

Disassembly assessment framework for enhanced reclamation of façade systems.

Student

Sarah Droste

5584655

First Mentor

Mauro Overend

Structural Design & Mechanics

Second Mentor

Marcel Bilow

Façade & Building Product Innovation

envrionmental impact of the construction sector

carbon emissions in buildings

embodied carbon

operational carbon

Source: Adapted from (Carbon Leadership Forum, 2020)

introduction

carbon emissions in buildings

Source: Adapted from (Carbon Leadership Forum, 2020)

buildings facades become more complex material assemblies

Source: Adapted from (Klein, 2013)

buildings facades become more complex material assemblies

reducing operational carbon = increasing embodied carbon

operational carbon (energy)

time

embodied carbon (materials)

Source: www.webpage.com

introduction

facades have a typically short lifespan

functional reasons

intended use by designer ends

economic reasons

replacement is cheaper than maintanance

technical reasons

product undergoes deterioration and loses performance

aesthetic reasons

changes in aesthetic requirements

glass facades

Source: https://unsplash.com

typical end of life scenario

Source: https://eu.jsonline.com/videos/news/2019/02/12/bradley-center-facade-demol-

introduction

focus on design for disassembly

"Choices made during conceptual and technical design can affect **up to 80%** of a building's environmental impact."

problem statement

current scenario in the facade industry

Design for Disassembly ????

research question
How can a disassembly assessment framework be developed to evaluate the influence of design for disassembly on material reclamation potential of stick system facades?

research methodology

design science research

research output

assessment process map

structured information

disassembly assessment method based on design

reclamation potential

the bigger picture

circular lifecycle of a facade

proposed scenario

disassembly assessment

what is reclamation potential?

what are the criteria?

disassembly potential

disassembly potential **Technical Economic Process** connection type independency of elements accessibility of connections residual value experience geometry edge safety disassembly time

disassembly potential

selected criteria

selected criteria

how can it be processed?

desired appearance

functionality requirements

building codes

process map

Typology Assessment

process map

Typology Assessment

façade typology

stick system

material flows in aluminium stick system facades

process map

process map

what information is needed?

information structure

stakeholder involvement

Triodos Bank | Octatube

Triodos Bank | Octatube

Triodos Bank | Octatube

information received

Triodos Bank | Octatube

connection identification and disassembly mapping

scenarios construction

original design

scenario 01

scenario 02

material composition

process map

process map

identification of instances

identification of instances

L5_Subsystem

L4_Component

L3_Subcomponen

L2_Elements

L1_Materials

List of Subsystems

Triodos Bank FacadePanel Panel 01 (P01)

List of Components

01. Frame (P01_F) 02. Insulated Glass (P01_IGU)

List of Subcomponents

01. Transom 01 (T01) 02. Transom 02 (T02) 03. Mullion 01 04. Mullion 02 (M02) 05. IGU

List of Elements

- 01. Profile (T01_P) & (T02_P)
 02. Profile (M01_P) & (M02_P)
 03. Cover Cap (T01_CC) ...
 04. Cover Cap (M01_CC) ...

- 05. Pressure Plate (T01_PP) ...
 06. Pressure Plate (M01_PP) ...
- 07. Thermal Break (T01_TB) ...
- 08. Thermal Break (M01_TB) ...
- 09. Gaskets (T01_G) ...
- 10. Gaskets (M01_G) ...

List of Materials

- 01. Aluminium 6060 T4
- 02. Aluminium 6060 T4
- 03. Aluminium 6060 T4
- 04. Aluminium 6060 T4
- 05. Aluminium 6060 T4
- 06. Aluminium 6060 T4 07. Polyamide
- 08. Polyamide 09. EPĎM Rubber
- 10. EPDM Rubber

identification of instances

L2_Elements

List of Elements

- 01. Profile (T01_P) & (T02_P)
 02. Profile (M01_P) & (M02_P)
 03. Cover Cap (T01_CC) ...
 04. Cover Cap (M01_CC) ...
 05. Pressure Plate (T01_PP) ...
 06. Pressure Plate (M01_PP) ...
 07. Thermal Break (M01_TB) ...
 08. Thermal Break (M01_TB) ...

- 09. Gaskets (T01_G) ...
- 10. Gaskets (M01_G) ...

List of Materials

- 01. Aluminium 6060 T4
- 02. Aluminium 6060 T4
- 03. Aluminium 6060 T4
- 04. Aluminium 6060 T4
- 05. Aluminium 6060 T4
- 06. Aluminium 6060 T4
- 07. Polyamide
- 08. Polyamide
- 09. EPĎM Rubber
- 10. EPDM Rubber

process map

process map

benchmarking

original design

benchmarking

scenario 01

benchmarking

scenario 02

process map

design improvement

original design

benchmarking

original design

aesthetic implications

original design

design improvement

original design

improved design

less tools

from cutter to hands

no adhesives

from silicone to gasket

same aesthetics

no external elements

benchmarking

original design

aesthetic implications

disassembly potential

disassembly potential

reclamation potential

reclamation potential

who can use it and who does it benefit?

integrating end of life assessment

end of life reclamation potential

end of life reclamation potential

further research

- 1. Test framework on case studies to create a database on connection disassembly times.
- 2. Test process on other facade typologies to validate efficacy for design improvements.
- **3. Reclamation in terms of envrionmental impact.** there is a missing link between accounting for design for disassembly in envrionmental impact assessments.
- 4. Assess Economic Implications.

limitations

- 1. Information on disassembly times is scarce, assumptions had to be made.
- 2. Information from Envrionmental Product Declarations are not in all cases complete. Granta EduPack was used to supplement missing information.
- 3. The real reclamation potential should be assessed with experts in the demolition sector.

recommendations

design strategies

minimize disassembly time

ensure common tools reduce disassembly tasks

make components accessible

avoid destructive disassembly methods due to inaccessibility

aim for high disassembly potential

higher detachability translates to easier removal of materials in good condition for reuse

reclamation potential

design for highest reclamation potential in facade systems

reuse materials

make designs as easy to disassemble as possible to increase reclamation potential

process strategies

data transparency

ensure data sources are reliable

store information

structure information in databases for future disassembly operations

involve stakeholders

involve sttakeholders to increase awareness

predict outcomes

designing while being able to predict the outcome in terms of reclamation potential

Source: www.webpage.com

scientific relevance

design **optimizations**

recycling and material reclamation

outlook for **digitalization**

framework design

link to life cycle assessment

societal relevance

highlight **design barriers**

promote resource efficiency

reduction of **demolition waste**

regulatory implications

stakeholder awareness

answering research question

How can a disassembly assessment framework be developed to evaluate the influence of design for disassembly on material reclamation potential of stick system facades?

This research developed a disassembly assessment framework and applied it on several case studies of a stick system facades to test the efficacy. Information regarding materials, connection types, disassembly time can inform stakeholders on the reclamation potential of materials at the End of Life of a facade system. This information can be used for financial and envrionmental purposes.

The framework emphasizes the significance of structured data, comprehensive assessment methods, and the consideration of challenges in time consuming assessment frameworks.

Dank u wel!

