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Marchenko equations for acoustic Green’s function retrieval and imaging in dissipative media
Evert Slob, Jan Thorbecke, and Kees Wapenaar, Delft University of Technology

SUMMARY

We present a scheme for Marchenko imaging in a dissipative
heterogeneous medium. The scheme requires measured re-
flection and transmission data at two sides of the dissipative
medium. The effectual medium is the same as the dissipative
medium, but with negative dissipation. We show how the mea-
sured double-sided data can be combined to obtain the single-
sided reflection response of the effectual medium. Two sets
of single-sided Marchenko equations follow that are used to
compute to the focusing wavefield and the Green functions.
Each uses single-sided reflection responses of the dissipative
and effectual medium. To start the solution for these equations
an initial estimate of the dissipation is required in addition to
the estimate of the travel time of the first arrival. Avoiding the
estimate of dissipation of the first arrival in a low-loss medium
does not have a detrimental effects on the image quality. The
numerical example shows the effectiveness of this strategy.

INTRODUCTION

The wavefield at any one-way travel time inside a 1D loss-
less layered medium generated by a source above that medium
can be obtained from the reflection response of the medium
measured at a receiver above the medium. The relation be-
tween this wavefield and the single-sided reflection response is
known as the Marchenko equation (Lamb, 1980). The wave-
field can be obtained without any knowledge of the medium.
This is an exact integral equation that has been developed for
inverse scattering problems (Agranovich & Marchenko, 1963).
The early applications for seismic and electromagnetic waves
used scaling and stretching of the spatial coordinate to de-
rive the corresponding integral equations (Ware & Aki, 1969;
Coen, 1981). It was found that in theory the impedance could
be obtained as a function of one-way travel time if the source
has infinite bandwidth. Real sources have finite bandwidth
and the interest dwindled. In the early 2000’s Rose linked
the Marchenko equation to autofocusing (Rose, 2002), thereby
opening the way to think about focusing instead of inverse
scattering in relation to the Marchenko equation. Focusing can
be done with finite bandwidth and has potential applicability
in real data problems. It was understood that the wavefield oc-
curring in the Marchenko equation is the focusing wavefield.

Broggini & Snieder (2012) showed that autofocusing can be
used to obtain the homogeneous Green function for a receiver
inside the 1D medium and the source above the medium. Cre-
ating 1D homogeneous Green’s functions for a virtual source
or receiver at some location inside an unknown heterogeneous
medium from single-sided reflection data is known for some
years now (Broggini et al., 2012). These studies suggested that
the homogeneous Green function was necessary to focus the
wavefield inside an unknown medium. For the derivation of
the 3D Marchenko equation it was found that the Marchenko

equation can be cast as a Green function representation for the
causal Green function (Wapenaar et al., 2013). Hence, having
the homogeneous Green function is not a necessary condition
to focus a wavefield inside an unknown medium. It was also
found that the location can be specified in space avoiding the
need to use scaling and stretching of coordinates. The conse-
quence of the 3D formulation is that the scheme requires initial
information to obtain a solution. The information amounts to
those parts of the focusing wavefield that have a space-time
overlap with the Green function. In many situations this re-
quires an estimate of the direct wavefield from the sources
above the medium to the focusing point inside the medium.

Initial applications for imaging use two uncoupled Marchenko
equations. Each can be used to obtain a homogeneous Green
function from which the causal Green function can be split off.
These two causal Green functions can be combined to obtain
the up- and downgoing parts of the Green function at the vir-
tual receiver (Broggini et al., 2014; Behura et al., 2014). The
upgoing and downgoing parts of the Green function can be ob-
tained directly from a single set of coupled Marchenko equa-
tions, which halves the computational cost and from which a
subsurface image can be constructed (Slob et al., 2014; Wape-
naar et al., 2014b). The initial estimate can be more com-
plicated than just estimating the first arrival and the effects
of inaccuracies in the initial estimate as discussed in Wape-
naar et al. (2014a) and van der Neut et al. (2015b). Recent
advances include using Marchenko Green’s function retrieval
with convolutional interferometry to obtain only primary re-
flections from single-sided reflection data (Meles et al., 2016).
Extensions to elastic wavefields are being explored (Wapenaar
& Slob, 2014; da Costa Filho et al., 2014; Wapenaar, 2014).
Then the effects of having P- and S-waves need to be con-
sidered, which creates a larger space-time window where the
focusing wavefields and the Green functions will overlap.

Here we take a different way forward by introducing dissipa-
tion to the medium. All known schemes rely on the fact that
the medium does not dissipate wave energy. The only approx-
imation that occurs in lossless media is that evanescent waves
are not properly accounted for, which is hardly ever a serious
problem. For a dissipative medium we need to modify one of
the two coupled Marchenko equations to account for the ef-
fect of dissipation. We first show that the effectual medium is
the time-reversed adjoint of the dissipative medium (Wapenaar
et al., 2001). We show that the measured double-sided reflec-
tion and transmission responses of the dissipative medium can
be combined to compute the single-sided reflection response of
the effectual medium. We then make a substitution in the cou-
pled Marchenko equations for lossless media and obtain two
sets of coupled Marchenko equations for dissipative media.
We briefly discuss the required a priori knowledge to compute
an exact solution and how to circumvent the extra condition to
run the dissipative scheme. We present a numerical example
to demonstrate the effectiveness of this strategy.
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THE MEASUREMENT CONFIGURATION

A dissipative medium is characterised in the frequency domain
by complex density ρ̂(x,ω) and compressibility κ̂(x,ω), in
which x denotes a point in space and ω = 2π f is radial fre-
quency, with f being natural frequency. We assume that at
two depth levels, ∂D0 and ∂Dm, reflection and transmission
responses are measured as shown in Figure 1. The reflection
response to a downgoing impulsive source operating at x′′H on
∂D0 is denoted R̂∪(x0,x′′0 ,ω) while the reflection response to
a upgoing impulsive source operating at x′H on ∂Dm is denoted
R̂∩(xm,x′m,ω) and for flux-normalised fields the transmission
responses are the same and indicated by T̂ , because they obey
source-receiver reciprocity.
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Figure 1: (a) Reflection and transmission responses from an
impulsive source at ∂D0, (b) reflection and transmission re-
sponses from an impulsive source at ∂Dm.

THE EFFECTUAL MEDIUM AND ITS REFLECTION
RESPONSE

The effectual medium is defined as the time-reverse adjoint of
the dissipative medium. It is therefore characterised by com-
plex density ˆ̄ρ(x,ω)= ρ̂∗(x,ω) and compressibility ˆ̄κ(x,ω)=
κ̂∗(x,ω), in which ∗ denotes complex conjugation. The reflec-
tion and transmission responses in such a medium are denoted
in a similar way as used for the medium parameters. They are
given by ˆ̄R∪(x0,x′′0 ,ω), ˆ̄R∩(xm,x′m,ω), and ˆ̄T. Because the ef-

fectual medium is the time-reverse adjoint of the dissipative
medium, the complex conjugate transpose of the scattering
operator matrix of the effectual medium is the inverse of the
scattering operator matrix of the dissipative medium (Jaulent,
1976). Using this property of the scattering matrix we find the
expression for the reflection response of the effectual medium
for a source at x′′H at ∂D0 in terms of the double-sided reflec-
tion and transmission responses of the dissipative medium as∫

∂D0

K̂∗(x′m,x0,ω) ˆ̄R∪(x0,x′′0 ,ω)dx0 =

−
[∫

∂Dm

R̂∩(x′m,xm,ω)[T̂ (xm,x′′0 ,ω)]−1dxm

]∗
, (1)

in which

K̂(x′m,x0,ω) = T̂ (x′m,x0,ω)−
∫

∂Dm

R̂∩(x′m,xm,ω)∫
∂D0

[T̂ (xm,x′0,ω)]−1R̂∪(x′0,x0,ω)dx′0dxm. (2)

K̂(x′m,x0,ω) in equation 2 and the right-hand side of equa-
tion 1 are expressed in terms of the double-sided data and can
be computed after which equation 1 can be solved for the re-
flection response ˆ̄R∪(x0,x′′0 ,ω). The reflection responses R̂∪

and ˆ̄R∪ are needed to develop the Marchenko equations for a
dissipative medium.

MARCHENKO EQUATIONS, GREEN’S FUNCTION RE-
TRIEVAL, AND IMAGING

To derive coupled Marchenko equations in lossless media reci-
procity theorems of time-convolution and time correlation types
are used. The theorem of the time-convolution type can be
used in dissipative media as well and leads to the well-known
first equation

Ĝ−(xi,x′′0 ,ω) =

∫
∂D0

R̂∪(x′0,x
′′
0 ,ω) f̂+1 (x′0,xi,ω)dx′0

− f̂−1 (x′′0 ,xi,ω), (3)

where Ĝ−(xi,x′′0 ,ω) denotes the upgoing part of the Green
function at xi for a source at x′′0 in the dissipative medium.
The reciprocity theorem of the time-correlation type must be
used for the focusing wavefield in the dissipative medium to-
gether with the measurement state in the effectual medium, be-
cause these media are each other’s time-reversed adjoints. This
means that the reflection response and Green function for the
downgoing field at the virtual receiver in xi that occur in the
lossless scheme are replaced by their effectual medium coun-
terparts. The second equation for the focusing wavefield in the
dissipative medium is therefore given by

ˆ̄G+(xi,x′′0 ,ω) =−
∫

∂D0

ˆ̄R∪(x′0,x
′′
0 ,ω)[ f̂−1 (x′0,xi,ω)]∗dx′0

+[ f̂+1 (x′′0 ,xi,ω)]∗, (4)

where ˆ̄G+(xi,x′′0 ,ω) denotes the downgoing part of the Green
function at xi for a source at x′′0 in the effectual medium. Sim-
ilar equations can be obtained for the focusing wavefield ˆ̄f±1
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in the effectual medium by replacing all quantities in the dis-
sipative medium with the corresponding ones in the effectual
medium and vice versa. These equations are not given here for
brevity.

In the time domain we can see that the Green functions in the
dissipative and effectual medium are causal and zero valued
before the direct arrival. For those time values we have the
Marchenko equations for the focusing wavefield in the dissi-
pative medium given by

f−1 (x′′0 ,xi, t) =
∫

∂D0

∫ t

−∞

R∪(x′0,x
′′
0 , t− t ′) f+1 (x′0,xi, t ′)dt ′dx′0,

(5)

f+1 (x′′0 ,xi,−t) =
∫

∂D0

∫ t

−∞

R̄∪(x′0,x
′′
0 , t− t ′) f−1 (x′0,xi,−t ′)dt ′dx′0,

(6)

valid for t < td(xi,x′′0), in which td(xi,x′′0) is the time instant of
the first arrival. Equations 5 and 6 are the coupled Marchenko
equations for the focusing wavefield in the dissipative medium.
These equations can be solved in the same way as is custom-
ary for the lossless scheme, which involves an estimate of the
first arrivals at time instants td(xi,x′0). The downgoing part of
the focusing function at t = td(xi,x′0) occurs in the right-hand
side of equation 5 but is unknown and cannot be retrieved from
these equations. The first difference compared to the lossless
scheme is that the reflection response of the effectual medium
occurs in equation 6 to account for dissipation in the reflection
response occurring in equation 5. The second difference with
the lossless scheme is that the estimate of the amplitude of the
direct arrival is more complicated than in the lossless scheme.
Included in the estimate of the downgoing part of the focusing
wavefield at that time instant is an estimate of the dissipation
along the path from x′0 to xi. Such an estimate is difficult to
obtain from the data and we proceed without making such es-
timate. The consequence is that offset dependent amplitude
errors will be introduced, which may lead to artefacts due to
incomplete focusing and errors in the multiple elimination pro-
cess. Remnants of multiples will then be imaged and adaptive
subtraction strategies may reduce this problem (van der Neut
et al., 2015a).

Equations 5 and 6 are solved for the focusing wavefield in
the dissipative medium and a similar set of coupled equations
is solved for the focusing wavefield in the effectual medium.
Once these are obtained the upgoing part of the Green func-
tion in the dissipative medium and the downgoing part of the
Green function in the effectual medium can be computed us-
ing equations 3 and 4. A similar set can be used for the other
two parts of the Green functions. For both media the standard
imaging approaches of multidimensional deconvolution can be
used (Wapenaar et al., 2014b). This results in two images that
have incorrect amplitudes due to the zero-dissipation estimate
of the first arrival. In the dissipative medium the initial part
of the downgoing focusing wavefield should compensate for
the dissipation from the source to the virtual receiver. By not
making an estimate for the dissipation in the initial part of the
downgoing focusing wavefield its amplitude is too weak. This
results in incomplete focusing and remnants of the multiples

in the data will end up in the image. For a low-loss medium
the effects are not too severe and a better image is produced
compared to using the lossless Marchenko scheme. This is il-
lustrated in the example below.

NUMERICAL EXAMPLE
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Figure 2: (a) Velocity model, (b) density model.

For the numerical example we use the model of Wapenaar et al.
(2014b), but with dissipation added to the model. The acous-
tic velocities and densities in the different layers in the model
are depicted in Figure 2. It consists of a layered model with
increasing velocities and variable densities with a smooth syn-
cline, below which one interface shows a dip in the right-hand
side of the model. The medium parameters are chosen as a
Maxwell model, ρ̂ = ρ(x)(1− j/ω) and κ̂ = κ(x)(1− j/ω).
This leads to frequency independent phase velocity and a qual-
ity factor that is proportional to frequency, Q = ω/2. We are
interested in imaging the layered structure below the syncline
and the imaged area is shown in Figure 3 with the velocities.
We have computed surface reflection data for the dissipative
and effectual media with a 20 Hz Ricker wavelet as the source
signature. These two reflection responses are used to com-
pute the focusing wavefields in the dissipative and effectual
medium. No estimate of the attenuation has been used for
the initial estimate of the focusing wavefield. Once the focus-
ing wavefields are known, the up- and downgoing parts of the
Green functions in the dissipative medium are computed. An
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image is computed using these Green functions in the multi-
dimensional deconvolution scheme. The image is shown in
Figure 4. The expected reflectors are properly imaged, but
some artefacts are visible as well. Around 1630 m depth a
ghost reflector is visible albeit at reduced amplitude, and very
small remnants of multiples generated by the syncline struc-
ture can be seen in the image. We have also used the lossless
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Figure 3: Part of the velocity model to be imaged.
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Figure 4: The image obtained with the new scheme.

Marchenko scheme on the reflection response of the dissipa-
tive medium, using the same initial estimate for the focusing
wavefield, and computed the image in the same way. We have
also run a conventional migration scheme on the same reflec-
tion data. Both images are shown in Figure 5. It can be seen
in Figure 5a that the image has more ghosts reflectors than the
image of Figure 4, especially in the region of interest between
1200 m and 1500 m depth and the artefacts seen in Figure 4
are stronger in Figure 5a. As expected the standard image of
Figure 5b is severely contaminated with ghost images coming
from multiples in the overburden and the target zone.

The new scheme can only be implemented when double sided
reflection and transmission data are available. This is feasi-
ble in a laboratory set up, but it is not feasible in the field.
Figure 5a shows that using only the reflection response of the
dissipative medium a reasonable image can be produced that
has much less artefacts than the conventional image. Adaptive
subtraction techniques might be helpful in reducing further the
artefacts that are present in the image. The present example

has a constant Q-value throughout the model and at the cen-
tral frequency of the wavelet Q = 63, which is a reasonable
Q-value for many materials. This suggests that the lossless
scheme could be used for seismic data, because other errors in
the estimate of the direct arrival of the focusing wavefield will
cause similar errors in the image. When dispersion becomes
strong the lossless scheme is likely to become less effective.
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Figure 5: (a) Image using the lossless Marchenko scheme, (b)
image using standard migration.

CONCLUSIONS

We have presented a Marchenko imaging scheme for a dissipa-
tive medium. This scheme is capable of creating an image that
is almost free of artefacts due to multiples in the overburden.
The scheme requires double-sided reflection and transmission
data. These data contain redundant information and the re-
duction is achieved by combining all the data to compute the
single-sided reflection response of the effectual medium that
corresponds to the dissipative medium.

The computational cost and the amount of information needed
in the scheme is therefore just twice the cost of the lossless
scheme. For the model shown with a realistic quality factor the
lossless Marchenko scheme produced a reasonably good qual-
ity image, which can be improved by prior Q-compenstation
techniques. That is of interest because double-sided data are
not going to become available from the field.




