
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Detecting Problematic Lookup Functions
in Spreadsheets

Felienne Hermans, Efthimia Aivaloglou, Bas Jansen

Report TUD-SERG-2015-011

SERG

TUD-SERG-2015-011

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the IEEE Symposium in Visual Languages and Hu-
man Centric Computing (VL/HCC 2014)

c© copyright 2015, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Detecting Problematic Lookup Functions in
Spreadsheets

Felienne Hermans, Efthimia Aivaloglou, Bas Jansen
Delft University of Technology

{f.f.j.hermans, e.aivaloglou, b.jansen}@tudelft.nl

Abstract—Spreadsheets are used heavily in many business
domains around the world. They are easy to use and as such
enable end-user programmers to and build and maintain all sorts
of reports and analyses. In addition to using spreadsheets for
modeling and calculation, spreadsheets are often also used for
creating reports and dashboards: combining data from different
sources and creating overviews. For this, lookup functions can
be used: they search for a value in a range and return a
corresponding row or column. Lookup functions are common:
according to recent research the VLOOKUP is the fifth most
common Excel function. In this paper we investigate the use of
lookup functions in more detail. We analyze lookup functions
within the newly released Enron spreadsheet corpus. The results
show that 1) a minority of 43% of lookup formulas use the
default setting where an approximate match may be returned,
2) 77% of approximate matches are used unnecessary and 3)
23% of approximate lookups is problematic: they search over
unsorted ranges, while this is specifically advised against in the
specification, and might lead to wrong results.

I. INTRODUCTION

Spreadsheets are used in many different business domains,
from finance and logistics to planning and operations. They
can be considered the most successful end-user programming
paradigm in history, with an estimated 23 million professional
users in America, amounting to about 30% of the work-
force [1]. Their use is diverse; some spreadsheets are used
as simple “flat lists”, without any calculations in them, while
others implement complex algorithms using different formulas.
In this paper we investigate the the use of a specific type of
function in spreadsheets: lookup functions. They exist in a few
different variations, all aimed at looking up a value within a
range.

In order to better understand the use of lookup functions, we
analyze their use in the Enron corpus, a recently released set
of more than 16.000 spreadsheets from the bankrupt company
Enron [2]. We are especially interested in learning more
about the two different ways in which lookup functions can
be applied: for exact matching, where only exactly corre-
sponding results can be returned—often used to combine two
worksheets—and the approximate match, where approximate
results may be returned, used mainly for simple classification.

Our results show that lookup functions present spreadsheet
developers with several issues. Firstly, a minority of 43% of
lookup formulas use the default setting. More interestingly, in
77% of the cases where approximate matches is employed, it
was not necessary. Finally, 23% of approximate lookups search
over unsorted ranges, while this is specifically advised against

in the specification, as it might lead to wrong results. We
identified 11 formulas in the set that resulted in an erroneous
value due to this issue.

II. BACKGROUND

Most spreadsheet systems support lookup functions, meant
to search for data, allowing users to combine data from
different sources Lookup functions go way back: VisiCalc,
widely considered to the world’s first program spreadsheet
system, already supported LOOKUP as one of its 20 built-in
functions, which is quite remarkable as it lacked many other
common spreadsheet functions, including IF. The most well-
known use of LOOKUP functions is as a means to couple two
tables, comparable to a JOIN operation in SQL like languages.
This use is shown in Figure 1, for every ‘Code’ in column F
the corresponding ‘Major’ in column G is returned.

While this is a common use of lookup functions in spread-
sheets, there is a second way in which they can be used: for
approximate matching. Figure 2 shows this type of matching.
The selected formula in C2 here searches for 83 and returns
‘C’, because 77 which appears on the the same row as ‘C’, is
the highest value below 83.

Fig. 1. A LOOKUP function, used in this example to couple two tables

In addition to the simple LOOKUP function, most modern
spreadsheet systems support other, more powerful lookup
functions as well. The most common lookup function is
VLOOKUP, which always searches for a value in a vertical
search range, i.e. one column. VLOOKUP needs three argu-
ments: a search value: either a value or a reference to a cell
with a value, a range in which to search, and a column number
indicating which column to return from. The most notable
difference between LOOKUP and VLOOKUP is that the third
parameter is an integer rather than a range. A VLOOKUP
equal to the formula in Figure 2 is VLOOKUP(B2,E2:E7,2).

SERG Detecting Problematic Lookup Functions in Spreadsheets

TUD-SERG-2015-011 1

Fig. 2. A LOOKUP function, used in this example to find an approximate
match

In addition to the three required parameters, VLOOKUP can
be called with an optional fourth parameter of type Boolean
that indicates happens when the search value is not found in
the search range. When this parameter is set to FALSE only
exact matches will be returned; an #N/A error is returned
when the search value is not found. If we would change
the formula in Figure 2 to VLOOKUP(B2,E2:E7,2, FALSE)
it would result in #N/A in the second row, as 83 does not
occur in the search range E2:F7. TRUE is the default value
for the fourth parameter, i.e. using TRUE as parameter results
in the same behavior as omitting it. In addition to VLOOKUP,
most spreadsheet systems also support HLOOKUP, a function
identical to VLOOKUP apart from searching in and returning
from a horizontal range.

Fig. 3. A VLOOKUP function approximately searching in an unsorted range,
resulting in erroneous values

For the remainder of the paper, it is important to know that
approximate matching only works when the search range is
sorted, as it relies on binary search when searching. When the
range is not sorted, approximate lookups, both for HLOOKUP
and VLOOKUP, will ‘fail silently’. As an example consider
the spreadsheet depicted in Figure 3, where a user has sorted
the cells in F2:G6 on the names of the majors, rather than
on the majors’s code, hence the search range in F2:F6 is not
sorted. Now, the VLOOKUP function in column D returns a
wrong major for code 4, as highlighted in red in cell D7.
When this occurs, no error message or warning is given.
This is a known issue with spreadsheet lookup functions,
officially documented by Microsoft1, but also occuring in
other spreadsheet systems, including LibreOffice and Google
Spreadsheets.

1https://support.microsoft.com/en-us/kb/181201

TABLE I
THE NUMBER OF UNIQUE FORMULAS IN THE ENRON CORPUS FOR THE
THREE DIFFERENT OPTIONS THAT LOOKUP FUNCTIONS HAVE: WITH 3

PARAMETERS, WITH 4 PARAMETERS USING TRUE (TOGETHER
REPRESENTING THE NUMBER OF APPROXIMATE MATCHES) AND WITH 4

PARAMETERS USING FALSE.

Fourth T Total F Total
parameter Approx.
parameters 3 4 4
VLOOKUP 5,187 11 5,198 7,010 12,208
HLOOKUP 956 20 976 1,047 2,023
Total 6,143 31 6174 8,057 14,231

III. SMELLS IN LOOKUP FUNCTIONS

While researching spreadsheets for the past years, we have
often seen that lookup functions can be error-prone. Recently,
we released the Enron corpus [2], enabling us to answer
research questions focusing on the use of lookup functions on
a large set of industrial spreadsheets. In our research we focus
on the two different settings for searching: approximate and
exact and on situations in which issues with lookup functions
arise. We thus focus on the following research questions:

1) How often are the two different settings, approximate
versus exact, used?

2) How often do spreadsheet users use approximate match
while in reality an exact match is being performed?

3) How often do users spreadsheet users use approximate
match within an unsorted search range?

A. How often are the two different settings (approximate
versus exact) used?

Remember that the lookup functions VLOOKUP and
HLOOKUP can be used with three parameters, but also have
an optional fourth parameter, indicating whether an approxi-
mate match or an error should be returned, when the search
value is not found. To understand the issues around lookups,
we first investigate how common the different usages are:
using 3 parameters, using 4 with TRUE and using 4 with
FALSE.

Table I shows the result of our analysis. It shows the
number of unique formulas for all three different options that
lookup functions have: with 3 parameters, with 4 parameters
using TRUE (together representing the number of approximate
matches) and with 4 parameters using FALSE.

The first thing to note is that VLOOKUP is much more
commonly used than HLOOKUP, indicating that most spread-
sheets have a layout where rows represent items. Secondly,
we see that, while not being the default, exact matches are
more common than approximate ones. In VLOOKUP the
numbers are 5,198 approximate versus 7,010 exact and for
HLKOOP those numbers are 976 versus 1,047. Hence of the
total 14,231 lookup functions, 43% is approximate and 57%
is exact. Apparently, lookup functions are used in a different
way than was envisioned when they were introduced. We have
inquired with the Excel team when VLOOKUP was introduced

Detecting Problematic Lookup Functions in Spreadsheets SERG

2 TUD-SERG-2015-011

and they told us that was in Excel 5 in 1997. Before that, Excel
only supported LOOKUP.

Approximate match, while being the default match set-
ting, is not the most common setting in lookup functions,
as only 43% of lookup formulas uses this setting.

B. How often do spreadsheet users use approximate match
while in reality an exact match is being performed?

It is interesting that in the Enron corpus we observe that
the exact setting is used more often than the approximate
match, while it is not the default. However, having worked
with spreadsheet users extensively over the past years, we
were somewhat surprised that the exact setting was not used
even more frequently. This lead us to inspect the cases of
approximate matching in more detail.

We searched for cases in which the approximate match was
used, but where it was not ‘needed’, i.e. there were no values
searched for in between the values in the lookup range. An
example is shown in Figure 4, where the values in the search
range are 0..16, and these are exactly the values that are being
sought for, in the formulas in B24:R24 (searching for the
values in B5:R5 which are exactly 0..16).

Fig. 4. A VLOOKUP function using the approximate setting, but only
searching for values occurring in the search range.

Of course, this could be a deliberate choice by the
spreadsheet’s designer. Using the approximate match setting
is more efficient, because binary search is used instead of
linear search. However, especially for small search ranges,
this will not make an observable difference. Furthermore
is doubtful whether spreadsheets users are aware of such
intricacies in the spreadsheet’s execution engine. A more
likely explanation is that the approximate setting was used
by mistake. We found that in a staggering 4,792 (77.6%) of
all approximate matches, the approximate setting was not
needed. We assert this use as problematic, because, when
a value to search for is added or changed, the approximate
match will result in an approximate value instead of an error.

77% of approximate match formulas use the approximate
setting while it is not needed.

C. How often do users spreadsheet users use approximate
match within an unsorted search range?

As described above, when a lookup function is set to
approximate, either by using TRUE as fourth parameter or
by omitting the fourth parameter, it will only work correctly
if the data in which the lookup searches is sorted. Excel, but
also other spreadsheet systems, including Google Docs and
LibreOffice, do not warn the user when this effect occurs.

Hence, we are interested in cases where an approximate
match is used in combination with a search in an unsorted
range, as this might result in erroneous values. When analyzing
the 16,270 unique lookup formulas in the Enron Corpus,
we found that 1,437 approximate matches searches over an
unsorted search range, which is about 23% of the approximate
matches in the set. In the following subsections we will
describe some of the patterns we observed.

1) Including Headers: By far the most common case in
which search ranges were unsorted is the case where a header
was included the search range, as in Figure 5.

Fig. 5. A VLOOKUP function including the header row.

As you can see in this figure, the lookup function searches
in the first row—J17:M17—and while doing so also includes
‘Scenario’, which is a header rather than being a value sought.
The inclusion of ‘Scenario’ into the search range means that
the search range is not sorted, which can result in strange
behavior. For example, if a user would expand the search range
with one additional scenario, scenario “A” can not be located
anymore. We imagine this is an error that is hard to resolve
for Excel users unfamiliar with the exact inner workings of
spreadsheet systems.

An interesting variation occured in a file where one of
the values under lookup is “0.5 or lower”. Presumably, the
spreadsheet users here thought that values under 0.5 will be
matched with 0.04762, but, in reality, all values under and
including will result in #N/A.

2) Actual mistakes: Most of the cases we found for un-
sorted lookups were mere ‘smells’: accidents waiting to hap-
pen, but not happened yet. Some of the cases however, already
took a turn for the worst. A remarkably deceiving example is

SERG Detecting Problematic Lookup Functions in Spreadsheets

TUD-SERG-2015-011 3

shown in Figure 6. Because the postfix “ year” is added to
values in the lookup range, Excel views all values as string.
Hence, the column, while appearing sorted, is not.

Fig. 6. Lookup is being performed over range C48:C59, which contains values
that appear sorted, but are not. When performing a lookup over this range, as
illustrated by the right table, wrong values are returned (marked in red)

This leads to interesting errors, as illustrated by range
H48:I59 in Figure 6, added by the authors of this paper for
illustrative purposes; it does not occur in the original file.
When looking up years 10, 15 and 30, erroneous results are
returned, in this case causing the yield to be underestimated
by about 30%, without any warning being given to the user.

While the number of mistakes was small, 11 formulas in
8 files, they all resulted in incorrect results in the spreadsheets.

Almost a quarter (23%) of approximate matches searches
over an unsorted search range, which is incorrect accord-
ing to the official specification. In 11 of the cases, this
even leads to wrong results.

IV. RELATED WORK

The issues we address in this paper are examples of ‘code
smells’ applied to spreadsheets. Code smells were initially
started by Fowler [3] that gives an overview of code smells
and corresponding refactorings. We ourselves have worked on
spreadsheet smells in previous work, by detecting smells be-
tween worksheets like high coupling [4], but also smells at the
formula level, like conditional complexity [5]. Following the
work on spreadsheet smells, we have worked on refactorings
for spreadsheets also, by defining refactorings accompanying
our smells [6], which followed our earlier work, in which we
worked on the visualization of spreadsheets by means of class
diagrams [7] and dataflow diagrams [4]. Based on the work

on the refactoring approach, we defined a generic method to
describe and execute refactorings in spreadsheets [8], which
combined our smells with those defined by Badame and
Dig [9].

Related also is work on mining of corpora of source code
to locate deviations from the specification. For example the
work of Wasylkowski et al. that examines code examples
to automatically infer legal sequences of method calls. The
resulting patterns can then be used to detect anomalies [10].
The work of Wasylkowski followed an earlier approach by Li
and Ahou [11] that also extracted programming rules and used
them to automatically detect violations to the extracted rules.

V. CONCLUSIONS

This paper focuses on the use of and the problems associated
with lookup functions in spreadsheets: functions aimed at
combining information over different worksheets or even files.
While these functions are popular—VLOOKUP is the fifth
most common function in the Enron set—we have found they
are error prone too. In this paper, we have addressed the
following research questions:

• How often are the two different settings (approximate
versus exact) used?

• How often do spreadsheet users specify the wrong type
of match?

• How often do users spreadsheet users use approximate
match over an unsorted search range?

Our results show that lookup functions present spreadsheet
developers with several issues. Firstly, a minority of 43% of
lookup formulas use the default setting, which is approximate
matching. This shows the default might not have been chosen
in the best way. More interestingly, in 77% of the cases where
approximate match is used, it was not necessary, since no
approximate values were being sought. Finally, 23% of ap-
proximate lookups is smelly: they search over unsorted ranges,
while this is specifically advised against in the specification,
as it might lead to wrong results.

The current research gives rise to several avenues for future
work. First of all, we would like to implement detection of
lookup smells into our existing code base for spreadsheet
analysis [12] and subsequently perform a user study to de-
termine if lookup smells detection is usable and scalable for
real life spreadsheets and their users. Furthermore, it would
be useful to implement refactorings for smelly LOOKUP
functions, and subsequently create more involved refactorings,
such as changing a lookup function into a combination of the
INDEX and MATCH functions, which are more efficient, or
introducing a lookup when a direct link is used.

Detecting Problematic Lookup Functions in Spreadsheets SERG

4 TUD-SERG-2015-011

REFERENCES

[1] C. Scaffidi, M. Shaw, and B. A. Myers, “Estimating the numbers
of end users and end user programmers,” in Proc. of VL/HCC
’05, 2005, pp. 207–214.

[2] F. Hermans and E. Murphy-Hill, “Enron’s spreadsheets and
related emails: A dataset and analysis,” in 37th International
Conference on Software Engineering, ICSE ’15, to appear.

[3] M. Fowler, Refactoring: improving the design of existing code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[4] F. Hermans, M. Pinzger, and A. van Deursen, “Detecting and
visualizing inter-worksheet smells in spreadsheets,” in Proc. of
ICSE ’12, 2012, pp. 441–451.

[5] ——, “Detecting code smells in spreadsheet formulas,” in Proc.
of ICSM ’12, 2012, pp. 409–418.

[6] ——, “Detecting and refactoring code smells in spreadsheet
formulas,” Empirical Software Engineering, pp. 1–27, 2014.

[7] ——, “Automatically extracting class diagrams from spread-
sheets,” in Proc. of ECOOP ’10, 2010, pp. 52–75.

[8] F. Hermans and D. Dig, “Bumblebee: a refactoring environment
for spreadsheet formulas,” Proceedings of the 22nd ACM SIG-

SOFT Symposium on the Foundations of Software Engineering
(FSE ‘14), pp. 747–750, 2014.

[9] S. Badame and D. Dig, “Refactoring meets spreadsheet formu-
las,” in Proc. of ICSM ’12, 2012, pp. 399–409.

[10] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object
usage anomalies,” in Proceedings of the the 6th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ser. ESEC-FSE ’07. New York,
NY, USA: ACM, 2007, pp. 35–44. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287632

[11] Z. Li and Y. Zhou, “Pr-miner: Automatically extracting
implicit programming rules and detecting violations in
large software code,” in Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (ESEC-FSE ‘13), ser. ESEC/FSE-13. New York,
NY, USA: ACM, 2005, pp. 306–315. [Online]. Available:
http://doi.acm.org/10.1145/1081706.1081755

[12] F. Hermans, “Analyzing and visualizing spreadsheets,” Ph.D.
dissertation, Delft University of Technology, 1 2013. [Online].
Available: http://www.felienne.com/?p=2534

SERG Detecting Problematic Lookup Functions in Spreadsheets

TUD-SERG-2015-011 5

Detecting Problematic Lookup Functions in Spreadsheets SERG

6 TUD-SERG-2015-011

TUD-SERG-2015-011
ISSN 1872-5392 SERG

