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Strong and tunable mode coupling in carbon nanotube resonators

Andres Castellanos-Gomez,* Harold B. Meerwaldt, Warner J. Venstra, Herre S. J. van der Zant, and Gary A. Steele†

Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
(Received 16 May 2012; published 9 July 2012)

The nonlinear interaction between two mechanical resonances of the same freely suspended carbon nanotube
resonator is studied. We find that, in the Coulomb-blockade regime, the nonlinear modal interaction is dominated
by single-electron-tunneling processes and that the mode-coupling parameter can be tuned with the gate voltage,
allowing both mode-softening and mode-stiffening behaviors. This is in striking contrast to tension-induced
mode coupling in strings where the coupling parameter is positive and gives rise to a stiffening of the mode. The
strength of the mode coupling in carbon nanotubes in the Coulomb-blockade regime is observed to be 6 orders
of magnitude larger than the mechanical-mode coupling in micromechanical resonators.
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Carbon nanotubes present remarkable properties for ap-
plications in nanoelectromechanical systems (NEMS), such
as low mass density, high Young’s modulus, and high
crystallinity.1,2 This fact has motivated the use of carbon
nanotubes to fabricate high-quality factor (Q) mechanical
resonators3 that can be operated at ultrahigh frequencies4,5 and
can be used as ultrasensitive mass sensors.6–8 Additionally,
both the mechanical tension and the electrical properties of
carbon nanotubes can be tuned to a large extent by an external
electric field,9 making nanotubes a very versatile component
in NEMS devices.

Due to the small diameter of carbon nanotubes, they can be
easily excited in the nonlinear oscillation regime.10 Moreover,
it has been demonstrated that the nonlinear dynamics of
carbon nanotubes can be tuned over a large range11,12 making
nanotube NEMS excellent candidates for the implementation
of sensing schemes based on nonlinearity and for the study of
fundamental problems on nonlinear dynamics. The nonlinear
interaction between mechanical resonance modes is interesting
both from a fundamental and from an applied perspective.
Nonlinear modal interactions have been studied recently in
micro- and nanoresonators.13–18 These studies concentrated
on mechanical coupling between the modes via the geometric
nonlinearity or via the displacement-induced tension, the same
mechanism responsible for the Duffing nonlinearity in doubly
clamped resonators. By employing a different mode of the
same resonator as a phonon cavity, the mechanical mode can
be controlled in situ, and its damping characteristics can be
modified to a great extent, leading to cooling of the mode
and parametric mode splitting.13,16 The nonlinear coupling can
also be used to detect resonance modes that would otherwise be
inaccessible by the experiment18 to increase the dynamic range
of resonators by tuning the nonlinearity constant18 and for
mechanical frequency conversion.17 Additionally, nonlinear
coupling has been proposed as a quantum nondemolition
scheme to probe mechanical resonators in their quantum
ground state19 and as a way of generating entanglement
between different mechanical modes.20 Furthermore, a re-
cent theoretical paper suggests that the interaction between
mechanical resonances could be responsible for the spectral
broadening in carbon nanotubes, thus, limiting their Q factor
at room temperature.21 Despite the interest recently aroused
by the modal interaction in nanotube resonators, experimental
studies in this field are scarce.

Here, we study the nonlinear interaction between two
different eigenmodes of a freely suspended carbon nanotube
resonator at low temperatures, using a quantum dot embedded
in the nanotube as a detector. We find that, for nanotube
resonators in the Coulomb-blockade regime, the nonlinear
modal interaction is dominated by single-electron-tunneling
processes as opposed to displacement-induced tension. A
strongly enhanced mode coupling is observed in the Coulomb-
blockade regime, which is orders of magnitude larger than in
conventional microresonators. Furthermore, in the Coulomb-
blockade regime, the mode-coupling parameter can be tuned
by adjusting the gate voltage, oscillating in sign over a gate
range of only a few millivolts. This allows both mode-softening
and mode-stiffening behaviors, in contrast to the case of
tension-induced mechanical coupling in strings where the
coupling parameter is positive and gives rise to a stiffening
of the mode.

The device consists of a single wall carbon nanotube
suspended across a trench that bridges two metal electrodes
[Fig. 1(a)]. Electrons are confined in the nanotube by Schottky
barriers at the metal contacts, forming a quantum dot in the
suspended segment. The nanotube is grown in the last step
of the fabrication process, yielding ultraclean devices, which
can have large quality factors. We perform all measurements
in a dilution refrigerator at 20 mK. The carbon nanotube is
actuated with a nearby antenna (separated about 2 cm from the
sample). The detection of the resonator motion is carried out
by monitoring the dc current while the nanotube is driven by
the antenna. When the carbon nanotube is driven at resonance,
its oscillation changes the capacitance between the nanotube
and the gate, leading to an effective oscillating gate voltage,
which smears out the Coulomb peaks and, thus, yields a change
in the dc current through the nanotube. More details on this
oscillation amplitude readout method, referred to here as the
rectification method, can be found in Refs. 3 and 12.

Figures 1(b) and 1(c) show two peaks in the dc current
through the carbon nanotube that occur when the nearby
antenna is driven at frequencies that match the mechanical
resonances of the carbon nanotube (hereafter, labeled mode
A and mode B, respectively). The resonance frequencies of
a clamped-clamped beam are calculated by Euler-Bernoulli

theory as fn = β2
nr

4π

√
E
ρ

with βnL = 4.73, 7.85, 11.00, etc.

Taking the Young’s modulus E = 1.3 TPa, the tube radius
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FIG. 1. (Color online) (a) Schematic of the carbon nanotube
device freely suspended over a trench between drain and source
electrodes. The Si substrate is employed as a back gate. (b) and
(c) Resonance spectra measured by means of the rectification method
at fixed gate voltage and low excitation power for two mechanical
eigenmodes of the carbon nanotube. The quality factor is obtained by
fitting the measured spectra to the response of a dampened harmonic
oscillator (solid red lines). (d) dc current through the nanotube vs gate
voltage showing single-electron tunneling and Coulomb-blockade
electronic behavior. (e) and (f) Color map showing the absolute
value of the rectified current through the nanotube as a function
of the rf frequency and gate voltage (Vsd = 200 μV). The tuned
mechanical resonance shows up as the gray (black) curve with a dip
at the Coulomb peak.

r = 1 nm, the length of the suspended part of the tube L =
600 nm, and its mass density ρ = 1400 kg/m3, the resonance
frequencies of the lowest three modes are f1 = 151, f2 = 415,
and f3 = 814 MHz. These values correspond well with the
measured resonance frequencies fA = 175 and fB = 957 MHz,
indicating that the restoring force is dominated by the nanotube
bending rigidity in this regime.22 Note that even modes have a
displacement that, on average, gives no change in capacitance
during the oscillation. Because of this, the motion of even
modes is not strongly excited by the antenna, nor is their
motion strongly detected by the current through the nanotube.
From a fit of the frequency response shown in Figs. 1(a) and
1(b), we extract a quality factor of Q∼ 15 000 for the first mode
and Q ∼ 5000 for the second mode. This quality factor is lower
than the highest values reported previously. We attribute the
smaller Q factor to damping from single-electron tunneling as
was reported in earlier devices.12 In the device studied here, the
quantum dot is less strongly tunnel coupled to the source and
drain, preventing us from measuring the mechanical resonance

deep in the Coulomb valleys where the previously reported
high-quality factors were measured.

The mechanical origin of the resonance peaks observed in
Figs. 1(a) and 1(b) is confirmed by studying the gate tunability
of the resonance frequencies by modifying the tension in the
nanotube, changing the applied gate voltage, which gives a
tuning of 22 and 38 MHz/V for modes A and B, respectively
(not shown).9 Additionally, in the Coulomb-blockade regime,
the mechanical resonance frequencies experience a dip (down
to 3 MHz approximately) when the applied gate voltage is
swept across a Coulomb peak [see Figs. 1(e) and 1(f)].12 This
is due to the electrostatic force on the nanotube, which depends
on the average charge on the quantum dot. Across a Coulomb
peak, the average charge increases monotonically from N to
N + 1 electrons in a small gate voltage range.23–25 When the
nanotube is closer to the gate, the gate voltage is effectively
larger, increasing the average charge on the carbon nanotube
and causing a force toward the gate. This negative restoring
force softens the carbon nanotube spring constant and results
in a decrease in the mechanical resonance frequency.

To excite two mechanical resonances of the nanotube at the
same time, the antenna is driven by the combined voltage
of two rf signal generators. This allows one to study the
interaction between mechanical modes in carbon nanotubes
using a multifrequency experimental scheme, sweeping two
frequencies at the same time. The frequency of the first signal
generator is swept around the resonance frequency of mode A
(fast axis sweep). Every time the frequency of the generator
matches the resonance frequency of mode A, the dc current
through the nanotube experiences a sudden change due to the
above-described rectification mechanism.3,12 After each sweep
of the first generator, the frequency of the second generator
is incremented, and another sweep around the resonance of
mode A is carried out with the first generator. This process is
repeated until a sweep around the resonance frequency of mode
B is accomplished (slow axis sweep). When the frequency
of the second rf generator is off-resonance with mode B, the
oscillation amplitude of mode B is negligible, and thus, there is
no appreciable coupling between modes A and B. On the other
hand, when the frequency of the second generator approaches
the resonance frequency of mode B, the oscillation amplitude
of the carbon nanotube in mode B becomes appreciable, and
the resonance frequency of mode A may be modified by the
motion of mode B. Mode B is driven at a much larger rf power
( − 5 dBm) than mode A ( − 20 dBm) to limit the backaction
exerted by mode A on mode B.

From these measurements, the dc current through the
nanotube as a function of the two driving frequencies is
obtained. The data can be conveniently represented in a
(three-dimensional representation) color map form as shown in
Fig. 2 with a fast axis (frequency sweep around the resonance
of mode A) and a slow axis (frequency sweep around the
resonance of mode B). In the color-scale data, we have
subtracted off the background signal from the mechanical
resonance corresponding to the slow sweep direction. This
background signal, which contains information about the
response of mode B, is shown as a blue-line profile overlayed
on top of the color-scale data. The blue-line profile indicates
the horizontal position at which the frequency of the second
generator hits the resonance of mode 2. These profiles show
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FIG. 2. (Color online) (color scale) dc rectified current through the nanotube as a function of the rf frequency of the two signal generators
connected to the antenna (Vsd = 200 μV). When the mechanical resonance of mode A is excited, the current shows a sudden change. The
resonance of mode A is marked by a drop in the rectified current (shown in black on the color maps). (a) The resonance frequency of mode
A shifts to a lower frequency when the rf signal of the second generator hits the resonance frequency of mode B (Vg = − 3.003 V). (b) and
(c) The same as (a) but with a Vg value of − 3.0045 and − 3.0054, respectively, showing (b) mode stiffening and (c) negligible coupling. The
green-dotted lines are a guide to the eye. The blue-line profiles inserted in (a)–(c) show the oscillation amplitude of mode B (calculated from
the measured change in the dc current through the nanotube using an electrostatic model and assuming that the mode shape resembles that of
the third bending mode of a doubly clamped beam) as a function of the (slowly incremented) frequency of the second generator.

that the mechanical resonance of mode B presents a clear
shark-fin shape, a characteristic of the Duffing-like nonlinear
resonance, indicating that mode B vibrates in the nonlinear
regime.

Figure 2(a) demonstrates that the resonance frequency of
mode A decreases when mode B is driven at resonance.
This change in the resonance frequency of mode A, while
the oscillation amplitude of mode B increases, indicates the
interaction between the two vibration modes of the carbon
nanotube. Interestingly, the interaction changes qualitatively
when adjusting the gate voltage: When this measurement
is repeated for slightly different gate voltages, the effect of
this modal interaction is dramatically different. In Figs. 2(a)–
2(c), we present three different situations: (a) The modal
interaction reduces the resonance frequency of mode A (mode
softening), (b) the modal interaction increases the resonance
frequency of mode A (mode stiffening), and (c) the effect
of the modal interaction is negligible (modal interaction
suppression). A similar mode-coupling behavior has been
observed in two other carbon nanotube devices with slightly
different geometries.

The (scaled) equation, describing the motion of mode i

taking into account the coupling between the modes, can be
written as

ui + ηiui + ω2
i ui +

∑
j,k,l

αijklujukul = fi cos(�it),

where ηi denotes the damping, ωi denotes the resonance
frequency, fi denotes the driving force of mode i, and the
indices j ,k,l run over the number of modes considered. For
a single mode (i = j = k = l), this yields the Duffing
equation of a nonlinear resonator. In a previous paper on
micromechanical resonators, the α terms were shown to be
due to displacement-induced tension.18 For carbon nanotube
quantum dots, however, it is established that the nonlinear α

terms, responsible for the Duffing nonlinearity, are strongly
influenced by the single-electron-tunneling processes in the
suspended carbon nanotube.12 This yields interesting phe-
nomena, such as the gate tunability of the α terms in carbon
nanotubes from positive to negative values in response to a
small change in gate voltage.

To verify that the observed modal interaction is dominated
by single-electron-tunneling processes, we have measured the
frequency tuning by the modal interactions as a function of
the gate voltage. Figure 3(a) shows the maximum change in
the resonance frequency of mode A (due to the interaction
with mode B) at different gate voltages across a Coulomb
peak, showing a continuous transition from stiffening to
softening behavior. The observed change in sign of the modal
interaction (i.e., stiffening vs softening behavior) is directly
related to the sign of the nonlinear spring constant α of the
carbon nanotube, which can be obtained from the curvature
of the fA vs Vg trace (∂2fA/∂V 2

g ) shown in Fig. 3(b),12

indicating that the mechanism behind this gate dependence
is the time-varying electrostatic force induced by the charge
fluctuation in the quantum dot formed by the suspended carbon
nanotube.

Figure 4 shows the resonance frequency of mode A as
a function of the oscillation amplitude of mode B. The
resonance frequency shift shows a quadratic dependence with
the oscillation amplitude of mode B, similar to the one
observed in Ref. 18 for a micromechanical resonator. The
modal interaction strength is given by the change in the
resonance frequency as a function of the oscillation amplitude
of mode B squared. The oscillation amplitude has been
calculated from the measured change in the dc current through
the nanotube using an electrostatic model and assuming that
the mode shape resembles that of the third bending mode of
a doubly clamped beam. We find that the modal interaction
strength can continuously be tuned from 63 ± 8 kHz/nm2
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FIG. 3. (Color online) (a) Maximum change in the resonance
frequency of mode A as a function of the gate voltage. The resonance
frequency of mode A increases with gate voltages when the nonlinear
spring constant is positive (i.e., for the gate voltages at which Coulomb
peaks occur). On the other hand, the resonance frequency of mode A
decreases for the gate voltages when the nonlinear spring constant is
negative. (b) Frequency dip of mode A when the gate voltage is swept
across a Coulomb peak. The sign of the nonlinear spring constant α

can be determined by the sign of the curvature of the frequency vs
gate voltage trace.

(stiffening) to −55 ± 4 kHz/nm2 (softening). This modal
interaction is not only highly tunable, with a fairly low change
in the gate voltage, but it is also remarkably strong: 6 orders
of magnitude larger that the coupling strength measured in
micromechanical resonators (about 0.025 Hz/nm2).18

An interesting consequence of the strong mode coupling
observed in suspended carbon nanotubes in the Coulomb-
blockade regime is that it could potentially provide an ultimate
limit to the linewidth of the frequency response and, therefore,
the quality factor of the resonator. At finite temperatures, for
example, the thermal motion of one mode will result in spectral
broadening of the other mode. The third bending mode of the
carbon nanotube device presented here at a temperature of
4.2 K would exhibit a Brownian motion of 50 pm, leading to a
broadening of the mechanical linewidth of the fundamental
mode of 170 Hz. Thus, the mode coupling observed here
would limit the quality factor to a maximum value of 106,
although this maximum quality factor could be even lower if
the interaction with other modes is taken into account. Such

FIG. 4. (Color online) Resonance frequency shift in mode A as a
function of the oscillation amplitude of mode B for two different gate
voltages, showing softening (blue squares) and stiffening (red circles)
behaviors. The modal coupling strength can be determined from
the quadratic dependence of the frequency shift with the oscillation
amplitude (dashed lines).

a spectral broadening is present even at zero temperature due
to the zero-point fluctuations: The expected zero-point motion
of 14 pm for the third eigenmode would yield a dispersive
coupling of 12 Hz and places a limit on the quality factor
of 1.5 × 107. The observed quality factors in this device,
however, are lower than these theoretical limits.

From a different point of view, the mode coupling observed
here can be thought of as a nonlinear coupling between two
phonon cavities. In this case, the spectral broadening of 12 Hz
calculated above using the zero-point fluctuations of the third
mode would represent the strength of the dispersive coupling g

between the two cavities in their ground states. For our device,
the coupling rate is smaller than the decoherence rates of the
modes (
A,B = fA,B/QA,B ≈ 10–200 kHz), placing the present
experiment in the weak-coupling limit. The strong-coupling
limit (g > 
A,B) could potentially be reached in devices with
larger Q factors and sharper Coulomb peaks.

In conclusion, we have studied the nonlinear interaction
between two different eigenmodes in freely suspended carbon
nanotube resonators. In the Coulomb-blockade regime, the
mode coupling in suspended carbon nanotubes is dominated
by single-electron-tunneling processes. In contrast to purely
mechanical mode coupling, in this regime, both the strength
and the sign of the coupling can be tuned by changing an
external gate voltage. The modal interaction strength in carbon
nanotubes is remarkably strong, about 6 orders of magnitude
larger than that of previously studied micromechanical res-
onators.
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