

Delft University of Technology

Optimal Reads-From Consistency Checking for C11-Style Memory Models

Tunç, Hünkar Can; Abdulla, Parosh Aziz; Chakraborty, Soham; Krishna, Shankaranarayanan; Mathur,
Umang; Pavlogiannis, Andreas
DOI
10.1145/3591251
Publication date
2023
Document Version
Final published version
Published in
Proceedings of the ACM on Programming Languages

Citation (APA)
Tunç, H. C., Abdulla, P. A., Chakraborty, S., Krishna, S., Mathur, U., & Pavlogiannis, A. (2023). Optimal
Reads-From Consistency Checking for C11-Style Memory Models. Proceedings of the ACM on
Programming Languages, 7, Article 137. https://doi.org/10.1145/3591251

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3591251
https://doi.org/10.1145/3591251

137

Optimal Reads-From Consistency Checking for C11-Style

Memory Models

HÜNKAR CAN TUNÇ, Aarhus University, Denmark

PAROSH AZIZ ABDULLA, Uppsala University, Sweden

SOHAM CHAKRABORTY, TU Delft, Netherlands

SHANKARANARAYANAN KRISHNA, IIT Bombay, India

UMANG MATHUR, National University of Singapore, Singapore

ANDREAS PAVLOGIANNIS, Aarhus University, Denmark

Over the years, several memory models have been proposed to capture the subtle concurrency semantics

of C/C++. One of the most fundamental problems associated with a memory modelM is consistency check-

ing: given an execution X, is X consistent withM? This problem lies at the heart of numerous applications,

including specification testing and litmus tests, stateless model checking, and dynamic analyses. As such, it

has been explored extensively and its complexity is well-understood for traditional models like SC and TSO.

However, less is known for the numerous model variants of C/C++, for which the problem becomes challeng-

ing due to the intricacies of their concurrency primitives. In this work we study the problem of consistency

checking for popular variants of the C11 memory model, in particular, the RC20 model, its release-acquire

(RA) fragment, the strong and weak variants of RA (SRA and WRA), as well as the Relaxed fragment of RC20.

Motivated by applications in testing and model checking, we focus on reads-from consistency checking. The

input is an execution X specifying a set of events, their program order and their reads-from relation, and the

task is to decide the existence of a modification order on the writes of X that makes X consistent in a memory

model. We draw a rich complexity landscape for this problem; our results include (i) nearly-linear-time

algorithms for certain variants, which improve over prior results, (ii) fine-grained optimality results, as well

as (iii) matching upper and lower bounds (NP-hardness) for other variants. To our knowledge, this is the first

work to characterize the complexity of consistency checking for C11 memory models. We have implemented

our algorithms inside the TruSt model checker and the C11Tester testing tool. Experiments on standard

benchmarks show that our new algorithms improve consistency checking, often by a significant margin.

CCS Concepts: • Software and its engineering→ Software verification and validation; • Theory of

computation→ Theory and algorithms for application domains; Program analysis.

Additional Key Words and Phrases: concurrency, weak memory models, complexity

Authors’ addresses: Hünkar Can Tunç, Aarhus University, Denmark, tunc@cs.au.dk; ParoshAziz Abdulla, Uppsala University,

Sweden, parosh@it.uu.se; Soham Chakraborty, TU Delft, Netherlands, s.s.chakraborty@tudelft.nl; Shankaranarayanan

Krishna, IIT Bombay, India, krishnas@cse.iitb.ac.in; Umang Mathur, National University of Singapore, Singapore, umathur@

comp.nus.edu.sg; Andreas Pavlogiannis, Aarhus University, Denmark, pavlogiannis@cs.au.dk.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART137

https://doi.org/10.1145/3591251

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.

http://creativecommons.org/licenses/by-nd/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0001-9125-8506
HTTPS://ORCID.ORG/0000-0001-6832-6611
HTTPS://ORCID.ORG/0000-0002-4454-2050
HTTPS://ORCID.ORG/0000-0003-0925-398X
HTTPS://ORCID.ORG/0000-0002-7610-0660
HTTPS://ORCID.ORG/0000-0002-8943-0722
https://orcid.org/0000-0001-9125-8506
https://orcid.org/0000-0001-6832-6611
https://orcid.org/0000-0002-4454-2050
https://orcid.org/0000-0003-0925-398X
https://orcid.org/0000-0003-0925-398X
https://orcid.org/0000-0002-7610-0660
https://orcid.org/0000-0002-8943-0722
https://doi.org/10.1145/3591251
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3591251&domain=pdf&date_stamp=2023-06-06

137:2 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

ACM Reference Format:

Hünkar Can Tunç, Parosh Aziz Abdulla, Soham Chakraborty, Shankaranarayanan Krishna, Umang Mathur,

and Andreas Pavlogiannis. 2023. Optimal Reads-From Consistency Checking for C11-Style Memory Models.

Proc. ACM Program. Lang. 7, PLDI, Article 137 (June 2023), 25 pages. https://doi.org/10.1145/3591251

1 INTRODUCTION

Modern programming languages such as C/C++ [ISO/IEC 14882 2011; ISO/IEC 9899 2011] have
introduced first-class platform-independent concurrency primitives to gain performance from weak
memory architectures. The programming model is popularly known as C11 [Batty et al. 2011;
Boehm and Adve 2008]. The formal semantics of C11 has been an active area of research [Batty
et al. 2016, 2011; Chakraborty and Vafeiadis 2019; Lahav et al. 2017; Lee et al. 2020; Margalit and
Lahav 2021; Vafeiadis et al. 2015] and other programming languages such as Java [Bender and
Palsberg 2019] and Rust [Dang et al. 2019] have also adopted similar concurrency primitives.

One of the most fundamental computational problems associated with a memory model, particularly
in testing and verification, is that of consistency checking [Furbach et al. 2015; Gibbons and Korach
1997; Kokologiannakis et al. 2023]. Here, one focuses on a fixed memory model M, typically
described using constraints or axioms. The input to the consistency problem pertaining to the
memory modelM is then a partial execution X, typically described using a set of events E together
with a set of relations on E. The consistency problem then asks to determine if X is consistent
withM. Here, by partial execution, we mean that the set of relations is not fully described in the
input, in which case the problem asks whether X can be extended to a complete execution that is
consistent withM. The focus of this paper is reads-from consistency checking; in the rest of the
paper we refer to this simply as consistency checking.

The problem of consistency checking has numerous applications in both software and hardware
verification. First, viewing memory models as contracts between the system designer and the
software developers, consistency checking is a common approach to testing memory subsystems,
cache-coherence protocols and compiler transformations against the desired contract [Chen et al.
2009; Manovit and Hangal 2006; Qadeer 2003; Wickerson et al. 2017; Windsor et al. 2022]. Second,
since public documentations of memory architectures are typically not entirely formal, litmus
tests can reveal or dismiss behaviors that are not covered in the documentation [Alglave 2010;
Alglave et al. 2011, 2014]. Consistency checking for litmus tests makes testing more efficient (and
thus also more scalable), by avoiding the enumeration of behaviors that are impossible under the
given model. Third, in the area of model checking, (partial) executions typically serve the role of
abstraction mechanisms. Consistency checking, thus, ensures that model checkers indeed explore
valid system behavior. As such, it has been instrumental in guiding recent research in partial-order
reduction techniques and stateless model checking of concurrent software [Abdulla et al. 2019,
2018; Agarwal et al. 2021; Bui et al. 2021; Chalupa et al. 2017; Chatterjee et al. 2019; Kokologiannakis
et al. 2022; Norris and Demsky 2013]. Focusing on partial executions allows such algorithms to
consider coarser equivalences such as the reads-from equivalence, allowing for more proactive
state-space reductions and better performance as a result. These advances have also propelled
the use of formal methods in the industry [Bornholt et al. 2021; Lerche 2020; Oberhauser et al.
2021]. Consistency checking of partial executions also forms the foundation of dynamic predictive
analyses by characterizing the space of perturbations that can be applied to an observed execution
in an attempt to expose a bug [Huang et al. 2014; Kalhauge and Palsberg 2018; Kini et al. 2017; Luo
and Demsky 2021; Mathur et al. 2018, 2020, 2021; Pavlogiannis 2019].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

https://doi.org/10.1145/3591251

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:3

G := 1;

~ := 1;

G := 2;

0 := ~;

G := 3;

1 := G ;

(a) Program

w(G)

w(~)

w(G)

r(~)

w(G)

r(G)

rf

rf

(b) RA-consistent execution.

w(G)

w(~)

w(G)

r(~)

w(G)

r(G)

rf

rfmo

(c) RA-consistent mo.

w(G)

w(~)

w(G)

r(~)

w(G)

r(G)

rf

rf

(d) RA-inconsistent execution.

Fig. 1. A program (a) and a partial execution X specifying the writer rf−1 (r) of each read r (b). X is RA-
consistent, as witnessed by the modification order mo that abides to RA semantics (c). The partial execution
in (d) is RA-inconsistent, as there is no modification order mo that abides to RA semantics.

The ubiquitous relevance of consistency checking has led to a systematic study of its computational
complexity under various memory models. Under sequential consistency (SC), most variants of
the problem were shown to be NP-hard in the seminal work of Gibbons and Korach [Gibbons
and Korach 1997]. Subsequently, more fine-grained investigations have characterized how input
parameters such as the number of threads, memory locations, write accesses and communication
topology affect the complexity of consistency checking [Abdulla et al. 2019; Agarwal et al. 2021;
Chini and Saivasan 2020; Mathur et al. 2020]. As the consistency problems remain intractable under
most common weak memory models (such as SPARC/X86-TSO, PSO, RMO, PRAM) [Furbach et al.
2015], parametric results have also been established for these models [Bui et al. 2021; Chini and
Saivasan 2020]. Given its applications in analysis of concurrent programs, clever heuristics have
been proposed to enhance the efficiency of checking consistency in practice [Zennou et al. 2019].

The C11 memory model provides the flexibility to derive different weak memory model paradigms
based on different subsets and combinations of the concurrency primitives, their memory orders, and
their respective semantics. For instance, the release and acquire memory orders allow programmers
to derive release-acquire (RA) as well as its weak (WRA) and strong (SRA) variants [Lahav and
Boker 2022]. The RA model is weaker than SC and provides a rigorous foundation in defining
synchronization and locking primitives [Lahav et al. 2016]. TheWRA and SRA are equivalent to
variants of causal consistency [Lahav and Boker 2022], a well studied consistency model in the
distributed systems literature. C11 also provides ‘relaxed’ memory access modes which constitutes
the weaker memory model fragment Relaxed. Relaxed memory accesses can reorder freely and are
the most performant compared to accesses with stronger memory orders. In our work, we focus on
the recently proposed declarative RC20 memory model [Margalit and Lahav 2021] capturing a rich
fragment of C11, consisting of release, acquire and relaxed memory accesses as well as memory
fence operations. This memory model is a natural fragment of the C11 model, given that “only a
few (practical) algorithms that actually employ SC accesses and become wrong when release/acquire

accesses are used instead” [Margalit and Lahav 2021]. Further, focusing on the non-SC fragment
allows us to reap the benefits of polynomial time consistency checking, which otherwise quickly
becomes intractable [Gibbons and Korach 1997].

The intricacies of C11 and the abundance of its variants give rise to a plethora of consistency-
checking instances. Some first results show that consistency checking for RA admits a polynomial
bound [Abdulla et al. 2018; Lahav and Vafeiadis 2015], a stark difference to SC for which this problem
is NP-hard and is not even well-parameterizable [Gibbons and Korach 1997; Mathur et al. 2020].
These positive results have facilitated efficient model checking and testing techniques [Abdulla
et al. 2018; Kokologiannakis et al. 2019; Luo and Demsky 2021]. However, beyond these recent
developments, little is known about the complexity of consistency checking for C11-style memories,
and, to our knowledge, the setting remains poorly understood. Our work fills this gap.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:4 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

Our contributions. In this paper we study the reads-from consistency checking for the RA, SRA,
WRA, Relaxed and RC20 memory models, with results that are optimal or nearly-optimal. In all

cases, the input is a partial execution X = ⟨E, po, rf⟩ with = = |E| events and : threads, where po and
rf are the program order and reads-from relation, respectively (see Section 2.1), and the task is to
determine if there is a modification ordermo such that the extension X = ⟨E, po, rf,mo⟩ is consistent
with the memory model in consideration. Fig. 1 illustrates an example for RA-consistency.

Our first result concerns RC20. Consistency checking is known to be in polynomial time [Abdulla
et al. 2018; Lahav and Vafeiadis 2015; Luo and Demsky 2021], though of degree 3 (i.e., $ (=3)). This
cubic complexity has been identified as a challenge for efficient model checking (e.g., [Kokologian-
nakis et al. 2022, 2019]). Here we show that the full RC20 model admits an algorithm that is nearly
linear-time; i.e., a bound that becomes linear when the number of threads is bounded.

Theorem 1.1. Consistency checking for RC20 can be solved in $ (= · :) time.

A key step towards Theorem 1.1 is our notion ofminimal coherence, which is a novel characterization
that serves as a witness of consistency. Our consistency-checking algorithm proves consistency
by constructing a minimally coherent (partial) modification order. Although similar witnesses
have been used in the past (e.g., the writes-before order [Lahav and Vafeiadis 2015], saturated
traces [Abdulla et al. 2018], or C11Tester’s framework [Luo and Demsky 2021]), the simplicity of
minimal coherence allows, for the first time to our knowledge, for a nearly linear-time algorithm.

Next we turn our attention to SRA. Perhaps surprisingly, although the model is conceptually close
to RA, it turns out that checking consistency for SRA is intractable.

Theorem 1.2. Consistency checking for SRA is NP-complete, andW[1]-hard in the parameter : .

HereW[1] is a parameterized complexity class [Chen et al. 2004]. This result states that, not only is
the problemNP-complete, but it is also unlikely to be fixed parameter tractable in : , i.e., solvable in
time$ (=2 · 5 (:)), where 2 > 0 and 5 are independent of =. Nevertheless, our next result shows that
this problem admits an upper bound that is polynomial when : = $ (1). Given theW[1]-hardness,
the next result is thus optimal, in the sense that : has to appear in the exponent of =.

Theorem 1.3. Consistency checking for SRA can be solved in $ (: · =:+1) time.

Taking a closer look into the model, we identify RMWs as the source of intractability. Indeed,
the RMW-free fragment of SRA admits a nearly linear bound, much like RC20. This fragment is
relevant, as it coincides with the causal convergence model [Bouajjani et al. 2017].

Theorem 1.4. Consistency checking for the RMW-free fragment of SRA can be solved in$ (= · :) time.

Next, we show that the problem can be solved just as efficiently for WRA.

Theorem 1.5. Consistency checking for WRA can be solved in $ (= · :) time.

Turning our attention to the Relaxed fragment of RC20, we show that the problem admits a truly
linear bound (i.e., regardless of the number of threads).

Theorem 1.6. Consistency checking for Relaxed can be solved in $ (=) time.

Finally, observe that, in contrast to Theorem 1.6, the bounds in Theorem 1.1, Theorem 1.4 and
Theorem 1.5 can become super-linear in the presence of many threads. It is thus tempting to search

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:5

for a truly linear-time algorithm for any of RA,WRA and (RMW-free) SRA. Unfortunately, our final
result shows that this is unlikely, in all models.

Theorem 1.7. There is no consistency-checking algorithm for the RMW-free fragments of any of RA,
WRA, and SRA that runs in time $ (=l/2−n), for any fixed n > 0. Moreover, there is no combinatorial

algorithm for the problem that runs in time $ (=3/2−n), under the combinatorial BMM hypothesis.

Here l is the matrix multiplication exponent, with currently l ≃ 2.37. Theorem 1.7 states that a
truly linear-time algorithm for any of these models would bring matrix multiplication in =2+> (1)

time, a major breakthrough. Focusing on combinatorial algorithms (i.e., excluding algebraic fast-
matrix multiplication, which appears natural in our setting), consistency checking for any of these
models requires at least =3/2 time unless (boolean) matrix multiplication (BMM) is improved below
the classic cubic bound (which is considered unlikely, aka the BMM hypothesis [Williams 2019]).

Due to space restrictions, we relegate all proofs to to our technical report [Tunç et al. 2023a].

Experiments. We have implemented our algorithms inside the TruSt model checker and the
C11Tester testing tool, and evaluated their performance on consistency checking for benchmarks
utilizing instructions in the RA model. Our results report consistent and often significant speedups
that reach 162× for TruSt and 104.2× for C11Tester.

Overall, our efficiency results enable practitioners to perform model checking and testing for RC20,
RMW-free SRA, WRA, and Relaxed more efficiently, and apply these techniques to larger systems.
On the other hand, our hardness result for SRA indicates that, akin to SC, performing consistency
checking for SRA efficiently requires developing practically oriented heuristics that work well in
the common cases. Finally, our super-linear lower bound for all models except Relaxed indicates
that further improvements over our $ (= · :) bounds will likely be highly non-trivial.

2 AXIOMATIC CONCURRENCY SEMANTICS

In this section we introduce the C/C++ concurrency semantics we consider in this work, along
with the RC20 model and its variants [Lahav and Boker 2022; Margalit and Lahav 2021].

Syntax. C/C++ defines a shared memory concurrency model using different kinds of concur-
rency primitives. In addition to plain (or non-atomic) load and store accesses, C/C++ provides
atomic accesses for load, store, atomic read-modify-write (RMW – such as atomic increment), and
fence operations. We only consider atomic accesses here. An atomic access is parameterized by a
memory mode, among relaxed (rlx), acquire (acq), release (rel), acquire-release (acq-rel), and
sequential-consistency (sc). The memory order for a read, write, RMW, and fence access is one
of {rlx, acq, sc}, {rlx, rel, sc}, {rlx, acq, rel, acq-rel, sc}, and {acq, rel, acq-rel, sc}, respec-
tively. These accesses result in different types of events during execution. In this paper we consider
the models which are based on non-SC primitives. Nevertheless, RC20 defines SC fences using the
release-acquire primitives [Lahav and Boker 2022]. The memory modes are partially ordered on
increasing strength of synchronization according to the lattice rlx ⊏ {acq, rel} ⊏ acq-rel. An
access is acquire (release) if its order is acq (rel), or stronger.

2.1 Executions

The axiomatic concurrency models are defined with respect to the executions they allow. Hence, a
program can be represented as a set of executions. In turn, an execution is defined by a set of events
that are generated from shared memory accesses or fences, and relations between these events.

Events.An event is a tuple ⟨id, tid, lab⟩ where id, tid, lab denote a unique identifier, thread identifier,
and label of the event. The label lab = ⟨op, ord, loc⟩ is a tuple where op denotes the corresponding

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:6 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

fr ≜ (rf−1;mo) \ [id]

sw ≜ [E⊒rel];([F]; po)?; rf+;(po; [F])?;[E⊒acq]
hb ≜ (po ∪ sw)+ hbloc ≜

⋃
G hbG

irr(mo; rf?; hb?) (Wcoh)

acy(hb ∪mo) (strong-Wcoh)

irr(fr; rf?; hb) (Rcoh)

irr(hbloc; [W ∪ RMW]; hb; rf−1) (weak-Rcoh)

irr(fr;mo) (atomicity)

∀D1,D2 ∈RMW, rf (D1)≠ rf (D2) (weak-atomicity)

acy(po ∪ rf) (PO-RF)

acy(po ∪ rf ∪mo ∪ fr) (SC)

(PO-RF) ∧ (Wcoh) ∧ (Rcoh) ∧ (atomicity) (RA)†

(PO-RF) ∧ (strong-Wcoh) ∧ (Rcoh) ∧ (atomicity) (SRA)

(PO-RF) ∧ (weak-Rcoh) ∧ (weak-atomicity) (WRA)

(PO-RF) ∧ (Wcoh) ∧ (Rcoh) ∧ (atomicity) (RC20)

(PO-RF) ∧ (Wcoh) ∧ (Rcoh) ∧ (atomicity) (Relaxed)†

† These are fragments of RC20.

Fig. 2. Relations, Axioms, and Consistency Models on C11 Concurrency.

memory access or fence operation and ord denotes the memory mode. For memory accesses, loc
denotes its memory location, while in the case of fences, we have loc =⊥. For the purpose of the
reads-from consistency problem we consider in this paper, we omit the values read or written in
memory access events. We write w(C, G)/r(C, G)/rmw(C, G) to denote a write/read/read-modify-write
event in thread C on location G , and simply write 4 (G) to denote an event for which the thread
is implied or not relevant. As a matter of convention, we omit mentioning the memory order
throughout the paper, as it will either be clear from the context or not relevant.

The set of read, write, atomic update, and fence events are R, W, RMW and F respectively, and are
generated from the executions of load, store, atomic load store, fence accesses respectively. As we
only deal with executions (as opposed to program source), we use RMW to denote a successful
read-modify-write operation. Failed read-modify-write operations simply result in read accesses.
We refine the set of events in various ways. For instance, E⊒rel denotes the set of events with
memory order that is at least as strong as rel. For a set of events E, we write E.;>2B , EG , and E.C83B
to denote the set of distinct locations accessed by events in E, the subset of events in E that access
memory location G , and the different threads participating in E.

Notation on relations. Consider a binary relation (over a set of events E. The reflexive, transitive,
reflexive-transitive closures, and inverse relations of (are denoted as (?, (+, (∗, (−1 respectively.
The relation (is acyclic if (+ is irreflexive. We write irr(() and acy(() to denote that relation (

irreflexive and acyclic respectively. Given two relations (1 and (2, we denote their composition
by (1; (2. [�] denotes the identity relation on a set �, i.e. [�] (G,~) ≜ G = ~ ∧ G ∈ �. For a given
memory location G , we let (G = [EG]; (; [EG] be the restriction of (to all events of E on G .

Candidate executions and relations.An execution (also referred to as candidate execution [Batty
et al. 2011] or execution graph [Lahav et al. 2017]) is a tuple X = ⟨E, po, rf,mo⟩ where X.E is a set
of events and X.po, X.rf, X.mo are binary relations over X.E. In particular, the program order po is
a partial order that enforces a total order on events of the same thread. The reads-from relation

rf ⊆ (W ∪ RMW) × (R ∪ RMW) associates write/RMW events 41 to read/RMW events 42 reading
from 41. Naturally, we require that 41.loc = 42 .loc, and that rf−1 is a function, i.e., every read/RMW
event has a unique writer. The modification order mo ⊆ (W ∪ RMW) × (W ∪ RMW) is the union
of modification orders moG , where each moG is a total order over (WG ∪ RMWG).

We frequently also use some derived relations (see Fig. 2). The from-read relation fr ⊆ (R∪RMW) ×
(W ∪ RMW) relates every read or RMW event to all the write or RMW events that are mo-after its
own writer. The synchronizes-with relation sw ⊆ E⊒rel × E⊒acq relates release and acquire events,
for instance, when an acquire read event reads from a release write. Fence instructions combined
with relaxed accesses also participate in sw. The happens-before relation hb is the transitive closure
of po and sw. We also project hb to individual locations, denoted as hbloc.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:7

w(G)

w(G)

w(~)

r(~)

w(~)

r(G)

po rf

fr

mo

rf

(a) SRA

w(~)

w(G)

r(G)

w(G)

w(~)

r(~)

rfrf

momo

(b) RA

w(G)

r(G)

w(G)

r(G)

rfrf

(c) WRA

w(G)

w(G)

w(~)

r(~)

r(G)

rf

rf
fr

(d) Relaxed

Fig. 3. Executions consistent in various memory models. mo edges that go along (po ∪ rf) are not shown.

2.2 Consistency Axioms

Consistency axioms characterize different aspects or constraints of a memory model. We broadly
classify these constraints as coherence, atomicity, global ordering, and causality cycles. Different
interpretations of these constraints give rise to different consistency models as shown in Fig. 2.

Coherence. In an execution, coherence enforces ‘SC-per-location’: thememory accesses permemory
locations are totally ordered. Write-coherence enforces that mo agrees with hb. A stronger variant
is strong-write-coherence, which requires that this condition holds transitively. Read coherence

enforces that a read r(G) cannot read from a write w(G) if there is an intermediate write w
′ (G)

that happens-before r(G), i.e. hb(w′ (G), r(G)) holds. In the vanilla read-coherence, the notion of
‘intermediate’ relates to mo, i.e., we have (w(G), w′ (G)) ∈ mo, while in weak-read-coherence [Lahav
and Boker 2022], ‘intermediate’ relates to hb, i.e., we have (w(G), w′ (G)) ∈ hb.

Atomicity. The property ensures that (successful) RMW accesses indeed update the memory
locations atomically. Following [Lahav and Boker 2022], we consider two variants. Atomicity

ensures that no intermediate write event on the same location takes place between an RMW and
its writer. Weak-atomicity simply prohibits two RMW events to have the same writer.

Causality cycles. A causality cycle arises in the presence of primitives that have weaker behaviors
than release-acquire accesses. Such a cycle consists of po and rf orderings and may result in ‘out-of-
thin-air’ behavior in certain programs. To avoid such ‘out-of-thin-air’ behavior, many consistency
models explicitly disallow such cycles [Lahav and Boker 2022; Luo and Demsky 2021]. In the
absence of rlx accesses, the PO-RF axiom coincides with the requirement for hb acyclicity.

2.3 Axiomatic Consistency Models and Consistency Checking

We can now present the memory models we consider in this work. See Fig. 2 for a summary.

Sequential consistency. Sequential consistency (SC) enforces a global order on all memory
accesses. This is a stronger constraint than coherence, which orders same-location memory accesses.
In addition, SC also guarantees atomicity.

Release-Acquire and variants. The release-acquire (RA) memory model is weaker than SC, and is
arguably themost well-understood fragment of C11. At the same time,RA enables high-performance
implementations of fundamental concurrency algorithms [Desnoyers et al. 2011; Lahav et al. 2016].
Broadly, under the release-acquire semantics (including other related variants), each read-from
ordering establishes a synchronization. In this case hb reduces to hb ≜ (po∪ rf)+. Following [Lahav
and Boker 2022], we consider three variants of release-acquire models: RA, strong RA (SRA), and
weak RA (WRA). These models coincide with standard variants of causal consistency [Bouajjani
et al. 2017; Burckhardt 2014; Lloyd et al. 2011], which is a ubiquitous consistency model relevant
also in other domains such as distributed systems.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:8 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

SRA enforces a stronger coherence guarantee (namely strong-write-coherence) on write accesses
compared to RA.WRA does not place any restrictions on the mo ordering between same-location
writes. Instead, the only orderings considered between same-location writes are through the
[W]; hbloc; [W] relation. Thus, WRA provides weaker constraints for coherence and atomicity.

RC20. The recently introduced RC20 model [Margalit and Lahav 2021] defines a rich fragment
of the C11 model consisting of acquire/release and relaxed accesses. Despite the absence of SC
accesses, RC20 can express many practical synchronization algorithms, and can simulate SC fences.

Relaxed. Finally, the relaxed fragment of RC20 contains only rlx accesses, resulting in hb = po.

Comparison between memory models. The above models can be partially ordered according
to the behaviors (executions) they allow as SC ≼ SRA ≼ RA ≼ {WRA, {RC20 ≼ Relaxed}}, with
models towards the right allowing more behaviors. All models are weaker than SC. Relaxed is
weaker than RA but incomparable withWRA. In particular, the lack of synchronization across rf
in Relaxed makes hb weaker in Relaxed compared to WRA. On the other hand, WRA allows extra
behaviors over Relaxed because it does not enforce write-coherence. Finally, RC20 can be viewed as
a combination of RA and Relaxed, where fences may add synchronization between relaxed accesses.
See Fig. 3 for an illustration.

Extensions of the models with non-atomics. For ease of presentation, we do not explicitly
handle non-atomic accesses. The above memory models can be straightforwardly extended to
include non-atomics with “catch-fire” semantics, similarly to previous works [Lahav and Boker 2022].
Intuitively, non-atomic accesses on any given location must always be hb-ordered, as otherwise
this implies a data race, leading to undefined behavior [ISO/IEC 14882 2011; ISO/IEC 9899 2011].

The reads-from consistency problem. An execution X = ⟨E, po, rf,mo⟩ is consistent in a memory

modelM, written X |=M, if it satisfies the axioms of the model. A partial execution X = ⟨E, po, rf⟩

is an abstraction of executions without the modification order. We call X consistent inM, written
similarly as X |= M, if there exists an mo such that X |= M, where X = ⟨E, po, rf,mo⟩. Thus the
problem of reads-from consistency checking (or simply consistency checking, from now on) is to

find an mo that turns X consistent∗.

3 AUXILIARY FUNCTIONS, DATA STRUCTURES AND OBSERVATIONS

Our consistency checking algorithms rely on some common notation and computations. To avoid
repetition, we present these here as auxiliary functions, while we refer to Fig. 4 for examples.

Happens-before computation. One common component in most of our algorithms is the compu-
tation of the hb-timestamp HB4 : E.C83B → N≥0 of each event 4 , declaratively defined as

HB4 (C) = |{5 | 5 .tid = C ∧ (5 , 4) ∈ hb?}|

That is, HB4 (C) points to the last event of thread C that is hb-ordered before (and including) 4 . The
computation of all HB4 can be computed by a relatively straightforward algorithm (see e.g., [Luo
and Demsky 2021]). We will thus take the following proposition for granted in this work.

Proposition 3.1. The happens-before relation can be computed in $ (= · :) time.

∗Except for WRA, the axioms of which do not involve mo.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:9

C1 C2 C3 C4

41 : w(G)

42 : r(G)

43 : w
rel (~)

46 : r
acq (~)

47 : r(G)

44 : RMWrlx (~)

45 : RMWrlx (~)po

rf

rf

rf

HB47 (C1) = 3, HB47 (C4) = 2

HB47 (C2) = HB47 (C3) = 0

lastWriteBefore(C1, G, 2) = 41

lastWriteBefore(C2, G, 1) = ⊥

lastWriteBefore(C2, ~, 1) = 44

lastReadBefore(C1, G, 2) = 42

TC[44] = TC[45] = 43

PC[43] = 0, PC[44] = 1, PC[45] = 2

Fig. 4. Example of a partial execution (le�) and its auxiliary functions (right).

Last write and last read. Given a thread C , location G , and index 2 ∈ N≥0, we define

lastWriteBefore(C, G, 2) =





4
if 4 is the last event such that, 4 ∈ WG ∪ RMWG ,

4 .tid = C and |{6 | (6, 4) ∈ po?}| ≤ 2

⊥ if no such event exists

lastReadBefore(C, G, 2) =





4
if 4 is the last event such that, 4 ∈ RG ∪ RMWG ,

4 .tid = C and |{6 | (6, 4) ∈ po?}| ≤ 2

⊥ if no such event exists

In words, lastWriteBefore(C, G, 2) returns the latest po-predecessor w(C, G) or rmw(C, G) of the 2-th
event of thread C (similarly for lastReadBefore(C, G, 2)). When our consistency algorithms process
a read/RMW event 4 (D, G), they query for lastWriteBefore(C, G, 2) and lastReadBefore(C, G, 2) on
each thread C , where 2 = HB4 (C). We call D the observer thread. Our efficient handling of such
queries is based on the insight that, along subsequent queries from the same observer thread, 2 is
monotonically increasing (HB timestamps are monotonic along po-ordered events). We develop
a simple data structure for handling such queries as follows. For each thread C , memory location
G , and observer thread D, we maintain lists WList

D
C,G and RList

D
C,G , each containing the sequence

of write/RMW events and read/RMW events performed by C on G , together with their thread-
local indices. The parameterization by D ensures that D observes its own local version of this list.
Answering a query lastWriteBefore(C, G, 2) consists of iterating over WList

D
C,G until the correct

event is identified. Subsequent queries continue the iteration from the last returned position. The
total cost of traversing all these lists is $ (= · :) (each event appears in : lists, one per observer
thread). In pseudocode descriptions, we will callWList

D
C,G

•get(c) (resp., RList
D
C,G

•get(c)) to access
the event 4 = lastWriteBefore(C, G, 2) (resp., 4 = lastReadBefore(C, G, 2)). This implementation of
lastWriteBefore and lastReadBefore is novel compared to prior works (e.g., [Luo and Demsky
2021]), and crucial for obtaining the linear-time bounds developed in our work.

Top of, and position in rf-chain. All memory models we consider satisfy weak-atomicity (atom-
icity implies weak atomicity), i.e., no two RMW events can have the same writer. This implies that
all write and RMW events are arranged in disjoint rf-chains, where a chain is a maximal sequence
of events 40, 41, . . . , 4ℓ (ℓ ≥ 0), such that (i) 40 ∈ W and 41, . . . , 4ℓ ∈ RMW, and (ii) rf−1 (48) = 48−1 for
each 8 ≥ 1. In words, we have a chain of events connected by rf, starting with the top write event
40, and (optionally) continuing with a maximal sequence of RMW events that read from this chain.
Given an event 4 ∈ (W ∪ RMW), we often refer to the rf-chain that contains 4 . Specifically, the top
of the chain TC[4] is the unique event 5 such that (5 , 4) ∈ rf∗ and 5 .op = w. The position PC[4] of
4 in its rf-chain is |{5 | (5 , 4) ∈ rf+}|. Both TC and PC can be computed in $ (=) time for all events.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:10 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

Algorithm 1: Checking Consistency for WRA.

Input: A partial execution X = (E, po, rf)

1 if (po ∪ rf) is cyclic or rf violates weak-atomicity then declare ‘Inconsistent’

2 let HB be an E-indexed array storing the hb-timestamps of events

3 let {WList
D
C,G }C,G,D be data structures implementing lastWriteBefore(·, ·, ·)

4 foreach 4 ∈ E in po-order do
5 case 4 = r(C, G) or 4 = rmw(C, G) do

6 letF = rf−1 (4), C ′ = F.tid and 2 = HB[F] [C ′]

7 foreach D ∈ E.C83B do
8 let 2D = if (4.op = rmw ∧ D = C) then HB[4] [D] − 1 else HB[4] [D]

9 letFD= WList
D
C,G

• get(2D)

10 if (HB[FD] [C
′] ≥ 2) ∧ ((D = C ′)⇒HB[FD] [C

′] > 2) then declare ‘Inconsistent’

11 declare ‘Consistent’

TC[w] rmw w r

w
′

(w′, w) ∉ rf+

rf rf∗ rf

rf
? ; hbmo

Fig. 5. An mo ordering implied by read-
coherence, write-coherence and atomicity.

Conflicting triplets. A conflicting triplet (or just triplet,
for short) is a triplet of distinct events (41, 42, 43) such that
(i) all events access the same location G , (ii) 41, 43 ∈ (WG ∪

RMWG) and 42 ∈ (RG ∪ RMWG), and (iii) rf−1 (42) = 41.

Finally, we state a simple lemma that is instrumental
throughout the paper. This lemma identifies certain mo
orderings implied by the basic axioms of read-coherence,
write-coherence and atomicity, and thus applies to all mod-
els except WRA. Fig. 5 provides an illustration.

Lemma 3.2. Let X = ⟨E, po, rf,mo⟩ be an execution that satisfies read-coherence, write-coherence and

atomicity. Let (w, r, w′) be a triplet. If (w′, r) ∈ rf?; hb and (w′, w) ∉ rf+, then (w′,TC[w]) ∈ mo.

4 CONSISTENCY CHECKING

This section presents the main results of the paper, as outlined in Section 1. We start with an
algorithm for checking consistency underWRA in Section 4.1. For SRA, we show in Section 4.2 that
the problem is NP-complete in general, but has a polynomial time algorithm for the RMW-free
programs as shown in Section 4.3. Section 4.4 and Section 4.5 show that consistency checking is
polynomial time for RC20 and linear-time for Relaxed along with the respective algorithms. Finally,
we study the lower bound of consistency checking for RMW-free RA,WRA, and SRA in Section 4.6.

4.1 Consistency Checking for WRA

We start with the WRA model, which is conceptually simpler as there is no mo involved in the
consistency axioms. Algorithm 1 checks for consistency in $ (= · :), towards Theorem 1.5.

Given a partial execution X = (E, po, rf), the algorithm first verifies that there are no (po ∪ rf)-
cycles and every write/RMW event is read by at most one RMW event (Line 1). Afterwards, the
algorithm streams the events of E in an order consistent with po and verifies weak-read-coherence,
i.e., there is no triplet (w, r, w′) such that {(w, w′), (w′, r)} ⊆ hb. In order to check this in linear
time, the algorithm first computes the array of hb-timestamps (Line 2) and the last write events
lastWriteBefore(C, G, 2) for each thread C , location G and index 2 (Line 3), as defined in Section 3.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:11

In order to check that weak-read-coherence is not violated, at a read/RMW event 4 with 4.tid = C

and 4.loc = G , Algorithm 1 checks if there is an event 4′ ∈ WG ∪ RMWG such that 4′ is hb-
sandwiched between rf−1 (4) and 4 . Since po ⊆ hb, it suffices to check if for any thread D, the event
lastWriteBefore(D, G,HB4 [D]) can play the role of 4′ above (Line 10).

The total running time on an input partial execution Xwith = events and : threads can be computed
as follows. The initialization of HB and the lists {WList

D
C,G }C,G,D , and the total cost of all calls to

WList
D
C,G

• get(2D) takes $ (= · :) time (Section 3). Afterwards, the algorithm spends $ (:) time at
each event. This gives a total running time of $ (= · :). We thus have the following theorem.

Theorem 1.5. Consistency checking for WRA can be solved in $ (= · :) time.

4.2 Consistency Checking for SRA

We now turn our attention to SRA, and prove the bounds of Theorem 1.2 and Theorem 1.3.

The hardness of consistency checking for SRA. First, note that consistency checking is a

problem inNP. Indeed, given a partial execution X = (E, po, rf), one can guess a candidatemo and
verify that X |= SRA, where X = (E, po, rf,mo) is a complete execution, by checking against the
axioms of SRA. Each axiom can be verified in polynomial time, giving us membership inNP. Now
we turn our attention toW[1]-hardness (which will also imply NP-hardness). Our reduction is
from the consistency problem for SC, which is known to be NP-hard [Gibbons and Korach 1997]
and more recently shown to beW[1]-hard [Mathur et al. 2020]. We obtain hardness in two steps.

First, we observe that the consistency problem for SC isW[1]-hard even over instances in which
every write event is observed at most once. This can be obtained from the proof ofW[1]-hardness
in [Mathur et al. 2020]. Towards ourW[1]-hardness proof for SRA, we can substitute in such
instances every read access by an RMW access without affecting the SC consistency of the execution.
Intuitively, as any write observed by a read does not have any other readers, the write of the
substituting RMW has no effect. Formally, we have the following lemma.

Lemma 4.1. Consistency checking for SC with only write and RMW events isW[1]-hard in the

parameter : .

Given Lemma 4.1, we can now prove Theorem 1.2. The key observation is that the strong-write-
coherence of SRA implies a total order on all write/RMW events. Thus, over instances where every
event is either a write or an RMW, strong-write-coherence yields a total order on all events, which,
in turn, implies an SC-consistent execution. We arrive at the following theorem.

Theorem 1.2. Consistency checking for SRA is NP-complete, andW[1]-hard in the parameter : .

A parameterized upper bound. We now turn our attention to Theorem 1.3, i.e., we solve consis-
tency checking for SRA in time$ (: ·=:+1). Recall that our goal is to construct anmo that witnesses

the consistency of X = (E, po, rf). One natural approach is to enumerate all possible mo’s and
check whether any of them leads to a consistent X. However, this leads to an exponential algorithm
regardless of the number of threads (there are exponentially many possible mo’s even with two
threads) which is beyond the bound of Theorem 1.3. We instead follow a different approach.

Algorithm. Given the poset (E, hb), a set . ⊆ E is said to be downward-closed if for all 41 ∈ ., 42 ∈ E,
if (42, 41) ∈ hb then 42 ∈ . . We define a (directed) downward graph GX induced by (E, hb), and

show that the question of X |= SRA reduces to checking reachability in GX. The node set of GX
consists of all downward closed subsets (of E, with ∅ being the root node and E being the terminal

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:12 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

node. Given a node (in GX, we insert edges (→ (′ where (′ is obtained by extending (with an
event which is executable in (. An event 4 executable in (if the following conditions hold.

(1) All events 4′ such that (4′, 4) ∈ hb are in (.
(2) If 4 ∈ (W∪RMW) is a write/RMW event, then it must also be enabled. We say that a write/RMW

event w is enabled if the following hold.
(a) For every triplet (w, r, w′), if (w′, r) ∈ hb, then w

′ ∈ (. Intuitively, executing w while w′ ∉ (

represents a guess that (w, w′) ∈ mo, which would violate read-coherence as (w′, r) ∈ hb.
(b) For every RMW event rmw and triplet (w′, rmw, w), if rmw ∉ (then w

′
∉ (. Intuitively, executing

wwhile rmw ∉ (but w′ = rf−1 (rmw) ∈ (represents a guess that (w′, w) ∈ mo and (w, rmw) ∈ mo,
which would violate atomicity as it would imply (rmw, w) ∈ fr and thus (rmw, rmw) ∈ fr;mo.

C1 C2 C3 C4 C5

r(G)

w1 (~)

r1 (~)

r2 (~)

w(G)

w2 (~)

rmw1 (I)

w(I) rmw2 (I)

rf

rf
rf

hb

rf

Fig. 6. Enabledness and executability of a set (,
marked in gray. Only r(G) and rmw2 (I) are exe-
cutable events. w1 (~) is not executable as r(G) ∉ (.
r1 (~) is not executable as w1 (~) ∉ (. w2 (~) is not
enabled as (w1 (~), r2 (~)) ∈ hb but w1 (~) ∉ (.
w(I) is not enabled as rmw2 (I) ∉ (.

Fig. 6 illustrates the above notions. Conceptually,
every path from the root ∅ to a node (in GX rep-
resents an mo on the write/RMW events of (. Al-
though there can be exponentially many such paths,
the node (“forgets” their corresponding mo’s. In-
stead, (represents a partial mo, which orders every
write/RMW event on a location G of (before every
write/RMW event on G outside (. The algorithm ter-

minates and returns that X |= SRA iff the node E is
reachable from the root node ∅ in GX. Observe that

GX contains $ (=:) nodes, while each node has ≤ :

successors. Deciding whether a node has a transi-
tion to another node can be easily done in$ (=) time.
Hence, the total time of the algorithm is $ (: · =:+1). We thus arrive at the following theorem.

Theorem 1.3. Consistency checking for SRA can be solved in $ (: · =:+1) time.

4.3 Consistency Checking for the RMW-Free Fragment of SRA

On close inspection, RMW events played a central role in the NP-hardness of Theorem 1.2.
A natural question thus arises: does the hardness persist in the absence of RMWs? Here we
show that the RMW-free fragment of SRA can be handled efficiently (Theorem 1.4). Observe that
Lemma 3.2 applies to SRA, as strong-write-coherence implies write-coherence. However, the lemma
admits a simplification under RMW-free SRA. In particular, as X does not contain rlx accesses,
(w′, r) ∈ rf?; hb reduces to (w′, r) ∈ hb. Moreover, as X is RMW-free, we have TC[w] = w, and hence
(w′, w) ∈ mo. Thus, Lemma 3.2 reduces to the following corollary.

Corollary 4.2. Consider any execution X = ⟨E, po, rf,mo⟩ that satisfies read-coherence and strong-
write-coherence. Consider any triplet (w, r, w′). If (w′, r) ∈ hb then (w′, w) ∈ mo.

Minimal coherence under SRA. Corollary 4.2 identifies necessary orderings in any modification

order that witnesses the consistency of X. Towards an algorithm, we must also determine if there
are non-trivial conditions sufficient to conclude consistency. We answer this in the positive, by
capturing these conditions in the notion of minimal coherence. Consider a partial modification

order mo =
⋃

G moG , where each moG is a partial order. We call mo minimally coherent for X under

SRA if the following conditions hold.

(1) For every triplet (w, r, w′) with (w′, r) ∈ hb, we have (w′, w) ∈ (hb ∪mo)+.
(2) (hb ∪mo) is acyclic.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:13

Algorithm 2: Checking consistency for the RMW-free fragment of SRA.

Input: Events E, program order po and reads-from relation rf

1 if (po ∪ rf) is cyclic then declare ‘Inconsistent’

2 let HB be an E-indexed array storing the hb-timestamps of events

3 let {WList
D
C,G }C,G,D be data structures implementing lastWriteBefore(·, ·, ·)

4 foreach G ∈ E.;>2B do moG ← ∅

5 foreach 4 ∈ E in po-order do
6 case 4 = r(C, G) do

7 let wrf = rf−1 (4)

8 foreach D ∈ E.C83B do
9 let wD = WList

C
D,G

• get(HB[4] [D])

10 if wD ≠ wrf then moG ← moG ∪ {(wD, wrf)}

11 if (hb ∪
⋃

G∈E.;>2B moG) is cyclic then declare ‘Inconsistent’

12 else declare ‘Consistent’

r1

w1

r2

w2

w3

w4

w5

w6

popo po

rf

rf
mo mo

Fig. 7. A minimally coherent mo under SRA.
All events access the same location.

Fig. 7 illustrates the notion of minimal coherence under
SRA. Observe that any mo witnessing the consistency of

X satisfies these conditions. In the following, we show
that minimally coherent modification orders are also suf-
ficient for witnessing consistency. We note that for RMW-
free executions, minimal coherence coincides with the
previous notions of coherence that witnesses consistency
under RA [Abdulla et al. 2018; Lahav and Vafeiadis 2015;
Luo and Demsky 2021]. However, these notions also handle RMWs, and are not directly applicable
in SRA, as the problem of consistency checking is NP-hard for SRA with RMWs (Theorem 1.2).

Lemma 4.3. Consider any RMW-free, partial execution X = (E, po, rf). If there exists partial modifica-

tion order mo that is minimally coherent for X under SRA, then X |= SRA.

Algorithm. Corollary 4.2 and Lemma 4.3 suggest a polynomial-time algorithm for deciding the

SRA consistency of an RMW-free, partial execution X = (E, po, rf). Similarly toWRA, we first verify
that (po ∪ rf) is acyclic. Then, we construct a partial modification order mo by identifying all
conflicting triplets (w, r, w′) such that (w′, r) ∈ hb, and inserting an ordering (w′, w) ∈ mo. Finally,

we report that X |= SRA iff (hb ∪mo) is acyclic.

Although this process runs in polynomial time, it is still far from the nearly linear bound we aim
for (Theorem 1.4). The key extra step towards this bound comes from a closer look at minimal
coherence: based on Item (1), it suffices to only consider conflicting triplets (w, r, w′) in which w′ is po-
maximal among all write events w′′ forming a conflicting triplet (w, r, w′′) such that (w′′, r) ∈ hb. For
each thread C , we thus only need to identify the po-maximal write w′ in the scheme outlined above.
This concept is illustrated in Fig. 7. Consider the triplets (w3, r2, w4), (w3, r2, w5), and (w3, r2, w6).
Only the first two satisfy the above definition (since (w4, r2), (w5, r2) ∈ hb but (w6, r2) ∉ hb). In this
case, only identifying the event w5 is sufficient as it is the po-maximal write among w4 and w5.

This insight is precisely formulated in Algorithm 2. The algorithm uses the auxiliary functions
from Section 3 to compute the HB-timestamp of each event. Also recall that, for threads C and D and
location G , WList

D
C,G denotes (thread D’s copy of) the po-ordered list of write accesses performed by

C on location G . It then processes events in X in an order consistent with po and builds a partial

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:14 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

modification ordermo. When processing a read event r, the algorithm identifies for every thread D,
the po-maximal write w′ of D that forms a conflicting triplet (w, r, w′) with (w′, r) ∈ hb (Line 9), and
inserts (w′, w) ∈ mo (Line 10). Finally, it checks whether mo violates strong-write-coherence.

Correctness and complexity. The completeness follows directly from Corollary 4.2: every or-
dering inserted in moG is present in any modification order mo that witnesses the consistency

of X, while the acyclicity check in Line 11 is necessary for strong-write-coherence. Hence, if the

algorithm returns “Inconsistent”, we have X ̸ |= SRA. The soundness comes from the fact that mo
satisfies Item (1) of minimal coherence at the end of the loop of Line 5, while if the acyclicity check

in Line 11 passes, mo also satisfies Item (2) of minimal coherence. Thus, by Lemma 4.3, X |= SRA.

The time spent in computing HB and initializing and accessing the lists WList
D
C,G is $ (= · :)

(Section 3). The number of orderings added inmo is$ (= · :), taking$ (= · :) total time. Finally, the
check in Line 11 is$ (= ·:) time as it corresponds to detecting a cycle on a graph with |E| = = nodes
and ≤ = · (: + 1) edges. This gives a total running time of $ (= · :). We thus arrive at Theorem 1.4.

Theorem 1.4. Consistency checking for the RMW-free fragment of SRA can be solved in$ (= · :) time.

4.4 Consistency Checking for RC20

We now turn our attention to the full RC20 memory model, which comprises a mixture of rel, acq
and rlx memory accesses. Similarly to the RMW-free SRA, we obtain a nearly linear bound (Theo-
rem 1.1). Note, however, that here we also allow RMW events. As RC20 satisfies read-coherence,
write-coherence and atomicity, Lemma 3.2 applies also in this setting. However, our earlier notion
of minimal coherence under SRA is no longer applicable as is — Lemma 4.3 does not hold for RC20.
Fortunately, we show this model enjoys a similar notion of coherence minimality.

Minimal coherence under RC20. Consider a partial modification order mo =
⋃

G moG . We call

mo minimally coherent for X under RC20 if the following conditions hold.

(1) For every triplet (w, r, w′) accessing location G , if (w′, r) ∈ rf?; hb and (w′, w) ∉ rf+, then
(w′,TC[w]) ∈ (rfG ∪ hbG ∪moG)

+.
(2) For every two write/RMW events w1, w2 accessing location G , if (w1, w2) ∉ rf+ and (w1, w2) ∈ moG ,

then (w1,TC[w2]) ∈ moG .
(3) (rfG ∪ hbG ∪moG) is acyclic, for each G ∈ E.;>2B .

Fig. 8 illustrates the above definition. Observe that anymo witnessing the consistency of X satisfies
minimal coherence. As before, minimal coherence is also a sufficient witness of consistency.

Lemma 4.4. Consider any partial execution X = (E, po, rf). If there exists partial modification order

mo that is minimally coherent for X under RC20, then X |= RC20.

w1

rmw1

rmw2

r1

r2

rmw3

rmw4

w2

w3

r3

po po

rf

rf
rf

rf

rf
rfrf

mo

momo

Fig. 8. A minimally coherent mo under
RC20. All events access the same location.

Our algorithm for consistency checking in RC20 relies
on Lemma 4.4 to construct a minimally-coherent partial

modification order that witnesses the consistency of X.
In particular, the algorithm employs the simple inference
rule ofmo edges illustrated earlier in Fig. 5, and is a direct
application of Item (1) of minimal coherence. At a glance,
it might come as a surprise that such a simple rule suffices
to deduce consistency. Indeed, analogous relations have
been used in the past as consistency witnesses (e.g., the writes-before order [Lahav and Vafeiadis
2015], saturated traces [Abdulla et al. 2018], or C11Tester’s framework [Luo and Demsky 2021]).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:15

Algorithm 3: Checking consistency for RC20.

Input: Events E, program order po and reads-from relation rf

1 if (po ∪ rf) is cyclic or rf violates weak-atomicity then declare ‘Inconsistent’

2 let HB be an E-indexed array storing the hb-timestamps of events

3 let {WList
D
C,G }C,G,D and {RList

D
C,G }C,G,D be data structures implementing lastWriteBefore()

and lastReadBefore()

4 let TC and PC be E-indexed arrays denoting the top and position of events in their rf-chains

5 foreach G ∈ E.;>2B do moG ← ∅;

6 foreach 4 ∈ E in po-order do
7 case 4 = r(C, G) or 4 = rmw(C, G) do

8 let wrf = rf−1 (4)

9 foreach D ∈ E.C83B do
10 let 2D = if (4.op = rmw ∧ D = C) then HB[4] [D] − 1 else HB[4] [D]

11 let wwD = WList
C
D,G

• get(2D) and let wrD = rf−1 (RList
C
D,G

• get(2D))

12 for wD ∈ {w
w

D, w
r

D} do

13 if (TC[wrf] ≠ TC[wD]) or (PC[wrf] < PC[wD]) then

14 moG ← moG ∪ {(wD,TC[wrf])}

15 foreach G ∈ E.;>2B do
16 if (rfG ∪ hbG ∪moG) is cyclic then declare ‘Inconsistent’

17 declare ‘Consistent’

However, these witness relations are stronger than minimal coherence, while the algorithms for
computing them (and thus checking consistency) have a higher polynomial complexity $ (=3) (or
$ (=2 · :)) compared to our nearly linear bound.

On a more technical level, not every total extension of (rfG ∪ hbG ∪moG) qualifies as the complete
moG that witnesses consistency; in particular, some extensions might violate atomicity. This is also
the case in prior witness relations [Abdulla et al. 2018; Lahav and Vafeiadis 2015; Luo and Demsky
2021]. However, a key difference between prior work and minimal coherence is the following. In
prior witness relations, the events of an rf-chain are either totally ordered or unordered with respect
to any event outside this chain. In contrast, minimal coherence allows only some events of the
rf-chain being ordered with outside events. For example, in Fig. 8 observe that (rmw1, w2) ∈ mo. This
implies that, due to atomicity, the pair (rmw2, w2) must be ordered in any valid total extension ofmo.
However, minimal coherence does not force (rmw2, w2) inmo. Nevertheless, our proof of Lemma 4.4
shows that, as long as moG is minimally coherent, there always exists an extension mo′G ⊇ moG
that can serve as the witnessing modification order, in the spirit of the prior notions of witness
relations. In Fig. 8, for example, this extension would be mo′G = moG ∪ (rmw2, w3).

Algorithm. The insights made above are turned into a consistency checking procedure in Al-
gorithm 3. This algorithm first verifies the absence of (po ∪ rf) cycles (which also implies that
hb ⊆ (po ∪ rf)+ is irreflexive), and that rf follows weak-atomicity (Line 1). Then, it computes
auxiliary data discussed in Section 3 (Lines 2-4). The main computation is performed in Lines 6-14,
where the algorithm constructs a minimally coherent partial modification order moG for each loca-
tion G . The algorithm iterates over all read/RMW events 4 accessing some location G , and identifies
wrf = rf−1 (4). Then, it iterates over all threads D and identifies the po-maximal write/RMW event wD
such that either (w′, 4) ∈ hb (in which case w′ is the event wwD in Line 11) or (w′, 4) ∈ rf; hb (in which
case w′ is the event wrD in Line 11). It then checks whether (wD, wrf) ∉ rf+, by checking that either
wD and wrf belong to different rf-chains (‘(TC[wrf] ≠ TC[wD])’), or wrf appears earlier than wD in

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:16 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

w1 (G)

rmw1 (G)

rmw2 (G)

w2 (G) w3 (G)

w4 (~)

r1 (~)

r2 (G)

r3 (G)

po po
rf

rf
rf

rf

rf

mo

mo

mo

(a) All accesses are rel/acq.

w1 (G)

rmw1 (G)

rmw2 (G)

w2 (G) w3 (G)

w4 (~)

r1 (~)

r2 (G)

r3 (G)

po po
rf

rf
rf

rf

rf

mo

(b) All accesses are rlx.

Fig. 9. A minimally coherent mo computed by Algorithm 3 (a) and Algorithm 4 (b).

the common rf-chain (‘(PC[wrf] < PC[wD])’); see Line 13. If so, the algorithm inserts an ordering
(wD,TC[wrf]) in moG (Line 14). Finally, Line 16 verifies that moG satisfies write-coherence. Fig. 9a
displays the resulting mo computed by Algorithm 3 on a partial execution.

Correctness and complexity. Completeness follows from Lemma 3.2: every ordering inserted in

moG is present in any modification ordermo that witnesses the consistency of X, while the acyclicity
check in Line 16 is necessary for write-coherence. Hence, if the algorithm returns “Inconsistent”,

X ̸ |= RC20. The soundness comes from the fact that mo satisfies Item (1) of minimal coherence at
the end of the loop of Line 6. Since all orderings inserted inmo are to the top of an rf-chain, Item (2)
of minimal coherence is trivially satisfied at all times. Finally, if the acyclicity check in Line 16

passes, mo also satisfies Item (3) of minimal coherence. Thus, by Lemma 4.4, we have X |= RC20.

The time spent in computingHB, (TC,PC) and accessing the lists {WList
D
C,G }C,G,D and {RList

D
C,G }C,G,D

is$ (= ·:) (Section 3). The number of orderings added inmo is$ (= ·:), taking$ (= ·:) total time. For
each location G ∈ E.;>2B , the acyclicity check in Line 16 can be performed in $ (=G · :) time, where
=G = |WG ∪ RMWG |. For this, we construct a graph �G that consists of all events (WG ∪ RMWG)

and $ (=G · :) edges. Given two events 41 = (C1, G), 42 = (C2, G) we have an edge 41 → 42 in �G iff
(41, 42) ∈ (rf ∪moG) or 41 = lastWriteBefore(C1, G,HB[42] [C1] − 1). We then check for a cycle in
�G . Repeating this for all locations G , we obtain $ (= · :) total time. We thus arrive at Theorem 1.1.

Theorem 1.1. Consistency checking for RC20 can be solved in $ (= · :) time.

4.5 Consistency Checking for Relaxed

We now turn our attention to the Relaxed fragment. As a strict subset of RC20 (where hb = po),
consistency checking for this model can be performed in $ (= · :) time by Theorem 1.1. Although
this bound is nearly linear time, here we show that the Relaxed fragment enjoys a truly linear time
consistency checking, independent of : (Theorem 1.6). This improvement is based on two insights.

As rf edges do not induce any synchronization in this fragment, our first insight is that the input

partial execution X = (E, po, rf) can be partitioned into separate executions XG = (EG , poG , rfG), one

for each location G ∈ E.;>2B . Indeed, we have X |= Relaxed iff acy(po ∪ rf) and XG |= Relaxed for

each G ∈ E.;>2B . Thus, without loss of generality, we may assume that X consists of a single location.
Our second insight comes from the simplified formulation of minimal coherence under Relaxed.

Minimal coherence under Relaxed. Let us revisit the concept of minimal coherence under RC20.
Focusing on the Relaxed fragment, we have hb = po. Thus, the first and third conditions of minimal
coherence are reduced to the following.

(1′) For every triplet (w, r, w′) accessing location G , if (w′, r) ∈ rf?; po and (w′, w) ∉ rf+, we have
(w′,TC[w]) ∈ (rfG ∪ poG ∪moG)

+.
(3′) (rfG ∪ poG ∪moG) is acyclic, for each G ∈ E.;>2B .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:17

Algorithm 4: Checking consistency for Relaxed.

Input: Events E, program order po and reads-from relation rf

1 if (po ∪ rf) is cyclic or rf violates weak-atomicity then declare ‘Inconsistent’

2 let TC and PC be E-indexed arrays denoting the top and position of events in their rf-chains

3 foreach G ∈ E.;>2B do
4 foreach C ∈ EG .C83B do LWC,G ← NIL

5 moG ← ∅

6 foreach 4 ∈ EG in (poG ∪ rfG)-order do
7 case 4 = w(C, G) do

8 LWC,G ← 4

9 case 4 = r(C, G) do

10 if (TC[rf−1G (4)] ≠ TC[LWC,G]) or (PC[rf−1G (4)] < PC[LWC,G]) then

11 moG ← moG ∪ {(LWC,G ,TC[rf−1G (4)])}

12 LWC,G ← rf−1 (4)

13 case 4 = rmw(C, G) do

14 Execute Lines 10-11 followed by Line 8

15 if (poG ∪ rfG ∪moG) is cyclic then declare ‘Inconsistent’

16 declare ‘Consistent’

Similarly to RC20, Fig. 8 also serves as an illustration of the above definition. The key insight
towards a truly linear-time algorithm is as follows. Consider the execution of Algorithm 3 on a

partial execution X under Relaxed semantics. Further, consider a read/RMW event 4 processed by
the algorithm with wrf = rf−1 (4). Among all events w′ forming a triplet (wrf, 4, w

′) and such that
(w′, 4) ∈ rf?; po, there exists one that is (rf ∪ po ∪moG)

+-maximal. In particular, if the immediate
po-predecessor of 4 is a read event r, then the event rf−1 (r) is this maximal w′. Otherwise, the
immediate po-predecessor of 4 is a write/RMW event w′′, which is also the maximal w′. Thus,
it suffices to keep track of this information on-the-fly, and only insert (w′,TC[wrf]) in moG , if
necessary, to make moG minimally-coherent. As we now do not have to compute HB-timestamps
or iterate over all threads during the processing of 4 , we have a truly linear-time algorithm.

Algorithm. The above insights are turned into an algorithm in Algorithm 4. The algorithm first
verifies that (po∪ rf) is acyclic and rf satisfies weak-atomicity (Line 1). Then, it performs a separate
pass for each location G and constructs the minimally coherent moG . To this end, it keeps track in
LWC,G the unique (rfG ∪ poG ∪moG)

+-maximal write/RMW event that has an rf?; po path to the
current event of thread C . When a read/RMW event 4 is processed, the algorithm potentially updates
moG with an ordering (LWC,G ,TC[wrf]) (Line 10), using the same condition as in Algorithm 3. Fig. 9
contrasts themo computed by Algorithm 4 to themo computed by Algorithm 3 on the same partial
execution but with different access levels. We arrive at the following theorem.

Theorem 1.6. Consistency checking for Relaxed can be solved in $ (=) time.

4.6 A Super-Linear Lower Bound for RMW-Free RA, WRA, and SRA

Finally, we address the existence of a truly linear-time algorithm for any model other than Relaxed.
We show that this is unlikely, by proving the two lower bounds of Theorem 1.7. The proof is via a
fine-grained reduction from the problem of checking triangle freeness in undirected graphs, which
suffers the same lower bounds. That is, there is no algorithm (resp. combinatorial algorithm, under
the BMM hypothesis) for checking triangle-freeness in time $ (=l/2−n) (resp. $ (=3/2−n)) for any
fixed n > 0 [Williams and Williams 2018], where = is the number of nodes in the graph.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:18 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

1

2

3

4 (1,3)
rJxn1 wJxn3

w2

r
1
2

w
3
2

w
3
1

4 (2,3)

r
1
3

4 (1,2) hb hb

hb rf hb hb hb

hb

hb

hb

Fig. 10. Le�: A graph � with three nodes +� = {1, 2, 3} containing a triangle. Right: A slice of the partial

execution X for � . We have (w2, w
3
2
) ∈ hb and (w3

2
, r1

2
) ∈ hb, thus violating weak read coherence in X.

Reduction. Given a graph� = (+� , ��) of = vertices, we construct an RMW-free partial execution

X = ⟨E, po, rf⟩ with |E| = $ (=) such that X is consistent with any of RA, WRA and SRA iff � is
triangle-free. For simplicity, we let +� = {1, . . . , =}.

Events and memory locations. We start with the event set E. For the moment, all events belong to
different threads, while we only define the memory location of an event when relevant. For every

node U ∈ +� , X contains (i) a location ~U and a write event wU (~U) and (ii) auxiliary “junction”

events rJxnU and wJxnU on fresh locations. For every edge (U, V) ∈ �� with U < V , X contains (i) an

event 4 (U,V) that accesses a fresh location, (ii) a read event rU
V
(~V), and (iii) a write event w

V
U (~U).

Relations rf and hb. We now define the rf relation. Our construction also makes certain events hb
ordered. This can be done trivially by introducing auxiliary events with an rf relation between

them, while X remains of size $ (=). In particular, every (41, 42) ∈ hb edge can be simulated using
fresh events r, w such that (i) (w, r) ∈ rf (ii) (41, w) ∈ po, and (iii) (r, 42) ∈ po. For simplicity of
presentation, we do not mention these events explicitly, but rather directly the hb relation they
result in. For every edge (U, V) ∈ �� with U < V , we have the following relations:

(wV , r
U
V) ∈ rf (wU , w

V
U) ∈ hb (w

V
U , wJxnV) ∈ hb

(wJxnV , e(U,V)) ∈ hb (e(U,V) , rJxnU) ∈ hb (rJxnU , r
U
V) ∈ hb

Fig. 10 illustrates the above construction for a slice of the constructed partial execution X. We
conclude with a proof sketch of Theorem 1.7, and refer to [Tunç et al. 2023a] for the full proof.

Correctness and time complexity. If there is a triangle (U, V,W) in � with U < V,W , then
(w

W

V
, rU

V
) ∈ hb because of the sequence of hb edges: (w

W

V
, wJxnW), (wJxnW , e(U,W)), (4 (U,W) , rJxnU),

(rJxnU , r
U
V
). Together with (wV , r

U
V
) ∈ rf and (wV , w

W

V
) ∈ hb by construction, we obtain a weak-read-

coherence violation. In the other direction, if there are no triangles in � , then the modification

order mo =
⋃

U∈+� mo~U where mo~U orders wU before every other write w
V
U on ~U , makes X =

⟨X.E, X.po, X.rf,mo⟩ SRA- (and thus also RA- and WRA-) consistent. Such an mo ensures that
(hb ∪mo) is acyclic. Triangle-freeness ensures read-coherence — a violation of read coherence
implies that there are three events 41 = wV , 42 = w

W

V
, 43 = r

U
V
such that (41, 43) ∈ rf, (41, 42) ∈ mo

and (42, 43) ∈ hb, implying a triangle (U, V,W) in � . The total time to construct X is $ (|+� | + |�� |).
Further, our reduction is completely combinatorial. We thus arrive at the following theorem.

Theorem 1.7. There is no consistency-checking algorithm for the RMW-free fragments of any of RA,
WRA, and SRA that runs in time $ (=l/2−n), for any fixed n > 0. Moreover, there is no combinatorial

algorithm for the problem that runs in time $ (=3/2−n), under the combinatorial BMM hypothesis.

5 EXPERIMENTAL EVALUATION

We implemented our consistency-checking algorithms for RA/RC20 and evaluated their perfor-
mance on two standard settings of program analysis, namely, (i) stateless model checking, using

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:19

TruSt [Kokologiannakis et al. 2022], and (ii) online testing, using C11Tester [Luo and Demsky 2021].
These tools are designed to handle variants of C11 including SC accesses, and performing race-
detection, which are beyond the scope of this work. Here, we focus on the consistency-checking
component for the RA/RC20 fragment, which is common in these tools and our work. We conducted
our experiments on a machine running Ubuntu 22.04 with 2.4GHz CPU and 64GB of memory.

Benchmarks. We used standard benchmark programs from prior state-of-the-art verification
and testing papers [Abdulla et al. 2018; Kokologiannakis and Vafeiadis 2021; Luo and Demsky
2021; Norris and Demsky 2013], as well as the applications Silo, GDAX, Mabain, and Iris [Luo and
Demsky 2021] for online testing. These benchmarks use C11 concurrency primitives extensively.
For thorough evaluation, we have scaled up some of them, when their baseline versions were too
small, by increasing the number of threads or loop counters. Some benchmarks also contain accesses
outside our scope; we converted those accesses to access modes applicable for our experiments, in
line with the evaluation in prior works [Abdulla et al. 2018; Lahav and Margalit 2019].

5.1 Stateless Model Checking

The TruSt model checker explores all behaviors of a bounded program by enumerating executions,
making use of different strategies to avoid redundant exploration. One such strategy is to enumerate

partial executions X and perform a consistency check for the maximal ones, to verify that they
represent valid program behavior. As the number of explored executions is typically large, it is
imperative that consistency checks are performed as fast as possible.

Consistency checking inside TruSt. The algorithm for consistency checking in TruSt constructs a
writes-before order wb [Lahav and Vafeiadis 2015], which is a partial modification order that serves
as a witness of consistency. The time taken to construct wb is $ (=3), which has been identified as
a bottleneck in the model checking task [Kokologiannakis et al. 2022, 2019]. We replaced TruSt’s
wb algorithm for consistency checking with the mo computation of Algorithm 3, and measured
(i) the speedup realized for consistency checking, and (ii) the effect of this speedup on the overall
model-checking task. We executed TruSt on several benchmarks, each with a time budget of 2
hours, measuring the average time for consistency checking (for evaluating (i)) as well as the total
number of executions explored (for evaluating (ii)). Finally, we note that TruSt employs a number
of simpler consistency checks during the exploration. Although we expect that our new algorithm
can improve those as well, we have left them intact as it was unclear to us how they interact with
the rest of the tool, and in order to maintain soundness of the obtained results.

Experimental results. Our results are shown in Table 1. We mark with † benchmarks on which
the model checker found an error and halted early. We observe that Algorithm 3 is always faster,
typically by a significant margin. The maximum speedup for consistency checking is 162×, and
the geometric mean of speedups is 36×. Regarding the number of executions, the model checker
explores 4.3× more on (geometric) average, and as high as 71.6× more, when using Algorithm 3.
In some benchmarks, the two approaches observe a similar number of executions. This is due to
consistency checking being only part of the overall model-checking procedure, which also consists
of other computationally intensive tasks such as backtracking. As consistency checking appears
now to not be a bottleneck, it is meaningful to focus further optimization efforts on these other
tasks. For �aslock, we noticed a livelock that blocks the model checker. Overall, our experiments
highlight that the benefit of the new, nearly linear time property of consistency checking leads to
a measurable speedup that positively impacts the overall efficiency of model checking. We refer
to [Tunç et al. 2023a] for experiments on RC20, which lead to the same qualitative conclusions.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:20 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

Table 1. Impact on model checking. Columns 2 and 3 denote the average time (in seconds) spent in consistency
checking by resp. TruSt and our algorithm. Columns 5 and 6 denote the total number of executions explored
by resp. TruSt and our algorithm. Columns 4 and 7 denote the respective speedups and ratios.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Benchmark
Avg. Time Executions

Benchmark
Avg. Time Executions

TruSt Our Alg. S TruSt Our Alg. R TruSt Our Alg. S TruSt Our Alg. R

barrier 0.5 0.01 45.0 14K 81K 5.98 ms-queue† 0.07 0.01 7.0 208 208 1

buf-ring 1.6 0.02 79.5 3K 6K 2.52 mutex 0.8 0.01 78.0 7K 218K 29.67

chase-lev† 0.0 0.0 - 2 2 1 peterson 0.3 0.01 26.0 4K 5K 1.16

control-flow 0.08 0.01 8.0 88K 1M 16.56 qu 0.1 0.01 12.0 2K 2K 1.04

dekker 0.2 0.01 24.0 26K 64K 2.45 seqlock 0.2 0.01 24.0 24K 171K 7.02

dq 0.1 0.01 13.0 40K 163K 4.11 sigma 0.2 0.01 22.0 4K 62K 5.97

exp-bug 0.1 0.01 13.0 55K 2M 29.98 spinlock 1.0 0.01 98.0 5K 31K 6.04

fib-bench 1.6 0.01 162.0 4K 315K 71.63 szymanski 0.4 0.01 44.0 2K 2K 1.16

gcd 0.3 0.01 31.0 18K 80K 4.46 ticketlock 0.9 0.02 45.5 7K 89K 12.47

lamport 0.4 0.01 36.0 17K 93K 5.54 treiber 0.6 0.01 58.0 403 403 1

linuxrwlocks 0.4 0.01 40.0 12K 32K 2.75 ttaslock 1.0 0.01 97.0 401 401 1

mcs-spinlock 1.1 0.01 108.0 5K 38K 7.19 twalock 0.5 0.01 52.0 8K 30K 3.58

mpmc 0.7 0.01 66.0 10K 77K 8.01

Totals - - - - - - - 14.5 0.26 - 356K 4.6M -

5.2 Online Testing

We now turn our attention to the online testing setting using C11Tester’s framework. In C11Tester’s

setting, a partial execution X is constructed incrementally, by iteratively (i) revealing a randomly
chosen new read/RMW event r, (ii) choosing a valid writer rf (r), and (iii) continuing the execution
of the program until the next read/RMW events. Hence, every iteration requires a consistency check.
Although we could use Algorithm 3 from scratch at each step, this would result in unnecessary
recomputations of mo. Instead, we follow a different approach here — we maintain mo on-the-fly,
in a way that incremental consistency checks can be done more efficiently.

Incremental consistency checking. Our incremental algorithm constructs a similar minimally
coherent partial modification order mo as our offline algorithm (Algorithm 3). However, unlike the
offline setting, we need efficient incremental consistency checks. For this, wemaintain a per-location
order hbmoG on write/RMW events that satisfies following invariants: (i) hbmoG ⊆ (hbG ∪moG)

+

and (ii) (hbG ∪ (moG ; po
?
G)) ⊆ hbmoG . In order to decide whether a new read/RMW event r(G) can

observe a write/RMW event w(G), we must determine if there exists another write/RMW event
w
′ (G) such that (w′, r) ∈ hbG and (w′, w) ∈ (hbG ∪ moG)

+, as this would lead to a consistency
violation. Using hbmoG , this check is performed as follows: (a) for each thread D, we identify
the po-maximal write/RMW event w′ (D, G) for which (w′, r) ∈ hb, and (b) we update hbmoG ←
hbmoG ∪ {(w

′′, w′) | (w′′, w′) ∈ hbmo+G }. Due to invariant (ii), at this point we are guaranteed that,
for all write events w′′, we have (w′′, w′) ∈ hbmoG iff (w′′, w′) ∈ (hbG ∪ moG)

+. We can now test
whether w is a valid writer for r by checking whether (w, w′) ∈ hbmoG , for one of the aforementioned
write/RMW events w′. We refer to [Tunç et al. 2023a] for implementation details.

Main differences with C11Tester. The consistency-checking algorithm implemented inside
C11Tester also infers mo orderings as implied by read and write coherence. The two key differ-
ences between that approach and our incremental algorithm described above are the following:
(i) C11Tester’s mo is stronger than our minimally coherent mo that is contained in hbmo, and
(ii) this mo is always maintained transitively-closed. These two differences are expected to make

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:21

hbmo computationally cheaper to maintain than C11Tester’s mo. Although we also have to com-
pute transitive paths hbmo+ when encountering read/RMW operations (step (b) above), in our
experience, these paths typically touch a small part of the input, leading to an efficient computation.

Table 2. Impact on online testing. Columns 2, 3 and 4 give the average number of events, threads and locations
in each benchmark. Columns 5 and 6 denote the average times in seconds to check for consistency by resp.
C11Tester and our algorithm. Column 6 denotes the speedup.

1 2 3 4 5 6 7 1 2 3 4 5 6 7

Benchmark n k d C11Test. Our Alg. SpeedUp Benchmark n k d C11Test. Our Alg. SpeedUp

control-flow 52K 25 3 4.2 0.04 104.25 mutex 15M 11 11 20.9 16.8 1.24

sigma 36K 10 9 2.4 0.03 80 gdax 11M 5 46K 7.0 5.7 1.23

dq 599K 4 2 22.1 0.5 46.78 spinlock 5M 11 10 7.0 5.9 1.18

iris-1 1M 12 45 28.4 1.8 16.25 ticketlock 14M 6 20 15.7 13.2 1.18

seqlock 478K 17 20 14.4 1.4 10.38 ttaslock 5M 11 10 7.8 6.6 1.18

exp-bug 2M 4 2 1.6 0.7 2.35 fib-bench 6M 3 2 3.3 2.8 1.18

chase-lev 7M 5 2 12.4 5.4 2.3 qu 1M 10 29 1.6 1.3 1.18

linuxrwlocks 7M 6 10 10.9 5.9 1.84 treiber 1M 6 11 1.1 1.0 1.12

mabain 5M 6 18 7.3 4.0 1.82 silo 8M 4 4K 5.3 4.8 1.1

iris-2 12M 3 12 9.9 5.7 1.72 barrier 8M 5 20 7.8 7.4 1.04

mcs-lock 10M 11 30 17.8 12.2 1.45 mpmc 9M 10 3 12.9 12.5 1.03

lamport 6M 3 5 3.4 2.5 1.36 indexer 2M 17 128 1.6 1.5 1.03

peterson 5M 3 4 2.9 2.2 1.29 buf-ring 5M 9 12 7.0 6.8 1.02

spsc 10M 3 699 6.4 5.0 1.28 ms-queue 4M 11 13 8.2 8.2 0.99

dekker 16M 3 3 9.2 7.2 1.27 gcd 5M 3 2 2.2 2.5 0.89

twalock 4M 11 4K 8.9 7.0 1.26 szymanski 4M 3 3 1.8 2.3 0.81

Totals - - - - - - - 196M - - 286.4 170.8 -

Experimental results. Our results are shown in Table 2. For robust measurements, we report
averages over 10 executions per benchmark, focusing on benchmarks for which at least one
algorithm took ≥ 1s. Our approach achieves a maximum speedup of 104.2× and a geometric
speed-up of 2×. In more detail, we observe significant improvement in the first 5 benchmarks, and
consistent speedups of at least 1.2× on 18 benchmarks. We have encountered only 2 benchmarks,
gcd and szymanski, on which the new algorithm is arguably slower. These benchmarks contain
no RMWs and only a small number of write events. This results in the computation of very small
modification orders, diminishing the benefit of our algorithm and results in a marginal slowdown.

6 CONCLUSION

Checking the reads-from consistency of concurrent executions is a fundamental computational
task in the development of formal concurrency semantics, program verification and testing. In this
paper we have addressed this problem in the context of C11-style weak memory models, for which
this problem is both highly meaningful, and intricate. We have developed a collection of algorithms
and complexity results that are either optimal or nearly-optimal, and thus accurately characterize
the complexity of the problem in this setting. Further, our experimental evaluation indicates that
the new algorithms have a measurable, and often significant, impact on the consistency-checking
tasks that arise in practice. Thus our algorithms enable the development of more performant and
scalable program analysis tools in this domain. This work is focused on non-SC fragments of C11,
as otherwise, consistency checking inherits the NP-hardness of SC consistency checking. For
applications having an abundance of SC accesses, however, a meaningful direction for future work
is to combine our techniques with heuristics developed for checking SC consistency (e.g., [Abdulla
et al. 2018; Pavlogiannis 2019]), and apply them on programs that mix all types of C11 accesses.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

137:22 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

ACKNOWLEDGMENTS

Andreas Pavlogiannis was partially supported by a research grant (VIL42117) from VILLUM
FONDEN. Umang Mathur was partially supported by the Simons Institute for the Theory of
Computing, and by a Singapore Ministry of Education (MoE) Academic Research Fund (AcRF)
Tier 1 grant. Shankaranarayanan Krishna was partially supported by the SERB MATRICS grant
MTR/2019/000095. Parosh Aziz Abdulla was partially supported by the Swedish Research Council.

DATA AND SOFTWARE AVAILABILITY STATEMENT

The artifact developed for this work is available [Tunç et al. 2023b], which contains all source codes
and experimental data necessary to reproduce our evaluation in Section 5.

REFERENCES

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, Magnus Lång, Tuan Phong Ngo, and Konstantinos Sagonas.

2019. Optimal stateless model checking for reads-from equivalence under sequential consistency. Proc. ACM Program.

Lang. 3, OOPSLA (2019), 150:1–150:29. https://doi.org/10.1145/3360576

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Tuan Phong Ngo. 2018. Optimal Stateless Model Checking

under the Release-Acquire Semantics. Proc. ACM Program. Lang. 2, OOPSLA, Article 135 (2018), 29 pages. https:

//doi.org/10.1145/3276505

Pratyush Agarwal, Krishnendu Chatterjee, Shreya Pathak, Andreas Pavlogiannis, and Viktor Toman. 2021. Stateless Model

Checking Under a Reads-Value-From Equivalence. In Computer Aided Verification, Alexandra Silva and K. Rustan M.

Leino (Eds.). Springer International Publishing, Cham, 341–366. https://doi.org/10.1007/978-3-030-81685-8_16

Jade Alglave. 2010. A Shared Memory Poetics. Ph. D. Dissertation. l’Université Paris 7 - Denis Diderot.

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2011. Litmus: Running Tests against Hardware. In Tools and

Algorithms for the Construction and Analysis of Systems, Parosh Aziz Abdulla and K. Rustan M. Leino (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 41–44. https://doi.org/10.1007/978-3-642-19835-9_5

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining

for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (2014), 74 pages. https://doi.org/10.1145/2627752

Mark Batty, Alastair F. Donaldson, and John Wickerson. 2016. Overhauling SC Atomics in C11 and OpenCL. In Proceedings

of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA)

(POPL ’16). Association for Computing Machinery, New York, NY, USA, 634–648. https://doi.org/10.1145/2837614.2837637

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and TjarkWeber. 2011. Mathematizing C++Concurrency. In Proceedings

of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA)

(POPL ’11). Association for Computing Machinery, New York, NY, USA, 55–66. https://doi.org/10.1145/1926385.1926394

John Bender and Jens Palsberg. 2019. A Formalization of Java’s Concurrent Access Modes. Proc. ACM Program. Lang. 3,

OOPSLA, Article 142 (2019), 28 pages. https://doi.org/10.1145/3360568

Hans-J. Boehm and Sarita V. Adve. 2008. Foundations of the C++ Concurrency Memory Model. In Proceedings of the

29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI ’08).

Association for Computing Machinery, New York, NY, USA, 68–78. https://doi.org/10.1145/1375581.1375591

James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle, Kyle Sauri, Drew Schleit,

Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using Lightweight Formal Methods to

Validate a Key-Value Storage Node in Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium on Operating

Systems Principles (Virtual Event, Germany) (SOSP ’21). Association for Computing Machinery, New York, NY, USA,

836–850. https://doi.org/10.1145/3477132.3483540

Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. 2017. On Verifying Causal Consistency. In Proceedings

of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for

Computing Machinery, New York, NY, USA, 626–638. https://doi.org/10.1145/3009837.3009888

Truc Lam Bui, Krishnendu Chatterjee, Tushar Gautam, Andreas Pavlogiannis, and Viktor Toman. 2021. The Reads-from

Equivalence for the TSO and PSO Memory Models. Proc. ACM Program. Lang. 5, OOPSLA, Article 164 (2021), 30 pages.

https://doi.org/10.1145/3485541

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Foundations and Trends® in Programming Languages 1, 1-2

(2014), 1–150. https://doi.org/10.1561/2500000011

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding Thin-Air Reads with Event Structures. Proc. ACM Program.

Lang. 3, POPL, Article 70 (2019), 28 pages. https://doi.org/10.1145/3290383

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

https://doi.org/10.1145/3360576
https://doi.org/10.1145/3276505
https://doi.org/10.1145/3276505
https://doi.org/10.1007/978-3-030-81685-8_16
https://doi.org/10.1007/978-3-642-19835-9_5
https://doi.org/10.1145/2627752
https://doi.org/10.1145/2837614.2837637
https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1145/3360568
https://doi.org/10.1145/1375581.1375591
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3485541
https://doi.org/10.1561/2500000011
https://doi.org/10.1145/3290383

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:23

Marek Chalupa, Krishnendu Chatterjee, Andreas Pavlogiannis, Nishant Sinha, and Kapil Vaidya. 2017. Data-Centric Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 2, POPL, Article 31 (2017), 30 pages. https://doi.org/10.1145/3158119

Krishnendu Chatterjee, Andreas Pavlogiannis, and Viktor Toman. 2019. Value-Centric Dynamic Partial Order Reduction.

Proc. ACM Program. Lang. 3, OOPSLA, Article 124 (2019), 29 pages. https://doi.org/10.1145/3360550

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2004. Linear FPT Reductions and Computational Lower Bounds.

In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (Chicago, IL, USA) (STOC ’04).

Association for Computing Machinery, New York, NY, USA, 212–221. https://doi.org/10.1145/1007352.1007391

Yunji Chen, Yi Lv, Weiwu Hu, Tianshi Chen, Haihua Shen, Pengyu Wang, and Hong Pan. 2009. Fast complete memory

consistency verification. In 2009 IEEE 15th International Symposium on High Performance Computer Architecture. 381–392.

https://doi.org/10.1109/HPCA.2009.4798276

Peter Chini and Prakash Saivasan. 2020. A Framework for Consistency Algorithms. In 40th IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020) (Leibniz International Proceedings in

Informatics (LIPIcs), Vol. 182), Nitin Saxena and Sunil Simon (Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, 42:1–42:17. https://doi.org/10.4230/LIPIcs.FSTTCS.2020.42

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2019. RustBelt Meets Relaxed Memory. Proc.

ACM Program. Lang. 4, POPL, Article 34 (2019), 29 pages. https://doi.org/10.1145/3371102

Mathieu Desnoyers, Paul E McKenney, Alan S Stern, Michel R Dagenais, and Jonathan Walpole. 2011. User-level im-

plementations of read-copy update. IEEE Transactions on Parallel and Distributed Systems 23, 2 (2011), 375–382.

https://doi.org/10.1109/TPDS.2011.159

Florian Furbach, Roland Meyer, Klaus Schneider, and Maximilian Senftleben. 2015. Memory-Model-Aware Testing: A Unified

Complexity Analysis. ACM Trans. Embed. Comput. Syst. 14, 4 (2015). https://doi.org/10.1145/2753761

Phillip B. Gibbons and Ephraim Korach. 1997. Testing Shared Memories. SIAM J. Comput. 26, 4 (1997), 1208–1244.

https://doi.org/10.1137/S0097539794279614

Jeff Huang, Patrick O’Neil Meredith, and Grigore Rosu. 2014. Maximal Sound Predictive Race Detection with Control Flow

Abstraction. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Edinburgh, United Kingdom) (PLDI ’14). ACM, New York, NY, USA, 337–348. https://doi.org/10.1145/2594291.2594315

ISO/IEC 14882. 2011. Programming Language C++.

ISO/IEC 9899. 2011. Programming Language C.

Christian Gram Kalhauge and Jens Palsberg. 2018. Sound Deadlock Prediction. Proc. ACM Program. Lang. 2, OOPSLA,

Article 146 (2018), 29 pages. https://doi.org/10.1145/3276516

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. 2017. Dynamic Race Prediction in Linear Time. In Proceedings of the

38th ACM SIGPLAN Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017).

ACM, New York, NY, USA, 157–170. https://doi.org/10.1145/3062341.3062374

Michalis Kokologiannakis, Ori Lahav, and Viktor Vafeiadis. 2023. Kater: Automating Weak Memory Model Metatheory and

Consistency Checking. Proc. ACM Program. Lang. 7, POPL, Article 19 (2023), 29 pages. https://doi.org/10.1145/3571212

Michalis Kokologiannakis, IasonMarmanis, Vladimir Gladstein, and Viktor Vafeiadis. 2022. Truly Stateless, Optimal Dynamic

Partial Order Reduction. Proc. ACM Program. Lang. 6, POPL (2022). https://doi.org/10.1145/3498711

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. 2019. Model Checking for Weakly Consistent Libraries. In

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (Phoenix, AZ,

USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 96–110. https://doi.org/10.1145/3314221.

3314609

Michalis Kokologiannakis and Viktor Vafeiadis. 2021. GenMC: A Model Checker for Weak Memory Models. In Computer

Aided Verification. Springer-Verlag, Berlin, Heidelberg, 427–440. https://doi.org/10.1007/978-3-030-81685-8_20

Ori Lahav and Udi Boker. 2022. What’s Decidable About Causally Consistent Shared Memory? ACM Trans. Program. Lang.

Syst. 44, 2, Article 8 (2022), 55 pages. https://doi.org/10.1145/3505273

Ori Lahav, Nick Giannarakis, and Viktor Vafeiadis. 2016. Taming Release-Acquire Consistency. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg, FL, USA) (POPL ’16).

Association for Computing Machinery, New York, NY, USA, 649–662. https://doi.org/10.1145/2837614.2837643

Ori Lahav and Roy Margalit. 2019. Robustness against Release/Acquire Semantics. In Proceedings of the 40th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for

Computing Machinery, New York, NY, USA, 126–141. https://doi.org/10.1145/3314221.3314604

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages, and

Programming, Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 311–323. https://doi.org/10.1007/978-3-662-47666-6_25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in

C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation

(Barcelona, Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA, 618–632. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

https://doi.org/10.1145/3158119
https://doi.org/10.1145/3360550
https://doi.org/10.1145/1007352.1007391
https://doi.org/10.1109/HPCA.2009.4798276
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.42
https://doi.org/10.1145/3371102
https://doi.org/10.1109/TPDS.2011.159
https://doi.org/10.1145/2753761
https://doi.org/10.1137/S0097539794279614
https://doi.org/10.1145/2594291.2594315
https://doi.org/10.1145/3276516
https://doi.org/10.1145/3062341.3062374
https://doi.org/10.1145/3571212
https://doi.org/10.1145/3498711
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1145/3314221.3314609
https://doi.org/10.1007/978-3-030-81685-8_20
https://doi.org/10.1145/3505273
https://doi.org/10.1145/2837614.2837643
https://doi.org/10.1145/3314221.3314604
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352

137:24 H. C. Tunç, P. A. Abdulla, S. Chakraborty, K. Shankaranarayanan, U. Mathur, and A. Pavlogiannis

1145/3062341.3062352

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis.

2020. Promising 2.0: Global Optimizations in Relaxed Memory Concurrency. In Proceedings of the 41st ACM SIGPLAN

Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing

Machinery, New York, NY, USA, 362–376. https://doi.org/10.1145/3385412.3386010

Carl Lerche. 2020. Loom. Available at https://github.com/tokio-rs/loom.

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t Settle for Eventual: Scalable

Causal Consistency for Wide-Area Storage with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Machinery, New York, NY, USA, 401–416.

https://doi.org/10.1145/2043556.2043593

Weiyu Luo and Brian Demsky. 2021. C11Tester: A Race Detector for C/C++ Atomics. In Proceedings of the 26th ACM

International Conference on Architectural Support for Programming Languages and Operating Systems (Virtual, USA)

(ASPLOS ’21). Association for Computing Machinery, New York, NY, USA, 630–646. https://doi.org/10.1145/3445814.

3446711

C. Manovit and S. Hangal. 2006. Completely verifying memory consistency of test program executions. In The Twelfth

International Symposium on High-Performance Computer Architecture, 2006. 166–175. https://doi.org/10.1109/HPCA.2006.

1598123

Roy Margalit and Ori Lahav. 2021. Verifying Observational Robustness against a C11-Style Memory Model. Proc. ACM

Program. Lang. 5, POPL, Article 4 (2021), 33 pages. https://doi.org/10.1145/3434285

Umang Mathur, Dileep Kini, and Mahesh Viswanathan. 2018. What Happens-after the First Race? Enhancing the Predictive

Power of Happens-before Based Dynamic Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 145 (2018),

29 pages. https://doi.org/10.1145/3276515

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2020. The Complexity of Dynamic Data Race Prediction.

In Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (Saarbrücken, Germany) (LICS ’20).

Association for Computing Machinery, New York, NY, USA, 713–727. https://doi.org/10.1145/3373718.3394783

Umang Mathur, Andreas Pavlogiannis, and Mahesh Viswanathan. 2021. Optimal Prediction of Synchronization-Preserving

Races. Proc. ACM Program. Lang. 5, POPL, Article 36 (2021), 29 pages. https://doi.org/10.1145/3434317

Brian Norris and Brian Demsky. 2013. CDSchecker: Checking Concurrent Data Structures Written with C/C++ Atomics. In

Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA,

131–150. https://doi.org/10.1145/2509136.2509514

Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha

Bhat, YuzhongWen, Haibo Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Verification andOptimization

for Synchronization Primitives on Weak Memory Models. In Proceedings of the 26th ACM International Conference on

Architectural Support for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). Association for

Computing Machinery, New York, NY, USA, 530–545. https://doi.org/10.1145/3445814.3446748

Andreas Pavlogiannis. 2019. Fast, Sound, and Effectively Complete Dynamic Race Prediction. Proc. ACM Program. Lang. 4,

POPL, Article 17 (2019), 29 pages. https://doi.org/10.1145/3371085

S. Qadeer. 2003. Verifying sequential consistency on shared-memory multiprocessors by model checking. IEEE Transactions

on Parallel and Distributed Systems 14, 8 (2003), 730–741. https://doi.org/10.1109/TPDS.2003.1225053

Hünkar Can Tunç, Parosh Aziz Abdulla, Soham Chakraborty, Shankaranarayanan Krishna, Umang Mathur, and Andreas

Pavlogiannis. 2023a. Optimal Reads-From Consistency Checking for C11-Style Memory Models. arXiv:2304.03714

Hünkar Can Tunç, Parosh Aziz Abdulla, Soham Chakraborty, Shankaranarayanan Krishna, Umang Mathur, and Andreas

Pavlogiannis. 2023b. Optimal Reads-From Consistency Checking for C11-Style Memory Models. https://doi.org/10.5281/

zenodo.7816526 Artifact.

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common

Compiler Optimisations Are Invalid in the C11 Memory Model and What We Can Do about It. In Proceedings of the

42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15).

Association for Computing Machinery, New York, NY, USA, 209–220. https://doi.org/10.1145/2676726.2676995

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constantinides. 2017. Automatically Comparing Memory

Consistency Models. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (Paris,

France) (POPL ’17). Association for Computing Machinery, New York, NY, USA, 190–204. https://doi.org/10.1145/3009837.

3009838

Virginia Vassilevska Williams. 2019. On some fine-grained questions in algorithms and complexity. In Proceedings of the

International Congress of Mathematicians. 3447–3487. https://doi.org/10.1142/9789813272880_0188

Virginia Vassilevska Williams and R. Ryan Williams. 2018. Subcubic Equivalences Between Path, Matrix, and Triangle

Problems. J. ACM 65, 5, Article 27 (2018), 38 pages. https://doi.org/10.1145/3186893

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1145/3385412.3386010
https://github.com/tokio-rs/loom
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1145/3445814.3446711
https://doi.org/10.1109/HPCA.2006.1598123
https://doi.org/10.1109/HPCA.2006.1598123
https://doi.org/10.1145/3434285
https://doi.org/10.1145/3276515
https://doi.org/10.1145/3373718.3394783
https://doi.org/10.1145/3434317
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1145/3445814.3446748
https://doi.org/10.1145/3371085
https://doi.org/10.1109/TPDS.2003.1225053
https://arxiv.org/abs/2304.03714
https://doi.org/10.5281/zenodo.7816526
https://doi.org/10.5281/zenodo.7816526
https://doi.org/10.1145/2676726.2676995
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1145/3009837.3009838
https://doi.org/10.1142/9789813272880_0188
https://doi.org/10.1145/3186893

Optimal Reads-From Consistency Checking for C11-Style Memory Models 137:25

Matt Windsor, Alastair F. Donaldson, and John Wickerson. 2022. High-coverage metamorphic testing of concurrency

support in C compilers. Software Testing, Verification and Reliability 32, 4 (2022). https://doi.org/10.1002/stvr.1812

Rachid Zennou, Ahmed Bouajjani, Constantin Enea, and Mohammed Erradi. 2019. Gradual Consistency Checking. In

Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer International Publishing, Cham, 267–285.

https://doi.org/10.1007/978-3-030-25543-5_16

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 137. Publication date: June 2023.

https://doi.org/10.1002/stvr.1812
https://doi.org/10.1007/978-3-030-25543-5_16

	Abstract
	1 Introduction
	2 Axiomatic Concurrency Semantics
	2.1 Executions
	2.2 Consistency Axioms
	2.3 Axiomatic Consistency Models and Consistency Checking

	3 Auxiliary Functions, Data Structures and Observations
	4 Consistency Checking
	4.1 Consistency Checking for WRA
	4.2 Consistency Checking for SRA
	4.3 Consistency Checking for the RMW-Free Fragment of SRA
	4.4 Consistency Checking for RC20
	4.5 Consistency Checking for Relaxed
	4.6 A Super-Linear Lower Bound for RMW-Free RA, WRA, and SRA

	5 Experimental Evaluation
	5.1 Stateless Model Checking
	5.2 Online Testing

	6 Conclusion
	Acknowledgments
	References

