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Executive summary

High-dose rate brachytherapy for prostate cancer is a radiation treatment method that radiates the
tumour from inside the body. It does so by making use of catheters, which are inserted in the prostate.
A radioactive source is guided through these catheters and stopped at certain positions, called dwell
positions, to give off radiation. The time that the radioactive source is stopped at a dwell position is
called a dwell time. The longer the dwell time, the more radiation is given off at that dwell position. A
treatment plan for this form of brachytherapy consists of a set of dwell times for the dwell positions.
The goal of the treatment is to cover the prostate and the seminal vesicles with radiation as well as
possible according to a prescribed dose, whilst sparing surrounding organs from receiving too much
radiation. These goals are captured in the clinical protocol, which specify radiation limits and targets
for all organs involved. The construction of treatment plans can be quite cumbersome and difficult due
to the inherent trade-off between covering and sparing. For this reason, automation is applied.

On such automation is BRIGHT, BRachytherapy via Artificially Intelligent GOMEA Heuristic based
Treatment planning. BRIGHT is a multi-objective real-valued evolutionary algorithm that finds a set of
high quality treatment plans with different trade-offs between coverage and sparing in a short amount
of time. Since March 2020, BRIGHT has been in use at the Amsterdam University Medical Centers,
location AMC, and has proven its value. BRIGHT has outperformed the previous clinical practice in a
clinical observer study.

Even-though BRIGHT outperformed the previous clinical practice, in practice manual adjustments
to the treatment plans are still done to meet additional preferences. Particularly, the minimization of
hotspots. Hotspots are contiguous volumes of high dose. Hotspots can result in negative side-effects
for the patients and should therefore be prevented. The goal of this thesis is to explore means to reduce
hotspots in BRIGHT, while minimally deteriorating the goals in the clinical protocol.

In the first part of this thesis the consequences and causes of hotspots are discussed. The reason
why BRIGHT produces hotspots is the simple fact that it is allowed to do so. The clinical protocol
that it optimizes does not account for hotspots, since it is build up of aggregate metrics which do
not account for contiguousness of high dose. In literature no adequate metrics have been found that
capture hotspots. A new hotspot metric is proposed in this thesis, called the Hotspot Size Index (HSI)
which directly captures the hotspots. To use this metric in BRIGHT, a hotspot registration method is
developed which makes use of the graph-based connected component algorithm Afforest.

In the second part of this thesis, different options for adapting BRIGHT to mitigate hotspots are
explored. These options consist of both type of adaptation, i.e. adding a constraint, an objective
or augmenting the current objectives, as well as what type of metric should be used to steer on. The
addition of an extra objective is chosen for in this thesis. For the type of metric to steer on, four different
options are explored. Two metrics are based on the dwell times, which are the Dwell Time Modulation
Restriction (DTMR) and the Dwell Length Duration Modulation (DLDM). DTMR is a method used in
clinics around the world and DLDM is a new proposed metric in this paper. Next to the two dwell time
based metrics, there are two metrics that are based on the calculated received dose. These are the
HSI and the sum of extra Volume-indices. Volume-indices are used in the clinical protocol to formulate
goals. The extra added Volume indices are targeted towards higher dose, but do not account for
contiguousness.

In the last part of this thesis, the different BRIGHT adaptations are tested. From the results it became
clear that steering directly upon the HSI successfully addresses the goal of reducing hotspots, while
minimally deteriorating the goals in the clinical protocol. For smaller hotspots it did have more difficulty.
The sum of extra added Volume-indices also resulted in reduced hotspots and better performance
for smaller hotspots, but suffered from more deterioration in clinical protocol goals. The DTMR also
resulted in a reduction in hotspots for some of the patients, but was less consistent and also suffered
from deterioration. Lastly, the DLDM was least suitable to reduce hotspots, although it did result in less
hotspot for some patients.

The final take-away of this thesis is that we successfully adapted BRIGHT to mitigate hotspots,
while minimally deteriorating the goals specified in the clinical protocol.
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Introduction

Artificial Intelligence (Al) has seen a great increase in popularity and development in the last years.
Al is now being applied in an increasing number of fields, ranging from autonomous cars to fraud
detection at banks. Healthcare is another field where Al is gaining traction. Applying Al in healthcare
can for instance replace tasks that are very tedious, time consuming or even impossible for humans.
One of these Al healthcare advancements is BRIGHT, BRachytherapy via Artificially Intelligent GOMEA
Heuristic based Treatment planning, which is applied in radiation oncology for prostate cancer. The
subject of this thesis is the exploration of potential improvements of BRIGHT, based on preferences
expressed by the clinic in which it is used.

In this chapter, the background of this master thesis will be discussed in the following order. Firstly,
an introduction will be given on prostate cancer and one of its treatment modalities i.e. high-dose rate
brachytherapy. Secondly, the clinical workflow at the Amsterdam University Medical Centers, location
AMC (AMC), which makes use of BRIGHT, will be discussed. Thirdly, BRIGHT will be elaborated on,
followed by the problem statement, research questions, and set-up of this research.

1.1. Brachytherapy for prostate cancer

Prostate cancer is the second most occurring type of cancer being diagnosed in men in the world
(Ferlay et al., 2019). The number of patients receiving a prostate cancer diagnosis is expected to grow
as the world population and its life expectancy grows (Schréder et al., 2012). There are several different
methods of treatment in use today, ranging from surgical procedures to remove the prostate entirely,
to irradiating the tumor to stop the growth and destoy the tumor cells. A common method of treating
prostate cancer is the combination of External Beam Radiotherapy (EBRT) and brachytherapy. In
recent years brachytherapy, a type of internal radiation cancer treatment, is being used more and more
as a mono-therapy (Yoshioka et al., 2013). The goal of radiotherapy, such as EBRT and brachytherapy,
is to damage the DNA of the cancerous cells such that the cells stop dividing and eventually die. Cells
have some tolerance for radiation, therefore the cancerous cells must receive enough radiation to
sufficiently damage their DNA. In this thesis the focus will be on brachytherapy.

1.1.1. High-Dose Rate Brachytherapy

Brachytherapy is a treatment method that delivers radiation to cancer tissue from inside the body,
rather than from outside the body as is done in EBRT. This is done by placing the radioactive source
inside the body. The advantage of this type of treatment is that it is able to more specifically target
the tumour and thereby reduce the amount of radiation received by the surrounding tissue and organs,
since the radioactive source is located in the target volume. High-dose rate brachytherapy (HDR-BT)
is a type of brachytherapy that is characterized by the short (<30 min) but high dosage treatment. In
HDR-BT a radioactive source is placed inside the body using catheters (hollow needles). Through
these catheters, the radioactive source is guided, and halted at predetermined locations, called the
dwell positions. The duration of halting the radioactive source at a dwell position is called the dwell
time. The longer the dwell time, the more radiation is delivered to the surroundings of the dwell position.
A visual representation of what this type of treatment looks like is presented in Figure 1.1.
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Prostate
Bladder Radio-active Source

Radiation
Catheter

Dwell position

T ————

Figure 1.1: Visual representation of prostate HDR-BT using a single dwell position. Catheters (silver/grey cylinders) are
inserted in the prostate which is neighboured by the bladder. Note that only one dwell position is used, for simplicity.

The goal of HDR-BT is to deliver the prescribed radiation dose, measured in Gy (Gray), to the target
volumes whilst sparing surrounding healthy Organ At Risk (OARs) as well as possible. To achieve this,
a treatment plan must be constructed. This plan consists of the dwell times of the radioactive source
at the dwell positions, or in other words, how long the radioactive source stays at each of the dwell
positions. The goal is to sufficiently treat the tumour, while sparing the OARs as best as possible. In
these catheters there are several positions in which the radioactive source can reside. The longer the
radioactive source stays at a dwell position, the more radiation is delivered in the proximity of that dwell
position. The quality of a treatment plan is assessed using different quantitative metrics per organ and
by visually inspecting the dose distribution. These quantitative metrics are described in the clinical
protocol.

1.1.2. Clinical protocol

The plan to be constructed should at least adhere to the treatment planning criteria, captured in the
clinical protocol, which specify sparing and coverage goals. These criteria can vary between different
hospitals. Within the AMC, the criteria are based on dose-volume indices (DVIs) which are adapted
from the GEC-ESTRO HDR Prostate Guidelines (Hoskin et al., 2013). These dose-volume indices
are specified for the target volumes and the OARs. The target volumes in HDR-BT are the prostate
and potentially the seminal vesicles. The OARs are all organs involved, namely the prostate, seminal
vesicles, bladder, rectum and urethra. The criteria to adhere to, DVIs, are generally described using a
prescription dose. A volume index (V) is a way of describing how much volume should receive less or
more than a certain percentage of the prescribed dose. For example, V{j5:t4t¢ > 95% specifies that at
least 95% of the prostate volume should receive at least 100% of the prescribed dose. This can then be
seen as a coverage aim. An example of a sparing aim would then be V235:4t¢ < 50%, which specifies
that no more than 50% of the target volume can receive 150% or more of the prescribed dose. Next to
the volume indices there are dose indices (D), which define the dose received by the most irradiated
sub-volume of an organ. For example, DB!adder < 8694 states that the highest irradiated cumulative 1
cubic centimeter of bladder tissue should not receive more than 86% of the prescribed dose. This dose
index can thus be seen as a sparing index. An example of a dose-coverage index is D{JE5 ¢ > 100%
which states that the highest irradiated 90% sub-volume of the prostate should receive at least 100%
of the prescribed dose. Table 1.1 shows the protocol as used by the AMC for the prostate with a
prescribed dose of 15 Gy.
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Table 1.1: Clinical protocol as used by the AMC for HDR-BT of prostate cancer with a prescribed dose of 15 Gy. Protocol is
split out in columns per organ.

Prostate Bladder Rectum Urethra Seminal Vesicles
Dogoy > 100%  Dicmz <86.7% Dicmz <733% Dgiemz < 120% V73 > 95%
Vioo > 95% Dyemz <80%  Dycmz <63.3%  Digy < 110%
Viso < 40%
Vaoo < 15%

1.2. Clinical workflow at the AMC

To better understand the treatment procedure and to give more background information on HDR-BT,
the clinical workflow at the AMC for HDR-BT is described here.

The treatment starts with the placement of the catheters. Catheters are inserted into the body via the
perineum, the area between the anus and the scrotum, using ultrasound imaging to give an indication of
the placement. The number of catheters used at the AMC is typically around 20. Using more catheters
gives the advantage of more degrees of freedom when constructing the treatment plan, but comes
at the cost of increased risk of complications due to more insertions required. During insertion, the
catheters are placed as optimally as possible such that the treatment plan can be constructed as well
as possible for the patient at hand. Due to difficulties arising from the internal configuration of the
patient and the inability of the catheters to bend beyond a certain angle, it is not always possible to
create an implant (configuration of inserted catheters) which allows for a treatment plan that adheres
to all clinical criteria. The best possible plan which can be achieved depends on the combination of
implant configuration and the anatomy of the patient.

After the catheters have been placed, a Magnetic Resonance Imaging (MRI) scan is made. This
is done to capture where the catheters have been placed in relation to the anatomy of the patient.
These images are required for making the treatment plan and calculating how much radiation will be
received, given a treatment plan, by the different organs involved. The closer an organ is located to
a dwell position, the more radiation it will receive from it. To enable calculation of the dose received,
organs and other volumes of interest are delineated/contoured and catheters are reconstructed in the
MRI images.

The treatment plans will be constructed after the delineations are made. Since April 2020, the AMC
makes use of BRIGHT, to automatically generate treatment plans. BRIGHT produces a set of high
quality treatment plans with different trade-offs between coverage of the tumour and sparing of the
OARs. From these treatment plans a selection, typically between 1 and 5 plans, is made based on the
achieved DVI values with different trade-offs being made. This selection of plans is then exported, for
dose distribution inspection and possible manual adjustment to Oncentra Brachy (Elekta AB, Stock-
holm, Sweden) (OB). OB is a software program that visualizes the delivered dose by showing iso-dose
lines over the delineated MRI scans, and shows the achieved DVI values as recalculated by OB. OB
is a CE certified BT planning system and therefore used for the final assessment. Adjustments of the
treatment plan are made by the clinical expert if desired after a single plan has been selected. These
adjustments are mainly motivated by patient-specific circumstances that motivate the clinical expert
to deviate from the clinical protocol or to improve the homogeneity of the planned dose (Barten et al.,
2021). An adjustment can for instance be to deliver less dose to the bladder region because of other
clinical consideration specific to that patient.

After approval of a treatment plan by the team of clinical experts, the patient will undergo radiation
treatment. After treatment, the catheters are removed. The time between inserting the implant and
performing the radiation therapy should be minimized. This is due to several reasons. One of them is
minimizing the discomfort for the patient as the catheters will only be removed after radiation has been
performed. Another reason is to minimize the risk of deformations in either the implant configuration
due to movement or deformations in the anatomy of the patient (i.e. bowel movements). This is why
there is a motivation from the clinical experts to automate procedures to speed up the process, besides
the main motivation of improving treatment plan quality.
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1.3. BRIGHT

An automation that has been successfully put into clinical practice is BRIGHT. BRIGHT both im-
proves the treatment plan quality and the required time to create a treatment plan. This is done by the
automatic creation of high-quality treatment plans, and has been in use since March 2020. As of July
2020 it has been used for 12 patients.

Creating treatment plans manually, also called forward planning, is a tedious and complex task due
to two main reasons. First of all, there is a large number of dwell positions in which the radioactive
source can reside. For the prostate cancer patients in the AMC treated between April 2020 and July
2021, between 17 to 24 catheters are used. In each of these catheters the stepping distance between
dwell positions is 2.0 mm (AMC default) These catheters have a size of 400 mm, which means 200 po-
sitions per catheter. However, not all positions are relevant. Positions that are far away from the target
organs are disabled since they do not have to be used for delivering the prescribed dose. In practice
this results in a median of 333 active positions (range 216—429). Having this number of variables to
be set with a real-valued time can be a complex and time-consuming task for humans to perform. The
second aspect that makes manually creation of treatment plans difficult is the inherent trade-off in plan
quality. Both the coverage of the target volumes as well as the sparing of the OARs need to be taken
into account. These goals, however, are conflicting since increasing a dwell time will result in more
radiation delivered which is advantageous for covering, but potentially disadvantageous for sparing.

Due to these difficulties, optimization is used to automatically find the dwell times to achieve an
acceptable treatment plan. Creating treatment plans in an automated way by finding a plan that satisfies
the criteria is called inverse planning. Several methods for optimizing treatment plan(s) have been
proposed in literature. In most cases the problem is formulated as an optimization problem. The
formulation is done either with a single objective (Lessard and Pouliot, 2001; Lahanas et al., 2003) or
in a bi-objective manner (Luong et al., 2017), but more objectives could be used.

1.3.1. Objective function formulation

For the single objective formulation the most common method is the linear penalty model (LPM),
which is employed by HIPO (Karabis et al., 2005) and IPSA (Lessard and Pouliot, 2001). This model
penalizes the deviation from the received and prescribed dose values by multiple points in the volume
(dose points) based on the treatment planning criteria. This is an easy to solve model, but has been
shown to weakly correlate with the planning criteria (Morén et al., 2018a). Instead of the single-objective
approach, BRIGHT makes use of a bi-objective objective function formulation. This formulation directly
captures all treatment planning criteria in a worst-case manner, and therefore correlates strongly with
the criteria.

Based on the clinical protocol, a distinction is made between sparing targets and coverage targets.
All criteria, as described in Table 1.1, with a 'greater than’ sign are covering targets and all constraints
with a less than sign are sparing targets. These targets are captured in two objectives, the least sparing
index (LSI) and the least coverage index (LCI). This is done in the following way:

LCI(t) = min{8c (Vg *t%"), 8. (Dége ), 8c (V5751¢e%)} (1.1)
LSI() = min{S (VY *10), 8, (Vi 1°1€), 8, (DELAAeT), 8, (DELadaen), 12
8o(DESEE™), 8 (DESEG™), 8 (DYTERT®), 8, (DY)

Where:

Vdo _ do,min
8:0) =

d
omax _ po

v

8S(D‘3) = pomax k

v
Vdo,max _ Vdo

8s(Vd) = —omax
d
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The LCI and LSI values are determined by the worst performing sub-function, where sub-functions
are of the form §.(V?), 8;(Dy), or 65(V7Y). These sub-functions calculate the distance between the
achieved value for a planning aim for a particular plan and the minimum or maximum allowed value.
For example, when in a treatment plan 90% of the prostate volume receives at least 102% of the
prescribed dose where the aim was at least 100%, then the distance for that criteria is 2%. When
combining these distances in a worst-case manner, and if the value for LCl is 2%, then the other LCI
sub-functions have achieved at least a positive distance of 2% with its minimally aspired value. These
distances are normalized to their target value, to allow for a better comparison of criteria. The values
of the criteria are calculated using dose calculation points (DCPs). DCPs are randomly sampled points
in target and sparing volumes, for which the dose is calculated. Using these DCPs, the metrics of the
LCIl and LSI can be approximated.

The advantage of the used objective function formulation, besides the direct link with the criteria,
is that it offers more insight into the trade-off between coverage and sparing. In general, a multi/bi-
objective optimization problem does not have a single solution as the final answer. The optimization
results in a Pareto approximation front, which is a set of non-dominated solutions. A non-dominated
solution is a solution for which there is no other solution in the set that is at least equal in all objectives
and better in at least one objective. An example of such a Pareto approximation set, which consists of
non-dominated solutions is shown in Figure 1.2.

High Sparing

02 - High Coverage
High Sparing
Low Coverage :
0.0 —worveins
= ‘ ///
0.2 - Dominated
]
[ ]
-0.4 - '
Low Sparing §High Coverage
Low Coverage iLow Sparing
I I I I i I
-4 -3 -2 -1 0 1

LCI

Figure 1.2: Example Pareto approximation front of BRIGHT for HDR-BT for prostate cancer. Each blue dot represents a single
treatment plan of the Pareto approximation front with different values for the D- and V-indices. The Pareto approximation shows
the trade-off between covering and sparing of organs. The orange region in the top right corner is called the 'golden corner’. In
this region all treatment plans adhere to all treatment planning aims, and thus have a positive LCI and LSI. The orange dots
indicate treatment plans that would not make part of the Pareto approximation front, since they would be dominated.

In the Pareto approximation front it can be seen that no treatment plan can be found for which there
is another treatment plan that dominates it.

1.3.2. Optimization Procedure

The goal of BRIGHT is to focus on the trade-off between coverage and sparing, thereby finding
a large number of high-quality treatment plans within a short amount of time. This allows the clinical
experts to spend their time on selecting the preferred treatment plan for the patient at hand, rather than
adjusting a single one to be as acceptable as possible in the limited amount of time. For this purpose,
the underlying optimization procedure of BRIGHT is an Evolutionary Algorithm (EA) (Holland et al.,
1992, De Jong, 1975). An EA is a meta search heuristic.

The general idea behind EAs for optimization is that it maintains a population of solutions. With
every generation it will try to improve the fitness of each solution as expressed by the values for the
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objectives. To do this the algorithm will apply variation to the population, thereby creating offspring.
Variation is done by adjusting parts of the solution. This can be done in an intelligent way by for
instance making use of the learned characteristics of the problem at hand and its potential solutions.
After this variation, a from of selection is applied to promote the features of the best solutions given the
current population. To determine the best solution, given 2 or more objectives, a general approach is
to use Pareto dominance. Pareto dominance means that only if a solution strictly dominates another
solution, meaning that one solution is at least equal in all objectives and superior in at least 1 objective,
then it is better than the other.

BRIGHT is based on an EA called MO-RV-GOMEA (Multi-Objective, Real-Valued, Gene-Pool Op-
timal Mixing Evolutionary Algorithm). Specific elements that are of importance to this research will be
discussed in more detail in Section 2.2. In theory the algorithm could run forever and still find new
solutions that are ever so slightly better than the previous ones or that fill the gap between two existing
solutions. Given the time requirements, this is however not feasible. To terminate the algorithm, a
termination condition has to be set. There are multiple ways of setting a termination condition, such
as maximum number of generations. Given the clinical time requirement, a maximum time termination
condition is used in the clinic. At the AMC this is 3 minutes, as that has been shown to allow BRIGHT
to reach Pareto approximation fronts in which no further meaningful improvements are found with more
time (Bouter et al., 2019).

To improve the speed of the algorithm, parallelization on a Graphics Processing Unit (GPU) has
been applied. The specifics of this can be found in Bouter et al., 2019. The main concept that GPU
parallelization exploits is that solutions can be adjusted and evaluated independently from each other
in a single generation.

1.4. Problem Statement

BRIGHT has been proven to be an effective automated treatment planning method for prostate
HDR-BT (Maree et al., 2019). In a retrospective observer study based on 18 different patients, it was
shown that the plans generated by BRIGHT were considered equal or superior to the used clinical
plans from the previous treatment planning process. The observers also stated that they valued the
comparison of multiple plans with the different trade-offs, as compared to the single plan from the
previous used method. These multiple plans showed them novel insight into trade-offs for the patient.
BRIGHT has been taken in use for the first patient in March, 2020 and 12 patients have been treated
with the help of BRIGHT since July, 2021.

For plans in the golden corner, which adhere to all clinical criteria, clinical experts may use their
expertise to judge plans based on criteria that are not included in the clinical protocol. When this is
the case, other aspects than the ones stated in the clinical protocol are considered and adjusted for.
In the evaluation study based on the patients treated with the help of BRIGHT it became apparent
that the plans generated by BRIGHT did not always fully satisfy the preferences by the clinical experts
(Barten et al., 2021) even though plans adhered to the clinical protocol. One of the aspects, that was
targeted with manual adjustments after optimization, was the homogeneity of the treatment plans. In
the current set-up of BRIGHT for HDR-BT, homogeneity is not explicitly accounted for. This raises the
main research question and problem statement:

Research Question: Problem statement

How can BRIGHT best be improved for the homogeneity of the resulting treatment plans for
high dose rate brachytherapy for prostate cancer?

1.5. Research Questions

The problem statement raises a number of questions to be answered. To start, it is not entirely clear
what is meant exactly with homogeneity. Different clinical experts respond to questions regarding this
topic with different answers. So the first question to be answered is:
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Research Question: Why homogeneity?

What is homogeneity in HDR-BT treatment plans for prostate cancer and why is it desired?

When it is clear what the clinical experts aim for with regards to homogeneity it must be quantified.
This quantification must be as good in line with the aim as possible. So this raises the question:

Research Question: Measuring homogeneity

How can and should homogeneity be quantified for HDR-BT treatment plans for prostate
cancer?

Given that a quantification of homogeneity is established it is important to understand why non-
homogeneous plans can be constructed by the algorithm. This will give insights in understanding the
problem as well as possible ways of tackling the issue. The research question to be answered is:

Research Question: Heterogeneity causes

What causes BRIGHT to produce non-homogeneous i.e. heterogeneous treatment plans?

As a follow-up question it is then important to look for ways of improvement. The research question
to be answered next is:

Research Question: BRIGHT adjustments

How can BRIGHT be enhanced to potentially produce more homogeneous treatment plans?

There will be multiple aspects that will play a role in evaluating the performance of the different
adjustments, such as the required extra time and the ability to capture the preferences of the clinical
experts in the resulting treatment plans. This raises two related questions:

Research Question: BRIGHT performance

What are the important performance aspects of BRIGHT for HDR-BT and how do different
enhancements score on these aspects?

In order to answer these questions, a review of the literature will be conducted, as well as interviews
with medical specialists and algorithmic experiments.

1.6. Outline of this Document

This thesis starts in Chapter 2 with a general explanation of evolutionary algorithm and BRIGHT
in particular. Next, in Chapter 3 a description is given of homogeneity in HDR-BT for prostate cancer,
its consequences, the causes of in-homogeneity, the current methods for mitigating homogeneity and
the current methods of measuring homogeneity. This is followed by a description of a new way of
measuring homogeneity and how that can be implemented in BRIGHT. In Chapter 4 different options
for potentially improving the homogeneity of the treatment plans from BRIGHT are discussed as well
as a method for potentially improving the run-time of these improvements. In chapter 5 the results of
some preliminary experiments are discussed which are aimed at finding the right settings for the main
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experiments of this research. The experiment set-up of the main research is discussed in Chapter 6.
The results from the main experiments are described in chapter 7, which is followed by a discussion of
the results in chapter 8 and conclusions together with future work in chapter 9. In the appendices the
more detailed results are shown as well as a conference abstract based on this work.



Background: Evolutionary Algorithms

In this chapter, background information will be given on the used optimization methods in BRIGHT.
This background information helps in understanding the potential improvements of BRIGHT. This chap-
ter will start off in Section 2.1 with a general explanation of evolutionary algorithms (EAs), the algorithmic
concept on which BRIGHT is built, and why they are a preferred option for multi-objective optimization
will be explained in Section 2.1.1. In Section 2.2, MO-RV-GOMEA will be discussed. MO-RV-GOMEA
is a specific type of model based EA for multi-objective real-valued optimization and forms the basis of
BRIGHT.

2.1. Evolutionary Algorithms

BRIGHT is build on the concept of EAs. EAs are a class of optimization algorithms that are inspired
by the process of evolution in nature. In mimicking nature, EAs maintain a population of individuals, i.e.
solutions to the optimization problem. Individuals encode a solution in such a way that it can altered
during optimization. An example of such an encoding is an array of real-valued variables, where each
variable corresponds to a variable in the objective function. During optimization, new generations of the
population are generated based on the previous generation. The goal of creating a new generation, also
called offspring, is to improve upon the previous generation. To improve upon the previous generation,
information about the fitness of the individuals in the previous generation is exploited. The fitness of an
individual describes the quality of the solution, i.e. how well it performs on the objective function from
the optimization problem. The calculation of the fithess value of an individual is called an evaluation.
The exploitation of fitness information is generally done through selection and variation. In selection, all
individuals are evaluated on the objective function and the best performing individuals are selected for
variation, the other individuals are discarded. This selection is based on natural selection from nature,
where the strongest/best adapted individuals survive and generate more offspring and thereby pass
their genes onto the new generation. After selection, variation is applied on the the individuals. This
variation will change the solutions, with the aim of improving their fitness values. In variation there
are generally two methods, cross-over and mutation. Cross-over can be seen as a child receiving a
selection of the genes from both parents. In EAs this means that an individual gets parts of the solution
from different individuals in the previous generation. Mutation is applied on parts of the individual
to generate new solution features, that were potentially not present in the population. This can also
be seen in nature, where random mutations of the DNA of individuals can lead to beneficial trades
that render the individual better adapted to its environment. Selection is applied again after variation.
This selection step will pressure the optimization to better solutions. The iterations of selection and
variation can continue indefinitely, therefore a termination condition is set. This termination condition
can be based on multiple aspects of the algorithm, as for instance the maximum allowed run-time or
when a certain fitness level has been reached. To start the algorithm, a population must be initialized.
This initialization of solutions can be done in a random fashion or more intelligently to ‘'warm-start’ the
algorithm, although warm-starting the algorithm can have negative consequences for the course of the
optimization procedure. The general outline of EAs is shown in Figure 2.1.

9
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Variation

Initialization Selection Termination

Figure 2.1: General outline of the steps performed in EAs. EAs generally start with the initialization of a set of solutions, called
individuals which make up a population. From these individuals the best ones are selected to be used in the generation of
offspring, i.e. the new population. This generation of offspring is done by applying variation on these selected best individuals.
Variation generally consists of cross-over and mutation. After variation, the best solutions from the offspring are selected for
another round of variation. This procedure of selection and variation can continue indefinitely, therefore a termination condition
is set. If this condition is met, then the algorithm terminates and returns the best solutions.

2.1.1. Evolutionary algorithms for multi-objective optimization

Multi-objective optimization problems are a class of problems, for which the goal is to find the best
solution(s) according to multiple objectives. As compared to a single-objective optimization problem,
multi-objective optimization problems generally do not have a single best solution, but multiple solutions
that show a trade-off between the objectives. These solutions are called Pareto-optimal solutions.
Optimization techniques that are state-of-the-art for single-optimization problems do not generally work
well on these set of problems, as they will only find a single solution. To make single optimization
techniques, such as linear optimization algorithms, work for multi-objective optimization they would
be required to be applied repetitively (Deb, 2014). Since EAs make use of and produce a population
of solutions, rather than a single solution, they are better equipped to find Pareto-optimal solutions
and therefore a popular method for multi-objective optimization (Deb, 2014). The problem of finding
treatment plans is a multi-objective problem, as there is a trade-off between organ sparing and clinical
target coverage. Therefore, an EA is used in BRIGHT.

2.2. MO-RV-GOMEA

The specific EA that BRIGHT is based on is called MO-RV-GOMEA, Multi-Objective Real-Valued
Gene-pool Optimal Mixing Evolutionary Algorithm. MO-RV-GOMEA is an EA that is capable of opti-
mizing real-valued multi-objective optimization problems. Treatment plans, the individuals to optimize,
consist of a set of dwell times which are real-valued. MO-RV-GOMEA is a very powerful multi-objective
EA, that has been shown to be the state-of-the-art EA for multi-objective optimization of high-dose-rate
brachytherapy planning for prostate cancer treatment (Luong et al., 2018). MO-RV-GOMEA is effec-
tive in exploiting the dependencies between the decision variables and uses that to efficiently solve
the planning problem. Furthermore, the variation method used in MO-RV-GOMEA allows for partial
evaluations of the objective function which makes the calculation of fitness values of the offspring more
efficient. Not all optimization problems allow for partial evaluations of the objective function. To enable
this, the objective function must be understood, if this is the case it can be called Grey-Box optimization
in contrast to Black-Box optimization where there is little to no information about the objective function.

A general overview of the implementation details of MO-RV-GOMEA and BRIGHT that are deemed
important for this thesis will be discussed in the next subsections. This is structured according to the
general concepts of variation, selection and individuals of EAs. The full overview of implementation
details of MO-RV-GOMEA can be found in Bouter et al., 2017. The full overview of implementation de-
tails of BRIGHT can be found in Bouter et al., 2019, the used method in BRIGHT for partial evaluations
can be found in Bouter et al., 2018.

2.2.1. Individuals, population and elitist archive
The individuals in BRIGHT are the treatment plans. These treatment plans consist of a set of dwell
times for the set of dwell positions in the catheters. The representation of an individual in BRIGHT is an
array of real valued variables. Each variable represents the set dwell time for a specific dwell position.
Next to the population of individuals on which the variation is applied, BRIGHT also stores a set
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of the best found non-dominated individuals that have been found throughout the generations. This
is called the elitist archive. A non-dominated individual means that there is no other individual that
performs at least equal in all objectives and better in at least one. This dominance relation is also
called Pareto-dominance. After every round of variations in individuals it is checked whether the newly
created individuals should belong in the elitist archive by comparing them to every individual in the
elitist archive. If an individual is added to the elitist archive, all individuals that are dominated by the
new individual are deleted from the archive. The elitist archive has a maximum capacity, since it would
otherwise potentially grow indefinitely. If the maximum capacity has been reached, then individuals
that are more similar to each other, with regards to their fitness values, are removed.

2.2.2. Selection and variation

In MO-RV-GOMEA, the selection and variation procedures work as follows. Based on the best 35%
of individuals in the population, q different equal sized clusters are identified in the population. A visual
representation of this is shown in Figure 2.2. For these q different clusters, multi-variate Gaussian
distributions are fitted on the dwell times of individuals in the cluster. These Gaussian distributions are
fitted on the different FOS-elements (Family of Subsets). FOS elements are subsets of the total set
of dwell positions which are considered more dependent on each other. In BRIGHT this means dwell
times that are in close proximity to one another. These multi-variate Gaussian distributions will be used
to generate the offspring.

Based on these multi-variate Gaussian distributions, new partial solutions are sampled based on the
FOS-elements in random order. These partial solutions consists of new dwell times for a FOS-element.
This partial solution is then inserted in every individual that belongs to the cluster for which the multi-
variate Gaussian was fitted. After insertion, the individuals are evaluated. If the insertion, i.e. variation,
has resulted in an improved fitness, then the variation is accepted. For evaluating the fitness of an
individual it is not required to evaluate the full objective function, since only a subset of the variables
has changed. A partial evaluation of the objective function can be done instead, the specifics of this
can be found in Bouter et al., 2018 and Bouter et al., 2019. After all FOS-elements for all clusters
have been sampled, and their insertion into the individuals has been evaluated, it is checked if the
new individuals should be inserted in the elitist archive as described in Section 2.2.1. The changed
population of individuals is now the new generation. Note that no individuals are discarded, as was
described in the general EA procedure.

By using the clusters, the improvement of the population is guided in different directions as shown
in 2.2. Every cluster has its own pressure direction on the Pareto approximation front, this means
that some clusters will push to more organ sparing treatment plans and other clusters to more target
coverage treatment plans.

This cycle of selection, clustering, Gaussian fitting and sampling is repeated until the termination
condition has been reached. The termination condition for BRIGHT is a maximum allocated run-time,
since in the clinic time is limited.
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Figure 2.2: Population of individuals, not only the Pareto approximation front. Every individual is represented by a blue dot
or an orange dot. The equal sized clusters are represented by the orange ovals. Note that every individual is part of a single
cluster. The best 35% of individuals that determine a cluster is indicated by the orange dots. The orange arrows point to the

direction in which the clusters apply pressure on the Pareto approximation front. The cluster in the top left corner applies more

pressure towards the sparing of organs, while the cluster in the bottom right corner applies more pressure towards the
coverage of treatment plans.



Homogeneity of Treatment Plans

This chapter is dedicated to describing the motivation for promoting homogeneity in high dose rate
brachytherapy treatment plans as described by the clinical experts from the AMC. The following ques-
tions will be discussed in order of elicitation: What are the different consequences of non-homogeneous
treatment plans? How is that caused by non-homogeneity? What mitigation measures and practices
are currently in place to mitigate these consequences? What are the shortcomings of these current
practices?

3.1. Consequences of non-homogeneous treatment plans

The term homogeneous has several definitions in the dictionary: of the same or similar kind or
nature / of uniform structure or composition throughout / .... In the case of treatment plan quality,
homogeneity can best be described using the second definition. A homogeneous treatment plan is a
treatment plan in which the distribution of radiation dose does not show steep slopes. There are two
main downsides associated with non-homogeneous treatment plans which are related to high-dose
volumes and to susceptibility to disturbances.

3.1.1. High-Dose Sub-Volume (Radio-Necrosis)

The first downside of non-homogeneous treatment plans is caused by so-called 'hotspots’. Hotspots
are contiguous volumes of high dosage. In the evaluation of the use of BRIGHT in the clinic it became
apparent that the plans that BRIGHT produces can still contain hotspots, which need to be minimized
(Barten et al., 2021). The downside of having hotspots is the risk of radio-necrosis. If there is too much
radiation, this can kill cells for which the body is not able to regenerate it in a normal way. This can
have several negative side effects such as bladder dysfunction (incontinence, Zakariaee et al., 2017),
and erectile dysfunction (impotence, DiBiase et al., 2000). Furthermore, necrosis is toxic for the body
and should be avoided.

When speaking to the clinical experts at the AMC, no single minimum dosage value was immediately
decided upon for the definition of hotspots. After discussion and evaluation of adjustments made in the
clinic, the lower bound value of the hotspots was set to 300% of the prescribed dose (15 Gy) for the
target volumes (prostate and seminal vesicles) and 200% of the prescribed dosage for the normal-
tissue surrounding the target volumes. For the other OARs no hotspot lower bound was set as no
hotspots were formed there. The lower bound volume for a hotspot has been set to 0.1 cm?3, since
lower volumes are deemed to be insignificant.

Hotspots are formed in two ways. The most straightforward one is from a single dwell position where
the radioactive source resides too long. The second one is the interplay of multiple dwell positions.
A single point in, for example, the prostate receives its radiation from multiple dwell positions. The
received dose is then the sum of doses received from each of these dwell positions. This makes it
possible to form a hotspot without the need for a single very long dwell time in a single dwell position.

A plan could be considered homogeneous when it has a very high dose overall, but this would
then lead to very large hotspots. Therefore, in this research these plans are also considered to not be
homogeneous.

13
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3.1.2. Susceptibility to Disturbances

The second downside to heterogeneous treatment plans is the higher susceptibility to disturbances
and uncertainties. Disturbances and uncertainties can be and are introduced in several ways (Bel et
al., 2020). During the clinical workflow it is possible that the catheters are shifted after the creation
of the treatment plans due to patient or organ movement. This will result in a different outcome of
the treatment plan than that was planned for. Another source of uncertainty is the delineation of the
organs. The delineation of the organs is done by hand and will affect the calculated DVI values, as
they are based on the volume of the organs which is dictated by the delineation. The reconstruction of
the catheters in the MRIs also entails some uncertainties in the dwell positions.

Heterogeneous treatment plans are more susceptible to deviations in anticipated outcomes than
homogeneous plans. These plans have more peaks in delivered radiation. A shift of a catheter will
cause a change in the received radiation for a specific location in the patient. This becomes a problem
if this peak shifts from a place where this peak is allowed to a place where it will cause negative side
effects. Heterogeneity is therefore considered to be a bigger problem at the tips of the catheters, as
they are closer to the organs at risk. A more homogeneous plan without high peaks suffers less from
the problem of susceptibility to deviations and uncertainties.

This study will focus on the mitigation of hotspots rather than the susceptibility to disturbances. In-
cluding the latter would increase the scope of this project too much for a master thesis project. Nonethe-
less, since it is an important aspect of homogeneity, the smoothness of dwell time distribution will be
reported on for the experiments. For a full assessment of susceptibility to disturbances it would be
required to simulate these disturbances.

With these findings the first research question can be answered:

Research Question: Why homogeneity?

What is homogeneity in HDR-BT for prostate cancer and why is it desired?

Homogeneity of HDR-BT treatment plans for prostate cancer is how smooth the distribution
of doses is over the target organs. It is desired both for the prevention of hotspots as well as
promoting treatment plan robustness. The first one will be the focus of this thesis.

3.2. Causes of Non-Homogeneous Treatment Plans

The reason why BRIGHT produces plans which can suffer from hotspots is because the desire of the
clinical experts regarding hotspots is not directly captured in the clinical protocol. The clinical protocol
is based on DVIs. The DVIs are aggregate measures of the dose received by the different volumes of
interest. Since they are aggregate measures, two different plans can be constructed which lead to the
same DVI values but show different dose distributions (Morén et al., 2018b). A simplified example of
what this looks like is shown in Figure 3.1. In the figure, two simplified plans are presented which both
have an equal %, index (the percentage of the volume of a region of interest that receives 200% of
the prescribed dose) but show a different distribution. For BRIGHT, these plans are considered equal
in their quality. This means that BRIGHT has a blind-spot for hotspots.
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Plan A Plan B

O 0
O O

——— 200% of prescribed dose

Figure 3.1: Dummy visualisation of iso-dose lines for two different treatment plans with equal DVIs but different distribution of
radiation dose. Only the 200% iso-dose lines are shown. The treatment plan on the left has a more scattered distribution of
200% dose as compared to the plan on the right, which is more prone to having hotspots.

The formation of hotspots could potentially be further strengthened through the way BRIGHT is
applying variation to treatment plans. This variation is applied to find improvements for the different
solutions BRIGHT has in the population. For each treatment plan BRIGHT will simultaneously change
the dwell times of dwell positions in FOS-elements. FOS-elements, Family Of Subsets, are subsets of
dwell positions which are considered more dependent on each other. This means of exploitation could
be described as local improvement, since only a subset of variables is changed at a time and checked
for improved solutions. These local changes will contribute to the formation of hotspots. The neigh-
bouring dwell times of the dwell positions of the changed dwell positions are not changed accordingly
and therefore more heterogeneity can be introduced. This results in a higher chance of a single or a
small number of dwell positions to take on longer dwell times, as it is less likely to change a multitude
of dwell positions simultaneously. These longer dwell times can then lead to hotspots. However, these
partial changes are the strong-suit of BRIGHT when it comes to run-time efficiency, as it allows for
partial evaluations which make it suited for parallelization which greatly improves the run-time (Bouter
et al., 2019). In the Linear-Penalty-Model optimization techniques, similar formation of hotspots by us-
ing a lower number of active dwell positions but with higher dwell time has been observed (Holm et al.,
2012). The optimization techniques for the Linear-Penalty-Model did not make use of partial variations
and evaluations.

With these findings the first research question can be answered:

Research Question: Heterogeneity causes
What causes BRIGHT to produce non-homogeneous, i.e. heterogeneous, treatment plans?

Non-homogeneous treatment plans are produced by BRIGHT since it is allowed by the clin-
ical protocol which BRIGHT optimizes on, i.e. BRIGHT has a blind-spot for hotspots. Fur-
thermore, BRIGHT exploits local improvements which can potentially result in more locally
connected dose and therefore potentially more and/or larger hotspots. This hypothesis how-
ever, will not be further tested in this thesis as it is deemed out of scope.

3.3. Current practices to overcome and prevent non-homogeneous

treatment plans
Some mitigation strategies for heterogeneity have been proposed in literature and applied in op-
timization methods used in practice, which were also used by AMC before BRIGHT. The most im-
portant one is Dwell Time Modulation (DTM). DTM has been implemented in different forms in HIPO
and IPSA(Lessard and Pouliot, 2001, Lahanas et al., 2003). In HIPO it is called Dwell Time Gradi-
ent Restriction, and in IPSA it is called Dwell Time Deviation Constraint. DTM consists of controlling
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the amount of deviation that neighbouring dwell positions can have in their dwell times. By reducing
the amount of time deviation from one dwell position to another, homogeneity is promoted. The exact
implementation of the DTM in HIPO and IPSA is not publicly available.

In the paper by Balvert et al., 2014, several implementations of DTM have been tested to evaluate
their effect on the quality of the treatment plans. The impact of DTM was evaluated using both the
linear penalty model (LPM) as well as a direct optimization on the DVHs. The DTM was implemented
as a hard constraint (DTM restriction, DMTR). This constraint renders all solutions with an excessive
value for the DTM metric infeasible. Three different implementations of DTM were evaluated. These
three implementations were the relative, absolute and quadratic difference between dwell times of
neighbouring dwell positions given a maximum distance. In their paper, the authors experimented with
different cut-off values for the constraints. The limitation of this study is that they only had the data
available for 3 different patients. Therefore they encouraged other institutions to quantitatively assess
the influence of DTMR. The conclusion of the paper was that DTMR was able to reduce the largest
contiguous volume of 150% of the prescribed dose, but that it came at the cost of reduced D¢y, rostate
which was often rendered unsatisfactory for the used clinical protocol.

What is also important to realize is that DTMR on itself does not guarantee the absence of hotspots,
it merely provides a more homogeneous dose distribution. In Figure 3.2 this is illustrated. Plan A per-
forms worse on DTM, since the dwell times show higher deviation, but better on hotspot size. DTM in
combination with an adequate measure to reduce high dwell times could potentially result in homoge-
neous plans without hotspots.

Plan A Plan B
100% —— 200% —— 300%

Figure 3.2: Dummy visualisation of iso-dose lines of two different treatment plans with 3 dwell positions. The shown iso-dose
lines are 300%, 200% and 100% of the prescribed dose. The treatment plans have a quality difference in DTM values, and
inverse quality difference in hotspot size. The treatment plan on the left has smaller hotspots, but more capricious dwell time
distribution as compared to the plan on the right.

The DTMR registers the deviation of neighbouring dwell positions. In the paper by Balvert et al.,
2014 the deviation of the 2 nearest neighbours was accounted for. Given the spacing of the catheters,
i.e., 2 mm stepping distance in catheters between dwell positions and 5 mm spacing between catheters
as dictated by the template used to insert the catheters (see Figure 3.3), the 2 nearest neighbours are
within the same catheter. The DTMR will be further elaborated on in Section 4.2.1.

Besides the DTMR in the two different LPM algorithms, a common approach for mitigating hotspots
(and thereby improving homogeneity) is to visually inspect the resulting iso-dose lines of the resulting
treatment plans. By inspecting the iso-dose lines the hotspots are identified. Next, the dwell times that
cause these hotspots are manually adjusted.

3.4. Scoring Homogeneity

It is necessary to utilize a method of scoring the treatment plans in order to be able to make quanti-
tative judgments on the treatment play quality in terms of homogeneity. In this subsection, the scoring
of homogeneity will be discussed.

3.4.1. Clinical requirements

Before discussing metrics to capture hotspots an overview will be given on what the clinical re-
quirements are with regards to hotspots. As discussed before, homogeneity is an important aspect
of HDR-BT. This statement however needs some more clarification, because hotspots are an inher-
ent property of brachytherapy. Whenever a dwell position is activated and the dwell time is set, it is
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Figure 3.3: Image of the Martinez Brachytherapy Template (source: Elekta, 2021). This template is used to guide and hold the
catheters in place during treatment. The distance between the circular cutouts is 5 mm. The template is place in front of the
area between the scrotum and the anus, called the perineum.

inevitable that a small hotspot will be formed. This hotspot is a small region in and around the dwell
position which will receive a high dose above the prescription dose. This can be seen in Figures 3.4
and 3.5, where all dwell positions have been set to the same small dwell time.

Figure 3.4: Visualisation of a Figure 3.5: Visualisation of a
treatment plan with small "hotspots” treatment plan with small "hotspots”
showing all iso-dose lines (from inside showing only 200% (white) and 300%
out: 300%, 200%, 150%, 100% and (orange) iso-dose lines. The rectum
80%). The rectum is delineated by is delineated by the purple line, the
the purple line, the prostate by the red prostate by the red line and the

line and the bladder by the blue line. bladder by the blue line.

However, the doses will quickly decrease with the increase in distance to the dwell position, which
is called the dose fall-off. The sharp dose fall-off is the strong suit of HDR-BT since it allows for high
radiation values in the target volumes, while not radiating the surrounding tissues too much. In Figure
3.6, an example drawn to relative scale of the dose rate fall-off based on the TG-34 model (Rivard
et al., 2004) is visualized. The TG-34 model is a widely used method for calculating dose values in
brachytherapy.

Because of this contradictory situation of trying to limit hotspots, but hotspots’ are the strong suit
of HDR-BT, it is required to sharply define what type of dose distribution is deemed undesirable and
what type of dose distribution is desired. In general, how should homogeneity/hotspots be measured?
The situation which the clinical experts have expressed that should be avoided is large contiguous sub-
volumes of high received dose. A single 300% contiguous sub-volume of 2cc is worse than 2 smaller
300% contiguous sub-volumes that sum to 2cc. On top of that, there is also a distinction that should
be made between hotspots in the prostate/seminal vesicles and hotspots in other tissue and organs.
A contiguous volume of 200% received doses in the prostate is not perceived as a hotspot by the clin-
ical experts, whereas the same high-dose sub-volume in the tissue surrounding the target volumes is
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Figure 3.6: Scale visualization of dose-rate fall-off from a single point of radiation based on the TG-34 model for dose
calculations Rivard et al., 2004. Different colours indicate different levels of delivered radiation (i.e. 100%, 200%, 300% and
400% of the prescribed dose). The non-linear relation between radius and delivered dose can be seen.

undesirable. In the organs at risk, a hotspot is viewed as a contiguous sub-volume of at least 100%.
Furthermore, whenever the hotspot is small enough it is also not perceived as a problem. In the dis-
cussions, the clinical experts expressed that a hotspot with a volume lower than 0.1 cc is negligible. As
was already shown, there will be small hotspots formed surrounding and in the active dwell positions.
These are also not deemed undesirable. Simply setting a lower bound on hotspot volume would how-
ever not suffice. When measuring hotspots one would potentially automatically register long hotspots
that are within the catheters that exceed the lower bound but are not undesirable. In Figures 3.7 and
3.8, this is visualized. On the right image in the left catheter there are two contiguous sub-volumes of
300%, but only the top one is perceived as a hotspot since it is wider.

Figure 3.7: Visualisation of iso-dose lines viewed Figure 3.8: Visualisation of iso-dose lines viewed
in the transverse direction (from feet to head, in the coronal direction (from toes to heel,

back-view for catheters). Black line is a pointer to side-view for catheters). Black line is a pointer to
indicate the red line which depicts the 300% indicate the red line which depicts the 300%

iso-dose line, which is the minimum dose value for iso-dose line, which is the minimum dose value for

hotspots in the prostate and the seminal-vesicles. hotspots in the prostate and the seminal-vesicles.

Red dots show dwell positions. The red dotted line Red dots show dwell positions. The red dotted line

delineates the prostate, the yellow dotted line the delineates the prostate, the yellow dotted line the

rectum, the green dotted line the urethra and the rectum, the green dotted line the urethra and the

blue dotted line the bladder. blue dotted line the bladder.

Therefore, another addition is made to our definition of hotspots, which is that only regions outside
1 mm radius of the center of the dwell positions are considered when registering hotspots. The value of
1 mm is based on the fact that adjacent dwell positions are 2 mm apart. By setting the radius to 1 mm
a single large hotspot within the catheters will not be registered. This brings us to the final definition of
undesired hotspots, which is summarized in Table 3.1:
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Dose Volume Distance*
Target volume | 2300% 20.1cc >1mm
Normal-Tissue | 2200 % 20.1cc >1mm
Organs at Risk | 2100 % =0.1cc >1mm

Table 3.1: Summary of hotspot definition defined per volume of interest, split out on volume with received dose and *minimum
distance from the active dwell positions

3.4.2. Metrics from literature

In literature, several different metrics have been proposed to assess the homogeneity quality of
treatment plans. There was and is a need for automatic assessment. Automated assessment allows
for the comparison of larger numbers of treatment plans, since it requires less manual labor of either a
clinical expert or a researcher as no dose distributions have to be visually inspected slice by slice.

The most common metrics for assessing homogeneity are the V; 5, and 14, indices for the prostate.
However, as previously discussed, these measures are aggregates and will not differentiate between
a single large 150% or 200% contiguous volume and multiple small ones. Based on the V-indices,
another metric could be created which looks at the V3, or even the V,,,. This will then also suffer
from the lack of spatial accounting. Nonetheless, given dose distribution in hotspot due to the dose-fall
off, as shown in Figure 3.6, large hotspots will have larger regions of 400% while they might be non-
existent in smaller hotspots. The only downside then is that hotspots that are made up from multiple
dwell positions, where the high-dose iso-dose lines overlap, are potentially not accounted for.

Another metric is the Homogeneity Index (HI). The HI has been formulated in various different ways
(Kataria et al., 2012, Patel et al., 2020). These can be summarized as the relation between volume
percentage of low, normal and high dose. One such formulation, which is used in the paper by Kataria
et al., 2012 is shown in Equation 3.1:

_ Ds% — Doy,
Dy

In this equation, Ds% and Dgqe, represent the minimum dose in respectively the strongest irradiated
5% and 90% of the volume of the prostate and D,, represents the prescription dose. Since the different
Hls are built upon the same V and D indices as the clinical protocol, they will suffer from the same
spatial awareness shortcoming.

The S-index is an improvement on HI. Instead of using only a few D- and V-indices and comparing
them, the S-index focuses on the deviation in the Dose Volume Histogram (DVH) curve. The S-index
is thus basically the standard deviation of received dosage in the volume over which it is defined. The
definition of the S-index is given in Equation 3.2:

HI -100% (3.1)

S-index = \/Z(Di Do)’ - % (3.2)
where D; is the radiation received by the it" sampled point in a volume, D, the mean received dose
by all DC points, v; the volume of the i*" DC point and V the total volume of all DC points. The S-index
thus is standard deviation of the dose distribution normalized for volume. This formulation however
also does not take the exact spatial distribution of dosage into account.

Kim et al., 2016 formulated the Bubble Index (Bl) with the specific aim of preventing "hotspot ag-
glomeration”. They defined the Bl as "the maximum rate of change of iso-dose surface area-to-volume
ratio (SA:V) with respect to dose”. Unfortunately they did not provide any more explanation or, more
importantly, implementation details. In their paper it seems that the Bubble Index is automated, rather
than calculated by hand. However, since no implementation details were given or extensive explanation
of the results it could not be used in this research.

The last metric was used in Thomas et al., 2007 and Golshan et al., 2014. This metricis an extension
upon the normal V index, named the contiguous V index (V¢) and denoted by for example V%, where
C = 1 tells us the size of the largest contiguous volume receiving 200% of the prescribed dose and Vi,
the second largest. Although this comes close to the requirements, it is not complete, since it does not
account explicitly for the location. The largest hotspot can for instance be formed inside the catheters.
Furthermore, they did not provide the implementation of measuring the V¢. It was only stated that it was
calculated after optimization using VariSeed, a software program for brachytherapy treatment planning.
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3.4.3. Creating a metric

Since the proposed metrics in literature do not match exactly with the requirements as set by the
clinical experts, a new metric is proposed, called the Hotspot Size Index (HSI). The ’size’ is added to
prevent confusion with the already defined Homogeneity Index (HI). The new HSI definition is shown
in Equation 3.3.

HSI = Z ) (3.3)
i€EH(vo,do,lo)

Where S; denotes the volume of hotspot i, f the exponent factor to allow for increased or decreased
accounting of larger hotspots and H(v,,d,, [,) the set of hotspots with a minimum size/volume of v,,,
dose d,, and distance to dwell positions [, where o represents the value per organ. This means that
single hotspots can consist of different lower-bound values on received doses if the hotspot overlap
multiple organs/tissues. The factor f is included to allow for more flexibility in measuring hotspots,
however this research is limited to using only a factor of 1 resulting in the sum of hotspots which fit
the requirements. The HSI value thus expresses what the total weighed volume is of hotspots in a
treatment plan.

In this research, the size of all individual hotspots are recorded that are at least of size v and of
dosage d,.

With these findings the first research question can be answered:

Research Question: Measuring homogeneity

How can and should homogeneity be quantified for HDR-BT treatment plans for prostate
cancer?

Homogeneity has been quantified in literature but these quantification have failed to directly
address the occurrence of hotspots. The literature that did directly measure the size and
number of hotspots failed to provide implementation details. In this research a new quantifi-
cation is proposed in the form of the Hotspot Size Index (HSI), which is the weighted sum of
hotspots that satisfy predefined hotspot criteria.

3.5. Hotspot Registration

In this section the automation of calculating the HSI value will be discussed. In order to discuss
different potential implementations of measuring homogeneity through the registration of hotspots, it is
important to know how the dose distributions of different treatment plans are calculated. In BRIGHT, as
in many other automated treatment planning applications, the dose distribution is approximated using
dose calculation points.

3.5.1. Dose Calculation Points

Dose calculation points (DCPs) are points that are sampled within the different tissues and organs
for which one or more DVI is required to be calculated. Every DCP approximates a sub-volume of the
organ or tissue that it is sampled in. Using the DCPs the different DVIs can now be calculated easily by
sorting the DCPs per organ on their received doses. Using the sorted array of received dose per DCP,
the V, index can be calculated by determining what percentage of DCPs in an organ has received at
least x% radiation. The volume that each DCP represents depends on the number of DCPs sampled
and the volume of the organ or tissue that the DCPs are sampling in. Each DCP in a single organ
or tissue represents the same volume. In Figure 3.9, a visualization of DCPs approximating a set of
organs is presented, where the prostate is red, the bladder is blue, the rectum is orange and the seminal
vesicles are light brown.
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Figure 3.9: Visualisation of dose calculation points approximating organs. Every dot represents a
dose calculation point. The blue dots represent the bladder, the red dots the prostate, the light brown
dots the seminal vesicles and the orange dots the rectum.

The DCPs are sampled uniformly at random in the target volume rather than placed on a grid. The
motivation for this lies in the ability of the DCPs to approximate the DVIs. In the paper by Niemierko
and Goitein, 1990 it was shown that the number of DCPs required to accurately approximate the DVIs
was at least 50 times smaller when sampled uniformly at random, compared to a regular grid. The
random sampling in BRIGHT is done by sampling in a bounding box of the contours of each organ and
accepting a sampled DCP if it falls within the contours and otherwise rejecting it.

3.5.2. Hotspot registration in literature

Inthe paper by Thomas et al., 2007 the largest hotspots were recorded as found in multiple treatment
plans. This was done using the software of VariSeed after optimization. Unfortunately the VariSeed
software is not open-source and therefore the implementation could not be inspected for use in this
research.

Zakariaee et al., 2016 used another approach to determine hotspot sizes. A Fast-Random-Walker
algorithm (Andrews et al., 2010) was adapted to detect the hotspots. Unfortunately no detailed im-
plementation description was given. However, in the Fast-Random-Walker paper it became clear that
this procedure required user-interaction and was probabilistic. In this research, the method for hotspot
registration should be fully automatic as the available time of the clinical experts to contribute to this re-
search is limited. Furthermore, ideally the method should also be deterministic to minimize the required
number of runs for fair comparison of treatment plans.

The last hotspot registration method found in literature is given by Morén et al., 2018b. The premise
on which their method is built is that within a small sub-volume, all DCPs are so close to each other
that they can be perceived as connected. A high value for the V%, for each small sub-volume k, then
indicates a hotspot in that small sub-volume. Although the implementation of this method is straightfor-
ward, it does not satisfy the requirements as discussed earlier. Although the lack of spatial awareness
of the DVI-based hotspot/homogeneity metrics is improved, it is not sufficient yet. The interconnection
of multiple small sub-volumes is discarded, which results in this method being unable to completely
register the full size of the hotspots, which again results in multiple hotspot configurations being pos-
sible under the same reported metric value. A different distribution is not necessarily worse, but if all
these sub-volumes are clustered together, then a single large hotspot is formed which is what should
be prevented.

3.5.3. Hotspot registration requirements

Since no open-source method of registering hotspots has been found, a new method is developed
for this research. Here, we list a number of requirements that we perceive to be important for a hotspot
registration method, to be used in BRIGHT, that matches clinical requirements, as discussed in Section
3.4.1.



22 3. Homogeneity of Treatment Plans

The first requirement is that the method should be compatible for implementation on the GPU. This
is because in BRIGHT, the calculated dose of the DCPs for all the different plans in the population are
stored in GPU memory. Having a method which only performs well on CPU would then require copying
the dose-values from GPU memory to CPU memory during optimization to assess the HSI. This would
greatly impact the overall run-time of the algorithm.

This brings us to the second requirement, the required run-time. The method should be as fast as
possible, since time is limited. Especially if the HSI needs to be calculated during optimization then
this is of importance if adaptation in the clinic is envisioned since during optimization a large number
of treatment plans need to be evaluated. That said, the execution speed is not the main priority in this
research, but nonetheless the focus will be on state-of-the-art implementations to already give some
insight in the required run-time.

The third and fourth requirements are that the method should be fully automatic, since there will be
many evaluations of plans required (over 200.000 evaluations were used in the clinic per patient), and
the method should be deterministic to reduce the required number of evaluations per plan.

The fifth and last requirement is that the method should be adaptable to using the DCPs, as the
dose distribution is captured using DCPs in BRIGHT and developing another means of registering dose
is deemed out of scope for this research.

This set of requirements led to two methods which were further inspected, the Afforrest-algorithm
(Sutton et al., 2018) for graphs and the Block-Based Union-Find (BUF) algorithm (Allegretti et al., 2019)
for a regular grid of voxels. Both have been shown to be state-of-the-art on detecting connected com-
ponents (Hong et al., 2020, Lemaitre et al., 2021). The problem of hotspot detection can be reduced
to the problem of detecting connected components as will be discussed in the next sections.

3.5.4. BUF algorithm

Connected component detection is finding subsets of either voxels or nodes that are connected.
Voxels are points in a regular spaced grid, they can be seen as equally sized cubes. Nodes are con-
nected by sharing an edge (graph) and voxels by sharing a side/corner. In connected component
labeling, all nodes/voxels that are connected will receive the same label. Our hotspot detection prob-
lem can be reduced to the problem of labeling connected components, since it can be limited to labeling
only the nodes/voxels (DCPs) that have received a dose of above a certain lower-bound.

To reduce the hotspot registration to the BUF algorithm, which works on voxels, these voxels need to
be created first from the DCPs. The strong suit of the BUF algorithm is its exploitation of regular access
pattern of the voxels. However, to reduce the DCPs to these voxels they have to be summarized into the
voxels. Next, for every voxel it should be determined if it is a 'hotspot-voxel’ or not to enable connected
component analysis. This would then result in a loss in accuracy because an aggregate needs to be
made of all DCPs that are in the voxel. Another potential issue is the absence of DCPs in a defined
voxel. Then no dose is calculated for that voxel. This raises the question what value the voxel should
take, since it can then either connect a hotspot or breakup a hotspot. This can happen since the DCPs
are sampled in a random way. Furthermore, the resolution of the voxels will need to be the same in
every organ/tissue, but in BRIGHT the number of DCPs is equal in every organ/tissue whereas their
volumes are not. Given these shortcomings, the BUF algorithm was not chosen for further testing and
implementation. In theory BUF could be implemented for hotspot detection, but a solution has to be
found for all these shortcomings. Due to these shortcoming it was chosen to implement a graph-based
method that does not suffer from these shortcomings.

3.5.5. Afforrest hotspot detection

The Afforrest algorithm is an adaptation of the Shiloach-Vishkin algorithm (Shiloach and Vishkin,
1980). It is a label propagation algorithm, which transfers the lowest node-label through the graph to
the nodes it is connected to via edges. However, before diving into the details of the implementation,
first the construction of the graph will be discussed.

Creating the graph

As discussed before, the calculation of the DVIs is done using dose calculation points (DCPs).
Using these DCPs the graph will be constructed. The DCPs will be the nodes in the graph, the only
thing that remains is the creation of edges. The goal is to be able to detect connected components



3.5. Hotspot Registration 23

of DCPs which all have at least a certain received doses. These connected components then are the
hotspots. A simplified visualization of this is given in Figure 3.10.

Figure 3.10: Dummy visualization of a graph based hotspot, each dot represents a dose calculation point. A light dot colour
indicates a received dose under the hotspot lower bound dose. A dark dot colour indicates a received dose above the hotspot
lower bound dose. A collection of connected dark dots represents a hotspot.

In Figure 3.10 the DCPs with the darker shade of orange make up the hotspot. The hotspot is thus
detected since they are connected to each other.

To define edges between the DCPs, a maximum edge length is set. If the distance between two
DCPs is less or equal to the maximum edge length, then the two DCPs will be connected by an edge.
The maximum edge length will dictate when two hotspots will be seen as two separate hotspots or as
a single larger hotspot. A simplified visualization of this is shown if Figure 3.11.

Figure 3.11: Visualisation of two disconnected hotspots on the left and a single connected hotspot on the right. Defined on the
same set of dose calculations points, but a different set of edges. The hotspot on the right is a single connected hotspot
because all 'dark’ nodes are connected via a path without 'non-dark’ nodes on the path.

On the left side, the maximum edge length is shorter, thereby disconnecting the two hotspots,
whereas in the graph on the right, the maximum edge length is longer which makes the two smaller
hotpots connected to each other. This shows that finding the right edge length is important, since too
small a length will lead to underestimation of the hotspot size and too long a length will result in over-
estimation of hotspot size. In discussion with the clinical experts, the maximum edge length has been
set to 0.5 mm as the ground truth. This is equal to the resolution in which Oncentra Brachy visualizes
the iso-dose lines on which the clinical experts form their opinions. By fixing this edge length, the only
cause for over or under

The creation of the graph only has to be done twice, since the DCPs are also only sampled twice.
Once for evaluation during the optimization procedure and once for the reevaluation of the optimization
results. The number of dose calculation points used during optimization in the clinic is 20.000 points
per organ. During reevaluation, this number is increased to 100.000 points. In Bouter et al., 2019 it
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was shown that the reduced accuracy during optimization was acceptable given the reevaluation of
the results based on the DVIs. However, the naive implementation of generating the graph using a
maximum edge length would require a pair wise distance calculation of all DCPs. Given the number
of DCPs this would greatly impact the run-time of BRIGHT. Therefore, a simple speed-up has been
implemented. Given that the maximum edge length is known upfront, the total bounding box of all
organs will be filled with voxels with a side-length equal to that of the maximum edge length. All DCPs
will be sorted into their respective voxel. Now the only distance calculations that have to be made are
between DPCs in a single voxel or between adjacent voxels, since the distance between any other pair
of DCPs will be larger than the maximum edge length.

Connected component detection procedure

In this section, a very brief overview will be given on how the Afforrest algorithm works, a more
detailed description is given in Sutton et al., 2018 and Hong et al., 2020. Note that in the explanation
in this thesis the abbreviation DCPs is used instead of nodes, as is the case in the Afforrest literature.
The adaptations which make the algorithm find hotspots rather than connected components will be
discussed after the explanation of Afforrest.

In order to detect connected components, Afforrest makes use of Union-Find. One step of the
procedure is shown in Figure 3.12. All DCPs have a parent pointing label (yellow arrow), i.e. a label
which states what the index of its parent DCP is in the array of DCPs. First all DCPs are initialized with
their own index as parent pointing label, thus creating a forest of trees consisting of only 1 DCP. Then
for every edge (green connector) in the graph, the algorithm looks at its DCPs and for both DCPs it will
find the root DCP (DCP that is pointing to itself) of the tree that the DCP is connected to (blue arrows
show the procedure of finding the root DCP). This is found by traversing through the graph based on
the DCPs that are pointing to one another. Then if both root DCPs are found for both DCPs, they will
be compared and the root DCP with the higher index will now not point to itself but to the other root
DCP.

1<7

Figure 3.12: Visualisation of a single edge reduction step in the Afforrest connected component procedure. Every circle
represents a DCP. Every DCP has its own index (black number) and parent DCP it is pointing to (yellow arrow). In this
visualisation the reduction step is shown for the edge between DCPs 5 and 8. For each DCP the root DCP of the tree that it is
pointing to is determined by traversing parents, shown with the blue arrows. After the root DCP have been found, their
labels/indices are compared and the DCP with the highest index will be pointed to the DCP with the lowest index, in this case
DCP 1.

The algorithm performs this procedure of reducing labels in parallel for all the edges of a sub-
graph. This sub-graph consists of all DCPs but a subset of the edges. One edge per DCP is chosen
for the sub-graph. This procedure is repeated until each edge has been reduced once. This means
that the procedure is called upon k-times, where k is the maximum degree of the graph. During each
procedure call, the parent pointing labels are reduced to the root label of the tree it is connected to. The
convergence is guaranteed by making use of the atomic asynchronous compare_and _swap method
from CUDA for writing to the memory of the parent pointing labels in parallel. This method prevents
data race problems, i.e. two threads writing to the same memory location leading to unpredictable
outcomes. CUDA is the GPU programming interface of Nvidia. By performing the procedure on sub-
graphs, the total amount of work is reduced since the average depth of the created trees is reduced in



3.5. Hotspot Registration 25

each step as compared to performing the procedure on the full graph in parallel.

The last part of the algorithm is large component skipping. In the first executions of the procedure on
sub-graphs, the largest (or a very large) component should already become apparent as it has the most
DCPs pointing towards it. The largest component is estimated by randomly sampling parent pointing
labels and finding the most frequent root label. The large component skipping trick exploits the fact
that some edges can be skipped, while still reaching convergence. The edges that will be skipped are
the edges of DCPs that are already pointing towards the largest component. This results in a reduced
amount of edges to be reduced. This trick only works if edges are stored twice as two directed edges,
since then there will be edges pointing towards the largest component which will be reduced. The
largest component skipping procedure is visualized in Figure 3.13.
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Figure 3.13: Visualisation of the largest component skipping procedure of the Afforrest algorithm. In the images two
clusters/hotspots/components are identified, indicated by the two orange circles. In the left image all edges are still active and
can be used in later steps. The black arrows indicate edges that have already been reduced, the blue lines are edges that have
not yet been reduced. After determining the largest component, in this case the component with root DCP 4 (left component),
all outgoing edges are discarded and will not be reduced in later steps. This results in the graph on the right. Only these
resulting edges are used for further steps. Since the edge from DCP 2 to DCP 9, shown in green and not yet reduced, will not
be skipped, the procedure calls that will follow will eventually reduce the root label of the component on the left to root DCP 1.

In Figure 3.13 the largest component is identified as the left component with root DCP 4. If the
algorithm performs the reducing procedure on an edge, but the starting DCP is already pointing to the
largest component we can skip it. This can be seen in the edges of node 9. The edges going from
DCP 9 to DCP 11, 7, 8, 13 and 2 will be skipped, since DCP 9 is already pointing towards the ’largest’
component. Since every edge is saved twice in memory, once for both DCP it connects, it will still
guarantee that the lowest root DCP will be found. In Figure 3.13 above, it wrongly identified 2 hotspots
(root DCP 4 and 1) but since DCP 9 and 2 are still connected with an edge going from 2 to 9 these two
hotspots will eventually be merged as this edge will still be sampled.

Adapting connected component for hotspot detection
A typical result from Afforrest is shown in Figure 3.14. Here all DCP indices have been replaced by
the root DCP index.

Figure 3.14: Visualisation of the result of Afforrest, which is a directed forest i.e. a set of trees/edges pointing to a single root
DCP.

However, in the case of hotspot detection, we only want to connect DCPs which have received
dose of above the lower bound given the organ they are in. Therefore the initialization procedure and
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the linking/reduction procedure of Afforrest have been adapted. In the initialization procedure where
every DCP gets a unique parent pointing label, DCPs are only assigned a unique parent pointing label
if the received dose value is high enough, otherwise they get a placeholder value of -1. Then in the
linking/reduction procedure, whenever the algorithm encounters a DCP with a parent pointing label of
value -1, it is simply ignored. This procedure is visualized in Figure 3.15.
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Figure 3.15: Visualisation step of the initialization of hotspot detection. Every dot represents a DCP. Dark dots represent DCPs
for which the received radiation is more than the lower bound of hotspot dose, lighter dots received less than the lower bound
of hotspot dose.

In section 3.4.1 it was discussed that hotspots are only of importance whenever they exceed a cer-
tain distance from the catheters, since it is no problem if a large hotspot is formed within the catheters.
To adhere to this requirement we only want to measure hotspots outside of the 1.1 mm radius of the
active dwell positions, to prevent registering a long hotspot within the catheters. Therefore, besides
giving the all non-hotspot-dose DCPs a initial parent pointing label of -1, all DCPs that fall within a 1.1
mm radius of the active dwell positions are also given the initial parent pointing label of -1.

Now that the algorithm has been equipped to register hotspots, the end result of the procedure
should be transformed to the Hotspot Size Index metric, which was the sum of hotspot sizes of hotspots
with a size of atleast 0.1 cc. In order to calculate this a weighted sum is calculated for all DCPs within the
same connected component. The sum is taken over the respective volume that each DCP represents.
So if there are 10 DCPs pointing to root DCP 1, and they all have a volume of 0.01 cc, the resulting sum
would be 0.1 cc for the hotspot of DCP 1. By then comparing the size of the hotspot to the hotspot lower-
bound volume of 0.1 cc we can sum the hotspots and thereby calculate the HSI value of a treatment
plan. Furthermore, it is also possible to save all hotspot sizes for later inspection when required.

Psuedocode and computational complexity of hotspot detection methods

The theoretical worst-case time complexity of this procedure is 0(D?), where D is the set of dose
calculation points. This time complexity is determined by the pair-wise distance calculations that need
to be made between the DPCs. However, by pre-processing the DCPs into buckets, the number of
pair-wise comparisons is reduced. This greatly sped-up the process of graph generation, as not for all
pairs of dose calculation points the distance had to be calculated and the cost of pre-processing only
costs O(D).

When there are different maximum edge lengths per organ/volume, then the maximum of those
edge lengths is used for bucket creation. When comparing pair-wise distances to the maximum edge
length, then the maximum of the maximum edge lengths from the two organs/volumes is used for the
comparison.
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Algorithm 1 Graph Generation

1:
2
3
4
5:
6:
7
8
9
0
1

12:
13:
14:
15:
16:
17:
18:
19:
20:

21:
22:
23:
24:

25:
26:

procedure Graph Generation(D, E;4x) /I D = set of DCPs
: Il Epmax = max edge length
E«{} /Il Set of edges, stored in CSR matrix format
Bxyz < {3 /I Set of buckets, each dimension divided into
/I segments equal to the maximum edge length
foralld € D do /I Fill the buckets with the DCPs

x < |dy/Emax]
Y < |dy/Emax]
z < |dz/Emax]
byy,<d

forall b, , € Byy , do
forall d, € by, , do

forall d, € b,, , do /l Compare distances for DCPs in same bucket
if d, # d, then
if distance(dq, d,) < Enqx then// If distance smaller than max distance
E « €d1’d2

forall d, € N(by,,,) do /I Compare distances for neighbour bucket DCPs
if distance(d,d,) < Epnqx then
E « edl'dz

return E // Returns the created edge list
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Algorithm 2 Hotspot Detection

1:
2: procedure Labellnitialization(D, Ry, ,) /I D = Set of DCPs per treatment plan
3: I Ryp » = hotspot radiation lower bound per organ o
4: L« ] /I Array of DCP labels per solution
5: for all D, € D in parallel do
6: forall d € D in parallel do
7 if R(d) = Ryp, then /I check against radiation lower bound of the organ
8: // that the DCP is sampled in
o: Ly[d;] < d; /I d; = index of DCP d
10: else
11: Ly[d;] « —1
12: return L
13:
14: procedure Afforest(L, E, #rounds) /I L = labels of DCPs per treatment plan
15: I/l E = set of edges between DCPs
16: fori « 1,#rounds do
17: forall L, € L in parallel do Il L, = labels for treatment plan x
18: forallleL,:i<|[N()]| in parallel do
19: union_async(l, N(1);, L) /I N(1l) = neighbours of DCP [
20: foralll € L, in parallel do
21: FindAndCompress(l,L,)
22 ¢y < most_most_frequent_component(L,)
23: for all L, € L in parallel do
24: forallle L, :1+#c, inparallel do
25: for i « #rounds, ||[N(l)|| in parallel do
26: union_async(l, N(v);, Ly)
27: forl € L, in parallel do
28: FindAndCompress(l,L,)
29: procedure union_async(u, v, L,) Il p,, = parent label of DCP u

30: py < FindAndCompress(u, L), p, < FindAndCompress(v, L,)
31 while p, # p, do

32: if p, = L,[p,] and CAS(&P[u], py, py) then

33: return

34: pu < FindAndCompres(u,L,),p, < FindAndCompress(v, L,)
35: procedure FindAndCompress(u, L,)

36: r<u

37 if L,[r] = r then

38: return r

39: while r = L,[r] do

40: T« Ly[r]

41: while j « L,[u] > r do
42: Le[ul] «r,u«j
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Algorithm 3 HSI

procedure HotspotVolumeConversion(L, V)

1:
2
3 H <« {}

4 for all L, € L in parallel do

5: forall [ € L, in parallel do
6 if | # —1 then

7 AtomicAdd(H,[l], )
8 return H

9

10: procedure HSI(H,V};,)
11:

12: HSI <[]

13: for H, € H in parallel do

14: for h € H, do

15: if h >V, then

16: HSI[x] < HSI[x]+h

/I L = set of labels for DPC per solution
/l'V = array of approximated volume per DCP
/I H = set of hotspots per solution

/l AtomicAdd to prevent Data Race

/I H = set of hotspot per solution
Il V;, = volume lower bound on hotspots

The run-time complexity of this algorithm is determined by the FindAndCompress method, which is
not done in parallel. This method has a run-time complexity, defined for parallel computing, of O(|D|)
depth complexity and O(|D|?) work complexity. What should be noted here is that this complexity is
also linear in the maximum degree of the graph, as for every edge of a node the FindAndCompress

step has to be performed.






Equipping BRIGHT to Improve
Homogeneity

This chapter will be dedicated to describing how BRIGHT is adjusted such that it is potentially better
equipped to generate more homogeneous treatment plans. These different means of adjustment will
all be tested in the experiments.

4.1. Options for Implementation

This chapter will first start off with a more detailed explanation of the different ways in which BRIGHT
is able to steer improvement based on the quality of the treatment plans. Then, the different ways
of assessing the quality of the treatment plans will be discussed. There are three main routes for
steering on treatment plan quality, which all have their advantages and disadvantages. These three
different routes are the creation of an extra objective, a new constraint or the augmentation of the
current objectives.

4.1.1. Creating an Extra Objective

As discussed in Section 1.3.1 BRIGHT tries to improve the treatment plans by looking at the Least
Sparing Index (LSI) and the Least Coverage Index (LCI). It does so by comparing different treatment
plans based on these two metrics. Using Pareto-dominance, in every generation the set of non-
dominated solutions is determined based on the population and the offspring of that population. For
a solution to not be dominated means that there is no other solution that is equal in all objectives and
better in at least one. The set of non-dominated solutions is called the Pareto approximation front, as
there is no guarantee that the front has reached optimality. The set of solutions forms a front in 2D
space as visualized in Figure 4.1.
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Figure 4.1: Example Pareto Approximation Front. Every dot represents a treatment plan. On the x-axis the LCl-score and on
the y-axis the LSI-score of the treatments plans are shown. The orange region in the top right corner is the golden corner
where all treatment plans have positive LCI and LSI.

When an extra objective is added, BRIGHT tries to improve that new objective as well as possible,
thereby doing exactly what is intended if that objective relates to the HSI. Furthermore it even provides
more insights in the possibilities for the patient as it will show the trade-off there is to make when it comes
to homogeneity and the other two objectives, if any. Visualizing the trade-off between 3 objectives is
less trivial than two objectives without using motion. However, motion is difficult to show in a text file,
as can be seen in Figure 4.2, where the viewing angle is adjusted between different plots.

(22) ISH

(33) ISH

0.60 -0.40 020
Ll

Figure 4.2: The same 3D Pareto approximation front with different viewing angles per plot. The axes show the LCI, LSI and
HSI in this example. The colour coding of the treatment plans is linked to their HSI value, which will be further explained in
Figure4.3.

Since using motion is not ideal in a text based document such as this one, slicing is used. In Figure
4.3, a Pareto approximation front is shown, which has three axes rather than two. This means the third
objective is flattened, which can result in treatment plans placed on top of each other. This happens
when two treatment plans have a combination of LS| and LCI values that are just slightly different, but
have a different third objective value. In that case, because of the size of the marker used to indicate
a treatment plan, one treatment plan will be placed on top of the other. Slicing through the Pareto
approximation front using upper bounds on the third objective is then required to get a good view of the
achieved third objective values. The different plots in Figure 4.3 have a different upper-bound (2.0, 1.0
and 0.5 cc) for the third objective (HSI).
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Figure 4.3: Pareto approximation fronts with different upper-bounds for achieved HSI values. On the right side of the graphs a
colour bar is shown. The colour of a treatment plan as shown in the Pareto approximation front corresponds to the achieved
HSI value of that plan. In every plot only the plans that adhere to the HSI upper bound are shown. The upper bounds are 2, 1
and 0.5 cc.

This extra dimension however comes at a cost. Adding an extra objective increases the computa-
tional complexity of the problem. Rather than a curved line for the approximation front, there now is a
curved 3D surface. Having this third objective to account for in comparing treatment plans for domi-
nance means there is more space for the solutions to fill without being dominated. This extra dimension
results in a decrease in efficiency of population-based optimization methods that make use of domina-
tion and aim to cover the entire Pareto front (Deb, Saxena, et al., 2006), which BRIGHT is, since the
chance increases that a treatment plan is non-dominated. This in turn reduces the pressure that the
optimization has towards the Pareto approximation front, which results in an increase in convergence
time. In the worst case the required population size to approximate the Pareto front increases expo-
nentially with an increase in the number of objectives. The formula for determining the population size
in that worst-case scenario would be O(N™), where N is population size needed for a one-dimensional
problem and M is the number of dimensions. In the bi-objective problem formulation the ideal popula-
tion size was found to be 96 (Bouter et al., 2019). This would mean a population size of (v96)3 ~ 941
for the tri-objective problem. This worst-case behaviour is only true when there is an equal trade-off
between all objectives. If two or more objectives in a multi-objective problem are non-conflicting and
thus show now trade-off, then the dimensionality of the Pareto front reduces. This would then in turn
also lead to a reduction in the required population size.

In this research the population size has been set to 288. This number has been found in prelimi-
nary experiments to be effective for three objectives. In BRIGHT, a new generation is generated using
clusters which are fitted along the approximation front to promote the pressure towards the approxi-
mation front. The number of clusters found to be effective in the bi-objective formulation is five (Bouter
et al., 2019). Due to the increase dimensionality also the number of clusters needs to increase. In this
research the number of clusters has been set to twelve. This number has been found in preliminary
experiments to be effective for three objectives.

An important advantage of using a third objective is that no aspiration value for the third objective
has to be set upfront for the patient, which will be the case for the next two means of steering on
treatment plan quality.

4.1.2. Setting a Constraint

Another option would be to simply add a constraint based on the homogeneity quality of the treat-
ment plans. This constraint would render the treatment plans which do not adhere to the set cut-off value
infeasible. In the generational check for Pareto dominance by BRIGHT, also some hard constraints are
checked. If one of the solutions is violating a constraint, then automatically the other treatment plans
dominate. This results in the infeasible treatment plan being discarded. This method of constraint
handling is called 'constraint domination’.

The advantage of using a constraint over adding a third objective is that it will not result in added
complexity other than the need to calculate the homogeneity quality/constraint value itself.

The difficulty then, however, is finding a value that satisfies the clinical requirements, but still allows
for the algorithm to find good treatment plans for all patients. If the constraint is set too tight, this could
result in the optimization not being able to properly explore the solution space. This could result in a
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Pareto approximation front that is not able to reach the Golden Corner. If the Golden Corner is not
reached but it could have been possible without the constraint, then that would implicitly mean that
BRIGHT values satisfying the constraint more than reaching the Golden Corner. This would not be in
line with the preferences of the clinical experts.

To see if there could be a constraint value that generalizes well to the whole patient set one could
first use the treatment plan quality indicator as a third objective to see for each patient what is possible.

An option for improving the downside of not being able to find the right constraint could be to make a
dynamic constraint. This constraint would be based on the already learned parts of the solution space.
This however is left open for further research.

4.1.3. Augmenting Current Objectives

The last option for steering upon a homogeneity indicator is augmenting the current objectives. The
current objectives, LSl and LCI, are both a combination of DVIs. As discussed in Section 1.3.1, the
LSI and LCI are given the value of the worst performing DVI in the set of DVIs they represent. This
performance is measured by the achieved value of the DVI and its aspiration value. The set of DVIs
of both LSI and LCI can be extended with a new indicator for the homogeneity, with its own aspiration
value. The logical option would be to extend the LSI, as this focuses on the sparing of organs and
tissues which the homogeneity requirements are also focused on.

The advantage of adding the homogeneity indicator to the current objectives over adding it as its
own objective is one of computational complexity. The problem will remain a bi-objective one, but will
account for homogeneity. The advantage over adding it as a constraint is that it will not render part of
the solution space infeasible, allowing BRIGHT to explore all of the solution space.

A downside of this approach is that the last statement is only partially true. To add the new indicator
to the set of LSI, one would be required to set an aspiration value. The problem with this is that
it is not known if a good aspiration value is achievable. If the aspiration value is set too ambitious
for a patient, then this indicator will dominate the behaviour of the LSI. This means that BRIGHT will
effectively disregard the other indicators in the LS| and only focus on the homogeneity indicator, which
could lead to BRIGHT not reaching the Golden Corner, as was the case with adding a new constraint.
If the aspiration value is set not ambitious enough and is achieved too easily, then the other indicators
will dominate the behaviour of the LSI. This would result in unexplored parts of the solution space, as
BRIGHT will disregard further exploring the minimization of the new homogeneity indicator, and will be
unable to find plans with sufficiently small hotspots.

4.2. Options to measure homogeneity

When trying to improve the homogeneity of the treatment plans, the dwell times have to be ad-
justed. To do this, BRIGHT must be adapted to promote the right adjustments. Currently the metrics
that BRIGHT can steer on are the LCI and the LS| which are a proxy for the DVIs. In formulating met-
rics to steer upon for improving homogeneity, one can either look directly at the distribution of dwell
times or look at the resulting dose distribution. The other choice to make is to either directly measure
homogeneity or indirectly.

The advantage of looking at the dwell times is that it is less complex from a computational point
of view, as there are fewer dwell positions (200-400) than dose calculation points (>100.000). The
advantage of looking indirectly at homogeneity is that the method can be created in a way that is com-
putationally cheaper, as less detail is required. However, these indirect methods might be correlated
strongly enough with the formation of hotspots so that they will do the job, without the expensive op-
eration of registering hotspots. Therefore different strategies will be tested for both dwell time-oriented
as well as dose distribution-oriented improvements, and direct registration as well as indirect. In the
paragraphs below the different indicators which will be tested in this research will be discussed.

4.2.1. Dwell time oriented indicators

A treatment plan consists of a set of dwell times for a set of dwell positions. Different dwell times will
result in different dose distributions. By controlling the distribution of dwell times one could in theory
control the formation of hotspots. The question is how the dwell times should be controlled in order to
reduce the formation of hotspots.

As discussed in Section 3.2 the main issue of hotspots is the connectedness of high-dose regions.
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A single small high-dose region is not an issue, but a large high-dose region consisting of one long
dwell time or multiple medium dwell times is the problem. Potentially, a combination of the dwell time
as well as the distance between longer dwell times should be taken into account when looking for
homogeneous treatment plans.

Dwell time modulation

In literature and practice, as discussed in Section 3.3, the main means of improving treatment plan
homogeneity is the use of Dwell Time Modulation (DTM) which has been formulated in several ways.
The general idea behind the DTM is to reduce/limit the amount of deviation that adjacent dwell positions
have in relation to each other. The goal of the DTM is to result in a smooth distribution of dose over the
target volumes. This can thus be seen as an indirect way of mitigating hotspots.

The DTM formulation that will be tested in this research is shown in Equation 4.1, which is the
absolute DTMR from Balvert et al., 2014.

DTM=ZZmaX(O,|Ti—T]-|—9) (4.1)

i€eD jeC;

D is the set of dwell positions, C; is the set of the k-nearest neighbours of dwell position i/, T; is the
dwell time of dwell position i and 6 is the control parameter for the allowed deviation.

The conclusion in the paper by Balvert et al., 2014, was that adding the DTMR did result in im-
proved robustness but did not yield a reduction in hotspot sizes without simultaneously deteriorating
the D&Fostete. However, in their paper they only had three patients and the model used was a single-
objective one. By using a multi-objective optimization it might be possible to see if there is a correlation
between hotspots and DTM value.

The computational complexity of calculating the DTM value is linear in the number of dwell positions
to calculate deviation for, i.e. O(D). The location of the dwell positions will not change during the
optimization and reevaluation. Thus, by calculating the k-nearest neighbours of each dwell positions
once and storing it in memory, it can be reused. Then during optimization and reevaluation only k
computations have to be made for each dwell position (0 (kD)). Given that the number of dwell positions
is relatively low (200-400) this is not an expensive operation. If for instance k would be set to 6 (aiming
for two neighbours in each direction x, y and z), this would result in approximately 400 - 6 = 2400
calculations per treatment plan.

The downside of DTM is that it only focuses on the deviation between dwell times, but not on the
length of the dwell times themselves. In theory, a treatment plan with a uniform distribution of very long
dwell times would receive a perfect score upon the DTM. However, this would result in a very large
hotspot which covers all organs. But given that BRIGHT is not only steering upon one metric, it might
result in more homogeneous treatment plans. In combination with the V200, which indirectly reduces
the dwell time lengths, the DTM might be able to prevent hotspots.

DLDM

In the paper by Morén et al., 2018b, which focused on reducing hotspots, a novel approach to
reduce hotspots was presented. The results showed that with their approach a potential reduction
in hotspots was achieved. However, their means of measuring hotspots was indirect, by focusing on
multiple sub-volumes and measuring the 1, in those volumes.

This used metric/objective focused on the dose distribution rather than the dwell time distribution, but
it was an inspiration for a reformulation to dwell times which tries to directly minimize hotspots. Using
their formulation both the minimization of maximum dwell times as well as maximizing the distance
between longer dwell times can be established. In their paper they did not name the metric, so the
liberty has been taken to name it Dwell Length and Distance Modulation (DLDM). The formulation of
the metric is shown in Equation 4.2:

B 9(T) x g(Tj)
DLDM = T +z 1), (4.2)

i,jeD:i#IAd(L,j)<l ieD

where D is the set of dwell positions, T; is the dwell time for dwell position i/, d(i,j) the Euclidean distance
between dwell positions i and j, / the maximum distance between dwell positions and g is the function
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described in Equation 4.3 where B is a lower bound on the dwell time.

g(D;) = max{0,D; — B} (4.3)

The value for /, the maximum length between dwell times for which the DLDM will be calculated, has
been set to 10 mm. If no upper-bound value would be set, then BRIGHT would be pressured to push
out the longer dwell times as far out from each other as possible. This could then result in more doses
in the edges of the prostate, closer to the normal tissue. This is not necessarily the behaviour that is
sought after. Therefore, by setting a maximum distance, only high dwell positions that are too close to
each other are penalized. The value 10 mm has been chosen because the implant which guides the
catheters will put adjacent catheters at least 5 mm apart from each other (Elekta, 2021). Based on the
hotspots seen in practice only hotspots are formed between 2 adjacent dwell positions in transversal
direction, therefore 2 - 5 = 10 mm has been chosen.

The value for B, the lower bound on the dwell time, is dependent on the source strength that is
being used. Based on that, the time is calculated which will generate a x% iso-dose line that has a
radius of 2.5 mm, given that the spacing between adjacent dwell positions is either 2 mm or 5 mm. In
setting a lower bound on the dwell time for the calculation of DLDM, more focus is applied on the higher
dwell times which cause hotspots. If all dwell times were taken into account then a small reduction in
a low dwell time would also result in an improvement of the DLDM. This behaviour however is not
what this metric is intended for. The value used in this research, which showed the best results in the
experiments was 100%.

The computational complexity of this metric shares some similarities to that of the DTM. The dis-
tance matrix can be computed once and stored in memory. During optimization, the complexity of
the evaluation of one treatment plan then is O(|D|?). The number of calculations would then be, for a
patient with 400 dwell positions, nn-l) _ 2003% _ 79.800 calculations. This falls in range with the
computation of the DCPs, therefore using dwell position calculation will in general not worsen the time
complexity. Some optimizations can however be put in practice, such as sorting the distance to other
dwell positions and stopping the DLDM calculation for that dwell position once the dwell positions are
further away than 10 mm. This significantly reduces the number of calculations to be made.

4.2.2. Dose distribution oriented indicators

In the dose distribution oriented indicators there are multiple strategies to follow. As discussed in
Section 3.4.2 about the metrics to measure homogeneity from literature, there are multiple ways to
define homogeneity, from aggregate measures to the more exact measure described in Section 3.5.5.

HSI

The first dose distribution based metric is the HSI index as described in Sections 3.4.3 and 3.5.5.
This metric is exactly what needs to be minimized to prevent hotspots from forming. The HSI is also
the metric which will be used for evaluating the results of all other possible improvement of BRIGHT.
However, there is a downside to this method, which is the computational and space complexity of the
procedure.

To calculate the HSI in an exact way, which would be able to separate hotspots on a distance of 0.5
mm, the required number of dose calculation points is large. When assuming that a DCP represents
a perfect cube in volume, then the required volume per DCP would be (0.5)® = 0.125 mm3. The
volumes of organs in the patient data set used in this research are shown in Table 4.1. Next to that
the volume per DCP if 20.000 points were used during optimization is shown. In the last column the
required number of DCPs is shown to reach a volume of 0.125 mm3 per DCP.

Volume (cc) Average Minimum Maximum DCP(mm3) Required #DCPs
Prostate 45.62 32.13 64.67 2.28 364,993
Normal-tissue Prostate 78.20 46.99 108.33 3.91 625,639
Vesicles 4.57 1.27 7.68 0.23 36,525
Normal-tissue Vesicles 28.38 14.94 39.80 1.42 227,051

Table 4.1: Overview of organ (mean, min and max) volumes in the used patient data set and the volume a single DCP
approximates (V/DCP) given that organ volume in combination with the used number of DCPs. The required #DCPs, shows
the number of DCPs that would be needed to allow for a separability of 0.5 mm between hotspots.
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This shows that the required number of DCPs is even larger than what was used during reevaluation,
which was 100,000 per organ. Only the seminal vesicles are small enough in volume. If the other
organs were given 20,000 DCPs, then the total number of points required during optimization would
come at a total of 2.5 million. Given that the received dose by a DCP is stored as a float of 4 bytes,
then for a single treatment plan one would already need 10 MB. During the optimization procedure
BRIGHT stores more than 1000 treatment plans on GPU memory, which results in at least 10 GB of
required GPU memory. This is simply too much required space as this space is also required for other
data structures and computations. Therefore using HSI in the exact way with 0.5 mm separability is
infeasible even without looking at the computational complexity. For reference, the machines on which
this research has been conducted had 12 GB of VRAM, i.e. GPU memory.

Nevertheless, the HSI could also be used in an approximate way by increasing the maximum edge
length and keeping the 20.000 DCPs. This reduces the space requirement but comes at the potential
cost of accuracy. The consequence of this could be overestimation of hotspot size when two hotspots
are close to each other which should be separated based on the 0.5 mm requirement. Another con-
sequence could be less accurate hotspot size measurement. There are simply less DCPs, meaning
that the accuracy of hotspot volume also decreases. In the study done by Bouter et al., 2019 a similar
problem arose with the number of DCPs for DVI calculations. They eventually came to the conclusion
that the reduced accuracy of 20,000 DCPs compared to the 100,000 DCPs for the calculation of the
DVIs was acceptable. A similar question has to be answered for the HSI. With the reduced number
of DCPs it was chosen to adjust the maximum edge length for generating the graph. The edge length
will now instead of 0.5 mm be determined based on the volume of the organ that the DCPs are in. So
for every organ, a different maximum edge length will be determined based on the volume of a single
DCP represents. This is simply done by taking the cube-root of the volume per DCP, again assuming
a DCP represents a cube volume. The motivation for defining the maximum edge length in this way is
that if the assumption of a perfect uniformly distributed set of DCPs is true, then the generated graph
is connected as a lattice. Now for constructing the graph, if two DCPs from two different organs are a
potential link, then the largest maximum length is taken to check if the connection should be there. If
the assumption of cubic volume does not hold, which is highly likely, then the edge length should be
dependent on direction to create a perfect lattice. However, hotspots are ignorant of direction when it
comes to connectivity and therefore a single edge length for every direction should be chosen.

The computational complexity of the HSI can be found in Section 3.5.5. The computational com-
plexity is worse than that of the previous metrics, which focused on the dwell times rather than the
DCPs. This is a downside of this approach.

Extra V indices

The second dose distribution based metric is a simpler one in terms of computational complexity
as compared to the HSI but still looks at the dose distribution itself. The metric is the sum of extra V
indices as described in Equation 4.4. This is an indirect way of trying to reduce hotspots.

— [/Prostate SeminalVesicles Normal-TissueProstate Normal-TissueSeminalVesicles
Vindices(c€) = Vzgp + V300 +V200 +V200 (4.4)

The idea behind the metric is that it might not be necessary to exactly know where the hotspots are,
when they can be reduced them with more general means. The shortcoming of the Vi °st*t¢, as
discussed in Section 3.2, was that it did not discriminate between multiple small hotspots below the
volume lower bound and a single (or a small number) of large ones. However, given the union-like
geometry of radiation given off by active dwell positions (see Figure 3.6), the larger hotspots are more
likely to have ’hotter’ insides than smaller hotspots. By not focusing on the 1, but on the 13, it might
be possible to reduce most of the hotspots that are formed.

The non-linear dose-rate fall-off means that there is a non-linear relationship between distance
from the dwell position and the received dose. The lower the dosage the less strong the fall-off is over
distance. Using the TG-43 dose rate model (Rivard et al., 2004), one can calculate the difference in
300% volume between a single and multiple points of radiation achieving the same 100% iso-dose
volume. This is shown in Figure 4.4. There it can be seen that two dwell positions result in a 12%
decrease of I3, iso-dose volume as compared to a single dwell position for the same 100% iso-dose
volume. This effect combined with steering on V3,4 could result in more shorter dwell times as this is
advantageous for the 13, and potentially also for the formation of hotspots.
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Figure 4.4: Visualisation of iso-dose lines of a single vs. double active dwell position(s) with equal 100% iso-dose volume.
Every colour represents a different iso-dose, i.e. 400%, 300%, 200% and 100%. The resulting iso-dose volumes for 100% and
300% are shown in the text below, as well as the used dwell time in seconds.

With these findings the following research question can be answered:

Research Question: BRIGHT adjustments
How can BRIGHT be enhanced to potentially produce more homogeneous treatment plans?

BRIGHT can be enhanced to produce more homogeneous treatment plans by adding an
extra objective, a new constraint or by augmenting the current objectives. These additions
need a metric to be defined. These metrics can be either directly or indirectly related with
hotspots. The advantage of adding an extra objective over a new constraint or augmenting
current objectives is that no prior aspiration value has to be set. The potential advantage of
using a metric that is indirectly related to hotspots is a reduced computational complexity as
compared directly related metrics.

4.3. Adaptive steering

The last adjustment made to BRIGHT in this research is not directly related to homogeneity but
more to intelligently reducing the search space during the optimization. The motivation for this is two-
fold. Firstly, the number of plans of interest can be increased. Secondly, the computational time to
reach convergence can be decreased. These potential advantages are especially important when an
additional objective is introduced, because the increased size of the objective space makes it more
difficult to reach deep into the golden corner.

In the clinical results it was shown that the plans selected from the Pareto approximation front for
further inspection and adjustment in OncentraBrachy were all very close to the Golden Corner. This
can be seen in the figures in Section B.1 in the appendix. However, during optimization, BRIGHT also
puts effort (allocating individuals) in exploring better plans in the tails of the Pareto approximation front.
One could conclude that this is all done in vain, since these plans are not of interest to the clinical
experts.

If during optimization, when learning what is achievable for a patient in terms of LS| and LCI, a
method is applied to shrink the search space, then the computational power is allocated more efficiently
towards the main goal of the optimization. Given that BRIGHT is a population-based optimization
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method this is especially important, since now more of the individuals contribute to the goal of pushing
the approximation front towards the golden corner and more individuals will be created in and around
the golden corner for the final result.

The method used to restrict the search space based upon what is learned during optimization is
adaptive steering, which was inspired by Alderliesten et al., 2015. Adaptive steering is steering the
search effort of BRIGHT throughout the optimization phase based upon the achieved results. This is
done by restricting the search space, i.e. tightening the bounds of the search space throughout the
generations. A simplified example of the process is shown in Figures 4.6.
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Figure 4.5: Generational progress of Figure 4.6: Generational progress of
Pareto approximation fronts without Pareto approximation fronts with adaptive
adaptive steering. 5 generations of steering. The short straight red lines are
Pareto approximation fronts are shown, the enforced constraints per generation,
starting from 1 ending at 5. starting at generation 2.

In each generation an assessment is made on the spread of the generation in both LCI and LSI.
Based on this spread a new constraint is determined which cuts off the bottom x% on both the LSI
and LCI. This constraint will render any treatment plan that has a worse LSI or LCI infeasible, thereby
pushing BRIGHT in the direction of the Golden Corner. This procedure is only started if it can be
reasonably assumed that well-enough spread has been established in the population. In the start of
the optimization phase random plans will be generated. If the adaptive steering would be active right
from the start then this might lead to a too restrictive search space, which will hinder the exploration of
BRIGHT, and might lead to premature convergence. This problem is visualized in Figure 4.7, where if
the adaptive steering would be active the trajectory towards the Golden Corner would be hindered.
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Figure 4.7: Visualization of the potential initialization problem with adaptive steering. The curved lines show the Pareto
approximation fronts of 2 generations. The short straight red lines show the enforced constraints. The optimization is not able
to reach generation 2, due to the enforced constraint after generation 1.

If a new constraint is enforced upon the population, then the elitist archive will also need to be
evaluated to see if any of the individuals in it are now rendered infeasible and have to be discarded.
When a new constraint is very ’aggressive’ and renders a large portion of the elitist archive infeasible
then it might not be wise to apply a new round adaptive steering on the next generation, as this might
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lead to a reduced performance of the optimization procedure due to the inability to learn. Therefore the
same check as for starting the adaptive steering is also applied in each generation.

If the new constraint, which has been calculated upon the spread in either the LCI or the LSI, does
not improve more than 1% on the previous constraint for that objective, then it is not applied to prevent
the need to reevaluate the elitist archive over and over, without meaningful improvement.

Lastly, the adaptive steering is stopped for either objective if a certain bound has been achieved.
This allows the clinical experts to still have enough choice to assess the trade-off for a patient. In this
research, the adaptive steering is stopped when the LCI has achieved a value of -0.5 and the LS| a
value of -0.05. This is based upon the chosen plans in the clinic.

When optimizing the treatment plans in the current set-up used in the clinic, there is no requirement
to speed up the process as it can reach convergence within 180 seconds. However, if computational
complexity is increased by one of the proposed adjustments then adaptive steering might be necessary
to achieve reasonable run-time results. This is especially true for adding a new objective, since this
will increase the objective space.

The pseudo-code of the adaptive steering procedure is shown in Algorithm 4.

Algorithm 4 Adaptive Steering

. procedure AdaptiveSteering(LClyp—max, LClip, LClnin, LClyax, LShip—masx, LSIips LSIin, LSImax, S, @, ap, ts)

I LCLip—max» LSIip—max = Max lower bound for LCI and LSI
Il LC1yp, LSI;;, = current lower bound on LCI and LSI
Il LCLyin, LSLy;yn = current worst LCI and LS| values
Il LClygy, LSLynay = current best LCI and LS| values

Il as, a,, = start and strength of adaptive steering
I ts = elitist archive target size
LChew-1p < LCLyp

1
2

3

4

5:

6: /I S = elitist archive
7.

8

9

0 LShew-1p < LSIyp

10:

1: ue<0 // Boolean to track changes

12: if |S|= a, - ts then /I Check if archive is full enough

13: if LCLyow—1p # LCI1p_max then // Check if bound is already at max

14: adj « (LClypqx — LClyiyn) - ay /l Calculate adjustment

15: if adj = LCl,,4, - 0.01 then /I Only apply adjustment if significant change
16: if LCITLeW—lb + ad] < LCIlb—max then

17: LCLyew—1p < LClyew_1p +adj 1/ Save new bound if not max bound

18: uel // Record change

19: else

20: LCLyew—1p < LCLip _max // Save new bound if max bound

21: u«<1

22: if LSLyew—1p # LSTp_max then /I Repetition for LSI

23: adj « (LSIpax — LSIyin) - ap

24: if adj > LS4, - 0.01 then

25:; if LSInew—lb + ad] < LS[lb—max then

26: LSLiow—1p < LSLyow—_1p + adj

27: ue1

28: else

29: LShew-1p < LShip-max

30: u«e1

31 if u =1 then // Only iterate over solutions if bounds changed
32: fors e Sdo

33: if s;c; < LCLyew—1p V Sist < LSIhew—1p then

34: S<S—s /l Remove all infeasible solutions given bounds
35: return LClzv_1p, LSThew—1p // Return new bounds for plan evaluation

The computational complexity of this method is determined by the iteration over all solutions in the
elitist archive and is therefore O(|S]). To prevent too much overhead of this method, the bounds are
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only adjusted if they make meaningful changes. If changes are less than 1% of the original bounds,
then changes are not applied and the iteration over the elitist archive is not performed.






Preliminary Experiments

In this chapter, the experiments for testing the effectiveness of adaptive steering and for the dif-
ference between fixed and variable edge length for HSI will be discussed. This set of experiments is
discussed in isolation of the main experiments of this research as it is a precursor to the main experi-
ments. The findings of these experiments will be used in the default set-up of the experiments that will
follow in the next chapters.

5.1. Adaptive Steering

5.1.1. Experiment set-up

To test the effectiveness of adaptive steering for both the bi-objective problem as well as a tri-
objective problem, several different combinations of input parameters will be tested. The input param-
eters that the adaptive steering procedure has are the minimum percentage of the elitist archive to be
filled and the percentage of the LCI/LSI range in the population to cut-off with the new constraint. For
both parameters the values 10%, 25%, 50% and 75% are evaluated. The Cartesian product of both
parameter sets are used to find the best combination and to evaluate their impact.

For the experiments with two objectives the normal brachytherapy problem formulation with the LSI
and LCl is used. The number of dose-calculation points is 20.000 per organ which results in 100.000
points, the population size is 96, the number of clustering components is 5, the elitist archive size target
has been set to 1000 and the time-limit for optimization is set to 180 seconds, according to the found
convergence time in Bouter et al., 2019.

For the experiments with three objectives, the third objective is the sum of the extra V indices as
described in Section 4.2.2. The motivation to pick this as the third objective rather than the HSI is
the required time as the convergence time when using 3 objectives with the sum of extra V indices is
shorter than that with HSI. The second reason is the fact that the sum of extra V indices will resultin a
3D surface that is spread out over the search space because of its continuous nature. With HSI, since
it has a lower bound in the sum, it is not necessarily a broader 3D surface of solutions but can tend
to be more shaped like a thicker line when visualized in 2D with the third objective projected onto the
plane spanned by the first two objectives. The number of dose-calculation points used per organ is
20.000 points, which results in 140.000 points because of the added normal tissues. The number of
clustering components is 12, the population size is 288, the elitist archive size target has been set to
1000 and the time-limit for optimization has been set to 600 seconds, which has been found to be the
convergence time for this problem based on visual inspection.

The experiments are run on eleven out of the twelve patients. Due to technical difficulties in data
exports patient 8 could not be used in this research. Every experiment is repeated five times to account
for the randomness in BRIGHT. The results are aggregated and averaged. The calculated performance
metrics are the time it takes to reach the golden corner (if reached), the starting time of adaptive steer-
ing, the stopping time of adaptive steering (when it has reached the -0.5 LCI and -0.05 LSI boundaries)
and the size of the final approximation set. To make a comparison without adaptive steering, both
problems have also been run without adaptive steering with the same settings for five times.
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The experiments have been run on a server with 20 Intel Xeon Processor E52630 v4 @ 2.20 GHz
with multi-threading, 128 GB RAM and a NVIDIA GeForce GTX TITAN X with 12 GB of GDDRS5 VRAM.

5.1.2. Results
In this section only a selection of the results will be shown, the full results are shown in the Appen-
dices B.2 and B.3.

Bi-objective problem

In Figure 5.1, the resulting Pareto approximation fronts are shown for a starting requirement of 75%
of the elitist archive and an adaptive strength of 10% of the range for LCI/LSI in the population. This
combination has shown the best performance in terms of how far it reached into the golden corner
consistently. The blue dots are the plans generated using adaptive steering and the grey dots are the
plans generated without using adaptive steering. The plots have been zoomed in to the golden corner
to allow for better visual inspection. The grey Pareto approximation front reaches further than the limits
of the plots.
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Figure 5.1: Resulting Pareto approximation fronts for the bi-objective problem (LCI and LSI), with adaptive steering strength
parameter set to 0.10 and adaptive start parameter set to 0.75. The blue dots show the plans achieved with adaptive steering,
the grey dots the plans without adaptive steering.

What can be seen in the figures above is that in the 2D setting, there is no advantage in using
adaptive steering when it comes to how far the optimization reaches into the golden corner. For almost
all patients the optimization without adaptive steering reach as far as with adaptive steering. Only in
patients 4, 5 and 9 it shows a little improvement, but in patients 1, 2 and 7 there is a slight deterioration.
These differences are however marginal and could be caused by randomness.

In Table 5.1, the results are shown for a selection of the performance metrics. The 'Time Difference
to GC’ states the relative time difference between optimizing with and without adaptive steering for
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reaching the golden corner. The average column states the average result for all patients, whereas
the ’Easiest (14s) states the results for the patient which was reached the quickest without adaptive
steering and 'Hardest (96s)’ the slowest. The 'GC size Difference’ states the difference in the number
of individuals in the Pareto approximation front that are within the Golden Corner.

Time Difference to GC (less = better) GC size Difference (more = better)
start¥% strength%| Average (33s) Easiest (14s) Hardest(96s)| Average (167) Smallest (117) Largest (256)

0.1 0.1 12% 42% 9% 553% 716% 378%
0.1 0.25 10% 35% -52% 557% 690% 352%
0.1 0.5 14% 31% -24% 555% 733% 337%
0.1 0.75 17% 40% -32% 564% 747% 346%
0.25 0.1 4% 29% -30% 535% 617% 395%
0.25 0.25 3% 20% -21% 558% 803% 389%
0.25 0.5 3% 19% -24% 555% 790% 381%
0.25 0.75 7% 27% -19% 549% 695% 384%
0.5 0.1 8% 24% -12% 542% 592% 390%
0.5 0.25 9% 24% 15% 556% 741% 374%
0.5 0.5 4% 35% -36% 552% 730% 386%
0.5 0.75 1% 23% -28% 558% 702% 377%
0.75 0.1 6% 19% -2% 559% 805% 391%
0.75 0.25 1% 31% -14% 543% 712% 388%
0.75 0.5 5% 29% -20% 556% 644% 384%
0.75 0.75 0% 23% -49% 555% 753% 389%

Table 5.1: Overview of difference (%) in required time before golden corner is reached and the size (number of plans) of the
resulting Pareto approximation front in the golden corner between BRIGHT with and without adaptive steering. Results are
shown for the bi-objective problem (LCI and LSI) for different settings for adaptive steering. The column 'average’ shows the
average results for all patients. The column 'Easiest’ shows the results for the 'easiest’ patient, the one that reached the golden
corner the quickest (14 seconds). The column 'Hardest’ shows the results for the most difficult patient. The same column
division is made for the golden corner size, where the size is reported in the column names.

What can be seen in the table is that almost all settings of adaptive steering will results in an increase
in time to reaches the golden corner on a average for all patients. This can be ascribed to the overhead
which is created by the reevaluation of the elitist archive since the time increases when the strength
decreases. For patients that easily reach the golden corner the overhead has a higher relative impact.
For patients that take longer to reach the golden corner there is an advantage in time visible.

When looking at the number of solutions found in the golden corner a very clear trend can be seen,
namely that adaptive steering greatly increases the number of plans found in the golden corner. This
however is not unexpected as the region outside the golden corner is rendered infeasible.

Tri-objective problem

In Figure 5.2, the resulting Pareto approximation fronts are shown for a starting requirement of 75%
of the elitist archive and an adaptive strength of 10% of the range for LCI/LSI in the population. This
combination has shown to be the best performing in terms of how far it reached into the golden corner
consistently. In the plots, the blue dots are the plans generated using tri-objective optimization with
adaptive steering, the purple dots the plans generated using tri-objective optimization without adaptive
steering and the grey dots the plans generated using bi-objective optimization without adaptive steering.
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Figure 5.2: Resulting Pareto approximation fronts for the tri-objective problem (LCI, LSI and sum of extra V indices), with
adaptive steering strength parameter set to 0.10 and adaptive start parameter set to 0.75. The blue dots show the plans
achieved with adaptive steering, the purple dots the plans without adaptive steering and the grey dots the plans without
adaptive steering for the bi-objective problem.

What can be seen in the plots is that using adaptive steering will result in reaching further into the
golden corner than optimizing without adaptive steering. What can also be seen is that with adap-
tive steering almost the same LSI and LCI values are achieved as what is done in the bi-objective

optimization.

In Table 5.2, the results are shown for a selection of the performance metrics.

Time Difference to GC (less = better)

start¥

strength%

Average Easiest{76s) Hardest(308s)

0.10
0.10
0.10
0.10
0.25
0.25
0.25
0.25
0.50
0.50
0.50
0.50
0.75
0.75
0.75
0.75

0.10
0.25
0.50
0.75
0.10
0.25
0.50
0.75
0.10
0.25
0.50
0.75
0.10
0.25
0.50
0.75

-19% -12% -56%
-15% -3% -51%
-24% 13% -84%
-30% 1% -70%
-15% -4% -61%
-18% -1% -47%
-26% -1% -82%
-23% -1% -55%
-23% 0% -62%
-19% -3% -44%
-25% 1% -63%
-25% 1% -12%
-21% -4% -58%
-23% -5% -56%
-26% -7% -59%
-23% -7% -47%

GC size Difference (more is better)
Average Smallest (62) Largest (147)
1742% 1872% 730%
1570% 1613% 693%
1392% 1310% 690%
1479% 1104% 706%
1818% 15959% 769%
1631% 1728% 736%
1582% 1557% 650%
1344% 1735% 756%
1726% 1681% 737%
1630% 1520% 752%
1737% 1313% 706%
1712% 1423% 741%
1720% 1748% 736%
1763% 1746% 751%
1755% 1687% 740%
1725% 1640% 669%

Table 5.2: Overview of difference in required time to golden corner and number of treatment plans found in the golden corner
between BRIGHT with and without adaptive steering for the tri-objective problem. Construction of the table is similar to that of

Table 5.1.

What can be seen in the table is that using adaptive steering in the tri-objective problem will signifi-
cantly reduce the amount of time to reach the golden corner and that the amount of solutions found in
the golden corner increases significantly.
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5.1.3. Discussion

The time to reach the golden corner does not tell everything about the convergence time. Ideally
one would take multiple points starting from the golden corner and increasing in both LS| and LCI
to the top right corner of the figure. Then using these points one could calculate how long it takes
for the optimization to reach those points. That would increase the insight in the convergence time.
Unfortunately this idea only came after the experiments had already been performed. Since solid
conclusions can also be drawn based upon that single point it was chosen to not repeat the experiments
(which took more than 50 hours) to only get the time at those points, both from a time perspective as
from a sustainability perspective as it would waist energy.

5.1.4. Conclusion

What can be concluded based upon the results of the experiment is that adaptive steering can
significantly improve how far the Pareto approximation front reaches into the golden corner when op-
timizing for three objectives. Furthermore, it also reduces the time to reach the golden corner. These
conclusions can not be drawn for the bi-objective problem. For the bi-objective case there was only an
advantage found for the patients that had a longer time to reach the golden corner. Since on average it
did not increase the time to reach the golden corner for the best settings but did decrease the time of the
hardest patient it is still useful to apply adaptive steering in the bi-objective problem. This conclusion
is further strengthened by the fact that for both the bi-objective as the tri-objective problem the number
of plans found in the golden corner greatly increases, which are the plans that the clinical experts are
interested in. The best settings were based on the visual inspection of the Pareto approximation fronts.
Deviating from these settings (increasing adaptive strength, lowering adaptive start requirements) will
potentially negatively affect the optimization procedure thereby resulting in worse Pareto approximation
fronts. For sake of space, only the plots for the best performing setting are shown, the other plots can
be found in Appendices B.2 and B.3.

5.2. HSI edge length

5.2.1. Experiment set-up

To test what the consequences are of optimizing on HSI whilst having a too low number of dose
calculation points for 0.5 mm hotspot divisibility, some experiments have been performed.

The number of dose calculations points has been set to 20.000 points per organ/volume. This is
the same amount used in the normal set-up of BRIGHT. This results in 140.000 dose calculation points
used in total as compared to the 100.000 points in the normal set-up.

For the edge length two different settings have been tested: both the fixed and the variable edge
length as described in Section 4.2.2. For the fixed edge length setting all organs get the same edge
length of 0.5 mm, the potential downside of this is underestimation of hotspots. This is caused by
missing connections between dose calculation points since they are just above this edge length but the
received doses does not drop between them. For the variable edge length, the length is set so that, if
the assumption is made that all dose calculation points are perfect cubes and uniformly distributed over
the volume, then the adjacent dose calculation points are connected. The edge length is calculated
per organ by calculating the side length of a cube given the volume per dose calculation point. This
edge length should reduce the underestimation of hotspot sizes which could be present in the fixed
edge length case. The potential downside is overestimation.

To get insights into the performance of both settings, the results are re-run with the required number
of dose calculation points for 0.5 mm hotspot divisibility per organ/volume and a fixed edge length of
0.5 mm. Then the calculated HSI value of the optimization run and the reevaluation run are compared
to see the difference and correlation.

To test both edge length settings the settings are tested on all eleven patients. Each experiment is
repeated five times to mitigate randomness in the results. All runs are ran until no additional significant
improvement are observed. The used hardware is the same as for the adaptive steering experiments.

5.2.2. Results

In Table 5.3, the deviation from HSI with 140.000 points to 700.000+ points are shown for both fixed
and variable edge length. For every treatment plan in the final approximation set, the difference in HSI
is calculated. Based on these values the minimum, average and maximum are determined for every
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run. The results shown in Table 5.3 are the averages of these runs.

Difference

Min Mean Max Average HSI (#hotspots)

Fixed Variable Fixed Variable | Fixed Variable Fixed Variable
Patientl -0.041 0.063 0.032 0.189 0.176 0.399 0.167(1.15) |(0.242(1.18)
Patient2 -0.037 0.233 0.006 0.405 0.064 0.554 0.462 (0.98) |(0.654 (1.00)
Patient3 -0.048 -0.112 0.072 0.077 0.22 0.241 0.182 (1.08) |(0.267 (1.35)
Patient4 1.207 -0.09 1.556 -0.003 1.509 0.139 2.040 (2.23) (1.200 (2.98)
Patient> i -0.042 ] -0.006 ] 0.023 0.000 (0.00) (0.047 (0.27)
Patienté 0.264 -0.09 0.575 0.073 0.924 0.354 0.746 (2.64) (1.141 (2.40)
Patient7? 0.25 -0.255 0.758 -0.036 1.426 0.207 0.835(3.02) |1.566(3.13)
Patient9 0.798 -0.242 1.136 -0.041 1.503 0.159 1.551 (3.36) |(0.857 (2.43)
Patientl0 0.798 -0.216 1.392 0.02 2.279 0.448 1.481 (3.63) | 2.03(4.03)
Patientll 0.02 -0.124 0.298 0.027 0.7 0.251 0.443 (2.09) |(0.585(2.13)
Patientl2 0.541 -0.093 0.815 0.065 1.452 0.272 0.981 (2.72) |0.711(2.31)

Table 5.3: Overview of the average, minimum and maximum deviation between registered hotspot sizes in treatment plans
evaluated on 140.000 DCPs and the required number of DCPs for 0.5 mm separability for both the fixed and variable edge
length hotspot registration. In the two right most columns the average HSI value and the average number of hotspots in
treatment plans for both the fixed and variable edge length are shown.

What can be seen in the results is that on average the variable edge length outperforms the fixed
edge length, as was expected. What can also be seen is that the average deviation for the variable
edge length is less then 0.1 cc (the lower bound volume for a hotspot). The fixed edge length generally
underestimates the size of the hotspots. For the adaptive edge length it both underestimates and
overestimates the hotspot sizes. The strongest deviation for the variable edge length can be seen for
patient 2. When looking at the average HSI value and number of hotspots it can be deduced that it
simply misses the one hotspot that is present in those plans.

In Table 5.4, the absolute deviation from HSI with 140.000 points to 700.000+ points are shown for
both fixed and variable edge length.

Absolute Difference

Min Mean Max Average HSI (#hotspots)

Fixed Variable Fixed Variable | Fixed Variable Fixed Variable
Patientl ] 0.063 0.034 0.189 0.176 0.359 0.167 (1.15) |(0.242(1.18)
Patient2 ] 0.233 0.01 0.405 0.08 0.554 0.462 (0.98) |(0.654 (1.00)
Patient3 ] 0.007 0.08 0.096 0.22 0.244 0.182 (1.08) |(0.267(1.35)
Patientd 1.207 0.015 1.556 0.081 1.509 0.201 2.040 (2.23) |(1.200(2.98)
Patients 0 ] ] 0.011 ] 0.064 0.000 (0.00) (0.047(0.27)
Patientg 0.087 0.002 0.573 0.1 0.807 0.334 0.746 (2.64) |(1.141(2.40)
Patient? 0.25 0.001 0.738 0.085 1.426 0.258 0.835(3.02) |(1.566(3.13)
Patient9 0.798 0.001 1.136 0.091 1.503 0.276 1.551(3.36) |(0.857(2.43)
Patientl0 0.798 ] 1.392 0.107 2.279 0.448 1.481 (3.63) | 2.03 (4.03)
Patientll 0.024 ] 0.298 0.071 0.7 0.253 0.443 (2.09) |(0.585(2.13)
Patientl2 0.541 0.006 0.815 0.1 1.452 0.272 0.981(2.72) |0.711(2.31)

Table 5.4: Overview of the absolute average, minimum and maximum deviation between registered hotspot sizes in treatment
plans evaluated on 140.000 DCPs and the required number of DCPs for 0.5 mm separability for both the fixed and variable
edge length hotspot registration. In the two right most columns the average HSI value and the average number of hotspots in
treatment plans for both the fixed and variable edge length are shown.

What can be seen in these results is again that on average the variable edge length outperforms
the fixed edge length. Furthermore we see that the absolute deviation are a little more significant, from
which can be concluded that both underestimation and overestimation of hotspot sizes is occurring.
The average absolute deviations are close to the 0.1 cc lower bound of the hotspot volume, meaning
that it will have some problems in matching the actual hotspots.
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In Table 5.5, the correlation of the calculated HSI (140.000 points) and HSI (700.000+ points) are
shown for both fixed and variable edge length.

Correlation Average HSI (#hotspots)
Fixed Variable Fixed Variable

Patientl | 0.857 0.83 0.167 {1.15) | 0.242 (1.18)
Patient2 0.997 0.913 0.462 (0.98) | 0.654 (1.00)
Patient3 | 0.914 0.845 0.182 (1.08) | 0.267 (1.35)
Patientd | 0.948  0.995 2.040 (2.23) | 1.200 (2.98)
Patients 1 0.971 0.000 {0.00) | 0.047 (0.27)
Patient® 0.702 0.989 0.746 (2.64) | 1.141 (2.40)
Patient7 0.168 0.997 0.835(3.02)|1.566 (3.13)
Patientd | 0.927 0.991 1.551 (3.36) | 0.857 (2.43)
Patientl0| 0.437 0.996 1.481 (3.63) | 2.03 (4.03)
Patientll| 0.436 0.979 0.443 (2.09) | 0.585 (2.13)
Patientl2| 0.298 0.983 0.981 (2.72)|0.711 (2.31)

Table 5.5: Overview of the correlation between treatment plan HSI value calculated on 140.000 points with both fixed and
variable edge length and treatment plan HSI value calculated on the required DCPs for 0.5 mm separability. In the two right
most columns the average HSI value and the average number of hotspots in treatment plans for both the fixed and variable

edge length are shown

What can be seen in the correlations is that the fixed edge length shows some low correlations for a
number of patients. What can also be seen is that the correlation of the variable edge length is generally
high. Two dips in correlation can be observed in patient 1 and patient 3. These dips in correlation can
be ascribed to the under and overestimation due to the lower number of dose calculation points. As
can be seen for patient 1, 3 and 5 the average HSI values are the lowest, which means the impact of
deviation is the greatest. For patient 5, the average HSI is almost 0, this means that correlation is likely
to be high as both implementations will not find hotspots.

5.2.3. Discussion

The high correlation between the variable edge length HSI and the full HSI does not necessarily
mean that it registers the hotspots sufficiently. There still can be discrepanties between the two metrics.
The correlation only shows if the data has the same ’direction’, meaning a high HSI for one registration
method means a high HSI for the other registration method. It could still be generally under- or overesti-
mating the hotspot sizes. Nonetheless, these over- or underestimations are, based on the seen results,
likely to be in the range of 0 and 0.1 cc which might not prove to be problematic for optimization. This
over- and underestimation are symptoms of over-fitting, as treatment plans are found that perform well
on a lower number of DCPs but their performance reduces when the number of DCPs increases.

5.2.4. Conclusion

From the results of the experiments, it can be concluded that the variable edge length outperforms
the fixed edge length. Furthermore, the pitfall of HSI with a lower number of dose calculation points
will be the registration of smaller hotspots with a size just above the hotspot volume lower bound.
In general, the HSI can be used in a setting with a lower number of DCPs per organ (20.000) and
still achieve high correlations with the actual HSI and low deviations. This means that the HSI could
potentially be used to improve treatment plans during optimization. In the remainder of this research
the variable edge length is used for directly optimizing on the HSI.






Methods and Experiment Set-Up

In this chapter the set-up of the experiments of this research will be discussed. This is followed
by a description of the methods used for calculating the performance metrics of different BRIGHT
adaptations to gain insights in the results.

6.1. Experiment set-up
6.1.1. General

All experiments have been performed on the same set-up as the adaptive steering experiments.
This set-up is a server with 20 Intel Xeon Processor E52630 v4 @ 2.20 GHz with multi-threading, 128
GB RAM and a NVIDIA GeForce GTX TITAN X with 12 GB of GDDR5 VRAM.

All experiments, except for the reevaluation of the clinical results, have been performed in five-fold
to counter the contribution of randomness in the results.

Before every experiment the convergence time was determined by running the experiment with
a run-time in which it could be reasonably assumed that the optimization converged (i.e. long run
time). Based on the generational Pareto approximation results, plots were made to visually inspect
when convergence had happened, i.e. when no improvements were observed anymore. A single
maximum run-time was set for an experiment in which all patients were used. These maximum run-
times per experiment were determined in a worst case manner, meaning that the longest convergence
time among the different patients was chosen as maximum run-time for the whole group of patients.

After the experiments were conducted all results are reevaluated for hotspot detection using a large
number of dose calculation points, as described in Table 4.1. The results from that reevaluation are
reported on.

All proposed adjustments to BRIGHT are first tested as a third objective to get insights in how they
perform. Based on these results a judgement will be made if they are suited for further exploration in
a bi-objective setting as either a constraint or as augmentation of the current objectives and find the
range of the metric throughout the patient group..

6.1.2. BRIGHT

Several parameters have to be set for BRIGHT. In this section the two deviations in standard pa-
rameters with the basic version of BRIGHT are discussed. The deviations are the number of clusters,
and the population size. In the bi-objective problem optimization, the number of clusters is set to 5
and the population size to 96. In the tri-objective problem optimization this is set to 12 clusters and
288 individuals as population size, as explained in Section 4.1.1. Ideally, these two parameters would
be determined using experiments for all different third objectives. This would require a multitude of
additional experiments and was deemed to be too computationally expensive and time consuming for
this thesis..

Another change as compared to the previous version of BRIGHT is the creation of normal-tissue
around the target volumes. This is done to be able to register hotspots in the normal-tissue. The normal-
tissue is created by sampling DCPs in a margin around the target volumes (i.e. prostate and seminal
vesicles). The margin is set to 1 cm. This value was established together with a clinical expert based
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on how far dwell positions are activated outside of the target volumes and the normal-tissue hotspots
seen in previous patients. The normal-tissue DCPs are sampled after the DCPs for the organs and
in a mutually exclusive way. This means that if the 1 cm margin stretches into an organ, then DCPs
will only be sampled up until the boundary of the organ, but not within the organ as DCPs are already
sampled there.

6.1.3. Patient data

A dataset of 11 patients with intermediate- and high-risk prostate cancer, previously treated at the
Amsterdam UMC in Amsterdam, the Netherlands, is used for all experiments in this thesis. These
patients were treated between April 2020 and July 2021 with external beam radiotherapy on the prostate
and base of the seminal vesicles to a dose of 44 Gy in daily fractions of 2.2 Gy followed by a single
dose of 15 Gy HDR brachytherapy on the prostate. A median of 20 (range: 17-24) catheters were
implanted, resulting in a median of 333 (range: 216—-429) dwell positions. Catheter reconstruction and
contouring of Regions Of Interest (ROIs) were done on three orthogonal pelvic T2-weighted turbo spin
echo MRI (Ingenia 3 T Philips Healthcare, Best, the Netherlands) scans with a resolution of 0.52 9
0.52 mm, and a slice thickness of 3.0 mm with a 0.3 mm gap. Three interpolated contours were added
between each contoured slice of each ROI.

For patient 8 there were technical difficulties in the export of the data and therefore could not be
used in this research.

6.2. Performance metrics

Several different performance metrics are used to give insights into the performance of different
BRIGHT set-ups. These metrics are motivated both by performance requirements from the clinic, as
well as metrics to give more insights in the underlying problem of reducing hotspots.

The metrics can be divided into 4 categories: hotspots, correlations, time, and robustness. Each of
these categories will be discussed in the subsections that follow. Next to the quantitative metrics, the
Pareto approximation fronts are plotted in the results section for all experiments to visually inspect the
performance. These plots are made with all the plans from the 5 runs for every experiment.

Hotspots

One of the most important performance metrics in this research is if there are hotspots in the treat-
ment plans. For every treatment plan every hotspot (according to the set specification of hotspots) is
recorded and written to file using its respective volume. Based on these hotspots the sum of hotspot
volumes and the number of hotspots is used for plan comparison.

Given that Pareto approximation fronts of a tri-objective problem can be a broader 3D surface,
the metrics are calculated in 3 ways. The first one is simply taking the whole front, the second one
is only looking at the solutions that are non-dominated in LCI and LSI (i.e. the bi-objective Pareto
approximation front) and the third one is the e-approximation front in the 2D Pareto approximation front.
The e-approximation front are all plans that are within 5% of both LS| and LCI of at least 1 treatment
plan in the bi-objective approximation front. By splitting up the results in these 3 ways more information
about the quality of the treatment plans is generated from the aggregate numbers. On top of those 3
subsets, another subset is used for the calculation of the metrics, namely the full Pareto approximation
front but with the hotspots smaller than 0.15 cc filtered out. This is done to check the conclusions
on robustness. The default lower bound of hotspots is 0.10 cc, which was set in accordance with
the clinical experts. To gain more confidence in the conclusions based upon the results, this value is
controlled for by checking if increasing this lower bound will show different results.

To assess the performance on LCI and LSI for different HSI upper bound filters on the resulting
Pareto approximation fronts, both a visual and a non-visual method is used. The visual method is
simply plotting the Pareto approximation fronts on a 2D grid, with on the x-axis the LCI value and on
the y-axis the LSI value. The HSI value is the shown by applying a colour gradient on the dots that
represent the treatment plans. For the non-visual way of describing the performance on LCI and LSI
three different metrics are calculated. The first metric is the best achieved LCI value in the Pareto
approximation front given a certain upper bound on HSI, the second is the best achieved LSI value
given an HSI upper bound and the last is the L-value for a given HSI upper bound. The L value is
calculated in a worst-case manner over the achieved LCI and LSI values. For every treatment plan
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the minimum is calculated between LCI and LSI, then from the list of minimums the maximum is taken.
This value is the L-value.

Time

In the clinic, time is not unlimited. Therefore, the faster BRIGHT is the better. However, an increase
in computation time of BRIGHT could also result in reduced work in the later clinical workflow, for
instance the need for manual adjustments.

For the time performance of the different adjustments the following metrics are calculated: the
number of evaluations per second, time to reach the golden corner, number of evaluations to reach
the golden corner and the number of real evaluations to reach the golden corner. The time to reach
convergence is determined visually on the basis of three scatter plots per time step per experiment.
Where X, y and z axis combination of the scatter plots are: LS| and LCI, LS| and third objective, and
LCI and third objective.

Robustness

As described in Section 3.1.2, one of the aspects of homogeneity is the increased robustness.
To fully assess the robustness of the treatment plans one would have to simulate disturbances and
measure the changes in outcome. This is out of scope for this research project, nonetheless since it is
an important aspect it is interesting to get a hint on the effect the different adaptations of BRIGHT might
have on this. To do so, the DTMR values for both the absolute and the relative DTMR (as described in
Balvert et al., 2014) will be calculated for all treatment plans.

Correlations

To see which aspects of a treatment plan are predictive for the hotspot size several different cor-
relations are calculated. These correlations will help us gain insights in how well different adjustments
are able to capture the creation of hotspots.

The correlation between several features and the resulting HSI value are calculated and reported on.
The features used for the correlation metrics are: LS|, LCI, Number of dwell positions used, Maximum
dwell time and the sum of extra V indices.

Statistical significance

To assess the significance of the results, a statistical significance test is applied. The two-tailed
Mann Whitney U test with p value of 0.05 is used for comparing results between the 5 runs of 2 exper-
iments.

With this explication of the performance metrics the first part of the following research questions
can be answered:

Research Question: BRIGHT performance

What are the important performance aspects of BRIGHT for HDR-BT and how do differ-
ent enhancements score on these aspects?

The important performance aspects of BRIGHT for HDR-BT treatment plans are how far the
Pareto approximation front has reached into the golden corner, what the resulting hotspot
sizes in those plans are and how long it takes to reach these results.






Results

In this chapter, the results of the performed experiments will be discussed to give answer to the
research questions. This will start with the reevaluation of the Pareto approximation fronts produced
in the clinic to get a feel for what the baseline is. Next, the experiments for all different adaptations of
BRIGHT will be discussed.

7.1. Results

7.1.1. Re-evaluation of clinical results
Assessing the performance of the proposed BRIGHT adjustments requires a baseline. This baseline
is determined in two ways. Firstly, re-evaluation of the Pareto approximation fronts as produced in the
clinic. Secondly, running the bi-objective BRIGHT multiple times (five) to assess the performance.
Running the bi-objective BRIGHT again is done to mitigate the influence of randomness on the results.
In Figures 7.1 and 7.2 the Pareto approximation fronts of two patients, as produced in the clinic are
shown.
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Figure 7.1: Pareto approximation front from the clinic for Figure 7.2: Pareto approximation front from the clinic for
patient 7 reevaluated for HSI values, zoomed in to the patient 10 reevaluated for HSI values, zoomed in to the
golden corner. golden corner.

These figures have been zoomed in on the golden corner as that is the region of interest to the
clinical experts, all plans with a LCI value lower than -0.5 or LSl lower than -0.05 are discarded. The
LCI and LSI values for the treatment plans are shown on the x- and y-axis respectively. On the right
side of the figures a colour bar is shown. This colour bar indicates the colour corresponding a HSI
value of the treatment plans. What becomes clear from the patient on the left is that the presence of
hotspots is not necessarily correlated with the LCI value. Moving to a treatment plan with increased
or decreased LCI value can both lead to plans with a higher HSI value. In the figure on the right this
behaviour is not visible.
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Calculated metrics

These previous observations become even more clear when looking at the reported metrics of the
basic run with five repetitions. In Tables 7.1, 7.2, 7.3 and 7.4, the average results of HSI, number of
hotspots and correlation of HSI with LCI and LSl in the golden corner are shown.

Average tthotspots in GC
Patientl  1.218  Patient?y  3.605
Patient2 1.006 Patient®  3.043

Average HSI in GC (cc)
Patientl  0.182 Patient? 1.017
Patient2  0.577 Patient9 1.512

Patient3 0.223 Patientl0 1.493 Patient3 1.078 Patientl0 3.405
Patientd 2.036 Patiemt1l 0.245 Patientd 2.609 Patientll 1.835
Patient5 0.013 Patientl2 0.810 Patient> 0103 Patientl2 2.136
Patienté  0.715 Patienté  2.755
Table 7.1: Overview of average achieved Table 7.2: Overview of the average number
HSI value for treatment plans in the golden of hotspots in treatment plans in the golden
corner for different patients which are the corner for the different patients which are the
result of the basic BRIGHT configuration. result of the basic BRIGHT configuration.

Average Corr(LCl) in GC (cc) Average Corr(LSl) in GC

Patientl 0.676  Patient? 0.367 patientl -0.696 Patient? -0.378
Patient2 0.827 Patient9 0.802 Patient? -0.846 Patientd -0.896
Patient3  0.762 Patientl0 0.860 Patient3 -0.816 Patientl0 -0.901
Patientd4 0.958 Patientll 0.722 Patientd -0.965 Patientll -0.803
Patient> 0.459 Patientl2 0.759 Patient5 -0.440 Patientl2 -0.816
Patienté  0.718 Patienté  -0.714
Table 7.3: Overview of the average Table 7.4: Overview of the average
correlation between achieved LCl value and correlation between achieved LSI value and
HSI value for treatment plans in the golden HSI value for treatment plans in the golden
corner for different patients which are the corner for different patients which are the
result of the basic BRIGHT configuration. result of the basic BRIGHT configuration.

What can be seen is that the average HSI value is different for each patient, the same holds for
the correlation of LCI and LSI with the HSI value. For some patients this correlation is high (patient4),
where for other is it low (patient7). On average, one could say that LCI and LSI are both predictors of
hotspot sizes in treatment plans but not too strong (on average 0.72 for LCI and -0.75 for LSI). One
thing that can also be seen is that the need for hotspot reduction for some patients (patient4) is higher
than others (patient5). What is important is that the adjustments in BRIGHT will reduce the hotspots in
the patients where it is needed but will not deteriorate the quality of the treatment plans for the other
patients.

In Figure 7.5, the remainder of the calculated correlations are shown. Active-dwell is the number
of dwell positions used, max-dwell is the maximum dwell time used and v-indices is the sum of extra
added V indices.
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Correlation HSI

active_dwell  max_dwell v_indices
Patientl -0.132 0.261 0.748
Patient2 0.151 0.240 0.544
Patient2 0.228 0.463 0.856
Patientd -0.302 0.590 0.983
Patient5 0.136 0.451 0.451
Patientd 0.273 0.257 0.814
Patient7 -0.231 0.248 0.676
Patient9 -0.005 0.437 0.913
Patient10 0.013 0.3%4 0.967
Patientll -0.297 0.281 0.366
Patientl2 -0.110 0.231 0.871

Table 7.5: Overview of correlations between HSI and the number of active dwell positions, the maximum dwell time and the
achieved sum of extra V indices in treatment plans in the golden corner for different patients for the bi-objective BRIGHT
configuration.

What can be seen from these results is that there is no correlation between the number of dwell
positions used and the size of the hotspots. For the maximum dwell time there is some correlation,
but not a strong one. The V indices in general do show a higher correlation with the HSI values, this
was expected as it indirectly measures the hotspots. However the correlation is not perfect as can be
seen in patient 5 and 7. This can be attributed to the fact that it is a more general measure that not
necessarily favors a plan with smaller hotspots over a plan with bigger hotspots. For some patients it
does show a high correlation, such as patient 4 and 10. This corresponds with the correlation of those
patients on LCI as shown in Figure 7.3. These result hint towards a bigger potential for using the extra
V indices for these patients.

Time performance
In time performance there are some discrepancies to be seen. The time metrics are shown in Figure
7.6.

Evaluations per second Time to GC Evaluations to gc  Number of dwell positions

Patientl 751.090 17.915 13103.800 300
Patient2 718.941 14.856 9847.800 301
Patient3 501.527 21.374 10677.000 381
Patient4 628.531 95.785 58029.000 305
Patient5 524.062 37.441 19722.200 429
Patient6 621.194 17.881 11337.800 333
Patient? 567.604 65.439 38197.200 334
Patient9 394.213 25.310 15069.600 367
Patient10 704.067 14.762 10157.200 288
Patientll 489.032 23.333 11090.800 355
Patient12 525.095 32.097 17803.400 335

Table 7.6: Overview of the number of evaluations per second, the time needed to reach the golden corner, the number of
evaluations to reach the golden corner and the number of dwell positions for the different patients for the basic configuration of
BRIGHT.

In general the optimization reaches the golden corner in around 30 seconds, however for some
patients (4 and 7) it takes longer. This increased time is not necessarily caused by an increased
complexity of calculation, because the number of dwell positions for patient 4 is not higher than others.
The same holds for the number of evaluations per second. It simply takes more evaluations to reach
the golden corner. Furthermore, for these two patients, the golden corner is just barely reached. This
means that for these patients it is more difficult to find clinical protocol satisfying treatment plans, which
is due to an unfavorable geometry of the implanted catheter and anatomy of the patient.

Treatment plan robustness

Lastly the robustness metrics for the plans in the golden corner are shown in Figure 7.7. Next to
the achieved average value for DTMR-A and DTMR-R the correlation of those number with HSI have
also been calculated.



58 7. Results

DTMR_A DTMR_R
Value Correlation Value Correlation
Patientl 1886.02 0.61 552405.80 0.31
Patient2 1740.17 0.63 400749.37 0.55
Patient3 1813.14 0.82 538737.58 0.71
Patientd 2298.85 0.91 830611.99 0.66
Patients 2572.16 0.59 750281.90 0.24
Patient6 2599.95 0.71 783754.84 0.34
Patient? 1941.52 0.40 755184.10 0.20
Patientd 3765.45 0.83 1124829.63 0.37
Patientl0 3233.63 0.89 922296.32 0.65
Patientll 1698.10 0.77 476623.20 0.51
Patientl2 3080.14 0.77 860277.28 0.44

Table 7.7: Overview of the average DTMR-A and DTMR-R values and their correlation with HSI value for treatment plans in the
golden corner for the different patients for the basic configuration of BRIGHT.

These absolute values are hard to interpret, but are shown here to allow for comparison with ad-
justments later in the report. When looking at the correlations of the DTMR values and the HSI it can
be seen that for some patients high correlations are achieved (patient 4) and for some low correlations
(patient 7). What can further be seen is that the relative DTMR has a lower overall correlation with the
HSI, which is logical as it allows for larger absolute deviations due to its relative nature. In literature no
motivation was given on why to use relative DTMR as compared to absolute DTMR.

Adjusted treatment plan

After optimization of the treatment plans some plans are exported for inspection in OncentraBrachy,
which visualizes the iso-dose lines. During this inspection some adjustments can be made if deemed
necessary. In this section these applied changes are explored with regards to hotspots and an overview
of the chosen treatment plans and the used clinical plans are shown Table 7.8.

LCI LSI HSI Most significant change

Before After | Before After| Before After Promotes Cost
Patientl | 0.402 0.402 0.014 0.018 0.000 0.000 No changes Mo changes
Patient2 | 0.467 n/a 0.010 n/a 0.700 n/a
Patient3 | 0.428 0.072 0.009 0.045 0.372 0.236 Decreased hotspot Prostate coverage
Patientd | 0.009 n/a 0.003 n/a 1.991 n/a
Patient5 | 0.263 0.241 0.006 -0.004 0.000 0.000 Spreading dwell peaks None
Patient& | 0.501 0.431 -0.022  -0.008 0.741 0.889 Sparing bladder Increased hotspot
Patient7 | 0.043 -0.035 0.003 0.005 1.723 0.295 Hotspot near rectum Coverage
Patient9 | 0.478 0.485 0.010 -0.013 1.699 1.709 Mo significant changes  No significant changes
Patientl0| 0.364 0.106 0.020 0.091 2.007 1.108 Decreased hotspot Prostate coverage
Patientll| 0.319 0.460 0.027 -0.014 0.503 0.385 Prostate coverage Urethra sparing
Patientl2| 0.215 10.293 0.032 -0.004 0.458 0.612 Bladder sparing, hotspot Rectum sparing, hotspot

Table 7.8: Overview of the changes applied to exported treatment plans after optimization in BRIGHT as seen in the clinic.

In the table above the changes for patient 2 and patient 4 are omitted. The reason for this is that
during optimization for patient 2, a non-existing catheter was used. Due to time considerations, the
optimization was not restarted, but changes were made in OncentraBrachy. Comparing the before and
after treatment plans would not be a fair comparison and therefore they are omitted. For patient 4 the
clinical experts deviated from the used clinical protocol in optimization during adjustment, because the
treatment procedure was a re-irradiation, thereby neglecting the coverage aim of the seminal vesicles.

What can be seen in the table above is that the applied changes are not necessarily related to
hotspot. For three patients (3, 7 and 10) it could be directly detected that a hotspot was reduced. For
patient 6 an existing hotspot was increased in size. For patient 12 the changes were aimed at reducing
a hotspot near the bladder, but in applying these changes a hotspot was created near the rectum.

7.1.2. Objective Metrics and Correlation
In this section a description is given on the achieved values for the different adaptions as third
objectives per patient and the correlation of different treatment plan features with the HSI value.
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In Table 7.9, a summary of the average achieved values for the third objectives is given per adap-
tation.

HSI Vindices DTMR DLDM

min mean min mean min mean min mean

Patient1 0.000 0.110 1.441 2.089 219.794 525.559 77.168 1364.165
Patient2 0.000 0.263 1.309 1.789 174.871 467.652 16.388 1614.940
Patient3 0.000 0.203 0.702 1.442 91.385 446.625 23.182 1358.117
Patient4 0.891 1.606 2.966 3.852 285.598 ©614.600 | 868.925 6852.421
Patient5 0.000 0.050 1.631 2.189 333.924 696.096 | 63.220 2193.969
Patientb 0.120 1.100 2.443 3.887 301.431 805.809 | 58.580 3814.813
Patient7 0.087 1.831 1.936 3.674 214.926 546.841 | 102.288 2914.065
Patient9 0.450 1.270 3.417 5.032 538.024 974.674 | 308.716 3976.063
Patient10| 0.136 2.017 2.518 5.051 396.663 1123.025| 79.957 5509.272
Patient11| 0.000 0.587 1.778 2.696 66.032 376.239 0.000 689.169
Patient12| 0.072 0.668 3.049 4.271 346.092 ©666.680 | 269.864 4206.301

Table 7.9: Average and minimum achieved third objective values for the proposed adaptations, for the treatment plans in the
5% Pareto approximation front for the different patients.

There is no need to dive deep into what these numbers mean. The important insight to get from this
table is that none of the adaptations show similar values across all patients. For every adaptation there
is a difference in how the patients score on them, when optimized on these objectives. The motivation
to show this table is to try and see if an aspiration value could be distilled for use in a bi-objective setting.

To see what predictive power of LS| and LCI have for the achieved HSI values, their correlations are
calculated. These correlations have been calculated based on the results from optimizing on the HSI
value directly. Given that the LS| and LCI values are aggregates of multiple sub-functions and many
of these sub-functions are unrelated to hotspots, also the correlation of the sum of extra V indices is
calculated.

Optimizing with a third objective results in a 3D approximation surface rather than a line. Given
that the interest is in treatment plans close to the 2D Pareto approximation front, only the plans on the
approximation front and the plans that are within 5% distance of the Pareto approximation front are
used to calculate the correlations. The results of these correlations are shown in Table 7.10.

LCI LSI Vindices
Pareto  5%-Pareto Pareto  5%-Pareto | Pareto  5%-Pareto
patientl 0.755 0.744 -0.815 -0.798 0.261 0.851
patient2 0.835 0.761 -0.811 -0.732 0.953 0.930
patient3 0.552 0.469 -0.544 -0.461 0.742 0.715
patient4 0.750 0.754 -0.749 -0.735 0.935 0.932
patients 0.381 0.441 -0.575 -0.409 0.698 0.567
patientt 0.262 0.335 -0.276 -0.336 0.266 0.885
patient7 0.441 0.398 -0.394 -0.346 0.982 0.981
patient9 0.460 0.487 -0.475 -0.456 0.779 0.775
patientl0| 0.339 0.326 -0.364 -0.320 0.949 0.952
patientll| 0.434 0.435 -0.454 -0.456 0.204 0.796
patientl2| 0.460 0.345 -0.518 -0.360 0.867 0.813

Table 7.10: Overview of correlation between HSI with LCI, LS| and sum of extra V indices in treatment plans in the 2D- and
5%-2D-Pareto approximation front for the different patients for the BRIGHT configuration with HSI as third objective.

To increase the confidence in the results, they have been reevaluated when increasing the hotspot
volume lower bound to 0.15 cc rather than 0.1 cc. The relative changes in achieved correlations are
shown in Table 7.11.
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LCI Lsl Vindices
Pareto  5%-Pareto Pareto  5%-Pareto | Pareto  5%-Pareto
patientl -22% -20% -13% -12% -10% -9%
patient2 0% 0% 0% 0% 0% 0%
patient3 -26% -24% -25% -25% -18% -17%
patientd 2% 2% 2% 2% 1% 1%
patients -21% -28% -21% -31% -15% -19%
patient6 -11% 20% -10% -8% -2% -2%
patient7 1% 1% 0% 1% 0% 0%
patient9 1% 1% 0% 2% -1% -1%
patientl0 -A% -6% -4% -T% -1% -1%
patientll -2% -6% -1% -4% 0% -1%
patientl2 2% -1% 2% 0% 0% -1%

Table 7.11: Overview of correlation between HSI with LCI, LS| and sum of extra V indices in treatment plans in the 2D- and
5%-2D-Pareto approximation front for the different patients for the BRIGHT configuration with HSI as third objective after
applying a lower bound of 0.15 cc for hotspots instead of 0.1 cc.

What can be seen in these tables is that the correlation between LCI and LSI with the HSI for many
patients are low. Only for patient 1, 2 and 4 it could be said that there is some correlation. Increasing the
hotspot volume lower bound only worsened the predictive value of LCI and LCI for HSI. When looking
at the sum of extra V indices, one can see that they are generally high. However, for some patients this
is not the case. These patients are 1, 3, 5 and 11. When increasing the hotspot volume lower bound
we observe a decrease in predictive power. This drop is the strongest in patients that already had a

lower predictive value. Nonetheless, the extra added V indices could, for a certain degree, be used to
predict the HSI value.

7.1.3. Hotspot size

In this section the achieved results relating the hotspots metrics will be discussed. Every proposed
adjustment will be discussed in order. The distribution of HSI values over a population does not lend
itself to be reasonably explained using a single metric for the whole set of treatment plans in the popu-
lation. The best found approach to inspect potential improvements has been visually. Therefore this is
done in this section. Showing all figures here would deteriorate the readability of this report, therefore
a selection to highlight insight is shown. The full set of Pareto approximation front visualisations can
be found in Appendices B.5, B.6, B.7 and B.8.

First an overview of the achieved hotspots sizes for the basic BRIGHT configuration is shown in
Figure 7.3, for comparison. In this figure only the plans with a HSI value lower than 0.5 are shown. The

figures with bound [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5] are added in Appendices B.5, B.6, B.7 and B.8 for
all experiments.
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Figure 7.3: Pareto approximation fronts for the different patients resulting from the basic BRIGHT configuration. Only treatment
plans with an HSI value lower than 0.5 HSI value are shown. The grey Pareto approximation front is from the bi-objective
optimization, which is not filtered on HSI value.

From these Pareto fronts it once again becomes clear that there are differences between patients
on how large the hotspots are that are present in the treatment plans when optimized with the standard
BRIGHT configuration. For patients 4, 7, 9, 10 no plans were produced without an HSI value of over
0.5 cc. For patient 6 the plans only partly cover the golden corner.

HSI

In this subsection the results regarding the formation of hotspots with the extention of HSI as the
third objective will be discussed. In Figure 7.4, the results are shown in a graphical manner.
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Figure 7.4: Pareto approximation fronts for the different patients resulting from the BRIGHT configuration with HSI as third
objective. Only treatment plans with an HSI value lower than 0.5 HSI value are shown. Grey Pareto approximation front is from
the bi-objective optimization, which is not filtered on HSI value.

What becomes clear from these figures when compared to the basic results is that it is possible to
reduce the formation of hotspots whilst maintaining an equal LS| and LCI value for the treatment plans.
This becomes most clear in the plot for patient 10, where no plans were found with an HSI lower than
0.5 for the basic BRIGHT configuration, but now the full golden corner is covered.

Another interesting observation is that for patient 9 there is a broad 3D-surface rather than a thicker
line (it also happens for patient 4, this becomes more clear with more slices/upper bounds, which can be
found in Appendix B.5). This behaviour occurs due to a new trade-off, i.e. when a slight improvement
in one objective results in a deterioration of another objective or vice versa. For this to occur, there
must be a high correlation between the objectives. When looking at the correlations reported in Table
7.3 and 7.4, we can see a correlation of 0.8 and -0.9 for LCI and LSI respectively for patient 9 (patient
4 has LCI: 0.96, LSI: -0.97).

What is thus interesting to see for patient 4 and 9, is that when it is allowed to reduce the quality
of the treatment plans with regards to LCI and LSI for only a small percentage then it is possible to
find treatment plans that perform better for the HSI. This is a new trade-off to take into account for
the clinical experts. These patients were also the most difficult to minimize the HSI for whilst retaining
similar DVI values.
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Sum of extra V indices

In this subsection, the results regarding the formation of hotspots with the extension of the sum
of extra V indices as the third objective will be discussed. In Figure 7.5, the results are shown in a
graphical manner.
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Figure 7.5: Pareto approximation fronts for the different patients resulting from the BRIGHT configuration with the sum of extra
V indices as third objective. Only treatment plans with an HSI value lower than 0.5 HSI value are shown. Grey Pareto
approximation front is from the bi-objective optimization, which is not filtered on HSI value.

The difference with using HSI and the sum of extra V indices instantly becomes clear when looking
at the Pareto approximation fronts. When using the sum of extra V indices, it results in broader 3D
surfaces rather than thicker lines. At first glance this looks advantageous as more plans are visible
with a low HSI value. This however also has two disadvantages. First of all, it means that there is a
reduced correlation between the HSI and the sum of extra V indices, since otherwise the plans with low
HSI that are near the top right corner values would dominate the plans in the bottom left corner. This
means that it is not steering directly on the HSI, which was not unexpected. The second downside is
that the population and clusters are now required to approximate a larger area in 3D space as compared
to HSI, which resuls in a reduced pressure towards the top right corner (i.e. the golden corner). The
consequence of this is that at convergence this set-up was not able to match all the LCI and LS| values
of the bi-objective approach, which was the case with using the HSI as third objective.

The sum of extra V indices is able to reduce the HSI values as compared to the basic BRIGHT
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configuration. It outperforms the HSI as third objective for plans with an HSI value below 0.25 cc. For
treatment plans with HSI value below 0.5 cc, it is outperformed by the HSI as third objective as that
objective pushes further into the golden corner. Furthermore it is not able to find plans with an HSI
below 0.5 cc for patient 4.
Dwell Time Modulation

In this subsection the results regarding the formation of hotspots with the extension of the absolute
DTMR as the third objective will be discussed. In Figure 7.6, the results are shown in a graphical
manner.
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Figure 7.6: Pareto approximation fronts for the different patients resulting from the BRIGHT configuration with DTMR as third
objective. Only treatment plans with an HSI value lower than 0.5 HSI value are shown. Grey Pareto approximation front is from
the bi-objective optimization, which is not filtered on HSI value.

The DTMR is able to reduce the HSI value of treatment plans compared to the basic configuration
of BRIGHT, but not for patients 4 and 9, which can be seen in the figures in Appendix B.7. For the
DTMR the same conclusions regarding the broader 3D surface as compared to a thicker line hold as
the ones for the sum of extra V indices.

What can be seen however is that the performance of the DTMR is worse compared to that of the
sum of extra V indices. For patient 4 and 9 it is not able to produce any treatment plans with a HSI index
lower than 0.5 cc. For patients 6, 7, 10, 11 and 12 the plans have a higher HSI index as compared to
that of the sum of extra V indices. This behaviour can be explained by the lower correlation that DTMR
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has with the HSI as compared to the sum of the extra V indices. The DTMR is able to push further
into the golden corner compared to the sum of extra V indices. Compared to the HSI it performs better
for creating treatment plans with HSI lower than 0.25 cc, but worse for creating treatment plans with
an HSI value of lower than 0.5 cc. It also pushes less far into the golden corner for patient 2 and 10,
compared to the HSI as third objective. Furthermore, it is not able to create treament plans with HSI
value lower than 0.5 cc for patient 4 and 9.
Dwell Length and Distance Modulation

In this last subsection the results regarding the formation of hotspots with the extension of the DLDM
as the third objective will be discussed. In Figure 7.7, the results are shown in a graphical manner.
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Figure 7.7: Pareto approximation fronts for the different patients resulting from the BRIGHT configuration with DLDM as third
objective. Only treatment plans with an HSI value lower than 0.5 HSI value are shown. The grey Pareto approximation front is
from the bi-objective optimization, which is not filtered on HSI value.

From the Pareto approximation fronts it can be seen that the DLDM is less able to mitigate hotspots
as compared to the other adaptations, although it performs a little better than HSI for treatment plans
under the 0.25 cc What can furthermore be seen is that the trade-off between the DLDM and the LCI
and LSl is less strong as compared to the sum of extra added V indices and the DTMR. For patients
9 and 10, the DLDM was not able to produce treatment plans with an HSI value lower than 0.5 in the
golden corner (save a few in the top for patient 10), whereas for patient 10 this was possible for the
other metrics and for patient 9 this was possible for the HSI and the sum of extra added V indices. It
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does improve slightly over the basic BRIGHT configuration.
LCI, LSI and L metrics for different hotspot bounds

In Table 7.12, the achieved values are shown for the LCI, LSI and L value per patient for different
hotspot upper bounds. Only a selection of the results is shown. For every patient the results are
available with bound 0, 0.25, 0.5, 0.75, 1, 1.5, 2 and 2.5, which are included in Appendix B.9. The
selection is chosen so to be able to show the most important trends. Furthermore, for every patient,
the first upper bound is included for which basic BRIGHT resulted in treatment plans and the first upper
bound for which the eventual best LCI, LS| and L value are achieved. The full results can be found in
the appendix.

| Best LS| | BestL | Best LCI

HsI DTMR HSI  Vindices DTMR  DLDM HSI  Vindices DTMR _ DLDM
patientl 0.095(3] 0.092 0.09 0.100 0.237(3] 0.420 0423 0434 0.237(3] 0.532 0535 0434
patientl 0. 0103 0101 0092  0.095 0455 0458 0428 0441 0447 | 0535 0513 0541 0588 0585
Patient2 0.405 0427 0.274 0.466  0.525  0.550
patient2  0.25 0.405 0427 0433 0.466 0535 0577
patient2 1.5 0526 0544 0.413 0435 0522 | 0.664  0.663  0.466  0.536  0.635
patienta 0 0.145(3] 0.306 0.424 0.420 0422 0441 0565 0577 0507
Patienta  0.25 0347 0450 0426 0436 0428 | 0.592 0.621 0.565 0.581  0.604
patient3 0435 0443 0.439
Patientd

basic

basic

Vindices

patientd  0.75 I 0.007[3]

Patient4 1 ! 0.043[4] -0.124

patientd 1.5 ! ! -0.023 -0.079 -0.428[3] 0.270

Patientd 2 0.053 0.055 0.048 0.056 0.046 | -0.014 0.002 -0.020 0.052 -0.062 [ 0.032 0301 0272 0072 0.198
patientd 100 | 0.053 0.055 0.048 0.056 0.046 | 0.003 0.002 -0.020 0.067 -0.053 | 0343 0304 0272 0316 0273
Patients 0 0.081 0.082 0.070 0.070 0.075 | 0344 0.314 0206 0.276 0317 | 0.550 0504 0423 0443 0516

patients 0. ! ! ! 0276  0.332
Patient6 0.075[3] 0323 0.475  0.231[3]
patienté  0.25 0.090  0.084[3] 0351  0.324[3] 0.489  0.419[3]
patients 0.5 |0.095[4] 0.097 0091 0.095 0.091[4][0.031[4] 0398 0.369 0.361 0.215[4]|0.031[4] 0.582 0490 0523 0.325[4]
0.372
0.384

patients  0.75 |0.096[4] 0.097 0.093 0.095 0.094 |0.391[4] 0.398 0.383  0.359 |0.435[4] 0.595 0490 0558  0.531
patients 1.5 | 0.096 0097 0.093 0.095 0.095 | 0411 o0.408 0.397 0400 | 0598 0595 0.490 0.581
patient7 0 0.033  0.076[4]
patient7  0.25 0253 0210 0.120

0.564

0.062 0.058 0.055

patient? 0.5 0.062  0.058 0306 0211 0.282  0.259
patient7? 0.75 |0.053[3] 0.062 0.060 0.062 0.058 (-0.378[3] 0.082 -0.012 0.021 0.032 |-0.378[3] 0.306 0211 0.282  0.302
Patient? 1 0.062 0.063 0060 0062 0060 | -0.007 0082 0004 0034 0032 [ 0163 0313 0211 0282 0308
patient7 1.5 | 0.063 0064 0.061 0.062 0.060 [ 0.097 0.082 0.004 0.048 0.079 | 0314 0314 0211 0283  0.308
Patient? 2 0.063  0.064  0.061 0.339 ! 0211  0.283

Patient9 0
Patientd 0.25
Patient9 0.5
Patient9 0.75
Patient9 1
Patient9 1.5
Patient9 2
Patient10 0
Patientl0 0.25
Patientl0 0.5
Patientl0 0.75
Patientl0 1 0.106 0.104 0.102 0.102 0.100 0.120 0.425

2 s

0.535

-0.033[3] 0.569

0435 0575

0.529  0.585 1 0.112[4]
0.383 0120 0611 0585 0549 0.230
0.433 x 0.636 0.620 0.599 X 0.599

11

:

=]
-
=
w
=]
-
(=]
]
s

patientl0 100 | 0.106  0.105 0.104 X 0.440 0436 0.423
patientll 0 0.069[3] 0.091 0.023[3] 0.188[3] 0350 0.188[3] 0542 0.160[3]

Patientll 0.25 | 0.098 0.099 0.091 0094 0.097 | 0.381 0353
patientll 075 | 0.100 0100 0.091 009 0.098 | 0408 0416
Patientl2 0 0.066 [IRIBIEN 0.07102]
Patient12 0.25 0.042(4] 0.068 0.028 0.078 0.324[4] 0308 -0.163 0.280 0.423[4] 0459 -0.074 0.280
Patientl2 0.5 0.081 0.070 0.076 0.078 0348 0208 0.236 0336 0.527 0469 0.424 0.473
Patientl2 0.75 |0.076[4] 0.082 0.072 0078 0.078 | 0.288 0359 0316 0335 0350 | 0288 0530 0469 0519 0515
patient12 1 0.078 0.033 0072 0078 0078 | 0241 0.359 0316 0335 0.350 | 0454 0530 0478 0519 0515

0.469 0482 0549 0319 0351
0598 0601 0549 0536 0599
0.459 0.029[3]

= e
¢ 8
[=I=1]
=]
8
=]
w
=
=

0.252

Table 7.12: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

What can be seen in the table above is that for some patients, there is no need for reducing the
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hotspots, i.e. patient 3 and 5. What furthermore can be seen is that in general, the addition of HSI
and the added V indices perform the best when reducing hotspots. This performance becomes most
clear in the best achieved LCI values. What can also be seen is that the HSI addition shows significant
changes when going from 0.25 to 0.5 upper bound in HSI value in comparison to the other additions.
When looking at the achieved HSI values in combination with LCI and LSI for the base case and the
different additions, it can be observed that hotspots can be decreased whilst staying in the golden
corner.

7.2. Time

In this section, the time performance of the different potential improvements are discussed. A dis-
tinction can be made between the dwell time oriented improvements and the dose calculation point
oriented improvements. For latter more dose calculation points had to be sampled. This resulted in
40.000 points more during optimization as compared to the dwell time oriented improvements. This
will lead to a reduction in time performance.

In Table 7.13, the amount of treatment plan evaluations per second is shown. In each of the columns,
the results are shown for that particular adaptation of BRIGHT.

Evaluations per second

HSI Vindices DTMR DLDM
Patientl 228.47 544.60 737.00 753.01
Patient2 237.93 547.43 757.55 740.95
Patient3 203.26 456.02 617.05 621.59
Patient4 164.90 554.59 736.25 72416
Patient5 177.60 427.56 573.39 575.81
Patientd 160.64 522.41 638.09 632.78
Patient? 147.12 554.97 734.76 736.62
Patientd 59.96 4659.05 622.09 625.17
Patient10 196.51 598.10 792.19 795.40
Patient1l 146.20 485.10 654.28 662.20
Patient12 181.30 502.76 661.47 678.72

Table 7.13: Overview of the number of evaluations per second per patient per BRIGHT adaption.

What can be concluded from Table 7.13 is that HSI is the most computationally complex adaptation
resulting in the lowest number of evaluations per second. This is then followed by the sum of the extra
V indices, for which the time increase can be attributed to the increase in dose calculations points. Both
dwell time oriented adjustments have the highest number of evaluations per second.

In Table 7.14, the time it took to reach the golden corner is reported. In this table the same trend
is shown as with the number of evaluations per second with regards to increased time for the dose
calculation point oriented adaptations. The only changes that can be seen is that the ratio between
evaluations per second and the time to the golden corner is not equal for each patient. This is due
to the fact that some patients require more evaluations than others to reach the golden corner. The
required number of evaluations is shown in Table 7.15.

Time to golden corner Evaluations to golden corner

HSI V indices DTMR DLDM . e s T T
Patientl 221.25 80.55 64.36 62.06 Patientl 49954.60 39431.80  45011.80  47167.20
R L R S T Patient2 64175.80 35011.00  35375.80  49833.60
Patient3 298.98 78.02 63.19 74.79 Patient3 61097.00 32402.80 37655.40  47511.80
FEEE A5 T BT T Patientd 188961.40 19845840  214514.80  251834.60
Patient5 424.00 153.50 112.85 138.58 Patients 75592.60 66578.40  63000.40 8198140
Patient6 234.52 83.93 63.53 34.09 Patient 39059.60 41670.00 4134240 37301.60
FEEE TR 262 2 2R Patient? 98793.80 149564.20  208653.60  187688.40
Patientd 874.80 106.16 86.07 88.18 Patient9 53560.20 49600.60 5147240  54033.00
ezl RS e g HE0L Patient10 37184.00 40580.80  36150.60  38861.80
Patient11 250.31 86.26 66.14 65.63 Patient1l 37041.60 40630.60  40950.00  46195.40
EiEL b Lty s 0P Patient12 66045.40 65763.20 69035.20 70549.00

Table 7.14: Overview of the time to golden corner per Table 7.15: Overview of the number of evaluations to
patient per BRIGHT adaption. golden corner per patient per BRIGHT adaption.

The last time metric is the 'convergence’ times per implementation per patient. The convergence
times have been determined visually by inspecting the 2D plots of the x- and y-axis combination of LSI
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and LCI, LSl and third objective, and LCI and third objective. An optimization run is deemed 'converged’
when no meaningful improvement is observed within a period of time. In Table 7.16, the convergence
times per patient are shown. The times are rounded up to the nearest 50 seconds, as the Pareto
approximation fronts are outputted irregularly and since visual inspection is not an exact method so a
conservative estimation is chosen. For the HSI, the times are rounded to the nearest 100 seconds as
the interval between outputted Pareto approximation fronts is longer.

Time to convergence
HSI V-indices DTMR DLDM

Patientl 800 350 300 200
Patient2 1200 350 300 250
Patient3 800 400 300 200
Patient4 1200 500 300 300
PatientS 1400 600 500 350
Patientt 1100 350 300 200
Patient7 1000 250 550 300
Patient9 2600 300 350 250
Patient10 800 250 300 150
Patient11 1000 350 400 200
Patient12 1500 300 400 250

Table 7.16: Overview of the convergence time in seconds per patient per BRIGHT adaption.

What can be seen in the table is that the HSI is, as expected, the slowest implementation, followed
by the V-indices, DTMR and DLDM in that order. What should be noted here is that for the HSI and
V-indices extra DCPs were added (40.000) during optimization to capture the normal-tissue values.

For patient 9, the run time was significantly longer than that of the other patients. This is caused by
the significantly lower number of evaluations per second for patient 9. The explanation for this lower
number of evaluations per second is the significantly higher maximum degree in the graph of DCPs.
The maximum degree for patient 9 is on average 171, where the average degree of the other patients
is 34. Having a higher degree requires more rounds in the hotspot registration algorithm for reducing
labels. The higher degree is caused by the fact that patient 9 has a larger than average delineated
prostate (64 cc) and smaller than average delineated seminal vesicles (1.3 cc). The ratio between
them is 50, where the average rating for the other patients is 9. This ratio is of importance for the
construction of the graph, as the maximum edge length for two DCPs from different organs/volumes
is determined by the maximum of both organ maximum edge lengths. The maximum edge length is
dependent on the volume per DCP, which is determined by the volume of the organ and the amount of
DCPs per organ (which is the same for each organ). If one of them is significantly larger (i.e. 50 times),
then a lot of edges are formed between a single DCP from the larger organ to DCPs from the smaller
organ.

7.2.1. Robustness

Homogeneity does not only include the presence of hotspots. The other motivation for improving
homogeneity is the robustness of treatment plans. In this research, this has not been the main motiva-
tion. A complete study using disturbance simulation would be required to draw conclusions regarding
the improvement or deterioration of robustness by the different adaptions of BRIGHT. Nonetheless,
in this section a small insight will be provided by calculating the sum of DTMR absolute value of the
treatment plans, as described in Balvert et al., 2014. This DTMR absolute value is the absolute devi-
ation between dwell times of 2 neighbouring neighbouring dwell positions. In their papers, the authors
showed a correlation between the value of DTMR absolute and the robustness of the treatment plan,
although using the DTMR absolute did deteriorate other treatment plan features.

In Table 7.17, the results are shown for the DTMR absolute values for the 2D Pareto approximation
front for the basic BRIGHT settings are presented:
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min mean
Patientl | 1744.2 18741
Patient2 | 15934 1593.4
Patient3 | 1616.2 1813.7
Patientd | 21542 2302.0
Patients | 22854 2570.9
Patiente | 2363.1 2609.4
Patient7 | 1792.2 1932.1
Patientd | 34215 37779
Patientl0| 29224 3240.5
Patientll| 1546.5 1703.4
Patientl2| 28672 3094.6

Table 7.17: Overview of the average and minimum DTMR-A values of the different BRIGHT adjustments for the 2D Pareto
approximation front of the basic BRIGHT configuration.

In Table 7.18, the results for the DTMR absolute values for the 2D Pareto approximation fronts of
the different BRIGHT adaptations:

HSI Vindices DTMR DLDM
min mean min mean min mean min mean
Patientl | 1844.9 2021.8 1647.5 1843.7 1480.6 1768.5 1710.8 1856.2
Patient2 | 1642.0 1801.6 1330.0 1479.3 1344.5 1553.3 1520.1 1790.9
Patient3 | 1597.6 1784.1 1481.7 1654.1 1354.8 1684.4 1546.3 1842.1
Patient4 | 2062.3 2221.6 2037.0 2147.4 2029.4 2190.6 2113.0 2272.8
Patient5 | 2438.6 2663.0 2066.4 23144 1913.8 2343.8 2321.8 2608.6
Patient6 | 2402.2 2642.6 2140.1 2417.8 2210.7 2551.9 2361.1 2647.4
Patient7 | 1836.1 2028.0 1741.5 1906.1 1640.1 1852.2 1815.4 2010.5
PatientS | 3257.8 3352.0 3017.2 3358.0 2995.1 3498.8 3262.4 3574.8
Patientl0| 2527.6 32934 2698.2 3086.9 2631.4 3229.3 2861.5 33544
Patientll| 1546.5 1702.1 1416.2 1579.8 1290.8 1585.9 1490.7 1743.4
Patientl2| 2884.7 3130.2 2691.5 2882.7 2676.8 2981.5 2801.0 3047.1

Table 7.18: Overview of the achieved minimum and average DTMR-A values of the treatment plans resulting from the different
BRIGHT adjustments for the 2D Pareto approximation front.

Next to the 2D Pareto approximation front, the 5% Pareto approximation fronts are calculated and
the deviation with the 2D Pareto approximation fronts are shown in Table 7.19.

HSI V indices DTMR DLDM
min mean min mean min mean min mean
Patientl | 18424 2034.2 1639.2 1837.7 1365.4 1728.3 1658.4 1879.0
Patient2 | 16389 1811.4 1287.6 1457.0 1212.9 1512.1 1464.7 1791.8
Patient3 | 15976 1787.7 1410.8 1667.6 1158.1 1576.2 1453.7 1811.5
Patientd | 2054.8 2213.4 2001.5 2135.8 1991.5 2180.1 2106.7 2259.5
Patient5 | 24331 2674.3 2045.9 2290.8 1813.6 2290.0 2234.6 2623.9
Patient6 | 23440 2623.2 2073.2 2374.7 1377.8 2424.5 2239.6 2586.6
Patient7 | 1802.7 2007.2 1672.8 1880.6 1468.8 1802.7 1753.6 1985.4
Patient9 | 31533 3522.6 2971.6 3344.2 2857.5 3403.8 3109.6 3545.1
Patientl0| 2872.2 3258.2 2531.2 3013.1 23449 3026.3 2654.2 3286.6
Patientll| 1531.6 1699.1 1385.0 1565.9 1140.6 1509.7 1477.8 1732.0
Patientl2| 2862.5 3118.8 2595.9 2860.5 2540.1 2913.5 2764.8 3033.6

Table 7.19: Overview of the achieved minimum and average DTMR-A values of the treatment plans resulting from the different
BRIGHT adjustments for the 2D-5% Pareto approximation front.

Based on these tables, the following can be observed. Optimizing on the HSI does not deteriorate
the performance on the DTMR-A value and thereby potentially the overall robustness. When optimizing
on the extra added V indices, the DTMR-A value can even be improved, the same holds for the DLDM.
Optimizing directly upon the DTMR obviously results in the best performance on the DTMR-A value.
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What can furthermore be seen is that, when optimizing on the extra added V indices, the DTMR value
only deviates slightly.

When looking at the 5% Pareto approximation front, it can be seen that the DTMR value overall
does not increase or decrease significantly from the normal Pareto approximation front.

7.2.2. Key outcomes

With this explication of the experiment results the second part of the following research questions
can be answered by the general observations in the experiments:

Research Question: BRIGHT performance

What are the important performance aspects of BRIGHT for HDR-BT and how do different
enhancements score on these aspects?

What can be seen in the results is that optimizing the HSI does not introduce a new trade-off
with the LCI and LSI for most patients. Which means that hotspots can be reduced without
deteriorating the DVIs. This observation is strengthened by the non-perfect correlation of the
LCI and LSI with the HSI. Furthermore, using the HSI or the sum of extra V indices used
as third objective show best performance when reducing hotspots to at most 0.5 cc. The
sum of extra V indices outperforms the HSI when looking at reducing the HSI to under 0.25
cc. The sum of extra V indices does introduce a new trade-off with the LCI and LSI. The
DTMR also showed a reduction in hotspot sizes but less than the HSI and the extra added V
indices and also more inconsistent. For treatment plans with HSI below 0.25 cc, the DTMR
outperforms the HSI for all patients, except patient 4 and 9. The performance of the DLDM
was inferior to the other metrics. The DLDM did introduce a trade-off with the LCI and LSI,
but less compared to the DTMR and sum of extra V indices. The sum of extra added V
indices shows a slight deterioration in achieved DVI values, where this is not the case for the
HSI. Lastly, the required time for HSI is currently significantly longer than that of the extra
added V indices. However, it must be noted that the HSI can still be optimized further for
computational time. The most important finding is that BRIGHT is able to reduce or even
remove hotspots, without deteriorating the other objectives, when configured to do so.



Discussion

In this chapter, the results from Chapter 7 and their implications will be discussed, and the limitations
of this study will be explicated.

8.1. Improving homogeneity

8.1.1. Required changes to treatment plans

From the changes applied to the exported BRIGHT plans in the clinic (shown in Table 7.8), it can be
seen that BRIGHT does not fully satisfy the preferences of the clinical experts yet. This inability can be
explained by the fact that BRIGHT simply was not configured to optimize on the specific requirements
for a particular patient, but simply finds the best treatment plans given the clinical protocol. In this
clinical protocol, there is no explicit formulation of the desire to reduce hotspots. Under the clinical
protocol several different treatment plans can be constructed that adhere to the protocol in the same
way, but show different dose distributions. These different dose distributions can show differences in
the presence of hotspots as has been shown in the experiments (i.e. Figure 7.4). If configured to focus
on reducing these hotspot, BRIGHT is able to produce treatment plans that have reduced hotspots but
similar LCI and LSI values.

8.1.2. BRIGHT adaptation types

In the changes applied in the clinic and in discussions with the clinical experts it became clear that
the reduction of hotspots is not the main priority when constructing a treatment plan. Adhering to the
clinical protocol is the foremost objective, after which the dose distribution itself is inspected to focus
on secondary treatment plan features such as the hotspots. Given this inherent order of preferences
and the diversity of achievable hotspot sizes between patients it was decided not to use hotspots as
a constraint or as a sub-function of either LCI or LSI. If it was added as a sub-function or constraint it
could either hamper the optimization of the clinical protocol or fail to address the reduction of hotspots
properly. The reason for this is the diversity in achievable reduction in hotspot sizes between patients.
To add a sub-function or constraint, an aspiration value or cut-off value has to be set. If this value is
set too ambitious, then BRIGHT will put too much focus on adhering to this constraint or to reduce
the achieved sub-function value. This will lead to BRIGHT not being able to reach the golden corner
and/or BRIGHT neglecting the DVIs from the clinical protocol. If the aspiration or cut-off value is set
too unambitious, then BRIGHT can easily adhere to them and fail to focus on reducing the hotspots
further whereas that would have been possible. Given the diversity in achievable hotpot sizes between
patients, that have been shown in the experiments, there is no single aspiration or cut-off value that
would suit every patient. A potential solution to this could be to have an adaptive aspiration or cut-off
value in a similar fashion as to how adaptive steering was constructed. This however is left for future
research.

8.1.3. Treatment plan features to steer on
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HSI

When looking at the different potential metrics for BRIGHT to steer on, the results have shown that
both the approximate HSI and the extra V indices are best suited. The HSI on 140.000 DCPs showed
high correlation with the HSI on +700.000 DCPs. Optimizing HSI during optimization resulted in the
best overall improvement of HSI without LCI or LSI deterioration seen in the experiments. Compared
to the sum of extra V indices, the ability to eradicate all hotspots is slightly worse. This behaviour
could potentially be explained in two ways. The first one is that in the HSI objective there is a lower
bound on the hotspot volume, which makes the function non-continuous. During optimization, if the
presence of a small hotspot is advantageous for certain DVI values, it can be beneficial for BRIGHT
to keep them. If these hotspots are just below the lower bound volume, then they offer no contribution
to the HSI objective. As was seen in the comparison between HSI on 140.000 points and 700.000+
points, there was some discrepancy. This could mean that hotspots with a volume below the lower
bound in optimization are accounted for in the reevaluation on 700.000+ points. This can be seen as
over-fitting on the lower resolution of DCPs. This problem can be mitigated by setting a lower lower
bound during optimization then during reevaluation. The second explanation why BRIGHT with the HSI
as third objective has more difficulty to reduce the hotspots completely is that the presented problem is
more difficult to explore using a population based EA. Due to the introduced lower bound, the search
space is non-continuous and therefore the trajectories of improvement are non-smooth. Due to this
non-smooth trajectory it is more difficult to learn for an population based EA. This is caused by the
fact that perturbations of solutions with hotspots lower than the hotspot lower bound will not lead to
a change in HSI value. This leads to an inability to learn. This second explanation is strengthened
by the observation that the problem at hand does not come into play for patients 4 and 9, where the
Pareto approximation front for HSI| was found to be a broader 3D surface rather than a thicker line in 2D
space. The advantage of having the lower bound on hotspots volume in comparison to the extra added
V indices is that a 'safe haven’ is created for the hotspots. One of the strong-suits of brachytherapy is
the use of small hotspots. The lower bound allows for these small hotspots, whereas the extra added
V indices will also register small hotspots.

Sum of extra V indices

The extra added V indices showed high correlations with the HSI value but for some patients there
was a sudden drop in correlation. This drop in correlation can be explained by the fact that the extra
added V indices do not directly capture the presence of hotspots. Having a higher volume that receives
300% of the prescribed dose (or 200% for the normal-tissue) does not mean that this dose is clumped
together. For the patients where a low correlation was observed, the volumes that received 200/300%
of the prescribed dose were likely more scattered. This shows that to capture the hotspots, there
is a need for a more sophisticated metric than the sum of randomly scattered points that receive a
high dosage. Nonetheless, by using the added V indices as a third objective to steer on, treatment
plans were improved in terms of HSI. The downside to the added V indices as compared to HSI is
the increased spread of treatment plans over the objective space in terms of LCI and LSI. This is
caused by the conflicting nature of the objectives, and therefore a newly introduced trade-off. This
increase in Pareto approximation front size/dimensionality resulted in a decrease in pressure towards
the Pareto approximation front which lead to a slightly reduced performance in achieved LCl and LSI
as compared to adding the HSI as third objective. This is a problem that should be able to be mitigated
through different settings of BRIGHT and introducing adaptive steering for the third objective. The
extra added V indices as third objective might have a potential benefit over the HSI when it comes to
robustness. For the extra added V indices it is more beneficial to have a lot of shorter dwell times than
fewer longer ones. This is due to the non-linear dose rate fall-off, as shown in Figure 4.4. This could
potentially mean that dwell times will be more spread out. In the results, it was shown that the V indices
achieved lower values on the absolute DMTR as compared to the HSI. For assessment of robustness,
more is required than simply the absolute DTMR. Nonetheless, this result might hint towards a potential
robustness benefit.

DTMR

Adding the DTMR as third objective did show improvements in HSI value for some patients, but
the performance was inconsistent over the patient set. This can be explained by the fact that it does
not directly focus on the hotspots. The experiments showed a low correlation between DTMR and HSI
value.
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DLDM

Using the DLDM as metric to mitigate the formation of hotspots showed a similar inconsistent perfor-
mance as the DTMR, but with worse performance compared to the DTMR. This means that the DLDM
did not accurately capture the formation reasons of hotspots. An explanation for this can potentially
be found in the hotspots that are formed in the normal-tissue and more affected by higher dwell times.
The upper bound on dwell time in the DLDM should potentially be dependent on the distance to the
normal-tissue.

8.1.4. Cost of adaptations

From a practical point of view, the time requirements should also be taken into account. The com-
putational advantage of using dwell times rather than DCPs clearly shows in the time required to reach
the golden corner. Although the number of evaluations required to reach the golden corner did not
differ much between the extra added V indices and the DTMR, the DTMR outperformed the added V
indices in the amount of evaluations per second and therefore in the time to reach the golden corner.
This computational advantage can be explained by the fact that the dwell time oriented adaptations
did not require the sampling of DCPs in the normal tissue surrounding the target organs. These extra
added DCPs decrease the performance of BRIGHT. From the DCP oriented adaptation, the HSI was
the slowest implementation. This can be explained by the fact that for the extra added V indices, the
only computational overhead is the sorting of the DCPs on received dose. This was already done for
the DCPs in the target volumes and thus only the sorting of the dose calculations points in the normal
tissue added to the computational complexity. Next to that, the received dose of these extra DCPs
also needed to be calculated. The computational complexity for the HSI was larger, since it required
multiple union finds per DCP which are done sequentially, which is dependant on the number of edges
it had and the length of the path it needed to traverse. Furthermore, the number of computational steps
in the HSI is larger than that of the other implementations.

8.1.5. Robustness

To study the robustness of the treatment plans, the DTMR values were calculated as they have been
shown to have some correlation with the robustness (Balvert et al., 2014). Further research has to be
performed to draw significant and meaningful conclusions about the robustness of the treatment plans.
Nonetheless, what was observed in the DTMR scores was that by applying the added V indices as the
third objective, the DTMR values were also reduced, almost to similar DTMR values when optimized
on them with a third objective. This meant that using the extra added V indices improved upon the
original treatment plans for the DTMR values. The introduction of the HSI as a third objective did not
necessarily increase or decrease the DTMR values as compared to the treatment plans from the basic
BRIGHT settings.

8.2. Limitations

This research has been conducted based on a data set of 11 patients. This number is not sufficient to
confidently say that the performance of the created adaptations reasonably generalizes to all potential
patients. To be able to do this a larger number of patients would be required. Nonetheless, statements
like 'treatment plans with equal DVI values but different dose distributions which either do or do not
show hotspots can be constructed’ are valid to make on the basis of this data set.

In this master thesis, the number of experiments that could be conducted was limited due to time
constraints. Therefore decisions had to be made on which experiments to conduct and for which ques-
tions an assumption had to be made or a default value had to be chosen. This resulted in for instance
choosing default values for the population size, the number of cluster components and the combination
of adaptive steering parameters tested. It could very well be the case that performance could be im-
proved when these values were chosen differently. Nevertheless, based upon the achieved results it
could already be seen that improved performance is achieved. This means that changing these values
would not result in different conclusions, but could potentially only improve and fortify the current ones.

In this research, a definition for hotspots has been set after discussion with the clinical experts. This
definition is not based upon clinical research, but only on the experience of the experts. This means
that other institutes can have different views on when a hotspot is undesirable. Furthermore, this also
means that hard bounds have been set on when a region is considered a hotspot. If a region just
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barely stays below these bounds, then it is considered equally desirable to when this same regions
would stay far from these bounds. From a clinical perspective this is of course not the case. However,
some bounds had to be set. To combat this potential shortcoming the results have also been evaluated
when the lower bound for hotspot volume was increased from 0.1 cc to 0.15 cc as this could easily be
done using the already produced results. The downside to this approach is that the results were not
explicitly optimized for this bound and therefore the conclusions using this increased lower bound are
only partly valid. Reducing the lower bound was not deemed necessary as the lower bound is already
low from the clinical perspective.

The locations of hotspots were not explicitly accounted for in this research. Given the fact that
hotspots are now registered, it could be possible to take the location of the hotspots into account. In
the discussion with the clinical experts, they expressed that this could be a good idea as they have
preferences regarding the location of the hotspot. This however has been left open for future research.
The consequence of this is that in the presented research, treatment plans with equally sized hotspots
are deemed equally desirable irrespective of the locations of their hotspots. The location of the hotspot
however, can cause one treatment plan to be more preferable than the other.



Conclusion and Future Work

In this research a number of questions regarding the homogeneity of treatment plans produced
by BRIGHT were addressed. Several different adaptations of BRIGHT were constructed and tested
to evaluate their potential improvements. In this chapter, conclusions will be drawn based on these
experiments.

9.1. Conclusion

In the experiments it has been shown that hotspot sizes can be decreased whilst maintaining equal
LCI and LSI values for most patients. This means that the correlations of both LCI and LSI with the
hotspots are low. This blind spot in the clinical protocol leads to a less informed choice when selecting
treatment plans from the Pareto approximation front with regards to the hotspots when the clinical
experts are only presented with the LSI, LCI, and the achieved values for their sub-functions. The HSI,
as described in this research, could help the clinical experts in making a more informed choice on which
treatment plan to pick for further inspection.

When optimizing for hotspots, the best pick from a quality point of view would be to steer directly
on the HSI. However, the HSI had the worst time complexity and could greatly increase the required
run-time in the clinic. Further optimization of the code would be required to make the implementation
faster. Discussions with the clinical experts would be required to get a time requirement based upon
the potential achieved improvements of the treatment plans. This would also require a clinical observer
study.

The other option would be to add the sum of extra added V indices as a third objective, as this has
also shown to reduce the hotspots. The sum of extra V indices did have a drop in performance for 2
patient. The other downside of this method is that is does not reach as deep into the golden corner as
the HSI. Further improvements would be required to overcome this. A potential benefit could be that
steering upon the extra added V indices would also increase the robustness of the treatment plans.
This does however require further research to make this claim.

The tested dwell time oriented adaptations yielded less consistent improvements from a hotspot
point of view.
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With these acquired insights the problem statement of this thesis can now be answered:

Research Question: Problem statement

How can the homogeneity of the resulting treatment plans from BRIGHT for high dose rate
brachytherapy for prostate cancer be improved?

The homogeneity of the resulting treatment plans can be improved by adding a third objective
to BRIGHT. Two options for this objective that lead to the best decrease in hotspot volume
were a graph-based hotspot registration method and sum of the 50, for target volumes and
V2000, for the normal-tissue. Improving the homogeneity can be done without compromising
the DVIs. Improving homogeneity does come at the cost of increased run-time. For the sum
of volume indices the required time was around 600 seconds, and for the hotspot registration
this was around 1800 seconds. Further optimization of the hotspot registration method is
required to definitively assess run-time impact.

9.2. Future Work

9.2.1. Publications

Based on this master thesis a conference abstract has been written and submitted for ESTRO
2022. The ESTRO conference is focused on advancements in radiation oncology. The abstract that
was submitted can be found in Appendix A.

Besides the conference abstract, a journal paper is in the making. This journal paper will be written
for Medical Physics, a global journal on imaging science and engineering research that is focused on
therapy and patient diagnosis.

9.2.2. BRIGHT improvements

e-Pareto approximation front

The first idea for potential BRIGHT improvements is to reduce the search space in the third objective.
This idea came to mind when looking at the results for using the HSI as a third objective. For patient 9,
there was a broader 3D surface visible rather than a thicker line for the Pareto approximation front (see
Figure 7.4). The consequence of this is a reduced pressure towards the golden corner. In practice, it
is shown that clinical experts are foremost interested in the LCI and LSI values and are only interested
in reducing hotspots once these values have been deemed sufficient. Given this fact, an idea would
be to only consider treatment plans with improved hotspot sizes when they are not too far from the
2D Pareto approximation front. This could potentially be realized with a non-linear version of adaptive
steering, where the adaptive bounds are a non-linear combination of LCI and LSI.

Dwell time precision

Another idea for improvement is to generally reduce the search space. Currently, the dwell times
are stored (and sampled) as floating point numbers. This means that a dwell time has a time precision
of 6 to 7 decimal places (depending on the compiler). These slight changes in dwell times could also
mean a slight change in the trade-off being made between LCI, LS| and HSI. This could result in a non-
dominating Pareto relationship between treatment plans. The question is whether that is meaningful
since plans will have almost identical dose distributions.

A solution to this could be to change the precision with which either the dwell times are sampled or
with which the DVIs and HSI values are stored. If the DVI values are stored with a lower precision than in
the Pareto dominance relation, the two aforementioned treatment plans would be considered equal and
only one of them would be stored. By decreasing the precision of the dwell times or DVIs and HSI values
one would then reduce the amount of solutions used to approximate the Pareto approximation front.
This way the memory usage will go down, the required population size can potentially be decreased
and consequently BRIGHTs performance might be increased.

The downside of this approach could be the loss in continuity of the solution space. This would be
more difficult for BRIGHT to traverse as perturbations of the treatment plans will be larger, which could
lead to a decrease in performance.



9.2. Future Work 77

Postponed third objective

The idea of restarting the optimization with a third objective is focused on improving run-time. With
the current set-up for the third objective, it takes significantly longer to reach the golden corner than
with the bi-objective problem formulation. Given that clinical experts are only interested in the plans
in and surrounding the golden corner the idea would be to first solve the problem as a bi-objective
problem with LCI and LSI as the objectives. Once the golden corner is sufficiently reached, only then
start looking for plans with better HSI values. A potential problem of this approach would be that the
optimization can get stuck in local optima found in bi-objective optimization. This would result in a
restart not being able to find better solutions for the HSI since it would be unable to escape from these
local optima. To overcome this problem, the idea would be to (intelligently) generate some artificial
noise over the dwell times to get out of these local optima. By first performing the optimization as a
bi-objective problem, the optimization itself could be sped up, since the population size can be smaller
which reduces the computational complexity. It would also mean that no hotspot related features have
to be calculated when trying to push towards the golden corner, since this does not aid in reaching
it. Some experiments have been performed during this thesis which did show a lot of potential, but
this would need to be investigated more. It was deemed out of scope for this thesis and therefore
discontinued.

Improving time complexity of hotspot detection

In this research a state-of-the-art method for hotspot detection has been used. Nonetheless, the
implementation itself can still be sped up. Apart from the GPU memory optimization, there is also
the possibility of partial evaluations. In the current set-up, the whole hotspot detection procedure is
performed for every change of FOS-element. However, when only changing a few dwell times, it is not
necessary to completely start the hotspot detection from scratch. The results from before the change
could be used to calculate the new hotspots. This can be done by checking which dose calculation
points have changed from potentially being in a hotspot to not being in a hotspot or vice versa. Then,
in the hotspot detection, only for these dose calculation points and their direct neighbours, the labels
are updated. This could potentially speed up the hotspot detection procedure.

9.2.3. Additional research

Clinical observer study

The results from this research have shown that it is possible to improve upon the treatment plans with
regards to the HSI whilst minimizing the loss in DVI values, or even keeping them the same. However,
in similar fashion as to the inability of BRIGHT to focus on the hotspots before this study, a similar dose
distribution feature might also be overlooked. In the worst case, it might even be that by focusing on the
HSI, another important aspect of the dose distribution is deteriorating. To see if the treatment plans that
have been optimized for the HSI are significantly better than the previous treatments plans, a clinical
observer study must be performed. It is also interesting to see if a slight deterioration of the DVIs is
allowed to remove hotspots. This would then fortify the idea of adapting BRIGHT using e-dominance,
as discussed in Section 9.2.2

In this observer study, the clinical experts are shown treatment plans, from which they do not know
which version of BRIGHT has produced them, and are asked which one is most preferable. By doing
this, potential negative side effects of focusing on the HSI can be identified and the need for focusing
on HSI can be confirmed.

Tumor control probability and cold spots

Steering hotspots to a specific location is possible now that the registration of hotspots has been
established. This control can lead to increased tumor control probability. If the Gross Tumor Volume
(GTV), is delineated in the medical images it should be possible to create hotspots in it. Hotspots in the
GTV are linked to increased tumor control probability (Tomé and Fowler, 2002), i.e. the probability that
the tumor is eradicated. A similar but opposite problem occurs for cold spots, contiguous low-dose sub-
volumes in the GTV or total target volumes. If these cold spots are present that will lead to a reduced
tumor control probability. Cold spots can be detected in a similar fashion as hotspots, and thereby their
presence reduced in the GTV and CTV.
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Robustness evaluation

As described in this research, there are two important aspects when it comes to treatment plan
homogeneity. The reduction of hotspots and the increase of robustness. The main focus has been on
the former. In the evaluation of the results, some metrics have been calculated and reported on, which
are related to the robustness. However, to confidently draw conclusions on this, one would need to do
simulations in which disturbances are added. A similar approach to this research could be adopted,
namely finding proxy features that have a high correlation with robustness. This could then be added
to the BRIGHT set-up.

Long-shot: eliminating the dose calculation points

One of the more daring ideas that came to mind when doing this research was eliminating all dose
calculation points from the optimization. Since the dose values for the dose calculation points are the
direct result of the dwell times it could potentially be possible to create a set of objectives based on the
dwell times, their distance to each other and their distance to the boundaries of the involved organs.
This set of objectives could then be adjusted to comply with the clinical protocols of the different clinics
around the world. This is, however, a very difficult problem to tackle, hence why it is has not been done
before. However, if successful, the optimization can be sped up significantly. The achieved DVIs can
then afterwards always be calculated using dose calculation points if required.
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Incorporating control of contiguous high-dose volumes in automated optimization for prostate BT
(96)

J.L.P. Commandeur'?, A. Bouter?, L.R.M. Dickhoff3, D.L.J. Barten® H. Westerveld®*, B.R. Pieters?, T.
Alderliesten?, P.A.N. Bosman'?

ITechnische Universiteit Delft, Delft, the Netherlands; 2Centrum Wiskunde & Informatica; Life Sciences
and Health, Amsterdam, the Netherlands; 3Leiden University Medical Center, Radiation Oncology,
Leiden, the Netherlands; *“Amsterdam UMC-University of Amsterdam, Radiation Oncology,
Amsterdam, the Netherlands

Purpose (756):

In 2020, ‘BRachytherapy via artificially Intelligent GOMEA-Heuristic based Treatment
planning’ (BRIGHT) for prostate HDR BT was clinically introduced. BRIGHT is a bi-objective treatment
planning method that finds a set of high-quality, patient-specific treatment plans (TPs) with different
trade-offs between clinical target coverage and organ sparing, by directly optimizing the dose volume
indices (DVIs) in the clinical protocol. However, in the clinic, manual adjustments of BRIGHT TPs are
still done to meet additional patient specific aims. Particularly, this includes minimization of contiguous
high-dose volumes, i.e., hotspots (HSs). We therefore aim to incorporate control of HS volumes in
BRIGHT, while minimally impacting obtainable DVI values.

Methods (1085):

We augment BRIGHT with a third objective to minimize HSs. For this, we define an HS as ‘a contiguous
volume of >0.1 mL outside catheters receiving >300% in target volumes: prostate and seminal vesicles,
or >200% in normal-tissue around target volumes of the prescribed dose’. We tailored a graph-based
method, which uses a connected component algorithm (Afforest), to determine HSs. The graph
consists of dose calculation points (DCPs) as nodes and edges between close (<0.5 mm) neighbouring
DCPs. DCPs are randomly sampled locations where the dose is calculated (to compute the DVIs).

The third objective in tri-objective BRIGHT is the sum of HS volumes (metric 1). For comparison, we
also consider as third objective a more efficiently computable metric, which however ignores whether
the high-dose volume is contiguous: the sum of V3o of the target volumes and Vaooy of normal tissue
(metric 2).

We compare bi-objective BRIGHT with both tri-objective BRIGHT versions on a data set of 11 prostate
cancer patients by retrospectively planning single-dose HDR BT with DE35s%* > 15Gy.

Results (892):

Figure 1 shows for patient 9 that, both tri-objective BRIGHT versions result in a clear improvement in
control of HSs; TPs with HSs <0.5 mL are only found using the tri-objective versions. Due to the nature
of metric 2 and using a 2D plot for a 3D front, the trade-off between existing DVIs and metric 2
culminates in a larger covered area with TPs with low HS volumes.

Table 1 shows that when using metric 1, for 10 out of 11 patients, total HS volume could be reduced
to <0.5 mL while satisfying the clinical protocol, versus 6 out of 11 patients for bi-objective BRIGHT.
Adding metric 1 does not result in worsening of DVIs. Adding metric 2 does cause slight worsening of
DVIs but results in more plans satisfying the clinical protocol without HSs.




Currently, using metric 1 and 2 takes 1800s and 600s, respectively. Metric 1 needs further optimization
to definitively assess runtime impact.

Conclusion (252):

We successfully adapted BRIGHT to reduce HSs without compromising obtainable DVI values for most
patients, by explicitly computing HSs and minimizing their volume through a third objective. This could
potentially render manual HS adjustments redundant.

Keywords: prostate, hotspots, automated-planning.
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Figure 1: Set of treatment plans automatically generated for patient 9 by bi-objective BRIGHT and both
versions of tri-objective BRIGHT. Two different total HS volume (HV) upper bound filters (1.0 mL (left column)
and 0.5 mL (right column)) are applied to the resulting plans (post-processing) to give more insight in achieved
HV values in the 3D fronts of tri-objective BRIGHT. In the 2D plots the trade-off between coverage and sparing
is shown. The LCI (x-axis) is constructed by combining the coverage aims (DVIs) from the clinical protocol, i.e.,
Visesiate > 959, VEgse seminal Vesicles > 9504 and DE§9s'*® > 15Gy in a worst-case manner. The LSI (y-axis) is

constructed by combining sparing aims (DVIs), i.e. VFIgst® < 409, VErostate < 150, pBladder - 13 Gy,




pBladder < 12 Gy, DReCtum < 11 Gy, DReCUm < 9.5 Gy, DY5ethra < 16.5 Gy and DYl < 18 Gy. As example
an LCl of 2.0% means that all targets are covered at least 2.0% more than their planning-aim. The upper-right
region in yellow represents the golden corner, where all treatment plans have a positive LSl and LCl, and thereby
satisfy all treatment planning aims (DVIs). The treatment plan with the best LCI-value with a positive LSI-value is
indicated by a blue diamond. The HV in a treatment plan is shown using a color gradient (right-hand side).

Total bi-obj BRIGHT tri-obj BRIGHT + metric 1 tri-obj BRIGHT + metric 2
Hotspot
Volume <=oo <=1.0 <=0.5 <=0.0 <=1 <=0.5 <=0.0 <=1.0 <=0.5 <=0.0
PO1 0.46 0.00 -0.12 0.44 0.44 0.42
P02 0.53 0.15 0.42 0.43 0.41 0.32
P03 0.44 0.27 0.31 0.41
P04 0.00 -0.12 -0.43 -0.16
PO5 0.34 0.29 0.28 0.28
P06 0.41 -0.01 0.39 0.37 0.36 0.31
PO7 0.10 -0.43 -0.22 0.05 0.04 -0.11
P08 0.50 043 038 023 | oas o037 [NEE
P09 0.44 0.11 0.38 0.41 0.40 0.36
P10 0.41 -0.26 0.36 0.39 0.39 0.37
P11 0.34 0.27 0.32 0.32 0.31
# golden corner 11 9 6 3 10 10 4 10 10 8
#worsening - 3 6 10 2 5 10 10 10 11
- GC + no worsening Mo GC + no worsening - No plans
GC + worsening No GC + worsening

Table 1: Summary of the resulting best LCl-value plan given positive LSI-value (LCI values of the blue diamond
plans in Figure 1) of treatment planning results (median of 5 runs, to mitigate randomness in BRIGHT) in bi-
objective BRIGHT and both versions of tri-objective BRIGHT, given multiple upper bounds on maximum total
HS volume (e.g., < 0.5 mL) in the TPs. Abbreviations: <=X, for plans with HS upper bound X; P01, patient 1, GC =
golden corner. A positive LCl-value means that all clinical aims are satisfied. If no plans had been produced that
satisfy the total HS volume upper bound for a patient, then N/A is reported. If the reported median is significantly
worse (Mann—Whitney U test, p-value = 0.05) than the found unconstrainted (total HS volume <= o) bi-objective
BRIGHT value, it is considered as a worsening. In the bottom row the number of patients is reported for which
the GC has been reached (# golden corner) and for which number of patients there was a worsening in best LCI
value given a positive LSI value (# worsening). For patient 4 and 8, bi-objective BRIGHT resulted in GC treatment
plans with a total HS volume of at least 2 mL and 1.5 mL, respectively. Due to unfavourable implant geometry
for patient 4, tri-objective BRIGHT was not able to create GC treatment plans with HV <=1 mL.




Results

B.1. Pareto approximation fronts from the clinic

The resulting Pareto approximation fronts from the clinic for the patients treated using BRIGHT.
The blue dots represent different treatment plans and the yellow dots represent the plans exported for
further inspection in Oncentra Brachy. What can be seen in the different plots is that the long tails of
the approximation front are never used. Only the plans close to or in the golden corner (positive LCI
and LSI) are selected for further inspection. What also becomes clear from these plots is that for all
patients in this patient set the golden corner was (almost) reached.
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Figure B.3: Patient 3 - clinical approximation front
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Figure B.7: Patient 7 - clinical approximation front
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a0 B. Results

B.2. Adaptive steering in 2D

In this appendix section all Pareto approximation fronts are shown for the adaptive steering experi-
ment in 2D.
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Figure B.13: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.14: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.15: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.16: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.17: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.18: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and

when the golden corner was reached without adaptive steering (bg).
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Figure B.19: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and

when the golden corner was reached without adaptive steering (bg).
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Figure B.20: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.21: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.22: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and

when the golden corner was reached without adaptive steering (bg).
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Figure B.23: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.24: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.25: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.26: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and

when the golden corner was reached without adaptive steering (bg).
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Figure B.27: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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Figure B.28: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic BRIGHT
configuration without adaptive steering. In the title of the figure it states what the used setting for adaptive steering were. In the
top right corner it states when adaptive steering began (b), when it ended (e), when the golden corner was reached (g) and
when the golden corner was reached without adaptive steering (bg).
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B.3. Adaptive steering in 3D

In this appendix section all Pareto approximation fronts are shown for the adaptive steering experi-
ment in 3D.

Start: 0.10 Strength: 0.10

b e
=01 - l E Y

-1.0 =05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0 -1.0 -05 0.0 0.5 1.0

AR L
R\

Figure B.29: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.30: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.31: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective

BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.32: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.33: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.34: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.35: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.36: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.37: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.38: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.39: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.40: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.41: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.42: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.43: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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Figure B.44: Blue dots represent treatment plans from the experiment. Grey dots the treatment plans for the basic bi-objective
BRIGHT configuration without adaptive steering. Pink dots the tri-objective BRIGHT results without adaptive steering In the title
of the figure it states what the used setting for adaptive steering were. The order of the patients is similar as in other figures.
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B.4. Basic BRIGHT configuration results

In this appendix section all Pareto approximation fronts are shown for the basic BRIGHT configura-
tion.
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Figure B.45: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.46: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.47: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.48: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.49: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.50: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.51: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.52: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side

the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states
how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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Figure B.53: Pareto approximation fronts resulting from bi-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT without adaptive steering. In the title it states the applied upper bound on HSI value. In the top right corner it states

how long it has taken to reach the golden corner in bi-objective BRIGHT and the value for 3D can be ignored.
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B.5. HSI results

In this appendix section all Pareto approximation fronts are shown for the HSI as third objective.
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Figure B.54: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 0
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Figure B.55: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 0.25
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Figure B.56: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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Figure B.57: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 0.75
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Figure B.58: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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Figure B.59: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 1.5
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Figure B.60: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 2
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Figure B.61: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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HSI Adaptive; LB = 2.5
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Figure B.62: Pareto approximation fronts resulting from tri-objective BRIGHT with HSI as third objective. On the right hand side
the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by bi-objective
BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of UB. In the
top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in
tri-objective BRIGHT.
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B.6. Sum of extra V indices results

In this appendix section all Pareto approximation fronts are shown for the sum of extra V indices as
third objective.

V-Indices; LB = 100
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Figure B.63: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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V-Indices; LB = 0

6.2 - | Patientl 25 1 { Patient2 2.3 - : Patient3 2.5
e~ EEE L, s L
15 : 15 ; 15
1.0 TR .. L "— 1.0 e ——— T e 1.0
0.5 R st 05 0.5
0.0 - | ; . oo - . - oo
4.3 7 | patients 25
o B
15 e 15
1.0 i Ko
0.5 b 0.5
0.0 i 0.0
43 7 | Patient9 : 23
2.0 gﬁggg 2.0 : gc_2d:15 2.0
15 : 15
0.5 0.5
0.0 - i u i ] i 0.0
25 1 : Patient12 2.5 - . Patient12 2.3
w g Lo L
1.5 i 15 e i 1.5
10 PR, (5w W oy - - P 10 = 10
0.5 05 : 0.5
0.0 - ; ; oo - . — oo
-10 05 00 05 1.0 -1.0 -05 00 05 10

Figure B.64: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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V-Indices; LB = 0.25
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Figure B.65: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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Figure B.66: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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V-Indices; LB = 0.75
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Figure B.67: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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Figure B.68: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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22 : patientl 2.5 1  patient2 23 7 : patient3 2.5
: gc_2d:15 i gc_2d:15  gc_2d:22

01 - | gc_3d:47 2.0 | : gc_3d:45 2.0 i  gc_3d:47 2.0

: ' 1.5 1.5 . 15

D.ﬂ e nna e @ g N LT 1'0 B RRTTIE T =i PAT P = o TP 1.0 T LU I oIy, o 1.0

0.5 0.5 0.5

0.0 . i . 0.0 . i . LA

<3 7  Patients 25 - : Patient 23
i gc_2d:23 : gc_2d:17

2.0 | 9c3d:93 2.0 2.0

i . 1.5

. 1.0

. 0.5

. 0.0

<3 7 : Patient9 : 2.3

2.0 : gc_2d:19 2.0 i gc_2d:15 2.0

15 . 15

llD — A B » " 1-0

0.5 0.5

0.0 = i - i i i 0.0

02 - ! patientll 25 1 ! patient12 23 - ! patient12 2.5
i gc_2d:23 i gc_2d:20 i gc_2d:20

o1 2.0 i gc_3d:77 2.0 { gc_3d:77 2.0

) 1.5 i 1.5 ; 1.5

0_0 . 10 PRI 8 e Woof Oy M. | PR l-c PERPRRRITINA. ¥y —gd Wl iy | VR 1-0

0.5 0.5 0.5

01 - . ; . oo 5 ! ! Moo - . i . oo

-1.0 -0.5 00 05 10 -10 -05 00 05 10 -1.0 -0.5 00 05 1.0

Figure B.69: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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Figure B.70: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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Figure B.71: Pareto approximation fronts resulting from tri-objective BRIGHT with the sum of extra V indices as third objective.
On the right hand side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans
generated by bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with
LB instead of UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and
how long it has taken in tri-objective BRIGHT.
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B.7. DTMR results

In this appendix section all Pareto approximation fronts are shown for the DTMR as third objective.
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Figure B.72: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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Figure B.73: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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DTMR; UB = 0.25
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Figure B.74: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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DTMR; UB = 0.5
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Figure B.75: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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Figure B.76: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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DTMR; UB =1
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Figure B.77: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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DTMR; UB = 1.5
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Figure B.78: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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DTMR; UB = 2
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Figure B.79: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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Figure B.80: Pareto approximation fronts resulting from tri-objective BRIGHT with DTMR as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value, although wrongfully indicated with LB instead of
UB. In the top right corner it states how long it has taken to reach the golden corner in bi-objective BRIGHT and how long it has
taken in tri-objective BRIGHT.
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B.8. DLDM results

In this appendix section all Pareto approximation fronts are shown for the DLDM as third objective.
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Figure B.81: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.82: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.83: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.84: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.85: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.86: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.87: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.88: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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Figure B.89: Pareto approximation fronts resulting from tri-objective BRIGHT with DLDM as third objective. On the right hand
side the colour bar is shown with colour corresponding to HSI value. The gray dots are treatment plans generated by
bi-objective BRIGHT. In the title it states the applied upper bound on HSI value. In the top right corner it states how long it has
taken to reach the golden corner in bi-objective BRIGHT and how long it has taken in tri-objective BRIGHT.
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B.9. Slicing the Pareto approximation fronts

In this appendix section all Pareto approximation fronts are shown for the DLDM as third objective.

Best LSI BestL Best LCI

HSIUB | basic HSI Vindices DTMR DLDM basic HSI Vindices DTMR  DLDM basic HSI  Vindices DTMR  DLDM
Patientl 0 - 0.095[3] 0.092 0.095 0.100 - -0.237[3] 0.420 0423 0434 - -0.237[3] 0.532 0.535 0.434
Patientl 0.25 0.103 0.101 0.092 0.095 0.100 0.455 0.458 0.428 0.441 0.447 0.535 0.518 0.541 0.548 0.545
Patientl 0.5 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.613 0.593 0.541 0.549 0.609
Patientl 0.75 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.350 0.609

Patientl 1 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.559 0.609
Patientl 1.5 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.559 0.609
Patientl 2 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.559 0.609

Patientl 2.5 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.559 0.609
Patientl  none 0.103 0.101 0.095 0.095 0.100 0.455 0.466 0.428 0.448 0.451 0.627 0.604 0.541 0.359 0.609

Figure B.90: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LS| Best L Best LCI
HSIUB | basic HSl Vindices DTMR  DLDM basic HSI Vindices DTMR DLDM basic HSI Vindices DTMR DLDM
Patieni2 0 0117 016 0an 0405 0427 0274 0466  0.525  0.550
Patient2  0.25 0.117 0116  0.122 0.405 0.427 0.433 0.466 0535 0.577

Patient2 0.5 0.130 0.129 0.117 0.116 0.129 0.179 0.423 0.413 0.427 0.489 0.179 0.423 0.466 0.535 0.602
Patient2  0.75 0.132 0.129 0.117 0.116 0.129 0.513 0.518 0.413 0.435 0.522 0.663 0.654 0.466 0.536 0.624

Patient2 1 0.132 0.129 0.117 0.116 0.129 0.526 0.543 0.413 0.435 0.522 0.664 0.663 0.466 0.536 0.635
Patient2 1.5 0.132 0.129 0.117 0.116 0.129 0.526 0.544 0.413 0.435 0.522 0.664 0.663 0.466 0.536 0.635
Patient2 2 0.132 0.129 0.117 0.116 0.129 0.526 0.544 0.413 0.435 0.522 0.664 0.663 0.466 0.536 0.635

Patient2 25 0.132 0.129 0.117 0.116 0.129 0.526 0.544 0.413 0.435 0.522 0.664 0.663 0.466 0.536 0.635
Patient2  none 0.132 0.129 0.117 0.116 0.129 0.526 0.544 0.413 0.435 0.522 0.664 0.663 0.466 0.536 0.635

Figure B.91: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LSl Best L Best LCI

HSIUB | basic HSI Vindices DTMR  DLDM basic HSI  Vindices DTMR  DLDM basic HSI  Vindices DTMR  DLDM
Patient3 0 |0aoo0[3] 0097 0101 0400 0100 |0.145[3] 0306 0424 0420 0422 |0.145[3] 0441 0.565 0.577  0.597
Patient3 0.25 0.100 0.102 0.101 0.100 0.102 0.347 0.450 0.426 0.436 0.428 0.592 0.621 0.565 0.581 0.604
Patient3 0.5 0.101 0.102 0.101 0.100 0.102 0.441 0.456 0.427 0.443 0.43% 0.639 0.625 0.565 0.581 0.604
Patient3 0.75 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.439 0.640 0.625 0.565 0.581 0.604

Patient3 1 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.433 0.640 0.625 0.565 0.581 0.604
Patient3 1.5 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.439 0.640 0.625 0.565 0.581 0.604
Patient3 2 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.439 0.640 0.625 0.565 0.581 0.604

Patient3 2.5 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.433 0.640 0.625 0.565 0.581 0.604
Patient3 100 0.101 0.102 0.101 0.100 0.102 0.443 0.460 0.435 0.443 0.439 0.640 0.625 0.565 0.581 0.604

Figure B.92: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.
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Best LSI BestL Best LCI

HSI UB indi DTMR Vindices DTMR HSl Vindices DTMR
Patient4 0
Patient4 0.25
Patient4 0.5
Patientd  0.75 . 0.007[3] -0.440 -0.369 -0.257[3]
Patient4 1 . 0.043[4 -0.124 -0. -0.029 -0.032[4]
Patientd 1.5 . 0.048 -0.023 . 0270 0271
Patient4 2 0.053 0.055 0.048 0.056 0.046 -0.014 0.002 -0.020 0.052 -0.062 0.032 0.301 0.272 0.072 0.198
Patientd 2 0.053 0.055 0.048 0.056 0.046 0.003 0.002 -0.020 0.067 -0.053 0.343 0.304 0.272 0.310 0.273
Patient4 100 0.053 0.055 0.048 0.056 0.045 0.003 0.002 -0.020 0.067 -0.053 0.343 0.304 0.272 0.316 0.273

Figure B.93: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LSI BestL Best LCI
HSIUB | basic HSl Vindices DTMR DLDM basic HSl Vindices DTMR DLDM basic HSl Vindices DTMR DLDM
Patient> 0 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.317 0.550 0.504 0.423 0.443 0.516

Patients  0.25 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516
Patient5 0.5 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516
Patients  0.75 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516

Patient5 1 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516
Patient5 15 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516
Patient5 2 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516

Patient5 2.5 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516
Patient5 100 0.081 0.082 0.070 0.070 0.075 0.344 0.314 0.206 0.276 0.332 0.550 0.519 0.423 0.443 0.516

Figure B.94: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LSI BestL Best LCI
HSIUB | basic HSI  Vindices DTMR  DLDM basic HSI  Vindices DTMR  DLDM basic HSI  Vindices DTMR  DLDM

Patients 0.075([3] 0.068[3] 0.231[3]

patients  0.25 0. 0.084[3] 0351  0.324[3] 0.489  0.419[3]

Patients 0.5 [0.095[4] 0.097 0.091  0.095 0.091[4]|0.031[4] 0.398 0.369 0361 0.215(4]|0.031[4] 0.582 0.490 0.523 0.325[4]

Patients  0.75 |[0.096[4] 0.097 0.093 0.095 0.094 |0.391[4] 0.398 0372 0383  0.359 [0.435[4] 0.595 0.490 0558  0.531
0.490

Patientt 1 0.096 0.097 0.093 0.095 0.095 0.406 0.405 0.372 0.388 0.388 0.594 0.595 0.579 0.557
Patientt 15 0.096 0.097 0.093 0.095 0.095 0.411 0.408 0.384 0.397 0.400 0.598 0.595 0.490 0.581 0.564
Patientt 2 0.036 0.098 0.093 0.095 0.095 0.411 0.409 0.384 0.397 0.401 0.598 0.595 0.490 0.581 0.566

Patientt 2.5 0.096 0.098 0.093 0.095 0.095 0.411 0.409 0.384 0.397 0.401 0.598 0.597 0.450 0.581 0.566
Patientt 100 0.096 0.098 0.093 0.095 0.095 0.411 0.412 0.384 0.397 0.401 0.598 0.597 0.490 0.581 0.566

Figure B.95: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.
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Best LS| Best L Best LCI

HSIUB | basic HSI  Vindices DTMR  DLDM basic HSI Vindices DTMR DLDM | basic HSI  Vindices DTMR  DLDM
Patient? 0.040 0.050[4 -0.108 -0.199[4 0.033 0.076[4]
Patient? 0.062  0.058  0.055 -0.026 -0.048 0.210  0.120
Patient? 0.062 0.058 0.061  0.053 ! -0.026 -0.026 -0.035 0306 0.211 0282 0.259
Patient7 075 [0.053[3] 0.062 0.060 0.062 0.058 |-0.378[3] 0.082 -0.012 0.021 0.032 |-0.373[3) 0306 0.211 0282 0302
Patient7 1 0.062 0.063 0.060 0.062 0.060 -0.007 0.082 0.004 0.034 0.032 0.163 0.313 0.211 0.282 0.308
Patient? 1.5 0.063 0.064 0.061 0.062 0.060 0.097 0.082 0.004 0.048 0.079 0.314 0.314 0.211 0.283 0.308
Patient? 2 0.063 0.064 0.061 0.062 0.061 0.097 0.091 0.004 0.048 0.079 0.339 0.314 0.211 0.283 0.320
Patient? 2.5 0.063 0.064 0.061 0.062 0.061 0.097 0.091 0.008 0.048 0.079 0.3239 0.319 0.211 0.283 0.328
Patient? 100 0.063 0.064 0.061 0.062 0.061 0.097 0.093 0.008 0.048 0.079 0.339 0.328 0.211 0.283 0.328

Figure B.96: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper

bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LS| Best L Best LCI
HSl  Vindices DTMR HSI  Vindices DTMR HSI  Vindices DTMR
Patient9 o
Patient9 0.25
Patient9 0.5
Patient9 0.75
Patient9 1
Patient9 1.5
Patient9 2
Patient9 2.5
Patient9 100

Figure B.97: Overview of median best achieved LCI and LS| values and median achieved L value for different HSI upper

bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold

and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in

green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all

runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported
in the square brackets behind the reported value.

Best LSl Best L Best LCI

HSI  Vindices DTMR DLDM HSI  Vindices DTMR HSI  Vindices DTMR
Patient1l0
Patientl0 0.25 0.038[3] 0.091[4
Patientl0 0.5 0104 0101 0. .
Patientl0 0.75 0104 0102 0102 0.097[4] 0.520 0.585 0.549 0.112[4]
Patientld 1 0.104 0.100 0120 0.611 0.585 0.549 0230
Patientld 1.5 0.104 . 0.103 0361 0.615 0.589 0.580  0.561
Patientl0 2 0.106 0.104 0.103 0.104 0.104 0.630 0.615 0.596 0.587 0.589
Patientl0 2.5 0.106 0105 0103 0104 0.104 0.636 0.615 0.597 0.601  0.589
Patientl0 100 0106 0105 0103 0104 0.104 0636 0.620 0.599 0.601 0.599

Figure B.98: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.
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Best LS| Best L Best LCI

HSIUB | basic HSlI  Vindices DTMR  DLDM basic HSI  Vindices DTMR DLDM | basic HSI  Vindices DTMR DLDM
patientil 0 [NRNMIN 0.065(3] 0.091 0.022(2] [GINRIREN o-122(2] 0350  0.160(2] [NRNSINENEN 0.122(2]  0.542  0.160(2] RN
Patientll 0.25 0.098 0.099 0.091 0.094 0.097 0.341 0.353 0.366 0.304 0.341 0.469 0.482 0.549 0.319 0.351
Patientll 0.5 0.100 0.100 0.091 0.096 0.098 0.400 0.406 0.370 0.386 0.415 0.499 0.595 0.549 0.532 0.598
Patientll 0.75 0.100 0.100 0.091 0.096 0.098 0.408 0.416 0.370 0.393 0.419 0.598 0.601 0.549 0.536 0.599

Patientll 1 0.100 0.100 0.091 0.096 0.098 0.408 0.416 0.370 0.398 0.419 0.604 0.601 0.549 0.536 0.599
Patientll 1.5 0.100 0.100 0.091 0.096 0.098 0.408 0.416 0.370 0.398 0.419 0.604 0.601 0.551 0.536 0.599
Patientll 2 0.100 0.100 0.091 0.096 0.098 0.408 0.416 0.370 0.398 0.419 0.604 0.601 0.551 0.536 0.599

Patientll 2.5 0.100 0.100 0.001 0.096 0.098 0.408 0.416 0.370 0.398 0.419 0.604 0.601 0.551 0.536 0.599
Patientll 100 0.100 0.100 0.091 0.096 0.098 0.408 0.416 0.370 0.398 0.419 0.604 0.601 0.551 0.536 0.599

Figure B.99: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.

Best LSl Best L Best LCI

basic HSI Vindices DTMR DLDM HSI Vindices DTMR DLDM basic HSI Vindices DTMR DLDM

0.066 - 0.071[3] 0.252 - 0.029[3] 0.459 - 0.029[3]

0.042[4] 0.068 0.028 0.078 0.308 -0.163  0.280 0.469 -0.074 0.280
0.070 0.076  0.078 0.308 0.286 0.336 0.469 0.424 0.473
0.082 0.072 0.078 0.078 0.316 0.335 0.350 0.4565 0.519 0.515
0.083 0.072 0.078 0.078 0.316 0.335 0.350 0.478 0.519 0.515
0.083 0.072 0.078 0.078 0.316 0.343 0.350 0.478 0.520 0.515
0.083 0.072 0.078 0.078 0.316 0.343 0.350 0.478 0.520 0.515
0.083 0.072 0.078 0.078 0.316 0.343 0.350 0.478 0.520 0.515
0.083 0.072 0.078 0.078 0.316 0.343 0.350 0.478 0.520 0.515

Patientl2 0
Patientl2 0.25
Patientl2 0.5
Patientl2 0.75
Patientl2 1
Patientl2 1.5
Patient12 2
Patientl2 2.5
Patientl2 100

Figure B.100: Overview of median best achieved LCI and LSI values and median achieved L value for different HSI upper
bounds. If the reported average is significantly different from the basic configuration of BRIGHT, then the result is shown in bold
and underscored. If N/A is reported, then no treatment plans that adhere to the shown bound were found. If a result is shown in
green, then it significantly improves upon the base configuration of BRIGHT, if it deteriorates then it it shown in orange. If not all
runs resulted in treatment plans that adhered to the upper bound then the number of runs for which it did find plans is reported

in the square brackets behind the reported value.
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