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SUMMARY

While Artificial Intelligence (AI) is geared towards automating tasks like writing and design-
ing, the challenge persists in finding adequate human resources for tasks such as handling
luggage in and out of airplanes or harvesting produce in greenhouses. Nonetheless, the
demand to tailor robotic abilities to diverse scenarios, ranging from agriculture to household
chores, necessitates a general-purpose morphology for the robot, such as a dexterous arm,
along with sufficient sensory capabilities and intelligence to swiftly adjust to new situations.
Despite the prevalence of click-baiting videos shared online, current robot technologies have
yet to address this requirement adequately.

The primary obstacle hindering robot manipulators from effectively performing daily
chores, aiding in supermarkets, and harvesting fruits from fields is the insufficient data
available to construct a robust model of the world. Typically, autonomously exploring
their surroundings and determining optimal strategies is considered unsafe and impractical.
A more effective approach to imparting knowledge to robots involves human supervision.
Ideally, this entails interactive supervision where robots can seek clarification when uncertain
about a situation, and humans can intervene when the robot’s actions are incorrect or fail
to meet the required performance. Moreover, when receiving instructions or asking for
them, the robot should quantify the confidence in the interpretation of the corrections. This
thesis makes significant contributions to the field of interactive robot learning by introducing
various uncertainty-aware methods. These methods facilitate enhancements in data efficiency
during learning and safety during execution.

Before delving into the main contributions, Chapter 2 introduces the reader to the
topic of Interactive Imitation Learning (IIL) and the different modalities that can be used
to give feedback, from evaluative to corrective, underlying the importance of uncertainty
quantification on the robot belief. For this reason, Chapter 3, introduces the foundations
of the main function approximator used in this thesis, i.e. Gaussian Process (GP), to learn
behaviors while quantifying uncertainties. The chapter highlights how a GP is trained given
the evidence of the data and the corrections and how predictions of the mean and the variance
of the actions are obtained. Particular attention is given to how GP models can be used
for efficient updating and aggregation of online data and how to analytically estimate the
uncertainty rate of change.

The proposed function approximator is first applied in Chapter 4. The presented machine
learning framework allows the robot to learn complex manipulation tasks from interactive
demonstrations. Essentially, the user needs to show a kinesthetic demonstration to the robot,
i.e. dragging the robot around in a fully compliant modality to transfer their knowledge
on a desired skill, e.g. cleaning a table or inserting a plug in a socket. The experiments
highlight how the quantification and the rejection of uncertainties can be used to bring the
robot always close to high-confidence regions. Moreover, the GP online model update is
used to aggregate the corrections received from the user to reshape the learned attractor and
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the stiffness field. This ensures that the proper force is executed in the correct direction for
instance when cleaning a table.

To extend the learning of a skill to the whole robot pose and gripper, Chapter 5 studies
how to address this with GP and with the least amount of demonstrations and corrections.
Moreover, the experiments focus on teaching human-like skills to robots by exploiting the
possibility of giving incremental corrections. In particular, novice users, are asked to perform
the picking task of objects in one fluid motion by teaching the complete pose and gripper
behavior. The execution of the skill without any supervision is usually too slow or knocks the
object down before closing the gripper. Nevertheless, after providing feedback, novice users
were able to incrementally shape the robot’s velocity to perform the picking at non-zero
velocity, without knocking the object and correcting for any delay in gripper dynamics.

However, learning skills only relying on the current robot’s Cartesian position can be
a limitation since it cannot encode skills that entail overlapping, e.g. when approaching
a goal and then moving back on the same trajectory. This motivates Chapter 6 which
formulates a new trajectory encoding to teach single or bimanual manipulation skills while
being safe around humans with constrained velocity and force actuation. The user study
also investigates the effectiveness of giving kinesthetic corrections, i.e. by simply touching
the robot, and validating this in teaching bimanual skills. Teaching two manipulators at the
same time or correcting them using teleoperation devices can become overwhelming. Hence,
the method explores adjusting movements interactively through kinesthetic perturbations
rather than re-teaching skills entirely from scratch due to imprecise attempts.

Despite the successful applications of the proposed methods in single and bimanual
motion skills, during task learning, the robot must not only master the motor aspect but also
be attentive to the context, such as the object’s location or shape. This motivates Chapter
7, which emphasizes the generalization of acquired motor skills across various contexts.
The proposed approach hinges on GP theory to acquire a non-linear transformation map
from the demonstrated task space to the execution space while preserving and propagating
uncertainties. Through experiments involving tasks such as pick-and-place operations,
dressing human arms, and cleaning surfaces, it is demonstrated how the robot can generalize
the execution by transforming the attractor, orientation, and stiffness policy to numerous
new scenario configurations even with just a single demonstration of the skill.

In Chapter 8, the concept of task parametrization and uncertainty awareness is expanded
to over-parameterizing the context, such as by tracking more objects than required. The
proposed algorithm would prompt user attention when encountering ambiguity, like when
multiple detected objects could be the goal of the skill. Decision ambiguity can be re-
solved by various feedback modalities, such as pushing the robot, moving it, or providing
reward/punishment. A user study also highlighted the preference of novice users for not
giving conventional kinesthetic demonstrations but only intervening when necessary.
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SAMENVATTING

Terwijl kunstmatige intelligentie (AI) gericht is op het automatiseren van taken zoals schrij-
ven en ontwerpen, blijft het een uitdaging om geschikte menselijke arbeidskrachten te vinden
voor taken zoals het laden en lossen van vliegtuigbagage of het oogsten van landbouwproduc-
ten in kassen. Desondanks is er de vraag om de vaardigheden van robots aan te passen aan
diverse scenario’s, variërend van landbouw tot huishoudelijke taken. Dit vereist dat robots
een universele morfologie hebben, met voldoende sensorisch vermogen en intelligentie
om zich snel aan te kunnen passen aan nieuwe situaties. Ondanks de verspreiding van
sensationele video’s online, is de huidige robottechnologie nog niet in staat om effectief aan
deze eisen te voldoen.

Het belangrijkste obstakel dat robots ervan weerhoudt om effectief dagelijkse taken uit
te voeren, hulp te bieden in supermarkten of fruit te oogsten in het veld, is het gebrek aan
benodigde data om betrouwbare modellen van de echte wereld te construeren. Gewoonlijk
wordt het als onveilig of onpraktisch beschouwd om robots zelfstandig te laten verkennen
en de beste strategieën te laten bepalen. Menselijk toezicht maakt het effectiever om robots
kennis bij te brengen. Idealiter is dit interactief toezicht, waarbij robots om verduidelijking
kunnen vragen wanneer ze onzeker zijn en mensen kunnen ingrijpen wanneer de acties
van de robots onjuist zijn of niet voldoen aan de vereiste prestatie. Bovendien moet de
robot in staat zijn om zijn vertrouwen in de interpretatie van de correcties te kwantificeren
bij het krijgen van of vragen naar instructies. Deze thesis levert een significante bijdrage
aan het vakgebied van interactief robotleren door verschillende methoden te introduceren
die rekening houden met onzekerheid. De methoden faciliteren verbetering van zowel de
data-efficiëntie tijdens het leren als de veiligheid tijdens de uitvoering.

Hoofdstuk 2 introduceert de lezer tot het onderwerp Interactive Imitation Learning (IIL)
en de verschillende vormen waarop feedback kan worden gegeven, van evaluatief tot correc-
tief, wat ten grondslag ligt aan het belang van het kwantificeren van de onzekerheid over
dat wat de robot gelooft. Daaropvolgend introduceert Hoofdstuk 3 de grondbeginselen van
Gaussiaanse Processen (GP) voor het leren van gedrag terwijl tegelijkertijd de onzekerheden
gekwantificeerd worden. Dit hoofdstuk benadrukt hoe een GP getraind wordt gegeven het
bewijsmateriaal uit de data en de correcties en hoe voorspellingen van zowel het gemiddelde
als de variantie van acties worden verkregen. Specifieke aandacht wordt besteed aan hoe
GP-modellen gebruikt kunnen worden voor het efficiënt updaten en samenvoegen van online
data en hoe de mate van verandering van de onzekerheid analytisch benaderd kan worden.

Hoofdstuk 4 past deze methode toe zodat een robot complexe manipulatietaken kan leren
door middel van interactieve demonstraties. De gebruiker geeft de robot een kinesthetische
demonstratie, d.w.z. een volledig meegaande robot wordt fysiek rondbewogen om kennis
van een specifieke vaardigheid over te brengen, zoals het schoonmaken van een tafel of het
inpluggen van een stekker. De experimenten laten zien hoe de kwantificatie en het verwerpen
van onzekerheden gebruikt kan worden om de robot zich altijd te laten bevinden in regio’s
met een hoog vertrouwen. Bovendien wordt de GP online model-update gebruikt om de



xii SAMENVATTING

geleerde attractor en het stijfheidsveld aan te passen aan de hand van de correcties die door
de gebruiker worden gegeven. Dit zorgt ervoor dat de juiste kracht in de juiste richting wordt
uitgeoefend, bijvoorbeeld tijdens het schoonmaken van een tafel.

Hoofdstuk 5 bestudeert hoe de manier van leren van een vaardigheid uitgebreid kan
worden naar een algehele robothouding en grijper met zo min mogelijk demonstraties en cor-
recties. Daarnaast focussen de experimenten op het aanleren van mensachtige vaardigheden
aan robots door gebruik te maken van de mogelijkheid om interactieve correcties te geven.
Specifiek beginnende gebruikers wordt gevraagd om de taak van het oppakken van objecten
in één vloeiende beweging uit te voeren en daarbij de volledige robothouding aan te leren en
hoe te grijpen. Het uitvoeren van de vaardigheid zonder enig toezicht is over het algemeen te
langzaam of het object wordt omgestoten voordat het gegrepen wordt. Echter, na feedback
te geven waren de beginnende gebruikers in staat om incrementeel de snelheid van de robot
zo vorm te geven dat deze het object met een snelheid groter dan nul kon oppakken zonder
het omver te stoten en met compensatie voor vertraging in de dynamica van de grijper.

Het uitsluitend vertrouwen op de huidige Cartesische positie van de robot heeft de
beperking dat geen vaardigheden geleerd kunnen worden met overlappende posities, bij-
voorbeeld wanneer na het bereiken van een doel via dezelfde weg terug wordt bewogen.
Dit motiveert Hoofdstuk 6, waarin een nieuwe koerscodering wordt geformuleerd voor het
aanleren van enkelvoudige en tweehandige taken, op een manier die veilig is rond mensen
door de begrensde kracht- en snelheidsaansturing. Het gebruikersonderzoek onderzoekt ook
de effectiviteit van het geven van kinesthetische correcties, d.w.z. door de robot aan te raken,
voor bimanuele vaardigheden. Twee robotarmen tegelijkertijd onderwijzen of corrigeren
d.m.v teleoperatie kan overweldigend zijn. In plaats daarvan onderzoekt de methode het
interactief aanpassen van bewegingen d.m.v kinesthetische perturbaties.

Ondanks de succesvolle toepassing van de voorgestelde methoden voor enkelvoudige en
tweehandige bewegingsvaardigheden, moet de robot tijdens het leren niet alleen de motori-
sche aspecten beheersen, maar ook op de hoogte zijn van de context, zoals de locatie en vorm
van het object. Daarom wordt in Hoofdstuk 7 de generalisatie benadrukt van de geleerde
vaardigheid over verschillende contexten. De voorgestelde aanpak steunt op GP-theorie
voor het verkrijgen van een niet-lineaire transformatie van de demonstratieruimte naar de
uitvoeringsruimte terwijl onzekerheden behouden en gepropageerd worden. Experimenten
met taken zoals oppakken en plaatsen van objecten, menselijke armen aankleden en op-
pervlakken schoonmaken demonstreren hoe de robot de uitvoering kan generaliseren door
de attractor-, oriëntatie- en stijfheidsbeleid te transformeren naar tal van nieuwe scenario
configuraties, zelfs zonder enige demonstratie van de vaardigheid.

In Hoofdstuk 8 wordt het concept van bewustzijn van onzekerheid uitgebreid naar het
over-parametriseren van de context, zoals het volgen van meer objecten dan nodig. Het
voorgestelde algoritme vraagt de aandacht van de gebruiker in het geval van dubbelzinnigheid,
zoals wanneer meerdere gedetecteerde objecten het doel van de vaardigheid kunnen zijn.
Feedback kan dan op verschillende manieren worden gegeven, bijvoorbeeld door de robot te
duwen, te verplaatsen of door het geven van een beloning of straf. Uit een gebruikersstudie
bleek ook de voorkeur van beginnende gebruikers om geen conventionele kinesthetische
demonstraties te geven maar alleen in te grijpen wanneer nodig.
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Sebbene l’Intelligenza Artificiale (IA) sia sempre più utilizzata per automatizzare attività
come la scrittura e la generazione di immagini, resta ancora difficile trovare risorse umane
adeguate per compiti manuali come la gestione dei bagagli aerei o la raccolta di prodotti
agricoli in serra. Tuttavia, la crescente necessità di adattare le capacità dei robot a contesti
diversi, che spaziano dall’agricoltura alle faccende domestiche, richiede che i robot abbiano
una morfologia versatile, come un braccio robotico, insieme a sensori avanzati e un’intel-
ligenza sufficiente per adattarsi rapidamente a nuove situazioni. Nonostante la diffusione
di video sensazionalistici online, la tecnologia robotica attuale non è ancora in grado di
rispondere efficacemente a queste esigenze.

Il principale ostacolo che impedisce ai robot di eseguire compiti quotidiani, di fornire
assistenza nei supermercati o di raccogliere frutta nei campi è la scarsità di dati necessari
per costruire modelli affidabili del mondo reale. Di solito, lasciare che i robot esplorino
autonomamente e determinino le migliori strategie non è considerato sicuro o pratico. Un
approccio più efficace consiste nell’affidarsi alla supervisione umana. In questo caso, i robot
possono chiedere chiarimenti quando sono incerti e gli esseri umani possono intervenire
quando le azioni dei robot risultano errate o non all’altezza delle aspettative. Inoltre,
quando il robot riceve istruzioni o ne richiede, dovrebbe essere in grado di quantificare il
grado di confidenza nell’interpretazione delle correzioni. Questa tesi contribuisce al campo
dell’apprendimento interattivo dei robot introducendo diversi algoritmi che tengono conto
dell’incertezza, migliorando l’efficienza dei dati durante l’apprendimento e la sicurezza
durante l’esecuzione.

Il Capitolo 2 introduce il lettore all’ambito dell’ apprendimento interattivo e alle diverse
modalità di interazione, dalle valutative a quelle correttive, sottolineando l’importanza della
quantificazione dell’incertezza nella apprendimento di nuove abilità.

Il Capitolo 3 presenta le principali nozioni sui Processi Gaussiani, il principale metodo di
apprendimento utilizzato in questa tesi per insegnare comportamenti ai robot e tenendo conto
delle incertezze. Il Capitolo spiega come un Processo Gaussiano possa essere addestrato
con i dati disponibili e le correzioni fornite dalle persone, e come si possano ottenere
previsioni sia della media che della varianza delle azioni. Particolare attenzione viene
dedicata all’ aggiornamento dei modelli con correzioni ricevute in tempo reale e alla stima
delle incertezze.

Il Capitolo 4 descrive come un robot possa apprendere compiti di manipolazione comples-
si tramite dimostrazioni interattive. In pratica, l’utente fornisce al robot una dimostrazione
cinestetica, ossia lo guida fisicamente per trasferire la propria conoscenza su un’abilità
specifica, come pulire un tavolo o inserire una spina in una presa. Gli esperimenti mostrano
come la quantificazione e il rifiuto delle incertezze aiutino il robot a concentrarsi su aree
in cui ha maggiore confidenza. Inoltre, l’aggiornamento continuo del modello consente
di integrare le correzioni ricevute dall’utente, modificando così l’attrattore e la rigidezza,
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garantendo che, ad esempio, la forza giusta venga applicata nella direzione corretta durante
la pulizia di un tavolo.

Il Capitolo 5 estende l’apprendimento di un’abilità all’intera posa del robot e alle
dita, esplorando come questo possa essere fatto con il minimo numero di dimostrazioni e
correzioni. In particolare, al robot viene richiesto di eseguire la raccolta di oggetti in un
movimento fluido senza fermarsi prima di chiudere la mano. Tuttavia, senza supervisione,
l’esecuzione dell’abilità è spesso troppo lenta o l’oggetto cade prima che le dita si chiudano.
Ciononostante, dopo aver ricevuto correzioni umane, i robot sono in grado di migliorare
la rapidità di esecuzione e coordinare bene le dita della mana, riuscendo a raccogliere gli
oggetti velocemente senza farli cadere.

Affidarsi esclusivamente alla posizione cartesiana corrente del robot durante l’appren-
dimento può risultare limitante, poiché non permette di codificare abilità che richiedono
movimenti che si sovrappongono, ad esempio quando ci si avvicina un obiettivo e poi si
torna lungo lo stesso percorso. Il Capitolo 6 propone quindi una nuova modalità di codifica
dei comportamenti per insegnare abilità di manipolazione bimanuale, mantenendo un’in-
terazione sicura con gli esseri umani attraverso la limitazione della velocità e della forza.
Lo studio esamina anche l’efficacia delle correzioni cinestetiche, ovvero la possibilità di
correggere abilità bimanuali semplicemente perturbando il robot in movimento. Insegnare
o correggere due manipolatori contemporaneamente con dispositivi di teleoperazione può
risultare complesso, perciò il metodo proposto esplora la possibilità di modulare i movimenti
attraverso interazioni cinestetiche piuttosto che riapprendere completamente le abilità da
zero ogni volta che il robot sbagli.

Nonostante l’efficacia dimostrata dai metodi proposti nell’apprendimento di abilità moto-
rie singole e bimanuali, durante l’acquisizione di un compito il robot deve prestare attenzione
non solo all’aspetto motorio, ma anche al contesto, come la posizione o la forma degli ogget-
ti. Il Capitolo 7 affronta questo tema, enfatizzando la necessità di generalizzare le abilità
motorie acquisite a contesti diversi. L’approccio proposto si basa sull’ apprendimento di una
mappa non lineare dallo spazio dimostrato a quello di esecuzione, mantenendo e propagando
le incertezze. Gli esperimenti su compiti come la vestizione di persone e la pulizia di super-
fici mostrano come il robot sia in grado di adattare l’esecuzione modificando la posizione e
l’orientamento a molteplici nuove situazioni a partire da una singola dimostrazione umana.

Infine, il Capitolo 8 propone un algoritmo che richiede l’intervento dell’utente in caso
di ambiguità, come quando più oggetti rilevati potrebbero rappresentare la possibile cosa
da raccogliere. L’ambiguità decisionale può essere risolta attraverso varie modalità di
interazione, come spingere il robot, muoverlo o fornire ricompense e punizioni. Uno studio
ha inoltre evidenziato che gli utenti inesperti preferiscono intervenire solo quando necessario
piuttosto che fornire dimostrazioni cinestetiche tradizionali.
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INTRODUCTION

Robots should represent sophisticated technological creations, acting as agents that perform
tasks independently. Equipped with sensors, processing units, and actuators, they should
follow instructions, respond to inputs, and work without constant human guidance. They
should help us in tasks like surgery [64], cooking [160], handling the luggage in and out of
airplanes [80], or harvesting fruit and vegetables in greenhouses [138]. This requirement is
still not addressed with the current technologies, despite click-baiting videos shared online
by multi-billionaires [113]. As a matter of fact, the progress made in robotics may not seem
as substantial compared to the rapid advancements seen in language processing or computer
vision. This is because robots still encounter challenges when attempting tasks that humans
typically perceive as straightforward, such as manipulation [18].

The primary reason for the slower progress in developing embodied intelligence lies in
the insufficient availability of data needed to train large models akin to those used in Large
Language Models (LLM). Unlike language models, it is often impractical to instruct and
correct a robot in a user-friendly manner, such as through touch or speech. Moreover, a
significant issue arises from our low tolerance for their errors: misinterpreting instructions
or experiencing hallucinations could lead robots to potentially dangerous interactions with
humans and the surrounding environment. Safety concerns will significantly restrict the
adoption of robotics in human-centric environments like daycares or supermarkets.

Furthermore, the robot typically lacks awareness of changes in task circumstances, such
as alterations in object locations and shapes. This lack of awareness prevents effective
generalization and recognition of situations, as the robot may not realize when it encounters
unfamiliar conditions and may require guidance.

This thesis tackles the challenge of enhancing robots’ intelligence by boosting their
awareness of their knowledge boundaries - what they comprehend and what they lack -
particularly when learning from interactions with human teachers.
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1.1 TEACHING ROBOTS
When humans are available to share their expertise in guiding contact-rich manipulation
tasks, it is preferable to encode behaviors using recorded demonstrations rather than opt-
ing for alternative machine learning approaches such as reinforcement learning (RL). The
latter methods entail supplementary demands related to design, infrastructure, safety, and
data efficiency [155] and often prove impractical for real-world physical systems due to
constraints on time and resources. Conversely, Imitation Learning (IL) entails the robot ac-
quiring knowledge directly through supervised methods from human trainers. This approach
enhances learning efficiency and diminishes the likelihood of unsafe explorations.

1.1.1 IMITATION LEARNING
IL has obtained considerable attention as a potential direction for enabling all kinds of users
to easily program the behavior of robots. In this context, humans can easily teach the desired
skill to the robot using teleoperation or kinesthetic teaching, i.e., by dragging the robot
around, and the skill can be transferred to the robot in a supervised learning formulation.
According to the policy formulation, the robot learns what is the desired action to take with
respect to the current input which could be the current time step, the current robot position,
or the current image input.

However, when considering the advantages of programming robots in a natural way, as
we humans do for teaching complex skills to each other, the possibilities are not limited to
showing demonstrations and learning from them [11]. In particular, learning a skill from
a demonstration does not guarantee that the result would resemble the desired intended
behavior. For example, when teaching a robot how to clean a surface, how can the teacher
know that the robot is accurately capturing the necessary need to apply a strong force when
in contact with the surface? Moreover, foreseeing and demonstrating the task for every
possible surface would be impractical even if the correct force behavior is captured from the
demonstration.

Interactive Imitation Learning aims to allow users to provide additional instructions
to the robot when necessary, particularly in situations where the robot’s actions may be
incorrect or pose a risk.

1.1.2 INTERACTIVE IMITATION LEARNING
Interactive Imitation Learning (IIL), conceptually summarized in Fig. 1.1, relies on different
types of teaching modalities, like demonstrations, sporadic corrections, or evaluations
(grading) with value judgments or rankings. For humans, this kind of interactive teaching
approach seems to be the most natural strategy for teaching to perform more complex skills.

For example, if, after the demonstration, the robot is not applying sufficiently strong
force, the user could give directional teleoperated feedback to the robot and explicitly tell
it to push harder. Moreover, teaching complex skills, such as picking objects at non-zero-
velocity that would be prohibitive to be demonstrated by novice users, becomes significantly
easier if the original slow demonstration is interactively corrected using human feedback
on the desired end-effector velocity. This enables the user to improve the robot’s behavior
over observed mistakes. Human teachers can transfer their knowledge to the learning agent
through different modalities of interaction, see. Ch. 2, and they are able to observe the effect
of their feedback throughout the incremental learning of the skill. Moreover, the robot can
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Figure 1.1: A general schema of Interactive Imitation Learning from [38]

also detect uncertainties in the tasks and actively query the user help [150] aiming to increase
learning efficiency. This thesis focuses on the uncertainty quantification of low-level and
high-level policies when learning from interactive demonstration, making the robot aware of
what it knows and what it does not and how to effectively and efficiently integrate human
feedback.

1.1.3 UNCERTAINTY-AWARE IIL
The aim of Uncertainty-Aware IIL is to have robots that, thanks to the uncertainty quantifica-
tion, become safer around humans, require less data to be trained, update more efficiently
their beliefs from non-expert human feedback, and be robust to eventual mistakes in the
correction. The main requirement is that, given a certain situation, the robot must predict
the mean and variance of the action given the evidence of what was observed during the
demonstrations. By leveraging the awareness of uncertainty, the robot can enhance its
performance in learning and refining motor skills quickly. It achieves this by actively seeking
the teacher’s attention through queries or by looking for areas of workspace with lower
uncertainty, and efficiently updating the policy upon receiving corrections.

1.2 CONTRIBUTIONS
Interactive Imitation Learning combined with uncertainty awareness promises to accelerate
the development of robot learning and adaptation in complex manipulation tasks. However,
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there is not enough study in the field due to technical and scientific challenges. Hence, we
can formulate the following research question:

Research Question : 1

What practical implications and performance improvements arise from integrating
uncertainty quantification/exploitation, tailored for interactive learning scenarios,
in tackling the challenge of instructing robot manipulation tasks? How does the
performance of these methods compare to that of existing approaches that do not
incorporate any feedback modality or consider uncertainties?

To answer this question, different machine learning methods were proposed to tackle
challenging manipulation problems, like assembly, disassembly, and picking at non-zero
velocity, with a single or double arm setup. Moreover, the methods were tested with non-
expert users, and the usability of the methods was evaluated to also answer the following
question:

Research Question : 2

How does the choice of teaching strategy (full demonstrations vs. corrections) and
the incorporation of uncertainty/ambiguity awareness affect the non-expert user
experience?

The next section introduces the developed methods, the application, and the new usability
insights that were obtained during the development of this thesis.

1.2.1 METHODS
Fig. 1.2 shows the interactive learning scheme that is used in this thesis. We notice the
three important elements that are also present in Fig.1.1, i.e. the agent, the teacher, and
the environment. However, the agent is split into policy and policy generalizer. From a
biological perspective, the policies represent the motor cortex that is involved in the planning,
control, and execution of voluntary movements; on the other hand, the policy generalizer is
the parietal lobe that is involved in processing sensory information and integrating it with
higher-level cognitive functions such as spatial reasoning and attention, which are essential
for conceptual understanding. Each of the submodules represents an alternative solution for
the motor policy and the task generalizer.

ILoSA, Interactive Learning of Stiffness and Attractors, introduced in Chapter 4, al-
lows the user to interactively correct the attractor field and a Cartesian impedance control’s
stiffness matrix to match the necessary high/low forces locally. The recorded offline demon-
stration would not have enough information to successfully apply high/lower forces at the
right time when dealing with contact-rich manipulation like plugging, unplugging, cleaning,
or pushing. The algorithm proposes a straightforward way of disambiguating the directional
corrections on the attractor, stiffness, or both.

MUDS, Minimum Uncertainty Dynamical Systems, introduced in Chapter 5, encodes the
provided demonstration as a dynamical system. To avoid the issue of covariate shift, when the
robot is dragged out of the distribution of the demonstrated data, a vector field proportional
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to the gradient of the estimated epistemic uncertainty is superimposed to the fitted dynamics,
resulting in the local stabilization motion close to the region of low uncertainties. During
execution, if directional human feedback is received, the algorithm efficiently updates the
learned dynamics matching the human intended behavior. This enables reshaping the motion
when the objective of the task is changed or incrementally updating the policy with the
human in the loop.

SIMPLe, Safe, Interactive Movement Primitives Learning, introduce in Chapter 6,
enables the establishment of safety limits on the resultant velocity and force field of the
manipulator’s Cartesian motion. A novel encoding of the skill also facilitates the teaching of
manipulation tasks with long time horizons and provides the capability to iteratively adjust
the motion through kinesthetic corrections. The algorithms enable instructing and modifying
bimanual manipulation policies by teaching one arm at a time or both arms simultaneously
and interactively fine-tuning the manipulation strategy.

GPT, Gaussian Process Transportation for Policy Generalization, introduced in Chapter
7, proposes a method to transform policy from one task parameterization space shown in the
demonstration to the space that is faced during execution. The task parameterization could
be the object and goal position in a pick-and-place scenario or the point cloud of the surface
to clean. This method allows the end-user to teach a policy in one task and automatically
generalize it to different arrangements of the scenario.

LIRA, Learning Interactively to Resolve Ambiguity, introduced in Chapter 8, proposes
an active learning framework to interactively query the user when facing an ambiguous
situation, i.e., when more than one action would be equivalently valid, given the evidence of
the previous demonstration or corrections. It is intended to learn multi-sequence, multi-frame
pick and place tasks, where for every segment, the robot has to disambiguate which is the
correct object to pick and where to correctly place it. Multiple feedback modalities are
possible, simple yes/no, directional feedback, or local kinesthetic teaching.

1.2.2 NEW HUMAN USABILITY INSIGHTS
Beyond the formulation of novel algorithms and methods that allowed the transfer of
knowledge to the robot, this thesis also investigated the usability of the methods from non-
expert users. Some studies focused on the validation of the method itself or also comparing
different teaching modalities, such as interactive versus not or different feedback modalities.
However, first and foremost, we want to answer the question: “Can anybody, with no
robotics or machine learning background, be able to correctly teach complex manipulation
skills to the robot?” In the thesis, the reader will find out that:

• users can teach how to insert a plug in a socket with kinesthetic demonstration and
teleoperated corrections thanks to the efficient attractor and stiffness update proposed
in ILoSA. The study is part of Chapter 4.

• users prefer to demonstrate at a lower speed and use interactive corrections when
asking to teach to perform a picking task as fast as possible, with the goal of matching
a requested performance. The study is part of Chapter 5.

• user prefers to locally reshape a manipulation task with kinesthetic teaching rather
than provide a completely new demonstration when asked to teach to pick a different
object with a bimanual setup. The study is part of Chapter 6.
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• users prefer to teach robots by giving interactive corrections rather than aggregating
more and more demonstrations in the context of reference frame disambiguation. The
study is part of Chapter 8.

1.3 APPLICATIONS
All the applications are lab reproductions of real-life scenarios, showing a tangible impact
on industrial and daily life applications, e.g., using real plugs and sockets. Having realistic
objects allows us to make a step closer to real-world impact and one step away from
conceptual peg-in-the-hole tasks.

1.3.1 HOUSEHOLD CHORES
The integration of robotics in automating household chores is poised to become a vital
solution for addressing the needs of an aging population. As our society ages, the demand
for caregiving services is on the rise, and robotics offers a promising avenue to alleviate
some of the burdens associated with elderly care. These advanced robots can assist with
tasks like cleaning, cooking, and even personal care, providing independence and dignity to
seniors. However, many of these tasks require the learning of a contact-rich manipulation.
In this thesis, examples of a robot learning how to insert/extract plugs, see Fig. 1.3, cleaning
tables, see Fig. 1.4 and various different objects, see Fig. 1.5, are studied in the context of
IIL.

1.3.2 RETAIL AUTOMATION
In recent years, grocery stores have undergone significant transformations. Self-checkout
options have become increasingly prevalent, allowing customers to scan and pay for their
purchases without waiting for an available cashier. However, all the tasks that guarantee to
find goods available on the shelves are still not automated. In particular, in the last stage,
after products arrive at the supermarket, they need to be correctly allocated in the right
place. In this thesis, many challenges are highlighted and tackled in the experiments, such as
learning how to re-shelf as fast as possible using one fast movement while not flipping the
object down, see. Fig. 1.6, or how to effectively sort the fruits in the right box, see Fig. 1.7,

Figure 1.3: Human teaching how to successfully insert a plug into an outlet. This can be useful in the context of
teaching robots how to use home appliances, e.g. vacuum cleaners. Experiments related to Ch. 4.
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Figure 1.4: Robot cleaning a dirty table after receiving kinesthetic and corrective feedback from the human
demonstrator. Experiments related to Ch. 4.

Figure 1.5: The robot generalizes the cleaning strategy to different objects after perceiving them with a depth
camera. Experiments related to Ch. 7.

or handling heavy objects like crates, relieving workers from this wearing task, see Fig. 1.8.

1.3.3 INDUSTRIAL ASSEMBLING/DISASSEMBLING
Increasing retail and consumption also lead to global challenges, such as mounting electronic
waste by the rapidly accumulating discarded electronic devices and the associated environ-
mental and health hazards. Robotics emerges as a pivotal solution to combat this problem.
E-waste poses a critical issue due to its sheer volume and complexity, containing many
materials and components. This complexity makes manual disassembling a labor-intensive
and time-consuming endeavor. Robotics, however, can significantly expedite and streamline

Figure 1.6: Point of view of a teacher showing a robot how to pick and place a milk box in one single movement in
the context of reshelving items in a supermarket. Experiments related to Ch. 5.
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Figure 1.7: Robot learns from a human teacher how to correctly allocate the vegetable in the right crate in the
mundane task of fruit sorting. Experiments related to Ch. 8.

Figure 1.8: Bi-manual robots taking over the physically demanding role of lifting heavy items in a warehouse,
relieving humans from the strain on their backs. Experiments related to Ch. 6.

Figure 1.9: Example of precision battery removal from the electronic device, for the sake of disposal. Experiments
related to [118].
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the recycling process. Figure 1.9 shows the execution of the robot that learned from a human
how to accurately extract a battery, grasp it, and then place it in the right container, relieving
the human from the task.

1.4 THESIS OUTLINE
The thesis is organized as follows:

• Chapter 2 presents the state of the art on Interactive Imitation Learning and the
different teaching strategies that can be used to teach robots, using human reward or
preferences or absolute/relative corrections in the state/action space.

• Chapter 3 summarizes all the mathematical background needed to understand how
Gaussian Process Regression is used and implemented in the thesis. Novice readers of
the topic should understand at least the basics of the topic and be introduced to the
more advanced implementations of the algorithms of the thesis.

• Chapter 4 presents the Interactive Learning of Stiffness and Attractors, a machine
learning framework that allows the robot to learn complex manipulation tasks from
interactive demonstrations.

• Chapter 5 extends on Chapter 4 and studies how learned dynamical systems policies
of full robot pose and gripper can be interactively shaped with corrections to perform
picking task in a single fluent motion.

• Chapter 6 presents the Safe Interactive Movement Primitives Learning that allows
users to teach single or bimanual manipulation tasks with long time horizons while
being safe around humans with constrained velocity and force actions.

• Chapter 7 formalized the concept of Gaussian Process Transportation to generalize
policies to different task parametrization spaces while retaining the uncertainty quan-
tification from the original policy and due to the transportation process. It was tested
in generalizing various manipulation tasks like pick-and-place, cleaning, and dressing.

• Chapter 8 presents the Learning Interactively to Resolve Ambiguity, used to actively
query the user attention when facing an ambiguous situation, i.e., when more than one
detected frame can be used to generalize the original policy.

• Chapter 9 concludes the thesis and discusses future work.
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2
TEACHING MODALITIES IN

INTERACTIVE IMITATION
LEARNING

Along the development of this thesis, whether we are learning the action policy or the
generalization policy, the primary source of information is the (human) teacher, see Fig. 1.2.
We assume that the teacher is not only providing demonstrations, for instance, by moving the
robot around or teleoperating the robot, but they also can provide feedback on the learned
performance of the robot, such as correcting it and improving its performance. For example,
the user can specify that an object is not the proper object to pick, that the current pressure
applied to a surface has to increase, or that it has to perform a task faster.

This chapter categorizes different state-of-the-art methods by exploring how teachers
can interactively train agents by providing feedback to them. Here, feedback refers to
information explicitly conveyed by human teachers to learning agents via a Human-Robot
interface.

We can classify these methods into two primary groups based on the teacher’s feedback
type: evaluative space and state-action space. The former assesses agent performance,
i.e., tells a robot if something is good or bad, while the latter guides task execution, i.e.,
explicitly tells the robot what to do. In both categories, teachers can provide assessment or
guidance through relative and absolute methods. Relative feedback indicates the direction
for the agent’s behavior change relative to the current or other policy executions, while
absolute feedback conveys the teacher’s knowledge of optimal behavior. Relative feedback
is less informative but demands less cognitive effort from teachers, possibly sacrificing data
efficiency. Hence, the choice between relative and absolute feedback involves a trade-off
between data efficiency and teacher cognitive load during interaction.

This chapter is partially based on  Celemin, C., Pérez-Dattari, R., Chisari, E., Franzese, G., de Souza Rosa, L.,
Prakash, R., Ajanović, Z., Ferraz, M., Valada, A. and Kober, J., 2022. Interactive imitation learning in robotics: A
survey. Foundations and Trends® in Robotics, 10(1-2), pp.1-197 [38].
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This thesis primarily addresses Interactive Imitation Learning, where robots learn not
only from offline demonstrations but also from online correction and evaluation. This
background chapter will overview the current state-of-the-art in this area, including its
limitations when applied to real human feedback or when quantifying uncertainties in the
learned policy during deployment. The chapter is divided into three sections:

1. Sec. 2.1 highlights the meaning of learning from human reward and human preference,
i.e., no specific action label needs to be provided to the robot but only rewards or
by specifying which option they would prefer among two (or more). This modality
is the least data and time-efficient way of teaching a skill, so it was discarded from
comparisons and development of the thesis. A reader in a hurry could jump over this
section without losing context.

2. Sec. 2.2 introduces interactive learning within the state-action space. During the
interaction, users may label desired actions, such as specifying robot velocity or force
at a particular position. However, providing exact values may be challenging for
general users. Therefore, the section also discusses providing relative feedback, like
indicating if it should be faster/slower or push harder/softer. Additionally, it reviews
the distinction between robot-initiated and human-initiated feedback: robots may seek
feedback in uncertain situations, while users may request policy adaptations to meet
performance requirements.

3. Sec. 2.3 will conclude and discuss what highlighted in this chapter.

2.1 HUMAN FEEDBACK IN EVALUATIVE SPACE
The earliest interactive learning endeavors fall under evaluative feedback and draw inspiration
from animal clicker training, a method commonly employed to train dogs and other pets
[131]. Training animals for tasks like assistance or detective dogs demonstrates humans’
ability to convey knowledge to other agents through straightforward signals indicating the
acceptability of behavior, without explicit demonstrations of the task’s execution, as seen in
traditional methods of Learning from Demonstration (LfD). The feedback can be absolute or
relative evaluations of performance. For example, where the teacher explains the right way
of solving an exercise (absolute) or describes how some executions are better or worse than
others, using either pair-wise comparisons or rankings (relative).

2.1.1 LEARNING FROM HUMAN REINFORCEMENTS
Utilizing evaluative feedback from a human teacher simplifies two challenges in contrast
to autonomous learning methods such as Reinforcement Learning (RL). It eliminates the
need to tackle the complex task of designing an objective function for autonomous feedback
and streamlines system implementation by removing the necessity for reward computation
infrastructure.

Thomaz and Breazeal [156] showed how Interactive Reinforcement Learning (Interactive
RL) enables a human user to provide positive and negative rewards in real-time in response
to robot actions and to advise anticipatory guidance input that constrains action selection
choice and guides the learner towards the desired behavior. Since a human reward may
have a different meaning with respect to an encoded environment reward function, which
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Figure 2.1: Learning from human reinforcements loop: the teacher is teaching the robot to go to the left and he
gives bad rewards when it goes right.

is the basic reinforcement used in the conventional RL approaches, a series of works have
analyzed how to model the human reinforcement [157, 158]. For example, the Training an
Agent Manually via Evaluative Reinforcement (TAMER) framework [90, 91] addresses how
to use delayed human rewards in RL problems with discrete action spaces. However, rather
than using the evaluative human feedback as a reward, it can also be used to directly update
the policy [66]. The policy is trained by increasing or decreasing the probability of an action
in a certain state, depending on the feedback provided. Additionally, Loftin et al. [107, 108]
propose a method to take into account the user feedback strategy, in particular taking into
consideration different interpretations of lack of feedback from the teacher.

Human reinforcement enables teachers to convey insights about what is right or wrong at
each time-step to the agent. It demands a solid grasp of the task without requiring expertise or
knowledge of precise actions in every state. However, since this feedback does not explicitly
specify alternative actions when a punished action occurs, a single erroneous punishment
necessitates numerous new feedback instances to correct the impact of the incorrect feedback.
This makes these approaches less robust when dealing with imperfect teachers.

2.1.2 PREFERENCE-BASED POLICY LEARNING
When learning a behavior, the human teacher is conveying the desired way of performing a
task. For example, when picking an object, the robot can decide to approach it from left or
right, see Fig. 2.2. Hence, without having any prior information, the robot can execute both
trajectories and ask the user if they prefer one way or the other.

Methods for learning from human preference consist of comparing two or more sequences
of actions and providing a preference score to the agent, and they do not require the teacher
to identify and evaluate what is the credit of the decision at each time step with respect to
the success or failure of the task execution, i.e., potentially reducing teacher workload. In
other words, they use relative evaluative feedback that implicitly indicates the direction in
which the solution in the policy space should be shifted, such that it matches the preferences
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Figure 2.2: Learning from human preferences: the teacher is teaching the robot to take the left turn and it is
specifically saying that going left is better than going right.

of the teacher. However, since this feedback is relative to other trajectories, policies, or
roll-outs, it does not describe how good execution is in general, and a policy that is preferred
over another or ranked as the best out of a set of policies might be ranked low later on with
respect to some different executions.

Preference-Based Policy Learning (PPL) [3] is one of the first methods to integrate
preference learning and RL. A human teacher provides feedback as pairwise preferences
between policies, and the agent estimates the value of parametrized policies, selecting
another set of policies in an iterative process. Fürnkranz et al. [58] also explore preference-
based reinforcement learning, focusing on action preferences in a given state. Akrour et al.
[5] extends this work by accounting for human mistakes. Jain et al. [78, 79] propose a
co-active online learning framework where the human teacher provides small adjustments
to system-generated trajectories. The reward function used in the RL step is learned via
preference feedback, outperforming demonstrations or preferences used in isolation. The
most important and critical component of this method is the choice of trajectories to compare.
Generating safe and informative trajectories is a non-trivial limitation of these approaches.
Active preference-based methods aim to improve convergence by generating informative
queries [4, 124, 173], and the preference can also be used to learn a reward function
[19, 43, 142].

Learning from preferences reduces the effort of the teacher and widens the spectrum of
people who could teach a robot. Teachers do not need to be experts on a task to point out
the best among two to multiple solutions. However, preferences are a relative measure of
performance that evaluates a sequence of transitions, therefore the feedback does not specify
what decisions make one roll-out better than the other, and the algorithm has to identify them
while compromising data efficiency. Moreover, methods based on learning from preferences
are also sensitive to mistakes in the teachers’ assessments. The mistakes in the feedback have
a negative impact on the convergence of the process, reaching lower policy performances.
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A better, more data-efficient, and effective solution is to directly give feedback on the
best action to take, highlighted in the following section.

2.2 HUMAN FEEDBACK IN STATE-ACTION SPACE
Human feedback on state-action space directly guides the robot on how to perform the task,
offering explicit instructions on the right action or state transition. Unlike learning from
evaluative feedback, this type of feedback does not involve an explicit quality assessment
of the policy; instead, it conveys the teacher’s insights and understanding of task execution.
This feedback can be absolute, where the teacher demonstrates the optimal action, e.g.,
moving a robot on a new trajectory, or it can be relative, where the teacher only specifies
in which direction the action should be changed, e.g., by telling to go faster or slower at a
certain point in space. However, it does not assume that the correction represents the optimal
action but rather serves as a hint in that direction. The correct action is eventually reached
through an iterative accumulation of incremental progress from multiple relative corrections.

2.2.1 LEARNING FROM ABSOLUTE CORRECTIONS
In this interaction, agents are supposed to receive explicit task execution demonstrations
from the teacher, with the learning policy concurrently guiding the agent. Depending on the
method used, the teacher can offer corrective demonstrations at each time step, sporadically
based on their judgment, or in response to queries from the learner (active learning). These
methods are the closest to standard LfD methods like Behavioral Cloning.

Some of the most important methods for learning from corrective demonstrations are
inspired or belong to a family of approaches based on Data Aggregation (DAgger) [139],
which interactively records the correct action demonstrations while a novice policy is
controlling the agent. The idea behind DAgger is to iteratively generate roll-out trajectories
with the current policy, query the expert for corrections on the visited states, and finally
aggregate the recorded teacher actions to the dataset. As with other methods in this section,
this approach enables the expert to provide corrections on the states visited by the current
policy. This may lead the robot to new places in the workspace and the new aggregated
teacher corrections can be used to learn how to recover from them. However, if the expert
is a human, this continued aggregation is often unfeasible and prone to incorrect labels
for robotic tasks, which usually operate at high control frequency and the exploration of
unknown regions may result in unsafe and undesired behaviors.

A possible alternative is to monitor the policy execution and intervene when necessary,
taking over control of the robot completely. This setting can be defined as learning from
human intervention, and numerous studies have been presented to investigate such methods.
There exist two main types of human intervention approaches: Human-Gated, i.e. the human
decides when to intervene and Robot-Gated when the robot decides [101].

HUMAN-GATED INTERVENTIONS
Human-gated interventions allow the expert users to decide when to intervene (control the
robot). For instance, if a robot is attempting to insert a plug in the socket but is diverging
away from its target, the human teacher can take control of the manipulator and show, by
teleoperation or kinesthetic teaching how to perform the task. This ensures safer policies
given that the expert is always ready to intervene in case of dangerous behaviors.



2

16 2 TEACHING MODALITIES IN INTERACTIVE IMITATION LEARNING

Figure 2.3: Learning from human absolute corrections: the teacher is explicitly telling the robot to go left.

Human Gated DAgger (HG-DAgger) [87] is a direct extension of the DAgger algorithm,
where the human teacher is in charge of intervening when the agent drifts away from the
desired behavior. Every time an intervention occurs, the expert trajectory is recorded and
stored in the training dataset used to optimize the policy. Additionally, HG-DAgger learns
a safety threshold of a risk metric, which could be used as a policy confidence metric for
different regions of the state space.

Another recent work in the same category is Super-Human InsErtion using Learning
from Demonstration (SHIELD) [109], which focuses on the problem of industrial insertion.
It extends the Deep Deterministic Policy Gradient from Demonstration (DDPGfD) [168]
algorithm with on-policy corrections, i.e., the human can intervene to guide the agent back
into the optimal region in case of deviations.

Finally, interventions can also be combined with demonstrations. For example, in Cycle-
of-Learning [63], human-gated interventions are used for improving a policy obtained from
demonstrations recorded in a warm-up stage. The experiments showed that this approach
has better performance than using either only demonstrations or only human interventions.

However, the main challenge when aggregating new labels online is the (very) delayed
effect on the policy learned policy leading to possible dangerous behaviors, e.g. the robot
does not understand on time that it has to steer and collide with a human or a wall. This is
one of the main challenges that are addressed in this thesis where in Ch.3 we formulated a
new model update and aggregation rule that has an immediate effect on the learned policy.

ROBOT-GATED INTERVENTIONS
Robot-gated interventions require the agent to estimate when an intervention is necessary,
which does not require constant attention from the teacher, since the robot is the one deciding
when the intervention should be performed, allowing the human to supervise multiple
robots at once [74]. These methods generally require the agent to estimate a measure of
performance, safety, or uncertainty about the currently observed state, which is then used
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Figure 2.4: Learning from human relative corrections: the teacher is correcting the velocity of the robot, telling it
that it can increase the value with respect to the current one.

to determine when to query or enable human teacher control. However, these kinds of
approaches have to deal with the disengagement of the users, who do not react immediately
when requested and require some time to be able to take over the system again.

A variation of DAgger called Safe DAgger (SafeDAgger) [177] trains a classifier that
predicts whether the learning policy deviates from the expert and if it is the case, it switches
the control to the expert in order to prevent executing unsafe actions. On a similar note,
Ensemble Dagger (EnsembleDAgger) [114] relies on a doubt rule that also switches control
from the learning policy to the expert teacher. The doubt rule is computed based on the
novelty/uncertainty of the policy, which is measured with the output variance estimated with
an ensemble of neural networks.

Finally, Thrifty DAgger (ThriftyDAgger) [74] proposes to query interventions in case
the encountered state is sufficiently novel or risky. Similar to EnsembleDAgger, novelty is
estimated as the output uncertainty, whereas the “risk” of a state is estimated by learning an
exacted cumulative reward function to evaluate the discounted probability of success from
that given state and the action proposed by the policy.

The estimation of action uncertainties can significantly improve the robot’s awareness
and query the teacher to provide more demonstrations or corrections. However, in the
previously mentioned works, the uncertainty is usually estimated with ensemble methods
that may be uncalibrated, e.g. query the user too much or too little, hence we will formulate
all the interactive policies directly relying on a fully Bayesian method, i.e. Gaussian Process,
as described in Ch. 3.

2.2.2 LEARNING FROM RELATIVE CORRECTIONS
Imagine that you are teaching a robot to execute a task like picking an object and you want
to increase the execution speed in a certain location of the space. Asking the teacher to
provide the exact velocity that the robot should execute is impractical since no one, not even
an expert teacher, will be able to provide a precise number that would effectively execute the
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picking task. An alternative is to incrementally increase the velocity by giving corrective
actions and observing the execution performance of the robot, see Fig. 2.4.

In essence, the teacher should be capable of providing a rough estimate of how a
transition would change if the policy underwent slight modifications. For example, knowing
that reducing power in a propeller decreases acceleration or increasing force on the brake
pedal slows down a car. This correction could be quantized as well as continuous-valued,
depending on the interface used. For example, when using buttons we can set a default
increase for each button, or then using a joypad, we can have a continuous value that can be
given as a correction.

COrrective Advice Communicated by Humans (COACH) [37] framework employs
binary feedback to indicate, for a given state, the direction in which the action taken by an
agent has to change, while the magnitude of the change is set as a predefined parameter in
the range of the actions. The feedback provided in COACH and the policy updates occur
while the agent is interacting with the environment, i.e., during policy execution time, which
allows the teacher to directly observe the effects of the corrections and correct again if
required, speeding up the learning process.

Some works that are more focused on teaching behaviors with manipulators have been
proposed for letting the teachers provide kinesthetic corrections over the executed trajectories.
These relative corrections are used for either updating a policy or updating the objective
function that can be used in a model-based setting with a planner system. For instance, a
policy correction by the teacher on the end-effector displacement with respect to the original
trajectory is detected with tactile sensors in Tactile Policy Correction (TPC) [12]. The
correction could be used for policy refinement or policy reuse. In the former, the corrections
are added as new data points to the training set, whereas in the latter the corrections are used
to replace some already existing data points.

Additionally, incremental refinement of trajectories of context-dependent policies is
performed with kinesthetic feedback in [48]. The corrections are not detected and computed
with tactile sensors, but rather with the measured position difference between the desired
trajectory and the one disturbed by the teacher. In Canal et al. [36] kinesthetic corrections are
also used to reshape a movement primitive used for a feeding assistance robot application.

2.3 DISCUSSION
Interactive methods enable teachers to train agents that outperform policies generated through
standard IL. They are particularly effective at mitigating the issue of lack of informative data
because they incrementally collect more comprehensive data through teacher interventions
during or after policy roll-outs.

Some studies have compared different interaction modalities and found that users gener-
ally prefer methods where they communicate information explaining or demonstrating how
to perform a task rather than simply assessing policy quality [10, 95, 158, 161]. However, the
choice of modality depends on the task, the teacher’s expertise, and the available interfaces.

The choice of modality affects the inclusivity of potential teachers based on their expertise.
Corrective demonstrations provide the richest feedback, requiring highly skilled teachers.
Relative corrections widen the pool of potential teachers since they do not need to be experts
and can suggest incremental improvements. Given the focus of this thesis to contribute
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to interactive learning methods and to prove the higher inclusivity with respect to non-
interactive methods, a series of studies with non-expert users were performed.

Moreover, various factors, such as physical constraints (e.g., real physical robots), time
limitations, and available interfaces, must be considered when selecting the appropriate
modality. For example, the choice of teaching interfaced, e.g. by physical perturbation or by
teleoperated feedback, affects the user experience, no matter the encoding of the policy.

Nevertheless, the robot’s awareness of uncertainties in the data and the model is a
key point to reduce the number of required corrections that the user has to provide. By
reformulating the learning policies with a clear statistical formulation, the user may need
less feedback to communicate desired changes to a robot, and in case of user unavailability,
the robot could also correct its own behavior by preferring the actions that will decrease its
uncertainties.

The next chapter will introduce the foundations and the contributions on the machine
learning side that are at the foundations of the greatest part of the algorithms proposed in
this thesis.
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3
INTERACTIVE LEARNING WITH

GAUSSIAN PROCESSES

When using Interactive Imitation Learning, the policy is estimated from (finite amount
of) data but is often required to act on a continuous space, e.g., when controlling a robot
motor torque or to generalize in previously unknown states. Therefore, fitting a continuous
function to approximate the data is necessary. Since we do not have an infinite amount
of data, assumptions on the function need to be made, e.g., linear, non-linear, parametric,
non-parametric, etc. Moreover, the nature of the regressor that it is used will mainly change
the behavior of the agent when going out of distribution.

For example, let us imagine that we are teaching a robot how to clean a table by giving a
set of kinesthetic demonstrations, i.e., by moving the robot around and recording the motion.
The robot will eventually learn how to move as a function of its Cartesian position. However,
we may encounter two hypothetical scenarios: the first is that the robot did not learn correctly
the right action to take, e.g., it is not applying enough pressure on the table, and the second
is that it is dragged into regions of space where it does not know what to do, e.g. far away
from the table. Considering that attempting the wrong action can be (very) dangerous, in
particular when surrounded by humans, we require the agent to estimate the uncertainty of
its actions, rely on some prior knowledge, and quickly learn from human feedback.

A successful candidate to address all these requirements is a Gaussian Process (GP),
which also learns the distribution of the robot policy in addition to the mean. The key advan-
tage of having also information about the distribution is the increase in the trustworthiness
of robot action and improved data efficiency in training and during online updates. In this
chapter and throughout the rest of the thesis, different formulations of GPs are proposed to
address the goal of obtaining an uncertainty-aware interactive imitation learning process.
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In this chapter, the reader will be first introduced to Gaussian Processes and how they are
used in the context of interactive robot learning of motion skills or skill generalization. In

• Sec. 3.1, the idea of fitting a GP by finding the posterior distribution given a prior
and the evidence of the collected data is introduced. The prediction function for the
mean and the variance are used during the thesis to make predictions with the models,
for example, to predict attractors or stiffness of a robot manipulator, in Ch. 4, or the
deformation map for a generalization policy, in Ch. 7.

• Sec. 3.2, two rules are proposed to update the models online when new corrective data
are provided to match the current circumstances, such as when learning to go faster to
pick an object at non-zero velocity in Ch. 5.

• Sec. 3.3, the mean and the variance of the derivative function, fitted with a GP and the
analytical calculation of the uncertainty rate (as a function of the input) are recalled.
The properties are used in the thesis to, for example, pull the robot close to regions
of minimum uncertainties, see Ch. 4 or to compute the derivative of a generalization
map in Ch. 7.

• Sec. 3.4, variational approximation of the posterior to reject the criticism on the
impossibility of scaling GPs to big datasets. The proposed methods and update rule
would apply directly also if the posterior is the approximate one rather than the exact
one that considers all the recorded data.

• Sec. 3.5, a multi-output GP model is formalized, explaining the possibility of sharing
(or not) the kernel hyperparameters or the likelihood noise among the different outputs.
Learning multi-inputs-multi-outputs models is going to recurrently happen in different
chapters of the thesis when learning movement skills or generalization maps.

This chapter is not intended to be a self-contained explanation of Gaussian Processes,
given the breadth of the topic and ongoing research in the field. Excellent resources, such as
Gaussian Processes for Machine Learning [172], can complement the reading of this chapter.
However, sections or chapters marked with the symbol † indicate that the content represents
an original contribution of this thesis.

3.1 EXACT GAUSSIAN PROCESS
A GP is a generalization of a Gaussian distribution over functions. In other words, a GP
defines a distribution over functions, where any finite set of points from the function’s
domain follows a multivariate Gaussian distribution. If we want to find this distribution in a
fully Bayesian way, then we must define a prior distribution over all the possible functions.

3.1.1 PRIOR
The prior distribution represents our beliefs about the functions before observing any data.
The prior is typically specified as a mean function and a covariance function.

Our prior belief is that our function is a sample of a GP defined by a mean function and
a kernel matrix, i.e.,

𝑓 (𝒙) ∼ (𝑚(𝒙), 𝑘(𝒙,𝒙′)),
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where 𝑘(𝒙,𝒙′) is the kernel function that defines how much the function value at a certain
input, 𝑓 (𝒙), correlates with the function value at another input, 𝑓 (𝒙′), and 𝑚(𝒙) is the
evaluation of the mean prior. A GP is the generalization of the finite-dimensional multivariate
normal distribution,

𝒇 ∼ (𝒎,𝚺),

that can be read as “the vector 𝒇 is a sample of a multivariate Gaussian distribution with mean
𝒎 and covariance matrix 𝚺”. In other words, the GP is a generalization of the multivariate
Gaussian distribution defined over function (not vectors).

Practically speaking, when defining a prior Gaussian distribution, we must define the
mean vector and the covariance matrix, while for a prior GP, we have to define the mean
function1 and the kernel function, which will be used to build the covariance matrix later
on when creating a multivariate Gaussian distribution out of a GP to take into account that
we only have a finite amount of data. The most popular and generic kernel is the Squared
Exponential (SE), i.e.,

𝑘𝑆𝐸(𝑥𝑖, 𝑥𝑗 ) = 𝜎2
𝑝 exp(−

1
2 (

(𝑥𝑖−𝑥𝑗 )2

𝓁2 )) ,

where 𝑥𝑖 and 𝑥𝑗 are pairs of data points in the input space. The kernel hyperparameters, 𝜎2
𝑝

and 𝓁 are, respectively, the prior uncertainty (or variance) and the horizontal lengthscale. The
choice of the hyperparameters will be highlighted in Sec. 3.1.4.

Fig. 3.1 shows the prior distribution of the function values 𝑓 for different input locations
𝑥. The shaded area shows the uncertainty of the function value at a certain input position.
The colored outputs are the samples drawn from the GP model. The prior distribution
has a covariance matrix Σ 2 with non-zero extra diagonal terms. When a multivariate
Gaussian distribution has a diagonal covariance matrix, it means that all the elements of the
distributions are independent; sampling one time from a 𝑛-dimensional diagonal multivariate
Gaussian will generate 𝑛 independent samples, that could have been sampled independently:
we are sampling noise. On the other hand, when the elements on the extra diagonal terms
are non-zero, it means that the different values of the function are correlated, resulting in
samples that look smooth, as in Fig. 3.1. Each of the colored functions is a sample drawn
from the GP prior.

3.1.2 POSTERIOR
To compute the posterior, after observing some data in Fig. 3.2, we need to define a likelihood
function that captures the probability of observing the data given the function values at
specific points. The primary reason is that we typically cannot directly observe the data from
the real function; instead, we only have access to samples that are corrupted by measurement
noise, i.e.,

𝒚 = 𝑓 (𝑿)+ 𝜖

where
𝜖 ∼ (0,𝜎2

𝑛).

1In the absence of any prior knowledge, the mean function is usually set to zero.
2built using the kernel
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Figure 3.1: Prior distribution and samples were drawn
from it. The covariance matrix has non-zero extra diag-
onal terms.

Figure 3.2: Toy example: noisy data given as labels to
our model.

and 𝑿 and are the observed (or measured) input and output of the function that we want to
model. Hence, the likelihood function can also be assumed to be Gaussian, i.e.

𝑝(𝒚|𝒇 ,𝑿) ∼ (𝑓 (𝑿),𝜎2
𝑛𝑰).

Differently from the GP prior, in this case, we are actually assuming that the measure-
ments 𝒚 are going to be affected by noise, which is why the likelihood function 𝑝(𝒚|𝒇 ,𝑿) is
model as a Gaussian that has mean 𝑓 and as covariance matrix the identity times the squared
likelihood noise, 𝜎2

𝑛.
The posterior combines the prior and the likelihood, using Bayes theorem, i.e.,

posterior⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝(𝒇 |𝒚,𝑿) =

likelihood⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝(𝒚|𝒇 ,𝑿)

prior⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑝(𝒇 |𝑿)

𝑝(𝒚|𝑿)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

marginal likelihood

= (𝝁𝒇 ,𝚺𝒇),

where the resulting posterior is still a Gaussian distribution.
Given the calculation of the posterior distribution, the prediction of new output values

can be computed as:

𝑝(𝒇∗|𝒚,𝑿) = ∫ 𝑝(𝒇∗|𝒇)𝑝(𝒇 |𝒚,𝑿)𝑑𝒇 , (3.1)

where we are marginalizing over the posterior distribution of the function, i.e., 𝑝(𝒇 |𝒚,𝑿),
given the conditioned prior model, i.e. 𝑝(𝒇∗|𝒇).

Considering that 𝑝(𝒇∗,𝒇) is a Multivariate Gaussian Distribution by definition, then
𝑝(𝒇∗|𝒇) can be obtained by conditioning with respect to 𝒇. The distribution of 𝒇 can be
computed with the posterior distribution given the evidence of the data. Given that all
the terms of the integral are Gaussians, the integral is also Gaussian. So, if 𝑝(𝒇∗|𝒚,𝑿) is
Gaussian then 𝑝(𝒇∗,𝒚|𝑿) is a multivariate Gaussian distribution defined as

[
𝒚
𝒇∗]

∼ (𝟎,[
𝑲(𝑿 ,𝑿)+𝜎2

𝑛𝑰 𝑲(𝑿 ,𝑿∗)
𝑲(𝑿∗,𝑿) 𝑲(𝑿∗,𝑿∗)])

.
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Hence, to make predictions, the mean and the variance of the posterior distribution can
be computed as the conditional mean and variance of the multivariate Gaussian distribution,
according to

𝝁𝒇∗ = 𝑲(𝑿∗,𝑿)(𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰)

−1𝒚 (3.2)

𝚺𝒇∗ = 𝑲(𝑿∗,𝑿∗)−𝑲(𝑿∗,𝑿)(𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰)

−1𝑲(𝑿 ,𝑿∗) (3.3)

while the variance of the measured signal also has the likelihood noise added on the diagonal,
i.e.,

𝚺𝒚∗ = 𝚺𝒇∗ +𝜎2
𝑛𝑰

where 𝑿∗ are the prediction inputs and 𝑿 and 𝒚 are the training input and outputs and
the correlations 𝑲 are computed using a kernel function. It is worth mentioning that the
prediction only relies on the recorded 𝑿 and 𝒚 and not on a set of parameters (like in a neural
network). For this reason, GPs are usually denoted as a non-parametric method.

Figure 3.3: Posterior distribution of 𝑓 . Figure 3.4: Posterior distribution of 𝑦.

Fig. 3.3 and 3.4 show the prediction of the GP for a range of input that goes beyond the
training set. It is possible to notice that the mean converges to the zero prior when far away
from the data. In Fig. 3.4, beyond capturing the epistemic uncertainty (lack of knowledge),
the prediction also captures the aleatoric uncertainty (due to the sensor noise).

3.1.3 EXTRAPOLATION-FREE PREDICTION †

In the Chapters 5 and 6, GPs are going to be used to control the position and orientation
attractor of robot manipulators. However, the properties of convergence to the prior is not
always desired. Let us assume that, for example, we are learning the desired end-effector
orientation as a function of the current robot position. If the robot is dragged far away from
the data distribution, the prediction can converge to the mean, i.e. zero, which may lead the
robot to an undesired orientation. This is why an alternative inference rule is proposed to
avoid the convergence back to the prior mean but without losing the epistemic uncertainty
quantification. For example, we can define the mean prediction always as the most correlated
point of the mean posterior 𝔼[𝒇], i.e.,

𝝁𝒇∗ = �̂�(𝑿∗,𝑿)𝔼[𝒇]
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Figure 3.5: Extrapolation-free prediction. The GP mean prediction does not converge back to the zero mean of the
model but predicts the posterior of the most correlated point in the dataset. On the other hand, the uncertainty is
still calibrated, increasing to the prior uncertainty.

where the operator “�̂�” returns a zero-matrix with ones located on the location of the
maximum value along each row. In Ch. 6, a similar formulation will be obtained to set the
attractor for the robot to the most correlated point on a trajectory with a space-time encoding.

Fig. 3.5 depicts how the new prediction would not converge to the zero mean but predicts
the most correlated value of the mean of the posterior 𝑝(𝒇 |𝒚) while retaining a calibrated
uncertainty quantification.

3.1.4 HYPERPARAMETERS OPTIMIZATION
The GP hyperparameters, e.g., the prior uncertainty, the horizontal lenghtscales, and the
likelihood noise, are the only variables to be tuned when fitting a GP.

Differently from the least square estimation, which tries to minimize the residuals on
the output prediction, we rather try to find the hyperparameters that would maximize the
probability of sampling our data from the prior distribution. To compute the probability
of the data we use the marginal likelihood that is the integral along all the possible output
functions sampled from our prior distribution, i.e.

𝑝(𝒚|𝑿) = ∫ 𝑝(𝒚|𝒇 ,𝑿)𝑝(𝒇 |𝑿)𝑑𝒇 .

This is also known as the evidence of the data given the model. This measure of evidence is
crucial for the optimization of the hyperparameters of the kernel function because it allows
finding the set of hyperparameters that would better fit the data, for example, detecting the
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right energy of the function (prior uncertainty), the right smoothness (horizontal lengthscale)
and the sensor (or likelihood) noise.

When dealing with Gaussian prior and Gaussian likelihood, the marginal likelihood can
be computed analytically and used to optimize the hyperparameters of the kernel function.
Given the exponential nature of the Gaussian distribution, the (natural) logarithm of the
marginal likelihood can be obtained as the sum,

log(𝑝(𝒚|𝑿)) = −
1
2
(𝒚⊤𝑲−1

𝑦 𝒚)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

data fit cost

−
1
2
log |𝑲𝑦 |

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
complexity term cost

−
𝑛
2
log(2𝜋) (3.4)

where 𝑲𝑦 = 𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰 and 𝑛 is the number of data points.

It is worth mentioning that the inversion of the covariance matrix in Eq. (3.4) scales
with a computational cost of (𝑛3), where 𝑛 is the number of data points and needs to be
computed at each timestep of the parameter optimization. This becomes prohibitive when
we have a big dataset of the order of hundreds of thousands of data points. Nevertheless,
some approximation techniques can be used to reduce the computational cost; see Section
3.4. Moreover, the inference of the optimal lengthscales through the maximization of the
likelihood can also be used to automatically find the relevance of each of the input features.

3.1.5 AUTOMATIC RELEVANCE DETERMINATION
The input values of the kernel can also have more than one feature vector, i.e. positions
in x,y, and z of a robot, and different horizontal lengthscales can be used in each of the
input features to scale the different distances in each dimension. This technique is called
Automatic Relevance Determination (ARD). The squared exponential kernel with ARD
active looks like this,

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝜎2
𝑝 exp(

−
1
2

𝐷
∑
𝑑=1

(
(𝑥𝑖,𝑑 −𝑥𝑗 ,𝑑)2

𝓁2𝑑 ))
(3.5)

where 𝐷 is the number of features of the inputs, 𝑥𝑖 and 𝑥𝑗 are data points in the input space
and 𝜎2

𝑝 and 𝓁𝑑 are, respectively, the prior uncertainty and the horizontal lengthscale.
When the kernel has a different lengthscale for each of the input features, and we

optimize the kernel using the marginal likelihood maximization, the optimization process
automatically determines the relevance of features in a model, meaning it decides which
features are important for predicting the output variable and which can be safely ignored.
The optimization process is always trying to find the least complex model (Occam’s Razor);
hence, having one of the lengthscales as big as possible decreases the complexity term
without affecting the data fit term. This enables us to automatically identify which features of
the input are irrelevant for making predictions. When a kernel exhibits different lengthscales
across various features, we refer to this as the Automatic Relevance Determination (ARD)
feature being activated.

When learning robot policies, like in Ch. 4, 5 and 6, that may have redundant features or
features with different units of measure, e.g. Cartesian position and orientation, we must
infer different values to scale different features. This ensures that in kernel computation,
we are not “mixing apples with oranges” and each feature is normalized by a different
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Figure 3.6: Automatic Relevance Determination example. The blue points represent the data, and the orange
represents the fitted function. The function is smoother in the x direction than the y direction. For this reason, the
hyperparameter tuning converges to two different lengthscales in the two input directions: the horizontal lengthscale
in x is 7.91, while the horizontal lengthscale in y is 1.91. A larger lengthscale means that the process identifies the
function as smoother in that direction.

lengthscale with the optimal value and right unit of measure. Fig. 3.6 shows the fitting of
the data that are sampled from a function that has less variability in 𝑥 than in 𝑦. The GP
converged to two different lengthscales, the one in 𝑥 that is significantly larger than the one
in 𝑦.

3.2 INCREMENTAL LEARNING WITH GAUSSIAN PROCESS

REGRESSION†

Incremental learning is a machine learning paradigm where the model is updated incremen-
tally over time as new data becomes available. This technique is particularly crucial when we
lack all the data initially or, more importantly, when the underlying true function is evolving
or changing over time. For example, in Ch. 4 and 5, the robot policy is initialized with a
kinesthetic demonstration, but more data are aggregated online to adjust the behavior to
apply a larger force when performing force interaction tasks or to go faster when learning to
pick at non zero velocity.

The incremental learning process can be divided into two phases: the first phase is the
training phase, where the model is trained on a set of data, and the second phase is the
incremental phase, where the model is updated with new data. The incremental phase can
be further divided into two steps: the first step is the prediction step, where the (old) model
is used to predict the output on a test point, and the second step is the update step, where
the model is corrected if new labels are provided. The incremental learning process can
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be used to train a model on a large dataset and then update the model with new data as
it becomes available. Active learning is a special case of incremental learning in which a
learning algorithm can interactively query a human user (or some other information source)
to label new data points with the desired outputs.

GPs are the perfect candidate to perform active learning given the estimation of the
output uncertainty. Imagine wanting to fit a model but labeling the least amount of points
to keep the model light and the “supervisor” less busy. The idea is to make predictions on
many points of the workspace, such as on a grid, and then only label where the prediction is
the most uncertain. This is also the principle behind Bayesian Optimization.

3.2.1 UNCERTAINTY-AWARE DATA AGGREGATION
If we consider having enough data to infer the hyperparameters of the kernel already, then,
when aggregating more data to the model, only the update of the covariance matrix is
performed while the hyperparameters are kept fixed. Moreover, performing active learning
in the classical interpretation is unsafe when performing it on a robot manipulator. Imagine if
the robot deliberately decides on which part of the Cartesian space it has to move to ask the
user the best action to take there. This may induce stress in the user and eventual dangerous
behaviors. For this reason, this thesis proposes an uncertainty-aware data aggregation that is
based on the same principle of active learning, where the exploration is led by policy mean
behavior and user corrections. In fact, the robot will ask to provide a label if the uncertainty
prediction of Eq. (3.3) is bigger than a certain percentage of the prior uncertainty, i.e.

𝜎2
𝑓∗ > 𝛽𝜎2

𝑝 ,

where 𝛽 is the threshold, e.g. 𝛽 = 0.2. Moreover, in a robotics scenario, where we may explore
the workspace to regress a certain function, this uncertainty-aware data aggregation and
update of the covariance matrix allows us to aggregate data to make a confident prediction
the next time that point is visited. Given the uncertainty awareness on the prediction, the
aggregation is not performed when the uncertainty is little enough or no label is provided by
the teacher.

To avoid recomputing the inverse of the covariance matrix from scratch, a least square
update of the model can be performed [167]. Given the update covariance matrix,

𝑲𝑛+1 = [
𝑲𝑛(𝑿 ,𝑿) 𝑲(𝑿 ,𝑿𝑛𝑒𝑤)
𝑲(𝑿𝑛𝑒𝑤 ,𝑿) 𝑲(𝑿𝑛𝑒𝑤 ,𝑿𝑛𝑒𝑤)]

the updated inverse covariance matrix becomes,

𝑲−1
𝑛+1 = [

𝑲𝑛(𝑿 ,𝑿)−1+𝑔𝒆𝒆⊤ −𝑔𝒆
−𝑔𝒆 𝑔 ] ,

where 𝒆 = 𝑲𝑛(𝑿 ,𝑿)−1𝑲(𝑿 ,𝑿𝑛𝑒𝑤) and 𝑔 = (𝑲(𝑿𝑛𝑒𝑤 ,𝑿𝑛𝑒𝑤)−𝑲(𝑿𝑛𝑒𝑤 ,𝑿)𝒆)−1.
Although this uncertainty-aware aggregation rule queries and aggregates data only when

the model is uncertain, this does not allow for the modification of the prediction in regions
with low uncertainties. In the context of robot manipulation, where the robot has to learn to
go faster or push harder in certain regions of space, we must also define a way to update the
model where the provided label does not match the prediction.
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3.2.2 INTERACTIVE MODEL UPDATE
One of the main contributions of this thesis is the formalization and the use of online updates
of robot policies that are learned with GPs. However, when dealing with real data that
can be scarce and noisy, the update can be challenging, leading to overfitting or intangible
changes in the prediction. Nevertheless, the probabilistic and non-parametric nature of the
GPs allows for a zero-shoot update of the model without having to rely on a gradient descent
optimization procedure.

We will introduce two update rules and validate them on a toy example of the update of
a sine and a noisy sine with new sampled data also from a sine but with a larger amplitude.
We will also compare the update behavior with other update rules proposed in the literature.

Fig. 3.7 depicts the original data and the learned posterior distribution, but also the new
data that are generated from a modification of the underlying function. Fig. 3.8 shows the
same example but with the data that are sampled from a noisy signal. We are going to use
these two examples to show the behavior of two update rules that are used throughout the
development of this thesis and the advantages and disadvantages of each of them.

Given the old labels, i.e. 𝒚𝑜𝑙𝑑 and knowing the kernel function and the likelihood noise,
we can define the distribution from where the updated data of the model and the observed
data, i.e. 𝒚𝑐𝑜𝑟𝑟 are sampled from,

[
𝒚𝑛𝑒𝑤
𝒚𝑐𝑜𝑟𝑟]

∼ ([
𝒚𝑜𝑙𝑑
𝝁(𝑿∗)]

,[
𝑲(𝑿 ,𝑿)+𝜎2

𝑛𝑰 𝑲(𝑿 ,𝑿∗)
𝑲(𝑿∗,𝑿) 𝑲(𝑿∗,𝑿∗)+𝜎2

𝑛,𝑐𝑜𝑟𝑟 𝑰])
, (3.6)

where 𝝁(𝑿∗) = 𝑲(𝑿∗,𝑿)(𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰)−1𝒚𝑜𝑙𝑑 is the mean prediction corresponding to the

new recorded points, 𝑿∗, using the old posterior distribution.

Pseudoinverse update rule The new prior distribution has the kernel function that is the
same as the original prior, but the mean distribution is the previous data, and the previous
prediction of the model relies only on the data before the update. The noise of the correction
labels 𝜎2

𝑛,𝑐𝑜𝑟𝑟 can be different than the one of the original data 𝜎2
𝑛. However, in the lack of

extra information, it will be set equal to the one of the data. The first update rule that was
proposed for the first time in [55] relies on the update of 𝒚𝑜𝑙𝑑 such that to maximize the
likelihood of observing the new data 𝒚𝑐𝑜𝑟𝑟 . The Gaussian likelihood is maximized when the
prediction coincides with the distribution, i.e.,

𝔼(𝑝(𝒚𝑐𝑜𝑟𝑟 |𝒚𝑛𝑒𝑤)) = 𝝁(𝑿∗)+𝑲(𝑿∗,𝑿)(𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰)

−1(𝒚𝑛𝑒𝑤 −𝒚𝑜𝑙𝑑) ∶= 𝒚𝑐𝑜𝑟𝑟 ,

bringing us to the following update rule,

𝒚𝑛𝑒𝑤 = 𝒚𝑜𝑙𝑑 +𝑨
+(𝒚𝑐𝑜𝑟𝑟 −𝝁(𝑿∗)), (3.7)

where 𝑨 = 𝑲(𝑿∗,𝑿)(𝑲(𝑿 ,𝑿)+𝜎2
𝑛𝑰)−1 and + denoted the pseudo-inverse, considering that

the the 𝑨 matrix is not necessarily squared. We denote this update rule as the pseudoinverse
update.

In Fig. 3.9, we can appreciate how the updated model prediction, which relies on the
new updated 𝒚𝑛𝑒𝑤, perfectly adapted to match the new labels both in regions where there
were already labels and also where not. However, from the update rule of Eq. (3.7), we can
notice that we are not taking into account the eventual likelihood noise 𝜎2

𝑛,𝑐𝑜𝑟𝑟 of the new
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labels. Although the hypothesis of noise-free data can hold in some circumstances when it
does not, it may result in an unstable model update, as depicted in Fig. 3.10. This motivates
us to find an alternative formulation for the update rule.

Conditioning update rule The generative joint distribution of the updated labels and the
new sampled labels of Eq. (3.6) can be directly conditioned to compute the updated values
of 𝒚𝑛𝑒𝑤, i.e.,

𝔼(𝑝(𝒚𝑛𝑒𝑤 |𝒚𝑐𝑜𝑟𝑟 )) = 𝒚𝑜𝑙𝑑 +𝑲(𝑿 ,𝑿∗)(𝑲(𝑿∗,𝑿∗)+𝜎2
𝑛,𝑐𝑜𝑟𝑟 𝑰)

−1(𝒚𝑐𝑜𝑟𝑟 −𝝁(𝑿∗)). (3.8)

Although this rule seems very similar to the previous rule, it is a complete paradigm
shift. We are not trying to condition the distribution and change the labels such that we are
matching the output of the new distribution with the new observed labels, but we directly
infer what should be the new data distribution, 𝒚𝑛𝑒𝑤, by conditioning the joint distribution
on the new labels 𝒚𝑐𝑜𝑟𝑟 . For this reason, we denote this as the conditioning update rule.

The quantification of the noise in Eq. (3.8), i.e., 𝜎2
𝑛,𝑐𝑜𝑟𝑟 𝑰 , also has the advantage of being

robust to the uncertainties in the provided correction labels. Fig. 3.11 and 3.12 depict the
behavior of the update and show robust updates also when there is a likelihood noise on
the original and the new labels. Additionally, to increase the robustness of wrong labels
provided during the update, a variable 𝜎2

𝑛,𝑐𝑜𝑟𝑟 can be adopted according to the source of the
new corrective label, for example, one expert user may be less likely to provide wrong labels,
i.e. the noise 𝜎2

𝑛,𝑐𝑜𝑟𝑟 would be zero while in case of a novice user, the noise can be set to be
higher to avoid to update the model too quickly to possibly wrong labels. Moreover, the
multiplication by 𝑲(𝑿 ,𝑿∗) in the update rule of Eq. (3.8) has another powerful meaning:
if the new label is not correlated with old labels, because they are located in originally
uncertain regions, the update rule will have not effect on the labels. This is evident in both
Figs. 3.11 and 3.12 where the new function prediction does not match the new function in
the uncertain region on the right. This is desirable since we only update the labels that are
correlated with the corrective labels and, in uncertain regions, perform the uncertainty-aware
aggregation as depicted in Figs 3.13 and 3.14.

The careful reader may question why the update rule is not used also to update the
uncertainty of the labels, resulting in a heteroscedastic model. This is an interesting research
direction that was, however, out of scope in this thesis; hence, the proposed update rules are
only used to update previously recorded data using the received corrective input.

Swapping data rule Having a well-performing update rule for the model that is updated
online is fundamental for effective teaching, and the previous two update rules highlighted
the possibility of considering the correlation of the new labels with the elements in the
dataset and how to effectively perform the update. These update rules differ from other
update rules for interactive learning with GPs [174] or online model learning [121] that only
consider an independent swapping data rule. Their approach consists of finding the (only)
most correlated point (if the uncertainty prediction is below a threshold) and swapping the
only label with the new one in the dataset. This approach does not consider the effect of
possible correlation with more data in the update of the model. Figs. 3.15 and 3.16 show
how, since only a few labels are moved on the new observed data points, the prediction,
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close to the location of the old data, still converges to the old function, since the greatest part
of the label was not updated correctly.

Figure 3.7: Noise-free data, old posterior prediction, and
new noise-free data to aggregate.

Figure 3.8: Noisy data, old posterior prediction, and new
noisy data to aggregate.

Figure 3.9: Pseudoinverse update rule (noise-free data). Figure 3.10: Pseudoinvere update rule (noisy data).
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Figure 3.11: Conditioning update rule (noise-free data). Figure 3.12: Conditioning update rule (noisy data).

Figure 3.13: Conditioning update rule plus uncertainty-
aware aggregation (noise-free data).

Figure 3.14: Conditioning update rule plus uncertainty-
aware aggregation (noisy data).

Figure 3.15: Swapping data plus uncertainty-aware ag-
gregation plus uncertainty-aware aggregation (noise-free
data).

Figure 3.16: Swapping data plus uncertainty-aware ag-
gregation (noisy data).
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3.3 DERIVATIVES OF GAUSSIAN PROCESSES
In Ch. 7, GPs will be used to learn a transformation to generalize the learned robot policy
and make use of the derivative of the non-linear transformations with respect to the input.
Fortunately, the derivative of a GP is also a GP, and its existence will depend on the
differentiability of the mean function and the kernel function. The correlation between
derivative samples can be expressed as the double partial derivative 𝑘11 = 𝜕

𝜕𝑥𝑖𝜕𝑥𝑗 𝑘(𝑥𝑖, 𝑥𝑗 ) while

the correlation between derivative samples and function samples is 𝑘10 = 𝜕
𝜕𝑥𝑖 𝑘(𝑥𝑖, 𝑥𝑗 ). The

observed data, 𝒚, and the derivative of the posterior distribution 𝒇′∗ are jointly Gaussian
distributed as,

[
𝒚
𝒇′∗]

∼ (𝟎,[
𝑲00(𝑿 ,𝑿)+𝜎2

𝑛𝑰 𝑲01(𝑿 ,𝑿∗)
𝑲10(𝑿∗,𝑿) 𝑲11(𝑿∗,𝑿∗)])

,

where the type of kernel derivative is specified at the feet of each kernel matrix.
Thus, the mean and variance prediction of the derivative of the GP can be formulated as:

𝔼[𝑓 ′
∗ (𝑥)] = 𝝁

′ = 𝑲10(𝑿∗,𝑿)(𝑲00(𝑿 ,𝑿)+𝜎2
𝑛𝑰)

−1𝒚

𝔼[𝑓 ′
∗ (𝑥)𝑓

′
∗ (𝑥)] = 𝚺′ = 𝑲11(𝑿∗,𝑿∗)−𝑲10(𝑿∗,𝑿)(𝑲00+𝜎2

𝑛𝑰)
−1𝑲01(𝑿 ,𝑿∗). (3.9)

Fig 3.17 shows the original noisy sine, the prediction of the model, and the prediction of the
derivatives. It is worth underlying that the function is not obtained by differentiating the mean
prediction of the model, numerically or automatically, but the result is obtained in a fully
Bayesian way that also estimates the uncertainties on the derivative prediction, according to
Eq. (3.9). Uncertainty quantification of a stochastic function’s derivative becomes essential
for propagating uncertainties associated with the function’s derivative.

Figure 3.17: Derivative of a Gaussian Process is a Gaussian Process. The figure depicts the original data, the GP
posterior prediction with uncertainty, and the prediction of the derivative of the GP mean and uncertainty that is
obtained by differentiating the GP model.
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3.3.1 UNCERTAINTY RATE QUANTIFICATION †

Another contribution of this thesis, that will be highlighted in Ch. 4 and Ch. 5, is the
quantification and the rejection of the estimated model uncertainty. For example, a robot
that learns the desired Cartesian velocity as a function of its position in space may end up
in regions of space that have high uncertainties due to the lack of data. However, thanks to
the closed-form estimation of uncertainties, it is possible to find the direction of maximum
growth of the uncertainties and push the robot in opposite directions. Analytically, the
uncertainty rate (as a function of the model input) can be quantified as,

𝜕𝚺
𝜕𝒙∗

= 𝑲10(𝒙∗,𝒙∗)−2𝑲10(𝒙∗,𝑿)(𝑲00+𝜎2
𝑛𝑰)

−1𝑲00(𝑿 ,𝒙∗). (3.10)

The derivative of the variance (with respect to the input variable) is not the variance of the
derivative function. As a matter of fact, for regions that are infinitely far away from the data,
the variance of the GP converges to the prior uncertainty; therefore, the variance derivative
with respect to the input is zero, i.e. the uncertainty is constant. On the other hand, the
variance of the derivative function must converge to the prior uncertainty of the derivative
function, i.e. 𝑲11(𝑿∗,𝑿∗) which cannot be zero.

3.4 APPROXIMATE GAUSSIAN PROCESS REGRESSION WITH
VARIATIONAL INFERENCE

When dealing with many data points in the order of thousands, for example, when collecting
many demonstrations from a human teacher, the computational cost of the inversion of the
covariance matrix becomes prohibitive, particularly when performing the estimation of the
kernel hyperparameters and the likelihood noise where the inversion needs to be computed
for each optimization step. Variational inference [159] aims to approximate the true posterior
𝑝(𝒇 |𝑿 ,𝒚) with a simpler distribution 𝑞(𝒇) defined as:

𝑞(𝒇) ∶= ∫ 𝑝(𝒇 |𝒖)𝑞(𝒖)𝑑𝒖, (3.11)

where
𝑞(𝒖) = (𝒎,𝑺).

The variational distribution 𝑞(𝒖) relies on a set of inducing outputs, i.e. 𝒖, that corresponds
to a set of inducing inputs 𝒁 . The inducing outputs are Gaussian distributed with mean 𝒎
and covariance matrix 𝑺. For a thorough review of approximation methods on GP, see [132].

In [71], a novel lower bound to the true marginal log-likelihood (ELBO) is proposed to
fit the variational distribution by maximizing the likelihood of the data given as labels, i.e.,

log(𝑝(𝒚|𝑿)) ≥
𝑛
∑
𝑖=1

{

log (𝑦𝑖|𝑲(𝑥𝑖,𝒁)𝑲(𝒁 ,𝒁)−1𝒎,𝜎2
𝑛)+

−
1
2
𝜎−2
𝑛 (𝑲(𝑥𝑖, 𝑥𝑖)−𝑲(𝑥𝑖,𝒁)𝑲(𝒁 ,𝒁)−1𝑲(𝒁 , 𝑥𝑖))+

−
1
2

tr(𝜎2
𝑛𝑺𝑲(𝒁 ,𝒁)

−1𝑲(𝒁 , 𝑥𝑖)𝑲(𝑥𝑖,𝒁)𝑲(𝒁 ,𝒁)−1)

}

+

−KL(𝑞(𝒖)||𝑝(𝒖)).
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The key property of this new lower bound of the true marginal log-likelihood is that it can be
written as a sum of terms. This implies that when we are searching for the optimal inducing
inputs, 𝒁 , and variational parameter, 𝒎 and 𝑺, we can just sum over a (small) batch of our
dataset, so the computational cost is only proportional to the batch size we are using in the
update of the parameters. However, it is worth noticing that we still need to compute the
inverse of the covariance evaluated on the inducing points, this has a computational cost of
(𝑚3). So, it only scales with the number of inducing points, not the data.

The fact that we are still able to maximize the (lower bound of the) marginal log-
likelihood of the data without having to use the whole set of labels at every iteration opens
the door to fit GPs on (very) big datasets without losing the probabilistic interpretation of
the inference of the function and the inference of the prediction.

To make predictions on a test point and using the definition of the approximate posterior,
see Eq. (3.11) and the prediction integral for a standard GP, see Eq. (3.1)3, the predictive
distribution can be computed as:

𝑝(𝒇∗|𝒚) = ∫ 𝑝(𝒇∗|𝒇 ,𝒖)𝑝(𝒇 ,𝒖|𝒚)𝑑𝒇𝑑𝒖

≈ ∫ 𝑝(𝒇∗|𝒇 ,𝒖)𝑝(𝒇 |𝒖)𝑞(𝒖)𝑑𝒇𝑑𝒖

= ∫ 𝑝(𝒇∗|𝒖)𝑞(𝒖)𝑑𝒖.

The result of this integral is

𝑝(𝒇∗|𝒚) = (𝑨𝒎,𝑲(𝑿∗,𝑿∗)−𝑨(𝑲(𝒁 ,𝒁)−𝑺)𝑨⊤),

where 𝑨 = 𝑲(𝑿∗,𝒁)𝑲(𝒁 ,𝒁)−1 and we can compute the mean and variance of a test point
in (𝑚2). As you can notice, we also do not have the inputs or the output label anywhere
in the prediction. The prediction computational cost will not be affected by the dimension
of the training set but only by the mean and variance of the approximated distribution 𝑞(𝒖).
Fig. 3.18 depicts the prediction that only relies on five inducing points, in red, located in 𝒁
with value 𝒎.

3Also assuming that 𝑝(𝑓 ,𝑢|𝑦) = 𝑝(𝑓 |𝑢,𝑦)𝑝(𝑢|𝑦) ≈ 𝑝(𝑓 |𝑢)𝑞(𝑢), considering that f is independent from y and only
depends on u. 𝑝(𝑢|𝑦) is approximated with our variational distribution 𝑞(𝑢).
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Figure 3.18: Fitting of noisy sine using Stochastic Variational Gaussian Process.

3.5 MULTIOUTPUT GAUSSIAN PROCESS
When dealing with multiple outputs, such as when modeling the desired robot velocity,
in different Cartesian directions, as a function of the Cartesian position, each of them can
be modeled as an independent GP with different kernel functions and hyperparameters.
However, the kernel function can also be shared between the different outputs. This is useful
when the different outputs are correlated, e.g. the velocity of a robot in different Cartesian
directions. When modeling multiple outputs, like velocities, it makes sense to share the
horizontal lengthscales of the kernel, given that the smoothness of the motion would be
independent of the Cartesian direction. On the other hand, the vertical lengthscale, or prior
uncertainty, can be shared only if the energy of the two outputs is the same and they have the
same units of measure. However, when different prior uncertainties are used, the maximum
variance for each output will be different.

Fig. 3.19 depicts the vector field learned with a GP given multiple demonstrations
of a planar motion drawing the letter G. The GP models the desired Cartesian velocity
ad a function of Cartesian position, i.e. �̇� = 𝑓 (𝒙) given the recorded labels �̇� and 𝑿 .
The lengthscales are shared among the different outputs, i.e. the velocity in the x and
y direction, while the prior uncertainty is not shared. The uncertainties that represent a
measure of ignorance, i.e. lack of knowledge, increase when evaluating far away from the
data. Similarly to the kernel hyperparameters, the inducing point location, when learning
a Variational Gaussian Process, can be optimized independently for each output or shared.
Having independent variational parameters for each output increases the flexibility of the
model as well as the computational cost and memory requirements. So, if the number
of outputs is large or to speed up computation, it is convenient to share the variational
parameters among different outputs.

Fig. 3.19b shows the vector field learned from the velocity-position labels using approxi-
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mate inference, illustrated in Sec. 3.4. The figure highlights how the information of many
data points can be compressed in a smaller distribution located on a reduced set of inducing
points that are automatically learned when maximizing the ELBO of the data likelihood.

(a) Vector Field fitted with Multi-output Exact Gaussian
Process.

(b) Vector Field fitted with Multi-output Stochastic Vari-
ational Gaussian Process.

Figure 3.19: Vector field learned from the demonstration of drawing the letter G. The input is the position and the
output is the velocity. The lengthscales and the inducing points are shared among different outputs. The output
lengthscales are not shared.

3.6 CONCLUSIONS
Utilizing a robot capable of swiftly learning behaviors through human demonstration and
refining those skills based on human feedback represents a pivotal step in bridging the
divide between learning in a computer simulation and real-world manipulation. Traditional
offline data-based learning falls short of capturing the desired behaviors communicated
by the user demonstration. The distinctive probabilistic and non-parametric attributes of
Gaussian Processes (GPs) facilitate prompt model updates solely through the data correlation
computed with the kernel function, as elaborated in this chapter. This will be exploited in
the next chapters to update real robot manipulation policies.

Moreover, machine learning methods often exhibit limited extrapolation capabilities,
potentially leading to hazardous behaviors in unfamiliar scenarios. Thus, incorporating
uncertainty quantification into learned policies, alongside a safety-enhancing prior, becomes
paramount for working among humans safely. For instance, in subsequent Chapters 4 and
5, a zero-mean prior ensures the robot remains stationary when confronted with out-of-
distribution situations. Additionally, uncertainty quantification proves pivotal in guiding the
robot close to the original demonstration. Furthermore, Chapter 7 delves into leveraging
GPs for policy adaptation to novel scenarios, such as varied object placements or surface
geometries. Here, the integration of uncertainty quantification and zero-mean priors serves
to minimize distortions in the original policy during adaptation while providing estimations
of uncertainty in the generalization process.
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4
ILOSA: INTERACTIVE

LEARNING OF STIFFNESS AND
ATTRACTORS

Teaching robots how to apply forces according to our preferences is still an open challenge
that has to be tackled from multiple engineering perspectives. This chapter studies how to
learn variable impedance policies where both the Cartesian stiffness and the attractor can be
learned from human demonstrations and corrections with a user-friendly interface. The pre-
sented framework, named Interactive Learning of Stiffness and Attractors (ILoSA), uses GPs
for policy learning, identifying regions of uncertainty and allowing interactive corrections,
stiffness modulation, and active disturbance rejection. The experimental evaluation of the
framework is carried out on a Franka-Emika Panda in four separate cases with unique force
interaction properties: 1) pulling a plug wherein a sudden force discontinuity occurs upon
successful removal of the plug, 2) pushing a box where a sustained force is required to keep
the robot in motion, 3) wiping a whiteboard in which the force is applied perpendicular to the
direction of movement, and 4) inserting a plug to verify the usability for precision-critical
tasks in an experimental validation performed with non-expert users. The results show that
the proposed framework is able to learn the desired force profiles and adapt to the user’s
corrections in a safe and user-friendly manner. A video of the experiments can be found
here: https://youtu.be/MAG-kFGztws.

This chapter is based on  Franzese, G., Mészáros, A., Peternel, L. and Kober, J., 2021, September. ILoSA:
Interactive Learning of Stiffness and Attractors. In 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) (pp. 7778-7785) IEEE. [55].

https://youtu.be/MAG-kFGztws
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Figure 4.1: Overview of the ILoSA framework.

4.1 INTRODUCTION
Robots have long been a tool for efficiently carrying out repetitive or mundane tasks.
Recently, more robotic applications have been targeted toward interacting with varying and
unknown environments in order to aid people in their daily tasks. Quite often, the exact
behavior required for interacting with such environments cannot be directly modeled or is
simply too complex to do so. However, people already possess intuitions on how to interact
with the world around them and can transfer this knowledge. In this direction, learning
through demonstration has become increasingly popular for teaching robots familiar yet
complex tasks in an intuitive manner [11].

Learning is especially handy for manipulation tasks, which come with the requirement
of exerting a certain degree of force. The goal of a manipulation operation is not only to
perform a desired trajectory but to learn the desired force that the robot has to exercise on its
environment in order to accomplish the desired goal. Different methods exist for controlling
the robot to perform contact tasks, from the use of force control, hybrid position-force
control [133], as well as impedance control methods [73]. In addition, when robots coexist
with humans, it is crucial to consider that for safe interaction, the robot should limit the force
to the minimum required, as well as be compliant when interacting with elements of the
environment that are not the target of the manipulation.

Out of these methods, impedance control is best suited for achieving such behavior, since
force control would generate dangerous and unstable accelerations when in free movement
[92], while impedance control would only converge to the nearby attractor. Furthermore,
when using impedance control, for a safer and user-friendly interaction of the robot with
the environment, the trajectory execution has to be performed in a feedback/reactive, not
in a feed-forward, manner. This avoids the accumulation of error between the attractor and
end-effector positions with the consequent generation of undesired high interaction forces
and/or accelerations.

In the presented framework, both the desired attractor position and the desired stiffness
are learned as a function of the robot position. This is done by using a nonlinear feedback
policy that is learned from kinesthetic demonstrations and teleoperated corrections. More
importantly, because the robot learns from a human demonstration, an estimation of the
epistemic uncertainty of the policy is necessary for a safe execution of the trajectory. For this
purpose, GP provides a non-parametric learning method that enables a good generalization
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in the neighborhoods of the demonstration while providing information on the confidence
level of the corresponding prediction. This, in turn, can be utilized to make the robot more
compliant in states the robot has not visited before, thus avoiding undesired and dangerous
behaviors.

To summarize, the motivation of this chapter is to establish whether learning both
attractor and stiffness policies in a reactive formulation with a GP allows the performance of
manipulation tasks while ensuring a safe interaction between the robot and its environment
by exploiting the information of model confidence. Additionally, we introduce a new update
rule for a GP policy in order to allow data and time-efficient learning from teleoperation
corrections after the initial kinesthetic demonstration and to automatically allocate the
feedback as an attractor or stiffness modulation. Also, we investigate the concept of adaptive
disturbance rejection with the use of a stabilization prior based on a force field proportional
to the gradient of the GP variance manifold.

4.2 RELATED WORK
The impedance controller reacts proportionally to the distance from the desired reference
position. This enables the robot to follow a trajectory when in free space or to apply a
force when in contact with an object. This dual property is utilized within the scope of the
developed framework.

In order to automatically learn policies to complete complex tasks, one of the common
approaches is to apply RL algorithms such as Policy Improvement with Path Integrals
(PI2)[26, 70, 85], Natural Actor-Critic [88], and multi-optima policy search [35]. RL meth-
ods, however, tend to take a long time to achieve the desired performance level. Additionally,
in order to train a policy through RL, an adequate cost function is needed for which a good
understanding of the task mechanics is required.

A faster alternative is learning from demonstrations [92], which can additionally be
augmented with incremental learning [128] in order to improve a demonstrated policy.
Previous works have shown that while using an impedance controller it is possible to learn
varying stiffness profiles in order to carry out force interaction tasks [1, 140] as well as to
allow compliance in areas outside of force interaction [26].

For the purpose of learning interaction with the environment, feedback from a human
operator may be needed in the form of corrections in the action space [126]. HG-DAgger[87]
proposes to allow the user to take control and provide local demonstrations online which
are then aggregated onto the existing database. However, the aggregation operation does
not employ a data-efficient rule for updating the old database according to the current
corrections.

Inspired by the exploitation of model confidence of active learning [151], we learned
an overall policy that remains compliant in regions of uncertainty for the purpose of safety.
GPs have proven to be a viable approach towards achieving this form of behavior in [49]
where the uncertainty information was utilized in order to allocate leadership in the form of
compliance to interacting agents in a bi-manual task. On the data efficiency side, Probabilistic
Inference for Learning Control (PILCO) [45] successfully employed GPs in RL for learning
the system model and using the information about the uncertainty for a faster search for
policy optimization. Analogously, ILoSA uses the information of the model uncertainty
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for a data-efficient update of the policy with user corrections, for stiffness modulation in
uncertain regions, and for active rejection of disturbances with a stabilization function.

In the literature, other probabilistic methods were applied for modeling the stochasticity
of movement primitives [125] and inferring the desired trajectory by conditioning the
model on the chosen goal. Furthermore, methods like Gaussian Mixture Models (GMMs)
showed a successful application in inferring the desired manipulability ellipsoid from the
consistency of multiple demonstrations [29] in combination with a geometry-aware controller
[82]. Similarly, the same method was employed for the fusion of an imitation policy with
a stabilization prior [130] reducing the problem of the covariate shift. However, these
probabilistic approaches do not allow the interactive correction of the policy after the
provided demonstration and do not design the stabilization prior as a function of the model
confidence, contrary to ILoSA.

Moreover, we propose to teach the desired force through automatic inference on the
increase of the attractor distance or stiffness only from user corrections. Combining this
with a novel data-efficient update rule and the exploitation of the model confidence provided
a user-friendly way of teaching force tasks as described in the following sections.

4.3 FRAMEWORK: ILOSA
ILoSA employs two main teaching modalities: kinesthetic demonstration and teleoper-
ation feedback, see Fig. 4.1. The first is used for initializing the policy for the desired
dynamics of the end-effector. This policy is then executed in the second modality, whereby
the user can provide online corrections to the policy.

The aim of the learned policy is to affect two particular aspects of the impedance
control: the attractor distance Δ𝒙, and the stiffness  of the end-effector. Briefly, in a
Cartesian impedance control [73], the end-effector dynamics are modeled in the form of a
mass-spring-damper system

𝚲(𝒒)�̈� =Δ𝒙−�̇�+𝒇𝑒𝑥𝑡 ,

where 𝚲(𝒒) is the physical system’s Cartesian inertia matrix,  is the corresponding critical
damping matrix, and 𝒇𝑒𝑥𝑡 are the external forces, see Appendix A.1 for further details on the
implementation. In the proposed framework, the controlled 3-D vector Δ𝒙 and anisotropic
diagonal stiffness matrix  are the mean values of GPs, conditioned on the current Cartesian
position 𝒙 of the robot, i.e.,

𝚫𝒙 = 𝚫𝒙(𝒙)

and
 = (𝒙)

where the used function approximation is a GP. In the initialization of the policy, following
the kinesthetic demonstration, the hyper-parameters of the GP models are optimized for
maximizing the expectation of the predicted attractor distance of the provided demonstrations.
The same parameters are then used to initialize GP models of the stiffness in the three
principal directions, however choosing a non-zero mean of mean in each direction. In case
a force sensor is installed on the end-effector, the stiffness could be initialized proportionally
to the recorded external force. Our goal is to show that even without a force sensor, the
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stiffness can be initialized to a base value, and the desired deviations can be learned with
interactive human corrections.

ILoSA additionally incorporates two safety features. The first is a stabilization prior
which ensures robust control. The second is a modulation function that pulls the stiffness
down to zero in regions of high uncertainty. These two aspects will be explained further in
the course of this section.

In the following subsections, details are reported on how the GP learns from the demon-
stration and corrections (Sec. 4.3.1), how the directional feedback is spread between attractor
and stiffness (Sec. 4.3.2), and how a stabilization prior (Sec. 4.3.3) and stiffness modulation
(Sec. 4.3.4) are obtained as a function of the process variance.

4.3.1 INTERACTIVE LEARNING WITH GAUSSIAN PROCESSES

Algorithm 1 Teaching Framework for ILoSA

1: Record Kinesthetic Demonstration(s):
2: while Recording Trajectory do
3: 𝒙𝑡⨄𝝃
4: Δ𝒙𝑡 = 𝒙𝑡+Δ𝑡 −𝒙𝑡
5: 𝚫𝒙𝑡⨄𝚫𝒙𝑑𝑒𝑚𝑜
6: end while
7: Train Gaussian Processes hyperparameters
8: Interactive Corrections:
9: while Control Active do

10: Receive(𝒙)
11: [Δ𝒙,𝜎2] = Δ𝒙(𝒙)
12:  = (𝒙)
13: if Received Human Feedback then
14: [Δ𝒙inc,inc]← Interpret(feedback,Δ𝒙,)
15: if 𝜎2 > 𝜎2

Threshold then
16: 𝒙⨄𝝃 , (Δ𝒙+Δ𝒙inc)⨄Δ𝒙𝑑𝑒𝑚𝑜, (+inc)⨄𝑑𝑒𝑚𝑜

17: else
18: Correct(Δ𝒙inc → Δ𝒙𝑑𝑒𝑚𝑜,inc →𝑑𝑒𝑚𝑜)
19: end if
20: end if
21: Δ𝒙 = Δ𝒙(𝒙)
22:  = (𝒙)
23: 𝒇stable = −𝛼∇𝜎2

24: [Δ𝒙,] = Modulation(Δ𝒙,,𝒇stable,𝜎2)
25: Send(Δ𝒙,)
26: end while

The two equations that govern the mean and the variance of the process are

𝜇(𝒙) = 𝑲(𝒙,𝝃)(𝑲(𝝃 ,𝝃)+𝜎2
𝑛𝑰)

−1𝒚 = 𝑨(𝝃 ,𝒙)𝒚,

𝜎2(𝒙) = 𝑘(𝒙,𝒙)−𝑲(𝒙,𝝃)(𝑲(𝝃 ,𝝃)+𝜎2
𝑛𝑰)

−1𝑲(𝝃 ,𝒙),
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where 𝑘(𝒙,𝒙) is the kernel evaluated with itself in 𝒙, 𝑲(𝒙,𝝃) is the covariance between
𝒙 and the training inputs 𝝃 , 𝑲(𝝃 ,𝝃) is the covariance matrix of the training inputs, 𝜎2

𝑛 is
the likelihood noise of the training points, and 𝒚 denotes the training outputs [136]. In
this framework, the output can be the attractor distance Δ𝒙 or the stiffness  according to
whether we are using the GP to predict one or the other during control. The used kernel is an
ARD kernel described in Eq. (3.5), and since we are modeling three attractor distances, and
the three principal stiffnesses, we use a multi-output GP where the horizontal length scales
are shared among the different outputs while the likelihood noise and the prior uncertainty
are optimized differently for Cartesian displacement and Cartesian stiffness, according to
what was explained in Sec. 3.5. After the kinesthetic demonstration(s) (Fig. 4.1a), the
hyper-parameters are automatically determined by marginal log-likelihood maximization,
see Sec. 3.1.4.

When the interactive corrections are provided through teleoperation with the human-in-
the-loop, the hyper-parameters are kept invariant because the correlation between samples
(and validity of the same kernel) can also be considered invariant. The interactive correction
in lines 13-21 of Alg. 1 summarizes how ILoSA exploits the use of the uncertainty measure
for understanding if the robot is in a new unvisited region (line 15-16). This requires adding
the corrective sample to the database. We defined this to be the uncertainty-aware data
aggregation in Sec. 3.2.1. Otherwise, it determines how to spread the correction on all
existing samples that are correlated with the current end-effector position without adding
additional samples. The feedback is provided from a teleoperation device as a relative
correction where the recorded increment is added on top of the current robot transition. So
the new label to aggregate, i.e., 𝒚𝑐𝑜𝑟𝑟 , is defined as the sum of the current predicted mean
𝜇(𝒙) and the given correction 𝝐. Since the absence of likelihood noise in the teleoperated
correction, we can use the pseudoinverse update rule, introduced in Sec. 3.2.2.

Thus, the update rule of the database (line 18) is

𝒚new = 𝒚+𝑨(𝝃 ,𝒙)+𝝐,

where 𝑨(𝝃 ,𝒙)+ is the pseudoinverse of 𝑨 and 𝝐 is the correction provided at 𝒙. This rule was
applied for correcting the attractor distance, stiffness, or both according to the interpretation
of the human feedback, see Sec. 4.3.2.

This way of spreading corrections on the database was shown to be more user-friendly
than only performing aggregation, as well as time and data-efficient. As also in other
research works [20], having contradictory, incremental, or multimodal data can generate
a bias of the predicted solution towards the more frequent samples. When doing policy
correction, this can result in the unobservability of the effect of feedback and in the user’s
frustration. The proposed update rule resolves this problem and proved to also be effective
in rapidly adjusting mistaken corrections provided in the previous policy roll-outs without
the accumulation of old labels in the database.

4.3.2 DIRECTIONAL FEEDBACK INTERPRETATION
Our aim is to make teaching as simple as possible for non-expert users without any knowledge
about robot control. As the name of the framework suggests, the goal is to learn the attractor
and stiffness for the robot end-effector. Related works like [2] and [127] already investigated
how to teleoperate the robot while also teaching the desired stiffness ellipsoid of the end-
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effector or recent works like [117] infers the modulation as a function of external forces.
Contrary to this, our goal is to be able to infer the stiffness not by explicitly labeling
it but through the same teleoperated feedback intended for correcting the direction of
movement without the use of any expensive device and as a function of the robot’s position.
Accordingly, the main idea is to enable the user to incrementally correct the dynamics
of the end-effector. The attractor distance increment Δ𝑥inc is obtained as the teleoperated
input feedback; however, if the resulting attractor corrections go beyond a certain limit, we
instead increase the stiffness to match the ask increment of force in that direction, i.e. if
|Δ𝑥 +Δ𝑥inc| ≥ Δ𝑥lim or x >mean, the stiffness change x,inc is obtained by solving the
equation

(x+x,inc)|Δ𝑥lim| =x|Δ𝑥 +Δ𝑥inc| (4.1)

up to the stiffness saturation limit. This rule can be used to both increase and decrease the
stiffness in a certain direction. It is important to note that the mentioned operations are
carried out in each of the principal Cartesian directions. Let us assume that x > mean
meaning that also Δ𝑥 is saturated, i.e. |Δ𝑥 | ≈ |Δ𝑥lim|; so if Δ𝑥inc has an opposite sign than Δ𝑥,
i.e. if the directional feedback points in the opposite direction that the robot is pushing right
now, then |Δ𝑥+Δ𝑥inc |/|Δ𝑥lim | is lower than one. Hence also (x+x,inc)/x has to be lower than
one, implying that x,inc has to be negative. If Δ𝑥inc has the same sign as Δ𝑥, the correction
to the stiffness model will be positive, i.e., x,inc > 0.

This approach not only simplifies the feedback modality but also facilitates the teaching
of force tasks with abrupt discontinuities. For example, in the scenario of cable unplugging,
a closer attractor with a higher stiffness helps to prevent the “recoil" effect upon object
separation. Similarly, if we are pushing a heavy box, the limitation of the attractor distance
bounds the robot velocity in case the contact point with the box is lost (see Fig. 4.5). This
allows a safer coexistence of the robot in anthropocentric environments.

Finally, in the interactive session, for the purpose of explicitly labeling the desired goal
point with zero velocity and high stiffness, a further teleoperation input was employed.

4.3.3 STABILIZING ATTRACTIVE FIELD
External forces can lead the robot end-effector in previously unvisited regions of the
workspace where the extrapolation of the desired Δ𝒙 and  can have high uncertainty
and lead to dangerous and undesired dynamics of the robot. This problem, known as
covariate shift, is common when applying Behavioral Cloning, and some solutions like
Disturbances for Augmenting Robot Trajectories (DART) [102] or HG-DAgger [87] inves-
tigated the injection of noise in the supervised policy execution in order to lead the robot
in unvisited regions and collect a database in a larger portion of the environment. This
technique could also be applied in the Interactive Corrections segment (Fig. 4.1b), however,
collecting many correction points can be time-consuming and highly data inefficient.

As an alternative, we want to exploit the information of the model variance and its
continuous differentiability for modeling how to reject external disturbing forces, i.e., not
related to the manipulation operation. Intuitively, we can imagine the variance manifold as a
manifold with a furrow that is generated in proximity of the labeled regions of the workspace,
as we do when we create the circuit for a marble race on the beach. In the absence of
external disturbances, the end-effector would lay in the regions of minimum variance and
move inside there. However, the robot should reject forces that are leading its motion to a
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region of uncertainty, proportionally to the rate of change of the same measure. Equivalently,
when the external forces are not disturbing the motion anymore, ideally, the robot should
go back to regions where the predictions have higher confidence. It is similar to adding a
gravitational term in the variance manifold inducing the end-effector to always “fall" into
regions of minimum variance, as a marble would come back on track when disturbed by any
collision.

The implementation of this stabilization prior is straightforwardly a force field that is
proportional to the gradient of the variance manifold according to:

𝒇stable(𝒙) = −𝛼𝛁(𝜎2)

where the gradient is computed according to Eq. (3.10) and 𝛼 is an automatically modulated
constant according to a maximum allowed force, which ensures that 𝒇stable is never higher
than the set threshold. Since the ARD kernel has different lenghtscales in the different
Cartesian directions, this turns into a different rejection behavior in different Cartesian
directions. For example, if the model gets uncertain faster in a certain Cartesian direction, it
will act with a stronger force in that direction because it does not want to go into regions
where it would not know how to act. Additionally, the use of this prior also results in another
interesting behavior when multiple demonstrations are provided. In the regions of lower
overlapping of the demonstrations we can imagine a broader furrow in the variance manifold
compared to regions of highly overlapped demonstrations. In the first case, there is a larger
track where the “marble" can move before reaching the borders and getting pulled down;
on the contrary, in the second case, the narrow furrow forces the robot to stay closer to the
overlapping demonstrations. This different behavior of reacting to external disturbances can
be interpreted as adaptive disturbance compliance of the robot along the lines of [82] , where
higher variance in the demonstration results in higher robot compliance and vice-versa.

4.3.4 STIFFNESS AND ATTRACTOR MODULATION
Finally, before sending the desired attractor and the stiffness to the robot, we want to make
sure to spread the effect of 𝒇stable as stiffness and attractor modulation in order to respect the
constraint of having a limited attractor and to obtain the desired force with an increase of
stiffness, in each of the Cartesian directions. The desired force is 𝒇 =Δ𝒙+𝒇stable, so we
must find the new stiffness and attractor in each direction such that to satisfy the following
equality:

𝑠𝑡𝑎𝑏𝑙𝑒𝚫𝒙𝑠𝑡𝑎𝑏𝑙𝑒 =𝚫𝒙+𝒇stable.

We first set the modulated stiffness as the stiffness predicted by the GP and we compute the
new attractor displacement, i.e.,

𝚫𝒙stable = sat(𝚫𝒙+−1𝒇stable)

where we saturate the attractor magnitude in each principal direction, similarly to Eq. (4.1),
to not be larger than |Δ𝑥𝑙𝑖𝑚|. Then, we compute the actual desired stiffness magnitude in
each principal direction in order to apply the right force considering the stabilization field.
For example, in the x direction,
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x,stable =
|xΔ𝑥 + 𝑓x,stable|

|Δ𝑥stable|
Additionally, when the robot is in a position where the uncertainty approaches the

maximum, it is safer to pull the robot stiffness down to zero, rather than the predicted mean
value of the GP, according to

 =(
1− 𝜎2/𝜎2𝑝
1−𝛽 ) when 𝜎2/𝜎2𝑝 > 𝛽, (4.2)

where 𝜎2
p is the variance of the prior GP, and 𝛽 is the relative uncertainty threshold. These

two operations are summarized in lines 24 of Alg. 1. Thanks to the property of distance-based
kernels of having the prediction to vanish in high-uncertainty regions, and the modulation
of the stiffness, the risk of moving in unknown regions of the workspace with possible
undesired behaviors is mitigated. Moreover, this behavior results in the robot stopping with
high compliance and can be seen as a non-verbal request of teaching, or repositioning into
regions closer to the demonstration. Finally, this property also circumvents the issue of
variable stiffness instability [97] [50] making the growing oscillations around the nominal
trajectory mitigated. This would ensure a safe interaction with the user and the environment.

4.3.5 LEARNING NULLSPACE CONTROL POLICY
For a redundant robot, it is possible for the end-effector to return to the same task-space
position and yet the robot to be in a completely different joint configuration. This would result
in unpredictable behaviors with consequent frustration of the human teacher. Unfortunately,
this is generally the result obtained when methods based on Cartesian impedance control
are used to control the robot’s motion. To solve this problem, we also learned a nullspace
control policy (always from demonstrations) and had it running during the normal execution
of ILoSA. The nullspace action is executed by setting the desired joint angles and joint
stiffness as explained in Eq. (A.2).

During the kinesthetic demonstration, the robot’s cartesian position and the first 4 joint
angles are recorded; then a GP is fitted to map the input cartesian position with the desired
joint configuration. Since no prior configuration is set, i.e. the prior joint configuration
is the zero vector, to avoid attracting the joint to an undesired configuration, the stiffness
modulation of Eq. (4.2) is used with a low threshold (𝛽 = 0.2). This implies that when
the end effector is dragged in an unknown Cartesian position, the nullspace stiffness drops
quickly to zero. It is worth mentioning, that the minimization of variance will automatically
bring the robot close to the region of high certainty, making the Cartesian control and the
nullspace control active again. During policy execution, this guarantees the cyclicity of the
operations, i.e. the robot coming back to the same Cartesian position with the same joint
configuration.

4.4 REAL-ROBOT VALIDATION EXPERIMENTS
In order to validate the proposed approach, we conduct experiments on four different
manipulation tasks, each with its own variations, intended to test the different aspects of
ILoSA. The first involves removing a plug from its socket and bringing it to a specified
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Demo Time [s] Feedback Time [s] Data Efficiency [%] Goal Error [m]
Single Multiple Single Multiple Single Multiple Single Multiple

Max 8.00 28.27 3.47 2.13 97.06 97.06 0.016 0.030
Mean 6.73 23.84 1.96 1.61 95.36 96.10 0.009 0.014
Min 5.67 21.40 1.27 1.40 92.86 95.65 0.003 0.008

Table 4.1: Performance in Unplugging.

Goal Error [m]
Without Stabilization Prior With Stabilization Prior

Max 0.756 0.040
Mean 0.337 0.033
Min 0.073 0.019

Table 4.2: Effect of Stabilization.

goal (Sec. 4.4.1). In this scenario, the effect of the number of demonstrations in broadening
the variance furrow is tested. Additionally, the effect of the stabilization prior to rejecting
disturbances is analyzed by carrying out the control, in one case with the prior active and in
another without it, all while injecting a randomized force disturbance. The second scenario
is pushing a box to a goal (Sec. 4.4.2) and observing the handling of contact loss. To test this,
an ablation study was carried out. In a further experiment, a periodic perpetual movement
scenario in the form of cleaning a whiteboard is analyzed (Sec. 4.4.3). This scenario brings
with it the additional challenge that the desired attractor position is located behind the board.
Due to the lack of a force sensor between the hand and the tool, this cannot be inferred
from kinesthetic demonstrations. The torque sensor in the joint can be used to estimate
the external force, see Sec. A.3; however, during kinesthetic demonstrations, the external
force applied by the human to move the robot and the reaction from the surface cancels out
and cannot be detected from the sensors. The only way to estimate that is to have a sensor
between the robot hand and the cleaning tool.

Instead, user corrections are required for the robot to learn to exert the required force on
the board for successfully cleaning it. An additional challenge was addressed to ILoSA in this
scenario: validate the flexibility of altering a taught behavior to new situations. To showcase
this, an obstacle was placed along the original trajectory, limiting the possible height of the
motion. The aim was then to provide corrections such that the robot would perform the
task while also avoiding the obstacle. Lastly, we evaluated whether the framework could be
utilized for more precision-critical tasks (Sec. 4.4.4). For this, a validation experiment is
carried out wherein the robot was taught to insert a plug into a socket by non-expert users.

All of the experiments are carried out by the authors five separate times. For the
experiments in the second scenario which involved non-expert participants, the participants
performed the task twice. The first was a trial round in order to get familiar with the
teleoperation device before the second, official trial round.

For the experiments, we utilize the 7 DoF Franka-Emika Panda with an impedance
controller and a ROS communication network for the online update at 100Hz of the attractor
and stiffness using the ILoSA framework. A 3Dconnexion SpaceNavigator (see Fig. 4.2)
was used for providing teleoperation feedback, whereof one of the two buttons (seen circled
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Figure 4.2: SpaceNavigator. The 3D mouse is used to give feedback on the Cartesian attractor and stiffness of the
manipulator. The buttons are used to activate/deactivate the human control or to mark the final goal of the policy
such as to label it with higher stiffness.

in Fig. 4.2), was used for explicitly marking the desired goal position as noted at the end of
Sec. 4.3.2. For all of these experiments excepting the task of inserting a plug, the following
parameters were chosen within ILoSA; a mean stiffness of 𝐾𝑚𝑒𝑎𝑛 = 600Nm−1 with the
stiffness limited to 𝐾𝑚𝑎𝑥 = 2000Nm−1, a maximum attractor distance of 0.04m along each
principal axis, the epistemic uncertainty threshold for adding new points to the database set
to 𝜎2

𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.2𝜎2
𝑝, and the threshold for modulating the stiffness, 𝛽 = 0.99. The squared

exponential kernel was selected within the GP models. In the case of plugging, the only
change to the parameters was the limitation of the stiffness to 𝐾𝑚𝑎𝑥 = 4000Nm−1, and the
maximum attractor distance to 0.02m.

For quantifying data efficiency, we compute the ratio between the amount of corrections
that result in an increase in size of the existing database and the total amount of provided
feedback inputs. The feedback time was computed as the amount of time explicitly spent
providing corrective inputs. A data efficiency of 100 % means that we are only updating the
old labels and not aggregating new ones.

4.4.1 UNPLUGGING
Two variations of this scenario were performed. In the first, three separate demonstrations
were carried out with different heights of the trajectory towards the goal. In the second, a
single demonstration was provided. The primary focus of the corrections is placed on the
successful unplugging as well as reaching the goal within a tolerance of 3 cm. A standard
type F plug was used for which specific 3D-printed gripper jaws were designed to ensure a
firm grip throughout the interaction. The interaction commences from the point in which the
robot is already gripping the plug. Fig. 4.3 visualizes examples of the resulting attractor fields
generated from 𝚫𝒙 for both single and multiple demonstrations. As expected, the highest
forces are exerted at the beginning, during the unplugging. Instances of moderate forces
can be observed leading towards the trajectories. In particular, for the single demonstration,
moderate forces are close to the demonstration itself and are, in fact, directed towards the
demonstrated trajectory. For the multiple demonstrations these moderate forces are primarily
present outside the region of demonstration. This is attributed to the larger variance furrow,
which reduces the effect of the stabilization prior in the demonstrated region, and in turn
enables the robot to move more freely within the region when perturbed.
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Figure 4.3: Example of attractor fields for unplugging with multiple demonstrations (left) and a single demonstration
(right).

The results regarding the precision in reaching the goal indicate that for both variations,
the robot was able to successfully complete its task. Slightly larger errors in the case of
multiple demonstrations can be seen. This can, however, be attributed to the variations
in the final positions provided during the multiple demonstrations. The time spent giving
corrections to complete the task successfully was similar between the two experiments
with an average time of 1.96 s for the single demonstration and an average time of 1.61 s
for the case with multiple demonstrations. For additional details, refer to Table 4.1. For
both experiment variations, the majority of feedback inputs did not increase the size of the
database, showing in both cases a high data efficiency of more than 95% on average.

In the tests with randomized perturbations, the disturbance was sampled for each of the
three axes from a normal distribution  (10,5) N at 1/3 of ILoSA’s update frequency. Here,
the benefit of the stabilization prior is clear. When using the stabilization prior, the error
from the goal was on average ten times lower than when the prior was not present. When
using the prior, despite the perturbations, the robot remained close to the goal, with the
highest observed error being 4 cm, indicating high robustness. Furthermore, when the prior
was not present, the robot diverged in 3 of the 5 trials and was unable to reach the vicinity of
the goal. Additional details are presented in Table 4.2.

4.4.2 PUSHING A BOX
In real-world scenarios it can easily happen that objects are unwieldy for the robot’s gripper,
such that the only remaining option for manipulating said objects is pushing them. In such an
interaction, it can happen that the object is removed prematurely, resulting in an unexpected
contact loss for the robot. ILoSA enables the limitation of the observed velocities in such
a case by limiting the maximum attractor distance. In contrast, if the force were to be
achieved by increasing the attractor distance while maintaining a low constant stiffness,
these velocities could be noticeably greater. To verify this, the task was first learned with
ILoSA, wherein both stiffness and attractor distance are variable; afterward, it was learned
with a variation of the ILoSA algorithm, wherein the force is altered only through a variable
attractor distance which is left unbounded. In both the cases, once the interaction was
learned, the task was executed with the box being removed while it was being pushed.

Fig. 4.5 displays the resulting velocities when varying solely the attractor distance (red),
as opposed to concurrently varying the attractor distance and stiffness (blue). As can be
seen, the peak velocity for the combined variation of both stiffness  and attractor distance
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Figure 4.4: Example of an attractor field for the box pushing task.

Demo [s] Fdbk [s] Eff. [%] Goal Err. [m]

Max 6.80 4.53 98.57 0.016
Mean 5.23 4.16 95.82 0.008
Min 4.47 3.87 90.00 0.001

Table 4.3: Performance in Pushing a Box.

Δ𝒙 is less than half compared to only varying the attractor distance. This in turn allows the
limitation of potential impact forces should a person cross the robot’s trajectory.

In terms of performance, ILoSA achieves comparable results to those observed in
unplugging, both in terms of error from the goal and data efficiency. The overall correction
duration as well as the correction duration relative to the one of the demonstration are larger
than those observed when unplugging. This is, however, primarily attributed to the fact
that the box pushing scenario has a larger portion of the trajectory in which force has to
be applied, in turn requiring more user corrections. An example attractor field can be seen
in Fig. 4.4. On the matter of data efficiency, it should be noted that both in the case of
unplugging and in the case of the box, a data efficiency of 100% was not achieved due to the
goal conditioning, which adds the marked goal to the database. For an overview on the task
performance, refer to Table 4.3.

4.4.3 CLEANING A WHITEBOARD
In this task, the robot is taught to ensure a whiteboard remains clean and to sustain the
movement until the controller is stopped. For this, it is highly desirable that at the end of
each operation cycle, the robot returns to the same joint configuration; this property is known
as “cyclicity” of motion [39]. The execution of this task was deemed successful if the desired
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Figure 4.5: Robot velocity w.r.t. current position along trajectory.

Demo
[s]

Fdbk [s] Data Eff. [%] Consist. [m]
Orig. Adap. Orig. Adap. Orig. Adap.

Max 18.27 6.4 8 100 91.67 0.004 0.004
Mean 16.81 4.81 5.57 98.54 83.14 0.003 0.003
Min 15.20 3.53 3.27 94.51 73.47 0.003 0.003

Table 4.4: Performance in Cleaning a Whiteboard.

area of the board was wiped clean after each loop and the motion continued for at least 5
loops. An example of the resulting attractor field can be seen in Fig. 4.6.

On the quantitative side, not only were the 5 loops executed successfully, but the robot
also remained highly consistent in its motion. The consistency was measured as the highest
RMSE between each pair of the five loops and it amounted on average to 0.36 cm. Part of
the success of a repeatable motion can be credited to the nullspace control that ensures a
cyclic joint configuration and successively a consistent Cartesian mass matrix and dynamics.
In terms of correction time, only a short period was spent providing inputs, with an average
time of 4.81 s. Out of these inputs, the majority resulted in modifications of the database
attaining an average data efficiency of 98.54%. Additional details are provided in Table 4.4.

When correcting the original trajectory, adaptations for avoiding the obstacle could be
carried out in all five trials. With this, we want to show how, when close to the originally
provided samples, the corrections can effectively modify the database to address the desired
behavior, and how, when outside the region of certainty, new samples are added, allowing
the reshaping of the stabilization field around them. In Fig. 4.7, it is possible to see how
around the newly added points the force field would reject the disturbances and stay on the
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Figure 4.6: Example of an attractor field for wiping a board.

Fdbk [s] Total Time [s] Rounds of Correction
Max 17.49 193.85 6

Mean 4.72 95.84 2.07
Min 1.22 54.46 1

Table 4.5: Performance in Inserting a Plug.

new desired trajectory. Through an additional 5.57 s of corrections on average, and with an
average data efficiency of 83.14%, the motion was successfully adapted, resulting in attractor
fields similar to the one seen in the figure.

4.4.4 EVALUATION WITH NON-EXPERT USERS: PLUGGING
After observing that the framework was capable of remaining in close vicinity of the
demonstrated trajectory, the task of plugging was taken for its clear constraint on the goal
position and the requirement to apply force in order to successfully accomplish the task.

In order to verify that the successful completion of the task was not dependent on
executing the training in a specific manner, non-expert participants were asked to carry
out the experiment, see Fig. 4.8. A total of fifteen participants aged 23 - 32 took part
in an additional engineering validation, rather than a dedicated human factors study. The
participants were allowed to perform the task twice. The first time was to give participants
the opportunity to get familiar with the teleoperation device for a couple of minutes. The
second time was then treated as the official trial, wherein the participants provided a new
demonstration and were allowed to provide as many rounds of correction as needed until the
robot carried the task out successfully.

All participants were able to complete the task in a fairly short period of time. On
average, the total time needed to train the task was about one and a half minutes, which
includes both the time needed for providing the kinesthetic demonstration as well as any
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Figure 4.7: Vector-field and the 5 overlapping final trajectories (black line) after user corrections for learning to
avoid the obstacle represented by the arm in the picture.

amount of correction rounds needed for the robot to successfully insert the plug. A summary
of the performance metrics can be viewed in Table 4.5. In terms of data efficiency, all of the
participants completed the task with 100% data efficiency, indicating that the robot never
left the region of the demonstration.

Additionally, participants were asked to fill out the NASA TLX and Van der Laan
questionnaires after completion of the task. A majority of the participants reported low
mental demand and found the teaching method overall helpful and easy to use.
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Figure 4.8: Four non-expert users using ILoSA to first demonstrate and then correct the task of inserting a plug.

4.5 CONCLUSIONS AND FUTURE WORK
We have introduced a non-parametric and interactive approach to learning different types
of force interaction tasks from humans, while exploiting impedance control to ensure safe
interaction. All aspects of the interactions, from the attractor distance and stiffness at the
end-effector to the nullspace control, were successfully modeled with the help of GPs. This
enables non-experts to create complex robotic interaction skill that would alternatively
require a set of expert skills through manual programming.

Making use of the learned model parameters, it was possible to establish two additional
safety features. The first is the reduction of the stiffness should the robot be too far from
the demonstrated region, eventually bringing it to a halt. The second is a stabilization prior,
which helps to steer the robot back to the closest area with low variance, consequently
returning it back to the demonstrated region. As a result, this enables the rejection of
disturbances.

Moreover, the stabilization prior was able to infer that its effect should be reduced in
the areas between demonstrations, allowing the robot more freedom of movement in those
areas. However, in the case of desired multimodal behaviors, e.g., for obstacle avoidance,
this could be obtained with a constraint on the maximum lengthscale of the used kernel.
This is equivalent to the generation of multiple separate variance furrows rather than a single
wider one.

These investigations further showed that the ILoSA framework can be implemented
for carrying out both goal-oriented and periodic movements. When used in combination
with a nullspace control, which enabled cyclicity, a high consistency of the motion was
attained. Overall, ILoSA exhibited good reliability in the execution of the examined tasks
while learning in a user-friendly and data-efficient manner.

Due to the successful applications in the force tasks in which it was tested, ILoSA will
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be extended to further challenges in the field of robot manipulation. The learning will not
only focus on a single trajectory but on the assembly of movement sequences for more
complex tasks, always learning from demonstration. Adaptation of the motion with respect
to a particular reference frame in each segment will be investigated using human feedback
and the information on the model confidence for solving possible ambiguity in Ch. 8 or
adaptation to different surfaces to clean in Ch. 7. In the next chapter, we will extend the
framework on learning and correcting the pose and the gripper dynamics using GPs to
investigate the task of picking at non-zero-velocity.
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5
INTERACTIVE LEARNING TO

PICK AT NON-ZERO-VELOCITY

This chapter investigates how robots learn the intricate task of a continuous Pick ad Place
(P&P) from humans based on demonstrations and corrections. Due to the complexity of the
task, these demonstrations are often slow and even slightly flawed, particularly at moments
when multiple aspects (i.e., end-effector movement, orientation, and gripper width) have
to be demonstrated at once. Rather than training a person to give better demonstrations,
non-expert users are provided with the ability to interactively modify the dynamics of their
initial demonstration through teleoperated corrective feedback. This, in turn, allows them to
teach motions outside of their own physical capabilities. In the end, the goal is to obtain a
faster but reliable execution of the task. The presented framework, Minimum Uncertainty
Dynamical System (MUDS), learns the desired movement dynamics based on the current
Cartesian position with GPs, resulting in a reactive, time-invariant policy. Using GPs also
allows online interactive corrections and active disturbance rejection through epistemic
uncertainty minimization. The experimental evaluation of the framework is carried out on a
Franka-Emika Panda. Tests were performed to determine i) the framework’s effectiveness
in successfully learning how to quickly pick and place an object, ii) the ease of policy
correction to environmental changes (i.e., different object sizes and mass), and iii) the
framework’s usability for non-expert users. A video of the experiments can be found here:
https://youtu.be/XoW6AkK793g.

This chapter is based on  Mészáros, A., Franzese, G., and Kober, J. (2022). Learning to pick at non-zero velocity
from interactive demonstrations. IEEE Robotics and Automation Letters, 7(3), 6052-6059 [116].

https://youtu.be/XoW6AkK793g
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5.1 INTRODUCTION
More often than not, robots employ a P&P strategy wherein they approach the object, stop
and grip it, and only then resume moving. We as humans, on the other hand, tend to pick
things in a single fluent and quick motion. Of course, robots should also be able to complete
a task fairly quickly, which in the case of P&P introduces a number of challenges, both from
a control point of view [166] as well as a learning point of view [18].

Learning from Demonstration (LfD) has become a popular approach for allowing non-
expert users to teach robots and thus more easily integrate them into the working and daily
environment [137]. Yet these provided demonstrations are sub-optimal compared to what
the robot might be able to achieve, e.g., demos having slower dynamics. Concurrently, it is
important to consider that often, the execution of a task cannot simply be sped up uniformly.
For example, when learning a P&P movement, retaining a high velocity when approaching
the object can generate high impact forces which can cause the object to bounce away or
topple over, potentially damaging the item in question as well as making it impossible to
pick on time. We as people are able to identify such constraints and adapt accordingly, and
can transfer this knowledge to the robot through demonstrations.

This work studies the feasibility of robot picking only using time-independent policies
learned from human demonstrations and corrections. The previous chapter already revealed
the effective application of minimum uncertainty GPs for learning variable impedance
control in force application tasks like cleaning, plugging, and pushing. In none of the
previous cases, however, were the dynamics of the End-Effector (EE) orientation or gripper
learned nor were there critical contact dynamics involved. Teaching more degrees of freedom
while asking for fast performance makes the task of non-zero-velocity picking a challenging
benchmark for studying the potential of learning from non-expert human teachers.

The main contributions of this chapter over the previous are:

1. Proposing a framework for interactively altering the speed and shape of robot motion
dynamics in a decoupled manner through teleoperated correction.

2. A novel minimum uncertainty inference for learning the desired non-linear constraints
of EE orientation and gripper width w.r.t. the EE position dynamics, while avoiding
dangerous extrapolations.

Figure 5.1: Learning flow for teaching a robot how to reshelve an item.; a) starting with a single demonstration,
followed by b) multiple rounds of correction, after which, c) the robot can carry out the task autonomously.
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3. Showing the benefit of uncertainty minimization for enabling local motion consistency
when dealing with critical precision tasks like fast picking, while being compliant in
the interaction.

4. Extending the framework for generalizing to different object positions thanks to the
parametrization w.r.t. moving reference frames.

Fig. 5.1 summarizes the three phases of learning in the teaching of a reshelving operation:
the initialization of the policy with kinesthetic demonstration, the shaping of the dynamics
with teleoperated corrections, and the final evaluation of the autonomous task execution.

5.2 BACKGROUND AND RELATED WORK
When executing high-speed manipulation tasks that involve establishing contact with an
object, it is important to consider the behavior around the moment of impact. A reoccurring
approach observed in existing works consists of adapting the relative velocity in order
to mitigate the effects of the impact [169]. Another strategy, which has been employed
to absorb impacts, particularly in catching tasks [89], involves utilizing a follow-through
behavior that continues to track the predicted path of an object even after interception
[143]. Alternatively, one can incorporate compliant behavior into a provided attractor using
impedance control [21]. While it is unable to mitigate the initial impact force irrespective
of the set stiffness since the main contribution to this force is the velocity of the impacting
objects, it is beneficial for absorbing the post-impact forces [67].

We can conclude that matching the velocity of an object likely achieves the best reduction
of impact force, however, such an approach may not be optimal when considering the total
time of the trajectory execution. This is especially true for static objects, wherein matching
velocities would effectively bring the robot to a standstill prior to the picking action. A better
approach, therefore, is to interactively learn the feasible non-zero contact velocity while
ensuring moderate impact forces.

Being able to adapt/correct the learned velocity with ease plays a key role in speeding up
the overall execution of the demonstrated trajectory while also considering that the movement
dynamics may require different degrees of adaptation at different points of the trajectory; for
example, slowing down prior to the moment of interception. Different works explore speed
adaptation during trajectory execution using different function approximators. One approach
involves altering the phase rate of probabilistic movement primitives (ProMPs) [94], whereas
others propose a modified version of Dynamical Movement Primitives (DMPs) in which
the speed is altered through an additional phase-dependent temporal scaling factor [120], or
where the temporal scaling factor is changed through corrections and subsequently translated
to changes in the learned dynamic movement [86]. The mentioned works modulate the
velocity either using optimization approaches or defined functions or in the case of [86]
where human corrections are used, the corrections are provided in a coupled manner for
both the trajectory shape and speed. Our approach instead focuses on combining imitation
learning and human interactive feedback [38] to provide corrections to speed and shape in a
decoupled manner through teleoperation.

An alternative to phase-dependent methods, like DMPs, can be obtained as the formula-
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tion of the motion as a reactive controller according to

�̇� = 𝑓 (𝒙) (5.1)

where 𝒙 is the robot state and �̇� identifies the transition of the robot state. GPs have been
used for shaping a motion from human demonstrations through the local modification of a
stable field [98]. However, none of the other works on learning state-dependent dynamical
systems take into account the information of the uncertainty to increase motion consistency,
and reduce covariate shift. Furthermore, in the context of interactive learning, we introduced
the idea of decoupling the corrections of shape and velocity and investigated how this can be
beneficial for allowing non-expert users to teach challenging tasks.

5.3 METHODOLOGY
The goal of this framework is to enable a user to teach the robot the desired motion through
demonstration and teleoperated correction, see Alg. 2. The robot learns the desired minimum
uncertainty dynamical system on the end-effector and the dynamics of the gripper, orientation
and width as a function of the current robot position formalized in Sec. 5.3.1. The main aim
is to show that it is possible to learn a policy and later correct the velocity so as to achieve
and surpass the performance of a skilled demonstrator. All of these aspects are modeled with
GPs, allowing interactive corrections of the dynamics and actions online, see Sec. 5.3.2.

5.3.1 LEARNING A MINIMUM UNCERTAINTY DYNAMICAL SYSTEM
A non-linear dynamical system can be described by Eq. (5.1). This type of formulation
would fit perfectly in a velocity controller, however, due to the necessity of dealing with
impacts — for which an impedance controller is more suitable [67] — we can rewrite the
motion dynamics into its integral form, i.e. we are controlling the desired next point of the
motion and not the current desired velocity, based on

𝒙𝑡+Δ𝑡 = 𝒙𝑡 +∫
𝑡+Δ𝑡

𝑡
𝒇(𝑥(𝜏))𝑑𝜏

where 𝒙𝑡+Δ𝑡 is the desired attractor position. Since �̇� is a function of the current position 𝒙,
the attractor distance 𝚫𝒙 is going to be a function of the robot position 𝒙𝑡 , i.e.,

𝚫𝒙𝑡 = 𝑔(𝒙𝑡) = ∫
𝑡+Δ𝑡

𝑡
𝒇(𝑥(𝜏))𝑑𝜏 ∶= 𝒙𝑡+Δ𝑡 −𝒙𝑡 .

The dynamical system can be seen as an external (and slower) control loop where
the attractor position is updated as a function of the robot position while the inner (and
faster) impedance control loop simulates the dynamics of a critically damped second-order
dynamical system towards the chosen attractor. As an analogy to humans, the slower loop can
be seen as the intention update when generating a motion according to the current perceived
arm position while the impedance control represents the compliance of the muscles and the
joints in the interaction with the environment.

The desired Δ𝒙 is fitted with a multi-output GP that shares the kernel parameters, and
using the data of a kinesthetic demonstration and user-provided corrections. The GP models
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Algorithm 2 Teaching Framework for Interactive Learning to Pick at Non-Zero-Velocity
1: a) Kinesthetic Demonstration(s)
2: while Trajectory Recording do
3: Receive(𝒙𝑡 , 𝒔𝒊𝒏𝜽𝑡 ,𝒄𝒐𝒔𝜽𝑡 , 𝑤𝑡)
4: 𝚫𝒙𝑡 = 𝒙𝑡+Δ𝑡 −𝒙𝑡
5: 𝛾𝑡 = 1
6: end while
7: 𝝃 = (𝒙𝑡0 ,𝒙𝑡0+Δ𝑡 ,… ,𝒙𝑡𝑓 )
8: 𝚫𝒙demo = (𝚫𝒙𝑡0 ,𝚫𝒙𝑡0+Δ𝑡 ,… ,𝚫𝒙𝑡𝑓 )
9: 𝒔𝒊𝒏𝜽demo = (𝒔𝒊𝒏𝜽𝑡0 ,𝒔𝒊𝒏𝜽𝑡0+Δ𝑡 ,… ,𝒔𝒊𝒏𝜽𝑡𝑓 )

10: 𝒄𝒐𝒔𝜽demo = (𝒄𝒐𝒔𝜽𝑡0 ,𝒄𝒐𝒔𝜽𝑡0+Δ𝑡 ,… ,𝒄𝒐𝒔𝜽𝑡𝑓 )
11: 𝒘demo = (𝑤𝑡0 ,𝑤𝑡0+Δ𝑡 ,… ,𝑤𝑡𝑓 )
12: 𝜸demo = (𝛾𝑡0 , 𝛾𝑡0+Δ𝑡 ,… , 𝛾𝑡𝑓 )
13: Train GPs
14: b) Interactive Corrections
15: while Control Active do
16: Receive(𝒙)
17: if Received Human feedback 𝚫𝒙𝑐, 𝛾𝑐, 𝑤𝑐 then
18: Correct(𝚫𝒙𝑐 −→ 𝚫𝒙demo, 𝛾𝑐 −→ 𝜸demo, 𝑤𝑐 −→ 𝒘demo)
19: end if
20: [𝚫𝒙,𝜎2] = 𝚫𝒙(𝒙)
21: 𝛾 = 𝛾 (𝒙)
22: 𝑤des = 𝑀𝑈

𝑤 (𝒙)
23: [𝒔𝒊𝒏𝜽,𝒄𝒐𝒔𝜽] = 𝑀𝑈

𝜃 (𝒙)
24: 𝜽des = arctan2(𝒔𝒊𝒏𝜽,𝒄𝒐𝒔𝜽)
25: 𝒙des = 𝒙+ 𝛾𝚫𝒙−𝛼𝛁𝒙(𝜎2(𝒙)).
26: Send(𝒙des,𝜽des,𝑤des)
27: end while
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the desired 𝚫𝒙 as a function of the current Cartesian position 𝒙

𝑔(𝒙) ∼ (𝑚(𝒙), 𝑘(𝒙,𝒙′))

and the prediction on the desired attractor distance is Gaussian distributed, i.e.,

𝚫𝒙 ∼ (𝝁(𝒙),𝜎2(𝒙)𝑰),

where the vector 𝜎2(𝒙)𝑰 underlines that the uncertainty in the three principal directions of
movement, i.e. Δ𝑥,Δ𝑦,Δ𝑧, is the same and that no cross-correlation is modeled, i.e. the three
outputs are independent. This is possible by setting the kernel hyperparameters to be shared
among the three independent models, see Sec. 3.5. The definition of the mean function 𝜇(𝒙)
and variance 𝜎2(𝒙) are the same of Eq. 3.2 and 3.3. The bold in 𝝁 is just to underline that
the mean model is a vector of dimension three.

Finally, something to consider when learning a dynamical system in a reactive formula-
tion is that the next robot position is a function of the learned desired transition but also the
external disturbances. This may lead the robot in a position where its policy is not confident
anymore, i.e., high epistemic uncertainty. Depending on where this occurs, the robot may
not be able to successfully pick up the object or bring it to its goal and execute its motion.
When we, as humans, execute a motion we try to remain in regions where we are confident
about what we have learned up to that point. To encode this behavior also in the robot,
the dynamical system was superposed with another dynamical system that brings the robot
towards regions of low uncertainty. From a control point of view, this results in adding
another attractor field that is proportional to the gradient of the variance manifold [55].

This repulsive field can be seen as a behavioral stiffness: considering a variance manifold
as a potential energy, similar to elastic energy, the robot is always acting towards the
minimization of this quantity; similarly, the lower level control, “the muscles”, is trying to
converge to the attractor in order to minimize its physical tension. Thus, the MUDS can be
summarized as the position, orientation, and gripper control of the end-effector. The desired
attractor position is modulated according to,

𝒙des = 𝒙+Δ𝒙−𝛼𝛁𝒙(𝜎2(𝒙)).

However, when learning a complex task like a fluent P&P, the dynamics of the end-
effector position have to be augmented with the dynamics of the hand orientation 𝜽, and
gripper width 𝒘. Because in a trajectory the dynamics of the orientation and gripper are
coupled with the dynamics of the end-effector, we decided to learn the controlled action as a
function of the robot’s position with another GP. However, if the predictions are done based
on the current position, when outside of the region of certainty, the robot would output the
prior mean e.g., zero radians for the orientation along all three axes and maximum gripper
width, which could lead to an undesirable generalization, e.g., tilting or dropping objects.
In order to solve this problem, we propose a minimum uncertainty inference, obtained by
projecting 𝒙 in the highest correlated sample of the database according to

�̂� = argmax
𝒙𝑖 ∈ 𝝃

(𝑲 (𝒙,𝒙𝑖))

where 𝑲 is built with the kernel function with the optimized hyper-parameters. This mini-
mum uncertainty inference can be interpreted as a projection of the robot’s current state on
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the highest correlated state (according to the kernel function) collected during the demonstra-
tion(s). The aim is to explicitly avoid extrapolating outside the original demonstrated data
while still using the property of a smooth regressor of the GP. This behavior also matches
the philosophy of actively taking actions that would always minimize the uncertainty of
the current robot state. When the evaluation of the GP is performed with this minimum
uncertainty rule, we denote them with the superscript 𝑀𝑈 .

In order to fit the desired end-effector orientation as a function of the current Cartesian
position with a regressor, it is necessary to have a smooth and continuous representation
of the Euler angles 𝜽, which otherwise exhibit a discontinuity when crossing the [𝜋,−𝜋]
boundary. Consequently, 𝜽 = ℎ(𝒙) would not satisfy the continuity requirements. To this
end, we fit both 𝒔𝒊𝒏𝜽 ∶= sin(𝜽) and 𝒄𝒐𝒔𝜽 ∶= cos(𝜽) transformations of the Euler angles and
convert them back after the MU inference during robot control (l. 23 of Alg. 2). This also
implies that we need to fit six GPs for modeling the orientation rather than three.

5.3.2 INTERACTIVE POLICY CORRECTION WITH HUMAN-IN-THE-
LOOP

After learning from kinesthetic demonstrations the desired transition 𝚫𝒙, Euler angles 𝜽 and
the gripper width 𝑤 in the different points of the recorded trajectory, we still need to allow
the user to correct the policy during the robot execution.

Our goal is to obtain a fast continuous picking operation. With increasing velocities,
kinesthetic interactions with a robot manipulator can become unsafe, and tuning both the
attractor and gripper locally becomes very challenging. Furthermore, it also gives rise to
ambiguity on the interpretation of the interaction forces as intended corrections or undesired
disturbances [86]. For this reason, we opted for teleoperated corrections on the desired
movement, local velocity, and gripper width. Thus, due to the necessity of modifying
the magnitude of the attractor distance proportionally in all directions (when higher/lower
velocities are requested), a scaling factor is learned as a function of the position, resulting in
a desired attractor

𝒙des = 𝒙+ 𝛾Δ𝒙−𝛼𝛁𝒙(𝜎2(𝒙))

where 𝛾 is the attractor scaling factor and is also model as a GP, i.e., 𝛾= 𝛾 (𝒙). With
this formulation, corrections can be allocated to the 3 different components of the vector
𝚫𝒙 or to the total magnitude of the vector itself, i.e. 𝛾 . The complete control loop with
human-in-the-loop corrections can be seen in Fig. 5.2. Overall, corrections are provided
to the output values 𝒚𝑑𝑒𝑚𝑜 of the different GPs for the attractor distance 𝚫𝒙, scaling factor
𝛾 and the width of the gripper prongs 𝑤, all of which are initialized with the kinesthetic
demonstration. With the evaluation of the kernel, the corrective input can be smoothly spread
to surrounding data points in accordance with their correlation.

The update rule was chosen to be the conditioned update rule of Eq. (3.8) without
performing any new aggregation of data. Moreover, the likelihood noise of the teleoperated
correction is considered to be zero, i.e. 𝜎𝑛,𝑐𝑜𝑟𝑟 = 0. Since the multi-output GPs is composed
of independent GP, the model update is in each direction independently.

It has previously been shown in Sec. 3.2.2, the spreading the corrections on the database
is more user-friendly, as well as time and data-efficient than a simpler data aggregation, since
otherwise, the GP model would essentially average between the different outputs for a given
input, leading to slow learning. Additionally, this constraint of spreading the corrections
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only on existing points of the database avoids modifying the shape of the variance manifold,
keeping the motion always close to the kinesthetic demonstration, while still shaping the
motion dynamics, encoded in 𝛾Δ𝒙.

Figure 5.2: A schematic representation of the human-in-the-loop giving corrections to the learned policy. The
human observes the current robot motion and gives corrections with a joystick.

5.3.3 SWITCHING DYNAMICAL SYSTEMS
The act of grasping an object and taking it to a desired location can be formulated in two
parts. The first part is approaching the object and grasping it, and the second, taking the
object to its goal. Even if the motion is fluent, these are two subtasks of the overall task that
need to be completed. Thus, our attention tends to first be directed towards the object after
which our attention shifts to its desired goal location. Following this reasoning, when the
demonstration is initially provided, the trajectory is observed w.r.t. the goal and w.r.t. the
object location. These observations are used to train two sets of GP models - one for the
goal frame and one for the object frame. When seen in the global frame the initial provided
observations are aligned as in Fig. 5.3a. If either the goal or the object is moved, the known
regions of the two models will no longer be aligned as illustrated in Fig. 5.3b. In order to
successfully reach the goal, it is necessary to move towards the known region leading to the
goal. The switching of the frames is performed in accordance to the heuristic that once the
manipulated object has been grasped, the desire is to bring it to its new location. Furthermore,
in order to ensure a smooth switch between reference frames, a short transitioning phase is
initiated (Fig. 5.3c).

Firstly, when the model depicting the behavior w.r.t. the goal is selected the uncertainty
is minimized with respect to that model’s variance, which as a result automatically leads the
robot towards the trajectory leading to the goal despite previously not having received any
demonstrations in between the known regions. Secondly, in order to avoid abrupt changes
in the predictions while in the region between two trajectories, the uncertainty with respect
to the currently selected model is utilized to modulate the predictions. The modulation is
merely a weighted average between the predictions of the previously selected model and the
predictions of the currently selected model. Mathematically this transition function can be
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Figure 5.3: a) Initially learned trajectory going from the object (circle) to the goal (star) with the region of certainty
depicted by the shaded area. b) Learned trajectories with respect to the two reference frames once they’ve been
displaced. c) Transition enabled through the minimization of the epistemic uncertainty w.r.t. the model leading
towards the goal.

written as

𝒚 =
(
1−

𝜎2
𝑎

𝜎2
p)

𝒚𝑎+
𝜎2
𝑎

𝜎2
p
𝒚𝑏

where 𝜎2
p is the variance of the prior of the multi-output GP with the defined kernel, 𝒚𝑎 is the

prediction of the currently selected model and 𝒚𝑏 is the prediction of the previously selected
model. This modulation is used until 𝜎2𝑎/𝜎2p falls below a certain threshold, indicating that the
robot is once more within the known region. The use of variance minimization ensures that
the uncertainty will decrease over time, ensuring the transition from one frame to another.

Only when transitioning between frames are predictions w.r.t. both frames necessary.
Otherwise, the predictions are carried out based on the current frame. Furthermore, when
corrections are provided, these corrections are applied to the datasets with respect to the
different frames, not only the current one. This ensures that knowledge gained in one frame
is transferred to the other frame in accordance with the correlation, reducing unpredictable
behavior such as abrupt changes in the accelerations during frame switching.

5.4 VALIDATION EXPERIMENTS
Experiments were carried out to evaluate the effectiveness, usability, and robustness of the
method. In Sec. 5.4.1, the framework’s base functionality of taking slow demonstrations and
allowing the correction of the dynamics through corrective feedback is tested, along with
an ablation study to verify the utility of uncertainty minimization. In Sec. 5.4.2, a baseline
comparison to a method that also addresses the problem of interactive velocity modulation
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Figure 5.4: Range of correction times per round for each aspect depicted by the shaded areas, with the average
times depicted by the solid lines. Statistics made over 5 repetitions.

is performed. Sec. 5.4.3 analyzes how well a learned policy can accommodate changes in
object properties such as size and weight. In Sec. 5.4.4, a straightforward generalization
w.r.t. different object locations is briefly analyzed. Lastly, in Sec. 5.4.5 a user validation
study was carried out with non-experts to establish the usability of the proposed method.

We used the 7 DoF Franka-Emika Panda with an impedance controller and a ROS com-
munication network for the online attractor update with a frequency of 100Hz. Furthermore,
in order to avoid overloading the GP with superfluous data, the recording of the trajectory is
carried out at 10Hz considering that whatever the human is showing at higher frequency is
noise that would anyway be filtered out by the GP fitting and the impedance policy.

A wireless Logitech F710 Gamepad was used for teleoperated corrections. The Gamepad
was chosen due to the number of required inputs, it being an established ergonomic input
device in the gaming industry, as well as ensuring that users remain at a safe distance from
the robot at all times considering the high-speed motion dynamics. Due to the limited
number of continuous inputs, both the gripper and scaling factor corrections are provided
through discrete increments. The attractor corrections are provided through the continuous
inputs of the two thumbsticks, with the movement in the 𝑥-𝑦-plane regulated by the left
thumbstick and the height regulated by the right thumbstick. As an added safety feature,
one of the triggers was utilized as a safety button which, when released, ends the execution
of the algorithm, halting the robot. Lastly, users can comfortably start the execution from
any point along the trajectory as well as bring the robot to the start of the trajectory. As a
final remark, it is worth underlining that the capability of correcting the orientation after the
demonstration was not enabled due to the limitations of the teleoperation interface, not due
to any limitations surrounding the algorithm itself, and is thus left to future work.
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Figure 5.5: Use case of robot assistance in grocery packing. In the attractor vector field, the arrows denote the
direction of the attractor and the color gradient denotes the magnitude of the attractor. The vector field based on the
original demonstration, with the demonstrated trajectory is compared with the one after training, with the executed
trajectory.

5.4.1 INTERACTIVE FLUENT PICK & PLACE WITH MUDS
For this experiment, a single demonstration was provided wherein the end-effector orienta-
tion, gripper width, and attractor distance are obtained and used for initializing the respective
GP models. The goal of the task is to i) reduce the execution time by 4 times w.r.t. the
demonstration time of the motion with kinesthetic teaching, and ii) have an execution time
of 3 s or less. We repeated the experiment 5 times.

Within less than 3min it was possible to fully train the robot to pick & place the object
with the desired performance, four out of five times. Only a fraction of that time was needed
for the demonstration (avg. 11 s) and explicit feedback from the human (avg. 6.8 s). This
points towards primarily needing fine-tuning corrections from the human, which is further
supported by the time spent giving corrections for each of the three correctable aspects (see
Fig. 5.4).

It is worth noting that a correction round refers to an execution of a trajectory with
optional user corrections, which can be stopped at any point of the execution and not just
at the goal. The time spent correcting the attractor was minimal, as it was only required
around the moment when the object was reached. This is because the human tends to
stop at the object during the demonstration to avoid knocking it over and to deal with
the closing of the gripper. To avoid the motion to stop, minor corrections to the attractor
were provided to ensure it follows the desired continuous picking motion. Afterward, only
corrections for the gripper and scaling factor are provided. Whenever corrections to the
scaling factor were provided, resulting in higher velocity, corrections to the gripper had to be
provided as well to offset the communication delay of the gripper. Due to the unreliability
of the gripper, despite corrections to the timing, the gripper still sometimes closes at the
incorrect moment. Nevertheless, after corrections, an average success rate of 82% out of 10
autonomous executions of 5 different trained policies (41 successes over 50 executions in
total) could still be achieved. For the complete performance details, please refer to Tab. 5.1.

To verify the existence of gripper unreliability we measured the delay between sending
the command for closing the gripper and the actual moment of closing. Measurements were
gathered from 20 rollouts. While the average delay was 0.93 s, it ranged from 0.56 s to 1.54 s.
Considering this stochasticity, the best strategy is to push the object at non-zero velocity for
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Demo [s] Fdbk [s]
Total

Time [s]
Rounds Success

Rate [%]

Max 11.70 10.324 165.44 17.0 100
Mean 10.94 6.796 97.47 10.4 82
Min 10.10 4.560 66.61 6.0 50

Table 5.1: Method Performance (5 demos, 50 executions).

a long enough time so that it encompasses the possible moments at which the gripper might
close.

One of the main concerns when increasing the velocity along a trajectory is diverging
from said trajectory, particularly in curves. While the shape of the trajectory did change
slightly, divergence from the trajectory could be avoided thanks to the uncertainty minimiza-
tion even when the attractor magnitude was noticeably increased compared to the original
demonstration. This can be observed within the attractor vector fields in Fig. 5.5. This is an
important feature of the proposed method, opening an alternative to many methods that do
not deal with covariate shift when they try to generalize. The goal was to show that even if
the dynamics of the trajectory are modified, the obtained trajectory does not change much,
resembling the original demonstration.

To further evaluate the benefit of uncertainty minimization in the training as well as
in the final execution, we performed an ablation study. The desired policy was trained
once with the uncertainty minimization active (w/ UM) and once without it (w/o UM). It
was observed that the uncertainty minimization made the training easier since it kept the
robot close to the demonstrated trajectory. This translated to a shorter training time of 70 s
w/ UM, whereas w/o UM 218 s were needed. We then performed two tests for observing
the effect on the execution; one with a perturbation to the robot’s initial position and one
without such perturbation. The policies were rolled out 20 times each. The effect of the
uncertainty minimization was observed in the success rates of the P&P as well as the average
distance error (ADE) of the executed trajectory w.r.t. the demonstrated trajectory. Without
perturbations, the policy w/ UM achieved a higher success rate of 95% and lower ADE of
0.023m whereas the policy w/o UM only achieved a success rate of 45% and an ADE of
0.051m. Similar results are observed when the perturbation is added, where the success rate
of the policy w/ UM was 100% and the ADE was 0.034m whereas the policy w/o UM only
achieved 50% and had an increased ADE of 0.090m.

For an evaluation of its benefit for reaching a goal while rejecting disturbances, the
reader must refer to Ch. 4.

5.4.2 BASELINE COMPARISON
We compare to a state-of-the-art approach in interactive dynamics modulation presented in
[86]. The base method was replicated based on the details given in the paper with the only
major change being that we do not learn the orientation with the DMPs. Since the focus of
this baseline comparison was on the modulation of the translational dynamics, the gripper
and orientation were controlled with the GPs, conditioned on the robot’s current position for
all the tests. Corrections were given with the joystick in both cases out of safety concerns
when the robot is moving at high velocity.
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Rigid
(250 g)

source

Rigid
(900 g)
new | adp

Flexible
(100 g)
new | adp

Small &
def. (250 g)

new | adp

Correction
Time [s]

51 46 | 0 59 | 38 73 | 24

Rounds 5 5 | 0 7 | 4 8 | 4
Success [%] 88 96 | 98 98 | 100 98 | 96

Table 5.2: Performance in Interactive Adaptation to new object properties.

We initialized the DMP and a version of the proposed algorithm using the scaling factor
(V1) and without using it (V2) with a single demonstration of picking the object given along
the 𝑦-axis. Then, the object was displaced 7 cm to the side (𝑥-direction) to compare the
ability of both algorithms to reshape and speed up the motion.

What could be noticed with the DMP-based approach is that when a correction in 𝑥-
direction was given the robot would virtually stop and only occasionally move forward. The
cause of this was determined to be the dot-product of the position error with the predicted
velocity �̃�⊤�̇�𝑑 . This is used for changing the temporal scaling factor 𝜏 of the DMPs, such
that when the error is in the direction of the velocity the evolution of the DMP is sped
up whereas in the opposite case, the evolution of the DMP is slowed down. In our case,
although the predicted velocity along 𝑥 was very small, it was occasionally negative which
could account for the undesired slowing down of the motion. Only in the moments when
the velocity became positive along this axis did the robot move forward. As for speeding
up, this was later possible along the 𝑦-axis, however, the generated acceleration was rather
high even when a small correction was given. This is very likely due to the fast convergence
of 𝜏. The total training time for a successful picking policy was 197 s. The final achieved
execution time was 8.43 s which was 1.17 times faster than the original.

With MUDS the correction in 𝑥-direction did not affect the motion in 𝑦-direction.
Through the correction of the attractor distance along each of the axes, the shape of the
trajectory along each of the axes could be easily altered. When using the scaling factor 𝛾 (V1),
the speed along each of the axes of motion increases proportionally. Alternatively, if one
chooses to not use 𝛾 and directly affect the velocity by changing the attractor distance along
an axis (V2), one can ensure that the corrections do not affect the remaining axes. Depending
on whether the velocity increase should be proportional in all directions (e.g., speeding
up a diagonal motion in 𝑥-𝑦-direction) or only along a single axis, the two approaches of
altering the velocity help account for both possibilities. With V1 48 s were needed to train a
successful picking policy whereas 46 s were needed for V2. The final execution times were
2.67 s for V1 and 2.24 s for V2 which translated to an increase of speed by 3.71 and 4.41 times
respectively.

5.4.3 INTERACTIVE ADAPTATION TO NEW OBJECT PROPERTIES
It can be that we want to pick up a different object after having learned a desired P&P
behavior. Even small changes in object properties can result in failure when using the
same policy. Rather than demonstrating and retraining the strategy for every new object, or
relying on hard-coded rules to adapt to these changes, corrections can be used to adapt the



5

70 5 INTERACTIVE LEARNING TO PICK AT NON-ZERO-VELOCITY

Figure 5.6: L-R: rigid (250 g), rigid (900 g), flexible (100 g), small & deformable (250 g).

learned policy. A selection of four different objects was taken (seen in Fig. 5.6) to make a
comparison of training from a new demonstration (new) and training a policy by adapting an
existing policy (adp), as reported in Table 5.2.

For the latter case, the initial policy was trained on a rigid water bottle with a weight
of 250 g (① in Fig. 5.6), our ‘source’ object. Once a satisfactory policy was achieved,
the training object was swapped out for another object. The policy was then executed
and corrected if necessary. Corrections were provided until the policy was successfully
executed with the new object, after which an evaluation of the performance was performed.
Subsequently, a different object was swapped in and the learned policy was reset to the
initial policy.

For each new object, the policy could be successfully corrected. For the same object
but with a greater weight ② the initial policy carried out the policy successfully in the first
execution, hence it was deemed that no corrections were necessary. For the flexible object
③ due to its lighter weight and ease at which it could be knocked over, minor corrections
to both the velocity and gripper had to be given. Lastly, for the deformable object ④ it was
necessary to reduce the speed for a successful picking. Otherwise, the object kept being
knocked over upon impact due to its smaller support polygon. Nevertheless, for all three
objects with their different properties, it was possible to alter the policy within less time than
what is needed for training from a new demonstration (see Tab. 5.2).

It is important to note that the strategies for the separate objects are not stored as this
would require a further form of knowledge representation or policy parametrization, which
is outside the scope of this work. This evaluation does, however, show that adapting an
existing policy is faster than learning from scratch, which can be beneficial for gathering
knowledge more quickly.

5.4.4 GENERALIZING TO NEW OBJECT POSITIONS
To validate this extension we performed a short experiment where we trained the two policies
(w.r.t. the object and w.r.t. the goal) with the frames fixed in one position. After the policy
was successfully trained we placed the object in 20 different locations. The distance of
these positions from the training location were taken from the ranges 𝑥 ∈ [−0.26;0.02],
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T1: With Attractor Scaling T2: Without Attractor Scaling
Demo

Time [s]

Training
Time [s]

Rounds Exec.
Time [s]

Demo
Time [s]

Training
Time [s]

Rounds Exec.
Time [s]

Max 34.10 600.00 36.00 4.97 14.90 285.00 23.00 4.00
Mean 13.04 323.30 19.40 3.42 8.63 121.22 9.11 2.81
Min 6.40 129.00 6.00 2.17 3.90 0.00 0.00 2.07

Table 5.3: Performance of Non-Experts Who Successfully Finished the Task.

𝑦 ∈ [−0.30;0.28], and 𝑧 ∈ [0;0.08] all while considering locations physically feasible for the
robot.

The total training time amounted to 99.4 s of which 78.9 s were needed for the corrections.
Out of the 20 executions, 13 were successful without any external influence, and 3 were
successful once the human physically guided the robot into the region of certainty. For the
latter 3, this was in fact a desired behavior and a design choice to ensure that the robot does
not generalize and potentially behave in an unsafe manner in situations it has never seen. If a
person wants to add information on how to behave in these areas, this can be done by adding
new points as was addressed in [55], but this was not the focus of the proposed method. The
remaining 4 executions resulted in clear failure. Out of these, 2 were in the case where the
object was placed at a greater height than the demonstration. After successfully picking up
the object, the robot proceeded to get stuck against the surface of the table since the policy
w.r.t. the goal dictated that it should be following a trajectory that was below its current
position.

5.4.5 ARE HUMANS GREAT TEACHERS? A USER STUDY
Since the aim of the proposed method is to enable people, who may not have a background
in robotics and machine learning, to teach a robot, a preliminary user validation study was
carried out. A total of ten participants aged 23 to 28 took part in this study (approved by
TU Delft HREC). The same setup as in Fig. 5.5 was used, with the bag being replaced by
a small square tower to provide a clearer goal. Half an hour of familiarisation with the
setup was given before the actual trials began. There were two trials of ten minutes which
were presented in a randomized order. In one trial (T1), users were required to perform a
kinesthetic demonstration at a speed they were comfortable with. Afterwards, they had the
possibility to correct the demonstration with the possibility to scale the attractor distance. To
ensure that the main contribution to the velocity resulted from the scaling factor, the attractor
Δ𝐱 itself was bounded to 4 cm. In the other trial (T2), users were required to provide a fast
kinesthetic demonstration. The attractor for this trial was left unbounded and any corrections
for the velocity had to be performed by directly altering the attractor in the three Cartesian
directions. A trial was considered successful if the final trajectory execution time was 4 s or
less. The goal of this study was two-fold; i) verifying the feasibility of allowing non-experts
to teach the robot non-zero-velocity P&P and ii) determining which correction approach
users may prefer. In terms of performance, all participants were able to successfully pick
& place the object in T1. Only one was unable to reach the 4 s goal. For T2, only one was
unable to teach the task successfully.

Nevertheless, overall good teaching performance could be observed in both trials. For
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T1, users were able to teach the task within, on average, 5.4min with 19 correction rounds.
The average time at which the robot could successfully pick & place the object was 3.4 s
with the best time being 2.2 s. For reference, the time needed to demonstrate the behavior
at a fast pace in T2 was at best 3.9 s, but generally participants needed more than 5 s to
carry out the demonstrations (see Table 5.3 for detailed results). It thus becomes clear that
overall non-experts are not able to or are not comfortable with providing fast demonstrations.
Provided a faster demonstration, the time needed for corrections however did tend to be
lower.

Participants were also asked which correction approach they preferred (T1 or T2).
Within the group of participants, there was no clear preference for one method or the other.
There were, however, clear personal preferences. Half preferred to correct the complete
translational dynamics with one input, claiming that it made it easier for trajectory shaping
or more intuitive for altering the velocity since it compared more closely to the controls that
are familiar from video games. Meanwhile, the rest found it easier to focus on correcting one
aspect at a time, thus preferring to first correct the trajectory before increasing the velocity
with the scaling factor 𝛾 , since there was less chance of accidentally affecting the other
aspect with the corrections. This means that by opting for only one correction approach, the
performance and comfort of some people would be hampered. For this reason, it is important
that the method gives people the possibility of using either of the two approaches.

5.5 CONCLUSIONS AND FUTURE WORK
We demonstrated that the motion dynamics of a user’s demonstration can be successfully
altered in a non-uniform manner using teleoperated corrections. This allows users to
overcome the limitations they had during the demonstration and teach the actual desired
behavior. It further allows users to compensate for delays within the system which are
not directly known to them but are observable in the system’s performance. Additionally,
generalization to different object positions was obtained by switching between the two
dynamical systems, learned in the respective reference frames. This proved how variance
minimization can be successfully used also to transition between two different frames. This
opens many possibilities for creating a sequence of multiple simpler dynamical systems for
accomplishing complex robot tasks, i.e., assembling multiple movement primitives.

It was additionally shown that non-experts are able to successfully teach a non-zero-
velocity motion for picking & placing objects. Irrespective of their prior experience or lack
thereof with robots, they were able to successfully train this complex task, teaching and
correcting the motion dynamics of many degrees of freedom. It could be seen that when only
using the kinesthetic demonstration, people generally could not attain the desired execution
time even with a fast demonstration. However, with the help of corrections to the motion
dynamics, an execution speed outside of their demonstration capabilities became achievable.
Since people have different preferences for teaching and correcting robots, we concluded
that the final framework requires the velocity corrections to be provided both in a coupled
(with only 𝚫𝒙) and decoupled manner (with 𝛾 and bounded 𝚫𝒙).

Certain aspects remain to be addressed for better motion generalization, as we will see
in Ch. 7. The next step would be to study how to obtain haptic corrections of the policy
while ensuring a fast but safe human-robot interaction while learning long-horizon motions
of single and dual arm tasks.
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6
INTERACTIVE IMITATION
LEARNING OF BIMANUAL
MOVEMENT PRIMITIVES

Performing bimanual tasks with dual robotic setups can drastically increase the impact
on industrial and daily life applications. However, performing a bimanual task brings
many challenges, like synchronization and coordination of the single-arm policies. This
chapter proposes the Safe, Interactive Movement Primitives Learning (SIMPLe) algorithm,
to teach and correct single or dual arm impedance policies directly from human kinesthetic
demonstrations. Moreover, it proposes a novel graph encoding of the policy based on GPs
where the single-arm motion is guaranteed to converge close to the trajectory and then
toward the demonstrated goal. Regulation of the robot stiffness according to the epistemic
uncertainty of the policy allows for easily reshaping the motion with human feedback and/or
adapting to external perturbations. We tested the SIMPLe algorithm on a real dual-arm
setup where the teacher gave separate single-arm demonstrations. We then successfully
synchronized them only using kinesthetic feedback or the original bimanual demonstration
was locally reshaped to pick a box at a different height. A video of the experiments can be
found at https://youtu.be/GasxgbJZHdQ.

This chapter is based on  Franzese, G., de Souza Rosa, L., Verburg, T., Peternel, L. and Kober, J., 2023. Interactive
imitation learning of bimanual movement primitives. IEEE/ASME Transactions on Mechatronics [56].

 https://youtu.be/GasxgbJZHdQ 
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6.1 INTRODUCTION
Modern society is faced with the lack of workforce in various repetitive jobs like re-shelving
products in supermarkets or handling heavy luggage in airports. Robots appear to be the most
promising solution to mitigate the negative effects of the declining workforce and perform
these various complex tasks [60]. To work in variable and unstructured environments, robots
must be dexterous and intelligent to quickly learn the job while interacting safely with
other robots, objects, and humans. However, traditional task-specific robot programming by
experts fails to achieve such dexterity and intelligence due to the time-consuming process
and poor adaptability of tailored solutions.

While tasks that require only one arm have been explored extensively in the literature,
more complex tasks that require a bimanual setup have only recently been targeted. Among
such tasks, picking large objects in unstructured environments [60], assisting the elderly [119,
182], surgery tasks [17] or complex assembly tasks [178] are shown to require dexterous
bimanual setups. Factory assembly, logistics, and household applications of bimanual robots
have been known for decades [152, 176].

However, the increased number of Degrees of Freedom (DoF) (the curse of dimensional-
ity) implies an increased teaching complexity and the necessity of skilled human teachers
who know how to interface with the bimanual robotic platform.

In this chapter we contribute with the SIMPLe algorithm and propose:

• The design of a bimanual impedance controller with variable Cartesian stiffness;
safety constraints on the maximum applicable force and execution velocity are also
formulated;

• A novel movement primitive formulation that allows efficiently learning long horizon
tasks from a single demonstration and executes the motion in a reactive way;

• Efficient corrections of the robot’s policy directly from kinesthetic feedback, allowing
for fine-tuning the demonstrations. Thanks to this, the user can show single arms’
trajectories and fine-tune them when transferring the policies onto a bimanual task.

To validate the proposed method, we conducted a series of experiments. The first
three are technical experiments related to the main contributions that highlight and test
different functionalities of the method. The last two are supplementary user studies to
evaluate the type of data input for the proposed by comparing two human demonstration
approaches and to evaluate giving corrections compared to giving new demonstrations.
These additional insights can provide a better understanding of the input data generation
method and adjustments of the robot’s skill for bimanual cases.
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Figure 6.1: Example of possible application of bimanual manipulation: performing stacking of crates.

6.2 RELATED WORKS

6.2.1 BI-MANUAL TEACHING FRAMEWORKS
Like with single-arms, pre-planning and manual coding of multi-arm manipulation is a
tedious process. An alternative is learning from human demonstrations, where a user can
guide the robot on how to execute the desired tasks. However, when the user controls the
dual (or multiple) robot setup, the physical and cognitive load increases drastically. Using
priors, shared control or task scaffolding, i.e., dividing the teaching into smaller parts, can
substantially decrease the demonstrator workload and make the teaching easier and the
learning faster.

Recent works on the control side of bimanual manipulation leverage shared control
strategies for reducing the burden of teleoperated bimanual tasks. For example, [99] pro-
poses a shared controller for helping the user to perform bimanual manipulation: it maintains
the manipulators’ relative position (or orientation) while the user controls the translations or
rotations. Similarly, [134] classifies human demonstrations in four teaching modalities: self
hand-over, one-hand fixed, one-hand seeking, and fixed offset; when performing teleopera-
tion, a trained classifier detects the most likely modality and adapts the constraints of the
bimanual controller accordingly.

On the side of shared control, [162] extends the Roboturk platform by teleoperating
each arm by a different teacher, reducing the cognitive load and enabling teaching tasks
with more than two arms. Moreover, ongoing research [171] presents a controller that
enables inputs from a teleoperating user and local kinesthetic perturbations. This chapter
focuses on teaching bimanual policies from a single human teacher by teaching single-arm
policies independently and then interactively reshaping them for successful coordination
or adaptation to a new scenario. The goal is to enable non-expert users to teach complex
bimanual tasks.
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6.2.2 BIMANUAL COORDINATION POLICIES
During autonomous execution, disturbing one of the arms in a detached bimanual system
can break the synchrony of the movements, making it necessary to provide both movement
recovery and re-synchronization capabilities. The way the policy is encoded, e.g., time-
dependent vs position-dependent, or the chosen function approximation, e.g., a Dynamic
Movement Primitives (DMPs), Hidden Markov Model (HMM), GP [172] can change the
disturbance rejection of the robot.

To this end, the method in [65] uses a prior on the relative position of the two manipulators
and a timing dependence in the HMM formulation to synchronize the movement of arm
manipulators. Other approaches propose to create a “leader and follower” movement by
adding a coupling term [179], a regulation term [180], or a deterministic encoding of
trajectories with DMPs [146]. Alternatively, the epistemic uncertainty of GPs can be used
for switching the behavior of the arms from follower to leader (and vice-versa) [49]. This
leader-follower learning paradigm makes the system react differently according to which arm
is perturbed. Alternatively, symmetry prior can be used to easily encode and synchronize the
task. For example, [23] proposes a bi-manual policy for picking and throwing non-stationary
objects by learning a symmetric dynamical system policy. In this case, perturbing any of the
two arms would always make the other react.

Other approaches focus on achieving synchrony and coordination by segmenting the
trajectories and reproducing them in sequence or according to a hierarchical representation
of the task. The advantage of such approaches is that the sequencing provides an implicit
synchronization on a higher level, making the lower-level problem easier. A common
approach for this scheme is to learn policies for performing pre-defined sub-tasks, and a
higher-level policy which creates a sequence from demonstrations [96, 112]. Alternatively,
the task can have a pre-defined structure of sub-tasks based on heuristics, and synchrony is
achieved with a sub-task scheduler [27]. Segmentation has also been used for deep-learning
bimanual tasks in [175], where lower-level policies are learned for each segment and higher
ones for sequencing them. In this direction, [144] proposes a framework for multi-arm
task-space control with smooth transitions from independent behaviors, e.g., when reaching
goals, to dependent ones, e.g., when performing a dual-arm manipulation.

Our proposed approach differs from the approaches mentioned above in two ways. First,
these approaches fall under the LfD category while our proposed SIMPLe framework is
an IIL algorithm, and to the best of our knowledge, SIMPLe is the first framework for
learning of bimanual tasks from interactive corrections. Second, our interactive framework
avoids heuristics for coordinating policies for each arm in a bimanual setup by using human
feedback to regulate each arm’s dynamics before transferring it to a bimanual policy. Then,
when the bimanual policy is executed, the robot’s reaction to disturbances depends on the
mechanical coupling of the end-effectors (see Appendix A.2) or on the chosen input state for
the policy (see Section 6.3).

6.2.3 MOTION STABILITY
The stability of the bimanual operation is another key aspect. When learning from a small
amount of data, in particular, the stability of the learned behavior can be jeopardized when
demonstrations are imperfect. In [59, 106], a LfD approach is combined with a learned
controller that adapts the motion to keep the learned trajectory stable when facing external
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forces. In [23], the motion is divided into one Dynamical System (DS) for each sub-goal
with a hand-designed vector field that brings the robot always close to the connecting lines
of sub-goals. Our proposed Movement Primitives (MPs) have the objective of learning
long-horizon MPs with only one final goal and to obtain the stability property as an emerging
behavior of the motion encoding (Section 6.3.3).

Next, Section 6.3 introduces the novel GP-based formulation used for modeling MPs,
Section 6.4 introduces the proposed SIMPLe algorithm and how we use it for performing
interactively learning bimanual MPs, Section 6.5 shows different applications and user-cases,
and Section 6.6 concludes the article with final remarks and future works.

6.3 MOVEMENT REPRESENTATION
Section 6.3.1 presents the proposed Graph Gaussian Process (GGP) formulation, Section
6.3.2 the proposed trajectory learning framework and its benefits for safety, Section 6.3.3
presents the stability achieved with the proposed framework, and Sections 6.3.4 and 6.3.5
compare learning trajectories using traditional GPs and the proposed GGPs.

6.3.1 MOVEMENT LEARNING WITH GAUSSIAN PROCESS
To learn the model of the demonstrated trajectories, we chose GPs because it is a flexible
non-parametric regression method where the kernel choice can be used to increase the
inductive bias on the generalization of unseen states, which is prohibitive using function
approximators such as DMPs or Neural Networks (NNs). Furthermore, its solid statistical
formulation provides both the mean and the epistemic uncertainty of the prediction [172]
that can be used for disturbance rejection or stiffness regulation, as in Ch. 4 or Ch.5.

In particular, the kernel determines the interpolation and extrapolation behaviors and
when using a distance-based kernel, i.e. Squared Exponential kernels, the prediction con-
verges to the mean of the Gaussian Process, usually set to zero. Our objective is to have a
mean function that extrapolates without losing the measure of epistemic uncertainty, i.e.,
does not return a vanishing prediction. For this reason, by correlating with only the closest
neighbor in the dataset, the kernel definition becomes:

�̃�(𝒙𝑖,𝒙𝑗 ) =

{
1, if 𝒌(𝒙𝑖,𝒙𝑗 ) = max(𝒌(𝒙𝑖,𝑿))
0, otherwise

∀𝒙𝑗 ∈ 𝑿 .

In simple terms, given a point 𝒙𝑖, the correlation is 1 only if that is the maximum
obtainable correlation when correlating 𝒙𝑖 with all 𝒙𝑗 ∈ 𝑿 . With the new kernel, the prior
covariance matrix becomes:

𝚺𝑝𝑟𝑖𝑜𝑟 = [
�̃� 𝒌⋆
�̃�
⊤
⋆ 𝒌 ]

.

Note that, since the last column is for 𝒙𝑗 ∉ 𝑿 , the saturation is not applied. Thus,
the resulting prior covariance matrix is no longer symmetric, making the new process a
pseudo-GP. After the conditioning on the data points, the new pseudo-GP posterior becomes:

𝝁(𝒙) = �̃�
⊤
⋆ �̃�

−1𝒚 = �̃�
⊤
⋆𝒚,

𝝈2(𝒙) = 𝒌− �̃�
⊤
⋆𝒌⋆.
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Figure 6.2: Representation of a trajectory as a chain of events. The state 𝒙 is the aggregation of the robot pose and
time, where 𝒙𝑖 is 𝑖-th element in the reference trajectory. Every element of the trajectory 𝑖-th has as its goal the
(𝑖+1)-th element depicted by a forward arrow. The 𝒙 gets a unitary correlation with the closest element in the
trajectory 𝑚-th and then as the goal the (𝑚+1)-th state on the chain of events. The uncertainty is given by the
distance between the 𝒙 and its correlated point on the trajectory.

In simple terms, �̃�⋆ selects as mean the label of the closest point in the database,
computing the uncertainty according to the relative position between the query and the
selected points.

Additionally, by saturating the covariance matrix 𝑲 , each trajectory element has its
highest correlation with themselves: the new saturated correlation matrix, �̃� , is the identity
matrix, thus eliminating the computationally heavy (𝑛3) matrix inversion. However, with
this approximation, we are losing interpolation/smoothing properties. Meaning that the
provided trajectory data must be without drastic jumps. In practice, recording trajectories
with high enough frequency (> 10Hz) and/or smoothing the data makes the use of the
proposed approximation doable. It is worth mentioning that the presented formulation is
tailored for the specific application of movement learning and does not necessarily substitute
general approximation methods like local models [148] or variational approximations [72].
A detailed comparison between GPs and GGPs for trajectory learning is presented in Section
6.3.4.

6.3.2 REPRESENTING TRAJECTORIES AS GRAPHS
Our goal is to perform safe control during the general or corrective interactions between
robots and humans. To that goal, we start from a recorded trajectory demonstration, defined
as an array of 𝑛 end-effector poses 𝝃 = {𝒙0,… ,𝒙𝑛−1} ∈ℝ3 and the timestamp of each respective
pose 𝝉 = {𝑡0,… , 𝑡𝑛−1} ∈ ℝ, and a final pose and time 𝒙𝑛, 𝑡𝑛, used to fit a policy 𝜋. The trajectory
can be seen as a sequence of events, represented as a graph with edges representing transitions
from the state at time 𝑡𝑖 to the state at 𝑡𝑖+1. Given the adopted GP approximation, during
the policy execution, the most correlated point is selected on the trajectory, and its label is
selected as the goal, see Fig. 6.2. We denote the policy as a GGP.

However, the input type of the policy can completely change the robot behavior. For
example, a pose-only “feedback" policy, 𝜋𝒙 ∶ 𝒙 → 𝒙𝑔 is a fully reactive policy which
computes the next Cartesian pose for the end-effector (𝒙𝑔), based on the current one (𝒙).
Such policies are safer since they make the robot wait when its path is obstructed and allow



6.3 MOVEMENT REPRESENTATION

6

79

it to rejoin the trajectory on its closest point under perturbations [55]. However, they cannot
deal with movement ambiguities and time-dependent movements.

Alternatively, a time-only dependent policy, 𝜋𝑡 ∶ 𝑡 → 𝒙𝑔 , computes (𝒙𝑔) based on the
current time (𝑡). This type of policy can deal with movement ambiguities, e.g., when the
demonstrated trajectory crosses itself, and with time-dependent movements, i.e., when the
movement has to be temporarily paused at a specific position. However, such “feed-forward"
policies are not a safe choice since the attractor moves on the trajectory without considering
dangerous interactions with humans and with the environment.

Instead, we proposed the usage of pose and time-belief dependent policies, 𝜋𝒙,𝑡𝑏 ∶ 𝒙, 𝑡𝑏 →
𝒙𝑔 , 𝑡𝑏𝑔 , which computes the pose goal and a new time belief (𝒙𝑔 , 𝑡𝑏𝑔) based on the current
ones (𝒙, 𝑡𝑏). Note that the time-belief is updated with the time of the selected goal in the
trajectory. Encoding both pose and time belief allows for obtaining safe policies capable of
handling time-dependent movements and ambiguities.

As such, SIMPLe can be used with models fitted as time-dependent, pose-dependent,
or pose and time-dependent policies by setting the GGP states as 𝒙 ∶= 𝑡, 𝒙 ∶= 𝒙, or 𝒙 ∶=
[𝒙, 𝑡𝑏]

⊤
, respectively, and selecting a kernel for fitting the trajectories w.r.t. time (𝒌(𝑡,𝝉)),

like in [77], position (𝒌(𝒙,𝝃)), like in [55], or both of them, as proposed in SIMPLe, which
is obtained by multiplying the time and the pose-dependent kernels, i.e., 𝒌([𝒙, 𝑡𝑏] , [𝝃 ,𝝉]) =
𝒌(𝒙,𝝃) ◦𝒌(𝑡,𝝉).

In the context of trajectory learning, the labels are set as the aggregation states in
the demonstration which follow each state in the demonstration, i.e., 𝒚 = [𝝃 𝑑 ,𝝉𝑑]

⊤ =
[{𝒙1,… ,𝒙𝑛}, {𝑡1,… , 𝑡𝑛}]⊤.

6.3.3 STABILITY ANALYSIS
From this GGP-based formulation, we can also conclude that:

Proposition 6.3.1 Using the trajectory graph representation, the motion always converges
on the proximity of the demonstration and continues towards the end of it.

Proof 6.3.1 Since the vector �̃�
⊤
⋆ is correlating the current position of the end-effector with

only one node of the trajectory, and if there is no overlap on the trajectory, the robot will
move towards the goal of the closest node. Then, node by node, it continues toward the end
of the trajectory.

A great advantage of the pose and time trajectory encoding is that overlapping is no
longer possible as the demonstrator cannot show two different robot positions simultaneously,
leading to the absence of overlapping nodes, ambiguities, or undesired loops, guaranteeing
that the hypothesis in the proof of convergence is satisfied. However, this also means that
when only computing the correlation as a function of position, no physical overlapping of
the trajectory can be demonstrated, such as when drawing an eight [164].

6.3.4 COMPARISON BETWEEN GPS AND GGPS FOR POLICY LEARN-
ING

Figure 6.3 shows the different behavior in learning to draw the letter “B” (database from
[77]) using a GP and a GGP using only the 2-D position. The first thing to highlight is the
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Figure 6.3: Comparison of the fitting of a trajectory with the shape of a “B” with position dependent GP and GGP.
The red dots are the recorded demonstrations, and the stream curves are the learned behavior.

effect of the kernel saturation in a faster convergence closer to the trajectory of the GGP
compared with the GP. As consequence, when the robot is perturbed, the motion tends
to go closer to the trajectory and continue from there. Nevertheless, this difference in the
vector fields does not lead to unsafe sudden motions straight towards the attractor due to the
proposed attractor and stiffness regularization/saturation described in Appendix A.1.

The letter “B” shows a clear ambiguity at the overlapping of the trajectory between the
two humps. The robot must first move in and then move out of the intersection on the same
line in order to continue towards the end of the trajectory. The learned behavior of the two
fitting methods is different. The GP removes the overlapping ambiguity by considering it
as noise. This results in cutting the motion without going down to the intersection of the
curves, losing tracking accuracy. On the other hand, in the line overlapping, the GGP has a
vector field pointing left when approaching from below and to the right when approaching
from the top. This may lead to an ambiguous situation that can cause the robot to get stuck
locally or, in general, not track the motion correctly. This motivates the use of a position and
time-dependent policy, to remove any possible state overlapping.

6.3.5 MOVEMENT DISAMBIGUATION USING POSE AND
TIME-DEPENDENT POLICY

As explained in Proposition 6.3.1, no loops in the chain are allowed to guarantee good
trajectory tracking. Thus, our solution is to consider also the time belief (𝑡𝑏) in the state.
Figure 6.4 shows the evolution of the vector field for different time beliefs. The chain
element of the trajectory for the 𝑡𝑏 indicated above the figure is highlighted with a green
dot. From the figure, it is possible to observe how the previously encountered ambiguity is
elegantly solved. In fact, the robot gets into the valley and then out without getting stuck.

In order to simulate the behaviors of a GGP with or without a self-update of the time
belief, 200 different trajectories are rolled out starting from the origin of the demonstration.
In order to take into account the inaccuracy of the low-level (impedance) controller, a
Gaussian noise of magnitude 0.01 is added to the attractor when computing the new position.
Figure 6.5 depicts the mean and standard deviation of the trajectories. When the time
dependence is active (left side of the figure), the trajectory always converges to the end, and
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Figure 6.4: Attractor vector-field of a Graph Gaussian Process when the conditioning of the kernel with different
time belief. 𝑡𝑏 is the time belief normalized by the total time of the trajectory, i.e., 0 ≤ 𝑡𝑏 ≤ 1. The corresponding
element of the chain for every case is highlighted with a green circle. The red circles are the collection of points of
the trajectory. In this example, the time belief is the time of the next element of the chain.

the fluctuations are bounded. When only the position is considered (right side of the figure),
the variability of the sampled trajectories increases, and the tracking is good on average until
the start of the two humps intersection, from where the performance degrades due to the
ambiguous states.

Figure 6.5: 200 roll-outs of 200 steps. The attractor position is injected with a Gaussian noise of zero mean and std
of 0.01. When the kernel is also taking into account the time belief, the motion is more robust when encountering
ambiguity in the intersections of the two curves. Otherwise, ambiguity can lead to divergent behaviors. Red:
original demonstration. Black: the average and standard deviation of the execution.

6.4 SIMPLE: SAFE, INTERACTIVE MOVEMENT PRIMI-
TIVES LEARNING

The proposed SIMPLe framework summarized in Algorithm 3 consists of three main parts.
First, the human teacher provides kinesthetic demonstrations (Section 6.4.1), from which a
time and position-dependent model (Section 6.3) is learned. Second, the proposed method
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enables the human to provide demonstrations and to make interactive corrections (Section
6.4.1), which are leveraged for learning the trajectories and synchronization of bimanual
tasks (Section 6.4.2). And third, the bimanual task can be executed. We employ a Cartesian
impedance control to facilitate physical interactions during demonstrations, corrections and
autonomous execution (Appendix A.1), safety is ensured thanks to the proposed stiffness
regulation (Section 6.4.3) and coupling between manipulators (Appendix A.2).

Our method aims to enhance the teaching ability of non-expert users while guaranteeing
a safe interaction while teaching, correcting, and executing bimanual tasks. To cope with the
complexity of teaching bimanual tasks, SIMPLe provides an interactive kinesthetic teaching
(KT) approach allowing to teach one arm at a time and then to teach how to synchronize
them using touch by leveraging the time and pose-dependent GGP formulation presented
in Section 6.3. To the best of current knowledge, SIMPLe is the first framework to employ
IIL on bimanual setups. Nevertheless, SIMPLe does not restrict users from teaching (and
correcting) both arms simultaneously, and it can be applied for single-arm manipulation
tasks without any loss of generality.

6.4.1 TEACHING FROM KINESTHETIC DEMONSTRATIONS AND COR-
RECTIONS

LfD allows non-expert users to program robots to perform complex tasks without any
programming knowledge. Different interfaces can be used to transfer data to the robot, such
as teleoperation devices, touch screens or physical interaction with the robot’s embodiment,
obtaining a KT approach. When the user is teaching a task, the stiffness and damping of
the Cartesian impedance controller are set to zero, allowing the user to easily move the
robot. The positions 𝝃 and times 𝝉 of the demonstrated trajectories are recorded, and their
respective goals, 𝝃 𝑑 and 𝝉𝑑 are obtained by shifting 𝝃 and 𝝉 forward in time (Alg. 3, lines 1
to 5).

After learning the motion from a kinesthetic demonstration, the user can reshape the
trajectory of each arm to achieve, for example, coordination between the arms in the execu-
tion of the task. Given the Cartesian impedance controller (see Appendix A.1), kinesthetic
corrections can be performed by simply applying an external force . Such a controller allows
for the human to be in full control if the stiffness is set to zero, or the robot can gradually
increase its control by regulating the stiffness.

Additionally, given the time and pose-dependent policy (see Sec. 6.3), the demonstrator
can also drag the robot forward or backward in time along its trajectory. This property can
be used, for example, to make the execution of the initial demonstration faster [86, 116],
to make the robot throw objects [23], or for synchronization learning, as proposed in this
chapter.

6.4.2 INTERACTIVE LEARNING OF BIMANUAL TASKS
When teaching bimanual tasks, it is not always easy or feasible to provide kinesthetic
demonstrations with both arms simultaneously, especially when using large redundant
manipulators. Additionally, even when skilled users are able to teach a bimanual task by
moving each end-effector with a single hand, they may perform a sub-optimal trajectory, or
an ineffective one, given the task complexity.
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Algorithm 3 SIMPLe
1: while Trajectory Recording do
2: [𝒙, 𝑡]⊤ = Receive(𝒙, 𝑡)
3: [𝒙, 𝑡]⊤⨄𝑿
4: end while
5: 𝒚𝑖 = 𝑿 𝑖+1,∀𝑖 ∈ {1,2,… , 𝑛−1}, with 𝑛 = dim(𝑿)
6: 𝑡𝑏 = 0
7: while Interactive Corrections do
8: [𝒙, 𝑡]⊤ = Receive(𝒙, 𝑡)
9: [𝝁,𝝈] = 𝜋𝒙,𝑡𝑏(𝒙, 𝑡𝑏)

10: [𝒙𝑔 , 𝑡𝑏𝑔 ]⊤ = 𝝁
11: 𝑡𝑏 = 𝑡𝑏𝑔
12: Send(saturate(Δ𝒙),̂)
13: [𝒙, 𝑡]⊤⨄𝑿
14: end while
15: 𝒚𝑖 = 𝑿 𝑖+1,∀𝑖 ∈ {1,2,… , 𝑛−1}, with 𝑛 = dim(𝑿)
16: 𝑡𝑏 = 0
17: while Autonomous Execution do
18: Receive(𝒙)
19: [𝝁,𝝈] = 𝜋𝒙,𝑡𝑏(𝒙, 𝑡𝑏)
20: [𝒙𝑔 , 𝑡𝑏𝑔 ]⊤ = 𝝁
21: 𝑡𝑏 = 𝑡𝑏𝑔
22: Send(saturate(Δ𝒙),̂)
23: end while
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In SIMPLe, the movement of each arm can be executed independently according to the
GGP formulation described in Section 6.3. The proposed interactive learning method offers
many possibilities for non-expert users to teach complex bimanual tasks. For example, they
can demonstrate the movement for picking up a box one arm at a time and then learn to
coordinate the two independent trajectories and apply enough pressure on the sides of the
box to execute the task successfully. Moreover, learning repetitive tasks like object hand-over
can also be initially demonstrated one arm at a time and later use kinesthetic corrections to
learn how to coordinate both arms. Thanks to the calculation of the model as a function of
position and time (belief), the user can also bring the robot back to the start of the trajectory
and teach (with minimum interaction effort) to perform the task multiple times.

6.4.3 STIFFNESS REGULATION
Regulating the stiffness can be used to incrementally increase the stiffness after each demon-
stration, reducing human control as the learned movement is interactively refined [163].
Alternatively, the stiffness can be regulated when perceiving strong external forces, as a
disagreement detection [165]. Similarly, [86] proposed a variation of a DMP where the
robot variable stiffness and the regressor phase are modulated to adapt to human kinesthetic
demonstrations.

When more demonstrations are provided, the measure of aleatoric uncertainty, i.e.,
variability in the demonstration, can be used to regulate the tracking stiffness of the robot
[81]. Differently, we propose to exploit the epistemic uncertainty quantification of the policy
(𝝈), enabling for automatically regulating the Cartesian impedance controller’s stiffness,
hence switching control between robot and human.

Mathematically,

̂ = saturate()
1−𝝈(𝒙)
1−𝝈 𝑡𝑟

, when 𝝈(𝒙) > 𝝈 𝑡𝑟 (6.1)

where the 𝝈 𝑡𝑟 is the uncertainty threshold that is used to detect the disagreement. Note that
𝝈(𝒙) goes from 0 when close to the trajectory, to 1 when at infinite distance from it. Thanks
to this stiffness regulation, when the robot is dragged in regions of high uncertainties, it
mitigates the external force applied to the user perturbing the trajectory. This behavior can
be conceptualized as the robot’s non-verbal teaching request or repositioning into regions
closer to the demonstration.

6.5 REAL ROBOT VALIDATION
We performed the experiments with two 7-DoF Franka-Emika Panda placed vertically on a
table and with the same orientation. The impedance control was implemented1 as described
in Appendix A.2. Each manipulator had a shared memory of their Cartesian poses, allowing
the calculation of the mechanical coupling force. The experiments presented in Sections
6.5.1, 6.5.2, 6.5.4, and 6.5.5 were performed using a custom 3D-printed plate end-effector
depicted in Figs. 6.9 and 6.10, which features a layer of soft form for reducing the interaction
forces during impacts with objects as in [44]; the experiment presented in Section 6.5.3

1https://github.com/franzesegiovanni/franka_bimanual_controllers

https://github.com/franzesegiovanni/franka_bimanual_controllers
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was performed using the Franka gripper. The impedance control framework, written in C++
makes use of Robot Operating System (ROS) to interface with Alg. 3, written in Python. 2

We perform 5 experiments with the real robot setup:

i) The interactive synchronization of the picking motion of a bottle crate when the
demonstration is provided separately for each robot, showing how SIMPLe is used to
learn a bimanual synchronization,

ii) the interactive correction in picking a different crate compared to the one of the original
demonstration, showing how to use the GGP formulation to modify the motion locally,

iii) a handover task, where one robot picks and places an object and the other robot picks
it from the other’s goal location and places it at another position, showing the ability to
restart the execution of a trajectory simply dragging the robot at the starting location,

iv) a supplementary user study to compare teleoperation and KT, the two most common
types of demonstration approaches,

v) a supplementary user study to compare giving interactive corrections to giving new
demonstrations.

The first three are technical experiments to highlight and validate different functionalities
of the proposed method. Each experiment was conducted in 5 trials, and for each of them,
the final learned motion was performed 5 times after demonstration and correction(s). This
approach allowed for the assessment of the reliability of the learned skill. The last two are
supplementary user studies to evaluate the type of data input for the proposed by comparing
two human demonstration approaches and to evaluate giving corrections compared to giving
new demonstrations. These additional insights can provide a better understanding of the input
data generation method and adjustments of the robot’s skill for bimanual cases. For all the
experiments, we used a position-time kernel for the GGP that computes the correlations and
updates the time beliefs online. We use a negative exponential kernel, i.e. 𝑘 = exp(−

|𝑥𝑖−𝑥𝑗 |
𝑙 ),

with a length scale of 0.05 m for the space correlation and 0.05 s for the time correlation. The
sigma threshold is set to 𝜎(𝑙), which is the uncertainty when the closest point is at a distance 𝑙.
The Cartesian stiffness is kept to 600 N/m for linear stiffness and 30 Nm/rad for rotational.
The attractor distance is saturated at 0.05 m, implying that the expected maximum applicable
force is 30 𝑁 in every linear Cartesian direction and the maximum expected linear velocity
is ≈ 0.6 m/s in every linear direction. The rotation delta is saturated at 0.15 rad, implying
a maximum torque of 4.5 Nm in every rotational component and a maximum velocity of
≈ 0.4 rad/s. The coupling stiffness is set to 800 N/m in the linear components and 0 for the
rotational ones. The relative error is also saturated at 0.05 m. A video of the experiments can
be found at https://youtu.be/GasxgbJZHdQ.

6.5.1 ASYNCHRONOUS CRATE PICKING
When a pianist approaches studying a new piece, they do it one hand at a time. After
mastering the movement with each hand, they start learning how to successfully coordinate

2https://github.com/franzesegiovanni/SIMPLe

 https://youtu.be/GasxgbJZHdQ 
https://github.com/franzesegiovanni/SIMPLe
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Figure 6.6: Interactive synchronization of a bimanual picking task. The dashed lines are the demonstrations recorded
in the independent demonstration phase a) and b). Since they are not perfectly synchronized, the autonomous
execution would fail, hence, the human feedback in c) allows a successful synchronization, depicted with solid
lines.

the combined execution. Inspired by this idea, in this validation experiment, the user is
asked to demonstrate how to best pick a crate, first with the right and then with the left
manipulator. However, when the independently learned behaviors were executed with
SIMPLe the coordination was off, and the handling of the crate was not stable. In Section
6.4.2, we highlighted how user feedback can be used to reshape the trajectory and that the
reactive formulation of SIMPLe makes the trajectory to “virtually” stop: this feature can be
used to learn a bimanual task while simply coordinating the separately recorded policies, see
Figure 6.6.

The effect of the human input can be appreciated in Figure 6.6. The original demon-
strations are represented by dashed lines. Even if the movement of the two demonstrations
looks correctly symmetric with respect to the y-plane, the right arm is slower. However, it
can be noticed how, after only one correction round, the motion of the two demonstrations is
synchronized, as depicted with a solid line. Given the perfect obtained synchronization, in
the next round, the user focused on increasing the applied pressure on the side of the crate to
increase the grasp reliability.

In the 5 experiment repetitions, the user consistently provided necessary synchronization
corrections. One trial had an additional correction round, and two trials had two extra
correction rounds. After the interactive correction rounds, the robot always placed the crate
correctly. The Cartesian error of the final crate position with respect to the final round of
correction, considering 25 repetitions (5 executions x 5 trials), has a mean of 0.021 m and a
standard deviation of 0.009 m.

6.5.2 SYNCHRONOUS CRATE PICKING
In this experiment, we focused on successfully teaching the same task of picking a box but
giving bimanual demonstrations and corrections. In particular, we showed that even giving
only one bimanual demonstration with a few rounds of corrections, the task execution was
successful. We also tested the possibility of locally modifying the original policy to pick a
different box placed at a higher level. Figure 6.7 highlights how the robot can be dragged
higher sooner, at around 10 seconds, and how, after picking the crate, the robots follow the
original policy, being able to place the crate and go to resting position autonomously. In the
5 experiment repetitions, in the first two trials, the user provided two rounds of correction,
but only one in the last three. The final position error of the box has a mean of 0.005 m and a
standard deviation of 0.004 m. It is important to notice that even knowing the box’s position,
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Figure 6.7: Use interactive learning to teach the robot how to modify the original trajectory so the robot can learn
how to pick a crate that is at a different height.

the motion’s generalization in a task-parameterized approach is not trivial. In fact, the policy
would have to move with respect to the picking frame and then, after a successful pick,
switch with respect to the goal crate. This logic has shown to be successfully implemented
in [116] but also to be a source of generalization ambiguities [54]. In general, performing a
shared controlled teaching, with the user only taking control locally, can drastically reduce
the burden of giving new complete demonstrations.

6.5.3 OBJECT HAND-OVER
Another example of a tedious task is repetitive demonstrations: being able to demonstrate
the task only once and then interactively assemble a long trajectory allows the teaching of
complex bimanual coordination tasks, like stirring a coffee mug [154] or learning a handover
task. To validate SIMPLe in this circumstance, we taught the right arm to pick up a box and
place it on the central separation line between the two robots. Then, the left arm would pick
up the box and place it in its front. The goal is to show how dragging the robot around can
be used for re-synchronization or local trajectory reshaping and also as a movement “reset”.

The original demonstrations are displayed with a dashed line in Figure 6.8. When
executing the motion with SIMPLe, the human can safely apply a force on the robot to stop
its execution or drag it around on another desired position of the motion. At the beginning
of Figure 6.8, a force is applied to the left manipulator (highlighted by a red circle) to
temporally stop it from moving, allowing the right arm to successfully pick a box and place
it on the center line. At the moment that the user releases the robot, it is free to move and
can pick up the box and reach its goal. To allow the repetition of the motion, the user applies
a larger external force (observable with peaks), causing a drop in stiffness since the robot is
probably dragged into a region of space with a lower correlation according to (6.1). Every
time the robot finishes its pick and place task, if the user is willing to repeat it, they only have
to drag the robot to the desired position of the trajectory. The user is teaching the motion
multiple times, as reported with colored patches in the figure.

We measured the final error in placing the box after the handover, executed 5 times in
5 different demonstration trials. The mean error and standard deviation are 0.011 m and
0.008 m, respectively.
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6.5.4 USER STUDY: TELEOPERATION VS. KINESTHETIC TEACHING
The algorithm itself works with different data from different types of demonstrations. How-
ever, since obtained input data depends on the type of demonstration, the demonstration
modality is an essential part of the whole framework. Therefore, we conduct a supplemen-
tary user study to provide additional insight into the effects of the demonstration method to
compare the two most common demonstration approaches: teleoperation and kinesthetic
guidance. There are studies comparing both teaching approaches, but they were conducted
for a single arm [51, 62]. The study in this chapter looks into this subject from a bimanual
perspective.

Section 6.2 highlighted how different works focus on enhancing the teleoperation ability
of non-expert users using assistive techniques like shared autonomy [99, 134, 162]. Since
SIMPLe works with both teleoperated and kinesthetic demonstrations/corrections, we wanted
to study which is more user-friendly. Although, getting the true answer is not easy: the
teleoperation device can have a strong influence, as well as the dimension of the robot or
the requested task. For the conducted user study, we asked 7 non-expert users to perform a
relatively simple task: pick a box and stack it on top of another. These 7 users were all male
and with ages ranging 23 and 40 years old.

In order to mitigate the learning bias from the results, participants had a familiarization
phase for each teaching modality, in which they could restart the teaching session up to
5 times. For every new participant, the first teaching modality was alternated between
teleoperated and kinesthetic, to remove the bias due to their familiarization with the task.

For metrics, we measured the success rate in solving the task and the total teaching time
for each method. For subjective analysis, we asked the participants to complete a NASA
TLX questionnaire. We conducted a paired samples t-test to verify if the time to do KT is
significantly shorter than for teleoperation with the 6D mice. However, 3 people out of 7
failed to perform successful teleoperation, because they did not manage to coordinate well,
making the robot self-collide or reach a joint limit. Therefore, we set as failure time the
maximum time of the non-failing ones. The test showed that KT requires less time compared
to the teleoperation with the given hardware with the difference being statistically significant
(𝑝 < 0.05).

Figure 6.9 illustrates the average NASA TLX scores among the different users. We can
observe that teleoperation resulted in being more mentally demanding and frustrating to
perform. In general, we could observe that users tend to focus on teleoperating one arm
at a time, making handling the box impossible. When providing KT, the physical contact
with the robot helps them to understand the best trajectory better and to accomplish the task
successfully.

6.5.5 USER STUDY: CORRECTIONS VS. NEW DEMONSTRATION
Besides the input data generation method, another key factor related to bimanual manipu-
lation teaching is how humans correct existing skills and what their preference is between
correcting or giving a new demonstration. To test this, 12 non-expert users participated in an
experiment structured as follows. The user was asked to demonstrate the task of placing a
box on the crate. The demonstration was then shown to the user after an offset was applied
to the initial position of the box. The user was then tasked with kinesthetically correcting the
initial policy to account for the change in the initial position. This was repeated two times
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Figure 6.9: User study to compare the performance of non-expert users in performing bimanual teleoperation with
two 6-D mice versus bimanual KT. On the left are scores of the NASA-TLX questionnaire, and on the right are the
set-ups of teleoperating and performing KT.

for different initial positions of the box. The user now should have a sufficient understanding
of what it means to give a demonstration or correction. Fig. 6.10 illustrates the setup with
the box to pick. The goal is to place the box on the crate. The rectangles are the different
regions where the box can be placed or dragged to as a waypoint.

The second part of the experiment was designed to find the user preference for increasing
lengths of the demonstration. The user was tasked with first demonstrating the task of placing
the box on the crate. After the demonstration, an offset was applied to the box and the user
was given the choice to either correct or re-demonstrate given the new initial condition. For
the second iteration, the task remained the same with the additional requirement that after
picking up the box, before placing it on the crate, the user has to move the box through a
different location as a waypoint. This was done to artificially lengthen the demonstration.
Once again an offset was applied to the initial position of the box and the user was given
the choice between correcting or redemonstrating. This was done one last time with two
waypoints.

Given the choice, out of the 12 participants, 11, 8, and 10 chose to adjust the policy with
the interactive corrections for the experiment with zero, one, and two waypoints, respectively,
rather than providing new demonstrations. Thus, only in 7 out of the 36 trials, a new
demonstration was preferred, which indicates a strong preference for interactive corrections.
Afterwards, to evaluate their experience they were asked to answer several Likert scale
questions related to user perception of corrected skill and their physical/mental load. The
results can be seen in Table 6.1, where the number in each cell represents the number of
participants that choose a particular agreement on the Likert scale.

The users found that both new demonstrations and corrections were effective at improving
the robot’s task. The users were split on whether the bimanual demonstrations were tedious.
In general, they found interactive corrections more physically demanding than providing
new demonstrations, probably because the robots were already performing movements rather
than being completely compliant during new demonstrations. During the experiments, it was
observed that people that were shorter, had smaller hands, or were less muscular, tended to
struggle more with correcting a policy. Those participants thus might have preferred giving
a new demonstration over a correction. However, the users perceived interactive corrections
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Figure 6.10: Set up used for the user study to compare the performance of non-expert users in performing corrections
versus new demonstrations. The workspace is discretized in different regions where the box can be placed or
dragged to as a waypoint.

Score Q1 Q2 Q3 Q4 Q5
0 (strongly disagree) 0 0 0 4 0
1 (disagree) 0 2 2 4 2
2 (slightly disagree) 0 2 4 3 4
3 (slightly agree) 1 3 5 0 1
4 (agree) 2 4 0 1 5
5 (strongly agree) 9 1 1 0 0
mean 4,67 3.00 2,50 1,67 2,75
standard deviation 0,65 1,28 1,09 1,19 1,22

Q1: After giving Kinesthetic demonstration, I feel the robot is performing the task well,
Q2: After providing corrections, I feel the robot is adapting well to the novel situation,
Q3: I feel that giving a bimanual Kinesthetic Demonstration with two arms is tedious for a human teacher,
Q4: Performing Interactive Corrections is LESS physically tiring than giving a completely new demonstration,
Q5: Performing Interactive Corrections is LESS mentally tiring than giving a completely new demonstration

Table 6.1: Likert scale: corrections vs. new demonstrations

as slightly less mentally demanding, probably because they needed to pay attention only to
specific segments as opposed to the whole task.

6.6 CONCLUSION
This chapter contributes to the field of bimanual manipulation with an interactive kinesthetic
learning framework named SIMPLe. It uses a novel formulation of GP, named GGP,
that is computationally efficient and ensures local and global stability of the motion while
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retaining an estimation of epistemic uncertainties. Thanks to the kernel formulation, the
policy encoding can go from purely time-dependent to purely position-dependent or to a
combination of both. At the same time, the graph representation of it allows an online update
of the time belief that, differently from the robot position, cannot be directly measured. The
study reports a comparison of a GP with the novel GGP, see Figure 6.3 and an ablation study
when the time dependence is considered or not, see Figure 6.5. We conclude that considering
the time and properly updating its beliefs allows dealing with more complex and possibly
ambiguous demonstrations.

Various technical validation experiments were performed on a real bimanual setup to
demonstrate the key functionalities and capabilities of the proposed method. The supple-
mentary user studies gave interesting insights into how humans feel when teaching and
correcting a robot with different modalities. This study reported that users are faster and
less stressed when performing kinesthetic teaching compared to teleoperation. Furthermore,
most users prefer giving corrections to completely new demonstrations.

However, to transfer the learned skills to new situations, i.e. locations of the box to pick,
we must develop a way of transporting the learned skill from the demonstration context to
the new context. The next chapter will formalize this by exploiting the use of GPs allowing
the generalization to of policy for pick and place, dressing, and cleaning tasks while retaining
a clear formulation of the uncertainties.
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7
GENERALIZATION OF TASK

PARAMETERIZED DYNAMICAL
SYSTEMS USING GAUSSIAN

PROCESS TRANSPORTATION

Learning from Interactive Demonstrations has revolutionized the way non-expert humans
teach robots. It is enough to kinesthetically move the robot around to teach pick-and-place,
dressing, or cleaning policies. However, the main challenge is correctly generalizing to novel
situations, e.g., different surfaces to clean or different arm postures to dress. This article
proposes a novel task parameterization and generalization to transport the original robot
policy, i.e., position, velocity, orientation, and stiffness. Unlike the state of the art, only a set
of points are tracked during the demonstration and the execution, e.g., a point cloud of the
surface to clean. We then propose to fit a non-linear transformation that would deform the
space and then the original policy using the paired source and target point sets. The use of
function approximators like Gaussian Processes allows us to generalize, or transport, the
policy from every space location while estimating the uncertainty of the resulting policy
due to the limited points in the task parameterization point set and the reduced number
of demonstrations. We compare the algorithm’s performance with state-of-the-art task
parameterization alternatives and analyze the effect of different function approximators. We
also validated the algorithm on robot manipulation tasks, i.e., different posture arm dressing,
different location product reshelving, and different shape surface cleaning. A video of the
experiments can be found here: https://youtu.be/FDmWF7K15KU.

This chapter is based on  Franzese, G., Prakash, R., and Kober, J. (2024). Generalization of Task Parameterized
Dynamical Systems using Gaussian Process Transportation[57].

https://youtu.be/FDmWF7K15KU
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7.1 INTRODUCTION

𝝓

𝑓

Figure 7.1: Example of Policy Transportation. The human demonstrates to a robot how to perform a task on a
flat canvas. Then, the robot, when facing a new curved canvas, “transports” its knowledge in the new situation by
adapting the end effector velocity, orientation, and stiffness to correctly adapt the drawing on the new canvas.

One of the main appeals of robot learning from demonstrations is that it enables humans
with different levels of robotic expertise to transfer their knowledge and experience about
skills and tasks to the robot [38]. This alleviates the need to program such skills by hand,
which is tedious, error-prone, and requires an expert. However, one of the long-term
challenges of this approach is generalizing the learned behavior to novel situations.

By enhancing the policy with task parameterization [28], robots can generalize their
learned knowledge to different variations of the same task, thus promoting scalability and
data efficiency in robot learning, allowing robots to learn faster and adapt to new scenarios.
For instance, a robot can be trained to clean surfaces with a reduced set of shapes, to dress
an arm in a certain configuration, or to pick objects with a certain shape and place them
on the right shelf. Ideally, the robot would generalize the learned skill to novel situations
without extensive retraining. This chapter proposes a way of transfer, or “transport", the
original learned behavior from the old to the new situation.

For example, let us imagine teaching a robot how to draw on a flat canvas, as depicted in
Fig. 7.1. The robot can learn to imitate the human on the same flat canvas, however, when
the desired surface to reproduce the task is changed, i.e., the blue curvy surface, the user may
have to teach the task again on the new surface. Instead, by knowing the correspondence of
a set of points from the two surfaces, we propose to learn a function that could generalize
the policy from the original parameter distribution to the new one.

The learned function is locally deforming the space according to the new location of the
tracked points and this can be used to generalize the learned velocity field, learned stiffness
and orientation. Fig. 7.2, depicts how the trajectory and the learned desired dynamics of
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drawing a letter C depicted as red dots, on a flat surface, depicted in green; the robot would
learn the desired behavior, i.e., the velocity depicted as black arrows, form any position of
the space. However, when the desired surface to reproduce the task is changed, i.e., the blue
curvy surface, the user may have to teach the task again on the new surface. Instead, by
knowing the correspondence of a set of points from the two surfaces, we show how to learn
a function that could generalize the policy from the original surface shape to the new one.

The proposed algorithm contributes with the formalization and testing of a policy trans-
portation theory that can

• transport the demonstration from the original space to the new space, see Sec. 7.3.2;

• transport the velocity field, end-effector orientations, stiffness and damping by exploit-
ing the derivative of the transportation mapping, see Sec. 7.3.3;

• estimates the final uncertainty due to the reduced set of demonstrations and the
estimated uncertainty in the transportation map, see Sec. 7.3.5.

The same algorithm was tested on generalizing complex manipulation tasks like cleaning
surfaces with different shapes, picking and placing objects at other locations, and dressing
an arm in various configurations, see Sec. 7.5.

Figure 7.2: The demonstrations (in red) are given on the green surface, and the learned dynamics, depicted as
arrows, are learned from them. Later, the demonstration and the dynamics are projected on another curved blue
surface using the proposed Gaussian Process Transportation.

7.2 RELATED WORKS
One classical method to generalize behavior to new situations involves task parameteriza-
tion, such as the picked object location, target goal, or via points. This idea of behavior
representation and generalization in varying task configurations has been popularly achieved
using DMPs [146] through a single or multiple demonstration per task. The DMP model
consists of stable second-order linear attractor dynamics with alterable target parameters
(end goal or velocities).
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An approach to adapt the DMPs via points is addressed in [145], but it demands combin-
ing several DMPs for a single task. Alternatively, a roto-translation can be applied to the
original dynamical systems according to the tracked frame or points in the environment.

Approaches for modeling and generalizing demonstrations that have shown improved
performances with respect to the DMPs are Probabilistic Movement Primitive (ProMP)[125].
ProMPs model the distribution over the demonstrations that capture temporal correlation and
correlations between the DoFs using a linear combination of weights and a set of manually
designed basis functions. Adaptation to new task parameters or via points is achieved using
Gaussian conditioning. While this approach allows modeling the structure and variance
of the observed data in the absolute reference frame, the generalization to the new task
parameters is satisfactory only within the confidence bound of the demonstration data. For
example, showing many demonstrations for different goal points, the probabilistic model can
be conditioned on a novel object position and retrieve the most probable trajectory that brings
the robot to that final position. However, when learning reactive policies, i.e., a function of
the state and not of the phase of the motion, the use of ProMPs is limited since the number
of basis functions overgrows with the dimension of the input, limiting its applications.

Kernelized Movement Primitives (KMPs) [77] proposed a non-parametric formulation.
This formulation allows modulation of the recorded trajectories to new via points, obtaining
the deformation of the original movement primitives given the temporal correlation of the
demonstration and the via point, calculated with the kernel function. However, the user must
specify the time and the corresponding waypoint to deform the original trajectory or rely on
a heuristic that, for example, matches each waypoint with the closest point in the trajectory.

Gaussian Mixture Model (GMM) [30–32] have successfully been employed in modeling
demonstration, endowing with a successful generalization in its task parameterized version,
i.e. Task-Parameterized Gaussian Mixture Model (TP-GMM) [28]. Given a set of reference
frames that are tracked during demonstration and execution, the central idea of TP-GMM is
the local projection of the demonstrations in each of the local reference frames and encoding
each model as a mixture of Gaussians [28, 34, 76, 149]. The local models are then fused
in global coordinates, using the Product of Gaussian (PoG), and a new motion is rolled out
from the resulting mixture model. This approach, however, requires many demonstrations
to fit the model and does not scale well with the increasing number of task frames. This is
because the PoG does not scale well when dealing with many reference frames and can lead
to undesirable generalizations.

The generalization of the demonstrations, encoded as a chain of events in a graph, with
respect to multiple via points, can be done using Laplacian Editing [105, 123]. It uses the
Laplace-Betromi operator, a well-known algorithm in the computer graphics community,
to deform meshes [153], to encode geometric trajectory properties and generate deformed
trajectories using task constraints, i.e., new via points. The operator ensures a smooth
deformation of the trajectory through the via points. However, this approach is very specific
for trajectory reshaping and requires explicit knowledge of the new via-point for some
trajectory nodes. In this chapter, we relax the need to explicitly specify the new via-points
for a specific node in the trajectory since the via-point definition can be error-prone and
requires ad-hoc algorithms.

Moreover, while all the previous approaches only address generalizing a demonstra-
tion/robot trajectory, the proposed approach relaxes the requirement of generalizing only
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trajectories. It provides the means also to generalize the velocity field of the original dynam-
ics, as well as the orientation and the stiffness. For generalization, we use a combination
of linear transformation and non-linear deformation to transport demonstrations to new
situations while estimating the process uncertainty. We validated the algorithm on three use
cases: robot reshelving, robot dressing, and robot cleaning.

Robot Reshelving: Authors of [116] propose, within the realm of robotic retail au-
tomation, to enable non-expert supermarket employees to teach a robot a reshelving task
and then adeptly generalize its learned policy to accommodate diverse task situations. The
generalization of the policy for varying object locations is achieved by switching between the
dynamical system learned between the object and the goal frame. However, the switching
strategy entails having a good prior on when to switch and all the possible implications
of generating instability by suddenly changing the policy online. TP-GMM alternatives
[28], solved the problem of the switching by obtaining the final GMM as the product of the
relative models; however, more than one demonstration is necessary to fit an informative
model.

Robot Dressing: Robot dressing is a challenging task since it includes manipulation of
deformable objects, and the margin of error to correctly go through the human arm is very
low. Task parameterized dynamical system has been applied to learn the dressing task in the
robotics research. The dressing demonstrations w.r.t. the wrist and the shoulder of a human
arm have been used to learn a dressing policy via DMP [84], HMM [129] and a TP-GMM
[181].

Robot Surface Cleaning: Efficient and fast generalization of robotic surface cleaning
can be achieved using task-parameterized learning. In [9] the cleaning dynamics is the sum
of two dynamical systems, one that learns the desired motion on the surface and another that
computes the modulation term on the desired force to apply on the perpendicular direction of
the surface (where the shape is known a priori). This second term is learned as a non-linear
function that allows learning larger forces in a region of the surface compared to others. The
shape of the surface can also be estimated using the wrench measured with a force-torque
sensor attached at the end-effector; for instance, [13] generalizes the polishing task on the
novel curved surface by adapting the orientation and the direction of the contact force such
that to minimize perceived torque.

The following section will provide some background on the main concepts necessary for
learning a policy from demonstration and generalize it using Gaussian Process Transporta-
tion.

7.3 POLICY TRANSPORTATION
We learn and correct a manipulation policy from an interactive demonstration [38], using,
for example, a GP as the function approximator to fit the demonstration dynamics.

However, although the task execution would succeed from any given starting configura-
tion of the robot, it will fail to generalize if the task is changed, e.g., if the object to pick is
moved or if the robot faces a differently shaped surface to clean.

Intending to find a task parameterization that scales from pick-and-place to continuous
surface, we assume to track a set of environment-specific points that are descriptive of the
situation. For example, when picking a box, the eight corners are tracked, or when cleaning
a surface, a point cloud representation is used. This is the most straightforward yet most
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general task parameterization while being technically feasible, given the current development
of LiDAR and depth camera technology.

We define the tracked 𝑁 point recorded in the demonstration scenario as the source
distribution, i.e.,

 = {(𝑥𝑠,𝑖, 𝑦𝑠,𝑖, 𝑧𝑠,𝑖)}𝑁𝑖=1
while the moved points in the new scenario are defined as the target distribution, i.e.,

 = {(𝑥𝑡,𝑖, 𝑦𝑡,𝑖, 𝑧𝑡,𝑖)}𝑁𝑖=1.
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Figure 7.3: 2D transportation. Distribution match depicts the source and the target distribution correspondence
used to train the transportation function. Source Distribution depicts a grid of points in the original space. Linear
Transformation shows the effect on the original grid when only a linear transformation is used to match source and
target distribution. GP Transportation captures the deformation of the space when the source points are forced to
match the target ones.

We assume that the points of target and source distribution are already paired. Many
algorithms are available to (optimally) pair the two distributions [42]; hence this is not the
focus of this work.

We define a map 𝝓 such that each point 𝑠𝑖 in 𝑆 is paired with one and only one point 𝑡𝑗 in
𝑇 . This can be represented as:

𝝓 ∶  → 
𝑠𝑖 ↦ 𝑡𝑗

where 𝑖, 𝑗 ∈ {1,2,… , 𝑛}. We aim to find the function that maps from the source space to
the target space, given the evidence of the input-output pairs from the source and target
distribution. Estimating a continuous process allows the deformation of the complete space
to match the source and the target distribution, as depicted in Fig. 7.3.

The structure of the function 𝝓 that we want to approximate can be any nonlinear
function that maps any point of the Cartesian space to itself, e.g., 𝝓 ∶ ℝ3 → ℝ3. However,
in the context of this article, we consider the transportation function to have the following
definition,

𝝓(𝒙) ∶= 𝝀(𝒙)+𝝍(𝝀(𝒙)) (7.1)

where 𝝀 and 𝝍 are, respectively, a linear and nonlinear transformation. The fitting of the
function is made in two steps: first the linear transformation 𝝀(𝒙) is obtained, and then the
nonlinear transformation 𝝍(𝝀(𝒙)) is fitted on the residual error.
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7.3.1 LINEAR TRANSFORMATION
To fit the optimal rotation matrix between the source and the target distribution, the centered
source and target distribution are used as labels for the fitting of the function 𝝀, i.e.

 − ̄⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑦label

= 𝝀( − ̄⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑥label

)

where ̄ and ̄ are the centroid of the source and the target distribution, respectively.
We can find the rotation between the two centered distributions using the Singular Value
Decomposition (SVD) imposing

𝑼𝚺𝑽 ⊤ = ( − ̄)⊤( − ̄ )

and the rotation matrix is defined as,

𝑷 = 𝑽 𝑼⊤,

however, if det(𝑷) < 0, the last column of 𝑽 is flipped in sign, and the computation of the
rotation matrix is repeated. This ensures the transformation is a proper rotation matrix
without any reflection; see [14] for more details. Hence, the linear transformation on any
point in the space can be computed as

𝝀(𝒙) = 𝑷(𝒙− ̄)+ ̄ . (7.2)

Fig. 7.3c shows a linear transformation of the source and a grid of points from the original
space depicted in Fig. 7.3b.

7.3.2 NON-LINEAR TRANSPORTATION
After fitting the linear transformation of Eq. (7.2), the residual transformation is obtained by
substituting the source, target points, and the fitted linear function in Eq. (7.1), obtaining that

 −𝝀()
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑦label

= 𝝍(𝝀()
⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝑥label

).

The nonlinear function 𝝍 can be any nonlinear regressor, such as a Neural Network, a
Random Forest, a Gaussian Process, etc. However, the inducting bias given by the nature of
the nonlinear function will affect the regression output when going out of distribution, i.e.,
far away from the given data. For example, suppose the function is approximate with a GP
with a distance-based kernel 𝑘, such as a square exponential kernel.

If the prior distribution is set to be a zero-mean function when making predictions in
regions of the space far away from the source distribution points, the final transportation
converges to just being a linear transformation, see Fig. 7.3d. Knowing the out-of-distribution
(o.o.d.) properties of the transportation policy is desirable, considering that we will transport
points that are not necessarily close to the point of the source/target distribution.
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Figure 7.4: Mathematical Scheme of Policy Trans-
portation.
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Figure 7.6: Standard Deviation quantification on the velocity field. Transportation Uncertainty was computed
with Eq. 3.3 and quantifies the (heteroscedastic) uncertainty on the transported label (velocity) corresponding to the
transported demonstration. Epistemic Uncertainty is the resulting model uncertainty when fitting the new policy
̂𝑓 . Total Uncertainty is the resulting standard deviation after computing the variance sum of transportation and

epistemic uncertainties.

7.3.3 TRANSPORTATION OF THE DYNAMICS
Although the transportation map allows the transport of any point of the original demonstra-
tion in the new situation, for example, to generalize the demo on cleaning a new surface,
we still have not formulated a transportation function for the velocity field �̇�. It is not as
trivial as computing the numerical differentiation of the transported trajectories. We consider
the policy labels as independent points, no longer part of a trajectory. This allows us to
learn from multiple demonstrations and to change the velocity label connected to them if
providing (teleoperated) feedback or aggregating new data from interactive demonstrations
[55]. Nevertheless, the partial derivative of the transportation mapping can be exploited in
the velocity field generalization. Given the transportation function defined in the source
space and projecting in the target space, i.e.,

�̂� = 𝝓(𝒙)
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by differentiating w.r.t. time on both sides and using the chain rule, we obtain the velocity
field in the transported space as

̇̂𝒙 =
𝜕𝝓(𝒙)
𝜕𝒙

�̇� = 𝑱 (𝒙)�̇�

where the Jacobian matrix, using the definition of Eq. (7.1), can be defined as

𝑱 (𝒙) ∶=
𝜕𝝀(𝒙)
𝜕𝒙

+
𝜕𝝍(𝒙)
𝜕𝝀(𝒙)

𝜕𝝀(𝒙)
𝜕𝒙

where 𝜕𝝀(𝒙)
𝜕𝒙 = 𝑷 and 𝜕𝝍(𝒙)

𝜕𝝀(𝒙) can be obtained using automatic differentiation of the chosen
regressor. In the following sections, we will simplify notation by omitting the explicit
dependence of 𝑱 on 𝒙.

7.3.4 ROBOT ORIENTATION AND STIFFNESS GENERALIZATION
However, when learning and controlling the Cartesian robot pose, we must also generalize
the desired end-effector orientation.

Let us consider the end effector to be a vector of infinitesimal length with the base 𝒙𝟎
on the end effector position and pointing in the direction of the robot orientation during the
demonstration, 𝑹𝑒𝑒. The transportation of the tip of the vector can be obtained using the
Taylor approximation of Eq. (7.1), according to

�̂�tip = 𝝓(𝒙tip) ≈ 𝝓(𝒙𝟎)+
𝜕𝝓
𝜕𝒙
𝝐 = 𝝓(𝒙𝟎)+ 𝑱 𝑹𝑒𝑒𝝐0 (7.3)

where 𝑹𝑒𝑒 ∈ ℝ3×3 is the original robot orientation, 𝝐0 is a vector with an infinitesimal
dimension that has zero orientation. From Eq. (7.3), it is readily apparent that the transported
orientation matrix of the robot end-effector becomes

�̂�𝑒𝑒 ∶= 𝑱 𝑹𝑒𝑒 .

The transported orientation matrix needs to be orthogonal with the determinant equal to 1;
hence, the pre-multiplication matrix 𝑱 must have the same properties. We enforce this by
normalizing 𝑱 with its determinant and finding the corresponding orthogonal matrix with a
QR decomposition.

Additionally, when implementing policies on a Cartesian impedance control, the stiffness
 and the damping matrix  must also be transported. The change of coordinates of the
stiffness and the damping follows from the transportation of the robot-applied force on the
environment found using Hooke’s law, i.e.,

�̂� = ̂Δ�̂� = ̂
Δ�̂�⏞⏞⏞⏞⏞⏞⏞
𝑱Δ𝒙 = 𝑱

𝑭⏞⏞⏞⏞⏞⏞⏞⏞⏞
Δ𝒙 .

Hence, the generalization of the stiffness matrix becomes

̂ = 𝑱𝑱 𝑇
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and following a similar reasoning for the damping matrix, we obtain,

̂ = 𝑱𝑱 𝑇 ,

considering that the inverse of an orthogonal matrix is equal to the transpose of the matrix
itself.

7.3.5 TRANSPORTATION UNCERTAINTY
A probabilistic function approximator, like a GP, will also provide the uncertainty on
transportation output that can be propagated in the transported dynamical system.

In particular, a GP derivative is also a GP [172] and its existence will depend on the
differentiability of the kernel function. The correlation between derivative samples can be
expressed as the second partial derivative 𝑘11 = 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗 𝑘(𝑥𝑖, 𝑥𝑗 ) while the correlation between

derivative samples and function samples is 𝑘10 = 𝜕
𝜕𝑥𝑖 𝑘(𝑥𝑖, 𝑥𝑗 ). Thus, the mean and variance

prediction of the derivative of the Gaussian Process become

𝝁′ = 𝑲10
𝑿∗ ,𝑿 (𝑲𝑿 ,𝑿 +𝜎2

𝑛𝑰)
−1𝒚

𝚺′ = 𝑲11
𝑿∗ ,𝑿∗ −𝑲

10
𝑿∗ ,𝑿 (𝑲𝑿 ,𝑿 +𝜎2

𝑛𝑰)
−1𝑲01

𝑿 ,𝑿∗ .
(7.4)

The uncertainty quantification of the transportation policy becomes essential for calculating
the final uncertainty on the control variable, e.g., the velocity. In Fig. 7.5, the uncertainty is
also displayed as a shaded area around the demonstration and as the “warmness" of the color
in the vector field.

The uncertainty of the velocity labels is due to the propagation of the original labels
through the derivative of the (uncertain) transportation map, see Fig. 7.5, i.e.,

𝚺�̂� = 𝚺 𝜕𝝓(𝒙)
𝜕𝒙
�̇�𝟐.

given the definition of the weighted sum of Gaussian variables [46].
Hence, considering that the labels are uncertain, the prediction of the resulting het-

eroscedastic GP [103] can be computed as the sum of the epistemic and (variable) aleatoric
uncertainty, that is

𝚺 ̇̂𝑥 = 𝚺�̂� +𝚺�̂� .

Fig. 7.6 depicts the transportation uncertainty on the norm of the velocity, calculated with
Eq. (7.4) and the epistemic uncertainty of the model �̂�, computed with Eq. (3.3) using
transported position and transported velocities labels. From Fig. 7.5 and 7.6, it is possible
to appreciate that the transportation uncertainties grow when evaluating in regions that are
far away from the task parameterization points since the transportation is less certain when
going far away from the distribution data; on the other hand, the epistemic uncertainty grows
when evaluating in points that are far from the transported demonstration.

In conclusion, the sum of the two uncertainty fields in Fig. 7.6 grows either when we go
far away from the (transported) demonstration or away from the points of the source/target
distribution.
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7.4 2-D SIMULATIONS AND COMPARISONS
The availability of (calibrated) uncertainties is an important feature to improve the trust-
worthiness in deploying robot motion generalization. In this section, we evaluate Gaussian
Process Transportation (GPT) on generalizing the demonstration in a 2D surface cleaning
task and on a reference frame-to-frame motion generalization. The goal for these simulated
experiments is

• to illustrate and compare how the generalization process differs when employing
regressors other than a Gaussian Process or methodologies from the state-of-the-art
while generalizing a cyclic demonstration that approaches and then retreats from the
surface “to clean", in Sec. 7.4.1;

• assess and compare GPT ’s ability to generalize in multi-reference frame tasks, mea-
suring its performance against state-of-the-art algorithms, in Sec. 7.4.2.

7.4.1 2-D SURFACE CLEANING
Fig. 7.5 visualizes the transportation of the given demonstration, in red, from the source
to the target space, using the transportation map 𝝓 where the non-linear component was
chosen to be a GP, given the out-of-distribution prediction and the calibrated uncertainty
quantification. However, other state-of-the-art function approximators can be used to fit
the transportation function without loss of generality. To ensure a fair comparison, the
mean linear transformation, i.e., 𝜸, is applied to all trajectories before using the different
methods to perform the non-linear transportation. Table 7.1 summarizes the method with
their properties, while Fig. 7.7 shows the generalization of the demonstration when these
methods are used.

Kernelized Movement Primitives (KMP) [77], in this study, fits the motion as a function
of time while Laplacian editing (LE) [123] considers the topology of the demonstration to be
a chain, i.e., a graph where only consecutive vertices are connected with an edge or as a ring,
when the demonstration is periodic, i.e. also starting and ending nodes are connected, like in
Fig. 7.7. Hence, every point of the source distribution is matched with the closest point of
the demonstration. Then, each point of the trajectory, or the graph, is moved, knowing the
new desired target location of the matched points. Hence, LE and KMP do not provide any
uncertainty on the transportation process.

All the other transportation regressors, a part of the GP, are ensembles of popular
regression functions, i.e., Ensemble Random Forest (E-RF), Ensemble Neural Networks
(E-NN), and Ensemble Neural Flows (E-NF). An ensemble is a collection of multiple
individual models, trained independently, whose combined predictions are used to estimate
a distribution on the prediction, i.e., mean and variance. In this example, Neural Networks
are simple multi-layer perceptions while Neural Flows [93] are bijective neural networks,
i.e., flows, usually used to learn a mapping from a simple probability distribution to a more
complex target distribution. Fig. 7.7 depicts the mean and the uncertainty bounds of 2-𝜎 for
the transported trajectories when using ensembles and GPs. The bounds are computed from
the different fitted models in the ensembles while it is computed analytically for the GP, and
the depicted GP samples of Fig. 7.7 are drawn from the posterior distribution.

From Fig. 7.7, the reader can appreciate how the GP is the only regressor with well-
calibrated and unbiased epistemic uncertainty quantification and minimal mean prediction
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Figure 7.7: Qualitative comparison of transportation of demonstration in target space for 2D surface cleaning.
The colored lines are the samples of the final transported trajectory policy, i.e. �̂� = 𝜙(𝑥), and the orange area is 2
standard deviation. The black curve is the 1-D surface to clean.

Table 7.1: Summary table of different methods used to transportation of trajectories to different surfaces.

Method Modality Vel. Gen. Transportation Uncertainty

KMP [77] way-points ✗ ✗
LE [123] way-points ✗ ✗
E-RF [25] continuous ✓ estimated

E-NF [135] continuous ✓ estimated
E-NN [100] continuous ✓ estimated

GP [172] continuous ✓ analytical

distortion of the trajectory when transporting points far away from the source distribution.
For example, the E-NN, has higher uncertainty on the right side of the demonstration, even
though the points are at the same distance from the surface, while E-RF generates an un-
distorted overconfident transformation, i.e., the uncertainty does not grow when going out of
distribution.

7.4.2 MULTIPLE REFERENCE FRAMES
In the literature, one of the main applications of task parameterization is the generalization
w.r.t. one or more reference frames. For example, if we teach a robot how to pour water into a
glass, we want the robot to automatically generalize the motion w.r.t. any glass position. The
task, in this particular case, can be parameterized with the location of the reference frames
of each object, which is necessary to track for a successful generalization of the motion.
Typically, the motion is projected in any of the reference frames, and a policy is learned
w.r.t. each of the frames, leaving out the decision on the relevance of each frame for every
timestep. Task-Parametrized Gaussian Mixture Model (TP-GMM) learns a GMM model for
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the projected demonstration for each of the frames and, during executions, the Gaussians
of each frame are combined using the property that the Product of Gaussians (PoG) is still
a Gaussian, see [28] for more details. Given the GMM, different control formulations are
possible, for example only relying on the current state of the system, i.e., 𝚫𝒙𝑖 = 𝒇(𝒙𝑖) [8]
[28] or by using a HMM formulation that also considers the progress during the execution
of the trajectory 𝒙𝑖+1 = 𝒇(𝒙𝑖,𝜶 𝑖), where 𝜶 𝒊, in the context of a mixture mode, selects the
properties of the model (mean and variance) that can be used in a tracking algorithm, such as
a Linear Quadratic Regulator (LQR) [28, 33]. However, the latent transition matrix between
the different states of the HMM is unknown. They need to be estimated using a forward pass
algorithm, i.e., the Viterbi algorithm [33], that requires an initial guess trajectory to infer
the most likely state transition that generated that initial guess and again generate the most
likely motion according to the model. However, having an initial guess can be prohibitive
when evaluating the movement in a novel configuration of starting and goal frames.

Differently from these task-parameterized approaches, the proposed method does not
track only the reference frame but a set of points that are relevant to the starting and goal
object. To guarantee a fair comparison with the state of the art, in Fig. 7.8, when generalizing
using GPT, only 5 points are tracked w.r.t. each reference frame, capturing the position
but also the local orientation of the frames. In Fig. 7.8, what we describe as DMP uses the
same mathematical structure of GPT but only relies on a linear transformation, which is
why the result is not able to capture the non-linear deformation due to the frame orientation.
One of the main perks of the proposed method is the ability to generalize any dynamical
system generated by even only one demonstration, unlike GMM-based methods where, to
capture a meaningful mixture model, at least two diverse demonstrations need to be provided.
Additionally, the GMM uncertainty of the final multi-frame model that results from the PoG
does capture the uncertainty of the transportation, while, as depicted in Fig. 7.8, the GP
transportation results in growing uncertainties when transporting points of the demonstrations
that are less correlated with the source-target points.

Fig. 7.8 highlights the discrepancy in the performance of GMM methods on the training
set and the test set. At the same time, the reproduction of a known combination of the frames
results in accurate rollouts of the policies both when executing them as a dynamical system
(TP-GMM)1 [8] then as an optimal tracking problem of a multi-transition Hidden Markov
Model (HMM)2 [33], when evaluating on the test set, generated on random reorganization
of the frames, the resulting trajectories do not successfully reach the goal frame neither in
position or orientation. To quantify and compare the different methods, we conducted a quan-
titative analysis comparing the generalization on known trajectories from the demonstration
set or the reaching performance on a randomly generated frame set.

Quantitative Analysis Fig. 7.9 shows the box plot that compares the performance of
the different models, i.e., TP-GMM, HMM, DMP , and GPT , on the training set. Nine
demonstrations are available for different configurations of the starting and goal frame.
When training the GMM models, i.e., TP-GMM and HMM, a subset of demonstration
𝑚 is randomly chosen from the training set and compared with the remaining (9 −𝑚)
demonstrations when evaluating the model in that unknown situation; the number of used

1https://github.com/BatyaGG/Task-Parameterized-Gaussian-Mixture-Model
2https://gitlab.idiap.ch/rli/pbdlib-python/-/blob/master/notebooks/

https://github.com/BatyaGG/Task-Parameterized-Gaussian-Mixture-Model
https://gitlab.idiap.ch/rli/pbdlib-python/-/blob/master/notebooks/
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demonstration is highlighted as an apex, e.g., HMM_6 means that we used an HMM model
with six demonstrations. When training the transportation models, linear or non-linear,
i.e., DMP or GPT , only one demonstration is randomly picked from the training set and
compared with the other eight unseen situations. For each model, the random selection of
demonstration and comparison is repeated 20 times. Five metrics are used to compare the
rollout trajectory and the actual demonstration:

• Frechet distance that does not consider any knowledge of time but finds the maximum
distance among all the possible closest pairs among the two curves [83];

• area between the two curves that constructs quadrilaterals between two curves and
calculates the area for each quadrilateral [83];

• Dynamic Time Warping (DTW) that computes the cumulative distance between all
points in the trajectory [83];

• final position error, computed as the Euclidean distance between the final point of the
trajectory and the rollout;

• final trajectory angle, that computes the approach “docking” angle of the trajectory. A
low error in the angle distance means that the reproduced trajectory approaches the
goal from the same direction as the provided demonstration in the same circumstance.

Considering that we have many models that can behave differently according to the
amount and quality of the demonstration, it is not straightforward to deduce any conclusions
on which method is statistically better from the boxplot of Fig. 7.9. For this reason, we
run a U test, also known as the Mann-Whitney non-parametric test [111], to deduce if the
distribution of results of each of the methods is statistically lower (𝑝 < 0.05) than each
of the others. When computing the U test between two methods, in case of a statistical
difference, the winning method gets one point. The numbers on top of the figure for each of
the methods indicate the performance ranking, i.e., the method that obtained the most points
when computing the U-test is going to be first in the ranking. When more methods share the
same position in the ranking, it simply means they were significantly better than the same
amount of other methods during the comparisons.

Fig. 7.9 shows that for Frechet, final position and orientation error, GPT (trained with a
single demonstration) performs the best. In contrast, for Area btw the curves and DTW, GPT
performs equally or better than GMM and HMM models trained with five demonstrations.

Finally, Fig. 7.10 shows the box plot and ranking for the model evaluated in a test set
with randomly placed frames, and GPT performs statistically better than any other method
when reaching the right goal and from the right direction.

7.4.3 MULTI-SOURCE SINGLE-TARGET GENERALIZATION
Fig. 7.8, in the column of Gaussian Process Transportation, depicts the generalization
of a single demonstration from one single 2-frame source to multiple 2-frame targets.
Although, in Fig. 7.2, we already depicted the generalization of many demonstrations and
the learned dynamics from one source surface to another target, we still did not mention the
generalization from multi-source to a single target. When dealing with n source distributions,
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Figure 7.8: Qualitative comparison of multi-reference frame parameterization. Comparison between HMM, TP-
GMM, DMP s, and the proposed method. The first raw compared the performance in the reproducing of the training
set demonstration, depicted as a dashed black line, where both HMM and TP-GMM are training using all the nine
demonstrations while DMP and GPT are only trained with one demonstration (the central one) and generalized for
each of the frames. In the second row, a random perturbation is applied to each frame, and the model is queried on
the most likely trajectory. For GPT, the uncertainty in the generalization is depicted with the orange areas. The blue
stars are the points tracked during the motion, given that the proposed method does not rely on reference frames but
only on source and target points.
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Figure 7.9: Box plot results and performance ranking on frame configuration from the training set. The number on
top of each box plot is the position of the method in the performance ranking.

we fit n different transportation functions 𝜙, each trained with different source points but the
same target points.

Fig. 7.11 highlights how the many demonstrations given in different frame configurations
can be transported in the same target frame and how we can extract a reactive policy, encoded
in the vector field, as a function of the global position [55].



7

108
7 GENERALIZATION OF TASK PARAMETERIZED DYNAMICAL SYSTEMS USING GAUSSIAN PROCESS

TRANSPORTATION

G
PT

D
M

P

H
M

M
_9

TP
-G

M
M

9
0

10

20

30

40

1 2 3 4
Final Position Error

G
PT

H
M

M
_9

TP
-G

M
M

9

D
M

P

0

1

2

3

4

5 1 2 3 4
Final Orientation Error

Figure 7.10: Box plot results and performance ranking on randomly generated frame configurations.

Multi Source Single Target Transportation

Figure 7.11: Multi-source single target generalization. Demonstrations from different frame positions (see Fig. 7.8
are transported on a single target multi-frame configuration (unknown from the training set). The dashed line is the
given human demonstration in that configuration. The vector field is the resulting dynamics learned also with a
Gaussian Process with minimization of uncertainties from [55].
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Figure 7.12: Generalization of the reshelving task. The first column is the robot reproduction in the demonstration
scenario.

7.5 REAL ROBOT VALIDATION
To validate the proposed method on real manipulation tasks, we selected three challenging
tasks, i.e., robot reshelving (Sec. 7.5.1), dressing (Sec. 7.5.2) and cleaning (Sec. 7.5.3),
to teach as a single demonstration and generalize it in different scenarios. These are all
tasks where the training set will never be similar to the test set; for example, when dressing
a human, the configuration and shape of the arm may change, and we expect the robot
to generalize the behavior accordingly. We controlled a Franka Robot using a Cartesian
impedance control3.

The dynamics of the demonstrations are learned with a non-parametric function ap-
proximation for motor learning that uses a joint position-time encoding, proposed in [56].
The distance from the next attractor position and orientation are a function of the current
robot position. Our goal is to show how the proposed transportation theory can correctly
generalize the pose, velocity, and stiffness of the robot. The following sections will sum-
marize the robot validation experiments. A video of all the experiments can be found at
https://youtu.be/FDmWF7K15KU.

7.5.1 ROBOT RESHELVING
Robot reshelving refers to picking an object in one location, moving it, and placing it in a
desired position on a shelf.

Our assumptions for the problem are:

• one global frame dynamical system is learned from a single demonstration and trans-
ported in the different object/goal configurations;

• corner points of the objects and the shelf slot are tracked rather than position/orienta-
tion.

Fig. 7.12 depicts the experimental setup where a milk box, with an AprilTag [170] on it,
has to be positioned on a compartment on a shelf, also marked by another tag. Before the
demonstrations or execution, the robot searches for any frames in the spaces using the camera
attached to its end-effector. For every frame, the transportation policy extracts a cube’s
center and corners with predefined side dimensions as the markers. Fig. 7.12 shows how the

3https://github.com/franzesegiovanni/franka_human_friendly_controllers

https://youtu.be/FDmWF7K15KU
https://github.com/franzesegiovanni/franka_human_friendly_controllers
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Frame 𝑥 [m] 𝑦 [m] 𝑧 [m] yaw [deg]
Object 0.225 0.366 - 94.6
Goal 0.337 0.036 0.675 -

Table 7.2: Range of Variability for Object and Goal Frames.
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Figure 7.13: Relative position of the end-effector w.r.t. the initial object and the goal position during multiple
generalizations rollouts in robot reshelving.

demonstration for reshelving on the left of the central compartment can be generalized to
any other floor, both on the left and right. We randomized the object position and orientation
and the goal on the shelf ten different times, all successfully generalized. Table 7.2 shows
the range of x,y,z, and yaw angles of the object and goal markers during the ten different
executions, while Fig. 7.13 depicts the relative position w.r.t. the object and the frame of
the different rollouts; from the figure it is possible to appreciate how the execution lines
converge on the (initial) object position when picking and on the goal position when placing
the object.

7.5.2 ROBOT DRESSING
The task of dressing is a primary task in elderly care. It consists of pulling a deformable
sleeve over the posture of a human arm. Complicated motions need to be executed by the
robot to increase the dressing success rate, i.e., reaching the shoulder without getting stuck or
exercising too large force on the arm. Fig. 7.14 depicts the robot experimental setup where
an articulated mannequin is posed in different shoulder positions and arm configurations.
Four AprilTags [170] are glued on the arm, shoulder, elbow, wrist, and hand, captured by
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Figure 7.14: Dressing policy generalization. Cyan marker is the shoulder, magenta is the elbow, yellow is the wrist,
and blue is the hand. The blue rollout end-effector trajectory starts from the red dot and finishes with the green dot.
𝛼 is the angle of the elbow; the smaller the angles, the more complicated the generalization would be.

the camera on the robot wrist at the beginning of each demonstration/execution. From the
markers, only the position is extracted this time. The piece of cloth is pinched in the end
effector by the user before starting the experiments. We leverage the assumption that the
pose will not change during the demonstration; however, it is worth mentioning that the
arm structure is not fixed on the table, so if the generalization is not good and the robot
maliciously touches the arm, the resulting displacement would result in unsuccessful dressing.
Only one demonstration was given to the robot. Then, the arm was reset for a different range
of x,y positions of the shoulder and configuration of the arm. The ranges of variation of the
task parameters are Δ𝑥shoulder = 0.122 [m], Δ𝑦shoulder = 0.259 [m], Δ𝛼 = 56 [deg], where 𝛼 is
the angle that the elbow intercepts with the connecting line between the shoulder and the
wrist. A fully stretched arm (easy pose to dress) has 𝛼 = 180, and when the hand touches the
shoulder (impossible pose to dress) 𝛼 = 0. The policy transportation was able to generalize
the policy for every requested arm configuration.

7.5.3 ROBOT SURFACE CLEANING
Surface cleaning/grinding tasks require robots to not only track surface shapes but also apply
the right amount of force for successful cleaning/grinding. Robotic cleaning or grinding
involves automated machines equipped with specialized tools to perform cleaning tasks.

In this experiment, we want to show that

• we can learn a general policy that may involve polishing phases and free movement
phases;
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Figure 7.15: Point cloud, demonstration and rollouts of the generalized motion in cleaning tasks.
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Figure 7.16: Norm of the force perceived [N] from the end-effector when executing the transported dynamics on
the new surfaces.

• we do not need any force sensors to align to the surface;

• the surface is unknown, and only a point cloud is obtained from the camera sensors.

One of the main advantages of the proposed method is that it does not need to reconstruct the
surface but only learns the map from the source to the target pointcloud. The deformation
between the source and the target surface point cloud is modeled using a Sparse Variational
Gaussian Process Transportation (SV-GPT) to generalize the demonstrated policy position,
orientation, and stiffness profile for a successful cleaning task. Given the large number of
points in the source and target point cloud, i.e., 400 points, using a reduced set of inducing
points, i.e., 100, makes fitting the transportation model more computationally efficient.

Fig. 7.15 depicts the teaching of a cleaning task on a flat surface and the generalization
on different higher, titled, and curved surfaces that belong to common objects. The lower
row shows what the robot perceives of the environment; the blue dots in space are the
source distribution, recorded before giving the demonstration (depicted as dashed line),
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and target distributions recorded before executing the roll-out transported policy (depicted
a solid line). Fig. 7.15 also highlights how the roll-outs follow the shape of the surface,
showing a successful generalization of the robot position and orientation. As previously
stated, no external force-torque sensor is used to adapt the orientation of the end-effector
on the tangential direction of the surface. However, an observer of the applied external
force between the robot and the surface is estimated from measured torques in the joints,
see Appendix A.3. Fig. 7.16, depicts the estimated norm of the force exchanged with the
surface, where the same increasing/decreasing trend is captured on the different surfaces.

7.6 LIMITATIONS AND OPEN CHALLENGES
Despite the successful application of the proposed policy transportation on different challeng-
ing tasks, we can foresee some limitations and future challenges to improve the applicability
and have a broader impact.

For example, we assume knowing the matching between the points of the source and the
target distribution. However, in many complex scenarios, this limitation can be problematic,
and some different pre-processing algorithms, such as optimal transport [110] or iterative
closest point (ICP), need to be adopted to perform the matching. Additionally, semantic
matching can increase cross-domain generalization, for example, by adapting the reshelving
strategy to a completely different shelf type or adjusting the dressing policy from an adult to
a baby arm.

Another assumption of the developed method is dealing with static environments, i.e.,
the target distribution does not change during the policy’s rollout. However, this assumption
can fall when dealing with the reshelving of moving objects or when trying to dress real
humans that will probably move before and during the interaction. However, supposing to
know the state of the target distribution, the nonlinear transportation policy can be updated
online by changing the desired deformation labels in the GP. However, the fitting of the
transported policy ̂𝑓 makes it challenging to perform the generalization online.

Finally, given that in complex scenarios, the generalization may be inaccurate, the
use of interactive human corrections may increase the resulting manipulation performance
[38]. However, changing the generalized policy opens the question of whether interactive
corrections should be propagated back to the source policy and how. Additionally, in case
many source distributions/policies are recorded, the choice of generating the target policy by
transporting all of them, like in Fig. 7.11, or by selecting the best one, according to some
similarity criteria, can open exciting developments of the proposed theory.

7.7 CONCLUSIONS
In this chapter, we address the prominent but challenging problem of policy generalization
to novel unseen task scenarios. We formulate a novel policy transportation theory that,
given a set of matched source and target points in the task space of the robot, regresses
the function that, most likely, would match the source and target distribution. Additionally,
we showed how the same transportation function and its derivatives can be exploited to
transport the original policy dynamics, rotation, and stiffness while retaining uncertainties
in the process. The same algorithm, which uses a Gaussian Process at its core, was tested
and compared with different state-of-the-art regressors or different generalization methods,
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showing how, even with only one source demonstration, it results in better or comparable
performance. However, the main requirement, for a successful generalization is to track and
match important task points in the original scenario, where the demonstration was given,
and the corresponding points in the new scenarios.

We validated the proposed approach on a Franka Robot, testing it on three different tasks:
product reshelving, arm dressing, and surface cleaning. These various tasks were never
tackled together by the same generalization algorithm, and they usually were performed with
ad hoc solutions, for example, to keep a constant force when cleaning a surface. Despite
this, the proposed policy transportation algorithm performed successfully in all of them.
The tracking requirements were satisfied using fiducial markers or directly the point cloud
estimated with the infrared camera sensor. Future development will have to focus on scaling
the process on big and unmatched point clouds of complex (and deformable) objects to
manipulate while allowing the use of human feedback in the fine-tuning of the resulting
policy.
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LEARNING INTERACTIVELY TO

RESOLVE AMBIGUITY IN
REFERENCE FRAME SELECTION

When teaching robots with demonstrations, the choice of the correct reference frame for
the learned trajectory could be ambiguous in case there are multiple valid candidates. The
algorithm introduced in this chapter, Learning Interactively to Resolve Ambiguity (LIRA),
proposes a new interactive framework for solving ambiguity in the demonstration. Teachers
do not have to give multiple demonstrations to solve the ambiguity, but their feedback is used
to search for the correct solution using a candidate elimination procedure. LIRA is applied
for the manipulation of objects using Movement Primitives, where ambiguity typically
arises after the segmentation of the trajectory, and the choice of the correct reference frame
is not unique. Experiments were conducted with a Franka Emika Panda manipulator for
different pick-and-place scenarios. Results showed that the proposed method eliminates
the possibility of flawed executions due to ambiguity in the frame selection of a movement
primitive. A user study showed a significant reduction in the task load of the user with
respect to a system that does not detect ambiguities. A video of the experiments can be
found here: https://www.youtube.com/watch?v=tSQJP8Hpmbk.

This chapter is based on  Franzese, G., Celemin, C., and Kober, J. (2020). Learning Interactively to Resolve
Ambiguity in Reference Frame Selection. In CoRL (pp. 1298-1311) [53].

https://www.youtube.com/watch?v=tSQJP8Hpmbk
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8.1 INTRODUCTION
In Learning from Demonstrations (LfD), the learning agent requires enough representative
demonstrations to understand a task’s objectives to avoid any possible behavior misassocia-
tion. However, the requirement of representative examples could be demanding for a human
teacher. Especially for an end-user, it might not be clear how many demonstrations are
sufficient. In this work, we focus on creating a system that learns from demonstrations and
is ambiguity-aware. Therefore, it can leverage a teacher’s corrective feedback to disassociate
the multiple interpretations of the demonstrated behavior. With this awareness, the robot can
prevent executing wrong (sometimes dangerous) actions, either with active queries before
action execution or enabling kinesthetic corrections by the user during the execution of an
ambiguous decision.

Ambiguity is an attribute of any idea or statement where the intended meaning cannot be
inferred as there are multiple interpretations. Teaching, as a form of transfer of knowledge,
and not only of notions (strictly connected to the context), can be ambiguous. For instance,
in a teacher-student scenario at school, if the teacher is explaining something that can have
different meanings or interpretations, and the exam question is in the same circumstances as
the explanation, a simple transcript of the teacher’s exact words will lead to the best score.
However, the meaning of learning is not repeating the lecture of the teacher by memory; a
good exam should check whether the student is able to generalize the concept to different
situations. Similar situations may show up when robots learn from demonstrations. For
instance, a robot arm is shown to go towards a cup placed on a coaster (see Fig. 8.1), but
in a new situation, these two objects are in different positions: Where should the robot go?
To the cup or to the coaster? Without any additional information, this ambiguous situation
could not be solved [16].

The ambiguity investigated in this chapter prevents the policy from randomly selecting
the dependence of the goal on a reference frame whenever the demonstrations are not
completely informative. The human teacher observes the current policy and, by interacting
with the environment, provides feedback that LIRA employs to update the correct goal.
The approach reduces the (unknown) amount of required full demonstrations that a human
teacher needs to provide, rather than relying on less demanding interactive corrections, as
discussed in [15, 87, 126]. Therefore, the system decreases the learning time, the probability
of failure, and the workload of the user.

In the next section, related work on LfD, few-shot learning, ambiguity, and reference
frame selection is reviewed. In Sec. 8.3, the LIRA algorithm is explained in detail. Sec. 8.4
shows the experimental validation of this innovative methodology, and finally, Sec. 8.5
concludes the work and describes open challenges.
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Figure 8.1: ambiguity of demonstration of grasping a cup on a coaster. The two possible hypotheses for generalizing
in future segments are illustrated as two conflicting interpretations of the task.

8.2 AMBIGUIY IN LEARNING FROM DEMONSTRATION
LfD is an intuitive alternative approach for encoding robot policies instead of programming
them by hand. Having the possibility to show the desired behavior to a robot and to give
corrections or feedback to the demonstrated trajectory has been shown to be a faster and more
versatile methodology, which is user-friendly for adapting policies to multiple scenarios
[11]. One of the challenges in LfD is to extract as much information as possible from the
demonstrations, avoiding burdening humans with the responsibility of providing several
demonstrations. One-shot learning [47] proposes a NN architecture where the new task is
learned with only one new demonstration. Alternatively, the works in [147], [92], and [122]
use Movement Primitives for learning new tasks in a few shots. All the types of learning
approaches underline the possible presence of ambiguity in the demonstrations, but their
focus is on different problems.

LfD claims to indirectly transfer the intention of the teacher in solving a task to the robot
for a particular application. The mismatch between the human intention and robot deduction
can generate two possible situations: reversible and irreversible ambiguity, see Fig. 8.4. We
define a candidate of the learning process as any of the possible deducted ideas that could
match the shown human demonstration.

A reversible ambiguity stands for the ability of the robot to select one candidate to
resolve the ambiguity. However, this is not always possible. For example, the mixing
of demonstration of two different grasping modalities (see Fig. 8.3b) is not solvable with
candidate elimination (there is only one deduced candidate), making the situation forever
ambiguous. This work focuses on reversible ambiguity. Reversible ambiguous scenarios or
demonstrations do not allow a unique definition of the decision directly after the demonstra-
tion. However, given a list of possible policy candidates, our assumption is that at least one
of them will match the human intention.

Ambiguities exist in learning agents due to factors like how the data is used to build the
policy, the observability in demonstrations, the quality of recorded data, and the structure of
the policy, among others. Below, a classification of the most common types of ambiguities
that could exist when a robot is learning from a teacher is introduced.
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Figure 8.2: LIRA makes the agent ambiguity-aware. When an ambiguous situation is faced, a warning message is
sent to the teacher that selects or demonstrates the right candidate and resolves the ambiguity.

8.2.1 MULTIPLE FEATURES INCONSISTENCY

In the situation of Fig. 8.3a, the teacher shows the grasping of a red hat. How should the
robot behave in order to match the demonstrated intention? By gripping a red hat? By
gripping a hat of any color? By gripping a red object of any type? By gripping any possible
object? Thus, a single demonstration maps to multiple different behaviors that the teacher
might have intended. This one-to-many (or many-to-many) mapping from demonstration
is the concept of the ambiguity approached in [16], where there is the formalization of
restricted hypothesis space (for making the ambiguity resolution faster).

8.2.2 MULTI MODALITIES INCONSTANCY

There are cases where multiple demonstrations contain contradictory actions given the
current state. Depending on the regression methods these multimodalities could lead to
inconsistent and flawed policies. In Fig. 8.3b, the human is showing how to approach the
trophy from each one of the two possible handles. For instance, the use of a simple regression
using mean squared error obtains a policy that computes trajectories through the valleys
of the demonstration distribution, which is wrong for some applications. The literature is
proposing solutions like [141] where a Voronoi tesselation is helping in representing the
ambiguity of future steps through multiple hypotheses.
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Figure 8.3: Six different examples of ambiguity.

Figure 8.4: Ambiguity in Learning from Demonstrations. In the first case, there is a perfect match between
human intention and robot deduction. In the case of reversible ambiguity, the robot is deducing some redundant
policy candidates, and the correct one can be found later on with more demonstrations or corrections. Finally, the
irreversible ambiguity is due to the impossibility of retrieving the human intention, bringing a wrong result that
cannot be fixed with candidate selection.
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8.2.3 PERSPECTIVE INCONSISTENCY
Depending on the sensors’ inputs in the perception system of the robot, there could be an
observability mismatch between the demonstrator and the learning robot, which is a source
of potential ambiguities. The illustration in Fig. 8.3c describes this type of ambiguity also
investigated in [24]. In case the demonstration is provided by a naive human teacher, not
an expert in machine learning, the result can be sensible from a human’s perspective and
ambiguous for the learning algorithm point of view, without the possibility to generalize
properly. An example of perspective mismatch between the robot and the human is the
case in which the human is showing the grasping of an object that does not have any frame
associated with it. The result is going to be the inability to generalize the motion: what the
user is considering as an object is invisible from a robot’s point of view.

8.2.4 REFERENCE FRAME AMBIGUITY
Actions, e.g., trajectories, change according to the observations, i.e., reference frame po-
sitions. In trajectory learning, the use of multiple reference frames allows encoding the
movement not with respect to the world coordinates but relative to other points/objects,
which increases the chance of matching the demonstrator’s intention and allows for natural
generalization to location changes of the points/objects. The learning algorithms are in
charge of building the relations between observations and actions. When actions are associ-
ated with more than one of the frames observed by the robot, multiple demonstrations with a
rich variety of initial conditions are required; this allows the breaking of false associations
with redundant frames. However, this is not obvious for a non-expert user, who does not
know the required data to have a representative set of demonstrations. In [28] and [75], a
Task Parametrized GMM is used for describing the set of demonstrations respect each of
the reference frames. In a new situation, the resulting trajectory is based on the overlap of
the GMM components that are moving according to their reference frames. This approach
allows to switch the dependence from different reference frames in each movement segment
and to regulate the robot stiffness proportionally to the variance of the model. Similarly, in
[92] a method for inferring the “correct” reference frame, with the computation of a score for
each candidate frame, is proposed. The score is inversely proportional to the combination of
the inter-demonstration variance derivative and final goal variance. After the segmentation
of the trajectory, the method selects the reference frame with the highest score for each
movement segment. Alternatively, in [122] the selection of the frame in each segment is
performed by clustering the relative final position (of each one of the demonstrations) with
respect to each frame in the world frame, and choosing the frame that owns the biggest
cluster. These related works underline the necessity of having more than one demonstration
and that those are provided without ambiguities with respect to the way the relevance of each
reference frame is computed. This chapter is intended to propose a method that deals with
ambiguous situations in reference frame selection and solves that with interactive human
feedback.

8.2.5 MULTI CONTROL MODALITY INCONSISTENCY
Demonstrations with manipulators for force interaction tasks record profiles of positions and
forces. However, during execution, the robot has to decide which of the profiles to track,
this is not always evident from the data on the demonstrations, and could create ambiguous
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scenarios. In [92], the same principle of minimum variance is used for the selection of the
control modality: force or position/velocity control. In the case the choice is equivalent, the
decision cannot be arbitrary because in new scenarios the wrong option could be dangerous.
In Fig. 8.3e the robot is not sure which modality to follow either the recorded push with the
force sensor, or the recorded wheel velocities.

8.2.6 MULTI SENSOR INCONSISTENCY
This category might be overlapping with the Multi Features case, in which the actions
could be related to several features, or to information obtained by different sensors that
could be complementary, contradictory, or redundant. Similar to the previous scenario,
where the multiple sensors are used for making the choice of which control modality to
follow, the one illustrated in Fig. 8.3f is a metaphoric illustration for showing the ambiguity
that is resulting from multiple sensors. The variance method used in the previous two
examples can also be implemented in this scenario. Above, some of the possible categories
of ambiguous situations that could be faced when learning from demonstrations with robots
have been mentioned, along with some methods that help in dealing with them. Several other
research areas also intersect with similar fundamental questions about how to filter relevant
information from observations to achieve effective generalization in learning. For instance,
State Representation Learning [22, 104], and learning task features from demonstration
[40, 115], approach this problem from a different perspective, but not with the focus on
ambiguity-awareness for active correction requests, as investigated in this chapter.

8.3 LIRA: LEARNING INTERACTIVELY TO RESOLVE AM-
BIGUITY

In ambiguous situations, the learning system does not completely understand the intention of
the task, therefore it has to randomly/arbitrarily choose one out of all the possible candidate
interpretations, e.g., either the coaster or the cup of the example in Fig. 8.1. This makes the
robot to behave in an unexpected way, having a negative impact in the user experience, and
consequently in the human robot interaction, specifically in factors like engagement, trust
or compliance [68]. If users need to be careful about how to demonstrate, the teaching task
becomes slower and increases their workload. This creates a user experience in which the
robot does not seem to be “intelligent” or to have a certain level of situational “awareness”.
Without a system that solves ambiguities, a robot learner will request an entirely new
demonstration with the right decision, trying to understand how to match the intention of the
teacher with the robot deduction.

With LIRA, illustrated in Fig. 8.2, the robot solves this problem of ambiguous situations
by asking the user whether the current choice is correct. If the choice is incorrect, the
robot enables the user to guide it, using different possible interaction modalities as shown
in the last paragraph of this section. This work assumes that policies are represented with
sequences of movement primitives. During demonstrations, the only recorded data is the
positions of the EE, and the frames. The output of LIRA is the goal position for each of the
movement primitives. LIRA is hence complementary to learning the shape of the movement
via many movement primitive representations.

LIRA initially takes the goal position from the demonstrations, and transforms it into the
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Algorithm 4 LIRA in Reference Frame Selection

1: Input: Demonstration(s) of the task and a list of valid frame candidates for each
movement primitive

2: for each movement primitive do
3: Observe the positions and orientations of reference frames
4: Rank the frames based on inter-demonstrations goal variance
5: Filter out frames with non-minimum variance using priors
6: Project the goal’s position with respect to each reference frame in the world frame
7: Group goals that overlap in the world frame
8: for each group in the list in descending order of dimension do
9: Move the robot toward the group’s goal

10: Ask for human feedback
11: if Positive Feedback then
12: Eliminate frames outside the group from the list of valid frame candidates
13: Break the search and proceed to the next movement primitive
14: else
15: Eliminate the groups from the list of valid candidates based on the feed-

back
16: end if
17: end for
18: end for

local coordinates of each of the 𝑛 reference frames. The set of all possible single reference
frames is

𝐹 = {𝑓𝑖|1 ≤ 𝑖 ≤ 𝑛}

and each of its elements 𝑓𝑖 has its associated goal 𝜙𝑖 contained in the set of goals Φ.
The proposed method is in charge of selecting the right frame 𝑓𝑖 for each movement

primitive, such that moving in its relative coordinates towards its goal 𝜙𝑖 is the correct gener-
alization. Whenever there are ambiguities, the teacher’s feedback queried by LIRA helps to
reduce the amount of goal candidates, which are linked to the observed frames. The opera-
tions that Algorithm 4 is performing in order to take into account multiple demonstrations,
priors, overlap of goals and human feedback are explained below.

Candidate ranking: In case there are multiple demonstrations, the generation of the
priority list for the reference frame is based on the measure of goal variance. After the
segmentation, the final EE position of each movement primitive is computed with respect to
each of the 𝑛 frames, and the standard deviation of the distribution of inter-demonstration
goals is computed for each frame in each movement segment. LIRA prioritizes the frames
that have lower inter-demonstration variance, as in [92].

In case only one demonstration is provided, the covariance cannot be calculated and
a default value is set: only priors and human feedback can be used for finding the right
candidate.
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Figure 8.5: Demonstration of the grasping of a cup on a coaster. Because there is only one demonstration, the
selection of the correct frame is ambiguous if no priors are used. In MP2, the grippers are closed (recorded contact)
and the measure of the distance between the cup and the end-effector is kept constant. LIRA infers that the frame
of the cup is being manipulated, giving priority to it in the resolution of the ambiguity of MP1. In the same way,
LIRA removes the cup’s frame from the list of candidates of MP2 because that goal would be already satisfied at
the beginning of MP2.

Reducing ambiguity using priors: As described in [16] and [52], the use of priors reduces
the dimension of the candidate frames search space, making the ambiguity resolution faster.
Various priors can be included to prioritize frames in the selection, e.g., distance to the frame
origin (as a proxy for an object/goal being reached) [7] or temporal consistency (discouraging
or encouraging frequent switches between frames). In some cases, the selection of the goal
of each movement primitive is based on information of the immediate subsequent segments.

For example, suppose a constant grasping contact and a constant distance with respect to
a frame is detected in an entire segment. In that case, it means that the frame (i.e., the object
it is attached to) is being manipulated. Hence in the preceding segment, in case of ambiguity,
LIRA will give priority to that frame, encoding that an object needs to be grasped before
being manipulated. An example of this situation is illustrated in Fig. 8.5.

Similarly, the frame being manipulated can be discarded as candidate reference frame
for that segment. This frame is temporarily rigidly attached to the end-effector, and the goal
for that frame would hence already be satisfied at the beginning of that segment.

Candidate grouping: After applying the filtering with the priors and selecting the frames
with the lowest inter-demonstration variance (in the limit of a threshold), LIRA groups the
reference frames according to their current goal positions in the executing moving primitive.
The 𝑗 th group 𝐺𝑗 ⊂ 𝐹 is defined as a subset of reference frames whose associated goals are
overlapping in the global coordinates. Therefore, regardless of the reference frame chosen
among the group, the movement primitive would have the same global goal position. Thus,
for a specific situation, there is an ambiguity with an amount of 𝑐 candidate goals, where 𝑐
is the amount of groups encountered by LIRA. Goals are grouped by the distance between
the candidate goals, and a threshold defining a tolerance region. In the example of Fig. 8.6,
the goals of the three frames are organized in two groups, given the drawn tolerance region.
Therefore, in this ambiguous situation, LIRA gives priority to the biggest group on the left
(line 8 of Algorithm 4).
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Figure 8.6: Candidate Grouping: all the goal distribution have the same inter-demonstration variance and they
are not filtered away by any prior. Then, LIRA creates groups of goal, checking if they are overlapping within a
tolerance.

When the user is labeling one of the groups as correct, all candidates in the other groups
are eliminated. All members of the selected group are saved to the memory and become
valid candidates for future iterations. Due to the human feedback, there is no longer an
ambiguity about the goal in this specific situation. Nonetheless, those multiple selected
candidates might result in an ambiguity in future situations if the goals of the group do not
overlap anymore.

Human feedback: LIRA moves the robot towards the goal of largest group, i.e., maximiz-
ing the probability to find the right frame. Then it queries feedback from the teacher (line 10
in Algorithm 4) in these three possible ways:

• Labelling correctness (right/wrong): The algorithm asks whether the current goal that
was reached is correct or not. This query could be done through a graphic interface, or
with a sound signal, whereas the teacher’s response could be obtained with a keyboard,
remote control, voice, etc. When the feedback is negative, in the Eliminate step (line
15 of Algorithm 4), LIRA only discards the frames belonging to the current selected
group.

• End-effector directional kinesthetic perturbation: In order to avoid the dependency on
a human-computer interface, another proposed solution is to make the robot compliant
and to enable the human to correct the candidate choice simply by pushing the robot
towards the direction of the correct goal (Fig. 8.7.2.b,1), i.e., LIRA assumes positive
feedback (line 11 in Algorithm 4) when there is no kinesthetic perturbation, and
negative otherwise. This interaction mode is richer in information than the previous
one, as in case of a wrong guess of reference frame, the user interaction does not only
make LIRA discard the wrongly selected goal, but also all the potential candidates
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which are in the opposite direction of the correction, therefore, the ambiguity resolution
would be faster.

• End-effector kinesthetic movement: Similarly, in case of ambiguity, LIRA allows the
user to move the EE close to the right goal (Fig. 8.8.2.b,1). If no correction happens,
LIRA assumes positive feedback (line 11 in Algorithm 4). Otherwise, in case of EE
movements, it assumes negative feedback (line 14-15) and labels the closest group’s
goal to the final EE position after the interaction as correct, discarding all the others.
This feedback modality is the most information-rich and should be considered the
best option when there are many perceived reference frames. However, due to the
longer interaction with the user, this option would be expected to be more mentally
and physically demanding compared to the other two options.

8.4 EXPERIMENTS AND RESULTS
LIRA has been proposed to solve the ambiguity in the selection of reference frames in an
interactive way, reducing the total number of required full demonstrations. Experimental
evaluations have been carried out to measure the effectiveness of LIRA. Three validation
scenarios of pick and place tasks and a user study were run in order to illustrate the operation
of the system and to evaluate its performance compared to a system that is not ambiguity-
aware.

All the experiments were conducted with a 7 DoF Franka Emika Panda robot arm with a
parallel gripper. The robot is controlled with Cartesian impedance control, which allows to
have compliance for the interactions with the user. The robot is used in gravity compensation
mode for recording the kinesthetic demonstrations. The demonstrated trajectories are
segmented in movement primitives, and represented with linear attractors to their goals, with
constant velocity. For the validation of LIRA, only one fully kinesthetic demonstration is
provided as input to the policy.

8.4.1 VALIDATION TASKS
Fruit sorting in crates: In the case depicted in Fig. 8.7, there are apples and cucumbers in
the workspace that need to be picked up and placed in their respective crates (on the left).

In the sequence shown in the top row (1.a-b) of Fig. 8.7, the scenario of the demonstration
is reproduced, whereas in the bottom row (2.a-b,1-2), the position of the cucumber is different
and the position of the crates is swapped (the scenario differs from the demonstration and it
is potentially ambiguous as a consequence). Due to the priors, the robot is able to go and
pick up the cucumber in the new scenario, however, it requires the disambiguation for the
goal of the second segment of the task (selection of the basket for placing the cucumber).
Therefore, the robot moves towards the basket of apples but stops to request the teacher’s
feedback before placing the object. Then, the simple physical perturbation towards the right
goal is enough to solve the ambiguity. Without the ambiguity-awareness system, the user
would have to demonstrate the whole trajectory in the second scenario (after observing a
flawed object placement), instead of giving one correction during the autonomous execution.

Another validation example is depicted in Fig. 8.8, where the user is showing the
restocking operation of bananas in the crates of a supermarket. After one demonstration
(1.a-b), when the environment is modified (2.a), LIRA faces an ambiguity in the selection
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Figure 8.7: Fruit pick and place 1. The first row shows the policy execution in the same scenario of the demonstration
(1.a-b), i.e. no ambiguity can arise. After a frame rearrangement, in the second row, LIRA uses the manipulation
prior for the picking operation (2.a) but it asks the human feedback (2.b,1) to solve the ambiguity in the placing one
(2.b,2).

of the goal for the banana placement (2.b,1). As LIRA is implemented with the kinesthetic
movement feedback in this example, the robot becomes compliant on the EE and the user
moves it towards the right goal (2.b,1), solving the ambiguity (2.b,2).

Box stacking The third validation case is a box stacking task, as shown in Fig. 8.9. The
sequence of pictures on top shows the demonstrated scenario, where the stack of boxes is
organized with the green one on the bottom, the orange in the middle, and the black one
on top, each of which is perceived as a reference. For the second scenario (the bottom
sequence of pictures), the use of the manipulation prior eliminates ambiguities during the
grasping segment. However, in the placing operation, an ambiguity is found when the user
disturbs the environment. With this disturbance, the goals associated with the frames on the
orange and green boxes do not overlap anymore. With the information obtained with the
first demonstration, the robot learner faces an ambiguous situation, in which the goal for
placing the black box could be with respect to either the orange or green box. The physical
correction when the user pushes the end-effector makes the robot to understand that the
black box’s position should be with respect to the green one.

8.4.2 USER STUDY
The performance of LIRA has been evaluated and compared with a system that learns
from kinesthetic demonstrations without ambiguity-awareness: in the case of frames with
the same inter-demonstration variance, the selection is random and, if wrong, it requires
a new complete kinesthetic demonstration. The intention of this study is to compare the
amount of time reduction by the proposed interactive system for this specific task, along with
the workload required from the user, both, with respect to the system without ambiguity-
awareness. In this regard, a user study was conducted with twelve participants, who had
to interact with both of the aforementioned systems, for teaching the same task. The type
of feedback used in LIRA for the experiments was the directional perturbation because
it was considered to be the best compromise between efficiency and user-friendliness.
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Figure 8.8: Fruit pick and place 2. The first row shows the user demonstrating the task with Kinesthetic Teaching
(1.a-b-c). After the frame rearrangement, LIRA uses the manipulation prior for the picking operation (2.a) but it
asks for feedback in the placing one (2.b,1) allowing the user to move the EE close to the desired goal (2.b,2).

The participants were students of an engineering faculty who had no prior experience of
kinesthetic teaching, and their ages ranged between 22 and 30 years. In order to have a
measurement of the user workload during the teaching process, the NASA Task Load Index
(NASA-TLX) questionnaire [69] was performed after the participants finished interacting
with the system. This questionnaire has six questions related to mental demand, physical
demand, temporal demand, performance, effort, and frustration. The task was about stacking
pairs of boxes with a predefined order. There were six boxes numbered from 1 to 6 on a
table, and the objective was to place box number 1 on top of 2, 3 on top of 4, and 5 on top of
6. At the end of the execution of each scenario, the objects were rearranged according to a
predefined order.

In the experiment with only kinesthetic teaching, the robot recorded the first demonstra-
tion, and then it was tested for the other cases. However, whenever the system failed, it would
receive a full kinesthetic demonstration of the correct execution of the task for that scenario
from the user. After 4 demonstrations, all the users managed to teach the task successfully,
i.e., the ambiguities were solved. For evaluating LIRA, a full kinesthetic demonstration was
required only for the first scenario. For the other scenarios, LIRA requested the user to push
the end-effector towards the right direction of the goal, in case of a detected ambiguity.

The results of the experiments showed the learning time was reduced by at least a half
with LIRA, since it allows corrections during execution time, and does not request the user
to record entire new trajectory demonstrations. In each scenario, LIRA never performed a
wrong task reproduction, as the ambiguity-awareness prevented the robot from executing a
mistaken decision with the support of the human teacher.

The video of the experiments shows the teaching of the task of placing boxes 1 on 2, 3
on 4, and 5 on 6 when the only recorded data is the end-effector position with respect to each
of the reference frames (attached to each box). As depicted in Fig. 8.10, in case of ambiguity,
LIRA creates groups and uses the positive/negative feedback of the human for selecting the
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Figure 8.9: Frames overlap ambiguity. The first row shows the demonstration (1.a-b). Because the green and yellow
boxes are stacked, then the relative position of their frames is never changing in new scenarios and their goal will
always be grouped in the placing segment of the black box (1.b). When the overlap is broken (2.a), an ambiguity is
faced and LIRA asks for feedback (2.b,1): LIRA infers the user’s preference of the dependence of the goal on the
green frame (2.b,2).

right candidate. The manipulation prior (introduced in this chapter) automatically solves the
ambiguity in the picking operations (MP 1,3,5) of the boxes 1,3,5. Similarly, in the placing
operations (MP 2,4,6) the prior deletes the current manipulated frame, respectively 1,3,5.
However, with only one full demonstration in Scenario 1 (Fig. 8.11) and with the use of
priors, there is still not enough information for uniquely finding the dependence of the goal

Figure 8.10: Details on the disambiguation procedure with LIRA and the human feedback in the Scenarios 2, 3, 4
after one complete Kinesthetic Demonstration in the Scenario 1 of Fig. 8.11
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Figure 8.11: User study frames of the Kinesthetic Demonstration in the first scenario. The teaching task is stacking
box 1 on 2, 3 on 4, and 5 on 6. The task is segmented in six movement primitives: three picking operations and
three placing operations.

from a single reference frame in new scenarios for MP 2,4,6.
In Fig. 8.10, the position of the goals with respect to each reference frame, learned in the

first demonstration, are projected in the new scenarios for each of the ‘placing’ movement
primitives, i.e., where there are multiple valid candidates in the list and a potential ambiguity.
The groups are formed according to the grouping operation explained in the Sec. 8.3. LIRA
is always going to the biggest group first and if the user does not give any perturbation to the
end-effector within a time limit1, it is labeled as correct, i.e., all the elements of other groups
are removed from the list of valid candidates. Alternatively, in case of a perturbation, the
selected group is labeled as wrong and all its elements are removed from the list of valid
candidates. The different rows of Fig. 8.10 show how the user, through positive and negative
feedback, removes all the redundant candidates from the list until there is only one candidate
left for each MP and no ambiguity can arise in future different scenarios.

Fig. 8.12 reports the results of the NASA-TLX questionnaire, which show how demand-
ing the teaching task was with each of the methods. It is possible to observe that for all
the questions, the participants reported better results with LIRA. For all the questions, the
difference of the mean scores are considerable, and with LIRA the variance is lower in
general. This was expected since the interactive system with ambiguity-awareness eliminated
the flawed executions, along with the need of entire new kinesthetic demonstrations, which
took about two minutes each time. Rather, LIRA requested shorter interactions of corrective
feedback that required only approximately one second of physical contact with the robot.

1Please notice the pause in the execution of the task (in the video) when LIRA is unsure about the correctness of
the goal and waits for the eventual feedback of the user with EE perturbation. LIRA labels that goal as correct if
no feedback occurs.
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Figure 8.12: Statistical results of the workload NASA-TLX questionnaire that compares Kinesthetic teaching (KT)
with LIRA on different aspects.

8.5 CONCLUSION AND FUTURE WORK
A system that is able to give awareness to the robot about ambiguities in the selection of
reference frames for the goal of a movement primitive has been developed. This awareness
is useful for implementing active robot learners, which can prevent the execution of mistaken
actions produced by multiple potential interpretations of the demonstrated examples. The
robots are able to request local physical corrections or signals of (dis)approval from the user
in order to feed its knowledge and eliminate the wrong associations. With this interactive
approach, the workload of the teachers is reduced since the user-robot interaction is decreased
at both cognitive and physical levels. This approach was validated with a user study, wherein
the obtained results have shown an improvement in the user experience, with respect to a
system that does not have ambiguity-awareness and an interactive disambiguation modality.
This contribution intends to have more friendly robots that are able to share spaces and
activities with their end-user counterparts. These robots need to be more and more adaptable
to people who are not robot experts or do not have a technical background since they will
become part of our daily lives, supporting basic activities.
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9
CONCLUSION

This thesis has investigated how non-expert users can teach a robot to manipulate objects
through the proposed interactive imitation learning algorithms. The main characteristics of
uncertainty quantification and exploitation made it possible to conclude that uncertainty is
necessary for robots to learn from humans and enhance the resulting autonomous perfor-
mance. This chapter will give more details on the conclusion and insights that can be taken
from the reading of this thesis and answer the research questions introduced in Chapter 1. It
will also foresee the next challenges and opportunities for learning manipulation skills from
human teachers.
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9.1 REFLECTIONS
The core objective of this thesis was to devise new algorithms with the singular aim of
accelerating the robot’s acquisition of manipulation skills, requiring fewer interactions with
human teachers, and instilling the capability for uncertainty-aware behaviors in both the
learning and execution phases.

The challenge lies in teaching robots contact-reach manipulation skills, such as table
cleaning, (un)plugging a socket, or picking up an object at non-zero velocity—tasks that
come naturally to humans but prove intricate for robots. The knowledge transfer from human
to robot demands numerous interactions to rectify mistakes, enhance execution speed, or
improve accuracy. Traditional LfD, in its classical interpretation, falls short as it does not
facilitate the incorporation of new data during the robot’s execution. Consequently, Ch. 2
introduced readers to the different feedback modalities of Interactive Imitation Learning,
given the thesis’s contribution to this topic.

However, in interactive learning, quantifying and exploiting uncertainties is still unclear;
in particular, quantifying epistemic uncertainty due to the lack of data provided as a demon-
stration is one of the biggest challenges. Nevertheless, Gaussian Processes, introduced in Ch.
3, is a successful mathematical framework for learning non-linear policies while estimating
the uncertainty of the prediction. The chapter tackles and formalizes how statistical mod-
els can enhance data efficiency with novel update rules and defines an uncertainty-aware
aggregation rule by aggregating new data only if necessary. To address the first research
question on the practical implications and performance improvements arising from inte-
grating uncertainty quantification/exploitation and definition of priors, we can highlight
that

1. the proposed update rules proved instrumental in modifying the desired attractor and
stiffness behaviors, as discussed in Ch. 4, and it enables interactive adjustments to
motion speed while correcting gripping and attractor behaviors for executing picking
tasks at non-zero velocities, as detailed in Ch. 5.

2. the minimization of the uncertainty generates an attractive force field that effectively
guides the robot toward regions closer to the demonstrations, enhancing stability in
learned dynamics. Various use cases were examined with the proposed approaches,
demonstrating the robustness of learned dynamics when subjecting the robot to distur-
bances, such as physically halting its motion, as detailed in Ch. 4, 5 and 6.

3. played a key role in regulating the robot’s stiffness as a function of the uncertainty,
enhancing compliance when human disturbances were introduced to the system, as
detailed in Ch. 5 and Ch. 6.

4. the extrapolation-free prior also allowed to safely control the robot orientations, as
detailed in Ch. 5 and to attract to the goal of the closest point in the demonstration,
promoting local motion stability, as detailed in Ch. 6.

5. the GPs are the only model to retain calibrated uncertainties and provide the uncertainty
on the derivative of the deformation map when learning the motion generalization as
detailed in Ch. 7.
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To study the interactive feature of the proposed machine learning algorithms and answer
the second research question on the democratization of robot teaching, in Chapters 4, 5, 6,
and 8, non-expert users were engaged in teaching manipulation tasks, including activities
like plugging or picking at non-zero velocity, sorting objects or perform a bimanual picking.
Despite the users’ lack of familiarity with the teaching framework and interface, the users
consistently succeeded in instructing the robot.

The performed user studies concluded that

1. when relying solely on kinesthetic demonstration, individuals often struggle to achieve
accurate prediction in insertion tasks, even when the demonstration is performed
slowly (detailed in Ch. 4), or to achieve the desired (fast) execution time, even when
the demonstration is performed quickly (detailed in Ch. 5). However, when corrections
to the motion dynamics are provided, individuals can surpass their demonstrated capa-
bilities and achieve the necessary precision or execution speeds that were previously
unattainable.

2. when performing kinesthetic corrections, including adjustments such as synchronizing
the movements of the two arms or altering the bimanual motion to pick an object from
a different location, users typically favored corrections over re-demonstration due to its
efficiency and the decreased cognitive burden of controlling two arms simultaneously,
as detailed in Ch. 6.

3. non-expert users preferred giving feedback by simply pushing the robot in the correct
direction when teaching a long- sequence of tasks rather than aggregating more kines-
thetic demonstrations. This preference stemmed from users feeling less physically
and mentally stressed during the correction phase compared to repeatedly teaching
the task to eliminate ambiguity in selecting the necessary frames for each segment, as
detailed in Ch. 8.

9.2 DISCUSSION AND OUTLOOK
While all the algorithms were successfully tested on a real robot with non-expert users, many
experiments made strong assumptions about the known localization of objects using tracking
systems or markers. The primary goal was to validate and test algorithms without concern
for localization uncertainties, allowing for a controlled assessment of the proposed methods.

However, it’s important to acknowledge that no vision system can achieve zero uncer-
tainty, presenting a noteworthy challenge in scenarios involving insertion tasks and picking
at non-zero velocity. While the current implementation exhibits robustness to small inac-
curacies in object localization, the thesis did not explicitly study localization uncertainty,
potentially limiting the deployment of the algorithm to unstructured environments. Collect-
ing more demonstrations might not necessarily enhance the robustness of any algorithm to
localization errors since aleatoric uncertainties do not depend on the volume of data collected.
Nevertheless, particularly for picking, the manipulation strategy can mitigate the effect of
the inaccuracies in localization.

This thesis explored interactive learning strategies using various feedback interfaces,
including teleoperated devices such as 3D mouse corrections, joypad corrections, and
kinesthetic corrections. However, determining which interface is more effective from both
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human and robot perspectives is not straightforward. Through multiple user studies, the
thesis identified that kinesthetic correction can be more intuitive as individuals physically
move the robot when providing corrections. However, incorporating kinesthetic correction
into the learning algorithm introduces complexities, as distinguishing between a disturbance
and required corrections becomes ambiguous. On the other hand, using a 3D mouse to
provide corrections in both Cartesian direction and orientation was found to simplify the
detection and quantification of feedback from an algorithmic perspective.

Ultimately, the choice of feedback interface involves a trade-off between intuitiveness
and algorithmic simplicity, and the effectiveness may depend on specific application require-
ments and the user’s comfort and expertise with the chosen interface. For example, when
teaching the robot to interactively increase its velocity at different points in space, clicking a
button to speed up the motion locally is often more practical than attempting to physically
push the robot. Plus, as tasks involve higher speeds, physical interaction with the robot
becomes less safe. It becomes evident that there is no one-size-fits-all ideal user interface.
Future developments in interactive learning algorithms should be inherently multimodal,
allowing users to choose their preferred teaching modality, with the algorithm adapting
accordingly. Each user’s feedback preference may vary, with some providing evaluative
feedback and others corrective feedback, thereby complicating the update rules of interactive
learning algorithms. Despite this complexity, the probabilistic nature of the Gaussian Process
framework developed in this thesis holds promise and could serve as a valuable choice for
accommodating diverse user feedback modalities.

However, when attempting to teach more intricate manipulation tasks where the user
needs to instruct and correct specific hand poses and gripper configuration, limitations in
learning from demonstration can emerge. For example, controlling a complex robotic gripper
with numerous degrees of freedom using a teleoperation interface is impractical, and there
may be no straightforward correspondence between human hands and robot hands, making
hand tracking unfeasible. This example may justify the development of a complex hand-like
gripper, which is challenging to control using optimal planners or reinforcement learning
algorithms due to the curse of dimensionality; still, it could offer a teaching advantage from
a broad pool of available human demonstrators. Moreover, the availability of Cartesian
control can improve knowledge transfer among different robots. The emphasis, therefore,
should not solely be on designing the best-performing gripper or arm design in isolation but
rather on developing designs that enhance the transfer of knowledge from human teachers to
robots and between robots.

Furthermore, additional research should be directed towards bimanual manipulation, as
many existing state-of-the-art teaching methods may not easily scale when instructing two
arms simultaneously. From a human-centric standpoint, having dual arms similar to humans
can significantly broaden the range of tasks a robot can learn and perform. This eliminates
the need for humans to reevaluate how they transfer skills, typically executed with two arms,
to a robot equipped with only one arm, such as handling boxes or pieces of luggage.

In addition, humans naturally utilize the complete embodiment of their arms in daily
tasks, such as opening doors while hands are occupied. Teaching lower-level policies for
the robot’s elbow while maintaining specific constraints on the other arm poses intriguing
challenges for the manipulation community. Addressing these challenges contributes to
advancing robot capabilities and generates enthusiasm for deploying more sophisticated
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robots to assist in daily activities and handle mundane tasks.
In conclusion, this thesis underscores the significance of uncertainty estimation and

minimization for steering robot behavior toward the demonstration distribution and for gaug-
ing uncertainty when generalizing policies to new task configurations. Despite the strides
made in machine learning, particularly with the success of deep neural networks in handling
high-dimensional inputs for complex control tasks, the reliability of uncertainty estimation
solutions remains unsolved. Conversely, statistically grounded approaches like Gaussian
Processes have proven valuable tools for interactive learning, offering well-calibrated and
unbiased uncertainty estimates. Moving forward, the robotics community must explore the
effectiveness of both deep learning and Gaussian Process methods in scaling robot tasks
to high-dimensional inputs, such as images or graphs, while ensuring accurate uncertainty
estimation. Leveraging uncertainty as a safety mechanism to halt the robot or adjust its
velocity and stiffness in uncertain situations could prove to be a pivotal feature for the secure
deployment of technology, marking a crucial juncture for the future of robotics.
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A
CARTESIAN IMPEDANCE

CONTROL OF REDUNDANT
MANIPULATOR

Impedance control is crucial in robot manipulation because it enables robots to interact
with their environments in a flexible, adaptive, and safe manner. Traditional position or
force control methods can be too rigid, resulting in failures or damage when dealing with
unpredictable or dynamic environments. In contrast, impedance control allows robots to
modulate the relationship between applied force and the resulting motion, mimicking human-
like adaptability in tasks requiring both precision and delicacy, such as assembly, object
handling, or interaction with humans.

By dynamically adjusting to changes in the environment—like variable stiffness, damp-
ing, or external forces—robots can maintain stability, enhance performance in uncertain
situations, and handle delicate objects without causing damage. This adaptability makes
impedance control particularly valuable for tasks that involve physical contact, ensuring
safer human-robot collaboration and more effective manipulation of complex objects.

Impedance control is one of the main components of this thesis, and this appendix
summarizes the fundamental control equations that were used to control the robot in a
single or dual fashion. The implementations for the Franka Emika Robot impedance control
can be found at https://github.com/franzesegiovanni/franka_human_
friendly_controllers and for the bimanual impedance controller at https://
github.com/franzesegiovanni/franka_bimanual_controllers.

https://github.com/franzesegiovanni/franka_human_friendly_controllers
https://github.com/franzesegiovanni/franka_human_friendly_controllers
https://github.com/franzesegiovanni/franka_bimanual_controllers
https://github.com/franzesegiovanni/franka_bimanual_controllers
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A.1 CARTESIAN IMPEDANCE CONTROL
The dynamic equation of a robot manipulator is defined according to

(𝒒)�̈�+(𝒒, �̇�)+(𝒒) = 𝝉𝑡𝑎𝑠𝑘 +𝝉𝑁𝑆 +𝝉𝑒𝑥𝑡 +𝝉𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛

where, in order from left to right, there are the mass, the Coriolis and the gravitational term
that depend on the joint configuration 𝒒 and, on the right, the torque for the Cartesian (or
task) control, the nullspace control torque, and finally the externally applied torques and the
torques generated by the friction in the joints. The task space torque is defined as

𝝉𝑡𝑎𝑠𝑘 = 𝑱 ⊤((𝒙𝑔𝑜𝑎𝑙 −𝒙)−�̇�)+(𝒒, �̇�)+(𝒒)

where 𝑱 is the geometric Jacobian, and the stiffness  and the damping  give the compliant
behavior with a critically damped response [6].

DAMPING DESIGN
The damping matrix can be designed to simulate a critical damping system [41]. In the
framework adopted in this thesis, after computing the orthogonal decomposition of , i.e.,
 = 𝑹̃𝑹𝑇 1, where ̃ is a diagonal matrix, then ̃ = 2̃1/2 and  = 𝑹̃𝑹𝑇 . Please notice
that ̃ is a diagonal matrix, hence the square root is applied to every element of the diagonal.

NULLSPACE CONTROL
When working with a redundant manipulator, null-space control can be formulated as a
projection of the joint impedance in the kernel of the end effector’s Jacobian [6], such that
the torque in the joint impedance control will have no Cartesian component forces, i.e.

𝑭𝑁𝑆 = 𝑱 ⊤+𝝉𝑁𝑆 = 0, (A.1)

hence given any joint torque, for example generated from impedance in joint space, the
nullspace requirements is satisfied if

𝝉𝑁𝑆 = (𝑰 − 𝑱 ⊤𝑱 ⊤+)𝝉,

this definition of 𝝉𝑁𝑆 will make the null space constraint of Eq. (A.1) to be satisfied, no
matter the value of 𝝉.

We can define the null space joint impedance control as

𝝉𝑁𝑆 = (𝑰 − 𝑱 ⊤𝑱 ⊤+)(𝑁𝑆(𝒒𝑔𝑜𝑎𝑙 −𝒒)−𝑁𝑆�̇�) (A.2)

where 𝑁𝑆 is the null space joint stiffness matrix, 𝑁𝑆 is the null space joint damping
matrix, and 𝒒𝑔𝑜𝑎𝑙 is the desired configuration. This creates a lower priority on the desired
joint configuration that will only generate joint transitions that have a minimal effect on the
imposed end effector dynamics.

1𝑹 is an orthogonal matrix, hence 𝑹𝑇 = 𝑹−1
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JOINT LIMIT REPULSION
Additionally, we can project in the nullspace a joint limit repulsion torque to minimize the
risk of hitting a joint limit while minimally affecting the end-effector impedance behavior.
We define 𝒒𝑠𝑎𝑓 𝑒 as the joint configuration with a safety distance from the joint limit 𝒒𝑙𝑖𝑚. In
case the robot joint configuration 𝒒 surpasses the safety limit 𝒒𝑠𝑎𝑓 𝑒 , a null space controller is
activated with 𝒒𝑔𝑜𝑎𝑙 = 𝒒𝑠𝑎𝑓 𝑒 only for the joints which are beyond their safety limit. Moreover,
the stiffness and the damping for the joint limit rejection are non-zero only when the robot
goes beyond the safety limit. It is important that this limit is set before the real-joint limit,
otherwise the robot’s safety control will lock the joints.

The projection of joint limit torque in the null-space of the Cartesian control generates
transitions in the robot configurations that move every joint away from its limit while not
interfering with the desired pose control that is actuated in the Cartesian space. This simple
solution allows the robot to physically converge to kinematically feasible solutions (when
existing) without the need of any inverse kinematics controllers or planning which can be
unreliable and converge to local minima.

SAFETY ATTRACTOR AND STIFFNESS SATURATIONS
In order to enhance safety when interacting with humans [67], it is necessary to saturate the
attractor displacement and the stiffness to a maximum safe value. To help the definition of
the bounds, we can compute them as a function of the desired maximum free-movement
velocity (𝒗𝑚𝑎𝑥) and maximum applicable static force of the end-effector (𝑭𝑚𝑎𝑥) (in absolute
values).

First, we compute an upper bound for the maximum displacement. Let us consider the
dynamics equation of the manipulator in the task space and with the Cartesian impedance
control active, i.e.,

𝚲(𝒒)�̈� =Δ𝒙−�̇�+𝒇𝑒𝑥𝑡 ;

when the robot is in free-movement, i.e., 𝒇𝑒𝑥𝑡 = 0, the maximum velocity happens for �̈� = 0,
that is to say:

|�̇�| =|Δ𝒙|.

Thus, given the current setted stiffness  and the desired max allowed velocity 𝒗𝑚𝑎𝑥 , Δ𝒙
needs to respect:

|Δ𝒙| ≤ Δ𝒙𝑚𝑎𝑥 =−1𝒗𝑚𝑎𝑥 = 2𝑹̃− 1
2𝑹𝑇 𝒗𝑚𝑎𝑥 , (A.3)

obtained after using the definition of damping. Before sending to the robot, the Δ𝒙 is
saturated in order to respect the upper bound.

However, if taking into account the maximum static force (𝑭𝑚𝑎𝑥 ) when �̇� = 0 and �̈� = 0,
an upper bound on the stiffness can be found, such that:

Δ𝒙𝑚𝑎𝑥 ≤ 𝑭𝑚𝑎𝑥 ;

𝑹̃𝑹𝑇Δ𝒙𝑚𝑎𝑥 ≤ 𝑭𝑚𝑎𝑥 ;

2̃𝑹𝑇𝑹̃−1/2𝑹𝑇 𝒗𝑚𝑎𝑥 ≤ 𝑹𝑇 𝑭𝑚𝑎𝑥 ;

2̃
1
2𝑹𝑇 𝒗𝑚𝑎𝑥 ≤ 𝑹𝑇 𝑭𝑚𝑎𝑥 .
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Hence, since the matrix ̃ is diagonal, we can find the upper bound of each element in the
𝑖-th row and column (̃𝑖𝑖) as:

̃𝑖𝑖 ≤(
(𝑹𝑇 𝑭𝑚𝑎𝑥)𝑖
2(𝑹𝑇 𝒗𝑚𝑎𝑥)𝑖)

2

(A.4)

so, in every singular component, the value of the principal stiffness is saturated in order to
respect the found inequality.

SAFETY IN STIFFNESS MODULATION RATE
In the context of assembly tasks, when performing variable impedance control to acquire
human demonstrations or decrease the insertion force, the rate of change of stiffness cannot
be too drastic. As shown in [97], a fast increase in stiffness can generate dangerous robot
instability. For this reason, the stiffness modulation is done with a proportional controller
with respect to the requested target one, i.e. ̇ = 𝛾(𝑡𝑎𝑟𝑔𝑒𝑡 −).

A.2 DUAL CARTESIAN IMPEDANCE CONTROL
Differently from the execution of a single-arm, when a two-arms policy execution is per-
formed, extra attention is required regarding the mechanical coupling of the movement. For
example, when picking up a box with two hands and executing a re-shelving operation, in
case of a perturbation of one arm, the other arm must also follow the perturbed movement.
In this case, both arms must be mechanically coupled, meaning that in the impedance control
of each arm, we would add an extra coupling force defined as:

𝑭 𝑙𝑐 =(𝒙𝑟 −𝒙𝑙 −Δ𝒙𝑑𝑒𝑠𝑟𝑒𝑙 )+ (�̇�𝑟 − �̇�𝑙) , (A.5)

𝑭 𝑟𝑐 =(𝒙𝑙 −𝒙𝑟 +Δ𝒙𝑑𝑒𝑠𝑟𝑒𝑙 )+ (�̇�𝑙 − �̇�𝑟 ) , (A.6)

where Δ𝒙𝑑𝑒𝑠𝑟𝑒𝑙 = 𝒙
𝑑𝑒𝑠
𝑟 − 𝒙𝑑𝑒𝑠𝑙 is the desired distance from the two end-effectors that can be

learned and change over time. A simple schematic visualization of the proposed bimanual
impedance control is displayed in Fig. A.1 where each end-effector is coupled with a stiffness
(and damper) with respect to their goal but also with a relative stiffness (and damper) between
them. Note that the proposed safety saturation and regulation process described, respectively,
in Appendix A.1 are applied on a per-arm basis, thus being applied to single-arm setups.
For a bimanual setup, the displacement and stiffness for the coupling forces (𝑭 𝑐, defined
in Equations (A.5) and (A.6)) are saturated and regulated similarly to Equations (A.3) and
(A.4).
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Figure A.1: The bimanual Impedance controller scheme proposed in [56]. For simplicity the spring-damper system
is represented only with a spring.

A.3 EXTERNAL FORCE OBSERVER
Beyond being able to set the desired torque for each joint and simulate the effect of a
Cartesian impedance, a sensor also measures the actual torque in the joints, i.e.,

𝝉𝑠𝑒𝑛𝑠𝑜𝑟 = 𝝉𝑒𝑥𝑡 + 𝝉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 + 𝝉𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛.

Given a force applied to the end-effector, the resulting external torque can be computed as

𝝉𝑒𝑥𝑡 = 𝑱 ⊤𝑭 𝑒𝑥𝑡 ,

thus, the external force can be estimated as:

𝑭 𝑒𝑥𝑡 = 𝑱 ⊤+ (𝝉𝑠𝑒𝑛𝑠𝑜𝑟 − 𝝉𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛−𝝉𝑐𝑜𝑛𝑡𝑟𝑜𝑙)

where 𝝉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 is the final torque computed from the impedance control, and while the friction
torque is obtained from a parametric estimation based on a set of parameters 𝐶𝑛,𝑖, where 𝑛
ranges from 1 to 4 and 𝑖 ranges from 1 to 7 (corresponding to the robot’s degrees of freedom)
[61]. Hence, the estimated friction in each joint 𝝉𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is given by:

𝜏𝑓 𝑟𝑖𝑐𝑡𝑖𝑜𝑛,𝑖 =
𝐶1,𝑖

1+exp(−𝐶2,𝑖(�̇�+𝐶3,𝑖))
−𝐶4,𝑖.

Accurately compensating for friction is crucial when detecting external forces without an
end-effector force sensor. If friction is not properly compensated, fictitious external forces
may be estimated during robot motion. This can lead to issues, such as incorrect detection of
kinesthetic corrections or inaccurate interpretation of discrepancies between the robot’s and
the human’s intended movements when performing collaborative tasks [165].
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GLOSSARY

BC Behavioral Cloning.

COACH COrrective Advice Communicated by Humans.

DAgger Data Aggregation.

DART Disturbances for Augmenting Robot Trajectories.

DDPGfD Deep Deterministic Policy Gradient from Demonstration.

DMP Dynamic Movement Primitive.

DoF Degree of Freedom.

DS Dynamical System.

DTW Dynamic Time Warping.

EE End-Effector.

EnsembleDAgger Ensemble Dagger.

GGP Graph Gaussian Process.

GMM Gaussian Mixture Model.

GP Gaussian Process.

GPT Gaussian Process Transportation.

HG-DAgger Human Gated DAgger.

HMM Hidden Markov Model.

IIL Interactive Imitation Learning.

IL Imitation Learning.

ILoSA Interactive Learning of Stiffness and Attractors.

Interactive RL Interactive Reinforcement Learning.

KMP Kernelized Movement Primitive.
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KT kinesthetic teaching.

LfD Learning from Demonstration.

LIRA Learning Interactively to Resolve Ambiguity.

LLM Large Language Models.

LQR Linear Quadratic Regulator.

MP Movement Primitive.

MUDS Minimum Uncertainty Dynamical System.

NN Neural Network.

P&P Pick ad Place.

PI2 Policy Improvement with Path Integrals.

PILCO Probabilistic Inference for Learning Control.

PoG Product of Gaussians.

PPL Preference-Based Policy Learning.

ProMP Probabilistic Movement Primitive.

RL Reinforcement Learning.

SafeDAgger Safe DAgger.

SHIELD Super-Human InsErtion using Learning from Demonstration.

SIMPLe Safe, Interactive Movement Primitives Learning.

TAMER Training an Agent Manually via Evaluative Reinforcement.

ThriftyDAgger Thrifty DAgger.

TP-GMM Task-Parameterized Gaussian Mixture Model.

TPC Tactile Policy Correction.
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Propositions
accompanying the dissertation

UNCERTAINTY-AWARE INTERACTIVE IMITATION LEARNING FOR
ROBOT MANIPULATION

by

Giovanni FRANZESE

1. Machines memorize. They do not learn.

2. Every scientific breakthrough in robotics, whether in software development or the
realm of knowledge, should be made accessible to the public through open access.

3. In robotics user studies, a careful review process is essential to prevent biased or
misleading research from being published.

4. Gaussian Process is a clearer and more transparent path toward interpretable and
reliable models compared to Deep Learning equivalents. [Chapter 7]

5. The most effective and efficient approach to teaching a complex policy does not solely
rely on demonstrations but rather leverages feedback from human interactions. [This
thesis]

6. Utilizing imitation learning combined with classical control offers a safer and more
efficient method for learning and executing complex manipulation tasks compared to
lengthy reinforcement learning-based training. [This thesis]

7. Academics should prioritize teaching quality over prolific yet incomplete publications,
as this emphasis, paradoxically, enhances both education and the quality of research
outcomes.

8. The "TikTok-ification" of education—cramming 20 topics into a 1-hour lecture—makes
future scientists more superficial and less able to focus on complex topics later in their
careers.

9. There are no valid reasons to dislike ROS (Robot Operating System).

10. Manipulators must be used to manipulate, nothing else.


