to the nature of FPGAs. These factors make the iterative development process more challenging, as efficient

changes often demand a deeper understanding of the underlying hardware. The resemblance of an FPGA to

an ASIC offers significant benefits, particularly energy consumption, calculation speed, and, most importantly,

the ability to perform concurrent operations.

Figure 2.3: FPGA architecture, IO: Input/Output, PIP: Programmable Interconnect Point, CLB: Configurable

Logic Blocks. [12]

Power consumption
Power consumption in an FPGA consists of static and dynamic consumption, which can be found according to

the use of the components and the standard equations associated, as defined in [13] and [14].

𝑃𝑠𝑡𝑎𝑡 = 𝐼𝑠𝑡𝑎𝑡 ×𝑉𝐷𝐷 (2.1)

where 𝐼𝑠𝑡𝑎𝑡 is the current that flows between the supply rails in the absence of switching activity and 𝑉𝐷𝐷 is

the voltage on the drain.

𝑃𝑑𝑦𝑛 = 𝛼 × 𝐶𝐿 ×𝑉2

𝐷𝐷 × 𝑓 (2.2)

where 𝛼 is the switching activity, 𝐶𝐿 is the capacitance of the load, 𝑉𝐷𝐷 is the voltage on the drain, and 𝑓 is the

operating frequency.

Flash-based FPGA
A specific subclass of FPGA types is the flash-based FPGA. A standard FPGA operates using Static Random

Access Memory (SRAM) blocks that hold programmed values to make the hardware perform as intended. In

contrast, flash-based FPGAs use flash memory to store these values instead of SRAM registers. This difference

is significant because of the startup behaviour. SRAM blocks lose its values when the power is turned off,

while flash memory retains the stored data even after power loss. This retention ability makes flash-based

FPGAs advantageous in scenarios where quick startup is crucial, for instance, hardware is switched off to save

power. However, the main drawbacks are that flash memory has a limited number of write cycles, and that

FPGA technology has traditionally been centred around SRAM registers. As a result, utilising flash memory

in FPGAs requires a different hardware structure than those designed for SRAM.

The difference between SRAM and flash memory also affects power dissipation. Flash memory cells retain

data without power. In contrast, SRAM cells need continuous power to maintain data, resulting in higher

7

average power consumption during operation. Therefore, while flash cells consume more power during write

operations, they offer lower average power consumption overall, especially in applications where data retention

during power-off is critical [15] [16].

2.2.4 GPU

An GPU is a general-purpose processor, as is a CPU. The main difference is that a CPU is made to be able

to perform a greater variety of instructions, which results in bigger size and additional overhead. An GPU

instead is focused on performing a smaller amount of instructions, thereby retaining a reduced overhead but

mainly having simple instructions. The reduced overhead gives the option to use multiple cores in parallel.

The instructions are then able to be performed in parallel, thereby increasing the throughput. Using a greater

amount of cores, however, can increases the power consumption and subsequent heat generation.

2.3 Algorithms

2.3.1 Medical algorithm

Medical therapy is continuously evolving, which in turn changes the requirements for workloads and the

devices that handle them. As these requirements become increasingly demanding, current devices may

eventually struggle to keep up. One of the most significant advancements in this field is the use of neural

networks, which have high computational demands. To gain a comprehensive understanding, it is essential to

test a combination of both newer high-requirement workloads and older use cases on various platforms.

Input data: ECG
The first data type is electrocardiogram (ECG) data, which refers to data generated through the use of Elec-

trocardiography. Electrocardiography measures the electric field of a heart. Algorithms that use this data are

often used in cardiac applications.

Input data: EEG
The second data type is electroencephalogram (EEG) data, which refers to data generated through the use

of Electroencephalography. Electroencephalography measures local variables on multiple input locations, in

which the differences between two points gives information about phenomena. Algorithms that use this data

are often algorithms that search for complex connections in the region of interest. Due to the dense data streams

in the brain, such an algorithm is used in neural applications.

Classification algorithms
While preliminary phases may reduce noise or modify the output to emphasise important parts of the signal,

classification algorithms are fundamental to the practical use of medical data, and thereby IMDs. These

algorithms convert recorded data into actionable values that can guide subsequent tasks, such as mitigating

an epileptic attack. Traditionally, classification algorithms are based on rigidly defined rules that categorise

outputs, for example, determining whether an epileptic attack is occurring by producing a True or False response.

Although there is extensive knowledge about classification algorithms, the challenge in medical applications

lies in the vast amount of input data, where only small, critical pieces, easy to misinterpret, contribute to the

overall picture. The introduction of neural networks, as shown in Figure 2.4, has begun to address this issue.

Neural networks can be trained on large, variable datasets to classify outputs more effectively than traditional

methods. Although this technology is still being refined, it offers tremendous possibilities when compared to

classical classification algorithms. The aim is not to rely solely on machine learning algorithms to complete the

task but to use them to identify meaningful correlations in the data, thereby advancing medical care.

2.3.2 Encryption algorithm

Due to the placement of an IMD, wireless transmission is a requirement when communicating. Wireless

communication needs to be secured. Although security features can be resource-intensive, they provide a

crucial benefit to the overall security of the system. As a result, implementing security measures will be a

key focus in the use of wireless communication, with multiple algorithms explored to create a comprehensive

solution.

Hash type
The hash function uses a predefined function to convert the input into a different one, which can not be

reverse-engineered normally. The one-way function is the basis of the security for the hash type, it serves as a

check-sum for the total. Due to the added value, the authenticity of the message can be checked.

8

Figure 2.4: Neural network, this variant contains multiple layers. [17]

Cipher type
The cipher type alters the inputted plain text into the cipher text. The cipher text is obtained by encrypting the

plain text with a key, whose general operation can be seen in Figure 2.5. The cipher shown uses a private key

for encryption and decryption, making it a symmetric algorithm. The key used for the algorithm needs to be

communicated or transferred before the start of the operation of the cipher algorithm.

Figure 2.5: Symmetric encryption. [18]

2.4 Accelerator parameters

2.4.1 Reconfiguration

Reconfiguration is the term used to symbolise the alteration of the internal working of the logic level elements

on an FPGA. The primary method of reconfiguration is by altering the internal connections and contents of

LUTs which combine into a different functionality within the device. Reconfiguration is only used for FPGA.

2.4.2 Gating

Another option concerning saving power is gating, which includes clock gating and power gating. Gating

involves placing a barrier between two parts of a device to reduce power consumption, as shown in Figure 2.6.

These techniques are employed to minimise energy drain when components are not in use, in this case,

processing devices. Clock gating generally works by removing the Clock (CLK) input to the subsequent part

of the device, thereby eliminating dynamic power consumption in that section. This method does not require

reprogramming or extended wake-up times. Oftentimes such a principle is implemented within the device

itself, which is called sleep mode. A benefit of using sleep mode implemented on the device is that it requires

no additional area and can benefit from additional power-saving options implemented on the device. Power

9

gating, on the other hand, involves cutting off the power supply to the subsequent part of the device. While

power gating offers better static power efficiency, it comes at the cost of more intensive wake-up processes and

the need for reprogramming for an FPGA. Additionally, it requires an additional device to shut off the power

to the device. Therefore the area requirements and the wake-up time will increase. These devices also require

additional power, but the amount of power is a fraction of the power used by the processing devices. Both

types of gating require additional components to disconnect either a supply line or a signal line within the

device, depending on the specific gating method employed. These gating components will be discussed in

more detail in later chapters.

Figure 2.6: Figure showing the working of gating. [19]

2.4.3 Flash memory

Flash memory is non-volatile memory. Such a memory variant does not lose its contents when the power is

turned off. The ability to retain data comes at the cost of speed or power used for such memory. The memory

is required to save the required bitstreams to program the FPGA.

2.4.4 Cold wake-up

Cold wake-up refers to the time it takes a device to be used after powering it up. This type of wake-up, cold, is

a primary concern due to the possibility of using power gating within this thesis. When using such a scenario

the cold wake-up time needs to be checked. If it exceeds the point at which it can be ignored, it then needs to

be accounted for in the assumptions made.

2.5 Related work

The related work in this section is focused on finding the answer to the question of the use of an FPGA in an

IMD. The related works therefore focus on the use of FPGAs in an IMDs and ultra-low-power systems using

FPGAs and CPUs.

2.5.1 Exploring FPGA use in medical section

Within the literature study, a previous thesis about the same subject was read and analysed. During finalisation

of this work, new literature with similar topics was published. The publications were taken into account.

A separate thesis [8] has addressed the use of FPGAs in IMDs. At the time of that research, there was

a lack of studies on next-generation workloads for use in an IMD, that were viable or accessible, which are

the primary reason accelerators could be needed in IMDs. As a result, the previous thesis used alternative

techniques to answer the question, particularly the use of embedded FPGAs (eFPGAs), which required a large

amount of research. The results therefore were focused on a larger area.

Vaithianathan et al. (2024) [20], focuses on the identification of power-efficiency within wearable and

implantable devices, thereby using FPGAs in a comparison to MCU and ASIC. The publication defines where

it would be used, then how it would be used, the components and their benefits, and subsequently how the

devices could be used in a more power efficient manner. Testing is mentioned, but the devices and values

resulting from the measurements were not available in the publication.

10

Figure 2.7: Taxonomy tree of related works for this thesis, Veselka Thesis: [8], Vaithianathan et al. (2024): [20],

Altman et al. (2024): [21], Khan et al. (2024): [22]

Altman et al. (2024) [21], focuses on the use of FPGAs for machine learning in the field of biomedical

engineering. It details an overview of the FPGAs used between 2001 and 2023 for the implementation of

machine learning in biomedical applications. Given that this work is about next-generation workloads, this

work combines a great deal of information with appropriate conclusions for efficient implementation. It is a

review, not a practical application, therefore no new data is added in the form of device uses.

Khan et al. (2024) [22], focuses on the use of FPGAs for wearables. It details an overview of low-power FPGA

design, specific families of FPGAs, focused on low-power applications, and future research venues, primarily,

sleep modes, voltage scaling, partial reconfiguration, and flash/hybrid-based FPGA. It provides guidelines on

the design of energy-efficient FPGA-based Wearable Medical Devices (WMDs). The target of this publication

is closely-related to IMDs, therefore this is a valuable addition, it contains useful information for the design

process on an IMD as well. It is a review, not a practical application, therefore no new data is added in the

form of device uses.

2.5.2 MCUs used in IMDs

This section finds implementations of algorithm use on IMDs with the core component being an MCU. The

goal is to find adequate devices that could be used in the exploration of next-generation algorithms and their

effective use on IMD platforms. Table 2.3 summarises the devices found in literature, and their main factors,

giving an overview to find devices from.

Table 2.3: MCUs used in literature, the entries are sorted by year and alphabetical afterward

Device Vendor Algorithm type Total Power [mW] Citation

EFM32 Leopard Gecko Silicon Labs Authentication system 0.002-20 [34]

MSP430FR5994 Texas Instruments Early seizure detection 0.802 [35]

MSP430FR Texas Instruments Seizure detection 0.850 [36]

ATMEGA328PB Microchip technology Optical Wireless Communication 0.392 [37]

EFM32 Tiny Gecko Silicon Labs IMDfence - [38]

EFM32 Tiny Gecko Silicon Labs Cipher use - [39]

EFM32 Tiny Gecko Silicon Labs SecureEcho - [40]

FRDM-KL05Z NXP Spike detection for 128 channels 23.83 [32]

2.5.3 FPGAs used in IMDs

This section finds implementations of algorithm use on FPGAs with the core component being an MCU. The

goal is to find adequate devices that could be used in the exploration of next-generation algorithms and their

11

effective use on IMD platforms. Table 2.4 summarises the devices found in literature, and their main factors,

giving an overview to find devices from.

Table 2.4: FPGAs used in literature, the entries are sorted by year and alphabetical afterward

Device Vendor Algorithm type Total Power [mW] Citation

IGLOO AGL10 Microsemi Wireless message management unit 0.101 [23]

IGLOO AGLN250 Microsemi Neuroprocessor for 32 channels @ 25ksps 6.4 [24]

iCE40LP1K Lattice Sensor interface 0.12 [25]

XCS31400A Xilinx SHA-1 encryption 62.678 [26]

iCE40 Lattice 4-bitadder 0.11 [27]

IGLOO2 Microsemi 4-bitadder 0.5 [27]

IGLOO AGLN250V2 Microsemi PID algorithm 0.168 [28]

IGLOO2 M2GL025 Microsemi Neurostimulation 20.06 [29]

iCE40 HX-8K Lattice Neurostimulation 3.62 [29]

Cyclone V 5CEBA4 Intel Neurostimulation 43.86 [29]

IGLOO AGL250V2 Microsemi Seizure detection unit 0.0052 [30]

IGLOO AGLN250 Microsemi ANNs for person identification 7.579 [31]

IGLOO M1AGL600 Microsemi ANNs for person identification 15.261 [31]

IGLOO M1AGL1000 Microsemi ANNs for person identification 30.213 [31]

iCE40UP5K Lattice ANNs for person identification 9.577 [31]

iCE40LP1K Lattice Spike detection for 128 channels 0.0374 [32]

Cyclone V Intel Tissue Stimulation 0.78 [33]

12

Chapter 3

Design methodology

This chapter defines the methodology used in the thesis. The chapter starts with an in-depth definition of the

requirements for the experimental design. Then the definitions from the experimental design are used to find

appropriate processing devices and algorithms. Next, the parameters and options pertaining to the alternative

processing elements are discussed. Afterwards, the algorithms in use throughout the thesis are discussed. The

next aspect to discuss is the measurement specifics for each device. To finish up the chapter, an analysis tool,

made during and for the thesis, is discussed.

3.1 Experimental design

The research performed needs to be run systematically. Therefore, the following section contains the assump-

tions, the project flow and the general experiment to run to achieve the goal. An important aspect is the

boundary conditions, otherwise named the assumptions and goals. The boundary conditions define where

the research starts and ends, and this signifies when the research has been finished.

3.1.1 Vocabulary

The technical terminology used in the subsequent thesis is detailed in the following section.

Specialist
A specialist is to a doctor or other medical specialist. In the context of this thesis, such a person will primarily

require data from an IMD to get the status of a patient’s condition.

Patient
A patient refers to a person receiving treatment from the specialist. In the context of this thesis, such a person

will carry the IMD.

Bedside reader or doctor’s programmer
A bedside reader refers to a device that is situated close to the bed of a patient. The device then communicates

with the implant on regular intervals to transfer the data collected by the IMD.

Workloads
Workloads will be used within this thesis to signify benchmark algorithms executed on the IMD.

Scenario (of work)
Scenario (of work) is used to signify the act of combining algorithms in a way to highlight a specific characteristic

in the output. Another word that refers to this is a use-case.

’always on’ algorithms
An ’always on’ algorithm is an algorithm that needs to be executed at all times. Such an algorithm is associated

with an IMD since it contains algorithms that are often critical and always need to perform the required action.

’Off’ time
’Off’ time refers to power gating. To simulate power gating in the analysis tool, the workloads in use are

alternated with ’off’ time, thereby lowering the device’s power usage to a level that would be equal to a

13

power-gated device.

’Sleep’ time
’Sleep’ time refers to clock gating. To simulate clock gating in the analysis tool, the workloads in use are

alternated with ’sleep’ time, thereby lowering the device’s power usage to a level that would be equal to a

clock-gated device.

3.1.2 Device choice

During the thesis, an additional component was to be selected in the form of an accelerator for next-generation

workloads. Given that neural networks are among the new implementations, they add additional requirements.

Neural networks are always updated with new techniques and training data [21], and therefore are updated

often. Inflexible solutions therefore are at a disadvantage. Another aspect is the increase in computations, a

neural network contains a great deal of Multiply and Accumulate (MAC) operations. Parallel execution is a

great option, due to the implementation of neural networks, thereby greatly favouring a non singular device,

capable of parallel execution.

There were a few options to check, an ASIC, an FPGA and a GPU. An ASIC device to use in this context is

not a viable addition. An ASIC is a great option regarding power efficiency, but the rigidity makes it unsuited

for this task. FPGAs are often used for prototyping ASIC devices. The test cycle is significantly faster and

less costly. Given the use of ASIC implementations in IMD, this devices follows as a logic option for efficiency

and parallel utilisation. An GPU implementation on the other hand can be a good addition. They have great

parallel capacity, making a good option for an efficient and quick neural network.

The resulting choice was to compare a flexible, yet power efficient processing devices. Therefore the FPGA

component was tested as an additional component on an IMD, apart from the standard of a MCU equipped with

a low-power CPU. The reasoning was to be more efficient with contained compute power for new iterations

of algorithms, while maintaining a good battery lifetime for the total device. For this purpose an FPGA was

selected.

3.1.3 Assumptions

The following assumptions are made for the experimental design:

• Data transfer
For the input conditions regarding data transfer, values are taken from a paper [38]. The values (and

small variations) will be used as leading values for the subsequent results. These are an effective rate

of 265kb/s and 400kb/s actual data rate. The size of the data transfer changes depending on the user

accessing the device. The specialist has a transfer duration of 2 minutes, while the patient will have a

transfer duration of 30 seconds.

• Environment
The possible environments for the implant used within this thesis are cardiac and neural. The choice of en-

vironment impacts the type of workloads employed and therefore impacts the area used, the performance

and the energy consumption. The cardiac environment uses less compute intensive algorithms.

• Duty cycle
An IMD is not always executing the algorithms, which would entail that for short amounts of time, the

device can go to a sleep state. Therefore a duty cycle needs to be defined to specify how long the device

is in active and sleep mode.

• Device usage
The memory functionality of the MCU is used at any time, due to the data that is being saved on the

IMD. Therefore the static usage of an MCU platform is included for every implementation of a scenario.

• External device
Data transfer is handled through a bedside reader or doctor’s programmer. The device handles connec-

tions to the IMD and can save data in a different location. Such a setup removes the possibility of data

being overwritten due to memory limitations.

• Reconfiguration costs
The reconfiguration costs are costs for each separate startup of a workload, and should therefore be added

to those workloads.

14

• Measurements
The measurements are done across the dynamic parts of the workload execution on the devices to simplify

obtaining results and subsequent comparison. Latent variables are taken into account in the analysis stage

of the thesis.

• Flash-based FPGA
To use a flash-based FPGA as a comparable device, a major assumption was made, considering potential

future implementations. The assumption is that the used values for the flash-based FPGA correspond

to the non-flash-based FPGA, the ICE40. Therefore the flash FPGA retains its programming during

wake-up, and the active power usage values of the iCE40 are combined with the sleep mode values of

the flash-based FPGA. This assumption implies that the FPGA does not lose its previous programming

and can operate on a duty cycle over short intervals. For instance, it could be powered off for 50 ms and

resume operation afterwards as if no interruption occurred.

3.1.4 Scenario definition

In the exploration process, a consistent format was required to denote combinations of algorithms. As defined

in the vocabulary, this will be represented by scenarios. Figure 3.1 shows the connections with the different

components in use, which are then used to sketch the operation on the IMD to make scenarios.

Figure 3.1: Definition of components within scenarios [38] [41]

An example of a scenario is provided below. The duty cycle is defined as a percentage of activity, which

refers to the percentage of time the algorithm is used.

These scenarios are designed to showcase particular aspects, like device characteristics, or generic real-life

situations. These aspects are utilised in benchmarks and operational scenarios.

• There is a patient with an IMD, a specialist, and a bedside reader.

• The IMD is accessed through a bedside reader, gathering data for the specialist and the patient.

• The IMD runs [ALGORITHM] with 5% active duty cycle.

• The bedside reader accesses the IMD [AMOUNT] times a week for [DURATION] at a time.

• [CLOCK/POWER] gating is used while the algorithm is not in use.

Measurements
The first stage in the result stage was to see how the algorithms compare based on the platform on which they

are ran. The algorithms used in the thesis are defined in Section 3.3.

Benchmarks
The scenarios discussed in this section are designed to focus on individual aspects of device performance.

15

Each scenario is constructed to test a specific characteristic in isolation.

First benchmark This benchmark tests the impact of using medical workloads in their intended use, creating

a more complex and diverse scenario. It is designed to highlight the flexibility of the device in handling

multiple tasks simultaneously.

Second benchmark This benchmark examines the addition of a new type of algorithm, encryption. The

encryption is added, with the medical workloads still operating in their regular context. The addition

introduces additional complexity and helps assess the device’s ability to handle more demanding tasks.

Third benchmark This benchmark introduces sleep time or off time into the scenario to evaluate how these

factors influence performance. This addition simulates clock or power gating and measures the impact

on device efficiency.

Fourth benchmark This benchmark follows the same structure as the third benchmark, but instead of using

the regular FPGA, it uses the device parameters from the flash-based FPGA. This alteration shows how

such a device would compare.

Table 3.1 provides a comprehensive list of the specifics for each benchmark.

Table 3.1: Definitions for the benchmarks (CSD: Current-Source Density), all workloads in use are based on

integer values, for the use of encryption, there are two moments of communication, one weekly & one daily,

spike sorting contains the spike detection and classification algorithms.

Benchmark index Medical algorithms Wireless algorithms Duty cycle

Benchmark 1: Using medical workloads

1.1 Spike sorting - -

1.2 CSD - -

Benchmark 2: Medical workloads with encryption

2.1 Spike detection and classification AES -

2.2 CSD AES -

Benchmark 3: Medical workloads with gating

3.1 Spike sorting & Sleep - 5% active

3.2 CSD & Sleep - 5% active

3.3 Spike sorting & Off - 5% active

3.4 CSD & Off - 5% active

Benchmark 4: Benchmark 3 with flash-FPGA used

4.1 Spike sorting & Sleep - 5% active

4.2 CSD & Sleep - 5% active

Operational scenarios

Figure 3.2 presents the different variations in a tree pattern, branching into distinct scenarios. Each new leaf

represents a different pathway, connected to a characteristic that defines the key attributes for that particular

scenario. The various options exist for specific reasons. The environment defines a deadline, which, in

turn, determines how much time is allocated to the algorithm. This deadline acts as the hard maximum for

each iteration of the algorithm to complete. An important note is that gating is not used within the neural

environment. The reason for this absence is that the duty cycle is defined as 100% active mode. Therefore, the

assumption is made that the device will never be in sleep or off mode. Table 3.2 contains the specifics required

to define the scenarios.

16

Figure 3.2: Tree displaying operational scenario structure. The duty cycle definition is 5% and 100% for Cardiac
and Neural respectively, defined for the active operation of the processing device.

Table 3.2: Operational scenario definitions, the differences between scenarios are shown through the variables

(CSD: Current-Source Density), all workloads in use are based on integer values, spike sorting contains the

spike detection and classification algorithms.

Scenarios Environment Duty cycle Workloads Communication Gating
1 Cardiac 5% Spike detection Weekly Clock

2 Cardiac 5% Spike detection Weekly Power

3 Cardiac 5% Spike detection Daily Clock

4 Cardiac 5% Spike detection Daily Power

5 Neural 100% CSD Weekly -

6 Neural 100% CSD Daily -

7 Neural 100% Spike sorting Weekly -

8 Neural 100% Spike sorting Daily -

3.1.5 Flow within the project

The following section will be concerning the flow of the thesis project. The goal is to give a visualization to

understand how the results are achieved.

The start of the project is to define the required components, e.g. the building blocks, such as the algorithms.

These components are then carefully analysed and updated according to their uses, e.g. the algorithms are

implemented on different devices. Then they are used to generate results, e.g. measurements are done. Then

an analysis is performed on the results, to fulfil the thesis goal.

During the project, a continuous rehash of previous results was required and increased in the duration of

the project significantly. The loop that displays this phenomenon can be seen in Figure 3.3.

3.2 Processing elements

A crucial starting point of the method is deciding which processing devices to use to execute the algorithms,

defined in Section 3.3. This decision is vital to addressing the research question effectively. To ensure valid

17

Figure 3.3: Flow within the project to find results

outputs, it is essential to select appropriate devices with great care. The selection should include the two

basic cases: the currently used MCU platforms and the potential replacement, FPGA devices, as additions.

Additionally, other devices may be required to address specific aspects, such as memory management. The

chosen devices will form the foundation for conducting the research in this thesis. In Section 2.5, lists of devices

used in IMDs were defined, with the vendors of which will be used to select appropriate devices.

This section will cover the devices used to acquire the measurements. The primary factors in selecting the

specific devices for the thesis were their suitability and their availability. The suitability of these devices is

focused on low-power applications with an appropriate compute throughput. The availability is focused on

price and off-the-shelf devices.

3.2.1 MCUs

The first device type to examine is the MCU, which, as noted in Section 2.2, often serves as the processing unit

of an IMD, in the form of a CPU. MCUs are intriguing devices because they encompass all the components

necessary to be considered a microcomputer. They include a combination of static and dynamic memory, a

CPU, interconnects, and peripherals, offering a versatile platform for experimentation. As such, MCUs play an

integral role in this investigation. Within the MCU platform, certain models are specifically designed for low-

power applications. These are of particular interest given the limited battery capacity and charging constraints

in IMDs.

For the choice of devices in use for the thesis, publications were researched, which can be seen in Section 2.5.2.

From this research the vendors for the devices were selected, being Silicon Labs [42] and [noauthor_ti_nodate],

and within their assortment devices were selected based on the CPU and peripherals available on the platform.

Within publications, the used CPU is often a ARM Cortex-M0, therefore a similar CPU was selected. The

Gecko devices from Silicon Labs in particular contain a hard-Intelectual Property (IP) block for the Advanced

Encryption Standard (AES) algorithm. The resulting devices were the Tiny Gecko [54] and the Giant Gecko

[55]. The Tiny Gecko contains a ARM Cortex-M0+ CPU. The main difference with the Giant Gecko is that the

Giant Gecko contains a stronger CPU, the ARM Cortex-M4. This difference in CPU will show how a stronger

processing device will impact the IMD platform. Table 3.3 summarises important characteristics of the MCU

devices used in the thesis.

Table 3.3: MCU characteristics

Device name Frequency range [MHz] Input voltage Area characteristics

Tiny Gecko 11

1, 2, 4, 7, 13, 16, 19, 26, 32,

38, 48

3.3 V

CPU, RAM, Memory,

UART, AES-HW ASIC

Giant Gecko 11

1, 2, 4, 7, 13, 16, 19, 26, 32,

38, 48, 56, 64, 72

3.3 V

CPU, RAM, Memory,

UART, AES-HW ASIC

Gecko device
The Gecko devices have multiple different modes, ranging from an active mode to a deep-sleep mode. The

EM4 mode is used for these devices, the deep-sleep mode. Deep-sleep mode will have certain parts of the

device that need to wake up to move to active mode, which is considered instantaneous.

18

3.2.2 FPGAs

The accelerator option for running algorithms is the FPGA. One of the most intriguing aspects of an FPGA is

its ability to get reconfigured. This capability is achieved through a combination of compiled software, from

Verilog and VHDL sources, and a hardware implementation involving LUTs and programmable interconnects.

With this setup, an FPGA can effectively simulate the behaviour of an ASIC, offering significant advantages in

power consumption and throughput compared to general-purpose processing units, as discussed in Section 2.2.

For the choice of devices in use for the thesis, publications were researched, which can be seen in Section 2.5.3.

From this research, vendors were selected to find appropriate devices for low-power applications. For SRAM-

based FPGAs, the iCE40 series from Lattice [43] and the Cyclone V series from Intel [noauthor_cyclone_nodate]

seemed promising. For flash-based FPGAs, the IGLOO series from Microchip Technology [44] seemed promis-

ing. Devices were subsequently selected based on the requirements for the size and low static-power drain.

The resulting device which was selected was the iCE40UP5K [45]. The flash-based FPGA gives important low-

power improvements, and therefore a suitable variant was selected based on equivalent flip-flops, IO banks,

available RAM, and die size. The resulting device was the Nano IGLOO AGL250 [56]. Table 3.4 summarises

important characteristics of the FPGA devices used in the thesis.

Table 3.4: FPGA characteristics

Device name Frequency range [MHz] Input voltage Area characteristics

iCE40UP5K 0.75, 1.5, 3, 6, 12, 24, 48 1.2 V

LUT, Flip-Flop, EBR,

SPRAM, DSP, PLL, Oscilla-

tors

Nano IGLOO

AGL250

0.75 - 250 1.2 V

System Gates, D-Flip-Flop,

SPRAM, FlashROM, PLL,

Oscillator

Reconfiguration on iCE40
The ability of an FPGA to be reconfigured is a major component of the strength it possesses. The reconfiguration

alters the functionality it possesses, thereby becoming versatile. To alter this aspect, for a normal FPGA, a

process is started, which first wipes the current value of the configuration, and afterwards loads a new one.

This is a sequential process through a single data line, which puts in the values one by one to the required

components.

For the device in use during the thesis, the iCE40, the reconfiguration parameters are used. These are a

cycle count, additional bits and time and a operating frequency, which combine into a reconfiguration time

[45].

𝑡𝑟𝑒𝑐𝑜𝑛 𝑓 𝑖𝑔 = (𝑛𝑏𝑖𝑡𝑠 + 𝑛𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑏𝑖𝑡𝑠) ∗ 1/ 𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 + 𝑡𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 (3.1)

With Equation 3.1, and values of 833288 bits, 157 additional bits, 0.001202 𝑠 additional time and a frequency

of 19 𝑀𝐻𝑧, the time for one reconfiguration cycle comes to 70.7 𝑚𝑠. All the values in question are found in the

data sheet, under which the frequency which is the standard operating frequency in use on the device. The

power consumption during reconfiguration for the iCE40 device is sourced from a well-documented page [46].

The plots for the booting show the expected procedure, delete current configuration, wait a small number of

cycles, program the SRAM, and subsequently wait some cycles afterwards.

Flash-based FPGA
An additional aspect to consider is a flash-based FPGA, this gives a lower static power usage. The characteristics

of such a device can be found in Section 2.2.3. To enable a proper comparison between normal and flash-

based FPGAs, a device with characteristics similar to regular FPGA, the iCE40UP5K is identified. A suitable

comparison is the Nano IGLOO AGL250. The Nano IGLOO consumes 20 𝜇A or 34 𝜇A in flash*freeze mode,

depending on whether the voltage is 1.2 V or 1.5 V, respectively. Aside from static power usage, the same

values measured for the iCE40 will be used, as the iCE40 is readily available, while the IGLOO Nano is not.

An alternative option is to use the sleep mode of the iCE40, but in this mode, nearly all functionality and

programming are disabled. Therefore, the sleep mode of the iCE40 was deemed unsuited for the task.

19

Power gating
When power gating is used in a later scenario, the appropriate idea is that a device is used which would be

a combination of the Nano and the iCE40. The device would use flash memory for the ability to keep the

configuration on the device when shut off, which would entail that the configuration would be active without

requiring a reprogramming cycle after wake up.

3.2.3 Battery

For usage within this thesis, a battery is selected to power the IMD platform for an extended amount of time.

The options for commensurate IMD batteries come from companies which have been making batteries for

IMDs for years. The companies in question are EAGLEPICHER [38] and Resonetics [47]. The battery capacity

used in the models is 1500 mAh, which is a typical capacity for modern IMDs [48] [49]. The batteries have a

large battery capacity, and have a large area to match.

3.2.4 Flash memory

Flash memory is used to store FPGA reconfiguration bitstreams, which can be loaded directly into the FPGA

from the memory. The specific flash memory device used in this thesis is the MX25V1006F [50], and it will be

utilized in the computations going forward. The decision to use this flash device is based on its use of NOR

flash technology. Unlike NAND flash, which employs a NAND logic gate, NOR flash uses a NOR logic gate to

store data. NOR flash is better suited for read operations due to its faster read speed and lower standby current.

Flash memory has a limited number of write operations. For the MX25V1006F, the minimum guaranteed is

100,000 erase/program cycles. Additionally, while read operations typically have fewer limitations, they are

subject to a phenomenon known as "read disturb" [51], where frequent reads can alter surrounding data. This

effect generally occurs after around 100,000 read cycles between erase/program cycles. However, it is more

commonly associated with NAND flash, whereas the chosen device is a NOR flash, which is less susceptible

to this issue.

3.2.5 Gating device

Due to the usage of power gating in this thesis, a way to cut off the power needs to be done smoothly. The

variant in use for the thesis is the Ultra-Low Leakage Load Switch TPS22916B [52]. This device was chosen

due to the low static power it uses, which was the primary requirement.

3.2.6 Multi-meter

For the measurement of analog voltage lines, Fluke Multi-meter 115 was used [53].

3.2.7 Resulting processing devices

Within the previous sections, several devices were selected, of which a few were processing elements. The

actual devices and their serial numbers are important to cross reference, and therefore are defined in Table 3.5 .

Table 3.5: Basic device characteristics

Device name Device type Brand name Serial Number of device Citation

Tiny Gecko 11 MCU Silicon Labs EFM32TG11B520F128GM80 [54]

Giant Gecko 11 MCU Silicon Labs EFM32GG11B820F2048GL192 [55]

iCE40UP5K FPGA Lattice Semi iCE40UP5K-B-EVN [45]

Nano IGLOO AGL250 Flash-FPGA MicroChip AGL250-VQ100 [56]

3.3 Algorithms

A key aspect of ensuring the validity of this research is selecting algorithms that can be applied in appropriate

contexts. Therefore, algorithms have been chosen based on their potential use in neural or cardiac IMDs. As

mentioned before, there are two primary categories: wireless communication and medical therapy. These cases

were selected based on future requirements for IMDs, including wireless accessibility and advancements in

medical treatments. Each primary use case can be further divided into sub-cases, allowing for a more detailed

evaluation of IMD platforms.

The algorithms are required to be representative of the environment in which to use an IMD, thereby

establishing typical use cases for an IMD FPGA that aligns with the functions of IMDs within the cardiac or

20

neurophysiological domain. The resulting themes to look for are wireless transmissions, and medical algo-

rithms, ranging from basic to next-generation workloads. The first wireless algorithm is the current standard

for encryption, called AES. Then for the given options of the platform in question lightweight alternatives

for were found [8]. These options are PHOTON as a lightweight hashing option and SIMON/SPECK as a

lightweight cipher option. Subsequently, the medical algorithms were more difficult to find. The requirements

from the thesis goal require future options for algorithms, which quickly makes them shift into neural network

territory. Therefore a neural network with low computational intensity was required. Recently an algorithm

was developed that was suitable for this thesis, the spike-sorting algorithm [11]. Another algorithm to use as

reference was the Current-Source Density (CSD) algorithm, which is a conversion algorithm for Local Field

Potential (LFP) input data into a CSD representation [57] [58]. This algorithm is a less compute-intensive

algorithm when compared to the spike-sorting algorithm. The combination of these algorithms represents the

algorithms in use for such devices. Table 3.6 summarises the algorithms used within the thesis. Within the

table, the sampling frequency used for the measurements can be found.

Table 3.6: Algorithm characteristics with definitions for the measurements

Algorithm name Algorithm type Environment Sampling frequency [Hz]

Medical algorithms
Spike detector Spike-sorting algorithm sub part Neural & Cardiac 24414

Spike classifier Spike-sorting algorithm sub part Neural 1000

CSD LFP to CSD algorithm Neural & Cardiac 24000

Wireless algorithms
AES Block cipher - 10, 100, 1000

SIMON/SPECK Block cipher - 10, 100, 1000

PHOTON Hash function - 10, 100, 1000

3.3.1 Medical algorithms

Medical workloads are much broader in scope, as it contains any algorithm performed on the device to facilitate

data analysis, management, or simple data collection from sensors.

Examples of next-generation workloads often include increased hardware resource demands. These ad-

vancements provide greater functionality, thereby having a more substantial impact on healthcare. The fol-

lowing section will outline the specific workloads that will be utilized and tested in this thesis. To begin, a

neural network based algorithm is selected to represent up-and-coming workloads. The algorithm chosen is

spike sorting [11], which consists of two phases to select and analyse incoming data related to neural spikes.

To balance this, a less compute-intensive workload is also included. For this, a simple algorithm with low

implementation costs is chosen: CSD [57].

Spike sorting
Spike sorting is an algorithm used to identify behaviour within neurons. For the implementation used in this

thesis, spike sorting is used to identify simple and complex spikes within Purkinje neural data.

The algorithms contained within spike sorting are the spike detection and spike classification algorithms.

These two algorithms differ significantly in their functionality. The spike detection algorithm applies filters

and basic operations to perform an initial screening of the incoming data, with some modifications to prepare

the data for classification. It eventually identifies whether a spike has occurred. Once a spike is detected,

the spike classification algorithm is triggered, which utilises a neural network to predict whether the detected

spike is simple or complex.

One notable aspect of this combination is that the spike detection algorithm should run continuously in the

background, even while the classification is being performed [11]. In the context of this thesis, the significance

of this workload lies in its ability to be implemented on both an FPGA and an MCU, as well as its incorporation

of a neural network.

Spike detection
The spike detection algorithm operates by receiving input from a sensor connected to a Purkinje cell. The input

is then processed through multiple stages, including filtering, data alterations, and detection of spikes. The

detected spike can either be simple or complex. The output consists of 40 subsequent samples, each comprising

8 Most Significant Bits (MSBs) of the original 10 bits received from the sensor.

21

Due to its reliance on filters and basic operations, the spike detection algorithm is well-suited for imple-

mentation on an FPGA. However, challenges may arise in achieving the desired accuracy, particularly when

dealing with floating-point inputs, which are more difficult to emulate on an FPGA.

Spike classification
The spike classification algorithm operates by using the output from the spike detection algorithm and pro-

cessing that data through a neural network to determine whether a simple or complex spike has occurred in

the Purkinje cell.

The neural network in use for this algorithm defines a great deal about the operation. The currently used

neural network contains 5 layers, 5 convolution layers, with a final activation function. Table 3.7 displays the

structure of the neural network used for the spike classification.

Table 3.7: Neural network layer contents

Layer Type Neurons Weight

1 Convolution 16 40

2 Convolution 7 16

3 Convolution 5 7

4 Convolution 4 5

5 Convolution 3 4

The neural network used in the spike classification algorithm relies heavily on MAC operations. MAC

operations are well-suited for parallel implementation, making them highly compatible with FPGA-based

concurrency. However, challenges may arise with the implementation of floating-point operations. While a

fixed-point implementation of the neural network is possible, it is more difficult to achieve both accuracy and

general functionality.

CSD
CSD has a long history in the medical field. Its principle involves converting LFP data into a more interpretable

form, allowing for better analysis and deduction. LFP data is collected using multiple sensors placed at fixed

distances from each other in different locations in the brain, often arranged on a single plane. To utilize CSD

for uncovering deeper connections in the data, a specific method is required. LFP data points are obtained by

providing a stimulus to the subject, which triggers brain activity. This data is then converted to CSD, a form

better suited for analysing neural connections. The resulting activity is correlated with the stimulus to derive

meaningful insights. The method of converting LFP to CSD has been instrumental in revealing important

neuronal mechanisms [57].

The CSD algorithm used in this thesis is based on a variant available in an online MATLAB file [58]. The

equation for the CSD algorithm is shown in Equation 3.2.

𝑌[𝑖 − 1] = −𝐴[𝑖 − 1] + 2 · 𝐴[𝑖] − 𝐴[𝑖 + 1], 𝑖 ∈ {1, 𝑛 + 1} (3.2)

The input data is denoted as 𝐴, and the output data as 𝑌, 𝐴 and 𝑌 are arrays with size 𝑛 and 𝑛 − 2, respectively.

The index 𝑖 represents the location in the input/output data array. The 𝑛 variable is the number of electrodes

used as input for the algorithm The number of electrodes used in the testing is 12. The amount used was taken

to be equal to the amount used during real data capture.

The CSD algorithm performs a simple operation involving several additions and multiplications, closely

resembling a MAC operation. Due to its simplicity, the algorithm is easy to implement on any type of hardware.

Moreover, as the number of inputs increases, the workload becomes more suitable for accelerators, thanks to

the potential for parallelism.

3.3.2 Wireless algorithms

In today’s world, privacy is a critical concern, highlighting the need to protect personal data. The algorithms

discussed in this section are prime examples of addressing this need. By integrating security primitives into

the data-transmission pipeline, privacy can be better protected without requiring extensive computational

resources. Combining multiple security primitives can yield even stronger results.

22

The first workload type involves security primitives, with the AES serving as a prime example. The purpose

of these workloads is to secure wireless transmissions between the device and external parties, such as medical

professionals. The importance of this workload lies in safeguarding the private data of the patient. The security

algorithms used in this workload type include AES, SIMON/SPECK, and PHOTON.

The most critical aspect of this workload type for use in IMDs is speed, as it involves communication and

requires real-time data processing. This requirement can present challenges for slower or less efficient devices.

However, due to the nature of the algorithm, the workload may benefit from concurrent processing.

Block ciphers
The principle of a block cipher is to transform input text into cipher text, which can then be decoded using a

specific method that requires a dedicated key for both encoding and decoding. This transformation ensures

that only the party with the correct key can decipher and read the content. The block cipher workloads chosen

for implementation in this thesis are SIMON and AES [59] [60]. SIMON and SPECK were selected for its

lightweight implementation, while AES has been a widely accepted standard for many years.

AES
The AES algorithm is an algorithm that was selected as the ’best’ algorithm during a contest, thereby gaining

the privilege of becoming the defacto standard for secure communications and thereby being named Advanced

Encryption Standard. The original name was the Rĳndael cipher, named after the two creators, Joan Daemen

and Vincent Rĳmen. AES is a symmetric-key algorithm, meaning that the key used for encryption and

decryption is the same key. AES performs 10, 12 or 14 rounds based on the size of the cipher key, 128, 196

or 256 respectively. For each round AES uses a 128-bit round key, made through key expansion according to

the AES key schedule. The key is subsequently used to transform the input text. The algorithm first uses a

substitution box (implemented as a look-up table) as a first step. The substitution box is used to obscure the

relation between the plaintext and the ciphertext. Then in subsequent steps the text is transformed further

before starting the next round.

The AES algorithm is a heavy algorithm for the devices used in this thesis. It contains quite a few steps of

complex computations and therefore will take some time to actively run. Due to the status of the algorithm,

there are hardware additions to standard platforms for efficiency purposes, such as can be found on the

Gecko devices. This already existing hardware addition within the original MCU devices underlines the high

suitability for relocation of this algorithm onto more efficient devices.

SIMON and SPECK
SIMON and SPECK is a family of lightweight block ciphers. SIMON/SPECK is a add–rotate–XOR (ARX)

cipher, which means that their round function includes: (A) modular addition, (R) rotation with fixed rotation

amounts, and (X) XOR. The ARX cipher setup is popular because they are fast and can run on cheap hardware.

Apart from being fast, the algorithm also runs symmetrically amongst all internal functions, protecting against

timing attacks. It is important to note that SIMON is an implementation that is optimised for hardware, while

SPECK is an implementation that is optimised for software [59]. The SPECK algorithm is a relatively cheap

algorithm to run, therefore being a good choice for running on IMDs.

Hash functions
A cryptographic hash function processes input text, in the form of plaintext, and generates an output of fixed

length, serving as a unique identifier for the input text. The workload chosen for the hash implementations is

PHOTON [61], selected for its lightweight implementation, which is well-suited for use in hardware within an

IMD.

3.4 Measurements

For a proper comparison, workloads must be measured using the same metrics and under identical input

conditions. While actual measurements can be conducted on different setups, any changes to the setups

introduce variability. To maintain consistency, throughput will be the primary requirement for comparison. The

workloads will be executed at an operating frequency, but for comparison purposes, the goal is to standardise

the throughput. Therefore, the operating frequency is matched to the required throughput for each algorithm,

as defined in Section 3.4.1. A combination of metrics will be used, with particular emphasis on accurately

measuring power consumption. Consistent power measurements require careful analysis of the usage of the

device, which presents a challenge due to differences in device types and execution methods. These differences

also affect the accuracy of the measurements.

23

3.4.1 Throughput frequency

The frequency used in the measurements is critically important. The standard approach for comparing devices

and their results is by referencing their operating frequency. However, the frequency directly influences the

overall operation of the device, including its power consumption. Instead of standardising the frequency across

all devices, the frequency is based on the rate at which output is transmitted. This rate, in turn, determines the

amount of output being processed. By using this as a fixed factor, execution time is excluded from consideration.

While execution time is typically a key metric, the choice was made to focus on average power consumption as

the primary contributing factor in this analysis.

The calculation of the appropriate operating frequency uses the sampling frequency and the cycle count

for one iteration of the algorithm. Multiplying the sampling frequency by the cycle count yields the operating

frequency required for that specific algorithm on the given device. The formula for this calculation is shown

in Equation 3.3.

𝑓𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 ∗ 𝑛𝑐𝑦𝑐𝑙𝑒𝑠 (3.3)

An important point to consider is that energy consumption is not always linearly dependent on frequency,

as can be seen in Equation 2.2. In some cases, instead of reducing the operating frequency, it may be more

efficient to increase the processing speed, complete the computations more quickly, and then shut down the

device. This approach could potentially optimise energy efficiency.

3.4.2 Device understanding for measurements

A thorough understanding of the devices and their inner workings is essential for obtaining accurate measure-

ments. This knowledge ensures that measurements are not unduly influenced by unknown characteristics in

the setup of the devices. If any setup-related errors do occur, they can be identified and accounted for in the

analysis.

3.4.3 Setting up the measurements

The approach used for the measurement is to define the operating conditions based on the sampling rate rather

than standardising the operating frequency across all devices, as outlined in Section 3.4.1. For each device, the

cycle count for one iteration was considered. Since devices differ in their characteristics, computations had to

be made for each algorithm on each device and then converted for the appropriate frequencies. Afterwards,

the most important consideration is the distinction between static and dynamic-power consumption. For these

measurements, dynamic-power usage was prioritised, as focusing on dynamic power simplifies the process

and the conditions that need to be accounted for. Static-power consumption is determined through the device’s

data sheets.

3.5 Analysis tool

The measurements need to be thoroughly analysed, and for this purpose, a specialised software tool was

developed during the thesis. This analysis tool is particularly useful due to the processing of large amounts of

data. The nature of the question revolves around different types of processing elements and algorithms, which

need slightly differing follow up analysis. The tool helps to keep a consistent analysis throughout the whole

process. It was developed in Python, due to the ease of development, large amount of libraries and the fact

that it is becoming a standard tool within the TU Delft. A visualisation of the components of the tool can be

seen in Figure 3.4.

Inputs Model stage Output stageInput stage Outputs

Tool

stage
Preprocessing

Figure 3.4: Overview of the analysis tool, which shows the separate stages used

24

3.5.1 Target of tool

The goal of this tool is to generate output that addresses the original objectives outlined in Section 1.2. To

ensure consistent development, each component of the tool was rigorously tested for proper functionality, and

new features were added as needed. The main challenges that the tool helps combat are:

• Ease of producing results for new scenarios

• Produce plots showing the efficiency of devices in defined scenarios

• Keep consistency between device types

Therefore the design of this tool was focused on flexibility. The tool has the ability to adapt to scenarios

that are either not yet fully defined or that evolve as new data and results are accumulated.

3.5.2 Input

The starting conditions for the development cycle were based on the completion of the previous part of the

thesis, which involved gathering measurements as outlined in Section 3.4. The inputs to the tool can be

classified as:

• Dynamic variables

The dynamic variables are the variables that come from the execution of the algorithms on the device,

such as time and power.

• Static variables

The static variables for each device originate from sleep mode and additional devices. An example of an

additional device for this context is the power-gating device. The standard operating costs and additional

devices are added to dynamic costs in the tool.

• Overhead variables

Overhead variables for the device are additional considerations. An example here is the reconfiguration;

it is a device-specific consideration and does not fall under static or dynamic.

• Scenario variability

For each scenario, a certain amount of options can be used. The amount of variation needs to be large

enough to provide valuable insights while being contained enough to be able to be used in practice in

both development and usage afterwards.

A significant challenge was implementing variability between platforms, including considerations like sleep

mode power consumption and reconfiguration on an FPGA. The tool details will be provided in Section 4.3.

25

Chapter 4

Implementation

The goal of this chapter is to describe the fully realised versions of the algorithms on each device, the measure-

ment process, and the implementation of the analysis tool. Once these aspects produce the desired outputs

(i.e. finishing sub-goals to the point of producing results), the implementation phase of this thesis can be

considered complete.

4.1 Measurements

The following section will cover the implementation factors for the measurements. The setup details and input

conditions can be found in Section 3.4. It is important to note that each platform and brand has a distinct

design philosophy and implementation, making direct comparisons between platforms a challenging task. An

approach for handling these differences was outlined in Section 3.4.3. Table 4.1 defines the specific type of

measurements used for each device.

Table 4.1: Measurement methods for devices

Device name Device type Measurement

Tiny Gecko 11 MCU Simplicity Studio - measuring through internal sensors

Giant Gecko 11 MCU Simplicity Studio - measuring through internal sensors

iCE40UP5K FPGA Multimeter - using test points on the device

4.1.1 Simplicity Studios measurement

The Gecko device types are operated and programmed using a software platform known as Simplicity Studio

[62]. This program, in combination with the device, provides built-in current and power measurement capa-

bilities. Notably, Simplicity Studio also offers features for monitoring device outputs during operation. These

built-in current and power measurement options were utilised during the measurement process for the Gecko

devices. Figure 4.1 displays the results of using Simplicity Studios to perform measurements on the Gecko

devices.

4.1.2 Multimeter

For measurements on devices without built-in capabilities, a multimeter is used, which is connected to Testpoint

(TP)s on the device. The test points are connected to specific voltage lines, which either transmit data or supply

power to the device.

The device in use without build-in capabilities is the iCE40 device. Measurements on the iCE40 can therefore

be taken from the development platform using a multimeter. For this study, the primary focus is on measuring

the voltage across the core. 𝐼𝐶𝐶 can be measured across the series resistor R76 1 Ω at TPs 11 and 12 [45], as can

be seen in Figure 4.2.

4.1.3 Comparable measurements

To effectively compare measurements from different devices, it is essential to maintain consistency in the

assumptions used to obtain those measurements. The prior assumptions were outlined in Section 3.4.3, and

26

Figure 4.1: The tool used for the measurements on the Gecko devices, Simplicity Studios [62]

Figure 4.2: Printed Circuit Board (PCB) with the test points for the measurement on the iCE40 device

now that the measurements have been collected, the comparison phase begins. For the comparison, a plethora

of metrics are available. Within these metric, the primary one to consider is power, which can be derived by

converting both current and voltage measurements into a common form. Since power is comparable across

platforms, this conversion satisfies the requirements for cross-device comparison. An equally important metric

is the energy, which will be used after the measurement stage. The execution time is normally taken as a

big component, but due to the implementation factors considered, the execution time should be about equal

between devices, and therefore be of limited importance. It will be displayed for the measurements, but further

on be discarded.

4.2 Algorithm implementation on devices

This section introduces the initial stages of algorithm implementation on the devices. Based on the setup

information and assumptions outlined in Section 3.2.

27

4.2.1 Algorithm design for devices

The algorithm design went through three iterations. It began with basic versions of the algorithms in their

primary forms, essentially just running the code with minimal modifications. This initial version consisted of

either found code, modified to be executable, or a basic algorithm implemented quickly. Due to the multiple

platforms involved, this phase included implementations in both C and Verilog/VHDL. Once these initial

versions were deemed functional, the next step was to optimise the algorithms for the selected devices. This

optimisation introduced several challenges, primarily due to the varying design philosophies across different

manufacturers, platforms, and device types. Once the algorithms were made sufficiently efficient, the final

challenge emerged. The final challenge was ensuring consistency in the comparison between algorithms

on different processing elements. Given the aforementioned differences between the processing elements,

selecting a base to compare them on was difficult. A compromise was eventually reached by using the

sampling frequency as a common guideline (Table 4.2), as outlined in Section 3.4.1.

4.2.2 Data transfer

For data transfer between a device and an end user, the primary concerns are the amount of data, transfer speed,

and security requirements. The values for data amount and speed were sourced from [38], which provided

data for weekly and daily transfers in various sizes and durations. An alternative approach would be to define

transfer values for general use and specific algorithms, which would require input from a domain expert to

obtain standard usage information. For the purposes of this thesis, the decision was made to use one daily

and one weekly transfer definition. The daily transfer occurs once per day, while the weekly transfer occurs

once per week. The daily transfer is defined as a half-minute process during which the device transmits basic

information, such as battery status or a time diagram of the patient’s medical data. The weekly transfer is a

two-minute process used by a specialist to download all available data from the device, which is then analysed

to provide the patient with detailed health insights. The resulting values used can be seen in Table 4.2, together

with the citation where the algorithm originated.

Table 4.2: Sampling frequencies for algorithms

Algorithm Sampling frequency [Hz] Source

CSD 24000 [58] [57]

Spike detector 24414 [11]

Spike classifier 1000 [11]

Security Variable [38]

4.2.3 Implementation on Geckos

In this section, we will focus on algorithms designed for the Gecko devices, specifically the Tiny Gecko and

the Giant Gecko. For every algorithm on display, a value was required to calculate an appropriate sampling

frequency. To find the cycle count an implementation was required to transfer the values to the user. Therefore

additional implementations were made.

CSD
The algorithm receives input data from multiple electrodes, processes the data using the CSD equation, and

outputs the resulting value.

The original CSD algorithm was written in MATLAB [58]. The primary change involved converting the

MATLAB code into C code for the MCU. The functionality of the original code was retained, with a small

alteration to the computation used for the array. The alteration makes use of more basic operations.

Spike detection
The algorithm processes input data, detects whether a spike has occurred, filters the data, and passes relevant

portions to the spike classification algorithm.

The spike detection algorithm was originally implemented on the Gecko devices in [11]. The primary

adjustment made was altering the operating frequency to match the calculation’s sampling frequency. This

variant functioned as expected after the adjustment.

Spike classification
The spike classification algorithm receives filtered input from the spike detection algorithm and uses a neural

network to determine whether the detected spike is simple or complex.

28

The spike classification algorithm was originally implemented in [11]. As with the spike detection algorithm,

the key adjustment was modifying the operating frequency based on the sampling frequency. However, a

challenge arose with the Tiny Gecko device due to compatibility issues with the TensorFlow Lite library [63].

While the library could be compiled and run on the device, it encountered operational issues that affected

performance. Therefore the performance of the Tiny Gecko device was worse than would fall in line with the

expectations based on the Giant Gecko.

AES
AES is classified as a cipher-based encryption algorithm.

Due to time constraints, the implementation could not be made on the Gecko device. The values used in the

analysis were sourced from values from data sheets for the Gecko devices [54] [55]. The operating frequency

of the Gecko devices was 19MHz.

SIMON/SPECK
SIMON/SPECK is a lightweight encryption algorithm in the cipher category.

Due to time constraints, the implementation could not be made on the Gecko device. The values used in the

analysis were sourced from values from data sheets for the Gecko devices [54] [55]. The operating frequency

of the Gecko devices was 19MHz.

PHOTON
PHOTON is a lightweight encryption algorithm in the hash category.

Due to time constraints, the implementation could not be made on the Gecko device. The values used in the

analysis were sourced from values from data sheets for the Gecko devices [54] [55]. The operating frequency

of the Gecko devices was 19MHz.

4.2.4 Implementation on iCE40UP5K

This section will discuss the implementation of algorithms for the iCE40UP5K device.

CSD
The major modification was converting the MATLAB code into VHDL for implementation on the FPGA. This

conversion process was time-intensive due to the specific requirements for an efficient hardware implementation

of the algorithm. A continuous problem regarding the FPGA implementations remains the amount of I/O

ports. The amount was insufficient to implement a proper parallelise implementation.

Spike detection
During testing, it was discovered that certain aspects of the code were inefficient and prevented successful

synthesis on the device. These inefficient components were partially removed, allowing the full code to be

synthesised. Additional insights into the algorithm’s functionality were also gained, and minor adjustments

were made to improve efficiency. A continuous problem regarding the FPGA implementations remains the

amount of I/O ports. The amount was insufficient to implement a proper parallelise implementation.

Spike classification
Early testing revealed that the original form of the code could not be accommodated on the limited size of the

FPGA. To address this, pipelining was introduced. Pipelining restructured the execution of the neural network

by allowing multiple layers of neurons to be processed sequentially, sharing components and reducing area

usage, while increasing time linearly. A continuous problem regarding the FPGA implementations remains

the amount of I/O ports. The amount was insufficient to implement a proper parallelised implementation.

Additionally, within each neuron’s execution, the weights of the neural network were optimised to improve

the computational efficiency. The alteration stemmed from altering values, internal values from the neural

network, making them solvable with a bit shift instead of a multiplication. Ultimately, for the original code, a

conversion program was made to allow for an automatic conversion of alternate versions of the neural network

into VHDL code for this purpose. This adaption makes it suitable for quicker prototyping and implementing

for FPGA or ASIC.

29

AES
The AES algorithm used was sourced from [8]. The primary modification involved addressing issues with the

communication to the MCU, which consisted of UART or AHB-Lite. The communication was replaced with a

simpler input and save mechanism. Other minor edits were made for consistency between algorithms.

SIMON/SPECK
The SIMON/SPECK algorithm also originated from [8]. Similar to AES, the primary modification involved

addressing issues with the communication to the MCU. The communication was replaced with a simpler input

and save mechanism. Other minor edits were made for consistency between algorithms.

PHOTON
The PHOTON algorithm, like AES and SIMON/SPECK, came from [8]. The same modification was made to

the communication to the MCU, replacing it with a simple input and save function. Additional changes were

made for consistency, these were minor edits.

4.3 Analysis tool

This section will cover the development of the tool, including its design specifications, internal workflow, and

the accuracy of its outputs. The setup information and input conditions can be found in Section 3.5.

4.3.1 Options

Based on the previously defined goals of the tool, a subset of specific options can be identified. These options

will address potential corner cases and provide additional features for the tool to utilize. A significant challenge

to consider is that each new option adds complexity to the tool’s operation.

4.3.2 Supplying input to tool

The input primarily consists of Comma Separated Values (CSV) files, many of which are automatically generated

from previous data, although new data can easily be added. The input files are device-specific and are

categorised into three types: measurements, cycles, and devices. The measurement files contain data related

to performance measurements, such as power consumption, the cycle files provide information on the number

of cycles required for one iteration of an algorithm, and the device files store information about the hardware

on which the algorithms are executed. These files are consolidated into an Excel file, which is then used to

perform calculations within the tool.

4.3.3 Overview of internal function

The global tool architecture is shown in the Figure 4.3. This overview displays how the stages are connected.

Figures 4.4 till 4.7 contain the architecture of the separate components within the tool. Every stage shows what

data is required, and what steps are taken to give an output.

Inputs Model stage Output stageInput stage Outputs

Tool

stage
Preprocessing

Figure 4.3: Overview of the analysis tool, which shows the separate stages used

30

Preprocessing stage

Combine separate data

Convert measurementsMeasurement data

Device data

Workload assumptions

Preprocessed data

Figure 4.4: The preprocessing stage of the tool

Input stage

Combine dataConvert inputsPreprocessed data

Scenario definition

Model inputs

Figure 4.5: The input stage of the tool

Find profile dataModel inputs Perform calculations

Model stage

Outputs model
calculation list

Add to (temporary)

Perform device

(If applicable)

specific calculations

Figure 4.6: The model stage of the tool

4.3.4 Functionality

The primary functionality of the tool is to combine measurements and data in a way that reflects realistic

scenarios. To achieve this, it is essential to understand device operations across all possible and required

operating conditions. These conditions include the maximum operating capacity of the algorithm on the

device, the minimum operating capacity under similar contexts, and characteristics concerning wake-up times.

The primary input to the analysis tool is the measurements, which will be referred to as a workload variable

within the analysis tool. These variables contain the results of the direct execution of the algorithms. Within

the analysis tool, additional variables are required for a realistic scenario. These additional variables will

be referred to as overhead variables within the analysis tool. These will contain characteristics concerning

reconfiguration, sleep mode and waking up from power down.

31

Plot metrics and constrain...

Output plots

Model stage output

Output metrics

Output stage

Scale the time aspects

Calculate equations:

Figure 4.7: The output stage of the tool

4.3.5 Equations

The tool utilises various types of equations, each corresponding to different metrics. These include time-

dependent, power-dependent, and resource-dependent equations. In each calculation, the metric used is

referred to as a unit. Once the unit is defined, the output value is calculated for the plethora of options within

the scenario in use. Every calculation is done according to the same equations.

The first equation is the summation type; this equation defines a basic addition to combine separate

components to find the total value.

𝑢𝑛𝑖𝑡𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑢𝑛𝑖𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑛 + 𝑢𝑛𝑖𝑡𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑛 (4.1)

with n being the combination of devices used for this calculation.

The second equation is the averaging type; a multiplication and afterwards a summation is used to combine

separate values to find the total value.

𝑢𝑛𝑖𝑡𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑢𝑛𝑖𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑛 ∗ 𝑡𝑖𝑚𝑒𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑛 + 𝑢𝑛𝑖𝑡𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑛 ∗ 𝑡𝑖𝑚𝑒𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑𝑛 (4.2)

with n being the combination of devices used for this calculation.

4.3.6 Outcome

Equations 4.1 and 4.2 are used to find the outcome of the metrics in use for the supplied inputs to the tool.

The supplied inputs to the tool define a single scenario, with multiple devices that are used internally in the

scenario. The output of the equation is then the result for a single scenario, a single device type, and a single

metric. This can then be further used in an analysis, where the results are combined within a scenario, or

between scenarios.

32

Chapter 5

Experimental results

In this chapter, the evaluation results from our experiments are collected and presented, focusing on metrics

such as power consumption and execution time.

5.1 Analysis tool validation

The primary validation involved performing manual calculations for specific scenarios and comparing them

with the tool’s outputs. This straightforward process was applied to all required aspects and values to ensure

consistency.

5.1.1 Validation steps

The validation process follows a set of simple steps:

1. Use the values directly from the scenario definition in the tool.

2. Input the selected values in the tool calculations section.

3. Perform the same equations manually and input them in the manual calculations section.

4. Compare the results from the manual calculations with those from the tool. Both should match; if not,

any discrepancies must be investigated and corrected.

The values in use should adhere to the same metrics.

5.1.2 Scenario validation

The validation steps were carried out on a selection of scenarios, one benchmarking and one realistic scenario.

The validation results are presented for various metrics, such as execution time, average power, and battery

life. The benchmarking scenario will be shown to show how the validation was performed.

However, during the initial validation process, several issues within the tool were identified and subse-

quently resolved. The more complex cases of the tool relied on the validated scenarios as a foundation. At

the end, the values from the tool and the validation matched, and the validation demonstrated that the tool

worked as intended. The process of finding errors in the results of the tool also showed the significance of

using the validation process.

5.2 Measurement results

This section presents individual measurements of algorithms executed across different devices, those being

MCU only or FPGA+MCU. While this section is not directly critical to answering the problem statement, it

offers valuable insight into the performance factors of different algorithms. Later, these individual algorithm

results can be used to understand scenario results, providing a more comprehensive argument for the final

conclusion.

These algorithms are shown in this section: AES, PHOTON, SIMON, CSD, spike detector and spike classifier.

33

Figures 5.1 through 5.7 display the differences between various hardware setups for the same workload.

Each figure illustrates different metrics, such as execution time, average power consumption, and total energy.

Execution time is used to verify whether the original throughput assumptions hold, average power consumption

is used to make a comparison between workloads, and the energy consumption signifies the impact that the

workload will have on the fixed IMD battery capacity.

5.2.1 AES

The results of the AES workload are shown in Figure 5.1. These are Software (SW)-only results for the Geckos.

(a) Execution time (b) Average power (c) Energy per run

Figure 5.1: Bar plots containing metrics from the AES algorithm

The energy consumption shows that the FPGA impacts the battery life significantly less than the other

platforms. The energy metric aligns with the power results, confirming that the FPGA consumes less energy

overall.

In addition to the regular AES setup, there is an option to run the AES algorithm on dedicated hardware

(hard-IP block) on the Gecko devices, designed specifically for efficient encryption. This option is available on

both the Tiny Gecko and the Giant Gecko. The results are displayed in Figure 5.2. For this measurement it will

be referred to as the AES HW setup.

(a) Execution time (b) Average power (c) Energy per run

Figure 5.2: Bar plots containing metrics from the AES algorithm with AES ASIC enabled on the MCU

The setup for the AES which includes the Gecko’s hard-IP block demonstrates a substantial increase in

speed and a significant reduction in power consumption compared to the standard AES configuration on the

Gecko devices. The Gecko devices run hotter with the dedicated IP block, which makes them able to run

faster than the FPGA. However, the Gecko devices also run hotter, the combination of increased energy use

in operation and quicker execution of the algorithm results in an altogether great improvement for the Gecko

devices.

5.2.2 PHOTON

The results of the PHOTON workload are shown in Figure 5.3.

Similar to the AES algorithm, the power consumption shows that the FPGA operates more efficiently when

compared to the other platforms. The energy metric follows the power results, confirming that the FPGA

consumes less energy overall.

5.2.3 SIMON/SPECK

The results of the SIMON/SPECK workload are shown in Figure 5.4.

34

(a) Execution time (b) Average power (c) Energy per run

Figure 5.3: Bar plots containing metrics from the PHOTON algorithm

(a) Execution time (b) Average power (c) Energy per run

Figure 5.4: Bar plots containing metrics from the SIMON/SPECK algorithm

Similar to the AES and SIMON algorithms, the power consumption shows that the FPGA requires less

power than the other platforms. The energy metric aligns with the power results, confirming that the FPGA

consumes less energy overall.

5.2.4 CSD

The bar plots for the CSD algorithm are shown in Figure 5.5.

(a) Execution time (b) Average power (c) Energy per run

Figure 5.5: Bar plots containing metrics for the CSD workload

When it comes to power consumption, the results are more interesting than the previous algorithms. The

FPGA is still more efficient, but the MCU is closer to the FPGA for this algorithm. This is due to the simple

algorithm. Therefore the MCU can easily provide an efficient outcome. The FPGA could be more efficient if it

had enough I/O ports to accommodate enough sensors to use a parallelized approach.

5.2.5 Spike detector

The bar plots for the spike-detector algorithm are shown in Figure 5.6.

The power consumption for this algorithm lies closer than the one used in the CSD algorithm. The expected

reason is due to the necessary alterations required for the FPGA implementation.

5.2.6 Spike classifier

The bar plots for the spike-classifier algorithm are shown in Figure 5.7.

35

(a) Execution time (b) Average power (c) Energy per run

Figure 5.6: Bar plots containing metrics for the spike-detector workload

(a) Execution time (b) Average power (c) Energy per run

Figure 5.7: Bar plots containing metrics for the spike-classifier workload

The power consumption for this algorithm lies closer than the spike-detector algorithm. We suspect that

this is due to the necessary alterations required for the FPGA implementation.

5.2.7 Conclusions

A general trend emerges from the measurements: throughput-selected operating frequencies greatly favour

implementations with FPGA components. These results assume that the MCU is in sleep mode while the

FPGA handles the execution of the algorithm.

In conclusion, the FPGA+MCU used in these tests demonstrates lower average power consumption com-

pared to the MCU-only options. The primary contributor to this reduction is the difference in active components

between the processing elements, the FPGA runs lighter in comparison to the MCU. Additionally the cycle

count favours the FPGA execution of the algorithm. Typically, the FPGA algorithms require fewer cycles, being

able to execute the algorithm faster, spending less time and energy on active operation.

While obtaining measurements, the various encryption algorithms produced very similar results in terms

of time and power consumption. Therefore, the decision was made to focus primarily on AES, due to the

availability of a hard-IP block on the Gecko devices, which allows for testing multiple versions of the algorithm.

While using different encryption algorithms could add variety, it would not provide significant new insights.

5.3 Benchmarks

The next stage in the analysis involves examining how the devices perform when different algorithms are

paired, highlighting key characteristics of each setup. These highlighted characteristics reveal which devices

excel in specific areas, providing valuable insights for interpreting the final results. This process, focused on

determining the characteristics of specific scenarios, will be referred to as benchmarking. In Figure 3.1.4 the

setup and details for the operational scenarios are found, the details are repeated in Table 5.1.

Points of interest to be explored in the subsequent section include:

• The impact of using medical workloads.

• The addition of encryption algorithms.

• The use of gating and duty cycles to reduce average power consumption.

36

The measurement section focused on the performance of the base algorithms, for this purpose the energy

consumption was a good metric. In this section the focus is the processing elements in use, and for this purpose

the battery lifetime is a better metric to use. The battery lifetime presents a good idea how the combination of

devices will perform in a realistic scenario. Therefore a viable battery capacity was selected in Section 3.2.3.

The battery capacity is then used here with the energy consumption to show the expected time the IMD can

be run with the used algorithms. The overhead variables, which contain the reconfiguration costs are plotted,

but are often too small to display.

Table 5.1: Definitions for the benchmarks (CSD: Current-Source Density), all workloads in use are based on

integer values, for the use of encryption, there are two moments of communication, one weekly & one daily,

spike sorting contains the spike detection and classification algorithms.

Benchmark index Medical algorithms Wireless algorithms Duty cycle

Benchmark 1: Using medical workloads

1.1 Spike sorting - -

1.2 CSD - -

Benchmark 2: Medical workloads with encryption

2.1 Spike sorting AES -

2.2 CSD AES -

Benchmark 3: Medical workloads with gating

3.1 Spike sorting & Sleep - 5% active

3.2 CSD & Sleep - 5% active

3.3 Spike sorting & Off - 5% active

3.4 CSD & Off - 5% active

Benchmark 4: Benchmark 3 with flash-FPGA used

4.1 Spike sorting & Sleep - 5% active

4.2 CSD & Sleep - 5% active

5.3.1 Benchmark 1 - Using medical workloads

The goal of the first benchmark is to evaluate the effect of using medical workloads in their designed use and

assess the impact on performance when running these medical algorithms concurrently.

Benchmark 1.1 includes the spike detection and spike classification algorithms. In this scenario, the

algorithms are executed sequentially, without communicating the resulting data further. The purpose is to

evaluate the combined performance of the two algorithms. The resulting metrics can be seen in Figure 5.8,

the base workload concerning the full spike sorting algorithm can be seen in effect. The addition of multiple

workloads can be seen to affect the results, the resource usage of the FPGA increases.

(a) Battery lifetime (b) Average power

Figure 5.8: Bar plots for benchmark 1.1 (WL: Workload, D: dynamic, O: overhead), ALL is the combined value

for all workloads, WL0 is the spike detector, WL1 is the spike classifier

Benchmark 1.2 uses the CSD workload. In this scenario, the algorithm is executed without communicating

the resulting data further. The purpose is to evaluate the algorithm in the intended work setup. The resulting

metrics can be seen in Figure 5.9, the base workload concerning the CSD algorithm can be seen in effect.

In the cases within benchmark 1, it can be seen that running multiple workloads increases the frequency of

switching FPGA functionality, leading to higher power consumption for the FPGA due to the reconfiguration

37

(a) Battery lifetime (b) Average power

Figure 5.9: Bar plots for benchmark 1.2 (WL: Workload, D: dynamic, O: overhead), ALL is the combined value

for all workloads, WL0 is CSD

costs. This impact becomes more pronounced as the frequency of reconfiguration increases. The power used

by the FPGA increases more rapidly compared to the MCU when being in sleep mode. Therefore, when there is

additional downtime between tasks, which happens when the FPGA reconfigures, the FPGA incurs significant

penalties. The performance of the FPGA+MCU in handling the medical workloads demonstrates an advantage

over the MCU-only in terms of average power consumption . The FPGA continues to maintain a lead in power

efficiency despite the increased switching.

5.3.2 Benchmark 2 - Medical workloads with encryption

The second benchmark introduces encryption into the mix of workloads. This additional workload affects both

time requirements and power usage.

Benchmark 2.1 includes the spike detection and classification algorithms, with the resulting data being

communicated using AES encryption. As in the previous benchmark, the spike sorting algorithms are run

sequentially. The scenario is visualised in Figure 5.10. The resulting metrics can be seen in Figure 5.11,

the addition of the cipher to the spike sorting algorithm can be seen. This addition shows as an additional

component in the plot, but is a small component of the total usage. The implementation for the cipher is more

efficient for the FPGA, thereby keeping the devices in the same position as with the first benchmark.

Figure 5.10: Benchmark 2.1 in practice.

The next set of figures addresses benchmark 2.2, which differs from benchmark 2.1 in using the CSD

algorithm instead of the spike-sorting algorithms. The scenario is visualised in Figure 5.12. The resulting

metrics can be seen in Figure 5.13, the addition of the cipher to the CSD algorithm can be seen. As with

benchmark 2.1, the addition is a relatively small component of the total usage, thereby not altering the state of

the devices much.

Benchmark 2 looks visually similar to those in the previous benchmark, from figures 5.8 and 5.9. The

addition of encryption and other workloads requires the FPGA to reconfigure more frequently, increasing

its downtime when no tasks can be processed. However, the downtime is short compared to the active

operation, and the power consumption during reconfiguration remains minimal. The downtime is 70.7 𝑚𝑠
per reconfiguration cycle, see Table 3.2.2 , as compared to active operation of 12 hours in a row. Even with

the additional workloads and reconfiguration, the FPGA continues to maintain an advantage over the MCU in

terms of average power usage.

38

(a) Battery lifetime (b) Average power

Figure 5.11: Bar plots for benchmark 2.1 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is spike detection, WL1 is spike classification, WL2 is AES

daily, WL3 is AES weekly

Figure 5.12: Benchmark 2.2 in practice.

(a) Battery lifetime (b) Average power

Figure 5.13: Bar plots for benchmark 2.2 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is CSD, WL1 is AES daily, WL2 is AES weekly

5.3.3 Benchmark 3 - Medical workloads with gating

The third benchmark evaluates the impact of using gating techniques. In this context, the analysis tool simulates

power and clock gating. This is executed with a duty cycle over a 24-hour period to gather data. The duty

cycle defines what percentage of the time the device is actively executing an algorithm. The goal is to reduce

the power requirements of the implant over the same time period, thus extending the device’s operational

independence. The implementation of this option involves the devices executing the required algorithms for

part of the day while remaining in a low-power mode for the remainder of the day.

Benchmark 3.1 features spike detection and classification algorithms The data resulting from these algo-

rithms is not communicated in this scenario; only the algorithms are run and executed sequentially. The

duty cycle of the algorithm is set to 5% active operation, with the device being set to clock-gate mode for the

remainder. The scenario is visualised in Figure 5.14. The resulting metrics can be seen in Figure 5.15, the large

amount of time that the devices spend in sleep mode is a major component of the consumption of energy. The

MCU devices have a significantly more efficient consumption in sleep mode.

Similarly, benchmark 3.2 differs from benchmark 3.1 by using the CSD algorithm instead of the spike sorting

algorithms. The data resulting from these algorithms is not communicated in this scenario; only the algorithms

39

Figure 5.14: Benchmark 3.1 in practice.

(a) Battery lifetime (b) Battery lifetime

Figure 5.15: Bar plots for benchmark 3.1 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is spike detection, WL1 is spike classification, WL2 is Off

are run and executed sequentially. The duty cycle of the algorithm is set to 5% active operation, with the device

being set to clock-gate mode for the remainder. The scenario is visualised in Figure 5.16. The resulting metrics

can be seen in Figure 5.17, as with the previous benchmark, the large amount of time that the devices spend in

sleep mode is a major component of the consumption of energy. The difference in the consumption is smaller

compared to benchmark 3.1, but the FPGA still consumes more energy.

Figure 5.16: Benchmark 3.2 in practice.

(a) Battery lifetime (b) Average power

Figure 5.17: Bar plots for benchmark 3.2 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is CSD, WL1 is Off

Benchmark 3.3 includes spike detection and classification algorithms. The data resulting from these al-

gorithms is not communicated in this scenario; only the algorithms are run and executed sequentially. The

duty cycle of the algorithm is set to 5% active operation, with the device being set to power-gate mode for

40

the remainder. The scenario is visualised in Figure 5.18. The resulting metrics can be seen in Figure 5.19, the

addition of power gating instead of clock gating lowers the drain of the devices when not in use to the point

that the FPGA and the MCU devices operate comparable.

Figure 5.18: Benchmark 3.3 in practice.

(a) Battery lifetime (b) Average power

Figure 5.19: Bar plots for benchmark 3.3 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is spike detection, WL1 is spike classification, WL2 is Off

The next set of figures focuses on benchmark 3.4, which differs from benchmark 3.3 by using the CSD algo-

rithm instead of the spike sorting algorithms. The data resulting from these algorithms is not communicated

in this scenario; only the algorithms are run and executed sequentially. The duty cycle of the algorithm is set to

5% active operation, with the device being set to power-gate mode for the remainder. The scenario is visualised

in Figure 5.20. The resulting metrics can be seen in Figure 5.21, as with benchmark 3.3, the devices here have

a similar efficiency. The usage of power gating from clock gating bridges the gap in efficiency between their

inactive modes.

Figure 5.20: Benchmark 3.4 in practice.

(a) Battery lifetime (b) Average power

Figure 5.21: Bar plots for benchmark 3.4 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is CSD, WL1 is Sleep

41

Benchmark 3 contains 2 sets of bar plots, containing different types of gating. indicate that the clock gate

negatively impacts the FPGA’s performance. This is due to the need to keep more devices in a static mode,

leading to higher power consumption. The performance disadvantage is considerable when compared to the

fully active mode scenarios previously discussed. In contrast, the bar plots presented in figures 5.15 and 5.17 ,

the FPGA shows significantly better performance compared to the MCU, even surpassing previous benchmark

scenarios. The inclusion of power gating benefits the FPGA the most. This was expected, because the FPGA

uses the most energy in active or sleep mode, and thereby can gain the most from being shut off.

5.3.4 Benchmark 4 - Benchmark 3 with flash-FPGA used

In addition to the previous benchmark 3 part, the FPGA shows a bad performance for sleep mode. Using a

flash-based FPGA improves the sleep mode utilisation, due to lower energy usage while in sleep mode. This

benchmark will use the flash-based FPGA to show the difference. These will be run for two algorithms, the

spike sorting algorithm and CSD algorithm, with the same setup as benchmark 3.1 and 3.2 respectively. The

names for these two variants are benchmark 4.1 and 4.2 respectively. Figure 5.15 shows the operation for

benchmark 4.1 and Figure 5.17 shows the operation for benchmark 4.2. These correspond to the visualisation

of Figure 5.14 and Figure 5.16.

(a) Battery lifetime (b) Average power

Figure 5.22: Bar plots for benchmark 4.1 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is spike detection, WL1 is spike classification, WL2 is Sleep

(a) Battery lifetime (b) Average power

Figure 5.23: Bar plots for benchmark 4.2 (WL: workload, D: dynamic, O: overhead (defined in Section 3.5.2)),

ALL is the combined value for all workloads, WL0 is CSD, WL1 is Sleep

The resulting metrics can be seen in figures 5.22 and 5.23. It can be seen that the usage of the flash-

based FPGA in these computations shows improved result for the FPGA, but the results still favour the MCU

implementation.

Overall, the results of most benchmarks are favourable for the FPGA. In these use cases, the MCU operates

in the background in a static state. These positive results from complex benchmark scenarios suggest that

FPGA technology could be highly beneficial for use in IMD platforms. This provides a strong indication that

an FPGA-based solution is viable and potentially superior for such applications.

42

5.4 Operational scenarios

In the previous chapter, the benchmarks were performed to have a basic analysis to work off of. To continue

the analysis, focus on comparing how the device variants perform when all benchmark aspects are combined,

creating more complex situations. These results are then used to draw conclusions for the problem statement.

In Table 3.1.4 the setup and details for the operational scenarios are found, the table and details will be

repeated here. In Table 5.2 the details of the scenarios are displayed. The environment defines the location

and subsequent duty cycle, the algorithms in use determine how much energy is required for the execution of

said algorithms, the communication frequency determines how much energy is expended on encryption and

finally the gating component defines how the processing elements are set to outside of the active execution of

the algorithms.

Table 5.2: Operational scenario definitions, the differences between scenarios are shown through the variables

(CSD: Current-Source Density), all workloads in use are based on integer values, spike sorting contains the

spike detection and classification algorithms.

Scenarios Environment Duty cycle Workloads Communication Gating
1 Cardiac 5% Spike detection Weekly Clock

2 Cardiac 5% Spike detection Weekly Power

3 Cardiac 5% Spike detection Daily Clock

4 Cardiac 5% Spike detection Daily Power

5 Neural 100% CSD Weekly -

6 Neural 100% CSD Daily -

7 Neural 100% Spike sorting Weekly -

8 Neural 100% Spike sorting Daily -

Then subsequently, Table 5.3 contains the resulting values for each scenario. In the section below, these

values are used in bar plots to visualise how the results compare.

Table 5.3: The results from the operational scenarios, used to produce plots. The definitions for the scenarios

can be found in Table 3.2 (iCE40: iCE40UP5K, TG: Tiny Gecko, GG: Giant Gecko)

Average Power [𝜇W] Battery lifetime [years]
Scenarios iCE40+TG TG GG iCE40+TG TG GG

1 94,06 45,65 92,89 6,37 13,13 6,45

2 8,60 45,65 92,89 69,73 13,13 6,45

3 94,17 72,55 137,11 6,37 8,26 4,37

4 8,96 72,55 137,11 66,98 8,26 4,37

5 123,68 1.711,15 3.362,50 4,85 0,35 0,18

6 123,70 1.717,98 3.377,35 4,85 0,35 0,18

7 455,14 1.847,11 2.497,09 1,32 0,32 0,24

8 454,18 1.852,29 2.519,71 1,32 0,32 0,24

5.4.1 Comparison of scenarios

Each scenario provides output values for various devices, which can be compared to assess the effectiveness of

those devices in the given scenario. By combining different scenarios, more insights can be gained about the

performance of the combined devices.

Case 1: Neural environment
In this case, all defined scenarios for neural-IMD applications are compared. These comparisons primarily

focus on basic differences between devices. Notably, the difference between power gating and clock gating does

not significantly impact these scenarios, so they have been excluded as separate options. In the comparison

shown in Figure 5.24, the FPGA outperforms the other devices in terms of power consumption. The primary

reason for this is that the neural environment involves an ’always-on’ algorithm, where the FPGA excels due

to its lower power drain while continuously running algorithms compared to other device options.

Case 2: Cardiac environment
The second case examines the operation of devices in cardiac applications. In this environment, the active

algorithm, the spike detection algorithm, operates under a lower frequency due to the duty cycle, allowing the

use of gating techniques. The type of gating used makes a significant difference, there is clock gating or power

43

(a) Comparison for the average power (b) Comparison for the battery lifetime

Figure 5.24: Comparison of the scenarios within the neural environment (iCE40: iCE40UP5K, TG: Tiny Gecko,

GG: Giant Gecko)

gating. Clock gating removes the CLK input from the device, thereby lowering the power use on the device.

Power gating on the other hand cuts the device off from power, saving a great deal of power.

(a) Comparison for the average power (b) Comparison for the battery lifetime

Figure 5.25: Comparison of the clock-gated scenarios within the cardiac environment (iCE40: iCE40UP5K, TG:

Tiny Gecko, GG: Giant Gecko)

In the comparison shown in Figure 5.25, the performance of the FPGA and MCU variants is quite similar.

The reason for this is that in FPGA configurations, the MCU is running in the background, contributing to

additional static power consumption. In this case, the power savings from algorithm execution on the FPGA

are not enough to offset the overall static-power usage, leading to comparable performance between the two.

(a) Comparison for the average power (b) Comparison for the battery lifetime

Figure 5.26: Comparison of the power-gated scenarios within the cardiac environment (iCE40: iCE40UP5K,

TG: Tiny Gecko, GG: Giant Gecko)

44

When power gating, as seen in Figure 5.26, the FPGA shows a significant advantage over the MCU in power

consumption. The primary reason for this is that the power savings achieved for the FPGA through power

gating are large enough to offset the static-power consumption incurred when having both the FPGA and MCU

active in the scenario.

To sum up, the clock-gated scenario shows that using the FPGA processing element does not improve

the battery lifetime, thereby not resulting in a positive outcome for the thesis goal. However, when power

gating, the FPGA processing element has a positive outcome on the battery lifetime, thereby granting a positive

outcome for the thesis goal.

5.5 Summary

Chapter 5 began with the tool validation, which confirmed that the tool’s results were consistent with manual

calculations. After validation, the tool was able to produce a significant amount of reliable data. Given the

complexity of the question and the many variables involved, this validation was crucial for achieving the final

results.

Next, the measurement results were presented, showing individual device performance. These results

demonstrated a clear trend: the FPGA consistently outperformed other options, with the exception of the MCU

Hardware (HW) variant for AES, which uses dedicated hardware for the algorithm.

Following the measurement results, the benchmark results were introduced, focusing on specific aspects

of device performance. The benchmarks revealed that the FPGA performed more efficiently in the first and

second benchmark scenarios. However, in the third benchmark scenario, involving clock gating, the FPGA did

not show an advantage. When power gating was applied, though, the FPGA once again outperformed the

MCU.

The operational results focused on the practical use of algorithms and comparing the outcomes. These

results showed that the FPGA used significantly less power than the MCU across most scenarios. The exception

was the clock-gated cardiac scenario, which highlighted a key limitation of the FPGA—leaving it in a static

mode requires additional power to maintain its configuration. Therefore, power gating, which lowers that

drain, makes an FPGA a viable addition to the IMD platform.

45

Chapter 6

Conclusions

6.1 Contributions

In this thesis, we have made the following contributions:

• We have successfully modified the algorithms to be fully functional across all devices used in this thesis.

• We have performed all device measurements, except for the security algorithm measurements (AES,

PHOTON, and SIMON) on the MCU.

• We have analysed the results and provided the final conclusion of the thesis, which can be found in

Chapter 5 and Chapter 6 respectively.

6.2 Summary

In Chapter 2, the background information was provided for this thesis. This includes concepts which are

focused on implementation factors from a later chapter, as well as basic knowledge of components. Knowledge

regarding IMDs was provided, which continued into processing devices, algorithms and finally parameters

for the accelerators within the processing devices. Together it formed a basis on which to base the subsequent

research.

In Chapter 3, the theoretical start of the research was defined, starting with the experimental design.

Through use of the experimental design, devices within their respective categories were selected, under

which processing devices, which were required for the test setup, and devices for gating. Subsequently

algorithms were selected and researched, providing a start for the implementation of the algorithms on the

processing devices. Then the characteristics of the devices were converted into the requirements surrounding

the measurements. The theoretical design for the analysis tool is given in the finish of the chapter.

In Chapter 4, the definitions made in Chapter 3 were implemented. For this to happen, the details for mea-

surements on each processing device were researched. Subsequently the code for the algorithms was altered

to be able to be used on each processing device in use. After checking the functionality, the measurements

were then taken and saved, to be used in the analysis tool. The analysis tool was designed and subsequently

used to combine the obtained values in a consistent way, making us able to draw conclusions.

In Chapter 5, finally, we have determined that all the separate workloads produced similar trends (Sec-

tion 5.2), which largely held in the subsequent sections (Section 5.3, Section 5.4). One of the key indicators of

the FPGA’s power efficiency, even before the measurements were conducted, was the lower cycle counts of the

algorithms. To ensure a fair comparison between devices, a consistent throughput (bits per unit of time) was

used as the primary factor for equalizing performance across platforms. A higher cycle count requires a higher

operating frequency, and an increase in operating frequency leads to increased dynamic power consumption.

The lower cycle counts observed for the FPGA meant it can operate at a lower frequency, resulting in lower

dynamic power consumption. This outcome was anticipated early in the thesis.

The validation of the analysis tool confirmed that the results of the tool were consistent with manual

calculations. After validation, the tool was able to produce a significant amount of reliable data. Given the

46

complexity of the question and the many variables involved, this validation was crucial for achieving the final

results.

Next, the measurement results were presented, showing individual device performance. These results

demonstrated a clear trend: the FPGA consistently outperformed other options, with the exception of the MCU

HW variant for AES, which uses dedicated hardware for the algorithm.

There were notable differences in the benchmark scenarios that highlighted various aspects of the devices.

The first case, as described in Section 5.3.1, involved the combination of multiple medical algorithms. This

use case simulates detecting a defect and subsequently processing the defect. The results for this benchmark

closely mirrored the measurement results. The second case, described in Section 5.3.2, introduced a security

algorithm alongside a medical algorithm. Similar to the first benchmark, the results remained consistent with

the initial measurement outcomes. The third case, described in Section 5.3.3, added gating to the medical

algorithms, showing great promise for the FPGA. However, clock gating resulted in unfavourable outcomes

for the FPGA. The sleep mode for the FPGA is inefficient due to its reliance on SRAM, which requires constant

power to maintain the configuration. Over time, it would be more power-efficient to shut down the device

and reconfigure it rather than maintain it in sleep mode. However, when using a duty cycle, the device is

expected to execute the algorithm once in a predefined timespan, thereby limiting the use of power-gating for a

conventional SRAM based FPGA. To use power gating without reconfiguration, a flash-based FPGA should be

used. As described in Section 5.3.4, using a flash-FPGA provides a solution, as it saves the configuration during

power-down, enabling the use of power gating. Power gating eliminates the static power costs associated with

SRAM, significantly boosting the FPGA’s performance and making it a strong addition to the IMD platform.

The results presented in Section 5.4 combine scenarios that reflect real-world usage of the algorithms on

the platform. These results show that the FPGA performs well enough to be considered a viable addition to an

IMD platform, given that the implementation is done in an appropriate way to avoid the pitfalls of an FPGA.

The main reason for the pronounced difference between the MCU, and indirectly the CPU, and FPGA in the

results lies in the comparison method used. The metric in this thesis focused primarily on average power and

battery lifetime. Typically, power consumption and execution time are combined to assess device performance.

However, in this thesis, the metric of throughput frequency—which alters the operating frequency—was used,

excluding execution time from the equation. This alteration proved to make an easy way to compare devices,

using a constant operating frequency can prove effective for this purpose as well. Optimising for the device

used across multiple types of devices, algorithms and settings would require a large amount of additional

work.

The conclusion is that, for the given inputs, the FPGA performs exceptionally well. The measurements

demonstrate the natural efficiency of the FPGA, without showing any signs of underperformance. Even in

complex workloads, which would typically favour the MCU due to its flexibility, the FPGA exhibits highly

favourable results in terms of average power consumption. The benchmark for which the FPGA did not perform

well was clock gating, the static power consumption of the FPGA outweighs the gains from using it on regular

algorithms. Based on the duty cycle used, the gains an FPGA achieves during active operation will start to

outweigh the static costs while clock gated. The inclusion of an FPGA in an IMD platform is not only suitable

for prototyping but also highly practical for regular use.

6.3 Future work

Any research is never truly complete. Each discovery or resolved question often leads to new inquiries. The

most prominent new avenues arising from this thesis will be highlighted here.

6.3.1 Option 1: Partial reconfiguration

During the course of the project, promising approaches emerged regarding the implementation details of

smaller algorithms. In an FPGA, the reconfiguration process is often challenging, especially for large devices

or concurrent execution of algorithms. However, if only a portion of the device can be reconfigured as needed,

both the power during active and static operation could be reduced and the time required for reprogramming

could be reduced. This addition would enhance the device’s viability by mitigating some of the downsides

associated with FPGAs.

47

6.3.2 Option 2: Thermal characteristics

Another important concern that was identified but not explored in detail is the thermal characteristics of the

IMD use case. IMDs, being implanted in the body, generate heat. The exact amount of heat produced by the

device, along with the body’s capacity to absorb and dissipate heat, is currently too broad a scope to research

in the required capacity in this thesis. Understanding these thermal variables is crucial for determining the

safety and feasibility of the device in a real-world setting.

6.3.3 Option 3: Additional device type

The introduction of another device type could provide valuable data for more comprehensive comparisons.

Ideally, this additional device would feature dedicated hardware optimized for algorithm acceleration. Hard-

ware capable of parallel execution, increased speed or reduced power consumption would offer significant

advantages. Given the chosen trajectory for IMDs, this device must maintain a degree of flexibility. Examples

of potential devices include GPUs, Application-Specific Instruction set Processor (ASIP)s, or alternative FPGAs

that focus on flash memory in their development. It is recommended to consider low-power FPGAs with flash

memory or a low-power ASIP for further exploration. An alternate component which could prove interesting

is an FPGA which has a small amount of flash cells near the SRAM component used to save the configuration.

Such a device could hold multiple configurations that can switch quickly due to the lack of memory bandwidth

required during the reconfiguration process. Such an implementation would increase the viability of a small

FPGA which could be used as an accelerator for multiple algorithms.

6.3.4 Option 4: Additional algorithms

Additional algorithms could be used in the analysis. There exist promising avenues for additions, specifically

compression algorithms for data transfer, a basic algorithm in use for pacemakers or an additional medical

algorithm that uses a neural network. Using a combination of the original and the additions would make a

well-rounded set to draw conclusions from.

6.3.5 Option 5: Cohesive comparison for hybrid combinations of processing devices in IMDs

In this thesis, comparisons were made between various algorithms running on a single device. Each algorithm

was executed on the same device. However, combining the strengths of different devices to run specific

algorithms was not explored, though it presents a promising opportunity. For instance, a lightweight algorithm

could run on the MCU while the FPGA handles a more computationally intensive algorithm. Another possible

implementation is concurrent utilisation, using two devices to run two algorithms at once.

The primary reason for not implementing this hybrid approach in the thesis is the significant increase in

complexity when using multiple devices. The number of potential results expands exponentially, from 4 to 4
𝑛
,

where 𝑛 represents the number of algorithms used at the same iteration. This exponential increase necessitates

filtering or classifying the outputs to determine which configurations are viable for the intended application.

48

Bibliography

[1] O Aquilina. “A brief history of cardiac pacing”. In: Images in Paediatric Cardiology 8.2 (2006), pp. 17–81. issn:

1729-441X. url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232561/ (visited on 09/14/2023).

[2] Robert P. Carlyon and Tobias Goehring. “Cochlear Implant Research and Development in the Twenty-

first Century: A Critical Update”. en. In: Journal of the Association for Research in Otolaryngology 22.5

(Oct. 2021), pp. 481–508. issn: 1525-3961, 1438-7573. doi: 10 . 1007 / s10162 - 021 - 00811 - 5. url: https :

//link.springer.com/10.1007/s10162-021-00811-5 (visited on 11/11/2024).

[3] Anna Trafton. An implantable device could enable injection-free control of diabetes. Sept. 2023. url: https :

//news.mit.edu/2023/implantable-device-enable-injection-free-control-diabetes-0918.

[4] Ansheed A. Raheem et al. “A Review on Development of Bio-Inspired Implants Using 3D Printing”.

en. In: Biomimetics 6.4 (Nov. 2021), p. 65. issn: 2313-7673. doi: 10.3390/biomimetics6040065. url: https:

//www.mdpi.com/2313-7673/6/4/65 (visited on 11/11/2024).

[5] I. C. Mceachern. The Future of Implantable Medical Devices: What to Expect in 2024. Feb. 2024. url: https:

//www.iancollmceachern.com/single- post/the- future- of- implantable- medical- devices- what- to-

expect-in-2024.

[6] Alejandro Baldominos, Yago Saez, and Pedro Isasi. “A Survey of Handwritten Character Recognition

with MNIST and EMNIST”. en. In: Applied Sciences 9.15 (Aug. 2019), p. 3169. issn: 2076-3417. doi: 10.

3390/app9153169. url: https://www.mdpi.com/2076-3417/9/15/3169 (visited on 11/11/2024).

[7] Ali Olyanasab and Mohsen Annabestani. “Leveraging Machine Learning for Personalized Wearable

Biomedical Devices: A Review”. en. In: Journal of Personalized Medicine 14.2 (Feb. 2024), p. 203. issn:

2075-4426. doi: 10.3390/jpm14020203. url: https://www.mdpi.com/2075-4426/14/2/203 (visited on

11/11/2024).

[8] David Veselka. Exploring Feasibility of FPGAs in Implantable Medical Devices | TU Delft Repositories. url:

https://repository.tudelft .nl/islandora/object/uuid%3Ad27d9003- 9c68- 4383- b835- 0335d5a68ba7

(visited on 09/14/2023).

[9] David C. Bock et al. “Batteries used to power implantable biomedical devices”. en. In: Electrochimica
Acta 84 (Dec. 2012), pp. 155–164. issn: 00134686. doi: 10 . 1016 / j . electacta . 2012 . 03 . 057. url: https :

//linkinghub.elsevier.com/retrieve/pii/S0013468612003969 (visited on 07/15/2024).

[10] Deb Hipp. Normal resting heart Rate by Age (Chart). en. Mar. 2024. url: https://www.forbes.com/health/

wellness/normal-heart-rate-by-age/.

[11] Muhammad Ali Siddiqi et al. “A Lightweight Architecture for Real-Time Neuronal-Spike Classification”.

en. In: Proceedings of the 21st ACM International Conference on Computing Frontiers. Ischia Italy: ACM, May

2024, pp. 32–40. doi: 10.1145/3649153.3649186. url: https://dl.acm.org/doi/10.1145/3649153.3649186

(visited on 11/04/2024).

[12] Ravi Rao. FPGA Design: A Comprehensive Guide to Mastering Field-Programmable Gate Arrays. en. FPGA

structure. Apr. 2023. url: https://www.wevolver.com/article/fpga (visited on 10/08/2024).

[13] Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolić. Digital integrated circuits: a design per-
spective. eng. 2. ed. Prentice Hall electronics and VLSI series. Upper Saddle River, NJ: Prentice Hall, 2003.

isbn: 978-0-13-090996-1.

[14] Microsemi. Dynamic Power Reduction in Flash FPGAs. en. Tech. rep. Microsemi, 2012, p. 25. url: https:

//ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/Applicati

onNotes/dynamic_power_reduction_an.pdf.

[15] PG Scholar. “A SRAM Memory Cell Design in FPGA”. en. In: International Journal of Computer Applications
71.1 (June 2013), pp. 23–26. issn: 0975-8887. doi: 10.5120/12323-8541.

[16] P. Pavan et al. “Flash memory cells-an overview”. en. In: Proceedings of the IEEE 85.8 (Aug. 1997), pp. 1248–

1271. issn: 00189219. doi: 10.1109/5.622505. url: http://ieeexplore.ieee.org/document/622505/ (visited

on 09/14/2023).

[17] Devashree. Visualize Deep Learning Models using Visualkeras. en. Apr. 2023. url: https://www.analyticsvi

dhya.com/blog/2022/03/visualize-deep-learning-models-using-visualkeras/ (visited on 10/09/2024).

49

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232561/
https://doi.org/10.1007/s10162-021-00811-5
https://link.springer.com/10.1007/s10162-021-00811-5
https://link.springer.com/10.1007/s10162-021-00811-5
https://news.mit.edu/2023/implantable-device-enable-injection-free-control-diabetes-0918
https://news.mit.edu/2023/implantable-device-enable-injection-free-control-diabetes-0918
https://doi.org/10.3390/biomimetics6040065
https://www.mdpi.com/2313-7673/6/4/65
https://www.mdpi.com/2313-7673/6/4/65
https://www.iancollmceachern.com/single-post/the-future-of-implantable-medical-devices-what-to-expect-in-2024
https://www.iancollmceachern.com/single-post/the-future-of-implantable-medical-devices-what-to-expect-in-2024
https://www.iancollmceachern.com/single-post/the-future-of-implantable-medical-devices-what-to-expect-in-2024
https://doi.org/10.3390/app9153169
https://doi.org/10.3390/app9153169
https://www.mdpi.com/2076-3417/9/15/3169
https://doi.org/10.3390/jpm14020203
https://www.mdpi.com/2075-4426/14/2/203
https://repository.tudelft.nl/islandora/object/uuid%3Ad27d9003-9c68-4383-b835-0335d5a68ba7
https://doi.org/10.1016/j.electacta.2012.03.057
https://linkinghub.elsevier.com/retrieve/pii/S0013468612003969
https://linkinghub.elsevier.com/retrieve/pii/S0013468612003969
https://www.forbes.com/health/wellness/normal-heart-rate-by-age/
https://www.forbes.com/health/wellness/normal-heart-rate-by-age/
https://doi.org/10.1145/3649153.3649186
https://dl.acm.org/doi/10.1145/3649153.3649186
https://www.wevolver.com/article/fpga
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/dynamic_power_reduction_an.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/dynamic_power_reduction_an.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ApplicationNotes/ApplicationNotes/dynamic_power_reduction_an.pdf
https://doi.org/10.5120/12323-8541
https://doi.org/10.1109/5.622505
http://ieeexplore.ieee.org/document/622505/
https://www.analyticsvidhya.com/blog/2022/03/visualize-deep-learning-models-using-visualkeras/
https://www.analyticsvidhya.com/blog/2022/03/visualize-deep-learning-models-using-visualkeras/

[18] GeeksforGeeks. Visual Cryptography: Introduction. en. Sept. 2023. url: https://www.geeksforgeeks.org/

visual-cryptography-introduction/ (visited on 10/09/2024).

[19] AnySilicon. The Ultimate Guide to Power Gating. en. Jan. 2022. url: https://anysilicon.com/power-gating/.

[20] Muthukumaran Vaithianathan et al. “Energy-Efficient FPGA Design for Wearable and Implantable De-

vices”. en. In: (2024).

[21] Morteza Babaee Altman et al. “Machine learning algorithms for FPGA Implementation in biomedical

engineering applications: A review”. en. In: Heliyon 10.4 (Feb. 2024), e26652. issn: 24058440. doi: 10.1016/

j.heliyon.2024.e26652. url: https://linkinghub.elsevier.com/retrieve/pii/S2405844024026835 (visited

on 11/12/2024).

[22] Muhammad Iqbal Khan and Bruno Da Silva. “Harnessing FPGA Technology for Energy-Efficient Wear-

able Medical Devices”. en. In: Electronics 13.20 (Oct. 2024), p. 4094. issn: 2079-9292. doi: 10 . 3390 /

electronics13204094. url: https://www.mdpi.com/2079-9292/13/20/4094 (visited on 11/12/2024).

[23] V. Rosello, J. Portilla, and T. Riesgo. “Ultra low power FPGA-based architecture for Wake-up Radio in

Wireless Sensor Networks”. en. In: IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics
Society. Melbourne, Vic, Australia: IEEE, Nov. 2011, pp. 3826–3831. isbn: 978-1-61284-969-0. doi: 10.1109/

IECON.2011.6119933. url: http://ieeexplore.ieee.org/document/6119933/ (visited on 09/14/2023).

[24] Fei Zhang, Mehdi Aghagolzadeh, and Karim Oweiss. “A Fully Implantable, Programmable and Mul-

timodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications”. en.

In: Journal of Signal Processing Systems 69.3 (Dec. 2012), pp. 351–361. issn: 1939-8018, 1939-8115. doi:

10.1007/s11265-012-0670-x. url: http://link.springer.com/10.1007/s11265-012-0670-x (visited on

09/14/2023).

[25] Shoichi Yamaguchi et al. “Programmable wireless sensor node featuring low-power FPGA and mi-

crocontroller”. en. In: 2013 International Joint Conference on Awareness Science and Technology & Ubi-Media
Computing (iCAST 2013 & UMEDIA 2013). Aizuwakamatsu, Japan: IEEE, Nov. 2013, pp. 596–601. isbn: 978-

1-4799-2364-9. doi: 10.1109/ICAwST.2013.6765509. url: http://ieeexplore.ieee.org/document/6765509/

(visited on 09/14/2023).

[26] Qing Yang et al. “An on-chip security guard based on zero-power authentication for implantable medical

devices”. en. In: 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS).
College Station, TX, USA: IEEE, Aug. 2014, pp. 531–534. isbn: 978-1-4799-4134-6. doi: 10.1109/MWSCAS.

2014.6908469. url: https://ieeexplore.ieee.org/document/6908469 (visited on 09/14/2023).

[27] He Qi, Oluseyi Ayorinde, and Benton H. Calhoun. “An ultra-low-power FPGA for IoT applications”. en.

In: 2017 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). Burlingame, CA:

IEEE, Oct. 2017, pp. 1–3. isbn: 978-1-5386-3766-1. doi: 10.1109/S3S.2017.8308753. url: http://ieeexplore.

ieee.org/document/8308753/ (visited on 09/14/2023).

[28] Lĳuan Xia et al. “A low power flash-FPGA based brain implant micro-system of PID control”. en. In:

2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
Seogwipo: IEEE, July 2017, pp. 173–176. isbn: 978-1-5090-2809-2. doi: 10.1109/EMBC.2017.8036790. url:

https://ieeexplore.ieee.org/document/8036790/ (visited on 11/13/2024).

[29] Santiago Martinez and Juan P. Oliver. “A low power FPGA based control unit for an implantable neu-

romodulation circuit”. en. In: 2019 X Southern Conference on Programmable Logic (SPL). Buenos Aires,

Argentina: IEEE, Apr. 2019, pp. 63–68. isbn: 978-1-72811-363-0. doi: 10 .1109/SPL.2019 .8714506. url:

https://ieeexplore.ieee.org/document/8714506/ (visited on 09/14/2023).

[30] Tianyu Zhan et al. “A Resource-Optimized VLSI Implementation of a Patient-Specific Seizure Detection

Algorithm on a Custom-Made 2.2 cm2 Wireless Device for Ambulatory Epilepsy Diagnostics”. en.

In: IEEE Transactions on Biomedical Circuits and Systems 13.6 (Dec. 2019), pp. 1175–1185. issn: 1932-4545,

1940-9990. doi: 10.1109/TBCAS.2019.2948301. url: https://ieeexplore.ieee.org/document/8876674/

(visited on 09/14/2023).

[31] Marwen Roukhami et al. “Very Low Power Neural Network FPGA Accelerators for Tag-Less Remote

Person Identification Using Capacitive Sensors”. en. In: IEEE Access 7 (2019), pp. 102217–102231. issn:

2169-3536. doi: 10.1109/ACCESS.2019.2931392. url: https://ieeexplore.ieee.org/document/8777074/

(visited on 09/14/2023).

[32] Zheng Zhang, Oscar W Savolainen, and Timothy G Constandinou. “Algorithm and hardware consider-

ations for real-time neural signal on-implant processing”. en. In: Journal of Neural Engineering 19.1 (Feb.

2022), p. 016029. issn: 1741-2560, 1741-2552. doi: 10.1088/1741-2552/ac5268. url: https://iopscience.iop.

org/article/10.1088/1741-2552/ac5268 (visited on 05/16/2024).

[33] Keyvan Farhang Razi and Alexandre Schmid. “Programmable Seizure Detector Using a 32-bit RISC

Processor for Implantable Medical Devices”. en. In: 2023 IEEE 14th Latin America Symposium on Circuits
and Systems (LASCAS). Quito, Ecuador: IEEE, Feb. 2023, pp. 1–4. isbn: 978-1-66545-705-7. doi: 10.1109/

LASCAS56464 . 2023 . 10108303. url: https : / / ieeexplore . ieee . org / document / 10108303/ (visited on

11/14/2024).

50

https://www.geeksforgeeks.org/visual-cryptography-introduction/
https://www.geeksforgeeks.org/visual-cryptography-introduction/
https://anysilicon.com/power-gating/
https://doi.org/10.1016/j.heliyon.2024.e26652
https://doi.org/10.1016/j.heliyon.2024.e26652
https://linkinghub.elsevier.com/retrieve/pii/S2405844024026835
https://doi.org/10.3390/electronics13204094
https://doi.org/10.3390/electronics13204094
https://www.mdpi.com/2079-9292/13/20/4094
https://doi.org/10.1109/IECON.2011.6119933
https://doi.org/10.1109/IECON.2011.6119933
http://ieeexplore.ieee.org/document/6119933/
https://doi.org/10.1007/s11265-012-0670-x
http://link.springer.com/10.1007/s11265-012-0670-x
https://doi.org/10.1109/ICAwST.2013.6765509
http://ieeexplore.ieee.org/document/6765509/
https://doi.org/10.1109/MWSCAS.2014.6908469
https://doi.org/10.1109/MWSCAS.2014.6908469
https://ieeexplore.ieee.org/document/6908469
https://doi.org/10.1109/S3S.2017.8308753
http://ieeexplore.ieee.org/document/8308753/
http://ieeexplore.ieee.org/document/8308753/
https://doi.org/10.1109/EMBC.2017.8036790
https://ieeexplore.ieee.org/document/8036790/
https://doi.org/10.1109/SPL.2019.8714506
https://ieeexplore.ieee.org/document/8714506/
https://doi.org/10.1109/TBCAS.2019.2948301
https://ieeexplore.ieee.org/document/8876674/
https://doi.org/10.1109/ACCESS.2019.2931392
https://ieeexplore.ieee.org/document/8777074/
https://doi.org/10.1088/1741-2552/ac5268
https://iopscience.iop.org/article/10.1088/1741-2552/ac5268
https://iopscience.iop.org/article/10.1088/1741-2552/ac5268
https://doi.org/10.1109/LASCAS56464.2023.10108303
https://doi.org/10.1109/LASCAS56464.2023.10108303
https://ieeexplore.ieee.org/document/10108303/

[34] Masoud Rostami, Ari Juels, and Farinaz Koushanfar. “Heart-to-heart (H2H): authentication for implanted

medical devices”. en. In: Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security - CCS ’13. Berlin, Germany: ACM Press, 2013, pp. 1099–1112. isbn: 978-1-4503-2477-9. doi: 10.1145/

2508859.2516658. url: http://dl.acm.org/citation.cfm?doid=2508859.2516658 (visited on 11/13/2024).

[35] Maria Hugle et al. “Early Seizure Detection with an Energy-Efficient Convolutional Neural Network on

an Implantable Microcontroller”. en. In: 2018 International Joint Conference on Neural Networks (ĲCNN).
Rio de Janeiro: IEEE, July 2018, pp. 1–7. isbn: 978-1-5090-6014-6. doi: 10.1109/IJCNN.2018.8489493. url:

https://ieeexplore.ieee.org/document/8489493/ (visited on 09/14/2023).

[36] Simon Heller et al. “Hardware Implementation of a Performance and Energy-optimized Convolutional

Neural Network for Seizure Detection”. en. In: 2018 40th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC). Honolulu, HI: IEEE, July 2018, pp. 2268–2271. isbn: 978-

1-5386-3646-6. doi: 10.1109/EMBC.2018.8512735. url: https://ieeexplore.ieee.org/document/8512735/

(visited on 09/14/2023).

[37] Illsoo Sohn, Yong Hun Jang, and Sang Hyun Lee. “Ultra-Low-Power Implantable Medical Devices:

Optical Wireless Communication Approach”. en. In: IEEE Communications Magazine 58.5 (May 2020),

pp. 77–83. issn: 0163-6804, 1558-1896. doi: 10.1109/MCOM.001.1900609. url: https://ieeexplore.ieee.

org/document/9112747/ (visited on 11/14/2024).

[38] Muhammad Ali Siddiqi, Christian Doerr, and Christos Strydis. “IMDfence: Architecting a Secure Protocol

for Implantable Medical Devices”. en. In: IEEE Access 8 (2020), pp. 147948–147964. issn: 2169-3536. doi:

10 .1109/ACCESS.2020.3015686. url: https ://ieeexplore . ieee .org/document/9165063/ (visited on

09/14/2023).

[39] Muhammad Ali Siddiqi, Angeliki-Agathi Tsintzira, and Georgios Digkas. “Adding Security to Im-

plantable Medical Devices: Can We Afford It?” en. In: Proceedings of the 2021 International Conference
on Embedded Wireless Systems and Networks. EWSN ’21. Delft: Junction Publishing, Feb. 2021, p. 12. isbn:

978-0-9949886-5-2. doi: 10.5555/3451271.3451278.

[40] Muhammad Ali Siddiqi et al. “Securing Implantable Medical Devices Using Ultrasound Waves”. en.

In: IEEE Access 9 (2021), pp. 80170–80182. issn: 2169-3536. doi: 10 .1109/ACCESS.2021.3083576. url:

https://ieeexplore.ieee.org/document/9440455/ (visited on 10/15/2024).

[41] M.A. Liker et al. “Deep Brain Stimulation: An Evolving Technology”. en. In: Proceedings of the IEEE
96.7 (July 2008), pp. 1129–1141. issn: 0018-9219, 1558-2256. doi: 10.1109/JPROC.2008.922559. url: http:

//ieeexplore.ieee.org/document/4534851/ (visited on 10/15/2024).

[42] EFM32 32-bit Low Power Microcontroller (MCU) - Silicon Labs. en. url: https://www.silabs.com/mcu/32-

bit-microcontrollers/efm32-gecko.

[43] iCE40 UltraPlus | ML/AI Low Power FPGA | Lattice Semiconductor. en. url: https://www.latticesemi.

com/en/Products/FPGAandCPLD/iCE40UltraPlus.

[44] IGLOO® FPGAs | Microchip Technology. en. url: https://www.microchip.com/en-us/products/fpgas-

and-plds/fpgas/igloo-fpgas.

[45] iCE40 UltraPlus Family Data Sheet. en. Datasheet. Lattice Semiconductors, 2020, p. 52. url: https://www.

latticesemi.com/view_document?document_id=51968.

[46] Tinyvision-Ai-Inc. GitHub - tinyvision-ai-inc/ice40_power: Power analysis of the ICE40UP5K-SG48 devices. en.

2020. url: https://github.com/tinyvision-ai-inc/ice40_power.

[47] Justin Miller. Resonetics Announces Acquisition of EaglePicher Medical Power - Resonetics. Apr. 2022. url:

https://resonetics.com/news/resonetics-announces-acquisition-of-eaglepicher-medical-power/.

[48] Commercial Power Solutions | Carefree Battery. url: https://www.eaglepicher.com/markets/commercial-

power-solutions/.

[49] Medical Batteries | Resonetics. June 2024. url: https ://resonetics . com/sensor - technology- medical -

power/medical-batteries/.

[50] MX25V1006F. en. Datasheet. Macronix, 2017, p. 55. url: https://www.mxic.com.tw/Lists/Datasheet/

Attachments/8673/MX25V1006F,%202.5V,%201Mb,%20v1.0.pdf.

[51] Yu Cai et al. “Read Disturb Errors in MLC NAND Flash Memory: Characterization, Mitigation, and

Recovery”. en. In: 2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Networks.
Rio de Janeiro, Brazil: IEEE, June 2015, pp. 438–449. isbn: 978-1-4799-8629-3. doi: 10.1109/DSN.2015.49.

url: https://ieeexplore.ieee.org/document/7266871 (visited on 08/24/2024).

[52] TPS22916xx. en. Datasheet. Texas Instruments, 2021, p. 29. url: https://www.ti.com/lit/ds/symlink/

tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252F

TPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxh

Ke_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DS

YQxTwck4QleAmmfmdM5the5XCSrD7 - WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx

7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgf

CVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1y

YjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw.

51

https://doi.org/10.1145/2508859.2516658
https://doi.org/10.1145/2508859.2516658
http://dl.acm.org/citation.cfm?doid=2508859.2516658
https://doi.org/10.1109/IJCNN.2018.8489493
https://ieeexplore.ieee.org/document/8489493/
https://doi.org/10.1109/EMBC.2018.8512735
https://ieeexplore.ieee.org/document/8512735/
https://doi.org/10.1109/MCOM.001.1900609
https://ieeexplore.ieee.org/document/9112747/
https://ieeexplore.ieee.org/document/9112747/
https://doi.org/10.1109/ACCESS.2020.3015686
https://ieeexplore.ieee.org/document/9165063/
https://doi.org/10.5555/3451271.3451278
https://doi.org/10.1109/ACCESS.2021.3083576
https://ieeexplore.ieee.org/document/9440455/
https://doi.org/10.1109/JPROC.2008.922559
http://ieeexplore.ieee.org/document/4534851/
http://ieeexplore.ieee.org/document/4534851/
https://www.silabs.com/mcu/32-bit-microcontrollers/efm32-gecko
https://www.silabs.com/mcu/32-bit-microcontrollers/efm32-gecko
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/igloo-fpgas
https://www.microchip.com/en-us/products/fpgas-and-plds/fpgas/igloo-fpgas
https://www.latticesemi.com/view_document?document_id=51968
https://www.latticesemi.com/view_document?document_id=51968
https://github.com/tinyvision-ai-inc/ice40_power
https://resonetics.com/news/resonetics-announces-acquisition-of-eaglepicher-medical-power/
https://www.eaglepicher.com/markets/commercial-power-solutions/
https://www.eaglepicher.com/markets/commercial-power-solutions/
https://resonetics.com/sensor-technology-medical-power/medical-batteries/
https://resonetics.com/sensor-technology-medical-power/medical-batteries/
https://www.mxic.com.tw/Lists/Datasheet/Attachments/8673/MX25V1006F,%202.5V,%201Mb,%20v1.0.pdf
https://www.mxic.com.tw/Lists/Datasheet/Attachments/8673/MX25V1006F,%202.5V,%201Mb,%20v1.0.pdf
https://doi.org/10.1109/DSN.2015.49
https://ieeexplore.ieee.org/document/7266871
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw
https://www.ti.com/lit/ds/symlink/tps22916.pdf?ts=1721747294778&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTPS22916%253Fbm-verify%253DAAQAAAAJ_____577mfzTgyS2w6PqVJpduwVNcnVbyI1-E7fzNxhKe_xF-TVMt7K5vwZ5OnDuo-VFokGwDCgdA1LVCcxC0uuWY1nwudjF_ckR3T45vCijDZ4T7guC8DSYQxTwck4QleAmmfmdM5the5XCSrD7-WKB0lbrCiQRrMNUUACFZGC72358lNMOgmklOrT5slYzsx7OyduAlAvyk3sezPWztfMkAbiaVcfWGzBqZ3c1uQJXfuqGS3vUuaTjnf16BDs6CokXLxDzWlGjFksxZgfCVXRkgpjTqxKKLjxYvtyL09nlsRgGNy-9-lmcMc1hyds0gWLq2_vDEZp6Fr9Id1csUHXYlazIckCig-T1yYjQWQQX0W9ubm7arHY-FKhLeLWCSj9KBo1sEXyNnqeETQdD8sbIHw

[53] Fluke 114, 115, 116 and 117 Digital Multimeters. en. Datasheet. Fluke Coorporation, 2020, p. 2.

[54] EFM32TG11 Family Data Sheet. en. Datasheet. Silicon Labs, 2018, p. 153. url: https://www.silabs.com/

documents/public/data-sheets/efm32tg11-datasheet.pdf.

[55] EFM32GG11 Family Data Sheet. en. Datasheet. Silicon Labs, 2022, p. 262.

[56] IGLOO Low Power Flash FPGAs with Flash*Freeze Technology. en. Datasheet AGLxxx. Microsemi, 2022,

p. 220. url: https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDoc

uments/DataSheets/IGLOO+Low+Power+Flash+FPGAs+with+FlashFreeze_Datasheet.pdf.

[57] C. Nicholson and J. A. Freeman. “Theory of current source-density analysis and determination of con-

ductivity tensor for anuran cerebellum”. en. In: Journal of Neurophysiology 38.2 (Mar. 1975), pp. 356–368.

issn: 0022-3077, 1522-1598. doi: 10.1152/jn.1975.38.2.356. url: https://www.physiology.org/doi/10.

1152/jn.1975.38.2.356 (visited on 07/17/2024).

[58] Timothy Olsen. Current source density (CSD). Nov. 2024. url: https://nl.mathworks.com/matlabcentral/

fileexchange/69399-current-source-density-csd.

[59] Ray Beaulieu et al. “The SIMON and SPECK lightweight block ciphers”. In: 2015 52nd ACM/EDAC/IEEE
Design Automation Conference (DAC). 2015, pp. 1–6. doi: 10.1145/2744769.2747946.

[60] Joan Daemen. “The Rĳndael Block Cipher”. en. In: 1820 (1998), pp. 277–284. issn: 978-3-540-67923-3. doi:

10.1007/10721064_26.

[61] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family of Lightweight Hash Functions”.

en. In: Advances in Cryptology – CRYPTO 2011. Ed. by David Hutchison et al. Vol. 6841. Series Title:

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 222–239.

isbn: 978-3-642-22791-2. doi: 10.1007/978-3-642-22792-9_13. url: http://link.springer.com/10.1007/978-

3-642-22792-9_13 (visited on 09/14/2023).

[62] AN0822: Simplicity Studio™ User’s Guide. en. Manual. Silicon Labs, 2018, p. 40. url: https://www.silabs.

com/documents/public/application-notes/AN0822-simplicity-studio-user-guide.pdf.

[63] TensorFlow Lite for Microcontrollers. May 2023. url: https://www.tensorflow.org/lite/microcontrollers

(visited on 08/23/2024).

[64] Mario Vestias and Horacio Neto. “Trends of CPU, GPU and FPGA for high-performance computing”.

en. In: 2014 24th International Conference on Field Programmable Logic and Applications (FPL). Munich,

Germany: IEEE, Sept. 2014, pp. 1–6. isbn: 978-3-00-044645-0. doi: 10.1109/FPL.2014.6927483. url: http:

//ieeexplore.ieee.org/document/6927483/ (visited on 05/16/2024).

[65] Arian Maghazeh et al. “General purpose computing on low-power embedded GPUs: Has it come of age?”

en. In: 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS). Agios konstantinos, Samos Island, Greece: IEEE, July 2013, pp. 1–10. isbn: 978-1-4799-0103-6.

doi: 10.1109/SAMOS.2013.6621099. url: http://ieeexplore.ieee.org/document/6621099/ (visited on

11/12/2024).

[66] Matthias Birk et al. “A comprehensive comparison of GPU- and FPGA-based acceleration of reflection

image reconstruction for 3D ultrasound computer tomography”. en. In: Journal of Real-Time Image Pro-
cessing 9.1 (Mar. 2014), pp. 159–170. issn: 1861-8200, 1861-8219. doi: 10.1007/s11554-012-0267-4. url:

http://link.springer.com/10.1007/s11554-012-0267-4 (visited on 11/12/2024).

52

https://www.silabs.com/documents/public/data-sheets/efm32tg11-datasheet.pdf
https://www.silabs.com/documents/public/data-sheets/efm32tg11-datasheet.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO+Low+Power+Flash+FPGAs+with+FlashFreeze_Datasheet.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/FPGA/ProductDocuments/DataSheets/IGLOO+Low+Power+Flash+FPGAs+with+FlashFreeze_Datasheet.pdf
https://doi.org/10.1152/jn.1975.38.2.356
https://www.physiology.org/doi/10.1152/jn.1975.38.2.356
https://www.physiology.org/doi/10.1152/jn.1975.38.2.356
https://nl.mathworks.com/matlabcentral/fileexchange/69399-current-source-density-csd
https://nl.mathworks.com/matlabcentral/fileexchange/69399-current-source-density-csd
https://doi.org/10.1145/2744769.2747946
https://doi.org/10.1007/10721064_26
https://doi.org/10.1007/978-3-642-22792-9_13
http://link.springer.com/10.1007/978-3-642-22792-9_13
http://link.springer.com/10.1007/978-3-642-22792-9_13
https://www.silabs.com/documents/public/application-notes/AN0822-simplicity-studio-user-guide.pdf
https://www.silabs.com/documents/public/application-notes/AN0822-simplicity-studio-user-guide.pdf
https://www.tensorflow.org/lite/microcontrollers
https://doi.org/10.1109/FPL.2014.6927483
http://ieeexplore.ieee.org/document/6927483/
http://ieeexplore.ieee.org/document/6927483/
https://doi.org/10.1109/SAMOS.2013.6621099
http://ieeexplore.ieee.org/document/6621099/
https://doi.org/10.1007/s11554-012-0267-4
http://link.springer.com/10.1007/s11554-012-0267-4

	List of abbreviations
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Thesis goal
	Thesis structure

	Background
	Implants
	Real-time system
	Battery-powered
	Biological environment
	Extra processing

	Processing elements
	MCU
	CPU
	FPGA
	GPU

	Algorithms
	Medical algorithm
	Encryption algorithm

	Accelerator parameters
	Reconfiguration
	Gating
	Flash memory
	Cold wake-up

	Related work
	Exploring FPGA use in medical section
	MCUs used in IMDs
	FPGAs used in IMDs

	Design methodology
	Experimental design
	Vocabulary
	Device choice
	Assumptions
	Scenario definition
	Flow within the project

	Processing elements
	MCUs
	FPGAs
	Battery
	Flash memory
	Gating device
	Multi-meter
	Resulting processing devices

	Algorithms
	Medical algorithms
	Wireless algorithms

	Measurements
	Throughput frequency
	Device understanding for measurements
	Setting up the measurements

	Analysis tool
	Target of tool
	Input

	Implementation
	Measurements
	Simplicity Studios measurement
	Multimeter
	Comparable measurements

	Algorithm implementation on devices
	Algorithm design for devices
	Data transfer
	Implementation on Geckos
	Implementation on iCE40UP5K

	Analysis tool
	Options
	Supplying input to tool
	Overview of internal function
	Functionality
	Equations
	Outcome

	Experimental results
	Analysis tool validation
	Validation steps
	Scenario validation

	Measurement results
	AES
	PHOTON
	SIMON/SPECK
	CSD
	Spike detector
	Spike classifier
	Conclusions

	Benchmarks
	Benchmark 1 - Using medical workloads
	Benchmark 2 - Medical workloads with encryption
	Benchmark 3 - Medical workloads with gating
	Benchmark 4 - Benchmark 3 with flash-FPGA used

	Operational scenarios
	Comparison of scenarios

	Summary

	Conclusions
	Contributions
	Summary
	Future work
	Option 1: Partial reconfiguration
	Option 2: Thermal characteristics
	Option 3: Additional device type
	Option 4: Additional algorithms
	Option 5: Cohesive comparison for hybrid combinations of processing devices in IMDs

