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ABSTRACT

This study investigates the influence of basin geometry on the cross-sectional stability of double inlet systems. The inlet is in
equilibrium when the amplitude of the inlet velocities equals the equilibrium velocity (~1 m s™). This equilibrium is stable when after a
perturbation the cross-sections of both inlets return to their original equilibrium value. The necessary amplitudes of the inlet velocities
are obtained using an idealized 2DH hydrodynamic that calculates tidal elevation and flow in a geometry consisting of several adjacent
rectangular compartments.

Model results suggest that regardless of the inclusion or exclusion of bottom friction in the basin, stable equilibrium states exist.
Qualitatively, the influence of basin geometry does not change the presence of stable equilibrium. Quantitatively, however, taking a

basin surface area of 1200 km?, equilibrium values can differ up to a factor 2 depending on the geometry of the basin.

INTRODUCTION

Barrier island coasts are highly dynamical systems that serve as
a first defense for the hinter lying mainland. Examples are the
Wadden Sea coast of the Netherlands, Germany and Denmark, the
U.S. East Coast and the Ria Formosa in Southern Portugal.
Understanding the mechanisms causing these (multiple) tidal inlet
systems to be cross-sectionally stable is of importance to
anticipate the effects of natural or man-made changes in these
systems. Examples are sea level rise, barrier island breaching and
basin reduction. Following Escoffier [1940] an inlet is considered
to be in equilibrium when the amplitude of the inlet velocity
equals the equilibrium velocity. The equilibrium is stable when
after a perturbation the cross-section of that inlet returns to the
original equilibrium state.

In calculating the amplitude of the inlet velocity it is customary
to use a semi-empirical cross-sectionally averaged equation for the
flow in the inlet and to assume a uniformly fluctuating water level,
the so-called pumping mode, for the basin. In particular the use of
the pumping mode in these lumped models needs justification as
by definition water levels inside the basin vary in amplitude as
well as phase. It is postulated that the validity of the use of the
pumping mode depends among others on the basin dimensions
including depth and geometry, i.e. length to width ratio when the
surface area is assumed constant. This in turn can cause inlet
velocities to vary and therefore change the stability of the inlet
system.

The goal of this study is twofold: 1) to investigate the influence
of basin geometry on the equilibrium and stability of double inlet
systems and 2) to compare the results with a cross-sectionally
averaged pumping mode model (e.g. van de Kreeke et al., 2008).
To this end, an idealized 2DH hydrodynamic model is developed

based on Roos & Schuttelaars [2011] and Roos et al. [2011] that
calculates tidal elevation and flow in a schematized geometry of a
tidal inlet system. This approach will be explained in the next
section together with the definition of cross-sectional stability.
Subsequently, the model results are presented using so-called flow
diagrams. We finalize our study with a discussion, conclusions
and an outlook for future research.

METHODOLOGY

Cross-sectional stability

In this study the focus is on cross-sectional stability. Following
Escoffier [1940] an inlet is assumed to be in equilibrium if the
amplitude of the cross-sectionally averaged inlet velocity is equal
to the so-called equilibrium velocity #,,, generally taken as 1 m 5!
[Bruun et al., 1978). The equilibrium is stable when after a
perturbation of the equilibrium, the cross-sectional areas return to
these equilibrium values. For inlets that are in equilibrium and
assuming average weather conditions (as opposed to storm
conditions) there is a balance between the volume of sediment
entering and leaving the inlet. Following van de Kreeke [2004],
the volume of sediment entering the inlet is taken as a constant
fraction of the littoral drift, while the volume leaving the inlet is
taken proportional to a power of the ebb tidal velocity amplitude.
The difference between the amount of sediment that enters and
leaves the inlet during a tidal cycle is uniformly distributed over
the inlet length if this difference is positive; if negative the inlet is
eroded uniformly. Hence, sediment exchange between inlet and
basin is assumed to be negligible. Under these assumptions, the
rate of change of the cross-sectional area can be written as [van de
Kreeke et al., 2008, de Swart & Zimmerman, 2009]
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Here, 4; is the cross-sectional area of inlet j (m?); ¢ is time (s); l;
is the length of inlet j (m); M is a constant fraction of the littoral
drift (m*® s™); i; is the cross-sectionally averaged velocity
amplitude of compartment j (m s™"); and # is a power whose value
depends on the adopted sand-transport law. Here # is assumed to
be 3. If ii; = d,,, it follows that d4/dt = 0. This implies that the inlet
system is in equilibrium.

Hydrodynamic model formulation

As shown in Eq. (1), the response of the inlet cross-sectional
area and the equilibrium state is governed by the amplitude of the
cross-sectionally averaged inlet velocities #; that, in general,
follows from a numerical or analytical model. In this study, the
velocities are calculated using an idealized 2DH hydrodynamic
model based on the modeling approach described in Roos &
Schuttelaars [2011]; Roos et al. [2011]. Compared to the more
classical lumped models of tidal inlets [e.g. van de Kreeke et al.,
2008], our new hydrodynamic model has the following properties.
(1) Since the adjacent sea/ocean is contained in the model
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Figure 1. Co-tidal chart for a double inlet system with a basin
geometry of 30x40 km. Elevation amplitudes are in meters, co-
phase lines are depicted in white with intervals of 30° and co-
range contours are depicted in black with intervals of 0.05 m.
Compartment dimensions are listed in Table 1.

Table 1. Compartment dimensions of an inlet system
representing the Marsdiep-Vlie system in the western Dutch
Wadden Sea.

Fig. J b; (km) [; (km) h; (m)
1,3 1 200 50 25
1,3 23 3 6 15
1,3 4 40 30 50; 1x10°®
2abe 1 200 50 25
2a,b,c 2,3 variable 6 variable
2abec 4 80®;40™;20©  15@; 30®; 60 5
4 1 200 50 25
4 2,3 variable 6 variable
4 4 40 30 1x10°

Superscripts above a parameter value refer to the corresponding figure

geometry, the tidal wave past the inlet system is part of the
solution. In turn, this implies that the amplitude and phase
differences between the two inlets are automatically calculated
and need not be imposed externally. (2) Amplitude and phase
differences within the tidal basin are accounted for, which is
important for rather elongated and shallow tidal basins. (3) Bottom
friction in the basin is also accounted for, which is particularly
realistic for shallow tidal basins. (4) The hydrodynamic method is
quick, thus allowing for extensive sensitivity analyses with respect
to the geometrical and physical characteristics of the system. (5)
Our schematization ignores the complex channel-shoal patterns by
assuming a uniform depth. (6) The model can be readily extended
to systems with more than two inlets.

Our model calculates tidal elevation and flow in a geometry
consisting of several adjacent rectangular compartments. Figure 1
shows an example of such a geometry for a double inlet system
resembling the Marsdiep-Vlie system in the Dutch Wadden Sea. It
consists of four compartments of length /;, width b; and (uniform)
depth 4; (j = 1,...,4). Compartment 1, which has an open boundary
to the left, represents the ocean/sea. Compartment 2 and 3 are the
two inlet channels of rectangular cross-section. Compartment 4 is
the tidal basin. In each compartment, conservation of momentum
and mass is expressed by the depth-averaged shallow water
equations including Coriolis effects, and linear bottom friction on
the f~plane:
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Table 2. General parameter values resembling the Marsdiep-Vlie sys

tem in the western Dutch Wadden Sea.

M ('’ year’) i, (ms™) Q (rad s) 9 (°N) cp(-)

76 Zy; (m) o (s g(ms?)

5%x10° 1 7.292x107 53 2.5x107

0.005 1 1.4x10* 9.81

For compartment j, u; and v; are the depth-averaged flow velocity
components in along-basin (x)- and cross-basin (y)-direction,
respectively, and #; is the free surface elevation. Furthermore, f'=
2¢Xind is a Coriolis parameter (with £ = 7.292x10” rad s the
angular frequency of the Earth’s rotation and 3 ~ 53°N the central
latitude of the system) and g = 9.81 m s? the gravitational
acceleration. The linear bottom friction coefficient is defined as r;
= 8¢pU/3m obtained from Lorentz’ linearization of a quadratic
friction law [Zimmerman, 1982] with a default value of the drag
coefficient ¢, = 2.5x107. The current amplitude of a classical
Kelvin wave without bottom friction is assumed as the typical
flow velocity scale U; = Zy, x/(g/h/. Here Z,;, = 1 m is typical for
the dominant M2-tide.

The model geometry displays different types of boundaries. At
the closed boundaries, a no-normal flow condition is imposed.
Next, continuity of elevation and normal flux is required across
the topographic steps between the adjacent compartments.

Analogous to the classical Taylor [1922] problem, the system is
forced by a single incoming Kelvin wave with angular frequency
o and typical elevation amplitude Z,,,, entering through the open
boundary of compartment 1. Due to the Coriolis effect the Kelvin
wave travels upward along the coast past the two inlets, thus
forcing the flow in the inlet system. This effect is negligible inside
the inlets, as its dimensions are generally small compared to the
Rossby deformation radius. The traveling Kelvin wave along with
other waves is allowed to radiate outward at the open boundary of
compartment 1.

Flow diagram

To determine the equilibrium cross-sectional areas and their
stability, the results are expressed in terms of a so-called flow
diagram [van de Kreeke et al., 2008]. Using the hydrodynamic
model described above the cross-sectionally averaged velocity
amplitudes #; and i, are calculated for multiple combinations of
(A4,,45). The cross-sections are varied by enlarging the width b; of
the inlet compartments and calculating the corresponding depth 4.
This is done using the assumption of a geometrically similar
rectangular cross-section [O’Brien & Dean, 1972]. Hence, the
ratio y = hy/b; is constant for all cross-sections; where y is chosen
to be 0.005. From ii;(4;,4;) and iiy(4,,A45), equilibrium velocity
curves are constructed for both inlets. The equilibrium velocity
curves represent the locus of (4,,4,)-values for which i, = i,, and
iy = 1, respectively. The intersections of the two curves
represent sets of equilibrium cross-sectional areas. To determine
the stability of the equilibrium, vectors are added to the flow
diagram. These vectors are the unit vectors in the direction of

dA/dt calculated from Eq. (1). The unit vectors indicate the

direction in which the values of cross-sectional areas change when
they are not in equilibrium.

RESULTS

In this study, three basin geometries (/,xb,) are chosen with a
constant basin surface of 1200 km* 15x80 km, 30x40 km and
60x20 km (see Table 1). Other general parameter values used in
the calculations are denoted in Table 2 and are roughly based on
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Figure 2. Flow diagrams for different basin geometries: a) 15x80 km, b) 30x40 km and c) 60x20 km. The green and red solid line
corresponds to the equilibrium velocity curves of inlet 1 and 2, respectively. The gray vectors indicate the direction in which the values

of the cross-sectional areas change when they are not in equilibrium. Blue circles indicate an unstable equilibrium and the blue cross a

stable one.
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the Marsdiep-Vlie system in the western Dutch Wadden Sea. For
each configuration the centerline of the tidal basin is on the same
position as the centerline of the ocean and the centerlines of the
inlet channels are 10 km apart and symmetrically positioned with
respect to the centerlines of the ocean and basin.

Bottom friction in the basin

A typical result of the model with dimensions resembling the
Marsdiep-Vlie system is shown in Fig. 1, which shows a co-tidal
chart for a basin geometry of 30x40 km. Other dimensions of the
system are listed in Table 1. It follows that due to bottom friction
amplitudes and phases show a spatial variability of approximately
10 cm and 30°, respectively. Moreover, amplitudes decay from
approximately 1.1 m in the inlets to approximately 0.75 m inside
the basin.

Flow diagrams are used to determine how this spatial
variability of amplitudes and phases influences the stability of the
system for different basin geometries. This is shown in Figs. 2a, b
and c for a basin geometry of 15x80 km, 30x40 km and 60x20
km, respectively. It follows that for all three cases next to three
unstable equilibriums, a single stable equilibrium exists.
Moreover, the influence of basin geometry has a large quantitative
influence on the equilibrium values of the cross-sectional areas.
The largest equilibrium values are found for the 30x40 km

Figure 3. Co-tidal chart for a double inlet system with a basin
geometry of 30x40 km. Elevation amplitudes are in meters, co-
phase lines are depicted in white with intervals of 30° and co-
range contours are depicted in black with intervals of 0.05 m.
Compartment dimensions are listed in Table 1.

A [m]

x 10*

Figure 4. Flow diagram for a basin geometry of 30x40 km, no
bottom friction in the basin (c, = 0) and basin depth hy = 1x10°
m. The green and red solid line corresponds to the equilibrium
velocity curves of inlet 1 and 2, respectively. The gray vectors
indicate the direction in which the values of the cross-sectional
areas change when they are not in equilibrium. Blue circles
indicate an unstable equilibrium and the blue cross a stable
one.

geometry (Fig. 2a), i.e. (A1,Ay) =~ (7x10% 7x10%). The other basin
shapes lead to smaller equilibrium values (Figs. 2a and 2c);
(ALA,) = (6x10%, 6x10% for the 15%80 km geometry and (A;,A,)
~ (3.5x10%, 3.5x10%) for the 60x20 km geometry. This leads to a
difference in equilibrium values up to a factor 2 depending on the
geometry of the basin.

No bottom friction in the basin

It is interesting to determine to what extent the results of our
idealized 2DH hydrodynamic model can be compared with results
from the classical lumped model approach. Apart from other
assumptions, an important one in that approach is a uniformly
fluctuating water level inside the basin. Results by van de Kreeke
et al. [2008] show that for a double inlet system with a single
basin and relatively long inlet channels two equilibriums exist,
none of which is stable.

To approximate the pumping mode with our model we consider
a basin geometry of 30x40 km with ¢p = 0 and A, = 1x10® m. This
results in the co-tidal chart depicted in Fig. 3. A clear difference
with the case including bottom friction (Fig. 1) is that in the
absence of bottom friction amplitudes are amplified from
approximately 1.25 m in the inlet channel to approximately 1.4 m
inside the basin. Furthermore, amplitudes and phases in the basin
do not display (visual) spatial variability. The corresponding flow
diagram for the 30x40 km basin is depicted in Fig. 4. It follows
that, similar to the case with bottom friction, four equilibriums
exist, one of which is stable with equilibrium values of (A},A;) =
(2x10*, 0.6x10%).
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DISCUSSION

Care should be taken to compare the results of our model with
the lumped model of van de Kreeke et al. [2008] as even with ¢p =
0 and /4 = 1x10° m the water motion does not satisfy the pumping
mode approximation. Other differences are the presence of
physical mechanisms automatically accounted for in our 2DH
model approach. Examples are resonance, radiation damping and
entrance/exit losses. Comparing Fig. 4 with Fig. 2b shows that the
equilibrium velocity curve of inlet 2 (red) has retreated to almost
within the equilibrium velocity curve of inlet 1 (green). It is to be
expected that when our model more closely approximates the
assumptions in the model by van de Kreeke et al. [2008] the stable
equilibrium at (Aj,A;) = (2x10% 0.6x10% will disappear, thus
leading to two unstable equilibriums.

CONCLUSIONS AND OUTLOOK

In this study, we have investigated the influence of basin
geometry on the stability of double inlet systems. To this end, an
idealized 2DH hydrodynamic model was developed that calculates
the spatial characteristics of tidal flow in a schematized geometry
of a tidal inlet. Tidal inlet stability has been investigated by
combining the inlet velocity amplitudes from this model with
Escoffier’s [1940] classical stability method.

The flow diagrams based on our model suggest that regardless
the inclusion or exclusion of bottom friction in the basin stable
equilibrium states exist. Moreover, qualitatively the basin shape
does not change the presence of stable equilibriums.
Quantitatively, a more eclongated basin shape, in (x)- or (y)-
direction, generally corresponds to significantly smaller
equilibrium values. Specifically, taking a basin surface area of
1200 km?, equilibrium values can differ up to a factor of
approximately 2 depending on basin shape.

Inspired by the above conclusions, future research should focus

on the following aspects.

- Examine the cause(s) of the large influence of basin
geometry on the equilibrium values when assuming a
constant basin surface area.

- Extend the sensitivity analysis to investigate the roles of
physical mechanisms such as bottom friction, radiation
damping, resonance and entrance/exit losses on the
stability of double inlet systems.

- Investigate the influence of the position of the inlet
channels with respect to where they connect the ocean to
the tidal basin (in our case this position was assumed
constant and the mutual distance between the inlet channel
was relatively short).

- Investigate the consequences of alternatives for the
similarity approach regarding the cross-sections of the tidal
inlets (by which we assumed a constant factor y when
constructing the flow diagrams in Figs. 2 and 4).
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