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Summary
Cardiovascular disease is the leading cause of death worldwide. As the average lifespan increases,
its incidence and impact will only increase in the years to come, too. Atrial fibrillation is a common
cardiovascular disease, affecting the regular beating of the heart through chaotic contraction of the
heart’s upper chambers. On its own, the condition—increasingly prevalent among the elderly—is not
life threatening, but it leads to an increased risk of stroke and heart failure. As of yet, there is no
consensus on the physiological mechanisms responsible for initiating and sustaining atrial fibrillation.
A more detailed view of cardiac activity would improve understanding of the disease, making earlier
diagnosis possible and improving options for treatment.

The contraction of the cardiac muscles is governed by electrical signals propagating through the
tissue. This makes it possible to monitor cardiac activity by recording electrical signals on the heart. A
high spatial resolution can be achieved by measuring the electrical potential directly on the epicardium
of the heart during open-heart surgery using an array of closely spaced electrodes. From these electro-
grams, estimating the time of local activation of the cardiac tissue underneath each electrode provides
a quantitative way of mapping the propagation of waves of contraction and getting a better sense of
the mechanisms of atrial fibrillation.

Various methods exist to estimate the activation times, but the complex signals that are typical of
atrial fibrillation make it difficult to obtain accurate results. This thesis proposes combining two existing
methods for estimating the local activation times. As a first step, deconvolution is applied to the electro-
grams. Based on a model of the electrogram as a spatial convolution of local transmembrane currents,
an inverse problem is formulated and solved in a regularized least-squares sense. The currents thus
obtained give a less opaque view of the cardiac activity at the electrode locations by attenuating dis-
tant disturbances and emphasizing local activity. The deconvolution output is fed to the second step
of cross-correlation over higher-order neighbors. Cross-correlating certain pairs of signals gives an
estimate for the mutual time delay in local activation. A graph representation of the electrode array is
used to define neighbor order and decide which signal pairs are correlated. The set of pairwise time de-
lays this produces is then converted to an estimate for the local activation times, using a least-squares
estimator.

The performance of the proposed method is evaluated using simulated data of atrial cardiac activity,
producing simulated electrograms. Tomodel different cardiac settings, three types of tissue conductivity
patterns are used, along with the option to model multiple sources of electrical stimulation. Using a
single-source setting, earlier results of the deconvolution and cross-correlation methods are confirmed,
and the proposed method is seen to produce a slightly lower mean error than reference methods. In the
higher-complexity triple-source setting, the latter effect is again visible. Reinforced by the performance
of the different methods in increasingly noisy settings, the main merits of the proposed method for the
estimation of local activation times can be said to be found in the form of increased consistency, not
significantly improving on the accuracy of existing methods.
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in Delft such an enjoyable experience. Over the course of my seven years in the Prinsenstad, the
Electrotechnische Vereeniging (ETV) has offered me a lot. De oude dame provided me with my very
first acquaintances here as well as close friends to this day, provided me with sufficient occasions for
coffee breaks, gave me a great platform for personal development, and indulged my interest in the
history of our faculty through her rich archives, all of which I am most grateful for. For the unforgettable
year of 2017–2018 and many amazing moments since, I want to thank my fellow members of the 146th
ETV Board. I give a special shout-out to Tijs: for a lot of the days I spent working on this project, you
were my trusty companion, having started at approximately the same time as I did. I am grateful for all
your support, as well as for you proofreading part of this document.

Fellow clients of Joey Travels, thanks for all the shared adventures, which took us from Rotterdam
to South Africa and from Croatia to the French Alps, in varying circumstances. I would especially like
to thank two fellow jesters: Bart, for providing another foundation for my work and taking the time to
explain his findings to me; and the namesake of the earlier-mentioned up-and-coming travel agency,
Joey, both for organizing the wonderful outings we have experienced together and for all the coffees
he made possible.

I had the additional pleasure of being a member of Groover, which allowed me to surround myself
with musicians, and which provided the perfect soundtrack to my time in Delft. I am continually happy
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1
Introduction

1.1. Research motivation
The leading cause of death worldwide is cardiovascular disease (CVD). This wide class of diseases
affecting the heart and blood vessels was responsible for the death of an estimated 17.9 million people
in 2019, representing 32% of all global deaths in that year [4]. Apart from the direct impact through
loss of life, CVD also places a heavy burden on society through its economic impact. In 2015, it was
estimated that CVD cost the European Union economy €210 billion (made up of healthcare costs, loss
of productivity, and informal care of people with CVD) [5]. This makes the total costs due to CVD more
than those for any other diagnostic group [6]. In the European Union, the group of approximately 49
million people living with the disease is increasing by 6 million new cases every year [5].

Within the class of CVD, we can distinguish a group of diseases that affect the regular beating of the
heart, known as cardiac arrhythmias. These conditions are becoming ever-prevalent in populations as
people become older in general, as a result of which they have come to be referred to as “the cardiovas-
cular epidemic of the 21st century” [7]. The most common cardiac arrhythmia is atrial fibrillation (AF),
which manifests itself as disorganized contraction of the muscles in the upper chambers (atria) of the
heart. As a result, the heart pumps blood around the body less efficiently, increasing the overall risk of
mortality [8] and the risk of other complications, such as blood clots, stroke, and heart failure [9]. AF is
widespread: in Europe, 1 to 3 percent of the population suffers from the condition, with the percentage
being higher among the elderly [10]. As life expectancy increases, the occurrence of AF increases with
it [11], with the number of cases expected to double by 2060 [10]. A large volume of research has been
done into AF, resulting in some understanding of the mechanisms behind it. However, as of yet there is
no global consensus on this matter [12], which is detrimental to the progress of finding effective forms
of treatment.

A good understanding of cardiac activity and other processes in the heart starts with finding a
method to register and quantify them. The rhythmic contraction of cardiac muscles is controlled by
the coordinated conduction of electrical signals. As a result, the activity of the heart can be monitored
by measuring its electrical activity. The first tools for visualizing and recording cardiac activity were de-
veloped at the end of the 19th century, and led to the introduction of the electrocardiogram (ECG) using
the string galvanometer developed by Willem Einthoven [13], [14]. From this method, which involved
attaching electrical leads to a patient’s limbs to measure the current, improvements and subsequent
discoveries led to the 12-lead ECG method that is in common use today [15].

An ECG constitutes an effective way of gauging the total electrical activity of the heart. Different
parts of the standard cardiac cycle can be identified and validated on ECG recordings, and AF is often
first diagnosed using an ECG. However, this method, using electrodes applied to the skin, is less suited
for obtaining specific information on local activity in sections of cardiac tissue. A solution to this problem
can be found by measuring the electrical activity directly on the surface of the heart during open-heart
surgery, using an array of electrodes. These invasive recordings, known as electrograms, offer a much
finer spatial resolution [16].

Electrograms can contain a lot of information about the spatial progression of the electrical signals
in the heart over time, allowing us to quantify the activity of the heart in a more detailed manner. From
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2 1. Introduction

each electrode used in the recording, a quantity of particular interest is the exact moment at which the
section of tissue underneath that electrode is activated, which is known as the local activation time
(LAT). Using this LAT from each electrode, the “path” of activation through heart tissue can be mapped,
giving us a location-based view of how and where the cardiac muscle contracts over time. This mapping
process can bring to light obstacles of the activation wave, such as blocks in electrical conduction or
multiple interfering sources of electrical activity.

There are various methods for obtaining the LATs from measured electrograms. This can be done
manually, with an expert physician reviewing the measured signals and hand-picking the moment of
activation per electrode. Though it offers increased accuracy, this method is time and labor intensive.
The LAT can also be determined using a variety of automated methods. The most commonly used
technique is the steepest-deflection (SD) method [17], which consists of processing the electrograms
by marking the moment at which the slope of the signal is at its steepest (i.e., obtains its maximally
negative value) as the LAT. The accuracy of SD decreases as more complex signals are considered,
such as can be encountered during AF [18].

Two other methods used in this context are deconvolution and cross-correlation. In contrast to SD,
these methods employ the spatial information encoded in the array of measured signals. Similarly
to how the ECG can be seen as the spatial average of activity of the whole heart, the deconvolution
method views a single electrogram as the spatial average of cardiac activity in the neighborhood of the
measuring electrode. It then seeks to process the electrogram in such a way as to obtain this underlying,
“less blurry” image of cardiac activity [19]. Cross-correlation methods can be used to estimate the delay
between two similar signals. From these pairwise delays, further processing can produce the LATs.
This cross-correlation can be applied to neighboring electrodes [20], or to electrodes that are farther
apart as well [21].

1.2. Research objectives
This thesis investigates the application of a combination of deconvolution and cross-correlation meth-
ods for the mapping of electrical activity in the atria. Specifically, we explore estimating the LATs from
atrial electrograms using existing methods of deconvolution and cross-correlation, both over directly
and higher-order neighboring electrodes. The aim is to find out if there is merit to combining these two
methods, particularly in relatively complex settings of cardiac electrical conduction. To this end, we
introduce simulated sections of cardiac tissue with increasing degrees of different forms of conduction
block and multiple sources of electrical stimulation. We will evaluate how the proposed combination
compares not only to the baseline method of steepest deflection, but also to the use of each of the
constituent parts on their own.

1.3. Thesis outline
This thesis is divided into six chapters, organized as follows. Chapter 2 provides information on the
background of the project. The basic anatomy of the heart, along with the properties of its electrical
conduction are introduced. Details of atrial fibrillation are given, along with an introduction of epicardial
mapping and an overview of current methods for estimating LATs from the measurements produced by
such a mapping procedure. In Chapter 3, the proposed method for processing the electrograms to es-
timate the LATs is introduced. A detailed description is given of its constituent parts, deconvolution and
cross-correlation over higher-order neighbors. Chapter 4 describes and discusses the methodology
used for generating simulated electrogram data, introducing the metric used to judge performance of
different LAT estimation methods on the data. Using this simulated atrial data, Chapter 5 quantitatively
compares the performance of the methods developed in Chapter 3 to reference methods as illustrated
in Chapter 2. In Chapter 6, a summary and discussion of the obtained results are given, and resulting
topics for possible future research are proposed.



2
Background

This chapter provides the background necessary to effectively understand the contents of the subse-
quent chapters of this thesis. We introduce key concepts related to the human heart at a fundamental
level, as well as more low-level theories on its functioning and the associated electrical activity, which
play a role in cardiac arrhythmias such as atrial fibrillation. In Section 2.1, information is given on the
functioning of the heart, with an overview of basic cardiac anatomy, a model for electrical activity at
the cellular level, and an introduction on surface electrocardiograms and how they relate to underlying
cardiac activity. Section 2.2 goes into detail on the cardiovascular disease of atrial fibrillation, its man-
ifestations, theories on its causes and current forms of treatment. Section 2.3 describes methods for
measuring the electrical activity of the atria directly on the tissue and how the resulting measurements
can be interpreted. Finally, Section 2.4 reviews different methods for obtaining and quantifying from
these measurements the activation times of the cells in the measured tissue, which can subsequently
be used to estimate the activation pattern of the cardiac cells.

2.1. Electrical activity of the human atria
2.1.1. Basic anatomy of the heart
As one of the most important organs in the human body, the heart plays a key role in supporting major
processes vital for sustaining human life. The main function of the heart is to pump blood around the
body. Nutrients and oxygen are supplied to the different parts of the body by this blood through a
system of blood vessels, and waste products such as carbon dioxide are disposed of. Fig. 2.1 shows a
schematic frontal section of the heart, with key components indicated. The main part of the heart are its
four chambers. The two smaller, superior chambers are the left and right atria; the two larger, inferior
chambers are the left and right ventricles. The outside layer of the heart is known as the epicardium;
the inside layer of the heart is known as the endocardium, with myocardium lying in between. Four
valves (the cream-colored components in Fig. 2.1) control the flow of blood between the chambers
and the arteries connected to them. The bicuspid and tricuspid valves are situated between the atrium
and ventricle on, respectively, the left and right side of the heart; the pulmonary and aortic valves are
situated between the ventricles and the corresponding connecting arteries.

The left and right chambers are separated from each other, with each being part of respectively the
large and small circulatory system, interconnected through the lungs. Blood from the upper and lower
caval veins, low in oxygen and rich in carbon dioxide, enters the right atrium and gets pumped to the
lungs via the pulmonary artery connected to the right ventricle. After exchange of gases in the lungs,
the blood, now oxygenated and depleted of carbon dioxide, enters the left atrium via the pulmonary
veins. Flowing to the left ventricle, it is then pumped into the aorta to reach the different parts of the
body [22].

2.1.2. Electrical conduction in cardiac cells
The activity of the muscle cells in the heart (known as cardiac muscle cells or cardiomyocytes) is
regulated by electrical signals. These signals propagate through muscular tissue and cause the car-
diomyocytes to contract. Although it can appear that way when viewed at the scale of the full heart, the

3
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Fig. 2.1: Frontal cross-section of the heart, showing the basic anatomy of the atria and the ventricles, with the most important
electrical conduction pathways indicated in yellow. Adapted from [23, p. 848].

propagation of the signals does not happen in a continuous manner. Rather, it goes step by step. When
a cell is depolarized (activated), it in turn triggers its neighboring cells to depolarize, a process which
causes the signal to be conducted throughout the tissue of cardiomyocytes. A network of pacemaker
cells regulate this activity and determine the rate of contraction. The process of regular contraction of
the heart muscle involves a number of such components that guide the conduction of electrical signals
across the heart, indicated in Fig. 2.1 in yellow. The origin of the process is the sinoatrial (SA) node
(located in the right atrium), where the cardiac electrical impulses normally stem from. The resulting
rhythm of regular cardiac contraction controlled by the SA node is known as sinus rhythm (SR). This
initial impulse propagates from the SA node across the atria, reaching the left atrium via a group of
cardiomyocytes known as Bachmann’s bundle. Thus, the atria contract first, after which the impulse is
carried further to the atrioventricular (AV) node and on to the ventricles via the bundle of His. This con-
duction to the ventricles is relatively slow, to allow the ventricles to fill with blood before they contract
and pump the blood into the arteries, completing the cardiac cycle [22].

The conduction of electrical signals across the muscle cells of the heart does not happen as easily
in all directions: it is an anisotropic phenomenon (i.e., not isotropic), which fact is reflected in a differing
conduction velocity (CV) depending on the direction. Signals in general are more readily conducted in
the longitudinal than the transversal direction, due to the orientation of the myocytes relative to each
other. This effect is illustrated in Fig. 2.9, which shows the conduction of a signal through an area of
cardiac cells. The arrows indicate the mean direction of propagation, corresponding to the longitudinal
direction (along the fibers) of the cardiac cells. The degree of anisotropy can be quantified by the
anisotropic ratio, defined in cardiomyocytes as the ratio between the CV in the longitudinal and the
transversal directions [24].

2.1.3. Action potentials and propagation in the atria
The activation of cardiomyocytes in the SA node amounts to depolarization of the local cells, which
corresponds to a shift in the electrical potential of the cells. This is caused by excitation from neighboring
cells or another source. The resulting pattern of the course of this cell potential over time as the cell
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is activated is known as the action potential (AP). The type of cell determines the morphology of this
AP, as Fig. 2.2 shows. This figure also shows the pattern followed by atrial muscle cells: multiple
flows of ions across the cell membrane during the depolarization and repolarization process cause the
visible changes in potential. Inward flows of sodium and calcium ions, as well as a number of different
currents of potassium ions, are thought to be the chief actors controlling the AP [25]. Two important
parameters that characterize the AP are the activation time and the refractory period. The activation
time is defined as the moment when the potential of the cell reaches a certain threshold during the
depolarization phase; this determines whether an AP is triggered in the cell, or not. The refractory
period is the minimum period after activation of a cell during which no subsequent AP can activate the
cell. This period is typically a bit shorter than the full duration of an AP, which helps prevent the heart
from contracting in too rapid a manner [26].

Fig. 2.2: Varying morphologies of the AP generated by cells in different locations in the heart. Adapted from [27].

To model the spatial propagation of an AP through cardiac tissue, a mono-domain approximation
[28] is used; the cardiac tissue in this approximation is discretized on a two-dimensional grid. In the
widely used model by Courtemanche et al. [29], the propagation of the AP from cell to cell in this
mono-domain formulation is modeled as a reaction–diffusion system. This implicitly defines the trans-
membrane cell potential 𝑉m at location x and time 𝑡 as

𝐶m
𝜕𝑉m(x, 𝑡)

𝜕𝑡 = 𝐼tm(x, 𝑡) + 𝐼stim(x, 𝑡) − 𝐼ion(x, 𝑡, 𝑉m), (2.1)

where 𝐶m is the membrane capacitance, and 𝐼tm, 𝐼stim and 𝐼ion are respectively the transmembrane,
stimulation and total ionic current. The total ionic current is a summed representation of the ionic ac-
tivity in the cell membrane (e.g., inward and outward currents through ion pumps). The constituent
currents of 𝐼ion are themselves dependent on the potential 𝑉m and specific ion conductivities [29]. The
transmembrane current accounts for the diffusion (i.e., spatial evolution or propagation) of the trans-
membrane potential, according to

𝐼tm = 𝑆−1
v 𝛁 ⋅ (𝚺(x)𝛁𝑉m(x, 𝑡)). (2.2)

Here, 𝑆v is the cellular surface-to-volume ratio and𝚺(x) is the position-dependent extracellular conduc-
tivity tensor. It contains information about the electrical conductivity of the tissue in different directions
at location x, incorporating directional differences related to the anisotropic ratio as well as information
on areas of lower conductivity. Comparing (2.2) with (2.1), we can thus see that the spatial propagation
and temporal evolution of 𝑉m (represented by the divergence and gradient operators on the one hand
and the first-order time derivative on the other hand, respectively) are interrelated. The transmembrane
current will show up again later, when we use it to model the potential measured by an electrode in the
vicinity of the cardiac tissue.



6 2. Background

2.1.4. Electrocardiograms
The electrical activity of the heart, described in the previous sections, can be measured and quantified
in various ways. Arguably the best-known modality for representing this activity is the surface electro-
cardiogram (ECG), which is measured by applying electrodes to the surface of the body (i.e., on the
skin). The potential that this measures is effectively a spatial average of the activity of all heart cells.
Willem Einthoven was the first to accurately measure this using a string galvanometer [14], measuring
and recording a current using electrical leads connected to the extremities of the patient. Over the
years, various improvements were made to the measuring technique, leading to the 12-lead electro-
cardiogram (ECG) method widely used today, which utilizes 10 electrodes placed on the limbs and the
chest [15]. An example of a standard electrocardiogram can be seen in Fig. 2.3. It shows the change of
potential over time, often printed on grid paper. The characteristic shape of the ECG when measured
during SR, first described by Einthoven [13], consists of a P wave, a QRS complex, and a T wave.
Each of these can directly be related to specific parts of the cardiac cycle, as Fig. 2.4 illustrates. The P
wave is the main marker of atrial activity, corresponding to depolarization of the atria. The remaining
part of the signal is related to ventricular activity: the QRS complex corresponds to the depolarization
and the T wave to the repolarization of the ventricles. The repolarization of the atria is not visible in the
ECG, as it is concealed by the larger-amplitude QRS complex.

Fig. 2.3: Example of a surface electrocardiogram, annotated to indicate characteristic features present in sinus rhythm. Adapted
from [23, p. 855].

2.2. Atrial fibrillation
There are various ways in which the regular beating of the heart, described in the previous section,
can be disrupted and irregularities introduced. Diseases that affect the heart in this way are referred
to as cardiac arrhythmias. One type of cardiac arrhythmia is atrial fibrillation (AF): in patients with this
condition, the regular depolarization of the cells in the atria is disrupted, leading to irregular, chaotic
contractions of the atrial heart muscle. This decreases the efficiency with which the heart is able to pump
blood around the body. AF is one of the most common age-related cardiac arrhythmias. Quantitatively,
this amounts to 1 to 3 percent of the European population suffering from AF, this proportion increasing
in the elderly. It is becoming increasingly prevalent as life expectancy increases, with the number of
cases expected to double by 2060 [10]. In itself, AF is mostly asymptomatic and not directly a grave
condition. However, it can lead to a number of other, more serious conditions, such as blood clots,
stroke, and heart failure [9], [10]. Moreover, AF can lead to ventricular fibrillation, where the ventricles
beat rapidly and irregularly. This is an acute life-threatening condition, with sudden cardiac death
following in absence of treatment [30].

AF can manifest itself in different ways, ranging from short, incidental episodes to continuous fibrilla-
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Fig. 2.4: Relationship between the different parts of the cardiac conduction cycle and the segments of a surface ECG. Adapted
from [23, p. 856].

tion. This facilitates classifying it according to the length and frequency of occurrence. The correspond-
ing types of AF in this system are paroxysmal (episodic, spontaneous bursts), persistent (continuous
fibrillation) and permanent (chronic, continuous fibrillation, not responding to treatment) [31]. It has
been found that paroxysmal AF can exhibit a progressive nature, with episodes becoming longer and
more frequent [32], increasing the risk of other complications developing.

The most common way to diagnose AF is by using an ECG. In patients suffering from AF, a clear
deviation in morphology from the one encountered in SR can be seen; this is illustrated by Fig. 2.5. The
regularly spaced heartbeats in SR are replaced during AF with heartbeats showing irregular intervals
between successive peaks of ventricular activity, as is indicated by the varying intervals between R
peaks. Furthermore, the P waves present in SR are absent during AF (the larger waves that are visible
beside the R peaks are T waves), caused by unsynchronized electrical activities in the atria. In their
place, we see low-amplitude fibrillatory waves, known as f waves [33].

2.2.1. Mechanisms
In search of a model responsible for governing AF, numerous studies have been done into the gen-
eration and maintenance of the condition. Accordingly, various theories and mechanisms have been
put forward. An early theory was formulated by Moe et al., who proposed that the propagation of mul-
tiple wavelets through the atria causes AF to sustain itself [35], [36], producing an unorganized atrial
rhythm. Up to the present day, in spite of the many hypotheses that have been published since, no
clear consensus has been reached [12]. Debate on the subject is ongoing, making this a topic that is
not completely understood.

Nevertheless, there are a number of mechanisms for AF that commonly appear in literature; these
can be seen in Fig. 2.6. The far left of the figure illustrates the phenomenon of ectopic foci: this cor-
responds to spontaneous impulses originating from locations other than the SA node and interfering
with sinus activity. This has been shown to be a possible cause of AF [37]. The concept of rotors,
indicated in the middle left of the figure, is related to reentry, which corresponds to an activation wave
effectively traveling in a circular path around a block in conduction, such as scar tissue, and re-exciting
the cells. Rotors are a functional, dynamic manifestation of regions of reentry, which can be stationary
or move through tissue, stimulating AF [37]. Recent studies have found that AF can also be initiated by
asynchrony between the endocardial and epicardial sides of the atria [38]–[41]. In such a setting, an
activation wave propagates unequally through different layers of muscle cells. This can lead to an ap-
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Fig. 2.5: Cardiac electrical conduction during normal sinus rhythm (SR) and during atrial fibrillation (AF). The upper panel shows
how during SR (left), electrical activity is regularly initiated at the sinus node, after which it spreads to the AV node via the right
atria and continues on to the ventricles. During AF (right), abnormal impulses cause chaotic activation of the atria, leading to
distorted activation of the ventricles. The lower panel shows two ECGs, measured during SR and AF. During SR, P waves
are present and the R peaks are spaced regularly. During AF, the P waves are absent and the intervals between R peaks are
irregular. Adapted from [34, p. 12].

parent activation source appearing at the epicardial surface, a phenomenon known as endo–epicardial
breakthrough. This is illustrated in the middle right of Fig. 2.6. The far right of the figure represents
an example of the wavelet theory mentioned before. These wavelets are thought to originate from a
propagating activation wave that gets broken into smaller components on encountering a conduction
barrier. As a result, smaller wavelets propagate in different directions, with possibly different velocities,
promoting the sustaining of AF and causing chaotic activation of atrial tissue [42].

These potential mechanisms of AF are not mutually exclusive: viewed in complement, they can
give a better idea of the underlying causes of the condition. Furthermore, different interpretations of
the same underlying physiological process could be extracted from the same tissue depending on the
measurement and analysis methods employed [43, p. 14]. In any case, research suggests that an
important contributor to the initiation and maintenance of AF is to be found in the realm of impaired
conduction and damage on a structural level in atrial muscle tissue, such as fibrosis (scarring of the
cardiac tissue) [44], [45]. This makes the challenge of obtaining a clearer, more comprehensive view
of the degree of conduction impairment in tissue increasingly relevant for getting to the bottom of AF.

Fig. 2.6: Illustration of different mechanisms of atrial fibrillation on a section of cardiac tissue. Adapted from [43, p. 14].
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2.2.2. Treatment
Different methods have been developed to treat certain forms of AF. With a progressive condition like
AF, treatment has a higher chance of success if the defect is diagnosed early. We can distinguish be-
tween two forms of treatment: pharmacological methods (through the use of medication) and electrical
methods. Drugs are often used as the first option in the treatment of spontaneous AF: they can be
used to prevent blood clots, limit the heart rate to safe levels and restrict the frequency of ventricular
activity. Medication also exists which maintains SR in patients with paroxysmal AF, available for regular
consumption or at the onset of an AF episode [46].

A common form of electrical treatment is ablation therapy, which seeks to eliminate the origin of
a disturbed signal or the tissue responsible for conducting it. It is a minimally invasive treatment: a
catheter is typically inserted in the groin area and guided to the heart via blood vessels, reaching the
heart via the inferior caval vein. This catheter thus gains access to the inside of the heart, where it is
used to scar or otherwise destroy the relevant section of cardiac tissue (often either by applying a very
high or very low temperature to the area). A typical form of this technique is pulmonary-vein isolation
(PVI), which scars the atrial tissue connecting the pulmonary veins to the heart with the aim of isolating
AF triggers originating there [12]. This method may not be effective in patients with longer-term forms of
AF, such as persistent AF, where multiple triggers may be responsible for the symptoms encountered.
Such patients can benefit from other forms of ablation, performed in concert with PVI, such as AV node
ablation, which prevents disorganized atrial signals from propagating to the ventricles [47], and linear
ablation, which creates lines of scar tissue [48]. It is also possible to seek out and find the AF triggers
during surgery, guided by a catheter that measures the electrical signals at different locations in the
tissue [49].

Overall, the success of different treatment strategies is still limited by a lack of understanding of
the inner workings of AF. A success rate of up to about 75% can be reached using catheter ablation,
but this requires multiple procedures [50]. Treatment could thus benefit dramatically from increased
understanding of the causes and mechanisms behind AF and the perpetuation of the condition.

2.3. Epicardial mapping of electrical activity
The previous section illustrated the need for an accurate way to measure and represent the electrical
activity of the atria. ECG recordings can be used to get a sense of the organization of cardiac con-
traction, as we explained in Sections 2.1.4 and 2.2. While a useful non-invasive way to diagnose AF,
conventional ECGs are less suited to obtain a detailed view of atrial conduction (though specifically
tailored surface-potential systems have been investigated for such a use, as in [51]). Due to the rel-
atively large distance between the electrodes and the heart, the spatial resolution is coarse, resulting
in a measurement that provides only a spatial average of the underlying activity. If we sacrifice non-
invasiveness, much more information can be obtained. Recording atrial electrical activity by placing
closely spaced electrodes directly on the heart, known as epicardial mapping, is a good method for
achieving this end. It provides us with a spatio-temporal recording of electrical activity, allowing us to
track wavefronts as they propagate through atrial tissue.

Obtaining information about the time and location of electrical activity through epicardial mapping
consists of multiple steps. The first step in themapping process consists of acquiring epicardial potential
measurements, known as electrograms (EGMs), using an array of electrodes. In the second step, these
EGMs are interpreted and processed to estimate the activation pattern of the underlying tissue. There
are various techniques for measuring EGMs, with the spatial dimension being sampled in different ways.
This includes measurements done in the form of electrodes attached to a needle at different heights
to sample the depth direction in the heart [52]. Studies have also been done on the endocardial side,
where, as in the ablation therapy mentioned in Section 2.2.2, a catheter is guided to the inside of the
heart from the femoral vein. In the atria, the electrode array expands and takes the form of a “basket”,
pressing against the curved endocardium [53].

To accurately map the epicardial surface, Yaksh et al. at the Erasmus University Medical Center
used a high-resolution two-dimensional array, recording atrial activity during SR and induced AF [16].
A picture of the array can be seen in Fig. 2.7a. It consists of 192 electrodes of diameter 0.45 mm,
positioned on a flexible 8-by-24 array with 2 mm separating each pair of electrodes. The whole of the
left and right atria, as well as Bachmann’s bundle, wasmapped using this array by placing it sequentially
on 9 different anatomical locations, shown in Fig. 2.7b. AF was induced by electrical stimulation of the
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right atrium at a rapid rate. The high-resolution mapping studies performed using this method form the
basis for the research in this thesis.

More recently, a variant of the array depicted in Fig. 2.7a was developed, that allows for simultane-
ous measurement of the endocardial and epicardial surfaces [38], [39]. The measurement apparatus
used here essentially consists of two arrays similar to the one in [16], connected to the inside of the
ends of a tong. A small incision in the right atrial appendage was made, after which one end of the
tong was inserted to map the endocardium.

(a)
(b)

Fig. 2.7: Schematic overview of the epicardial mapping approach used at Erasmus University Medical Center. (a) Close-up of
the mapping array containing 192 unipolar electrodes, along with examples of electrograms recorded at different points in the
array, and the bendable steel spatula to which the array is attached. Adapted from [16]. (b) Projection of the electrode array on
schematic posterior view of the atria, showing measurement locations. BB, Bachmann’s bundle; ICV, inferior caval vein; LA, left
atrium; LAA, left atrial appendage; PV, pulmonary veins; RAA, right atrial appendage; RA, right atrium; SCV, superior caval vein.
Adapted from [54].

2.3.1. Electrograms
The electrical activity can be measured using electrodes applied to the surface of the heart, result-
ing in the electrograms mentioned in the previous section. Fig. 2.8A shows how the morphology of a
measured electrogram relates to the vicinity of the wavefront propagating in the underlying tissue. As
the action potential nears the electrode, the measured EGM (the potential at the electrode location) is
increasingly positive, turning into a steep negative deflection as the tissue directly underneath the elec-
trode is activated and the current passing underneath the electrode is maximal. As the AP moves away
from the electrode, the EGM shows a gradual return to the baseline, starting value. In Section 2.1.2, a
model for the transmembrane current was given, represented by (2.2). If we assume that the extracel-
lular conductivity 𝜎e is homogeneous and isotropic, the EGM can be modeled using a current-source
approximation for a large-volume conductor [28]. This gives

𝜙(y, 𝑡) = 1
4𝜋𝜎e

∫ 𝐼tm(x, 𝑡)
‖y − x‖ dx (2.3)

for the EGM at time 𝑡 measured at electrode location y. The integration variable x corresponds to the
location of the cells. From (2.3), we can see that the measured signal is a sum of the activity of a
large area of cells. Each of these cardiac cells contributes to the measured electrogram through its
transmembrane current, weighted depending on the distance to the electrode, represented by ‖y − x‖.
Electrical activity of the ventricles, despite what the relatively large distance from measurement loca-
tions on the atria would suggest, can (and often does) show up as a significant (undesired) contribution
of atrial electrograms, due to its relatively large amplitude [55].

The form of EGM described above is measured with respect to a fixed reference, located elsewhere
on the body, and is known as a unipolar EGM. There are other variants, such as the bipolar EGM; this
corresponds to the potential difference between a pair of electrodes. Fig. 2.8B shows the difference in
standard morphology between unipolar and bipolar EGMs: where the point of local activation (marked
as “LAT”) corresponds to the steepest part of the deflection in a unipolar EGM, it corresponds to the
minimal point of a bipolar EGM [56]. Bipolar EGMs, through their spatially differential nature, offer the
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advantage that they can effectively filter out far-field ventricular interference, which reaches the different
atrial electrodes at roughly the same time. The big disadvantage, though, is that due to their direction-
dependency, they can filter out atrial activity as well, if the orientation of the electrodes is rotated with
respect to the direction of AP propagation [57], [58]. In this thesis, as in the setup of [16], unipolar
EGMs are considered.

Fig. 2.8: Illustration of normal electrograms. (A) shows the generation of a unipolar electrogram in relation to the polarization
wave in the tissue, and (B) shows an example of simultaneously recorded unipolar and bipolar electrograms. Adapted from [43,
p. 12].

2.3.2. Interpreting cardiac data
Once the physical part of the epicardial mapping is complete and the electrical activity of the atria has
been recorded, the measured electrograms can be interpreted. As mentioned in the previous section,
unipolar atrial electrograms can suffer from far-field interference due to activity from the ventricles.
Ideally, we would like to have recordings available that contain atrial activity only. During sinus rhythm,
atrial and ventricular activity can be clearly distinguished, as atrial and ventricular contraction occur in an
organized way. Ventricular activity is neatly preceded by atrial activity (an effect also visible in ECGs,
as Fig. 2.5 shows). Time-domain windowing would suffice to extract the atrial activity here. During
AF, however, activity of the upper and lower chambers can overlap temporally, making distinguishing
between the two more difficult. A trade-off must then be made between preserving the atrial component
of the signal and suppressing the ventricular component. Various methods have been developed to
eliminate far-field ventricular activity in atrial electrograms to deal with such scenarios [55], [59], [60].
The electrograms we consider in this thesis are assumed to have ventricular activity removed.

With atrial activity isolated, an initial inspection of the epicardial EGMs can already provide valu-
able information. As Fig. 2.9 shows, the relative complexity of measured electrograms can give an
indication of the state of organization of the underlying cardiac tissue. In healthy tissue with homoge-
neous conduction, electrical activations can spread through the tissue in a regular, albeit anisotropic
way. This homogeneous conduction produces a relatively simple morphology in the electrogram, with
one clear deflection. In diseased tissue, electrical conduction can be blocked or impaired in certain
directions—this is known as remodeled tissue. This results in inhomogeneous conduction, giving rise
to electrograms with multiple significant deflections.

A commonly used way of representing the activation of a section of cardiac tissue and making these
effects visual is through the use of an activation map (AM). This gives a compact way of conveying the
most important information of the depolarization wave contained in the measured EGMs. An example
of an AM can be seen in Fig. 2.10: each square corresponds to an electrode of the measurement array
pictured in Fig. 2.7a. The color corresponds to the time at which the local section of tissue is activated.
This time point is derived from themeasured EGMat that electrode, as illustrated by Fig. 2.8. An AM can
therefore show where delays in conduction arise, as well as the path (and number) of activation waves
in the tissue. Fig. 2.10 shows how, in sinus rhythm, the activation wave (singular) propagates through
the tissue smoothly. During AF, the propagation is much more chaotic, due to blocks in conduction
(indicated by the thick black lines) and multiple apparent sources of depolarization (indicated by the
arrows), which result in more than one activation wave moving through the tissue.
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Fig. 2.9: Connection between the morphology of unipolar electrograms and organization of electrical conduction in the underly-
ing cardiac tissue. Different electrodes on the mapping array on the left can measure electrograms with different morphologies,
shown in the middle, with biphasic denoting a single deflection and fractionated denoting the existence of multiple significant de-
flections. The biphasic signal originates from healthy underlying tissue with homogeneous conduction, whereas the fractionated
signal originates from remodeled tissue with inhomogeneous conduction. Adapted from [34, p. 19].

Fig. 2.10: Two activation maps, recorded during sinus rhythm (left) and atrial fibrillation (right). The direction of depolarization
waves is indicated by black arrows and conduction blocks are shown as thick lines. Adapted from [61].

2.4. Local activation times and methods for annotation
An essential part of estimating the activation pattern in epicardial mapping, as detailed in the previous
section, is determining the time point at which the tissue underneath each sensor (electrode) in the array
is activated. This comes down to estimating the local activation time (LAT) for that particular sensor
location. Fig. 2.8 gives a visual example of how the LAT relates to the depolarization wave propagating
through the tissue. In the previous section, we also saw how activation maps, a visual representation of
the LATs, are a useful tool to exemplify the variations in electrical conduction in different cardiac settings,
as illustrated by Fig. 2.10. If the LATs are available, they can be used to calculate the conduction
velocity, which can in turn be used to quantify mechanisms involved in sustaining AF, like reentry,
multiple wavelets, and conduction blocks (indicated by a low conduction velocity). Hence, an accurate
estimation of LATs is important for improving treatment methods of AF.

A model for the atrial electrogram 𝜙 was given by (2.3). We saw that the measured potential is
influenced by the activation of multiple cells (captured by the transmembrane currents), weighted by
the distance of those cells to the electrode. As the action potential propagates across different cells, the
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corresponding transmembrane currents of those cells are not synchronized. Thus, as cells with different
moments of activation contribute to the electrogram, the result is that for each electrode 𝑖 at location x𝑖,
for 𝑖 = 1, 2, … , 𝑀 , with 𝑀 the total number of electrodes, the corresponding electrogram 𝜙𝑖 registers a
combination of all the activation times of the cells in the area. The objective in the estimation of LATs
can be described as extracting the true LAT 𝜏𝑖 of electrode location x𝑖 from the measured electrogram
𝜙𝑖. Because of the averaging of cell activity inherent in the electrogram, this can pose quite a challenge.

In the most basic form of estimation, no automation is used at all, and the LAT is annotated manually
in each electrogram by a physician. This has obvious drawbacks: it is time and labor intensive, and
the accuracy of this method can be difficult to determine, owing to its subjective nature. Different
experts may interpret the same electrogram in different ways. Recording electrograms in an array
gives us spatio-temporal information which we can use to aid and automate the LAT estimation process.
Different (automated) methods have been developed to obtain these LATs exploiting various aspects
of the measured data [17]. In this section, the most widely used of these algorithms are presented.

2.4.1. Steepest deflection
In the most commonly used method for LAT estimation, the time derivative of the electrogram is used.
In unipolar electrograms, the point at which this quantity reaches its minimum (i.e., the point at which the
negative deflection is steepest) was shown to correspond well to the time of activation in the underlying
tissue [56], [62]. This time point, known as the steepest deflection (SD), has been shown to have
a physiological connection to cellular processes in the tissue: it is related to the moment when the
transmembrane sodium current is maximally increasing [63]. For electrode 𝑖, given the corresponding
electrogram 𝜙(x𝑖, 𝑡), the LAT is obtained using this scheme as

𝜏𝑖 = arg min
𝑡

d𝜙(x𝑖, 𝑡)
d𝑡 . (2.4)

While this method has the advantage of being relatively easy to implement and quite intuitive, it
has notable disadvantages. It does not take into account spatial information, as each electrogram is
evaluated individually. The effect of surrounding electrodes is therefore disregarded. Using the time
derivative of the measured signal poses a risk in itself: it makes the method sensitive to small spikes
in the signal, caused by noise sources in the measurement. Furthermore, although the time derivative
has a strong connection to the action potential on a microscopic scale, this connection becomes weaker
when viewed in a macroscopic context, such as in epicardial mapping. As more cells now play a role
in the electrogram, with more distant cells possibly adding larger contributions to the derivative, the
derivative can become less related to true local cellular activity [18].

2.4.2. Spatial gradient
Instead of looking at temporal changes, as is the case with SD, the spatial evolution of epicardial
electrical activity can also be investigated. An example is the method where the spatial gradient is
used to estimate the LATs [64]. This utilizes the high spatial current density as an action potential
propagates through tissue. Viewing the potential in two dimensions, the surface spatial gradient of the
electrogram is defined as

𝛁Φ = dΦ
dx = [dΦ

d𝑥 , dΦ
d𝑦 ]

T

, (2.5)

where Φ is a spatial representation of all electrograms 𝜙𝑖 arranged according to their locations x𝑖. The
gradient is calculated for each electrode using the four neighboring electrodes, according to a central
difference method. The LAT is then estimated by finding the time point where this spatial gradient
achieves its maximal magnitude for each electrode,

𝜏𝑖 = arg max
𝑡

‖𝛁𝜙(x𝑖, 𝑡)‖ (2.6)

for electrode 𝑖, where 𝛁𝜙(x𝑖, 𝑡) is the spatial gradient at time 𝑡 at electrode location x𝑖.
The surface Laplacian can also be used as a modality of spatial information; this is defined using

the divergence of (2.5) as ∇2Φ = ∇ ⋅ 𝛁Φ. The Laplacian locates the wavefront of activation as the
points which separate the current sources preceding the wavefront from the current sources following
the wavefront. The LAT then follows as the time of the zero crossing of the Laplacian [64], [65].
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2.4.3. Time-domain cross-correlation
A different way to incorporate information embedded in the spatial dimension of the electrode-array
recordings is to consider the relative time delay between the signals measured by different electrodes
[20]. For signals that have a similar morphology (and that can therefore be said to be correlated),
this can be accomplished by using the cross-correlation operation. For electrodes 𝑖 and 𝑗, with 𝑖, 𝑗 =
1, 2, … , 𝑀 , measuring electrograms 𝜙𝑖 and 𝜙𝑗 over 𝐾 time samples, the cross-correlation 𝜌(𝑖,𝑗) at lag 𝑠
can be expressed as

𝜌(𝑖,𝑗)(𝑠) = 1
𝐾√𝜎2

𝑖 𝜎2
𝑗

∑
𝑘

(𝜙𝑖(𝑘) − 𝜇𝑖) (𝜙𝑗(𝑘 − 𝑠) − 𝜇𝑗) . (2.7)

Here, 𝑘 = 1, 2, … , 𝐾; 𝜇𝑖 and 𝜇𝑗 are themeans of 𝜙𝑖 and 𝜙𝑗, respectively; and 𝜎2
𝑖 and 𝜎2

𝑗 are the variances
of 𝜙𝑖 and 𝜙𝑗, respectively, used for normalization of the correlation value (such that 𝜌 ∈ [−1, 1]). Using
(2.7), the delays are considered for pairs of neighboring electrodes [20]. Let 𝑁(𝑖) denote the set of
neighbors of electrode 𝑖. Then, the delay between electrode 𝑖 and 𝑗 is estimated as

Δ̂(𝑖,𝑗) = arg max
𝑠

𝜌(𝑖,𝑗)(𝑠), (2.8)

for all 𝑗 ∈ 𝑁(𝑖). With estimated delays between neighboring electrode pairs now available, they need
to be converted to the LATs for each of the electrodes [17], [20]. Shors et al. expanded on this method
by using the Hilbert transform of the cross-correlation [66] for a finer time resolution [67]. Kölling et al.
developed it further, cross-correlating not only over direct, but also higher-order neighbors [21]; this will
be further elaborated upon in Chapter 3.

The main limitation of this method lies in the fact that it requires signals that are similar up to a
time shift. If the signals that are cross-correlated have less comparable morphologies (as can be the
case in electrograms measured during AF), the cross-correlation will provide a less reliable and less
meaningful estimate of the delay.

2.4.4. Deconvolution
A more fundamental approach to finding the LATs relates to the mathematical operation of convolution.
For the functions 𝑓 , 𝑔, and ℎ of the continuous variable 𝑡, the convolution operation between 𝑓 and
ℎ corresponds to the integral of the product between the two, after reversing and shifting one of the
functions, defined as

𝑔(𝑡) = (𝑓 ∗ ℎ)(𝑡) = ∫
∞

−∞
𝑓(𝜏)ℎ(𝑡 − 𝜏) d𝜏. (2.9)

This type of relation has some similarities to the cross-correlation operation used earlier. A convolution
is often used tomodel the way a system ℎ responds to a certain input 𝑓 , resulting in the output 𝑔, defining
a forward relation between 𝑓 and 𝑔. If we want to obtain 𝑓 from 𝑔, this is called an inverse problem.
Deconvolution is a way to solve such a problem, an effort to “undo” the convolution. Generally, some
prior knowledge is needed to be able to solve this, such as an estimate of one of the functions, denoted
by ℎ̂(𝑡). An estimate of the desired function 𝑓 can then be obtained by minimizing a cost function

̂𝑓(𝑡) = arg min
𝑓

∥𝑔(𝑡) − (𝑓 ∗ ℎ̂)(𝑡)∥ , (2.10)

which expresses the error between the estimate and the known data captured in 𝑔. Obtaining sufficiently
accurate prior knowledge to get a useful estimate for 𝑓 is often a challenge, which can be exacerbated
by disturbances that can distort known data in 𝑔.

In an electrophysiological context, this operation comes into play when we look at the relation be-
tween an electrogram and the underlying transmembrane currents. The currents can be seen as an
input, convolved with the “system” of cardiac tissue, resulting in an output corresponding to the elec-
trogram measured on the epicardium. The epicardial electrogram was modeled in terms of the trans-
membrane currents by (2.3), which can be seen as a convolution, where the system response primarily
corresponds to a weighting inversely proportional to distance. This leads to an electrogram that is effec-
tively a blurred representation of the true cardiac activity represented by the currents. The microscopic
scale of these phenomena makes it infeasible to directly measure the currents (although research has
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been done on finding current estimates in dogs using a very fine, sub-millimeter-diameter electrode grid
[68]), which makes deconvolution a more logical approach. Deconvolution techniques can be used in
this setting to get an estimate for the input signal 𝑓 (related to the LATs) or the system ℎ (corresponding
to the tissue conductivity pattern).

Different methods have been developed to deal with this problem, each employing their own form
of a priori knowledge to make it feasible. Ellis et al. used an assumption of an activation wave traveling
through tissue with a constant CV to get an estimate of the system response and the activation time
[69]. A priori knowledge of the system response in the form of a known distance kernel was used
in [70] along with a wavelet-filtering approach to estimate the transmembrane currents and LATs (the
term “wavelet” here refers not to the wavelet theory of AF described in Section 2.2.1, but to the signal-
processing concept of the wavelet transform [71]). Based on a simplified model of atrial conduction,
Abdi et al. proposed a formulation of the inverse problem, using it to estimate tissue conductivity [72]
and LATs [19]. The latter application is explained in more detail in Chapter 3.

2.4.5. Template matching
Activation of cardiac tissue can also be mapped using electrogram templates. In such a setup, seg-
ments or specific complexes of measured electrograms are compared to a reference library of elec-
trogram deflection templates. Various methods exist to build and populate this library, using either
mathematically derived complexes [73], [74], or parts of clinically recorded electrograms [75]. This
can be of use in analyzing the complex activation patterns that can be encountered during AF, with
electrograms showing complexes of multiple deflections. The similarity of the measured signals with
the library templates is judged using a correlation function, resulting in a correlation coefficient and an
estimate of the LATs, in a method similar to what was described in Section 2.4.3. Making the templates
adaptive by minimizing an error function has been suggested to improve robustness in LAT estimation
[75].
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Processing atrial electrical data

In this chapter, the proposed methodology for estimating the LATs, which combines two existing al-
gorithms, is presented. The electrical conduction across the epicardium can be (and often is) com-
promised in patients with AF, leading to measured electrograms of a complexity that can cause the
performance of existing algorithms to suffer. To counter this, we perform preprocessing on the elec-
trograms by deconvolution. This effectively performs a more local estimation of the underlying cardiac
activity, through which equivalent, “clearer” transmembrane currents are obtained. Exploiting further
the spatial structure of the data, these currents are then cross-correlated over higher-order neighbors to
obtain pairwise delays between electrodes, after which the LATs are obtained through a least-squares
minimization.

In Section 3.1, we describe a model of the measured electrograms, and based on this we propose
a two-part system for extracting the LATs. In Sections 3.2 and 3.3, these two parts of the algorithm are
explained in more detail.

3.1. Overview
3.1.1. General signal model
In Section 2.1.3 and 2.3.1, a model of the electrical activity in the atria was given, along with the param-
eters involved in producing the electrogram that is measured on the epicardial surface. We saw there
that action potentials propagate in myocardial cells, causing a wave of contraction spreading through
the atria (and later through the rest of the heart). The associated flows of different types of charged
particles can be viewed as one transmembrane current per cell, dependent on tissue conductivity.

If we assume that the part of tissue of interest has homogeneous conductivity and negligible curva-
ture, an electrogram asmeasured could then bemodeled as a scaled and shifted version of a “standard”
electrogram response 𝜙0(𝑘) from the tissue. This corresponds to the response of the tissue to an acti-
vation wave traveling through tissue of uniform conductivity below an electrode [76]. Let 𝑀 denote the
total number of electrodes. This then gives an approximate model for a measured electrogram as

𝜙𝑖(𝑘) ≈ 𝛼𝑖𝜙0(𝑘 − 𝜏𝑖) + 𝑛𝑖(𝑘), (3.1)

for 𝑖 = 1, 2, … , 𝑀 , with 𝑘 the time index. Here, the scalar 𝛼𝑖 determines the amplitude, 𝜏𝑖 denotes the
time delay with which the signal is measured, and 𝑛𝑖(𝑘) is the measurement noise for electrode 𝑖. In
this simple scenario, the different electrodes measure the same stereotype (reference) signal 𝜙0, up
to a scaling and time-shift difference. Thus, electrode 𝑗 will measure effectively the same electrogram
𝜙𝑖(𝑘) of electrode 𝑖, but with a different amplitude and with a delay. Using cross-correlation (as in
Section 2.4.3), we could then well obtain an estimate of the delay between two electrodes, as they are
scaled and shifted versions of each other [76].

If we take a step forward from this simple scenario and introduce anisotropy and heterogeneous
conduction profiles, the approximation of (3.1) can become less accurate. In such a context, the hetero-
geneous conduction in the tissue can amount to conduction blocks, with electrical propagation differing
depending on direction. This can result in multiple activations being detected, spread out in time [76],

17
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leading to an approximate signal

𝜙𝑖(𝑘) ≈ 𝛼𝑖𝜙0(𝑘 − 𝜏𝑖) + ∑
𝑗

𝛽𝑗𝜙0(𝑘 − 𝜏𝑗) + 𝑛𝑖(𝑘), (3.2)

where the model of (3.1) has been extended with a second term, modelling the additional activations
as disturbances, scaled by 𝛽𝑗 at time delays 𝜏𝑗 [76]. When only one of these waveforms actually
corresponds to the true local epicardial activation, it can become difficult to distinguish this from the other
disturbances, more distant counterparts. Furthermore, disturbances in one signal may be present at
different delays than compared to another signal. Obtaining inter-electrode delays by cross-correlation
thus becomes more difficult and less reliable, as the true activation in one electrode could, for example,
be erroneously correlated with a disturbance in another.

3.1.2. System outline
In tackling the problem of estimating the LATs from measured electrograms as in (3.2), we have seen
that relying on cross-correlation alone can be prone to errors. We therefore propose combining a cross-
correlation method with a second step: an extra processing step is inserted in between measuring the
EGMs and obtaining the LATs. Fig. 3.1 gives a schematic overview of this system. This extra step
consists of deconvolving the input EGMs (introduced in Section 2.4.4), in order to get a clearer, more
local view of the electrical activity of the atria.

deconvolution
normalized

cross-
correlation

currents LATsEGMs

Fig. 3.1: Schematic overview of the proposed system.

The transmembrane-current estimates that this produces will, in effect, make the model of (3.2)
better to work with for the cross-correlation step, which is now applied not to the electrograms them-
selves but to the time derivative of the transmembrane current, as the next section will explain. This
second step is provided with a less opaque view of the electrical activity in the tissue of interest: the
deconvolution operation practically attenuates the distant disturbances and emphasizes local activity
captured in the EGMs, corresponding in (3.2) to relatively smaller 𝛽𝑗 terms compared with 𝛼𝑖. There-
fore, across different electrodes, the local activity at those points is more likely to be the main peak in
the cross-correlation sequence between them, improving the accuracy of the LAT estimation.

3.2. Deconvolution
The first part of the proposed algorithm is based onwork by Abdi et al. [19], [77], [43, Ch. 5], and expands
on the model described in Chapter 2 and seeks to extract a less “blurred” view of the cardiac electrical
activity from the electrograms in the measurement area. In accordance with (2.3), electrograms can
be viewed as a weighted spatial sum of the underlying transmembrane currents in the neighborhood of
the electrodes. For the electrogram Φ at time 𝑡𝑐 and sensor location (𝑥𝑚, 𝑦𝑚), where 𝑚 = 1, 2, … , 𝑀 ,
this relationship can be described [78, p. 236] as

Φ(𝑥𝑚, 𝑦𝑚, 𝑡𝑐) = 1
4𝜋𝜎e

∫
𝒜

𝐼(𝑥𝑐, 𝑦𝑐, 𝑡𝑐)
√(𝑥𝑐 − 𝑥𝑚)2 + (𝑦𝑐 − 𝑦𝑚)2 + 𝑧2

0
d𝐴(𝑥𝑐, 𝑦𝑐). (3.3)

Here, 𝜎e denotes the constant extra-cellular conductivity, 𝒜 denotes the modeled cells over which the
sum is taken, 𝑧0 is the (constant) electrode height and 𝐴(𝑥𝑐, 𝑦𝑐) is the area variable.

Equation (3.3) can be seen as a spatial (i.e., two-dimensional) convolution of the transmembrane
current 𝐼 with a weighting function. To make this explicit, let 𝑅0 be a distance-kernel operator, defined
as

𝑅0(𝑥𝑐, 𝑦𝑐) = 1
√𝑥2𝑐 + 𝑦2𝑐 + 𝑧2

0
. (3.4)
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This effects the weighting of cell activity inversely depending on the distance to an electrode. Further-
more, let 𝑆0 be a sampling operator, defined as

𝑆0(𝑥𝑐, 𝑦𝑐) =
𝑀

∑
𝑚=1

𝛿(𝑥𝑐 − 𝑥𝑚)𝛿(𝑦𝑐 − 𝑦𝑚), (3.5)

such that only the cells corresponding to electrode locations are sampled. This models the spatial
sampling effected by the electrode array. Combining the expressions for 𝑅0 and 𝑆0 with the model of
(3.3), we can formulate the model explicitly as a convolution, as

Φ(𝑥𝑐, 𝑦𝑐, 𝑡𝑐) = 1
4𝜋𝜎e

𝑆0(𝑥𝑐, 𝑦𝑐) (𝑅0(𝑥𝑐, 𝑦𝑐) ∗ ∗ 𝐼(𝑥𝑐, 𝑦𝑐, 𝑡𝑐)) , (3.6)

where the symbol ∗∗ is used to indicate the two-dimensional convolution operation.
The deconvolution algorithm thus seeks to recover the transmembrane currents 𝐼 from the mea-

sured electrogram potentials Φ. This is done by minimizing the mean-square error between the mea-
sured electrograms and reconstructed versions of the electrograms as

min
𝐼

‖Φ − 𝑆0(𝑅0 ∗ ∗ 𝐼)‖2
2 + 𝜆 ‖𝐼 ′‖1 , (3.7)

where the 𝑙1-norm is a regularization term and the spatial and temporal arguments have been left out
for ease of notation. The 𝑙1- and 𝑙2-norms present in (3.7) are defined as

‖𝐼‖2
2 = ∑

𝑥
∑

𝑦
∑

𝑡
|𝐼[𝑥, 𝑦, 𝑡]|2, ‖𝐼 ′‖1 = ∑

𝑥
∑

𝑦
∑

𝑡
|𝐼′[𝑥, 𝑦, 𝑡]|. (3.8)

Intuitively, one could see how the optimization of (3.7) could be difficult: the number of available elec-
trograms (“known” data points) is smaller than the number of modeled cells, meaning that information
is lost through the convolution operation. Moreover, the distance kernel 𝑅0 effectively has a low-pass
filtering effect. Indeed, such inverse problems in general, as in this case, are highly ill posed, resulting
in unstable solutions [19].

To alleviate this issue, some form of a priori knowledge on the target quantity 𝐼 is required. The
key assumption we make in this regard is that the electrogram contains one or more sharp deflections,
which can be seen in the time derivative 𝐼′ of the current. A way to incorporate this condition is to
ensure that 𝐼′ is sparse, i.e., it only has a few non-zero elements, a reasonable assumption for most
types of electrograms [19]. This condition is implemented in the problem of (3.7) by the regularization
term consisting of an 𝑙1-norm constraint, known to promote a sparse solution [79, p. 304].

To implement (3.7), the quantities involved are discretized across the sample grid and the sampled
distance kernel by a limited support. This allows for translation into a matrix model; details on the
discretized implementation of this algorithm can be found in [77].

An example of the effect of deconvolution on fractionated electrograms can be seen in Fig. 3.2. Four
tissues with different conduction profiles [19, Fig. 2] were used to simulate cardiac electric propagation.
From the activation maps in the first row (where white pixels correspond to cells that are positioned
on a block and were therefore not activated), we can see that conduction delays and blocks in the
cells surrounding the electrode produce fractionation in the electrograms Φ in the second row: each
exhibit multiple deflections. The third row, portraying the time derivative of the electrograms Φ′, shows
that far-field disturbances are incorrectly labelled as the local activation. The fourth row, then, shows
the desired effects of the deconvolution operation: in the time derivative of the current 𝐼′, the far-field
disturbances are attenuated and the local activity is amplified, leading to correct annotation of the local
activation.

In [19], the output current is directly used to estimate the activation time, defining it as the time point
where the steepest deflection, i.e., the minimum of the time derivative, occurs. Specifically, instead
of 𝐼 , the time derivative 𝐼′ is thus used for LAT estimation (as Fig. 3.2 shows). Therefore, Abdi et al.
solve the problem of (3.7) primarily with the aim of improved spatial accuracy of 𝐼′; this quantity is also
the one in which the a priori knowledge is incorporated, as explained earlier. A result of this is that
less importance is attached to the morphology of the currents 𝐼 . Consequently, the morphology of the
estimated 𝐼 can vary quite significantly in practice across different spatial locations. This makes it less
suited than 𝐼′ for correlation-based processing, which is the next step of the proposed algorithm (as
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Fig. 3.2: Examples of different modalities of cardiac activity. T1 to T4 represent simulated sections of stimulated epicardium with
varying conductivity profiles. The first row shows the ground-truth activation maps corresponding to each of the four profiles,
with the red asterisk denoting the electrode location. The second row shows the electrograms recorded at those locations, with
the dotted line indicating the true LAT. The third and fourth row show the time derivatives of the electrogram and the estimated
current, respectively. The solid blue and red vertical lines indicate the steepest descent of the electrogram and the current,
respectively. Adapted from [19].

was illustrated by Fig. 3.1 and Section 3.1.2). Hence, we use the time derivative of the transmembrane
currents, 𝐼′, as the basis for further processing. Instead of directly using it to find the activation times
as in [19], we carry it on to the next processing step, which will perform the actual LAT estimation.

3.3. Cross-correlation over higher-order neighbors
This part of the algorithm, based on work by Kölling et al. [21], [76], adapts a methodology proposed
in [20] to find the LATs by exploiting the spatial structure of the electrode array with which the electro-
grams are measured. First, relying on the one-stereotype-waveform assumption of (3.1), the delays
between the signals of all electrode pairs are computed by considering their cross-correlation, exploit-
ing the structure to determine which pairs are considered. Next, these obtained delays are converted
to absolute LATs through least-squares processing.

3.3.1. Spatial structure and higher-order neighbors
The structure of spatial connections between electrodes can effectively be represented as a graph. We
define a graph 𝐺 as the tuple 𝐺 = (𝑉 , 𝐸), where 𝑉 denotes the set of vertices and 𝐸 ⊆ 𝑉 × 𝑉 denotes
the set of edges. 𝑉 in this setting corresponds to the electrodes in the array, spaced as a square grid.
A simple way to represent the edges is by connecting each node to its direct neighbor. This, then, gives
a graph as in Fig. 3.3(a). As each node is connected to a node one hop away, we can say that all first-
order neighbors are connected. We can increase the number of edges by also connecting nodes more
than one hop removed from each other. Let 𝐺(𝑃) denote the grid graph where all nodes are connected
to at most their 𝑃 th order neighbors. Fig. 3.3 shows three examples of such graphs 𝐺(𝑃), featuring
first-, second-, and third-order neighbors. The electrode array is defined as a square, 11-by-11 grid, so
|𝑉 | = 𝑀 = 121. From a quick look at the graphs, one can see how the complexity increases rapidly
with the neighbor order as extra edges are added. From left to right, the graphs have an edge-set size
|𝐸| of respectively 220, 618, and 1154 connections.

Returning to the 𝑃 = 1 case, we can express the connectivity of the system by defining a |𝑉 |-by-|𝑉 |
binary adjacency matrix A, whose entries are one if the corresponding nodes 𝑖 and 𝑗 are connected,
i.e., (𝑖, 𝑗) ∈ 𝐸, and zero otherwise. For 𝑃 > 1, we can similarly look at the adjacency matrix of the
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Fig. 3.3: Graphical representation of an 11-by-11 electrode array as a connected graph 𝐺(𝑃), for 𝑃 ∈ {1, 2, 3}.

resulting graph 𝐺(𝑃). Defining it as 𝚵(𝑃), we can express it in terms of the first-order adjacency matrix
as

𝚵(𝑃) =
𝑃

∑
𝑝=1

A𝑝 − diag (diag (
𝑃

∑
𝑝=1

A𝑝)) . (3.9)

Here, the second term on the right-hand side ensures that 𝚵(𝑃) is a valid, acyclic adjacency matrix
by setting all diagonal elements to zero. The off-diagonal elements can now have values larger than
one, but it still holds that non-zero elements correspond to connected nodes (up to 𝑃 hops apart) and
zero-valued elements correspond to unconnected nodes.

3.3.2. Obtaining LATs from pairwise delays
To determine the time delays in LATs of electrode pairs, the time-domain cross-correlation is used. We
define the cross-correlation between electrograms 𝜙𝑖 and 𝜙𝑗 (both consisting of 𝐾 time samples) at lag
𝑠 in normalized form as

𝜌(𝑖,𝑗)(𝑠) = 1
𝐾 ∑

𝑘

(𝜙𝑖(𝑘) − 𝜇𝑖) (𝜙𝑗(𝑘 − 𝑠) − 𝜇𝑗)
√𝜎2

𝑖 𝜎2
𝑗

(3.10)

for all electrode pairs (𝑖, 𝑗) such that [𝚵(𝑃)]𝑖,𝑗 ≠ 0, i.e., for all pairs that are at most 𝑃 hops apart. Here,
𝜇𝑖 and 𝜎2

𝑖 are respectively the sample mean and sample variance of 𝜙𝑖. The estimated delay Δ̂(𝑖,𝑗)
then follows as the lag 𝑠 that maximizes the cross-correlation 𝜌(𝑖,𝑗)(𝑠).

Each estimated delay will differ from the true delay Δ(𝑖,𝑗) by an estimation error 𝑒(𝑖,𝑗). Gathering all
estimated delays in a vector d and relating them to the true delays, we can thus write

d =
⎡
⎢⎢
⎣

𝜏2 − 𝜏1
𝜏3 − 𝜏1

⋮
𝜏𝑗 − 𝜏𝑖

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

𝑒(1,2)
𝑒(1,3)

⋮
𝑒(𝑖,𝑗)

⎤
⎥⎥
⎦

∈ R|𝐸|, (3.11)

where 𝜏𝑖 is the true activation time of electrode 𝑖. As each delay corresponds to the difference of
the true LATs of connected nodes of 𝐺(𝑃), each delay essentially corresponds to a weighted edge of
𝐺(𝑃), captured in 𝚵(𝑃). Therefore, the |𝐸| estimated delays d can be expressed as an offset linear
combination of the 𝑀 true LATs 𝝉 through the graph’s 𝑀 -by-|𝐸| incidence matrix B as

d = BT𝝉 + e, (3.12)

where e ∈ R|𝐸| contains the estimation errors. Assuming the error terms are zero-mean and mutually
uncorrelated, i.e., E[e] = 0 and Cov(e) = 𝑐I for positive real 𝑐, we can estimate the LATs using the
ordinary least-squares estimator as

̂𝝉 = (BBT)
−1

Bd. (3.13)
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In a connected graph such as 𝐺(𝑃), the rank of the incidence matrix is one less the number of vertices
[80, p. 166], so rank(B) = 𝑀 −1 in this case. Therefore, because B is rank deficient, (3.12) represents
an under-determined system and the direct inverse in (3.13) cannot be used. To still solve (3.12), a
pseudo-inverse can be used to find the LATs as

̂𝝉 = (BT)† d, (3.14)

where (⋅)† indicates the Moore–Penrose inverse, which can be computed using the singular-value
decomposition (SVD) of BT [81].

As mentioned before, this method of adding higher-order neighbors in the consideration of cross-
correlations to find the inter-electrode delays [21] can be seen as an expanded form of a method where
only the direct (i.e., first-order) neighbors are used for cross-correlation [20]. Comparing the two ap-
proaches, we effectively use 𝚵(𝑃) with either 𝑃 = 1 [20] or 𝑃 > 1 [21]. In effect, these (relatively) distant
delays provide extra information for the estimation of the LATs, which can be seen in the smaller spar-
sity of 𝚵(𝑃) compared to 𝚵(1) and the larger size of B for 𝑃 > 1 compared to 𝑃 = 1. For example, for a
central node, like node 61 in Fig. 3.3, increasing 𝑃 from 1 to 2 already increases the number of delays
used to estimate the LAT (corresponding to the degree of the node) from 4 to 12, as can be seen in Fig.
3.3(a) and Fig. 3.3(b).



4
Simulated atrial data

In this thesis we use simulated data of the electrical activity in the atria as an approximation of real,
clinical settings. This allows us to get a sense of the performance of the system proposed in Chapter
3. In this chapter we explain how this data is generated.

In Section 4.1 we go into more detail on the model underlying the simulated data and the asso-
ciated parameters that are used to model different types of cardiac activity. Section 4.2 then shows
examples of what the resulting data can look like, relating the obtained simulated electrograms to the
simulation setting, and, in Section 4.3, we illustrate the performance measure that we will use to judge
the performance of LAT estimation methods on the simulated data.

4.1. Description of simulation data
In this section, we explain how we construct the sets of simulation data. Section 4.1.1 presents the for-
wardmodel used to generate electrograms and Section 4.1.2 explains the different ways that sections of
atrial tissue are generated to model various conductivity and stimulation settings. Finally, Section 4.1.3
details the way that measurement noise is taken into account in the simulations.

4.1.1. Simulation setup
To generate simulated electrograms, we follow the method of simulating electrical activity described in
[72]. The basis for this model lies in the model of the action potential in the atria according to a mono-
domain reaction–diffusion equation [28], as described in Section 2.1.3. This allows electrograms to be
generated based on transmembrane currents as a forward model [78, p. 236], leading to a compact
model [72] for computation of the simulated electrograms as

𝜙𝑚[𝑡] = 1
4𝜋𝜎e

𝑁c

∑
𝑛=1

𝐼tm[x𝑛, 𝑡]
𝑟𝑚,𝑛

Δ𝑥2, 𝑚 = 1, 2, … , 𝑀, 𝑡 = 1, 2, … , 𝑁𝑡, (4.1)

which can be seen as a space–time-discretized version of (3.3). Here, the transmembrane current at
time 𝑡 and cell location x𝑛 is indicated by 𝐼tm. 𝑁c denotes the total number of modeled cells, 𝑀 denotes
the total number of electrodes, and 𝑁𝑡 denotes the total number of time points. The myocardial cells
are assumed to lie on a two-dimensional rectangular square grid, spaced by Δ𝑥. The electrode array
with which the electrograms are simulated to be measured is then assumed to lie in a plane parallel to
the cells, at a height of 𝑧0. This constant height gives an expression for the cell–electrode distance

𝑟𝑚,𝑛 = √𝑧2
0 + ‖x2𝑛 − y2𝑚‖2, (4.2)

where y𝑚 corresponds to the (two-dimensional) location of electrode 𝑚 in the plane of the electrode
array [76].

4.1.2. Conductivity and stimulation profiles
With themodel from the previous section, a number of different data sets were generated. The electrode
array was implemented as a square, 11-by-11 grid, with a constant inter-electrode distance of 2 mm.

23
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Underneath this array, a square area of cells is located, with an inter-cell distance Δ𝑥 of 2/3 ≈ 0.7 mm
(thus forming a 31-by-31 grid), on which the electrode array is centered. The distance of the electrode
plane to the cell plane was set to 0.1 mm. To be able to generate accurate signals, the cell area was
extended to beyond the boundaries of the electrode array, making for a total area of 89 by 89 cells.
The simulations were run for 300 ms with a step size of 50 µs, or equivalently, a sampling frequency of
20 kHz. The obtained data was then downsampled to a frequency of 1 kHz, to match the sample rate
used in a clinical setting [16] and thus to make the generated data more realistic.

To simulate different types of myocardium, three different cell conductivity patterns were generated,
to model different ways the conduction between different areas can become decoupled (which can be
caused by fibrosis in the heart [82]). The resulting patterns can be seen in Fig. 4.1. It should be noted
that the cell area visible here corresponds to the 31-by-31 subset of the total area corresponding to the
cells underneath the electrode array. For all patterns, the conductivity is viewed in a simplified, binary
manner, where each cell can either have a value of 0 (a conduction block) or 1 (normal conduction).
The first conductivity type, visible as S1 in Fig. 4.1, approximates percolation, a phenomenon where
the tissue effectively becomes “a series of loosely coupled islands” in terms of its conductivity [83]. This
is modeled by randomly disconnecting some modeled cells and their neighbors, thus appearing in an
isotropic way as spots of conduction block in S1. The second conductivity pattern, S2, models zones
of no conduction as a number of randomly positioned lines of blocks, providing anisotropic decoupling
between cells on the grid [84]. The third pattern, S3, is a combination of the patterns in S1 and S2. As
the locations of conduction block in all patterns are randomly generated, multiple realizations can be
considered to check the consistency of the algorithm.
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Fig. 4.1: Examples of randomly generated conductivity maps, each corresponding to a different kind of simulated fibrosis tissue.
The conductivity values are normalized, with yellow areas corresponding to 1 and blue areas corresponding to 0.

In the simulated model, the propagation of action potentials through the cell area is started by
stimulating a given cell with a current. This then leads to the depolarization of the first cells, after
which the rest follows. To model different ways that cardiac activation wavefronts can originate and
to create the ability to inspect the effect of multiple wavefronts on the electrograms, we defined two
stimulation settings. For each of the conductivity patterns S1, S2, and S3 depicted in Fig. 4.1, we can
thus investigate two further variations of setup. The two stimulation settings are depicted in Fig. 4.2.
The figure shows the S1 conductivity setting over the complete, 89-by-89 cell area, along with the
location of initial cell stimulation. The single-wavefront setting in Fig. 4.2a activates first the cell located
in the bottom left of the cell area, outside of the measurement area. The other, triple-wavefront setting
of Fig. 4.2b increases the number of wavefront sources from one to three and places each of them on
the edge of the measurement area. All of the sources are activated at the same time.

4.1.3. Measurement noise
The model generating the simulated electrograms in (4.1) is based on physiological understanding of
the atria. It does not, however, take into account external effects on the measured electrograms, i.e.,
effects on the measured signal caused by the actual performing of the measurement. To make the
simulated data more similar to clinical data and thus more realistic, it is therefore good to incorporate
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Fig. 4.2: The two different simulated stimulation settings. Overlaid on the yellow-and-blue conductivity map are the electrode
locations in red and the location of the stimulated cells, indicated by magenta pentagrams.

measurement noise into our data. We do this by extending the model of recorded electrograms to

Y = 𝚽 + N ∈ R𝑀×𝑁𝑡 , (4.3)

where Y = [y1 y2 ⋯ y𝑀 ]T, 𝚽 = [𝝓1 𝝓2 ⋯ 𝝓𝑀 ]T, and N = [n1 n2 ⋯ n𝑀 ]T are the per-
electrode components of respectively the measured signal, the electrogram potential (as modeled in
(4.1)) and the noise stacked over all 𝑀 electrodes. We model the measurement noise as additive
Gaussian noise, uncorrelated spatially. Thus, for each electrode 𝑚 we have an 𝑁𝑡-element noise term
n𝑚 ∼ 𝒩(0, 𝜎2

n,𝑚I). To unambiguously compare different noise levels, we use the signal-to-noise ratio
(SNR), which we define in terms of the clean-signal and noise powers per electrode as

SNR = 𝑃𝜙,𝑚
𝑃n,𝑚

= ‖𝝓𝑚‖2
2

‖n𝑚‖2
2

= 1/𝑁𝑡 ‖𝝓𝑚‖2
2

𝜎2
n,𝑚

, 𝑚 = 1, 2, … , 𝑀. (4.4)

Here, 𝝓𝑚 contains the time-domain electrogram samples of one electrode. As each electrode will have
a different electrogram power 𝑃𝜙, the noise variance will similarly vary across electrodes to ensure an
equal SNR.

4.2. Example of simulated electrograms
This example corresponds to the simulation setting S3triple, i.e., cardiac tissue with lines and spots of
block, electrically stimulated on three boundaries of the measurement area (see Fig. 4.1 and Fig. 4.2b).
Fig. 4.3 shows the 11-by-11 ground-truth activation map, giving a graphical representation of the true
activation time per electrode in this setting (the LATs are shifted in time in such a way that the first
activation is at 0 ms). As was put forth in Section 4.1.1, the simulation generates transmembrane
currents per cell, which then form the basis for the electrograms that are measured. Fig. 4.4 shows the
true activation times of the same area as in Fig. 4.3, but now on a finer scale, per cell. The white area
in the image corresponds to cells which did not activate and thus do not have an activation time. In
this clearer view of the activity, the three source locations and locations of conduction block are more
visible.

Four electrode locations have been highlighted: the electrograms corresponding to these points
can be seen in Fig. 4.5. These signals, corresponding to the fifth row and columns eight to eleven of
the electrode grid, exhibit multiple deflections, caused by the lines of conduction block in the tissue, and
can thus be related to how the activation wave moves through the area. Fig. 4.6 shows the effect of
measurement noise, as detailed in Section 4.1.3, on the obtained signals. Specifically, the electrogram
of column 10 and row 5 is shown, first as a clean signal in Fig. 4.6a (SNR → ∞) and then in decreasing
SNR levels to the right. At higher noise levels, more deflections appear in the signal that are not part
of the underlying electrogram.
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Fig. 4.3: Activation map for the electrode array, corresponding to the ground-truth activation times of conductivity pattern S2 and
triple stimulation.
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Fig. 4.4: Higher-resolution activation map, showing the true activation time for all cells with conductivity pattern S2 and triple
stimulation. The red asterisks denote electrogram locations.
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Fig. 4.5: Electrograms corresponding to, respectively, the four electrodes highlighted in Fig. 4.4 from left to right.

4.3. Quantifying accuracy of estimated LATs
4.3.1. Determining fractionation of electrograms
When considering the response of a section of atrial tissue to electrical stimulation, it is worth keeping
in mind that some electrodes could be positioned above an area of relatively poor conduction, while



4.3. Quantifying accuracy of estimated LATs 27

0 50 100 150 200
time (ms)

-0.5

0

0.5
am

pl
itu

de

(a)

0 50 100 150 200
time (ms)

-0.5

0

0.5

am
pl

itu
de

(b)

0 50 100 150 200
time (ms)

-0.5

0

0.5

am
pl

itu
de

(c)

0 50 100 150 200
time (ms)

-0.5

0

0.5

am
pl

itu
de

(d)

Fig. 4.6: The electrogram of column 10 in Fig. 4.5 for different noise levels. (a) The clean signal, and the signal with an SNR of
(b) 20 dB, (c) 10 dB, and (d) 0 dB.

others might be present in normally conducting areas. We have seen in previous sections that the
conductivity of tissue plays a large role in the resulting activity that can be measured. It can therefore be
insightful to look at the performance of LAT estimation algorithms specifically at those electrodes where
electrical conduction is poor and, as a result, the morphology of the recorded signal could be different
from that of regular electrograms. In concurrence with literature, we will use the term fractionated
to refer to electrograms exhibiting such irregular morphology. We have seen in Chapter 2 that the
standard electrogram (recorded on epicardial tissue with normal electrical conduction) consists of one
clear negative deflection. Consequently, if an electrogram shows two or more discernible negative
deflections, we will classify it as fractionated [76].

4.3.2. Performance metric
To quantitatively weigh up different methods of estimating the LATs, we would like to have an objective
metric to rank their performance. As we are working with simulated data, we have the advantage of
having access to the ground-truth, i.e., true, LATs. We can use this to define the root-mean-square
error (RMSE) for each LAT estimation method using a given data set as

RMSE =
√√√
⎷

1
𝑀

𝑀
∑
𝑖=1

(𝜏𝑖 − ̂𝜏𝑖)
2, (4.5)

where 𝑀 corresponds to the amount of usable electrodes (i.e., those corresponding to a ground-truth
activation). Note here that this is not necessarily equal to the total number of electrodes. It can hap-
pen that the ground-truth activation time is not available: this could be the case if the corresponding
electrode is positioned directly over a conduction block, in which case the corresponding part of tissue
is not activated. To prevent such spurious outliers from dominating the RMSE and giving a misleading
view of the performance, the LAT estimate for these points are eliminated from (4.5) and 𝑀 is adjusted
accordingly.





5
Results

With the method proposed in Chapter 3 and the simulation data described in Chapter 4, we can now
evaluate the performance of the devised algorithm. This chapter describes the tests done and details
the quantitative results this produced for the task at hand, which is estimating the LATs. In Section 5.1,
the specific details of the used simulation data, in addition to what was described in Chapter 4, are
described. The next two sections then give the main results: the proposed method of combining de-
convolution and cross-correlation is compared with other existing strategies, using steepest deflection
as a baseline. Specifically, we look at the use of increasing neighbor orders. Section 5.2 assesses
the performance in simulated tissue with one point of electrical stimulation; Section 5.3 does the same
for tissue with three sources of stimulation. A model for including measurement noise in the simula-
tions was described in Section 4.1.3; the effects of different noise levels on the estimation results are
investigated in Section 5.4.

5.1. Used data sets
The foundations of the data model used to generate simulation data was given in Section 4.1.1. We can
effectively use this to test the different LAT estimation methods, as this setup also supplies us with the
ground-truth activation times. Different tissue types, corresponding to different conductivity patterns
(S1, S2, and S3), were described in Section 4.1.2, the precise layout of which is randomly generated.
To avoid focusing too much on one specific realization, we generated ten random realizations of S1,
S2, and S3. These simulated areas underneath the electrode array can be seen in Fig. 5.1, Fig. 5.2,
and Fig. 5.3, respectively. With ten realizations of each pattern and an 11-by-11 electrode array, our
simulation thus produces 1210 electrograms for each of the three patterns.
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Fig. 5.1: The ten used realizations of the 31-by-31 normalized conductivity pattern for the cells in data set S1.
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Fig. 5.2: The ten used realizations of the 31-by-31 normalized conductivity pattern for the cells in data set S2.

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

10 20 30
column

10

20

30

ro
w

Fig. 5.3: The ten used realizations of the 31-by-31 normalized conductivity pattern for the cells in data set S3.

The concept of fractionated electrograms was explained in Section 4.3.1: these are signals with
more than one significant deflection. In this section, we will define secondary deflections as significant
if the value of the derivative is 30% or more of the maximum derivative value of the main deflection.

As we described in 4.1.3, measurement noise is included in the simulated data by adding Gaussian-
noise terms to the simulated electrograms. In sections 5.2 and 5.3, the noise level of the simulated
data is set such that the SNR equals 10 dB.

5.2. Single-wavefront performance
The first setting we consider is that of tissue stimulated from a single point, as illustrated by Fig. 4.2a.
Using the conductivity realizations described in Section 5.1, we compare the performance in LAT es-
timation of five methods. These methods can be subdivided into two groups: three methods are ap-
plied directly to the measured electrograms, and two methods are applied on transmembrane currents
obtained after deconvolution. In the former group, we have steepest deflection (SDΦ), normalized
cross-correlation (NCCΦ), and normalized cross-correlation of the derivative (NDCCΦ). In the latter
group, applied to the currents, we have steepest deflection (SD𝐼) and normalized cross-correlation of
the derivative (NDCC𝐼). To systematically evaluate the performance, we take the square, 11-by-11
electrode grid graph (as is displayed in Fig. 3.3) as a foundation and take the cross-correlation over
an increasing number of hops. Thus, we increase the neighbor order 𝑃 in the graph 𝐺(𝑃) and the
associated adjacency matrix 𝚵(𝑃). As Section 3.3.2 illustrated, the pairwise time delays obtained by
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the cross-correlation operation are converted to LATs using ordinary least-squares estimation.
Fig. 5.4 shows the RMSE of the five methods for set S1, normalized with respect to the RMSE of the

SDΦ method. The common normalization factor applied to all four plots allows us to directly compare
the five methods. We can see in Fig. 5.4a that the error of the N(D)CCΦ method drops clearly below that
of SDΦ when 𝑃 > 1; the fractionated sensors show practically the same behavior, albeit with a slightly
higher error. The deconvolved methods shown in Fig. 5.4b also outperform the SDΦ reference: the
deconvolved steepest-deflection equivalent SD𝐼 has a lower error than SDΦ and NDCCI benefits from
inclusion of higher-order neighbors, too. Looking purely at the fractionated sensors here, we see that
both methods, in contrast with their Φ counterparts, show a slight increase in performance compared
to the total picture shown on the left. On the whole, NDCC𝐼 is seen to perform approximately equally,
but slightly better, than the NCCΦ method, especially in fractionated signals.
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Fig. 5.4: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S1 with one source. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.

The results for data set S2 are shown in Fig. 5.5. We see similar results here as with S1. The
same trend is visible with regard to the error and increasing neighbor order. Once again, the NDCC𝐼
performs better than its electrogram-based counterpart and the performance of both deconvolution-
based methods increases when only fractionated sensors are considered. Note, though, that SD𝐼 and
NDCC𝐼 show a larger variance in the RMSE compared with the S1 case. This could be related to the
fact that the S2 pattern is non-isotropic, resulting in larger differences in wavefront conduction over
different realizations of the lines of block.

Fig. 5.6 gives a view of the results for data set S3. Comparable results to S1 and S2 can be
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Fig. 5.5: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S2 with one source. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.

observed. A difference is that the error variance in the NDCC𝐼 and SD𝐼 methods has become even
larger than was the case for the S2 data set. As the lines of block of S2 are also present in the
conductivity pattern of S3, this effect can be partly be explained here in the same way. Furthermore, a
larger portion of the simulated tissue now consists of tissue with a low conductivity, making the potential
for improvement and the relative differences between multiple realizations (and thus the variance in the
error) larger. Specifically for the SD𝐼 method, it should be noted that only one of the ten realizations
actually generated a higher RMSE than the SDΦ method: this result skewed the mean to a higher value
and added to the aforementioned spread in RMSE values we encounter here.

To give an absolute, un-normalized view of the errors, Table 5.1 shows the mean RMSE across the
ten realizations of the different tissue types for the five methods. The appended number for the NCC
and NDCC methods corresponds to the neighbor order 𝑃 used to construct the grid graph 𝐺(𝑃) and
the smallest error for each simulation setting is indicated in bold. The errors for S1 are small for all
methods, which can be attributed to the fact that the spots of conduction block impede the activation
wave moving through the area only in a limited way. There is limited room for performance, so the
spread of errors is relatively small. Both this spread and the error values themselves increase as we
look at S2 and S3, which feature higher degrees of conduction block. This then leads to a higher
proportion of fractionated electrograms, which can be seen in Table 5.2. Considering all data sets, we
can see that NDCC𝐼-10 performs best in all cases when only fractionated sensors are considered, but
is slightly outperformed by NCCΦ-10 in data sets S1 and S3 on the whole. Furthermore, SD𝐼 is seen
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to outperform its electrogram-based neighbor SDΦ, which is in agreement with results found by Abdi
et al. [19]. In general, the errors of the cross-correlation methods are seen to be inversely related to 𝑃 ,
which is congruent to the findings of Kölling et al. [21].
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Fig. 5.6: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S3 with one source. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.

Table 5.1: Mean absolute RMSEs in ms for the different LAT estimation methods applied to the ten realizations of the three
single-source datasets, using simulated electrograms with an SNR of 10 dB. The three columns on the left take all electrodes
into account; in the three on the right (indicated by “(f)”), only electrodes with fractionated signals are included.

S1 S2 S3 S1 (f) S2 (f) S3 (f)
SDΦ 0.69 1.28 1.62 1.27 2.72 2.63
NCCΦ-1 0.81 3.07 3.02 1.27 4.44 4.01
NCCΦ-10 0.39 0.91 1.05 0.89 1.95 1.89
NDCCΦ-1 0.86 2.23 2.42 1.46 3.64 3.65
NDCCΦ-10 0.44 1.07 1.31 0.99 2.38 2.34
SD𝐼 0.61 1.10 1.50 0.99 1.99 2.00
NDCC𝐼-1 0.63 1.11 1.45 0.98 1.94 1.97
NDCC𝐼-10 0.44 0.84 1.16 0.77 1.54 1.49
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Table 5.2: Number of irregular signals encountered in the single-source simulations of 𝑁 = 1210 electrograms with an SNR of
10 dB.

S1 S2 S3
Inactive electrodes 1 8 28
Fractionated electrograms 64 177 224

5.3. Triple-wavefront performance
Apart from electrical stimulation by one source, Section 4.1.2 described another way to initiate the
spreading of action potentials across cardiac tissue. Depicted by Fig. 4.2b, we now position three
sources of electrical stimulation at the edges of the measurement area on the simulated atrial tissue.
In this way, we can investigate the effect of multiple propagating wavefronts on the estimation of LATs.
As in the single-source case described in Section 5.2, we use the thirty conductivity patterns of S1, S2,
and S3 described in Section 5.1. The same five LAT estimation methods are considered: SDΦ, NCCΦ,
NDCCΦ, SD𝐼 , and NDCC𝐼 .
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Fig. 5.7: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S1 with three sources. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.
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The RMSE for the aforementioned methods for data set S1, again normalized with respect to the
SDΦ error, are shown in Fig. 5.7; Fig. 5.8 is a zoomed-in version of Fig. 5.7. Across all plots, it can be
seen that the SDΦ reference is outperformed by the other methods. For the two NDCC methods, the
error decreases as the neighbor order increases. For the electrogram-based methods, we can see that
they outperform the SDΦ reference, but not as easily as in the single-source case. NDCCΦ requires
a relatively large amount of information to achieve its best results, with the error only dipping below
that of SDΦ for neighbor order 𝑃 > 4. The RMSE of NCCΦ fluctuates before decreasing for 𝑃 > 5 on
the whole and even slightly increases for the fractionated signals. These observations, along with the
relatively large variance of the NDCCΦ error for lower 𝑃 , show that the electrogram-based methods
are less consistent when more wave sources are introduced. The NDCC𝐼 and SD𝐼 methods, on the
other hand, perform similarly to what was encountered in the single-source case. Note, however, that
both NDCC methods eventually reach approximately the same error value for 𝑃 = 10.
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Fig. 5.8: Vertically zoomed-in version of the normalized RMSEs shown in Fig. 5.7.
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The results for the realizations of data set S2 can be seen in Fig. 5.9, with Fig. 5.10 providing a
vertically enlarged view of the errors. These N(D)CCΦ methods approximately show errors decreasing
with 𝑃 ; the error of NDCCΦ, however, does so in a less steady way, with, again, large variance for
lower orders. The deconvolution-based methods perform similarly to the S1 case, with the NDCC𝐼
error dropping steadily, ending up with an error lower than that of NDCCΦ (with all methods beating
SDΦ in terms of the RMSE).
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Fig. 5.9: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S2 with three sources. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.
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Fig. 5.10: Vertically zoomed-in version of the normalized RMSEs shown in Fig. 5.9.
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Fig. 5.11 shows the results for data set S3, with Fig. 5.12 providing a closer look. We can again
recognize the steadily decreasing error across all cross-correlationmethods. However, the combination
of a large area of conduction block and more stimulation sources here provides for a complex setting,
which causes relative difficulties for the estimation algorithms. All methods exhibit variances that are
much larger than was the case for S1 and S2. The NCCΦ method does not manage to outperform the
SDΦ reference this time and NDCCΦ shows a large spread of errors across the neighbor orders. In
comparison, the deconvolution-based methods are relatively consistent in beating the RMSE of SDΦ,
with NDCC𝐼 again achieving the lowest RMSE of the methods considered.
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Fig. 5.11: Normalized RMSE of the estimated LATs, based on the ten realizations of data set S3 with three sources. (a) shows the
results of directly using the EGMs and (b) shows the results of first applying deconvolution. In the left column, all electrodes are
taken into account, while on the right, only electrodes measuring a fractionated signal are considered. The markers correspond
to the mean; the bars indicate the standard deviation.
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Fig. 5.12: Vertically zoomed-in version of the normalized RMSEs shown in Fig. 5.11.
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The mean of the absolute errors for the simulation settings considered in this section are shown in
Table 5.3. Some trends that were encountered in the single-source case show up here as well, like the
increasing error across the board as data sets S1, S2, and S3 are considered; SD𝐼 performing better
than SDΦ; and the cross-correlation error generally decreasing for higher neighbor order. Except for the
fractionated sensors in data set S1, where NDCCΦ-10 beats it slightly, we can see that the NDCC𝐼-10
method, again, has the lowest RMSE in this simulation. There are also differences with the single-
source errors in Table 5.1. Overall, the errors in the triple-source case are larger, due to the increased
complexity of the simulation setting, resulting in a larger number of fractionated electrograms, which is
apparent from Table 5.4.

Table 5.3: Mean absolute RMSEs in ms for the different LAT estimation methods applied to the ten realizations of the three
triple-source datasets, using simulated electrograms with an SNR of 10 dB. The three columns on the left take all electrodes into
account; in the three on the right (indicated by “(f)”), only electrodes with fractionated signals are included.

S1 S2 S3 S1 (f) S2 (f) S3 (f)
SDΦ 1.13 1.66 1.83 1.62 3.03 2.77
NCCΦ-1 0.87 1.95 2.60 1.04 2.71 3.33
NCCΦ-10 0.80 1.40 1.71 1.19 2.46 2.51
NDCCΦ-1 5.97 1.91 5.27 6.57 2.73 5.91
NDCCΦ-10 0.65 1.28 1.41 0.98 2.27 2.19
SD𝐼 0.80 1.18 1.47 1.27 2.15 2.26
NDCC𝐼-1 0.83 1.25 1.59 1.13 1.96 2.28
NDCC𝐼-10 0.64 1.01 1.31 1.01 1.86 1.98

Table 5.4: Number of irregular signals encountered in the triple-source simulations of 𝑁 = 1210 electrograms with an SNR of 10
dB.

S1 S2 S3
Unactive electrodes 1 8 28
Fractionated electrograms 291 300 434

In the end, the main observation that can be made about the proposed algorithm of combining
deconvolution and cross-correlation (NDCC𝐼) is not necessarily the low error (which often differs from
NDCCΦ only by a small amount), but the higher degree of consistency and robustness it shows. This
may not be as visible in Table 5.3, but was noted primarily in Fig. 5.7 to Fig. 5.11. This aspect of
the fact can be explained by remembering a key feature of the deconvolution algorithm, mentioned in
Section 3.2. In the currents this operation produces, local activity is amplified, while distant contributions
are attenuated. This makes this modality better suited to handle situations with spatially fast-changing
properties, such as those with large areas of block and multiple wavefronts, as was simulated in this
section. In Fig. 5.7b to Fig. 5.11b, we can see that the main decrease of the error in fractionated signals
occurs as 𝑃 changes from 1 to 2; the error could almost be said to saturate. This fits the idea that the
used signals are now more local, so cross-correlating them with their relatively close-by neighbors has
the biggest impact on the accuracy of the obtained delays and thus the LATs.

5.4. Impact of noise
In the previous sections, the behavior of the various LAT estimation methods was investigated in a
number of different simulated tissue settings, varying in the type of conduction block and the number of
simulated wavefronts. As we generated the simulation data ourselves, we had the advantage of being
able to specify the amount of noise present in the signals. All electrograms were simulated with noise,
corresponding to an SNR of 10 dB. To find out howmuch of an impact the modeled measurement noise
has on the estimation of activation times, it can be interesting to vary this amount. In Section 4.1.3,
some examples were given of electrograms with increasing levels of noise. In keeping with the signals
shown there in Fig. 4.6, we consider four values for the SNR: 0, 10, 20, and 50 dB (where the noise
level is negligible). The ten realizations of conductivity pattern S3 are then used to generate simulated
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electrograms, to which the five LAT estimation methods are applied. For the cross-correlation methods,
their lag-10 (𝑃 = 10) versions are used. This results in a view of the course of the RMSE as the noise
contribution becomes increasingly stronger.

-10 0 10 20 30 40 50 60

SNR (dB)

0

1

2

3

4

5

6

R
M

S
E

 (
m

s
)

NCC -10

NDCC -10

SD

(a)

-10 0 10 20 30 40 50 60

SNR (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4

R
M

S
E

 (
m

s
)

NDCC
I
-10

SD

SD
I

(b)

Fig. 5.13: RMSEs of the five LAT estimation methods for different noise levels, using the ten single-source realizations of data
set S3. The markers indicate the mean values; the vertical bars indicate the standard deviation.

First, we consider the single-source version of S3 (see also Fig. 4.2a). The resulting errors can be
seen in Fig. 5.13. The electrogram-based methods are shown on the left; the plot on the right shows the
deconvolution-based methods, along with SDΦ as a reference. What is surprising to see in Fig. 5.13a,
is that the errors stay approximately constant, until the SNR reaches 0 dB. In this setting, with equal
noise and signal power, the error is still only slightly increased (except for the NDCCΦ method, which
shows a larger increment). Also noticeable is the larger variance that both NDCCΦ and SDΦ have at
this noise level. The deconvolution-based methods in Fig. 5.13b have practically the same mean error
and variance across all SNR values, showing remarkably stable performance.
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Fig. 5.14: RMSEs of the five LAT estimation methods for different noise levels, using the ten triple-source realizations of data
set S3. The markers indicate the mean values; the vertical bars indicate the standard deviation.

Next, we use the same conductivity pattern of S3, but now with the relatively more complex triple-
source stimulation setting (see also Fig. 4.2b). Fig. 5.14 shows the results; a zoomed-out view of the
electrogram-based errors is given by Fig. 5.15. Down to 10 dB, the errors again stay approximately
level. In Fig. 5.14a, we also see the errors (and the variance) increase at 0 dB as we saw before, but now
in a much more drastic way. With a waveform like in Fig. 4.6d, the time derivative of the electrogram
is no longer reliable for LAT estimation, as the noise deflections are relatively large. A noticeable
peak (corresponding to activation) still remains in the electrogram, which explains why NCCΦ doesn’t
suffer as big a performance drop. The transmembrane-current-based methods shown in Fig. 5.14b
remarkably enough show virtually the same results as in the single-source case, with the error even
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fractionally decreasing at the highest level of noise.
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Fig. 5.15: Vertically zoomed-out version of Fig. 5.14a.

With these results, some conclusions about the impact of additive noise on the performance of the
LAT estimation methods can be made. In general, all methods cope well with noise levels of up to an
equivalent 10-dB SNR. There seems to be no difference in performance in lower noise levels. This
could be related to the fact that the part of the measured data that we are interested in, the actual
atrial activity, is relatively sparse in the temporal domain. It is zero most of the time, with one (or more)
relatively sharp, large deflections. This makes it stand out in the signal, even when the SNR is relatively
low. Therefore, for the noise to have a negative impact in locating the activation time, the noise level
has to be high—0 dB, as Fig. 5.13 and Fig. 5.14 showed. However, in deviation from this trend, the
deconvolution based methods do not seem to be affected at all by the levels of noise we investigated.
An explanation for this could lie in the way the equivalent transmembrane currents are generated by
the deconvolution algorithm. As we saw in Section 3.2, this quantity results from solving the inverse
problem (3.7), made feasible by adding a regularization term incorporating prior knowledge. This term
promotes sparsity in the time derivative of the currents. A consequence of this is that the noise present
in the input electrograms is effectively attenuated in the output 𝐼′, thus making the SD𝐼 and NDCC𝐼
methods more robust against higher levels of noise.



6
Conclusions

6.1. Summary of results
In this thesis, we investigated the merits of combining two existing methods for processing voltage data
obtained by epicardial electrode array on the atria to improve the annotation of the local activation times
at the electrode locations. The epicardial signals formed the basis for an inverse problem, which was
solved to recover underlying quantities responsible for the measured signals. Cross-correlation was
then applied to these underlying signals over pairs of electrodes, for directly neighboring points and
higher-order neighbors. Local activation times resulted through processing of the pairwise delays thus
obtained; the performance in this regard was compared to existing methods.

Chapter 2 provided some background information on the topic at hand. The anatomy of the heart
and conduction of electrical signals in the atria was illustrated, leading to a model of the action potential
that is responsible for contraction of cardiac cells. Different ways of quantifying this electrical activity
were shown, culminating in a model of cell-level currents responsible for the electrograms measured at
epicardial level with an electrode array. Using this modality, various existing methods were described
to extract the time of activation of cardiac tissue underneath the measuring electrode.

Using this understanding of atrial electrical activity, a two-part algorithm was proposed in Chapter 3
to improve on the estimation of activation by exploiting spatial information in the recorded data. A model
for electrograms was provided, modeling them as a sum of a main deflection of interest and secondary
disturbances. As these disturbances can impair the performance of cross-correlation methods in set-
tings of impaired atrial electrical conductivity, an extra constituent method was introduced. This solves
an inverse problem to obtain from the measured electrograms the underlying transmembrane currents,
which were shown to give a more local view of atrial activity. This was then passed to the next part
of the algorithm, the basis of which was formed by spatially defining the measuring electrode array as
a grid graph. For pairs of electrodes in this graph, the corresponding currents obtained in the previ-
ous step were cross-correlated. Doing this not only for direct neighbors, but also for points with more
hops in between, provided an estimate for the mutual time delays of activation. From these delays, the
absolute activation times could then be obtained through least-squares processing.

In Chapter 4, a number of methods were discussed that could be used to simulate the electrical ac-
tivity in a two-dimensional piece of atrial tissue. Models for three different types of blocks in conduction
typical of atrial tissue were presented, along with two different ways in which the stimulation of the atrial
tissue could be modeled. This provided a data set of 7260 electrograms from a simulated electrode
array of 121 electrodes.

Chapter 5 described how the proposed methodology was tested experimentally with the described
simulation data to evaluate its performance. A number of different methods were used in simulated
settings of varying complexity. This produced quantitative results with which some comparisons could
be made.

First, the proposed method of cross-correlation of the current over higher-order neighbors was ap-
plied to a setting with one source of electrical activity, along with (regular) cross-correlation of the
electrograms over higher-order neighbors, steepest deflection of the electrogram (used as a baseline),
and steepest deflection the current. Results found in [19] and [76] were confirmed, with the steepest
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deflection showing better results applied to the current than to the electrogram and the performance of
the cross-correlation methods increasing as the used neighbor order increased. The proposed cross-
correlation of the current slightly outperformed the regular cross-correlation methods.

The methods were then tested on data sets with three sources of electrical stimulation. In this more
elaborate setting with more wavefront conflicts, the regular cross-correlation methods were shown to
experience more difficulty. Their performance fluctuated, and in some cases only performed similarly
to the baseline method of steepest deflection of the electrogram. The cross-correlation of the current,
though having similar errors to the electrogram-based methods in a number of situations, showed
an increase in performance in the situations where the regular cross-correlation methods struggled
most. Yet, the primary takeaway in this setting is the more consistent, less-varying performance of
the transmembrane-current method as the amount of hops involved in the cross-correlation was made
greater.

Finally, the impact of different noise levels was studied, which, somewhat surprisingly, showed a
relative tolerance of all methods to noise until very low SNR levels were reached. However, for data
sets with multiple stimulations, the deterioration in performance at these high-noise levels becamemore
dramatic in the reference methods. In spite of that, the proposed method proved, remarkably, to give
stable performance even in the aforementioned highly noisy settings; this was postulated to be related
to the way prior knowledge was included in the solution of the inverse problem that provides the basis
for the transmembrane currents on which the method acts.

With regard to the methodology proposed in this thesis, which was detailed in Chapter 3, we can
conclude, based on the simulated results of Chapter 5, that its merits are primarily to be found in the
form of increased consistency, not necessarily improving accuracy of existing methods.

6.2. Future work
The work done for this thesis makes a humble foray into the field of research on heart arrhythmias and
quantifying cardiac electrical activity. A number of assumptions and simplifications of reality have been
done and subjects prioritized, that suggest more research that can be done on a number of different
topics.

6.2.1. Clinical validation
The results in this thesis were obtained based on simulated data; it would be valuable to verify the
findings presented here on real-world clinical data of atrial electrical activity. The simulated results
seem to suggest that the proposed method has a larger potential for improvement in cardiac settings of
relatively high complexity. Clinical data will produce more varied signals, with possibly more complex
morphologies and settings of wavefronts and conduction block that are more involved than what our
simulation model can provide. It would therefore be interesting to validate this trend and see how the
deconvolution–cross-correlation combination performs there.

6.2.2. Modeling of cardiac tissue
In this work, the electrode array with which measurements were done was assumed to be positioned
at a constant height parallel to the cardiac tissue, which was modeled as a plane. This naturally is
a simplification of reality, as myocardium is a three-dimensional object, which we projected onto two
dimensions. Furthermore, a planar representation disregards the curvature of the tissue and spots
were the electrical contact of the electrode array and the tissue could be impaired. Some features
are thus lost in the model. With studies showing that the depth direction can show a marked variety
(so-called asynchrony) in electrical activity across different layers of cardiac cells [38]–[41], adapting
the used tissue model could be beneficial in providing more understanding of the atrial activity.

6.2.3. Spatial connection between deconvolution and cross-correlation
The connection and interplay between the deconvolution and cross-correlation algorithms could be in-
vestigated further. Both methods employ spatial information present in the way the electrograms are
measured, but each in a different fashion. Seeing how and where this spatial connection influences
the obtained results could provide valuable insight. For example, the deconvolution algorithm mod-
els the electrograms as spatial averages of the transmembrane currents in the surrounding cells. In
implementing this algorithm, the spatial support needs to be defined for the distance kernel effecting
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this averaging. This thus determines the neighbor order of electrodes contributing to the electrogram
measured in a given location; the question that arises is whether this number also shows up when
evaluating LAT estimation results for different neighbor orders of the cross-correlation method.

6.2.4. Benchmarking deconvolution
The deconvolution method used in this work was originally derived with a relatively specific purpose in
mind: accuracy of the first-order time derivative of the resulting transmembrane current. Interpreting
the output currents of this algorithm provides us with a difficulty, as, in contrast with the electrogram
(of which many thorough theoretical and practical analyses exist in literature), these currents are a
quantity that cannot be readily validated with real-life measurements. It would be worthwhile to look
into a way in which a better sense of real-world transmembrane currents could be obtained, such that
the accuracy of a deconvolution method such as the one used in this work could be benchmarked.

6.2.5. Wavefront dynamics
The aspect of multiple wavefronts in a measurement area could also benefit from more detailed study.
This thesis incorporated this aspect into the simulation data, but in a somewhat limited way. In the case
of multiple stimulation sources, the time or instance of activation was equal across the sources. It could
be interesting to investigate the effects of non-simultaneous stimulation of atrial tissue. Additionally, a
question that arises when considering such a setting is whether electrograms measured in the vicinity
of a stimulation source could benefit from being considered separately from those close to another
source. If this course of action has merit, a number of existing algorithms could be explored with which
activation wavefronts can be tracked through space and time, such as [85], [86].

6.2.6. Modeling of measurement noise
The simulated data used in this work includes a term to incorporate noise that may be present in mea-
sured signals in a clinical setting. This measurement noise was modeled as additive white Gaussian
noise, primarily out of convenience in processing. The accuracy of this part of the model with respect
to real-world noise terms was not explicitly considered and could therefore be investigated further.
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Abbreviations
AF atrial fibrillation

AM activation map

AP action potential

AV atrioventricular

BB Bachmann’s bundle

CAS Circuits and Systems

CV conduction velocity

CVD cardiovascular disease

ECG electrocardiogram

EGM electrogram

ETV Electrotechnische Vereeniging

ICV inferior caval vein

LA left atrium

LAA left atrial appendage

LAT local activation time

NCC normalized cross-correlation

NDCC normalized cross-correlation of the time derivative

PV pulmonary vein

PVI pulmonary-vein isolation

RA right atrium

RAA right atrial appendage

RMSE root-mean-square error

SA sinoatrial

SCV superior caval vein

SD steepest deflection

SNR signal-to-noise ratio

SR sinus rhythm

SVD singular-value decomposition
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Symbols
̂𝑥 estimate of variable 𝑥

𝑥 scalar

x column vector

X matrix

xT, XT transpose of a vector or a matrix

X−1 inverse of the non-singular matrix X

X† pseudo-inverse of the matrix X

X𝑝 XX ⋯ X⏟
𝑝

[X]𝑖,𝑗 element of matrix X at row 𝑖 and column 𝑗
rank(X) rank of the matrix X, i.e., dimension of its column space

diag(x) diagonal matrix with the vector x as its main diagonal

diag(X) vector containing the diagonal elements of the matrix X

I identity matrix of appropriate size

𝑦(𝑡) quantity indexed by the continuous variable 𝑡
𝑦[𝑡] quantity indexed by the discrete variable 𝑡
𝑦′ first-order time derivative of 𝑦
𝛁 nabla operator

𝛁 ⋅ E divergence of the vector-valued function E

𝛁𝐸 gradient of the scalar-valued function 𝐸
‖ ⋅ ‖ norm

‖ ⋅ ‖1 𝑙1-norm
‖ ⋅ ‖2 𝑙2-norm
R set of real numbers

|𝐸| cardinality of the set 𝐸
E[⋅] expected-value operator
Cov(⋅) covariance of a multivariate random variable

𝒩(𝝁, C) multivariate Gaussian distribution with mean 𝝁 and covariance C
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