
Multi-Camera Registration for VR:
A flexible, feature-based approach

Version of December 14, 2018

Qinzhuan QIAN

Multi-Camera Registration for VR:
A flexible, feature-based approach

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Qinzhuan QIAN
born in Shanxi, China

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

CWI
Science Park 123

Amsterdam, the Netherlands
www.cwi.nl

www.ewi.tudelft.nl
www.cwi.nl

c© 2018 Qinzhuan QIAN. Note that this notice is for demonstration purposes and that the
LATEX style and document source are free to use as basis for your MSc thesis.

Cover picture: A “random” maze generated in postscript.

Multi-Camera Registration for VR:
A flexible, feature-based approach

Author: Qinzhuan QIAN
Student id: 4755154
Email: Q.Qian@student.tudelft.nl

Abstract

Real-time point cloud capturing and multiple depth camera 3D reconstruction are vital
elements that bring real-time representations into a virtual world and provide an im-
mersive experience which can be applied to develop VR/AR applications. To make this
possible, camera calibration plays an essential role in providing important camera spa-
tial information for 3D scene reconstruction. However, there are still many drawbacks
left to improve on camera extrinsic parameters calculation in most existing systems:
such as the procedure relies too much on extra calibration markers, or specific depth
sensors may have complicated procedures that cannot easily be generalized to other
depth sensors.
To improve on this, we propose a markerless, feature-based pipeline for multiple cam-
era re-calibration. This pipeline contains four main stages. It adopts feature descriptor
extracting and matching to solve the issue of requiring additional markers, and the
point cloud registration accuracy is improved by using point cloud segmentation and
part selection.
The experiment results obtained in this research show that this pipeline can calibrate
four cameras with a single object (such as a chair, lamp) without the need for additional
calibration markers. The extrinsic parameters calculated using this pipeline is more
accurate and requires less processing time than originally. This pipeline provides the
potential for further human point cloud capturing and camera calibration in real-time
3D reconstruction.

Thesis Committee:

Chair: Prof. Dr. A. Hanjallic, Faculty EEMCS, TU Delft
University supervisor: Dr. P. S. Cesar Garcia, Faculty EEMCS, TU Delft
External supervisor: Dr. A. A. M. Kuijk, Distributed and Interactive Systems, CWI
Committee Member: Dr. Klaus Hildebrandt, Faculty EEMCS, TU Delft

Q.Qian@student.tudelft.nl

Contents

Contents iii

List of Figures v

1 Introduction 1
1.1 Objectives and Research Questions . 6

2 Background 9
2.1 AR/VR Scenarios and Point Clouds . 9
2.2 Depth Sense Cameras . 13
2.3 3D Reconstruction Technologies Based on RGB-D Cameras 17
2.4 Camera Calibration . 26
2.5 Point Cloud Feature Extraction and Segmentation Based on PCL 29
2.6 3D Data Deep Learning Network . 33

3 Contributions and Methodology 43
3.1 Challenges . 43
3.2 Contributions . 45
3.3 Methodology and Architecture . 45

4 Experiments and Results 55
4.1 Pre-experiments . 55
4.2 Validate the Pipeline (Two Cameras) . 58
4.3 Validate the Pipeline (Four Cameras) . 60
4.4 PCL-Based Segmentation with Pipeline 66
4.5 PointNet++ with Pipeline . 77
4.6 Feature-Based Coarse Registration with Pipeline 84

5 Analysis 89
5.1 Qualitative Analysis . 89
5.2 Quantitative Analysis . 107

iii

CONTENTS

5.3 Comparison with State of the Art . 116

6 Conclusions 119
6.1 Summary . 119
6.2 Future Work . 121

Bibliography 125

iv

List of Figures

1.1 Image of Second Life Game. The 3D avatar shown in the image is wearing a
VR/AR device for interaction and game in the virtual world.
source: https://www.roadtovr.com/second-life-oculus-rift-beta-test-linden-labs/ 2

1.2 An overview of the Social VR platform system. The red module is the step of
capturing 3D data by the depth camera. The green modules are on the SERVER
side, the 3D reconstruction and data encoding of the point cloud is performed.
The gray modules are steps that run on the CLIENT side for decoding, render-
ing and point cloud visualization. This thesis focuses on multi-camera registra-
tion (the yellow module) that is needed to be able to perform the 3D reconstruc-
tion process on the SERVER side. Note that camera registration is not part of
the continuous real-time streaming of camera data. It includes coarse and fine
registration steps. The coarse registration is a one time event when cameras
are static. The other modules in this figure are continuous processes. A more
detailed overview of multi-camera registration system is shown in Fig.1.3. . . . 4

1.3 Overview of the multiple depth camera re-calibration system. This thesis im-
plements and validates the modules in the yellow dashed box, including coarse
registration, pre-processing and fine registration steps. The coarse registration
is a one time procedure when the camera position is fixed. The remaining steps
are continuous operations. The initial transformation matrix obtained by coarse
registration and the pre-processed point clouds are used as inputs for the fine
registration step, the camera position and pose is estimated by using ICP al-
gorithm. In addition, we provide a solution for automatic re-calibration the
system, which is shown in green modules. This system performs a re-calibrate
process when the registration does not reach the matching accuracy and is lower
than a predefined threshold. Note that this re-calibration process does not run
for every captured frame, but runs at a much lower frequency. 5

2.1 VR and AR worldwide market size from 2016 to 2022 (estimated)
source: https://www.statista.com/statistics/591181/global-augmented-virtual-reality-
market-size/ . 10

v

LIST OF FIGURES

2.2 VR FPS game: Arktika.1
source: https://uploadvr.com/arktika-preview-tell-show/ 11

2.3 Social VR product: Facebook Space
source: https://newsroom.fb.com/news/2017/04/facebook-spaces/ 12

2.4 Laser infrared dot matrix pattern
source:https://www.vision-systems.com/articles/2014/05/osela-releases-random-
pattern-laser-dot-matrix.html . 13

2.5 TOF scanner measurement
https://www.stemmer-imaging.com/en/knowledge-base/cameras-3d-time-of-flight-
cameras/ . 14

2.6 The Surfel representation model
source: from the Internet searchinghttps://pan.baidu.com/ 21

2.7 The structure of Deformation Graph
source: from the Internet searchinghttps://pan.baidu.com/ 22

2.8 Checkerboard pattern
source:https://zh.wikipedia.org/wiki/File:Checkerboard pattern.svg 26

2.9 Correlations among the pixel coordinate, the image coordinate, the camera co-
ordinate and the world coordinate . 27

2.10 The FPH calculation area of center point (Pq)
source: http://pointclouds.org/documentation/tutorials/pfh estimation.php . . . 31

2.11 The spatial coordinates of points p1 and p2.
source: http://pointclouds.org/documentation/tutorials/pfh estimation.php . . . 31

2.12 The k neighborhood influence range graph centered on the point pq

source: http://pointclouds.org/documentation/tutorials/fpfh estimation.php . . . 32
2.13 Architecture of 3D ShapeNets model

source:3D ShapeNets: A Deep Representation for Volumetric Shapes[124] . . . 37
2.14 Multi-view CNN architecture

source: Multi-view Convolutional Neural Networks for 3D Shape Recognition[111] 39
2.15 PointNet Architecture: The ”mlp” represents multi-layer perceptron, Batch-

norm is used for all layers with ReLU.
source: PoineNet: Deep learning on point sets for 3D classification and segmentation[85] 40

3.1 The Marker used in calibration system proposed from [57]. 44
3.2 Calibration objects used for live 3D human reconstruction and motion captur-

ing: 4 standardized IKEA boxes along with 32 QR markers
source: An integrated platform for live 3D human reconstruction and motion
capturing[3] . 44

3.3 The system architecture. The grey module (coarse registration) is a one-time
process; the blue modules are continuously processing procedures. In this thesis
we validate the modules within the yellow dotted box and propose a suggestion
(green modules) for achieving an automatic re-calibration. 46

vi

List of Figures

3.4 The system detailed modules. The module in grey (coarse registration) is a
one time procedure; the modules in blue are continuously process. In detail,
the modules in yellow (in Pre-processing step) are written in python, the other
modules in pre-processing step are written in C++. 47

3.5 Flow of coarse registration based on MATLAB toolkit. 48
3.6 Position of four cameras . 48
3.7 Partial 3D model images of 3D ShapeNetCore dataset. source: [85] 54

4.1 Original and transformed bunny . 56
4.2 Aligned bunny . 56
4.3 Original source dog point cloud . 57
4.4 Original target dog point cloud . 57
4.5 Original source and target toy dog point cloud 57
4.6 Aligned point cloud of the toy dog . 58
4.7 Positions of two depth cameras . 58
4.8 Photos of calibration from camera1 (left) and camera2 (right) 59
4.9 Point clouds of a chair captured from camera1 (left) and camera2 (right) 59
4.10 Source, target and transformed point cloud of a chair 60
4.11 Aligned point cloud after 1 iteration . 61
4.12 Aligned point cloud after 80 iterations . 61
4.13 Positions of four cameras . 62
4.14 Captured original point cloud from (left to right) camera1, camera2, camera3

and camera4 . 62
4.15 Aligned point cloud after 40 iterations. The white point cloud is the target

captured by camera1, the red one is the source captured by camera2. 63
4.16 Aligned point cloud after 40 iterations. The white point cloud is the target

captured by camera1, the green one is the source captured by camera3. 63
4.17 Aligned point cloud after 40 iterations. The white point cloud is the target

captured by camera1, the blue one is the source captured by camera4. 64
4.18 The comparison between original alignment point cloud and edited alignment

point cloud . 65
4.19 The flow of SAC segmentation . 67
4.20 The plane model-based SAC segmentation results of chair. The red part is the

segmented plane, the blue part is the original point cloud. 68
4.21 ICP alignment results. The white point cloud is the target point cloud from

camera1, the red, green and blue ones represent the aligned point cloud from
camera2, camera3 and camera4. 69

4.22 Captured lamp point cloud from (left to right) camera1, camera2, camera3 and
camera4 . 70

4.23 The plane model-based SAC segmentation results of the lamp. The red part is
the segmented plane, and the blue part is the original point cloud. 70

4.24 Captured mug point cloud from (left to right) camera1, camera2, camera3 and
camera4 . 71

vii

LIST OF FIGURES

4.25 The plane model-based SAC segmentation result of the mug point cloud. The
red part is the segmented plane, and the blue part is the original point cloud. . . 71

4.26 Lamp segmentation result from cylinder model-based SAC segmentation. . . . 72
4.27 The cylinder model-based SAC segmentation results of mug showing a frag-

mented result. 73
4.28 Flow of region growing segmentation method in PCL 73
4.29 Region growing segmentation results of a chair, lamp and mug. Each row from

left to right is point clouds captured from camera1, camera2, camera3 and cam-
era4. Different color indicates different clusters. 74

4.30 Region growing segmentation results of lamp by using different initial param-
eters. Fig(a) has 2 clusters, Fig(b) has 8 clusters. The red part is the original
point cloud. 75

4.31 Output point cloud from PointNet++ network 78
4.32 Aligned point cloud (from four cameras) after 40 iterations.

The red point cloud comes from camera2, the green point cloud from camera3
and blue point cloud from camera4 . 79

4.33 Aligned lamp point cloud of four depth cameras 40 iterations. 81
4.34 The PointNet++ segmented point cloud of the lamp 81
4.35 Aligned segmented lamp point cloud after 40 iterations 82
4.36 Original mug point clouds. 83
4.37 The PointNet++ segmented mug point cloud. 83
4.38 The original and segmented point clouds of a person wearing a earphone 84
4.39 Flow of FPFH feature estimation and alignment 84
4.40 The alignment result of the lamp by using FPFH feature extraction and SAC-IA

alignment. 86
4.41 The alignment results of the chair by using FPFH feature extraction and SAC-

IA alignment: The left column is the original point clouds, the right column is
the aligned point clouds. 87

5.1 Chair Point Cloud Segmentation Results. From the top to the bottom are point
clouds from target camera1, source camera2, source camera3 and source cam-
era4. From left to right of each line are the original point cloud, manual segmen-
tation, SAC segmentation, region growth and PointNet++ segmentation results.

. 91
5.2 Segmentation results of chair when t = 0.01, 0.04 and 0.1. The parameter t

represents the DistanceT hreshold. Target and Source represents different cap-
ture cameras. The blue point cloud is the original input, and the red part is the
segmented point cloud. 92

5.3 Chair Point Cloud Registration Results. The white point clouds represent the
target ones, the red point clouds represent the point clouds captured from source
camera2, the green points represents source camera3 and the blue ones repre-
sent source camera4. From left to right of each row shows the registration
results by using the original point cloud, manual segmentation, SAC segmenta-
tion and PointNet++ segmentation point clouds. 94

viii

List of Figures

5.4 Lamp Point Cloud Segmentation Results. The point clouds in each column
from left to right are original, manual segmentation, plane model-based SAC
segmentation, region growing, and PointNet++ segmentation results. 96

5.5 Segmentation results of lamp when t = 0.01, 0.04 and 0.1. Parameter t rep-
resents the DistanceT hreshold. Target and Source represent different capture
cameras. The blue point cloud is the original input, and the red part is the
segmented point cloud. 97

5.6 SAC-based Cylinder Model Segmentation results of the Lamp 98
5.7 Region growing segmentation results of lamp by using different values of pa-

rameters. The parameter p1 represents MinClusterSize, p2 represents CurvatureT hreshold,
p3 represents SmoothnessT hreshold, cluster represents the number of clusters
in point cloud. 99

5.8 Lamp Point Cloud registration Results. The white point clouds represent the
target ones, the red point clouds represent the point clouds captured from source
camera2, the green represents source camera3 and the blue ones represent source
camera4. From left to right of each row shows the registration results by using
the original point cloud, manual segmentation and PointNet++ segmentation
point clouds. 100

5.9 Mug Point Cloud Segmentation Results. The point clouds in each column from
left to right are original, manual segmentation, plane model-based SAC seg-
mentation, region growing, and PointNet++ segmentation results. 102

5.10 SAC segmentation results of mug when t = 0.05 and 0.1. The parameter t rep-
resents the DistanceT hreshold. Target and Source represent different capture
cameras. The blue point cloud is the segmented cylinder points, and the green
part contains other points. 103

5.11 SAC cylinder model segmentation results of a mug by using different values of
RadiusLimits parameter. Target and Source represents different capture cameras. 104

5.12 The original point cloud of a person wearing a earphone 104
5.13 PointNet++ segmentation results by using different testing data. The first col-

umn is the original point cloud captured by the camera, and the second column
is the segmentation result of the camera captured point cloud. The third column
is the ground truth (GT) of the complete 3D model, and the fourth column is
the segmentation result of the 3D model. 105

5.14 Polyline Chart of Processing Time and Fitness Score - Chair Point Clouds . . . 109
5.15 Polyline Chart of Processing Time and Fitness Score - Lamp Point Clouds . . . 111
5.16 Polyline Chart of Processing Time and Fitness Score - Original Point Clouds . 114
5.17 Polyline Chart of Processing Time and Fitness Score - Segmented Point Clouds 115

6.1 The system architecture. The grey module (coarse registration) is a one time
process; the blue modules are continuously processing procedures. In this thesis
we validate the modules within the yellow dotted box and propose a suggestion
(green modules) for achieving an automatic re-calibration system. 120

6.2 The point cloud of a person wearing an earphone 121
6.3 The PointNet segmented mug point cloud. 122

ix

Chapter 1

Introduction

Virtual reality is a technology that uses computer simulation tools to generate a virtual world
in a three-dimensional space. It provides users with sensory simulations such as vision and
touch, making users feel as if they are immersed in a virtual environment and can observe
3D space in real time.

The concept of virtual reality was proposed back in 1932[49]. In the following twenty
years, researchers designed VR devices and products to realize this concept. The early
VR products were mainly used in the military field. With the development of hardware
and software technologies, an increasing number of VR products have been released in the
consumer market in recent years, and VR technology has also been applied in various fields.

One particular type of application scenarios is social VR. Many platforms in the market cur-
rently provide social media functions, such as VRchat, Facebook spaces, and Second Life.
VRchat creates a virtual world in which users can interact with others by using fictional
avatars. Facebook’s social application (Facebook spaces) provides a platform for sharing
and communication. Users can quickly set up customized avatars and interact with other
users through avatars’ expressions, actions, and sounds. Second Life created a virtual re-
ality world where users can socialize and participate in individual or group activities; the
user can also create and trade property and services in this world. Fig.1.1 shows an image
of Second Life.

The user in the above mentioned social VR products is represented as a cartoon image or
a virtual avatar, and apparently there is a big difference between a cartoon avatar and a
real person. The objective of social VR applications is to build a virtual social platform
to simulate and replace face-to-face communication. However, using a 3D virtual avatar
representation loses real expression, eye contact and demeanor details of the user, whereas
real-time reconstruction of the human body, this highly realistic 3D model can reproduce
these important social signals of the user in real-time. The combination of real-time 3D
reconstruction of the human body and the surrounding environment in a virtual world is a
challenge in VR/AR applications.

In VR and AR pipelines, there are three key components: data acquisition, optimization
transmission, and real-time scene reconstruction and interaction. Data acquisition and trans-

1

1. INTRODUCTION

Figure 1.1: Image of Second Life Game. The 3D avatar shown in the image is wearing a
VR/AR device for interaction and game in the virtual world.

source: https://www.roadtovr.com/second-life-oculus-rift-beta-test-linden-labs/

mission ensure data quality and optimal transmission speed. 3D rendering reconstructs
scenes and reproduces the movement of characters in real-time. An efficient rendering al-
gorithm is used to apply colors and lighting to improve realism.

Microsoft released a depth camera Kinect for gaming and entertainment in 2012. Subse-
quently, with the development of depth sensor technology, depth sensors became relevant
for civilian consumers and researchers. Compared to depth scanners and professional depth
sensors, the latest generation depth cameras are smaller, more convenient and cheaper.

As affordable depth cameras entered the market, real-time 3D reconstruction has also been
widely developed. Real-time 3D reconstruction technology aims to reconstruct the user’s
body and the surrounding environment in three-dimensions. The movements and expres-
sions of the user can be reconstructed reliably, so that this reconstructed human 3D model
can be used to represent the user in the virtual world.

The KinectFusion[76] system published in 2012 performs real-time 3D reconstruction through
camera pose estimation and data fusion. This real-time 3D reconstruction system mainly
uses the ICP algorithm[84] and TSDF representation[25] method. However, KinectFusion
can only work with a single depth camera, the reconstruction results have occlusion prob-
lems, and it cannot be used in large-scale scenes. Four years later, the so named Fusion4D
system[77] proposed how to use multiple depth cameras for real-time 3D reconstruction,
which extended 3D reconstruction from a single camera to multi-camera configurations in
order to achieve a 360-degree 3D reconstruction. With the development of deep learning
technology, researchers had been trying to make the machine have the ability to identify and

2

understand the surrounding environment and achieve semantic 3D reconstruction. The Se-
manticFusion system[69] published in 2017 is a semantic real-time reconstruction system
based on the SLAM system[122] and CNN network[50]. This system can more intelligently
understand and reconstruct the surrounding environment and thus be used in various fields.

An essential part of multi-camera real-time 3D reconstruction technology is camera pose
estimation and calibration. This requires combining the contributions of the individual cam-
eras. Currently, there are two types of camera calibration methods. One is based on specific
calibration objects, such as a checkerboard or dotted pattern. These calibration methods
can be implemented by using MATLAB toolkit[13] or OpenCV[14] library. The operation
of the MATLAB toolkit is complex and requires manual corner detection, but it provides
higher accuracy calibration results than the OpenCV method. Another calibration method
removes the use of additional calibration objects and can calibrate cameras using unmarked
objects. For example, The calibration system proposed by Kevin et al.[56] is a human
skeleton-based calibration system that calibrates multiple-camera based on the skeleton ex-
tracted from a depth camera. However, this calibration method relies on the skeleton data
provided by the software tools that come with the camera. Unfortunately not all cameras
on the market provide human skeleton data. Therefore, this calibration method cannot be
generalized for all depth cameras.

The project I have been collaborating with (VRTogether) is a social VR platform that builds
a virtual world by reconstructing scenes and users in real-time. Unlike other social VR
products that are currently available on the market, it reconstructs human models to replace
virtual cartoons and provides a platform for meetings and entertainment. The overview
of the platform is shown in Fig.1.2, the whole system is divided into a CLIENT and a
SERVER side. The point cloud data acquired from the depth camera is first processed on the
SERVER side. On the SERVER side, the point cloud data fragments of multiple-camera are
merged in real-time, and then the obtained reconstructed point cloud that forms a complete
representation of the user is sent to the encoding module for data processing. This system
provides encoding channels to accomodate different data quality and transfers this data to
the CLIENT side. On the CLIENT side, the system selects the required data quality levels,
then the decoding module decodes the corresponding data, and finally displays the point
cloud data on the appropriate display device.

This project focuses on the multiple-camera pose estimation and calibration needed on the
SERVER side to be able to do the 3D reconstruction by merging the point cloud fragments
from the individual cameras. This process is known as camera registration. We design a
multi-camera calibration system, which includes coarse registration, pre-processing, fine
registration and point cloud update steps. Fig.1.3 shows an overview of our system. At
first, we use MATLAB toolkit[13] and the ICP (Iterative Closest Point)[126] algorithm
in our pipeline. However, the experimental results show that this calibration method has
limitations: the captured point cloud from each depth camera is incomplete because a depth
camera can only cover a part of the object and may have occlusion (e.g., an arm covering
part of the body). The incomplete part of different cameras may cause the ICP algorithm to
generate registration errors. Second, the system still requires a checkerboard as a calibration
object. Although this process is a one-time process when cameras are at a fixed position,

3

1. INTRODUCTION

Figure 1.2: An overview of the Social VR platform system. The red module is the step of
capturing 3D data by the depth camera. The green modules are on the SERVER side, the
3D reconstruction and data encoding of the point cloud is performed. The gray modules are
steps that run on the CLIENT side for decoding, rendering and point cloud visualization.
This thesis focuses on multi-camera registration (the yellow module) that is needed to be
able to perform the 3D reconstruction process on the SERVER side. Note that camera
registration is not part of the continuous real-time streaming of camera data. It includes
coarse and fine registration steps. The coarse registration is a one time event when cameras
are static. The other modules in this figure are continuous processes. A more detailed
overview of multi-camera registration system is shown in Fig.1.3.

this step needs to be re-run when any of the cameras in the system moves.

Therefore, we propose a feature-based multi-camera calibration system to implement a flex-
ible calibration system without the use of additional calibration objects. The idea of this
system is first to use a segmentation and selection method to select a part of a point cloud
that is covered by the cameras that need to be calibrated. This reduces the errors caused by
missing portions of the point clouds. We segment the point cloud by using the segmenta-
tion method provided by PCL(Point Cloud Library)[81], but as we will see in section 4.4
the segmentation results are not ideal and are not suited to be used in our system. So we
use PointNet deep learning network to segment the point cloud, and then compare the point
clouds captured by different cameras based on the volume of these segments (see section
3.3.4). In this way, the most suitable part that the individual cameras have in common
is selected for registration. Secondly, we use the feature extraction, feature matching and
alignment method in the PCL to perform the coarse registration step. This method is used
to replace the MATLAB toolkit calibration step.

We use four calibration objects (chair, lamp, mug, and earphone) to test the pipeline. The
experimental results show that our pipeline can shorten the processing time and improve
the accuracy of point cloud registration. We show that the initial transformation matrix of

4

Figure 1.3: Overview of the multiple depth camera re-calibration system. This thesis im-
plements and validates the modules in the yellow dashed box, including coarse registration,
pre-processing and fine registration steps. The coarse registration is a one time procedure
when the camera position is fixed. The remaining steps are continuous operations. The ini-
tial transformation matrix obtained by coarse registration and the pre-processed point clouds
are used as inputs for the fine registration step, the camera position and pose is estimated
by using ICP algorithm. In addition, we provide a solution for automatic re-calibration
the system, which is shown in green modules. This system performs a re-calibrate process
when the registration does not reach the matching accuracy and is lower than a predefined
threshold. Note that this re-calibration process does not run for every captured frame, but
runs at a much lower frequency.

feature extraction and alignment is comparable to the MATLAB method in performance,
but our method is more convenient and time-saving in practice.

5

1. INTRODUCTION

1.1 Objectives and Research Questions

There are two types of calibration systems; one is based on a calibration checkerboard[36][80],
printed pattern[57] or labelled boxes[3]. These systems are time-consuming and have com-
plex operating procedures. Another type of calibration system is a markerless calibration
system based on the human skeleton[56]. However, this system requires a depth camera that
provides human skeleton data, which is currently not available for all depth cameras on the
market. Our research aims to design a multi-camera system that does not need additional
objects and not be tied to specific depth cameras.

The research questions investigated in this thesis are:

How to replace commonly used additional calibration objects in the coarse registration
step to achieve a more user-friendly calibration system?

This research question deals with how to replace the commonly used complex coarse regis-
tration methods. There exist two popular types of camera calibration methods: one is based
on the MATLAB toolkit with high accuracy and complicated procedures; another one is
based on the OpenCV library. Both approaches require additional checkerboards or mark-
ers as the calibration object. In this thesis, a feature-based solution for coarse registration is
proposed to replace the MATLAB toolkit camera calibration method.

How to improve the performance and robustness of the ICP algorithm in the fine reg-
istratoin step?

This research question deals with the weak robustness of the ICP[11] algorithm which will
be encountered in reality. Due to the fact that the point cloud data captured by one depth
camera do not cover the complete object, as it covers one side of the object only, the al-
gorithm can fall into a local optimum and produce wrong results. We need to propose a
solution to overcome this inherent shortcoming of the ICP algorithm and improve process-
ing time for further dynamic reconstruction. In this way to improve the robustness and
performance of the ICP algorithm.

How to achieve an automatic multi-camera self-calibration system by using the cap-
tured point cloud data?

Automatic camera calibration is an essential part of a real-time 3D reconstruction system
that requires dynamic calibration of multiple cameras without manual intervention. Based
on point cloud data, this paper proposes a feature-based multi-camera registration system
that can be used with most cameras on the market. The research question deals with how to
automatically re-calibrate the camera based on the ICP algorithm and the point cloud data
used in this project.

Thesis Outline:

This thesis is structured as follows. We first discuss the background and related work of
technologies and equipment used in the system in Chapter 2, and then in Chapter 3 we
present the contributions of this thesis, illustrate key modules in details and introduce the
database used for system validation. In Chapter 4 we demonstrate the experimental pro-

6

1.1. Objectives and Research Questions

cedures (theories), goals, settings and results. We analyze the results from a quantitative
and, qualitative perspective and compare this system with the state-of-the-art in Chapter 5.
Finally, we summarize our work and discuss the future development work in Chapter 6.

7

Chapter 2

Background

This chapter introduces the background and related work of our system. First, we discuss
current VR and AR scenarios and introduce the potential development of social VR appli-
cations. Then, we introduce the technology behind depth cameras and compare commercial
products on the market. In section 2.3, we present several 3D reconstruction technologies
based on RGB-D cameras. By analyzing these 3D reconstruction systems, we favour the
ICP algorithm for our system. For the ICP algorithm, an initial transformation matrix is re-
quired to calculate the registration of the point cloud. Therefore, in section 2.4, we study the
method of camera coarse calibration that provides such an initial transformation. Finally,
in order to improve the ICP algorithm, we propose a feature-based approach to increase
the registration accuracy. We examined the use of a deep learning network to divide the
calibration object into different parts. Therefore, in section 2.6 we introduce related work
in 3D data deep learning networks.

2.1 AR/VR Scenarios and Point Clouds

The concept of virtual reality has been proposed in the past. For example, it was mentioned
in the novel ”Brave New World”[48] published in 1932. This novel describes a centralized
high-tech world, which indicates a head-mounted device that can provide viewers with a
series of sensory experiences such as images, smells, and sounds.

Researchers in the 1950s showcased prototypes of VR products. However, most of the
VR products were used in the military and scientific research fields and were not widely
developed. Until VPL Research[119] launched VR products into the market in 1991, more
and more companies invested in and developed in the field of VR and AR. According to
the forecast by Statista[110], the worldwide market size for VR and AR industries will
have a significant increase in the coming four years. Fig.2.1 shows the forecast result by
Statista. Nowadays, VR and AR products have been used in a wide range of scenarios
include entertainment, commercial applications, and domestic service.

Entertainment

Games are one of the most attractive ways to learn new things. Currently, games are also

9

2. BACKGROUND

Figure 2.1: VR and AR worldwide market size from 2016 to 2022 (estimated)
source:

https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/

the primary use case for VR and AR industries. VR games have attracted a large number
of users. Current VR game includes genres ACG (anime, comics, and games), first-person
shooter (FPS) and action role-playing video games (ARPG). These three types of games
have a high visual impact on the screen and a high level of player immersion. Fig.2.2 shows
an image of a VR FPS game.

For social networking, the application of VR technology provides users the ability to com-
municate and share information in a virtual world. Development of social VR will enhance
the user’s immersion and sociality. For users, social VR provides more fun than regular
video calls and allows users to better focus on communication and sharing in the virtual
world. For example, Facebook space shown in Fig.2.3 is a VR product designed for mem-
ory sharing and communication.

Commercial applications

VR can as well be employed for museums. Previously, visitors were able to navigate
through prefabricated virtual scenes and exhibits in space using mouse and keyboard op-
erations. With the development of VR technology, participants can use 3D glasses and
other wearable devices to improve human-computer interaction and the experience of being
immersed[41].

By using VR, telling stories to customers by describing objects and narrating can enhance

10

2.1. AR/VR Scenarios and Point Clouds

Figure 2.2: VR FPS game: Arktika.1
source: https://uploadvr.com/arktika-preview-tell-show/

the interactivity and disseminate knowledge in a more interesting way[82]. Currently, many
virtual museums have been established worldwide, such as the British museum[73], the
Olympic museum[74].

VR technology has also been applied to the military field. These applications include soldier
simulation training[99] and multi-military joint virtual simulation exercises. The virtual
simulation exercise adopts the seamless interactive environment simulation training[4] of
virtual entities and distributed virtual battlefields. The VR technology simulation training
also includes distributed simulation training, integrating games into military training and
incorporating holographic imaging technology into virtual reality to realize future combat
systems with LVC(Live Virtual Constructive)[78].

In the medical field, VR technology can be used for virtual surgery training, assisted teaching[32],
remote collaboration[71] and rehabilitation treatment. Among them, the virtual surgery
training is the mainstream application. It combines VR with a 3D visualization system to
represent various organs, tissues, and other information in an interactive virtual environ-
ment, which provides medical personnel the ability to learn and evaluate independently. At
the same time, the low-cost VR system has advantages in novice doctor training and en-
hanced surgical techniques. The virtual surgery training can help doctors to customize a
reasonable surgical plan, reduce surgical damage and improve the success rate of surgery.

Domestic service

With the increase of people’s demands, tourism has become an indispensable part of life.
Nowadays, applications for VR tourism has also been developed. At first, virtual tourism
combined VR with geographic information and panoramic technology to generate a panoramic

11

2. BACKGROUND

Figure 2.3: Social VR product: Facebook Space
source: https://newsroom.fb.com/news/2017/04/facebook-spaces/

tourist model and achieve virtual roaming. Virtual tourism system based on Web 3D has
been developed so that users can select any route and simulate arbitrary 3D historical or
existing landscape without leaving the room. Users can also view and browse the road from
any angle[1]. These functional applications have effectively improved the user’s sense of
presence and reduced travel costs.

Point Clouds
In VR systems, point clouds have recently been introduced as an object representation that
has a high potential for enhancing VR and even bringing in new types of VR applications. A
point cloud is a dataset of points in a 3D coordinate system. The point cloud contains three-
dimensional coordinates X, Y, Z, and per point parameters like the color and optionally
normals.

Point clouds can be obtained by 3D scanners such as light detection scanners and ranging
devices (LiDAR). These devices identify many points on the object surface and output the
data in a specific format. The point cloud data has proven to be a relevant type and has been
applied in the following 3D computer vision field.

Object recognition: In the autonomous car area, pedestrians, cars, bicycles, and road auxil-
iary facilities (such as street lights, pedestrian crossing.) in the scene are detected based on
laser scanner data.

Shape detection and classification: Point cloud technology has a wide range of application
in reverse engineering. After constructing many geometric models, how to manage and
retrieve them effectively is a difficult problem. The point cloud (mesh) model requires to be
characterized and classified. The model is retrieved based on the feature information of the

12

2.2. Depth Sense Cameras

model.

Semantic classification: After acquiring the scene point cloud, we need to use the infor-
mation and understand the content of the point cloud scene. It is necessary to classify the
point cloud and perform labeling for each point cloud. It can be divided into point-based
and segmentation-based classification methods.

2.2 Depth Sense Cameras

With the development of computer vision, augmented reality and robots, it became common
practice to use depth cameras to capture the depth information of the environment and
then perform object recognition and environmental modeling. Compared to traditional 2D
cameras, depth cameras add one-dimensional depth (distance) information to describe the
real world better. There are three popular 3D machine vision technologies used in the depth
camera industry: structured light, TOF (Time of Flight) and stereo vision.

Structured light

The structured light method is also known as an active 3D measurement. Here active means
that this method needs to project structured light onto the measured object actively. The
parameters of the measured object will be calculated based on the deformation of the struc-
tured light.

In structured light technology, the position and the depth information of the object are cal-
culated by refraction of the laser. The first step is to emit a specific speckle pattern or a
laser infrared dot matrix pattern as shown in Fig.2.4. When the measured object reflects the
patterns, these reflected patterns are captured by the camera. Then, the size of the speckle
or dot pattern will be calculated by comparing with the projected speckle or dot pattern.
The distance between the measured object and the depth camera is calculated based on the
comparison of the original pattern size and the reflected pattern size.

Figure 2.4: Laser infrared dot matrix pattern
source:https://www.vision-systems.com/articles/2014/05/osela-releases-random-pattern-

laser-dot-matrix.html

Currently, many laser radar and 3D scanning technologies in the industry use structured
light technology. For example, the depth cameras Kinect 1.0 (PrimeSense), Intel RealSense

13

2. BACKGROUND

SR300 and F200 series, and the iPhoneX make use of this technique. This method calcu-
lates the object position by the displacement of the refracted light. As a result, this technique
cannot estimate the depth information with high accuracy and has limitations on the recog-
nized distance. Moreover, this technique is easily interfered by ambient light and is not
suitable under strong light examples.

TOF(Time of Flight)

Time of flight system is a LIDAR (light radar) system that emits light pulses from the
emitter to the object. The receiver can determine the distance to the object by calculating
the duration time since the emitter sends the light pulse until the light pulse returns to the
receiver. The TOF system can simultaneously acquire the entire scene and determine the
3D image. Then the 3D image can be created using measured object coordinates.

The TOF camera includes a laser generator and a photosensitive unit which consists of a
photosensitive laser or an avalanche diode. Fig.2.5 shows the setup of TOF cameras. After
the laser generator emits a laser, the laser is reflected by the obstacle. The photosensitive
unit in the camera senses the reflection and calculates the time required for the return trip of
the laser. The distance of the obstacle from the camera is obtained by multiplying the time
of flight by the speed of light.

Figure 2.5: TOF scanner measurement
https://www.stemmer-imaging.com/en/knowledge-base/cameras-3d-time-of-flight-

cameras/

The advantage of TOF is that the response speed is fast and the depth information is rel-
atively precise. At the same time, this technique is not easily interfered by ambient light.
Therefore, it can be easily used in all kind of use cases and application. The commercial
products of this type of the camera will be introduced in section.2.2.1.

Stereo vision camera

The traditional stereo vision cameras do not project any light. Similar to the human eyes,
this type of camera observes the environment through two calibrated 2D cameras. Then,

14

2.2. Depth Sense Cameras

feature matching based on the image content is performed to calculate the depth informa-
tion. Since there is no prior knowledge, this method only relies on feature matching based
on the captured images. Therefore, the stereo vision camera is suited for light environments
and rich feature images.

Since the image is produced based on ambient light only, this technique is suited for outdoor
environments. When this type of camera is used in an indoor environment, an external light
source may be required to collect the images. In this case, reflection needs to be minimal.

For areas where image features are not distinct, such as a flat ground or endless deserts, it
is difficult to match features using stereo vision technique.

The biggest problem with pure stereo vision is that the whole process, including feature
points searching and feature matching, requires sophisticated algorithms and calculations,
and the final result may not be stable enough to be applied in real-world applications.

In real-world applications, the response time, performance under different light environ-
ments, and a range of recognized distance are important metrics to evaluate the different
depth technologies. Table 2.1 shows a comparison of these three depth camera technolo-
gies.

15

2. BACKGROUND

Table 2.1: Comparison of depth camera technologies

Structured Light
TOF

(Time of Flight)
Stereo Vision

Response time Slow Fast Medium

Indoor environment
(low light)

performance
Good Good Weak

Studio condition
performance

Weak Medium Good

Outdoor
environment
performance

Weak Medium Good

Resolution Medium Low High

Depth range
0.1m-6m

(Limited by
facula pattern)

0.1m-10m
(Limited by

light intensity)
Medium

Algorithm
complexity

Medium Low High

Hardware cost Medium High Medium

Disadvantages
Easy to be affected
under strong light

environment

The depth image
has lower

resolution, not
suited for high

precision scenarios

High algorithm
complexity;

Not applicable
in dimly light
environment;

Target requires good
feature changes

2.2.1 Commercial Products and Companies

The invention of the RGB-D cameras has rapidly increased the area of 3D reconstruction.
The Kinect sensor, designed by the Microsoft team, appeared early in the market. Since
then, many systems and applications have been deployed using the Kinect sensor. Until
now, the Kinect2.0 sensor is one of the most popular RGB-D sensors for the field of Virtual
and Augmented Reality. The Kinect2.0 sensor can capture all sorts of information such as
the human skeleton and 3D joints. However, it has some limitations as it cannot be used
outdoor and the depth range is shorter than RealSense cameras. Also it is no longer available
in the market.

The RealSense depth camera D415 [90], developed by Intel, can be used in outdoor and

16

2.3. 3D Reconstruction Technologies Based on RGB-D Cameras

indoor environments and output depth maps with higher frame rates of up to 90 frames per
second.

The Xtion 3D [7] the camera, invented by ASUS, also provides good image resolution and
has a convenient development environment. Table 4.1 shows a comparison of commercial
depth camera products.

Table 2.2: Comparison of different commercial products

Kinect 1.0 Kinect 2.0
RealSense

SR300
RealSense

D415
Xtion2

RGB
Image

Resolution 640*480 1920*1080 1920*1080 1920*1080 1920*1080

Frame Per
Second

30fps 30fps 30fps 30fps 30fps

Depth
Image

Resolution 320*240 512*424 640*480 1280*720 640*480

Frame Per
Second

30fps 30fps 60fps 90fps 30fps

Capture Distance 0.8m-4.0m 0.5m-4.5m 0.2m-1.5m
0.16m-

10m
0.8m-3.5m

Working environment Indoor Indoor Indoor
Outdoor

and Indoor
Indoor

Technology
Structured

Light
TOF

Structured
Light

Active IR
Stereo

TOF

Company Microsoft Microsoft Intel Intel ASUS

Price $149.99 $199.99 $109 $149 $269.99

In production No No Yes Yes Yes

From the table we can conclude that compared with other cameras, the RealSense D415
can provide RGB and depth images with high-quality resolution, it has the longest capture
distance and can work in the outdoor environment, which is a cost-effective depth camera in
the market. In this project, we use RealSense D415 for data acquisition and pipeline testing.

2.3 3D Reconstruction Technologies Based on RGB-D Cameras

3D reconstruction techniques can be divided into offline and real-time 3D reconstruction
systems. The offline 3D reconstruction systems focus on reconstruction accuracy rather
than on instantaneity. Offline 3D reconstruction techniques such as Structure from Motion
(SfM)[115] and Multi-view Stereo (SVM)[35] use image sequences as input to reconstruct a
3D model of the scene through camera tracking, feature extraction, and bundle adjustment.
VR/AR applications by nature are 3D reconstructions of dynamic scenes and human char-

17

2. BACKGROUND

acters. Therefore, one of the fundamental requirements in VR/AR applications is real-time
3D reconstruction.

Simultaneous Localisation and Mapping (SLAM) algorithms focus on real-time 3D recon-
struction. Prior to the advent of consumer-oriented depth cameras, 3D reconstruction tech-
niques typically used RGB cameras, such as monocular RGB cameras in the MonoSLAM[26]
system. These systems use RGB images as input and reconstruct 3D models using computer
graphics and computer vision techniques. With the limitation of the input data, such systems
usually only produce sparse reconstruction results.

With the development of depth camera technology described in the section2.2 and the emer-
gence of consumer-oriented depth cameras, depth camera-based 3D scanning technology
and reconstruction technology have been rapidly developed. In this section, we will in-
troduce the fundamental techniques based on the stages of the real-time 3D reconstruction
system.

The typical real-time 3D reconstruction pipeline contains three phases: sensor pose esti-
mation, data fusion and surface prediction. A common choice for the 3D reconstruction
system is to reconstruct and fuse the points in the input frame to the current 3D model and
reconstruct the 3D scene in real time through continuous reconstruction updates.

2.3.1 Pose Estimation

The pose estimation is used to estimate the 6 Degrees of Freedom (6-DoF) information
between the input frame and the current frame or model.

ICP (Iterative closest point): The ICP algorithm[11] is a point cloud registration algorithm.
This algorithm is an optimal registration method based on the least squares method[109].
The ICP algorithm iteratively selects corresponding point pairs and calculates the optimal
rigid transformation until the convergence accuracy requirement is met. The ICP algorithm
calculates the positional relationship of two sets of point clouds, which represent the dif-
ferent positions of the camera. This algorithm is based on reducing the distance between
two sets of point clouds instead of feature extraction to achieve data alignment. This pose
estimation method is used by several approaches[76][77][122][30][69][121]. Among them,
the KinectFusion[76] system directly uses the icp algorithm to calculate the position infor-
mation of the camera.

In KinectFusion pipeline, the first stage is surface measurement. This surface measurement
is a pre-processing stage, the purpose is to generate the dense vertex map and a normal
map of the object surface. The raw depth data captured from the depth camera consists
of the pixel coordinates and the corresponding depth information. The parameters of the
camera are calculated by camera calibration; the back-project method is used to obtain the
3D points in the camera coordinate, then the normal of each point is calculated according
to the adjacent pixels on the depth map. In this process, the KinectFusion system uses the
multi-scale method, each depth map is scaled in three layers, and the resolution of each
layer is half of the next layer.

Then, in the next pose estimation step, the system uses the point-plane[22] ICP algorithm.

18

2.3. 3D Reconstruction Technologies Based on RGB-D Cameras

There are two sets of point clouds used to calculate the position of the camera (sensor). One
of them is the point cloud with the normal vector calculated from the previous step, and the
other is a point cloud projected by the ray casting[93] algorithm according to the pose of
the previous frame. The two sets of point clouds are registered and calculated by the ICP
algorithm. The rotation and translation matrix calculated from the ICP algorithm reflects
the position of the camera[87].

Although the ICP algorithm iteratively calculates the pose of the camera according to the
distance between the corresponding points, this system cannot realize non-rigid 3D scene
reconstruction in real-time. The subsequent methods propose solutions for optimizing the
pose estimation stage based on the ICP algorithm.

Dense Non-rigid Warp Field: The warp field is proposed to solve the problem of non-rigid
3D scene reconstruction by DynamicFusion[77] system. Before the DynamicFusion sys-
tem, the traditional SLAM system can only reconstruct the non-rigid scenes in two ways.
One way is to limit the reconstruction scene to a static view and requires a prepared tem-
plate for real-time reconstruction. The other way is to reconstruct the scene offline, which
requires three to four orders of magnitude more time than real-time reconstruction. In order
to overcome these limitations, the DynamicFusion system was presented to reconstruct the
non-rigid scene based on depth cameras in real-time.

The idea of the DynamicFusion system is to convert the dynamically changing scene (the
object to be reconstructed) captured from each frame into a canonical space, and create
a static object surface (canonical) model in this canonical space. Then the corresponding
volumetric warp field of each frame will fuse the canonical model into a live frame. The
key idea of DynamicFusion system is the warp field which is used to represent the dynamic
scene motion. The 6D transformation warp function is defined as follow:

W (xc) = T lwSE3(DQB(xc)) (2.1)

In Equ.2.5, the Tlw represents the movement of camera. In this warp field, the amount of
computation to sample every point in the canonical space is too large, which makes it almost
impossible to reconstruct the surface in real-time. Therefore, the DynamicFusion defines
the W by using the DQB (Dual-quaternion blending)[54] interpolation algorithm. The SE3
represents the transformation between quaternion and transformation matrix.

In DynamicFusion system, the pose of the camera is calculated by the parameter estimation
of the warp field, the estimation of warp field parameters is defined by minimizing the
energy function shown in Equ.2.6:

Data(Wt ,V,Dt)andλReg(Wt ,ε) (2.2)

This energy function contains two terms: the ICP cost term Data(Wt ,V,Dt) and the regular-
isation term λReg(Wt ,ε). The V is the current reconstructed surface, the Dt represents the
depth map, the ε is an edge set.

19

2. BACKGROUND

The dense non-rigid ICP data cost term is used to estimate the data-association between
model and the current live frame, which is quantified by a robust regression method - the
Tukey penalty function[15]. However, The data processed in this term is incomplete which
contains only the currently visible points. Therefore, the second term is used to constrain
the current invisible points. Those data that are presently occluded may appear as newly
observed data in the subsequent frames. The λReg(Wt ,ε) term adds an edge constraint
between the deformed nodes and then adds the cost to the energy function with the Huber
penalty[47]. Also, the DynamicFusion system used the hierarchical deformation tree[112]
to increase stability and reduce the computational cost.

Killing Vector Field: Based on approximately Killing vector field[108] which minimizes
the killing condition. The KillingFusion[107] system propose a regularizer term to approx-
imate deformation field and determine rigid camera motion. Besides, this system adopts
SDF-2-SDF[106] registration energy to replace the ICP algorithm for camera pose estima-
tion. Compared with the ICP algorithm, the voxel grid based SDF-2-SDF method reduces
the error of large deformation.

Embedded Deformation Model: Robert Sumner proposed the embedded deformation model[112]
in 2007. This method builds a deformed mesh from the model, and each node on the grid
is responsible for controlling the deformation. However, this model could not reach real-
time reconstruction due to the limitation of processing complexity. This was changed with
the publication of the above-mentioned DynamicFusion system which proposed energy
function and optimized the algorithm by using the Gauss-Newton method[60]. This was
combined with implementation on a GPU to accelerate the 3D reconstruction to real-time
processing.

The KinectFusion and DynamicFusion only perform real-time 3D reconstruction with a
single depth camera. Single camera systems cannot completely recover the entire 3D infor-
mation of the reconstructed object as they can cover one side of the object only. Also, they
cannot adequately handle the topology change. The Fusion4D[30] pipeline solves these
problems and performs the real-time 3D reconstruction by using multiple (eight) cameras.
In the energy function proposed by Fusion4D, in addition to the two energy terms (data
term, regularization term) used in the ED deformation model, an energy term of correspon-
dence of points and an energy term of a visual hull are added.

• Visual Hull Term: The visual hull[59] term mainly limits the range of the energy
function solution to the view frustum of the eight cameras, which effectively solves
the problem that the space is too large when the occlusion problem occurs.

• Correspondence Term: The correspondence term is improved based on the method
proposed in the paper[120]. The Fusion4D system uses a decision tree machine learn-
ing method to find the corresponding point-to-point relationship between two adja-
cent RGB images.

20

2.3. 3D Reconstruction Technologies Based on RGB-D Cameras

2.3.2 Data Fusion

The pose estimation calculates the spatial relationship between the input frame and the
current model. Using this pose relationship, the input data and the model are fused to
update the reconstructed scene. In this phase, the key component is the choice of 3D space
representation. In this section, we introduce several representative models and optimization
methods.

TSDF (Truncated Signed Distance Function): The truncated signed distance function[25]
uses a voxel grid to represent the 3D space. In this representation, each grid in the voxel
stores the distance from the grid to the object model surface. The positive and negative
value is used to indicate the occluded side and the visible side of the surface. The zero
crossings point is the point on the surface.

In the KinectFusion system, the TSDF model represents the reconstructed surface. In data
fusion phase, the KinectFusion system fuses the point cloud of the current frame into the
voxel (TSDF) model according to the pose calculated in the pose estimation step. The data
fusion focuses on the representation and update of the TSDF volume. In addition to the
TSDF value, each spatial location also stores a weight value w. The reconstructed surface
is updated by calculating the weighted sum of the current frame contributions.

In DynamicFusion system, the TSDF representation is used to fuse the live frame depth map
into the canonical space. The differences between these two systems are: first, the value of
projective TSDF (PSDF in the paper) in KinectFusion is calculated in the camera space.
In DynamicFusion, the value of TSDF is calculated in the world space (canonical space).
Second, in the DynamicFusion system, in the process of updating the weights for each
PSDF, a linear relationship is added to solve the problem of object motion and deformation.

Surfel model: Another common choice of 3D space representation is Surfel model (point
representation model), which is shown in Fig.2.6:

Figure 2.6: The Surfel representation model
source: from the Internet searchinghttps://pan.baidu.com/

For each point in the Surfel model, is stored: position information of the point (x,y,z); the
radius of the surface patch r; the normal vector n; the color information (R,G,B) and the

21

2. BACKGROUND

point capturing time t. When the system performs the fusion of points, the update methods
of position information, the normal vector, and the color information are similar to the way
of weighting fusion of KinectFusion. The radius of the surface patch is calculated by the
distance between the surface of the scene and the center of the camera. The larger distance
represents the larger radius of the surface patch.

Compared to the TSDF model, the Surfel model does not calculate and store the topology
information. Therefore, the memory efficiency of Surfel model is higher[122].

Deformation Graph: The deformation graph is used to optimize the map reconstruction
and update.

The deformation graph consists of nodes, which are uniformly sampled from the recon-
structed Surfel model. The structure of the deformation graph is shown in Fig.2.7. The
red nodes shown in the figure indicate the extracted points, the black nodes indicate other
reconstructed points. These deformation nodes establish connections according to time re-
lationship, which means that these nodes search for the nearest point according to the time
relationship. The deformation graph is updated after the newly captured point cloud is
merged into the global model (Surfel model).

Figure 2.7: The structure of Deformation Graph
source: from the Internet searchinghttps://pan.baidu.com/

Local Loop Closure and Global Loop Closure: Using fundamental 3D space represen-
tations, point cloud registration, and energy function to fuse frames causes ghosting and
occlusion problems. For example, in the case when hands are separated and then crossed if
the depth camera moves following the loop route, the reconstruction result will overlap the
two images at the same position and cause the ghosting (double images) effect.

Therefore, the system[122] uses the local loop closure and global loop closure algorithms
to solve the above problems. The local loop closure algorithm is used to divide the recon-
structed points into ACTIVE and INACTIVE according to time. ACTIVE represents that the
point is reconstructed in the most recent time. INACTIVE is the previously reconstructed
point. Then, according to the spatial relationship calculated by using the ICP algorithm and
these two types of points, two sets of point cloud can be derived and registered. If these two

22

2.3. 3D Reconstruction Technologies Based on RGB-D Cameras

sets of point cloud can be registered, the camera is moving in a loopback, and a constraint
is established on the point to align the ACTIVE point to the INACTIVE point.

However, the local loop closure algorithm is not suited for all situations. When the cam-
era moves in a large distance or degree, the error will accumulate. When there is a loop-
back movement of the camera, the corresponding points of ACTIVE and INACTIVE cannot
overlap, the global loop closure (the randomized Ferns [39]) algorithm is required to set
constraints and match point cloud.

Error Correction Mechanism: An important contribution of Fusion4D system[30] to data
fusion phase is the fusion error correction mechanism. When the model reconstructed from
the previous frame does not match the current frame well, the current frame replaces the
previously unmatched portion as the keyframe. Instead of the original reference model, the
subsequent data fusion and point cloud registration will be based on this keyframe.

CNN-based Fusion: The combination of the SLAM system and the neural network tries to
make the machine better ”understand” and reconstruct the surrounding environment. The
SemanticFusion[69] system applies the CNN network into SLAM system, the process of
this pipeline is: the CNN receives the 2D images and returns a classification probability
distribution for each pixel, then the Bayesian update scheme will track the classification
probability distribution for each surface and then update these probabilities based on the
CNN prediction by using the data correlation provided by the SLAM system. Finally, the
Conditional Random Field (CRF) regularisation[58] framework is used to improve the se-
mantic prediction.

The SemanticFusion system adopts the ElasticFusion[122] as the real-time SLAM system.
The reason is that the ElasticFusion based on the deformation graph which does not need
to destroy the geometry correlation or the probability distribution, which is suited for the
semantic label fusion in the SemanticFusion pipeline.

The CNN model applied in this system based on the Caffe framework[50]. The system uses
the Deconvolutional Semantic Segmentation Network[79] architecture and is additionally
equipped with the max pooling and deconvolutional training to output a dense pixel-level
semantic probability map.

Compared to the Surfel model in the ElasticFusion pipeline, the Surfel model used in
SemanticFusion pipeline contains an additional discrete probability distribution. In the
Bayesian update scheme stage, these probabilities are updated based on the CNN predic-
tions from the CNN Architecture stage.

2.3.3 Surface Prediction

The KinectFusion system uses the ray casting algorithm to derive the point cloud from the
current frame view of the model based on the current frame camera pose, and then calculates
its normal vector for registering the next input frame to obtain the posture of the next frame.

For systems that use the deformation graph to optimize the data fusion process, in the sur-
face prediction stage, new deformation nodes are inserted, and the regularisation graph is
updated to show the deformation result. Due to the change of each frame, the deformation

23

2. BACKGROUND

nodes set is continuously updated. The new uncovered deformation nodes in the recon-
structed surface and it is k nearest nodes need to be added into the nodes set.

2.3.4 System Overview

The real-time 3D reconstruction pipelines introduced in this section contain three stages:
pose estimation and tracking, data fusion and surface prediction. The ICP algorithm is used
for camera position tracking and estimation in all mentioned systems. In addition to the
ICP algorithm, the DynamicFusion system defines the warp field, the KillingFusion system
defines the killing vector field, and the ElasticFusion system optimized the estimation by
using the deformation graph. Except for the KinectFusion and Kintinuous systems, all of
the rest systems use the energy function to constrain the deformation.

In the data fusion stage, most systems use the TSDF representation for data fusion. The
ElasticFusion uses the Surfel model and adds local and global loop closure algorithms to
solve the ghosting problem. The Fusion4D system optimized the fusion stage based on
the ED model and the error correction mechanism. Table 2.3 shows the comparison of
mentioned real-time 3D reconstruction systems.

Method Input Pose Estimation Data Fusion
Surface
Predic-
tion

Year

M
ul

ti-
V

ie
w

Si
ng

le
-V

ie
w

IC
P

W
ar

p-
Fi

el
d

K
ill

in
g-

Fi
el

d

E
ne

rg
y

Fu
nc

tio
n

D
ef

or
m

at
io

n
G

ra
ph

E
D

M
od

el

T
SD

F

Su
rf

el
M

od
el

C
N

N

L
oo

p
C

lo
su

re

E
rr

or
C

or
re

ct
io

n

In
ac

tiv
e

M
od

el

Pr
oj

ec
tio

n

KinectFusion[76] X - X - - - - - X - - - - - X 2011
Kintinuous[121] X - X - - - - - X - - - - - - 2012

DynamicFusion[77] X - X X - X X - X - - - - - - 2015
ElasticFusion[122] X - X - - X X - - X - X - X - 2016

Fusion4D[30] - X X - - X - X X - - - X - - 2016
SemanticFusion[69] X - X - - X X - - X X X - X - 2016
KillingFusion[107] X - - - X X - - X - - - - - - 2017

Table 2.3: Comparison and overview of state-of-the-art 3D real-time reconstruction sys-
tems.

In this project, we focus on the pose estimation phase. The output of this phase is the
transformation matrix, which is used to represent the spatial relationship between different
cameras. The key algorithm used in this stage is the ICP algorithm. In the next section, we
will introduce the theory of the ICP algorithm in detail.

24

2.3. 3D Reconstruction Technologies Based on RGB-D Cameras

2.3.5 The ICP Algorithm

The ICP algorithm consists of two parts: corresponding points search and pose estimation.
The output of the ICP algorithm is an optimized transformation matrix. The typical ICP
algorithm includes the following steps:

• Closest point set search: Search the closest point set Q according to the coordinates
of the target point set P. The distance comparison between the target point set and
the nearest set is a continuous process until the closest point set Q is found.

• Calculate the center of gravity of two sets and generate a new point set: Calculate
the barycentric coordinates of P and Q, and generate a new point set by calculating
the difference between each point and the gravity coordinates.

• Calculate the covariance matrix: Calculation of the covariance matrix, the largest
eigenvalue of the covariance matrix and its largest eigenvector. These values will be
used to calculate the rotation matrix in the next step.

• Calculate the rotation matrix: When the residual sum of squares is the smallest,
the largest eigenvector calculated in the previous step is equivalent to the rotated
quaternion. The quaternion is converted into a rotation matrix R.

• Calculate the translation matrix: Given the determined rotation matrix R, the trans-
lation matrix t is the gravity difference of the two point sets. The translation matrix
can be determined by the center of gravity points and the rotation matrix.

• Calculate the iteration judgment value: The calculated transformation matrix trans-
forms the point set P into a new point set P. Then, the iterative judgment value is
calculated by using the Equation(2.3).

I =
1
n

i=1

∑
n
|qi−Rpi−T |2 (2.3)

The I is an iteration judgment value, n is the total number of point sets, qi is the
coordinate vector of the point set Q, pi is the coordinate vector of the target point set.

• Judge the end of iteration: In this step, we need to set a threshold to determine when to
terminate the iteration process. When the iterative determination value is less than the
threshold, the iteration process ends. If not, it continues with the previous procedure.

There are also many ICP variants[84], the point-to-point and point-to-plane are the most
popular of all these variants. Also, the combination of the modified K-D tree [126] and ICP
algorithms provide good performance. In this project, we use the traditional ICP algorithm
for registration and propose a feature-based improvement method.

25

2. BACKGROUND

2.4 Camera Calibration

The ICP algorithm relies on the original transformation matrix of point clouds. The camera
calibration process provides a coarse estimation of the relationship between cameras. There
are two popular approaches for camera calibration, one is based on the MATLAB calibration
toolkit[13] and the other one using the OpenCV library[14].

The report by Suriansky and Cmarada[114] analyzed different camera calibration methods
and compared the performance of the methods based on OpenCV and MATLAB. By eval-
uating the re-projection error and processing time, the experiment results indicate that the
MATLAB calibration toolkit is more accurate, while the OpenCV-based calibration method
is much faster and easier to use. The main disadvantage of the MATLAB camera calibration
toolkit is that it requires manual operation steps, which is a time-consuming process. Until
now, some MATLAB toolkit can automatically calculate the boarders of the calibration pat-
tern. However, this automatic process leads to poorer accuracy. To obtain a more accurate
calibration result, we need to manually determine the borders of the calibration pattern for
each calibration image.

In this project, we adopt the MATLAB calibration toolkit[13] to calculate the transforma-
tion matrix because the results of the coarse registration provide a rough estimate of the
transformation matrix and require high calibration accuracy. Once the position of the cam-
era is fixed, the coarse registration step will be a one-time process. This MATLAB toolkit
mainly follows Zhang’s calibration algorithm[127] published in 1999.

In the coarse registration process, the calibration pattern is used to calculate the intrinsic
and extrinsic parameters. The toolkit used in this project adopts corner detection and uses
the checkerboard pattern as shown in Fig.2.8.

Figure 2.8: Checkerboard pattern
source:https://zh.wikipedia.org/wiki/File:Checkerboard pattern.svg

The coarse registration process includes the following steps: single camera calibration,
stereo system calibration, and transformation matrix calculation.

26

2.4. Camera Calibration

Single Camera Calibration
The single-camera calibration step calculates the intrinsic and extrinsic parameters of the
camera. The optical measurement has four coordinates: pixel coordinate, image coordinate,
camera coordinate, and world coordinate. The calibration process requires the transforma-
tion of the point P in world coordinates into pixel coordinates. The correlation of these
coordinates is shown in Fig.2.9.

Figure 2.9: Correlations among the pixel coordinate, the image coordinate, the camera
coordinate and the world coordinate

Each point P = (Xw,Yw,Zw) in the scene will be transformed into a pixel point p = (u,v) in
the 2D image, Fig.2.9 shows the following three transformations:

1. Transform the point P from the world coordinates to the camera coordinates by a rigid
transformation, which uses the relative pose between the cameras. The R matrix and
t matrix are the extrinsic parameters

2. Transform from the camera coordinate to the image coordinate p = (x,y)

3. Transform the point p from image coordinate to pixel coordinate p = (u,v)

The transformation process can be concluded into the multiplication of the matrix:

s

u
y
1

=

α 0 u0
0 β v0
0 0 1

 f 0 0 0
0 f 0 0
0 0 1 0

[R t
0T 1

]
X
Y
Z
1

=

 fx 0 uo 0
0 fy v0 0
0 0 1 0

[R t
0T 1

]
X
Y
Z
1

(2.4)

The α and β are the number of pixels per unit distance on the image. And fx = α f , fy =
β f transforms the camera focal length f to pixel metrics in the x and y directions. The
parameter γ represents the distortion of two axes in the pixel coordinate. Then the intrinsic
parameter of a camera is K:

27

2. BACKGROUND

K =

 fx γ u0
0 fy v0
0 0 1

 (2.5)

The calibration process aims to calculate the intrinsic and extrinsic parameters. Zhang’s
algorithm includes the following steps:

Homography between the model plane and its image: The mapping between two planes.
In Zhang’s calibration algorithm, the checkerboard (shown in Fig.2.8) used for calibration
is a plane Π in a 3D scene, and the image in the image plane is another plane π. The
coordinates of the corresponding points in these two planes can be used to calculate the
homography matrix H. The coordinates of the corner points in the checkerboard are labelled
by ourselves; the corner extraction algorithm can obtain the corners in the image. Based on
Equation(2.4), the correlation between the pixel point p and checkerboard point P is:

p = K [R|t] ,H = K [R|t] (2.6)

Equation(2.8) indicates that the calculation of intrinsic and extrinsic parameters can be de-
ducted from homography matrix H. The checkerboard used here is a plane. Therefore, we
build the world coordinate into a plane: Z = 0. Then, Equation(2.4) turns into:

s

u
v
1

= K
[
r1 r2 r3 t

]
X
Y
0
1

= K
[
r1 r2 t

]X
Y
1

 (2.7)

H = λK
[
r1 r2 t

]
is the homography matrix.

Calculate the intrinsic parameter matrix K by using constraint conditions: The rotation
matrix R can be represented as:

r1 = λK−1h1;
r2 = λK−1h2;
t = λK−1h3;

(2.8)

The rotation matrix R is an orthogonal matrix, which means that:

rT
1 r2 = 0;

‖r1‖= ‖r2‖= 1;
(2.9)

With this constraint equation, the intrinsic matrix parameters can be calculated.

Calculate the extrinsic matrix and optimization: Using the knowledge of the intrinsic ma-
trix, the extrinsic matrix can be easily calculated. The Zhang’s algorithm provides several

28

2.5. Point Cloud Feature Extraction and Segmentation Based on PCL

ways to optimize the calculation: maximum likelihood estimation and eliminate radial dis-
tortion. The MATLAB toolkit used in this project also adopts algorithms to optimize the
calibration results.

Stereo system calibration
In our project, we use four RealSense cameras to capture the point cloud of an object.
The first step is to calibrate all cameras separately. Then we need to calculate the spatial
correlation between all neighbouring camera pairs. The stereo system calibration uses the
intrinsic and extrinsic matrix parameter obtained from a single camera calibration step to
calibrate the stereo system and determine the relative positions of the two cameras.

2.5 Point Cloud Feature Extraction and Segmentation Based
on PCL

In our project, we use the functions in PCL to process point cloud data. In this section, we
introduce the main modules of PCL and point cloud segmentation and feature extraction
algorithms based on PCL.

2.5.1 PCL

The Point Cloud Library (PCL) is an open source project library developed since 2011[89].
It is a cross-platform C++ programming library for point cloud processing and 3D geometry
processing, which contains point cloud-related algorithms involve point cloud acquisition,
filtering, segmentation, registration, recognition and feature extraction. PCL supports mul-
tiple operating system platforms including Windows, Linux, Android, Mac OS, and some
embedded real-time systems.

Structure and Modules of PCL

For 3D point cloud processing, PCL is a modular C++ template library for 3D point cloud
processing. It is based on the following third-party libraries: Boost, Eigen, FLANN, VTK,
CUDA, OpenNI, Qhull. PCL utilizes high-performance computing technologies such as
OpenMP[12], GPU and CUDA to improve program real-time performance through parallel
computing. All modules and algorithms in PCL use Boost shared pointers to transfer data
and to avoid the need to copy existing data in the system. The main modules and functions
of PCL include:

libpcl filters: implement filters such as sampling, removing outliers and feature extraction.

libpcl features: implement feature extraction such as surface normals, curvatures, bound-
ary point estimation, moment invariants, principal curvatures, point feature histogram and
rotation-invariant feature transform (RIFT).

libpcl I/O: implement data input and output processing, such as reading and writing of point
cloud data files (PCD, PLY).

libpcl segmentation: implement clustering extraction, model fitting and polygonal prism
extraction.

29

2. BACKGROUND

libpcl surface: implement surface reconstruction algorithms such as mesh reconstruction,
convex hull reconstruction, and moving least squares smoothing.

libpcl registration: implement point cloud registration methods such as Iterative Closest
Point (ICP).

libpcl key points: implements extraction of different critical points in pre-processing step.

libpcl range: depth images processing generated by different point cloud datasets.

2.5.2 FPFH Descriptor

Fast Point Feature Histograms (FPFH) is a simplified calculation method feature descriptor
based on Point Feature Histograms (PFH), which is used to describe the local geometric
features of the 3D point cloud. FPH was proposed by R. B. Rusu in 2008[96][95]. In this
section, we will first introduce the theory of PFH and then illustrate the FPFH descriptor.

Point Feature Histogram (PFH)

For a particular point in the point cloud, the surface normal and estimated curvature are fun-
damental geometric feature descriptors. Point Feature Histogram is a point cloud geometry
feature descriptor which combines information from 3D axis data and surface normals so
that more information in the point cloud can be captured.

PFH is one kind of quantification of the spatial difference of the central point. This his-
togram is used to describe the geometric information of the neighborhood by using mathe-
matical statistics methods. FPH aims to encode the geometric features of the neighborhood
mean curvature of a point into a multidimensional histogram, such high-dimensional data
provides an informative feature representation.

PFH is based on the relationship between points and their k neighborhoods and their nor-
mals, which means that it will capture the variation of the sampling surface by considering
all the interactions between the normals to describe its geometric features.

Fig.2.10 shows the PFH calculation influence area of a center point (Pq), where (Pq) (the
red point) is the center point of the sphere with radius r in 3D space. The center point and all
its k neighborhood points inside the sphere of radius r are connected to form a network, and
the final PFH geometric feature will be calculated by computing the relationship between
all the pairs of points in the neighborhood. Therefore, the calculation complexity of PFH
for each point is O(k2).

In order to calculate the relative difference between two points, given two points p1 and
p2 and the respective normals n1 and n2, a local coordinate system is defined at one of the
points and three unit vector u, v, and w follow the rule:

u = n1;v = u× p2− p1

‖p2− p1‖2
;w = u× v (2.10)

Where d = ‖p2− p1‖ represents the Euclidean distance between two points p1 and p2. Us-
ing the above u,v,w coordinate system, the difference between n1 and n2 can be represented
by three angles (α,ϕ,θ):

30

2.5. Point Cloud Feature Extraction and Segmentation Based on PCL

Figure 2.10: The FPH calculation area of center point (Pq)
source: http://pointclouds.org/documentation/tutorials/pfh estimation.php

Figure 2.11: The spatial coordinates of points p1 and p2.
source: http://pointclouds.org/documentation/tutorials/pfh estimation.php

α = v ·n2;ϕ = u · p1− p2

‖p2− p1‖2
;θ = arctan(w ·n2,u ·n2) (2.11)

The spatial coordinate of these two points is shown in Fig.2.11. The quadruplet (α,ϕ,θ,d)
is then calculated for all pairs of points in the k neighborhood. This kind of expression
uses three parameters to cover 12 parameters in the original information of two points (the
position and the normal of each point need three parameters to express spatial information).
Then, the quadruplet is placed into sub-intervals of the histogram to form the PFH feature
representation.

Fast Point Feature Histogram (FPFH)

Based on the theory of PFH, given the point cloud P containing n points, the complexity
of calculating the PFH feature of all points in the point cloud P is O(nk2), where k is the
number of neighbors of a point pi in P. Therefore, the efficiency of calculating PFH features
is low, and such algorithm complexity cannot be realized in real-time applications. FPFH
can preserve most of the characteristics and approximates results of PFH and reduce the
computational complexity to O(nk).

31

2. BACKGROUND

Figure 2.12: The k neighborhood influence range graph centered on the point pq

source: http://pointclouds.org/documentation/tutorials/fpfh estimation.php

The input of FPFH is a point cloud with normal information, and the output is a histogram
that reflects the neighborhood-related features around each point. The difference between
FPFH and PFH is that FPFH takes some simplification and optimization methods in the
following way:

FPFH simplifies and optimizes the calculations in two steps to speed up the calculation:

• For each point pq, calculate the quadruplet (α,ϕ,θ,d) between point and each of
its neighborhoods similar to the method used in PFH, and obtain a Simplified Point
Feature Histogram (SPFH).

• Re-determine the k neighborhood of each point and use the neighboring SPFH values
to weigh the calculated histogram of the point pq. The calculation of FPFH follows:

FPFH(pq) = SPFH(pq)+
1
k

k

∑
i=1

1
wk
·SPFH(pk) (2.12)

Where the weight wk depends on the distance between the center point pq and a
neighboring point pk to measure the weight of the point pair (pq, pk).

Fig.2.12 shows the k neighborhood influence range graph centered on the point pq. As
shown in the figure, given a point pq, the algorithm first calculates the SPFH of the point
pq and its neighborhood (connected by the line marked in red) and then perform this step
on all points in the point cloud. Comparing with PFH, FPFH lacks the connection and
influence between neighborhood points. Therefore, it is necessary to weight the SPFH of
all its neighborhood points pk and combine it with SPFH of pq to update the final FPFH of
the point pq.

The calculation of SPFH is based on the point pairs formed by the center point and its
neighbors, while the PFH also requires point pairs between the neighborhoods, so the com-
putational complexity of the FPFH is significantly reduced to (O(nk)), making it applicable
in real-time applications.

32

2.6. 3D Data Deep Learning Network

2.5.3 RANSAC Segmentation

Point cloud segmentation subdivides point clouds according to features such as space, ge-
ometry, and texture, which produces point cloud segments with similar characteristics.

Random Sample Consensus (RANSAC) is an algorithm for calculating valid mathematical
data by iteratively calculating the mathematical model parameters according to a set of
sample data. RANSAC was proposed by Fischler and Bolles[34] in 1981.

The RANSAC algorithm has an underlying assumption: the sample contains correct data
(INLIERS, valid data that fit the model) and abnormal data (OUT LIERS, invalid data that
do not match the model). If valid data is the majority (more than 50%), the parameters of
the model can be determined by the least squares method.

The input of the RANSAC algorithm is a set of observations and a parametric model that
can be interpreted or adapted to the observed data. The RANSAC is iteratively selecting a
random set of data in the dataset. The selected subset is assumed to be INLIERS points,
and it verifies the model by the following steps:

• There is a model that is adapted to the assumed INLIERS points, and all unknown
parameters can be calculated from the assumed INLIERS points;

• Test all other data using the model obtained in the last step. If a point fits the estimated
model, it is considered to be a INLIERS point;

• If there are enough points to be classified as INLIERS points, then the estimated
model is reasonable;

• Re-estimate the model with all hypothetical INLIERS points;

• Evaluate the model by estimating the error of INLIERS points and model.

In point cloud segmentation, the RANSAC first need to determine a segmentation model,
such as a plane, cone, cylinder. Then, by determining the valid INLIERS points in the model
to find the point cloud that fits the model. Finally, the desired shape will be segmented.

2.6 3D Data Deep Learning Network

Deep learning had developed rapidly in recent years and has attracted widespread attention
in research and industry areas. However, deep learning is not a new research subject. It has
gone through a long history of development.

In 1943, the psychologist McCulloch and the mathematical logician Pitts proposed the
McCulloch-Pitts (MP) model[70]. The MP model is a neural network-based mathematical
model that simulates the structure and working principle of neurons. Then, the Canadian
psychologist Donald Herb proposed the Hebb Rule[42] based on unsupervised learning.
The Hebb rule mimics the process of human recognition behavior to establish a ”network
model.” This network model performs a large number of training processes on the training

33

2. BACKGROUND

set and extracts the statistical features of the training set, and then classifies samples ac-
cording to the similarity degree. These samples which have high similarity are grouped into
one class. The Hebb learning rule is consistent with the condition response mechanism,
which lays a foundation for future neural networking learning algorithms. In the late 1950s,
based on the study of the MP model and the Hebb learning rule, Rosenblatt proposed a
perceptron-based learning algorithm[92] similar to the human learning process. In 1958,
the neural network ”perceptron”[92] consisting of two layers of neurons was proposed. The
perception is a linear model that can classify the input training set data and automatically
update the weights in the training set. The proposed perceptron had attracted a large number
of scientists’ interest in artificial neural network research. However, in 1969 Marvin Minsky
and Simon Piper proved that the single-layer perceptrons could not solve linear indivisible
problems. Due to this flaw and the failure to promote the perceptron to the multi-layer
neural network, the research on neural networks has been stagnant for nearly 20 years.

In 1982, the physicist John Hopfield popularized the Hopfield neural network[46]. The
Hopfield neural network is one kind of cyclic neural network combining the memory sys-
tem and the binary system. The Hopfield network can simulate human memory. Depending
on the choice of activation function, there are two types of functions: continuous and dis-
crete functions which are used to optimize computation and associative memory. However,
due to the defect that it was easy to fall into the local minimum, this algorithm had not
been applied widely. Until 1986, Geoffrey Hinton proposed the back-propagation (BP)
algorithm[94] which is a backpropagation algorithm for the multi-layer perceptron. Based
on the forward propagation of traditional neural networks, the BP algorithm increases the
backpropagation process. The backpropagation process continually adjusts the weights and
thresholds between neurons until the error in the output is reduced to within the allowable
range, or until a pre-determined amount of training is reached. The BP algorithm solves
the problem of nonlinear classification. When the size of the BP network increases, it will
lead to a vanishing gradient problem, which limits the development of the BP algorithm. In
the training iteration, the update of the weight of the neural network is proportional to the
derivative of the error function, but in some cases, the gradient will disappear, the vanishing
gradient will result in the weight not being updated, and the neural network cannot continue
training. Besides, in the middle 1990s, other shallow machine learning algorithms repre-
sented by the support vector machine (SVM) [24] were proposed. The shallow machine
learning algorithm obtained good results on classification and regression problems.

In 2006, Geoffrey Hinton and Salakhutdinov published an article[44] which gave a solution
to the problem of vanishing gradient. The method first trains model layer-by-layer by using
unsupervised learning methods and then uses supervised backpropagation. In 2012, the
team led by Alex Krizhevsky, Ilya Sutskever and Geoffrey Hinton proposed the AlexNet[2],
AlexNet used the ReLU (Rectified Linear Units) activation function [75] to fundamentally
solve the gradient disappearance problem, and it uses the GPU to improve the speed of
the model significantly. In the ImageNet Image Recognition Competition, the AlexNet
achieved the best result and won the championship. Since then, with the advancement
of deep learning and the improvement of data processing capabilities, the deep learning
related algorithms achieved good results in many fields such as for healthcare, arts, and

34

2.6. 3D Data Deep Learning Network

self-driving cars. For example, the invention of AlphaGo and AlphaGo Zero proved the
good performance of deep learning technology.

Nowadays, Deep learning has been applied in various fields. For example, in computer
vision deep learning applications include face recognition[113], object detection[91][38]
and object tracking[65].

2.6.1 Deep Learning With 3D Datasets

Deep learning algorithms have been applied more in Euclidean structured data such as 1D
acoustic wave signal, 2D picture, and video. Deep learning has been applied in various
industries and fields. However, there are still many problems to be overcome. One of the
most critical issues is how to detect and identify objects in 3D space.

The recognition and segmentation of 3D models can be applied in many fields, for example,
virtual reality, robot control, and autonomous. Taking virtual reality as an example, the
depth sensor captures the depth and color information of surrounding scenes, based on this
information, the algorithm infers the relevant semantics, predicts and divides the scene.
Here we need to create a set of non-Euclidean data that is similar to spatial coordinates as
the input. The output is the detection or segmentation of objects.

In general, we can use the following three structures to represent 3D data: voxel grid, multi-
view, and point cloud. The multi-view structure can be translated to use 2D Convolutional
Neural Network (CNN) resolution on multiple images. For 3D voxels, 2D CNN can be
made to work for 3D voxels by defining a 3D convolution kernel. Therefore, in the early
stage of 3D data deep learning research, a lot of 3D voxel grid and multi-view neural net-
works were proposed. With the development of data processing, deep learning based on
point clouds has also been proposed in recent years. In this section, we will introduce
representative deep learning neural networks based on different 3D representations.

2.6.2 Voxel-based CNN (ShapeNets)

The core idea of voxel-based technology is to convert the input 3D shape data representation
(such as build the depth map based on the distance from the visual observation point to the
surface of the scene) into a standard 3D data representation (volumetric representation),
and proposes a network framework for convolution of regular, fixed-sized 3D cubes (voxel
grids) for model identification segmentation. There are currently many deep networks based
on voxel 3D data such as 3D-CNN[67], VAE[16], VoxNet[68] and ShapeNet[124]. In this
section, we will introduce the ShapeNet in details.

The ShapeNets solves the problem of using 3D data for object detection and recovering the
entire 3D shapes from 2.5D maps. The 3D ShapeNets is proposed based on the CDBN
(Convolutional Deep Belief Network)[62] network:

• Learn the 3D shape distributions of different types and different poses and getting
hierarchical expressions.

35

2. BACKGROUND

• Support joint object recognition, which can restore 3D maps from 2.5D depth maps,
active object recognition through view planning.

Two difficulties in 3D shape data recognition are category recognition and reconstruction of
3D shape from 2.5D shapes (shape completion). The limitations of previous approaches to
solving these issues are:

• Shapes of various objects with large changes: In order to build deformable com-
ponent models, most work[20][116][52] use assembly-based methods, which means
that most previous research is part-based, for example, divide a table into table face
and legs. This method restricts to a small difference within the class.

• Surface reconstruction of imperfect scanning input: Most of the previous work[103][8]
was based on smooth interpolation or extrapolation, which can only solve image loss.
Moreover, the results of previous methods are limited by the image quality.

• 3D data: Input for object recognition, in general is 2D data, not 3D.

• Complex real-world object 3D shapes: Use the Shape Boltzmann Machine[31] to
generate objects can effectively capture the object intra-class variation. This paper is
inspired by ShapeBM to generate models and learn the expression of 3D shapes.

• The object cannot be recognized in a single view, or the object cannot be recon-
structed: This method adopts the Next-Best-View[102] to solve this problem.

ShapeNets includes two variants: The 3D ShapeNets is used to represent geometric 3D
shape through the probability distribution of the binary variables on the 3D voxel grid.
2.5D recognition and reconstruction are used to recognize and reconstruct objects.

3D ShapeNets

The Fig.2.13 shows the structure of the 3D ShapeNets model. The first three layers are
convolutional RBM, the fourth layer is a standard fully connected RBM with 1200 nodes,
and the inputs to the top layer are labelled variables and Bernoulli characteristic variables.
The model training process includes the layer-by-layer pre-training process and the full
network fine-tuning process. The pre-training uses the standard Contrastive Divergence[43]
to train the lower four-layer RBM. The wake-sleep algorithm[45] is used in the fine-tuning
process.

36

2.6. 3D Data Deep Learning Network

Figure 2.13: Architecture of 3D ShapeNets model
source:3D ShapeNets: A Deep Representation for Volumetric Shapes[124]

2.5D Recognition and Reconstruction

This process has two parts: View-based sampling and Next-Best-View prediction.

View-based sampling: The model was trained on complete 3D shapes, it can identify ob-
jects in a single view 2.5D depth map. In this process, the 2.5D depth map will first be
represented as volumes. The sampling process uses Gibbs sampling to approximate the
posterior distribution. The result map to the most frequently sampled class.

Next-Best-View prediction: This method uses the volumetric representation as the input
data of ShapeNets for object reconstruction. When there are three kinds of reconstruction
results, the reconstruction is uncertain. Then it needs to obtain the next-view data to deter-
mine the final classification result.

There are four steps to obtain the next view: first, find all different next-view candidates;
next, determine the possible shapes of next-view candidates in the original light; then calcu-
late the uncertainty of the corresponding shape of all candidates; finally, the next-best-view
is the one with the least uncertainty.

After deciding the best view, the camera will capture the other surface of the object from
the best view. The prediction and reconstruction deduce a new observation.

37

2. BACKGROUND

Voxel-based neural networks can effectively detect and segment 3D data, but using voxel as
representation can result in massive memory usage during the calculation process and the
long learning time.

2.6.3 Multi-View CNN

Different from the voxel-based method, the core idea of the multi-view neural network is to
extract surface features with multiple 2D images from different angles. Segmentation and
classification of 3D objects can be achieved by processing corresponding 2D images. In
this section, we will introduce a representative Multi-view CNN[111] proposed in 2015.

The innovation of this method is that it uses 2D images from different viewpoints of the
3D object as training data. The model is trained with a classic and mature two-dimensional
image convolution network.

The model trained by this method has much better recognition and classification results
on 3D objects than the model directly trained with 3D data. Compared with direct 3D
data training, significant advantages are the maturity and speed of 2D image convolution
networks. The use of 3D images to process 3D data is equivalent to the ”dimensionality
reduction” of 3D training data, which can also result in a better performance than 3D data.

In this method, the way to use 2D images is to generate a descriptor for each view; these
descriptors will be used for recognition based on a voting or ranking mechanism. The
method has the following steps:

• Multi-View Representation: In this step, this system adopts the Phong reflection
model[83] to generate the rendered polygon meshes.

• Recognition with Multi-View Representations: Each 3D shape produces 12 or 80 im-
ages to recognize an object, multiple 2D images need to be integrated to describe the
3D shape features.

• Image descriptors: This method considers two kinds of 2D image descriptors: one
image descriptor is based on Fisher Vectors[100] and multi-scale SIFT, another de-
scriptor is based on CNN activation features[29].

• Classification: Multi-view CNN adopts linear SVMs to classify 3D shapes.

• Retrieval: This step defines a measure of distance and similarity.

For most 3D shapes, the multiple descriptors mentioned before has better performance than
other 3D shape feature descriptor. However, in many cases this algorithm is inefficient.
Efficient and better performance requires the integration and fusion of descriptors.

Finding the average of the feature descriptors of a 3D shapes or joining these feature de-
scriptors together can lead to bad results. Therefore, this paper proposed the Multi-view
CNN (MVCNN) as shown in Fig.2.14 to fuse feature descriptors.

38

2.6. 3D Data Deep Learning Network

Figure 2.14: Multi-view CNN architecture
source: Multi-view Convolutional Neural Networks for 3D Shape Recognition[111]

In this neural network, each view image of the same 3D shape passes through the first layer
of CNN1 convolution network, all these images will be aggregated in the view-pooling
layer, and the output will be then sent into CNN2 convolution network.

The disadvantage of MVCNN is that because of self-occlusion of the object, some surface
information is not available when the picture is taken, and the angle is chosen manually.
These factors will influence the recognition accuracy.

2.6.4 Point-based CNN (PointNet++)

The CNN based on volumetry and multi-view have one thing in common. They both require
to re-cut the original 3D data or map 3D data to 2D space to get a highly regular format as
network input. The most significant difference between the other two types of CNN and
point-based CNN is that the point-based CNN can directly process the original 3D data. In
this section, we will introduce the Point-based CNN PointNet[85].

PointNet is based on three types of work: point cloud features, deep learning on 3D data
and deep learning on unordered sets.

Point Cloud Features: The characteristics of point clouds are usually divided according to
the specific case. For example, based on the invariants to certain transformation, the sta-
tistical properties of the points can be divided into intrinsic[9][17] and extrinsic[21][51]
properties. Alternatively, features can also be classified into local features and global fea-
tures.

39

2. BACKGROUND

Figure 2.15: PointNet Architecture: The ”mlp” represents multi-layer perceptron,
Batchnorm is used for all layers with ReLU.

source: PoineNet: Deep learning on point sets for 3D classification and segmentation[85]

3D Data Deep Learning: In addition to the aforementioned Volume CNN and the Multi-
view CNN, there are other types of deep learning on 3D data: Spectral CNN[18][66] and
Feature-based CNN[33][40]. The drawback of spectral CNN is that it cannot be used for
3D data with non-isometric shapes. The feature-based neural network converts 3D data into
a vector and uses the network to classify shapes.

Unordered Sets: A point cloud is a set of vectors. Neural networks require regular format
data such as images and volumes as network input. Recent work from team Oriol[118]
solves the unordered problem by using a ”read-process-write” network. However, their
work ignores the geometry of sets.

Given the features of point cloud data, there are two challenges in the point-based deep
learning network:

• Unordered: Unlike regular format data such as images or volumetric grids, point
clouds consist of a series of points without a specific order.

• Transformation: The coordinate of point cloud will be changed when it undergoes
a certain rigid change (rotation or translation) in space. The neural network needs
to classify the shape of point cloud regardless of the point cloud coordinates, which
means that the point set should be invariant to certain transformations.

The architecture of PointNet is shown in Fig.2.15. There are mainly three modules in this
network:

Symmetry Function for Unordered Input: In order to solve the unordered property of point
clouds, there are three existing approaches:

1. The input is sorted into a canonical order. However, there does not exist a stable
permutation in high-dimensional space. The instability of order requires the map to

40

2.6. 3D Data Deep Learning Network

maintain spatial similarity in the case of reduced dimensions, so the ordering stability
is a necessity for this project. Therefore, this scheme cannot be adopted here.

2. Use a Recurrent Neural Network (RNN) and consider the input as a sequence. By
using randomly sorted data to train RNN, the RNN will be invariant to input data.
However, article[118] shows that the ordering of input data in RNN cannot be com-
pletely ignored. Therefore, RNN can be used for small-sized input data, but it is
difficult to be expanded to thousands of points. Point clouds usually consist of thou-
sands of points and therefore cannot use this scheme.

3. Use symmetric function. This method adopts the max pooling to solve the unordered
problem of the point cloud. After the network performs a certain degree of feature
extraction for each point, max pooling can extract the global features of the point
cloud.

Local and Global Information Aggregation: The output from the previous module forms
a global feature of the point cloud. To achieve point cloud segmentation (Segmentation
Network in Fig.2.15), local features and global features information need to be combined.
After calculating the global features in the previous step, the new feature per point will be
extracted based on the combination of global features and point features.

Joint Alignment Network: This module is used to achieve the geometric transformation
invariance of point cloud semantic label. One solution is to align all inputs into canonical
space before extracting the feature. The PointNet uses a mini network (T-net in Fig.2.15)
to predict the affine transformation matrix. The T-net consists of feature extraction, max
pooling and a fully connected layer that is similar to the big network.

PointNet can be applied to 3D object classification, 3D object part segmentation, and se-
mantic segmentation. Experimental results show that PointNet has better performance and
accuracy in 3D databases such as ModelNet40 than state of the art. However, in Point-
Net, a significant problem is the local feature problems. In the original PointNet, for part
segmentation and scene semantic sparsing, when we need to get the score of each point,
the solution is to directly combine the point feature with the global feature and ignore the
influence of local features. For example, in a scene point cloud classification task, if we
first identify the local features such as the chair is the chair, the table is the table, it will
be more accurate when finally classifying each point. Therefore, the proposed optimization
PointNet++[86] adds the local feature by using the layered structure and leads to a better
classification result.

The main contributions of PointNet++ are to add local feature extraction on the basis of
PointNet and to add density adaptation in the network structure to make the segmentation
more accurate.

The Pointnet++ designed a hierarchical feature learning framework to solve the problem
of local features extraction. The framework consists of three layers: the sampling layer,
grouping layer and PointNet layer introduced before. This framework is capable of ex-
tracting local features at different scales and obtaining deep features through a multi-layer

41

2. BACKGROUND

network structure. The sampling layer is responsible for sampling the data. The function
of the grouping layer is to find all the local points of each point to facilitate subsequent
extraction of features for each part. The feature extraction layer uses PointNet to perform
feature extraction on each part given by the combination layer to obtain local features.

In order to solve the problem that the distribution of point cloud data in space is irregular and
uneven, the PointNet++ uses the Multi-scale grouping (MSG)-based[6] (Multi-resolution
grouping) MRG method to reduce the amount of computation. The local feature extracted
by MRG in a certain layer is composed of two vectors connected in series. By proposing the
hierarchical feature learning framework and feature extraction of point cloud data, Point-
Net++ solves the problem of lack of local features and obtains more accurate point cloud
segmentation results.

42

Chapter 3

Contributions and Methodology

This chapter describes the challenges faced in the project and the contributions and method-
ology of this thesis. The methods mentioned in this thesis had been implemented on the
Ubuntu system by using C++ and Python.

3.1 Challenges

The goal of the project I have been collaborating with (VRTogether) is to implement the
SERVER-side real-time 3D reconstructed based on depth cameras and encoding of this
point cloud by a coding system before data transmission. The user can see the reconstructed
scenes and characters on the CLIENT side in real-time. As one part of the 3D reconstruction
of the social VR project, our system is required to calibrate multiple cameras and output the
calibrated results (transformation matrix) into the next 3D reconstruction stage.

Most of the current camera calibration systems use complex calibration objects. For exam-
ple, the traditional camera calibration methods[53][36] rely on a calibration checkerboard
and complicated corner detection operation, which are time-consuming and require manual
interventions. In real-time 3D reconstruction, the cameras need to be calibrated in real-time.
Therefore, this type of calibration method does not meet the requirements of instantaneity.

In 2015, Marek, Jacek et al.[57] proposed a calibration system which contains two steps:
rough estimation and refinement. The idea of this system is to first perform initial calibration
by using the marker shown in Fig.3.1 and then use the camera pose refinement to refine
the estimate of the transformation matrix. This system allows users to calibrate Kinect
v2 sensors using any calibration object at any physical place but still relies on the use of
additional markers, and the registration of point clouds overlap.

OpenPTrack system[72] is a multi-camera calibration and human tracking system. This
system aims to create a calibration system for depth camera networks. In this system, they
used the checkerboard to calibrate cameras in two steps: intrinsic calibration and extrinsic
calibration. The intrinsic calibration step calibrates each camera separately; the extrinsic
calibration step relies on ROS communication, which runs in real-time and involves all
sensors. This system allows networking camera calibration system to calibrate up to 10

43

3. CONTRIBUTIONS AND METHODOLOGY

Figure 3.1: The Marker used in calibration system proposed from [57].

cameras, but it still relies on specific calibration objects and is limited by the networking
capacities.

The human body tracking system published in 2017[80] proposed a real-time skeleton fu-
sion and tracking system for Kinect sensors. This system first performs camera calibration
by using a checkerboard pattern and corner detection. Then it tracks human movements
based on the human skeleton as provided by the Kinect’s software development tools. In
this system, they fixed the calibration board on the ground to avoid it interfering with the
rest of steps. However, this system did not achieve marker-free calibration and cannot be
generalized to other depth sensors.

The calibration system from CERTH[19][3] uses labelled IKEA boxes with unique QR
markers shown in Fig.3.2 as the calibration objects. This calibration process requires a
specific large object, which cannot be easily replaced with other calibration objects and has
strict requirements for the calibration. In addition, the system needs to be used in specific
lighting conditions such as in a studio.

Figure 3.2: Calibration objects used for live 3D human reconstruction and motion
capturing: 4 standardized IKEA boxes along with 32 QR markers

source: An integrated platform for live 3D human reconstruction and motion capturing[3]

The paper[56] published in 2018 presented a calibration system for multiple Kinect cam-
eras. This skeleton-based approach does not require any complex calibration object and

44

3.2. Contributions

uses only a person standing in the scenes for calibration. The method uses the 3D joints
extracted from the Kinect skeleton[105] for camera calibration. Also, this automatic cali-
bration system re-calibrate cameras when calibration errors become higher than a threshold.
The contribution of this system is that it does not rely on any additional calibration objects
such as a checkerboard or dot pattern plane. The limitation of this system is that it cannot
be used for depth sensors that do not provide the features of the human skeleton.

In this thesis, the goal is to reduce requirements on the calibration objects; we aim to design
a more flexible calibration system, in which the camera can be calibrated without specific
calibration objects. In this project, we have the following challenges:

• The skeleton-based calibration system mentioned in [56] gets rid of the limitations
of complex calibration objects. The Kinect cameras used in this system provided the
human skeleton data. However, the depth camera RealSense D415 used in our project
does not provide similar specific calibration data, so we need to design a camera
calibration system based on the point cloud data that is flexible on requirements on
the calibration object.

• The ICP algorithm easily falls into a local optimum. As the point cloud data captured
by different cameras are incomplete and do not have a part in common, the algorithm
will have errors in the registration process. In this case, the ICP algorithm ignores the
point cloud space features and the 3D structure and matches the non-corresponding
parts of the two sets of point clouds to achieve local optimum. How to optimize the
system to make the calculated transformation matrix more accurate is a challenge.

3.2 Contributions

Our system has the following contributions:

1. Design a markerless, flexible calibration system. This system calibrates multiple cam-
eras based on a diversity of objects (currently the objects are chair and lamp, the type
of object can be extended according to the items in the training dataset), which makes
the calibration process more flexible and much easier.

2. Propose a feature-based point cloud registration method. We adopt point cloud seg-
mentation and selection in the data pre-processing process to divide the object into
different parts. We use a selected partial point cloud of an object segment that shows
up in both cameras instead of the original point cloud for registration. This helps
to overcome the shortcoming of the ICP algorithm that it can easily fall into a local
optimum.

3.3 Methodology and Architecture

In this project, we need to create a more flexible calibration system that can be used with al-
most any type of objects. We first design the basic flow of multi-camera calibration and test

45

3. CONTRIBUTIONS AND METHODOLOGY

the pipeline with different objects, and then propose and validate the feature-based optimiza-
tion method based on the shortcomings and errors in the previous test results. Moreover, we
provide a suggestion for real-time camera automatic re-calibration.

Our pipeline has four key modules: coarse registration, point cloud pre-processing, fine
registration and point cloud update. The architecture of our system is shown in Fig.3.3. In
this section, we will introduce these key modules in more details. The overview of pipeline
in details is shown in Fig.3.4.

Figure 3.3: The system architecture. The grey module (coarse registration) is a one-time
process; the blue modules are continuously processing procedures. In this thesis we validate
the modules within the yellow dotted box and propose a suggestion (green modules) for
achieving an automatic re-calibration.

46

3.3. Methodology and Architecture

Figure 3.4: The system detailed modules. The module in grey (coarse registration) is a one
time procedure; the modules in blue are continuously process. In detail, the modules in
yellow (in Pre-processing step) are written in python, the other modules in pre-processing
step are written in C++.

3.3.1 Coarse Registration:

In order to obtain an appropriate calibration result, we need to first calculate a coarse esti-
mated transformation matrix. In our project, we placed four cameras in different positions
to cover all angles of the object, which means that the translation and rotation varies a lot
among cameras. When the positional distance between cameras is large, the ICP algorithm
requires the initial matrix to provide an initial transformation so that two point clouds are
transferred to the same coordinate system as much as possible to avoid the algorithm falling
into a local optimum. In the coarse registration step, we first adopt the MATLAB calibra-
tion toolkit[13] to roughly estimate the camera position. Then, we use the FPFH feature
based point cloud alignment to calculate the initial transformation matrix. This feature-
based method is introduced in Section.3.3.4. Fig.3.5 shows the flow of MATLAB toolkit
coarse registration method.

The coarse registration by using MATLAB toolkit consists of three steps, the first step is sin-

47

3. CONTRIBUTIONS AND METHODOLOGY

Figure 3.5: Flow of coarse registration based on MATLAB toolkit.

Figure 3.6: Position of four cameras

gle camera calibration, in this step we use the calibration toolkit function calib to calculate
the camera parameters separately. For each camera, we capture 14 color images of a planar
checkerboard[13]. For effectiveness of the stereo camera calibration and the consistency
of the scene, each pair of cameras (adjacent cameras) must simultaneously take pictures
of the calibration checkerboard. An essential step in the single camera calibration is the
corner extraction. MATLAB provides two different corner extraction methods: automatic
extraction and manual extraction. Compared to automatic extraction, manual extraction is
complicated and time-consuming, but with a high accuracy[114]. The coarse registration
step in this project is a one-time operation when the camera position is fixed, and the result
of the ICP algorithm relies on the accuracy of the initial transformation matrix, so in this
step, we manually extract the point corners. The output of the single camera calibration is
the intrinsic and extrinsic parameters of each camera.

The second step is stereo camera calibration, this step is used to estimate the spatial re-
lationship between adjacent cameras, and the input of this step is the parameters of the
cameras. The transformation matrix that coarsely matches adjacent cameras is calculated
by the stereo camera calibration function stereo provided by the MATLAB toolbox.

In this project, we need to calculate the spatial relationship between all four cameras, so
starting with camera1 we can calibrate camera2 and camera4, but then we still have to

48

3.3. Methodology and Architecture

calculate the transformation matrix between camera1 and its opposite camera3. The position
of cameras is shown in Fig.3.6.

The MATLAB toolkit only works for cameras that can capture the same side of the checker-
board. Camera1 and camera3 stand in opposite directions, which means that they cannot
capture the same side of the planar checkerboard. After the stereo calibration, we obtain the
transformation matrix between camera1 and camera2 (or camera 4) and the transformation
matrix between camera3 and camera2 (or camera4). The positional relationship between
two cameras is:

xi

yi

zi

1

=

[
Ri j ti j

0 1

]
xi

yi

zi

1

 (3.1)

The left side of equation represents the target camera, the Ri j is the rotation matrix between
the target camera and source camera, the ti j is the translation matrix between the target and
source camera. Therefore, the correlation between camera1 and camera3 is:

x1
y1
z1
1

=

[
R12 t12
0 1

][
R23 t23
0 1

]
x3
y3
z3
1

 (3.2)

Given the correlation between camera1 and camera2 (or camera4) and the relationship be-
tween camera3 and camera2 (or camera4), we can calculate the transformation matrix of
camera1 and camera3 based on equation3.2. In this way, all cameras’ transformation ma-
trixes can be calculated to serve as input for the ICP program.

3.3.2 Point Cloud Pre-processing

The point cloud captured from the depth camera first needs to be preprocessed, the pro-
cessed point cloud is the input to the ICP program. The pre-processing stage includes the
following operations:

Background removal: In order to get a clean point cloud of the object, we need to remove
the background of the captured data. This step determines the closest distance to the point
cloud by calculating the closest point to the depth camera and based on this and on a chosen
depth range we can set a threshold. Points farther away than this threshold are considered
to be background and are removed.

Filter: In this project we use the outlier removal filter function in PCL[81]. An outlier is
determined by the product of the standard variance of k neighbors and a threshold. First,
calculate the standard deviation dev of the distance between a point and the surrounding
50 points, and then calculate the distance s from the point to the neighboring points, if
d > dev∗ threshold, the point is an outlier point and will be removed.

49

3. CONTRIBUTIONS AND METHODOLOGY

3.3.3 Fine Registration and Point Cloud Update

The fine registration stage serves to implement the point cloud fusion by using the ICP al-
gorithm. After capturing two point clouds (source and target) from two different angles,
we can transform the source point cloud based on the initial rotation and translation matrix
calculated by the coarse registration as described in Section 3.3.1. Then we use the ICP
algorithm to fuse the transformed source point cloud with the target point cloud. When the
target point cloud and source point cloud successfully converge, we have a refined transfor-
mation that is needed to fuse the point clouds of the individual cameras.

For the final dynamic reconstruction, we provide a multi-camera auto re-calibration solution
for real-time 3D reconstruction. The point cloud update can be achieved by judging the con-
vergence score and setting the threshold. The degree of convergence reflects the accuracy of
the registration. In the experiment, the f itnessscore is used to calculate the matching degree
of the two point clouds. The smaller the fitness score, the better the alignment of the two
point clouds. If the current frame can converge to the previous frame, which means that the
fitness score is less than the threshold, then we should update the current frame to the out-
put; if not, we need to return to the fine registration step and re-calculate the transformation
matrix.

3.3.4 Feature-based Optimization

Pre-processing

The ICP algorithm can easily fall into a local optimum. In the point cloud registration, the
ICP algorithm does not take the 3D shape, and spatial characteristics of the point cloud into
consideration; it only uses the distance to iteratively align point clouds. In the course of our
experiment, we used a chair with armrests as a calibration object. If the point clouds of two
different cameras capture different armrests respectively, for example, the point cloud in
camera1 has only the left armrest, and the point cloud in camera2 captures the right armrest
only. In this case, the ICP algorithm will fall into a local optimum and try to match these
two non-corresponding armrests, which produces a completely unuseful result (as will be
shown in the next chapter).

Therefore, we conclude that using the whole incomplete point cloud of the object as pro-
duced by each camera will affect the accuracy of the ICP algorithm. Thus, to make up
for this behaviour of the ICP algorithm, we need to select a specific part of the object that
adjacent cameras share as the registration part.

In this stage, the first step is to subdivide the object point cloud of each camera into different
parts; the next step is to choose a relatively complete part that all the cameras cover. To test
with a variety of calibration objects, we use multiple methods to segment the point cloud
and then select the shared part through volume estimation.

PCL based point cloud segmentation: PCL library[?] provides various functions for point
cloud segmentation. In order to segment the point cloud and input the divided part into the
ICP program, we used RANSAC segmentation[34] and region growing segmentation[88]
in different models like a chair, lamp and mug.

50

3.3. Methodology and Architecture

The RANSAC segmentation method separates specific geometrical objects (such as a plane,
cylinder, and cone) from the point cloud. However, the RANSAC segmentation algorithm
does not perform well enough. For example, for the lamp dataset, the RANSAC segmen-
tation based on a plane extracts a transverse plane of the lamp. This segmentation method
cannot divide the point cloud according to the components of the object, which means
that the lamp cannot correctly be divided into a lampshade, a bracket, and a lamp holder.
Moreover, the RANSAC segmentation method only retains the valid (INLIERS) part which
contains points within the specific model, and the valid part is not the most suitable part for
ICP in some cases. Therefore, the RANSAC method as will be demonstrated is of limited
use in our project.

The region growing algorithm divides the object point cloud into different clusters according
to curvature and normal, the objective is to divide the point which satisfies the smoothing
constraint and its curvature smaller than the threshold into the same cluster. However, the
point cloud captured from the camera is not smooth and contains a lot of noise, which affects
the correctness of the algorithm, so the segmentation result is not good and cannot be used
for subsequent ICP registration step.

Deep learning based Segmentation: We need to come up with a segmentation method
that can divide objects into different parts based on various characteristics (components) of
objects. Also, the segmentation result is required to preserve all parts of the object. Then
we can choose the appropriate part (the relatively complete and common part of different
cameras) for the ICP registration step.

Based on our literature research, we found that the PointNet++ neural network directly
processes point cloud data and has a good performance in part segmentation. So we use the
PointNet++ to segment the point cloud.

Part segmentation: The purpose of this step is to divide the point cloud into different parts.
First, we need to select some objects from the dataset as the calibration object. The reason is
that in our system, some of the objects in the dataset are not suited to be used as a calibration
object, such as an airplane. Second, because the training set data is different from the point
cloud we captured from the depth camera, We need to filter and downsample the point cloud,
and change the data format. Finally, we need to output the predicted results and annotate
the different parts of the point cloud with specific colors.

Part Selection: The test results of the PointNet++ network label the different parts of the
object with different colors. We calculate the cube diagonal values of different parts to
represent the size of the volume. For the same part (same color) of the four cameras, the
coverage and completeness of the same part among the four cameras are measured by cal-
culating the Mean Square Error. The part with the smallest MSE value indicates that the
volume difference of this part is the smallest, which means that this part of point cloud ac-
quired by the four cameras is the most ”similar” part in volume. Therefore, the part with
the smallest Mean Square Error is considered to be the most suitable part for point cloud
registration.

51

3. CONTRIBUTIONS AND METHODOLOGY

Coarse registration

In our system, the coarse registration step uses the MATLAB toolkit to calculate the initial
transformation matrix. Although the results of MATLAB toolkit have good accuracy, the
operation process is complicated and time-consuming, and we need a checkerboard as the
calibration object for MATLAB toolkit calibration. If manual positioning of a checkerboard
is not required, our system will be more flexible and convenient.

The point cloud library provides a variety of feature descriptors and feature extraction meth-
ods. The feature descriptors extracted by these feature extraction methods can then be
matched by using the RANSAC algorithm, and the transformation matrix can be calculated.
In our system, we use FPFH feature extraction and matching functions to replace MATLAB
toolkit to calculate the initial transformation matrix.

3.3.5 Datasets

In the PointNet++ model training process, we use a subset[85] of the 3D ShapeNetCore[104]
dataset. The 3D ShapeNetCore dataset contains clean 3D models and segmented sections
marked by different colors. The dataset covers ”55 common object categories with approx-
imately 51,300 unique 3D models”[104].

The subset used in our project is released based on the framework proposed by the paper[125].
The framework used to generate labelled 3D model is an active learning method for se-
mantic part annotation, which is used to correctly label object parts with minimal manual
operations. This framework includes two main interfaces: an annotation interface and a ver-
ification interface. The annotation interface provides painting brushes for the user to label
the object into several parts, then the rest of the shapes will be labelled by propagating the
manual label. The verification interface shows the annotation results and inquires users to
verify the correct propagation and improves the propagation technique.

The subset used as the training set in our project includes 16 categories: airplane, bag, cap,
car, chair, earphone, guitar, knife, lamp, laptop, motorbike, mug, pistol, rocket, skateboard,
and table. Table 3.1 shows the description of the category in this subset. These objects
are subdivided into different parts based on their components; each part is labelled with a
specific color. Each data in this dataset contains two types of files: a .seg file and a .pts
file. The .seg file is the label value for each point. The .pts file is transferred from 3D point
cloud files and saves the 3D information of the model.

52

3.3. Methodology and Architecture

Table 3.1: Description of the 3D model category in the training set

Number of
Samples

Parts per
Sample

Description of the Parts

Airplane 2690 4 Body, Engine, Tail, Wing

Bag 76 2 Body, Handle

Cap 55 2 Panels, Peak

Car 1824 4 Hood, Roof, Wheel, Body

Chair 3746 4 Arm, Back, Leg, Seat

Earphone 69 3 Earphone, Headband

Guitar 787 3 Body, Head, Neck

Knife 392 2 Blade, Handle

Lamp 1546 4 Bracket, Lamp holder, Lampshade

Laptop 445 2 Keyboard, Screen

Motorbike 202 6
Gas-tank, Handle, Light, Seat, Wheel,

Body

Mug 184 2 Handle, Body

Pistol 275 3 Barrel, Handle, Trigger-and-guard

Rocket 66 3 Body, Fin, Nose

Skateboard 152 3 Deck, Wheel

Table 5266 3 Leg, Top

Among these 16 categories, we selected four types of objects that are commonly used in
daily life and suitable to be used as calibration objects for deep learning network training
and part segmentation. Fig.3.7 shows some of the training data used in our experiment.
Each color represents one part, the chair contains four parts, earphone and lamp have three
parts, and mug data consists of two parts.

53

3. CONTRIBUTIONS AND METHODOLOGY

(a) chair

(b) earphone

(c) lamp

(d) mug

Figure 3.7: Partial 3D model images of 3D ShapeNetCore dataset. source: [85]

54

Chapter 4

Experiments and Results

This project uses C++ and python as programming languages, the RGB-D cameras used
here are Intel RealSense D415. The results and performance are evaluated by processing
time, fitness score, and number of iterations. The processing time refers to the running time
of the ICP algorithm. In the feature-based optimization method, this time also includes
the running time of the point cloud segmentation. The fitness score is used to measure the
matching degree of the alignment results, the smaller value represents the better matching
result. The number of iterations is used to compare the performance of different methods
under the same number of iterations condition. The detailed explanation of measurement
metrics is introduced in Section 5.2. During the experiments, we validate the pipeline with
different angles, different numbers of cameras and different objects.

4.1 Pre-experiments

Before we implement the whole pipeline, we first test the ICP algorithm by using the
PCL[81] library. These pre-experiments include two experiments. In this section, we will
illustrate the experiment settings and demonstrate the results.

Experiment 1.0

Goals: In this thesis, we start an experiment with a single camera to test the ICP algorithm
and different types of objects, such as a bunny rabbit and toys. The goal is to implement the
ICP algorithm and test its performance.

Settings: In our first experiment we test with a bunny rabbit model. The bunny rabbit is a
3D model data created by Stanford University, the PLY file is downloaded from the Internet.
We use two identical PLY files as input, one is set as the target, and the other one is set as
the source. The transformation matrix between two point clouds is rotation degree with π/8
and a 0.4 meters translation on the z-axis.

Results: In the first experiment with a bunny rabbit 3D model, the registration process
achieves good performance after 18 iterations. The original bunny rabbit (white) and the
transformed one (green) is shown in Fig.4.1. Fig.4.2 shows the aligned point cloud.

55

4. EXPERIMENTS AND RESULTS

Figure 4.1: Original and transformed bunny
Figure 4.2: Aligned bunny

In this experiment, we try to match the red point cloud with the original point cloud. In the
iteration process, these two point clouds are getting closer and closer. After 24773ms, the
fitness score achieves 1.033e-6. The smaller the score, the higher the similarity between
these two point clouds.

Experiment 2.0

Goals: The bunny model is a clean and complete computer-generated model and in real
practice, we cannot capture such point cloud using depth cameras. In order to test the ICP
algorithm with real data captured from RealSense D415 camera, in the next experiment,
we used one RealSense camera to capture the point cloud of static objects instead of using
computer-generated models.

Settings: In this experiment, we only translate the object 0.4 meters along the x-axis. In
this case, we skip the coarse registration step, directly pre-process the point cloud and then
perform fine registration step. Unlike the first experiment, we need to capture the point
cloud from the RealSense camera and transfer it to the ICP process. The pre-processing in
this experiment includes background removal. In order to get a clear, recognizable point
cloud of the object, we need to remove the irrelevant background.

The background removal process is based on the distance from the object to the camera. We
capture the point cloud from the nearest point to a certain range. In this case, we calculate
the closest distance between the camera and the object, and then we add a distance of 0.2
meters to cover the entire object and remove the uncorrelated background that is beyond
that distance. Then we export the depth and color information of the captured point cloud
into the ICP program. The next fine registration step is the same as in the first experiment.

In this second experiment, we capture the point cloud from a single RealSense camera. The
original source point cloud and the target point cloud are shown in Fig.4.3 and Fig.4.4. In

56

4.1. Pre-experiments

Figure 4.3: Original source dog point cloud Figure 4.4: Original target dog point cloud

this experiment, we move the object from the original position to the target position by 0.4
meters.

We use the original point cloud and the target point cloud as the input, and then use the ICP
algorithm to align these two point clouds. In the ICP program, the input original and target
point clouds are shown in Fig.4.5. The white one is the source point cloud, and the green
one is the target point cloud.

Figure 4.5: Original source and target toy dog point cloud

57

4. EXPERIMENTS AND RESULTS

Figure 4.6: Aligned point cloud of the toy dog

Results: After 20 iterations, some parts of toy dog such as dog ear and legs have been
matched. The fitness score is 1.657e-4 and the processing time is 164938ms. The aligned
point cloud is shown in Fig.4.6.

4.2 Validate the Pipeline (Two Cameras)

In the following experiments, we set point cloud captured by camera1 as the target, and the
rest of the point clouds are source. The objective of point cloud registration is to match the
point cloud acquired by the source camera to the target point cloud.

Goals: In section 4.1 we implement and validate the ICP algorithm. In order to test the
pipeline shown in Fig.3.3, we use two cameras with a 90-degree angle for pipeline testing.
The target object is a static item - chair.

Settings: In this experiment, we put two cameras at different places as shown in Fig.4.7.
The experimental process is as follows:

Figure 4.7: Positions of two depth cameras

1) Coarse registration: In this step, we use a calibration checkerboard and the MATLAB
toolkit to calculate the transformation matrix. In this process, we take 14 RGB images

58

4.2. Validate the Pipeline (Two Cameras)

of the calibration checkerboard shown in Fig.4.8 as the input to the MATLAB calibra-
tion toolkit. The position of the calibrated board is different in 14 images, and the two
cameras need to take pictures at the same time. Based on the RGB images captured
from cameras and manual corner detection process, we first calculate the intrinsic and
extrinsic parameters of each camera, then use the stereo calibration to compute the trans-
formation matrix.

Figure 4.8: Photos of calibration from camera1 (left) and camera2 (right)

2) Pre-processing: Besides background removal described in section 4.1, in this experi-
ment, we add a filter (see in Section 4.4.1) to reduce the number of points. The filter
only discards certain points according to the filter parameters. This process can reduce
the computational burden and save processing time. The captured point cloud is shown
in Fig.4.9.

Figure 4.9: Point clouds of a chair captured from camera1 (left) and camera2 (right)

3) Fine registration: Different from the previous experiment, we need to use the transfor-
mation matrix calculated in the coarse registration step to roughly estimate the spatial
relationship of cameras.

59

4. EXPERIMENTS AND RESULTS

i) Create a temporary point cloud point temp to store the transformed point cloud. In
this step, we apply the transformation matrix to the source point cloud.

ii) Align the temporary point cloud point temp with the target point cloud by using
the ICP algorithm.

iii) Calculate the processing time, fitness score and iteration times.

iv) Display the source point cloud, target point cloud and aligned result on the screen.

Results: In this experiment, the process requires 80 iterations to achieve the convergence. In
this case, we also need more numbers of iterations than before. In order to save processing
time, we adopt a filter to reduce the number of points. For this reason, the entire processing
time is 30657ms. The fitness score is 7.231e-4. Fig.4.10 shows the original source point
cloud and the target point cloud. Specifically, the white one is the target point cloud from
camera1, the blue one is source point cloud from camera2, and the green one is transformed
from source point cloud based on the transformation matrix which is obtained by the coarse
registration step. Fig.4.11 and Fig.4.12 show the aligned point cloud when the number of
iterations are 1 and 80.

Figure 4.10: Source, target and transformed point cloud of a chair

4.3 Validate the Pipeline (Four Cameras)

Goals: The point clouds in section 4.2 only cover parts of the object, the next step is a test
with four RealSense cameras that cover the entire 360 degrees.

Extending on the experiment with two RealSense cameras, we use four RealSense cameras
to cover the entire 360 degrees of the objects. The object is a chair.

60

4.3. Validate the Pipeline (Four Cameras)

Figure 4.11: Aligned point cloud after 1 iteration

Figure 4.12: Aligned point cloud after 80 iterations

Settings: In this experiment, we put four cameras in different positions as shown in Fig.4.13.

The alignment processes of camera4 and camera2 are the same as Section 4.2 because they
both use camera1 as the reference. The main difference between this experiment and the
experiments described in Section 4.2 is that we need to calculate the transformation matrix
of camera3.

In the coarse registration step, we can only get the relationship of cameras located on the
same side of the calibration checkerboard. As can be seen from Fig.4.13, the camera1 and
camera3 are located on the opposite side of the object, which means we cannot obtain the
transformation matrix between camera1 and camera3 in the coarse registration step.

In this experiment, we obtain the positional relationship of camera1 and camera2(or cam-
era4), also the positional relationship of camera2(or camera4) and camera3. Based on the
method mentioned in section 3.3.1 we calculate the transformation matrix of camera1 and

61

4. EXPERIMENTS AND RESULTS

Figure 4.13: Positions of four cameras

camera3.

Results: In this experiment, the calibration object is a chair. In order to get a clear view of
the registration result, we will separately demonstrate the registration result of three source
cameras. Fig.4.14 shows the captured original point cloud from four cameras.

Figure 4.14: Captured original point cloud from (left to right) camera1, camera2, camera3
and camera4

The spatial relationship of camera1 and camera2 is computed in the coarse registration step.
From Fig.4.14 we observe that the captured point clouds of the individual cameras do not
cover the entire object. The point cloud from camera1 covers the right armrest of the chair
while the point cloud from camera2 covers the left armrest of the chair, which leads to an
error in the fine registration step. The result of registration of camera2 is shown in Fig.4.15.

The result shows that after the registration step, the left armrest in the source point cloud
(camera2) is getting closer to the right armrest in the target point cloud (camera1). This

62

4.3. Validate the Pipeline (Four Cameras)

Figure 4.15: Aligned point cloud after 40 iterations. The white point cloud is the target
captured by camera1, the red one is the source captured by camera2.

means that the classic ICP algorithm is confused. It demonstrates that in some situations,
when the source point cloud and the target point cloud only cover different parts of the
object feature, the algorithm does not produce useful results.

The same happens with camera2; we also get the spatial relationship of camera4 and cam-
era1 in the coarse registration step. In this case, even if the target point cloud from camera1
and the source point cloud from camera4 both cover the right armrest, the output still has
an error. The reason is that the two point clouds do not cover the complete armrest. After
the ICP process, the source point cloud aligns the edge of the chair seat with armrest in the
target point cloud. The alignment result of the camera4 is shown in Fig.4.16.

Figure 4.16: Aligned point cloud after 40 iterations. The white point cloud is the target
captured by camera1, the green one is the source captured by camera3.

The processing time is 34972ms. After 40 iterations, the fitness score of these two point

63

4. EXPERIMENTS AND RESULTS

clouds is 5.687e-3.

Unlike camera2 and camera4, we calculate the transformation matrix of camera3 according
to formula 3.2. The result is shown in Fig.4.17. The cause of camera3 error is the same
as camera4. The processing time is 37980ms. After 40 iteration times, the fitness score is
3.397e-3.

Figure 4.17: Aligned point cloud after 40 iterations. The white point cloud is the target
captured by camera1, the blue one is the source captured by camera4.

64

4.3. Validate the Pipeline (Four Cameras)

Optimization

The reason for the error in this experiment is that the chair point cloud is incomplete and
the point cloud angles captured by different cameras are different. In order to improve the
registration accuracy, we remove parts of the point clouds and test with only one specific
part of the point cloud. By comparing the four point clouds in Fig.4.14, we found that the
point cloud in the back of the chair is the most complete part. We manually remove the rest
part of the chair and export the chair back into PLY file for testing.

Figure 4.18: The comparison between original alignment point cloud and edited alignment
point cloud

Fig.4.18 shows the alignment result of original point clouds (the left column) with aligned

65

4. EXPERIMENTS AND RESULTS

point clouds (the right column) covering only the back part of the chair. Each row repre-
sents the point clouds captured from camera2 (the red ones), camera3 (the green ones) and
camera4 (the blue ones). As can be seen from the above pictures, when the point cloud only
contains one common part of the object, the registration result is better. Table 4.1 shows an
evaluation comparison of these two cases.

Table 4.1: Registration evaluation and comparison of original point cloud and edited point
cloud - Chair Point Cloud

Point Cloud
Processing

Time
Number of

iteration
Fitness Score

Source Camera2
Original 24782ms 40 1.112e-3

Chair back only 10524ms 40 1.075e-4

Source Camera3
Original 46031ms 40 3.397e-3

Chair back only 18192ms 40 1.791e-4

Source Camera4
Original 39096ms 40 5.687e-3

Chair back only 15226ms 40 4.581e-4

Analysis: Based on Table 4.1 we conclude that: if we only keep the back part of the chair,
the registration results are better than the results of original point clouds. Meanwhile, the
processing time is shorter, and the fitness score is smaller, which means that the manually
edited point cloud aligns better than the original ones.

4.4 PCL-Based Segmentation with Pipeline

In this section, we will illustrate the point cloud segmentation based on the point cloud
library and show the result of point cloud registration based on the segmented point cloud.

The purpose of point cloud segmentation is to divide the target point cloud according to
its different components (parts) and be able to select corresponding parts, leading to better
results as demonstrated by the experiment in Section 4.3. In the segmentation algorithm
provided by PCL, SAC segmentation can extract different geometrical forms (such as the
plane, cylinder) of the point cloud. Therefore, in different point clouds, the target part can
be segmented based on features of the object. For example, the back of the chair is the
target segmentation part. We can use the SAC segmentation and plane model to segment
the target part. Besides, we also use region growing method to segment the point cloud.

4.4.1 SAC Segmentation

Goals: Based on the experimental results from the section4.3, we concluded that using
a partial target point cloud instead of the entire point cloud for registration can achieve

66

4.4. PCL-Based Segmentation with Pipeline

Figure 4.19: The flow of SAC segmentation

better performance with smaller fitness score and shorter processing time. However, in the
previous experiment, we manually selected the appropriate part (chair back) as the input of
the ICP algorithm for point cloud registration. To make it practical, it is necessary to have
an autonomous process for segmentation of the point cloud.

Plane Model-Based SAC segmentation

Settings: In this experiment, we use functions provided by the PCL to automatically achieve
point cloud segmentation automatically. The first segmentation method we used is the SAC
segmentation algorithm. The flow of SAC plane segmentation is shown in Fig.4.19.

Filter: In this project, we use the voxel filter to downsample the point cloud. The function
pcl ::VoxelGrid < pcl :: PointXY Z > first constructs a 3D voxel grid, then it uses the gravity
of all points in the voxel to represent these points. All points within the same voxel grid will
be shown as one gravity point. In this way, the number of points in point cloud is reduced.

SAC Segmentation: The input of SAC plane segmentation is a set of points and model
(plane) parameters. The segmentation including the following steps:

• The SAC segmentation algorithm divides the data into INLIERS (valid) and OUT LIERS
(invalid) and iteratively chooses a random subset as the INLIERS to calculate the pa-
rameters of the model.

• Use the calculated parameters to test other data and select INLIERS points.

• Repeat the above steps and calculate different models and parameters. Compare the
number of INLIERS points between different models and set the model with the most
INLIERS points as the best model.

• Finally, return the index of INLIERS in the best model to the next module.

The function pcl :: SACSegmentation < pcl :: PointXY Z > is used to process the above
steps. The function pcl :: SACSegmentation.segModelType is used to set the segmented
model. In this experiment we select the SACMODEL PLANE to extract a plane in the point
cloud. The four coefficients of the plane model are in the Hessian Normal form[123][37]:
(normal x,normal y,normal z,d).

67

4. EXPERIMENTS AND RESULTS

Indices extraction: Then, we use the function pcl :: ExtractIndices < pcl :: PointXY Z > to
extract the INLIERS points in the point cloud obtained from SAC segmentation and output
the point cloud with valid points in the plane.

Results: Fig.4.20 shows the chair segmentation result by using the SAC segmentation func-
tion.

(a) Camera1 (b) Camera2

(c) Camera3 (d) Camera4

Figure 4.20: The plane model-based SAC segmentation results of chair. The red part is the
segmented plane, the blue part is the original point cloud.

Then, we extract the red part and input the segmented part into the ICP algorithm to calculate
the transformation matrix. Fig.4.21 shows the registration results of the segmented point
clouds.

Analysis: Table 4.2 shows the evaluation and comparison of ICP registration with differ-
ent input point clouds. From the table, we can conclude that for the chair point cloud, the
plane model-based SAC segmentation method effectively segments the point cloud and re-
duces the fitness score compared to the original point cloud. It improves the registration
accuracy and shortens the running time. Compared with the manual segmentation method,
the automatic segmentation has a shorter processing time and achieves comparable accurate
registration results.

68

4.4. PCL-Based Segmentation with Pipeline

(a) Camera2 (b) Camera3 (c) Camera4

Figure 4.21: ICP alignment results. The white point cloud is the target point cloud from
camera1, the red, green and blue ones represent the aligned point cloud from camera2,
camera3 and camera4.

Table 4.2: Registration evaluation and comparison of original point cloud, manual and au-
tomatic edited point cloud - Chair Point Cloud

Point Cloud
Processing

Time
Number of

iteration
Fitness Score

Source Camera2
Original 24782ms 40 1.112e-3

Automatic 11764ms 40 7.325e-5

Manual 10524ms 40 1.075e-4

Source Camera3
Original 46031ms 40 3.397e-3

Automatic 17501ms 40 2.386e-4

Manual 18192ms 40 1.791e-4

Source Camera4
Original 39096ms 40 5.687e-3

Automatic 11195ms 40 1.802e-4

Manual 15226ms 40 4.518e-4

Validate with other objects

In the following experiments, we validate the pipeline with various calibration objects.
Fig.4.22 shows the original lamp point clouds and Fig.4.41 shows the segmentation results
of the lamp by using the plane model-based SAC segmentation method.

From the segmentation results we can conclude that the plane model-based SAC segmenta-
tion method divides a transverse surface according to the lamp bracket. Due to the uncer-
tainty of the segmented plane angle, the plane segmented from different point clouds cannot
represent the same part. Therefore, the use of plane model-based SAC segmentation is not

69

4. EXPERIMENTS AND RESULTS

Figure 4.22: Captured lamp point cloud from (left to right) camera1, camera2, camera3 and
camera4

(a) Camera1 (b) Camera2

(c) Camera3 (d) Camera4

Figure 4.23: The plane model-based SAC segmentation results of the lamp. The red part is
the segmented plane, and the blue part is the original point cloud.

valid for the lamp object.

Fig.4.24 shows the original mug point clouds from four cameras. Fig.4.25 shows the seg-
mentation results of mug point cloud by using the plane model-based SAC segmentation
method. The mug point cloud contains two components: mug body and mug handle. Due
to the fact that the mug body is a rotation invariant uniform cylinder, the mug handle is more
useful in the registration process. Therefore, it is helpful if we can segment the handle part
and perform point cloud registration based on the handle. However, in this experiment, the

70

4.4. PCL-Based Segmentation with Pipeline

segmentation results of camera1 and camera2 only contain a portion of the mug body. The
segmentation results of camera3 and camera4 divide a portion of mug body and mug handle
as the segmented plane. For point clouds from camera1 and camera2, the algorithm treats a
portion of the mug as a plane and splits it out. For point clouds from camera3 and camera4,
the mug handle is connected with the mug body. Therefore, the segmented plane including
mug handle and mug body contains the maximum number of INLIERS points. Parts of the
segmented mug are represented in different point clouds. Therefore, the plane model-based
SAC segmentation is ineffective for the mug point cloud.

Figure 4.24: Captured mug point cloud from (left to right) camera1, camera2, camera3 and
camera4

(a) Camera1 (b) Camera2

(c) Camera3 (d) Camera4

Figure 4.25: The plane model-based SAC segmentation result of the mug point cloud. The
red part is the segmented plane, and the blue part is the original point cloud.

Cylinder Model-Based SAC segmentation

71

4. EXPERIMENTS AND RESULTS

Figure 4.26: Lamp segmentation result from cylinder model-based SAC segmentation.

The plan model-based SAC segmentation did not provide valid segmentation results for
lamp and mug point clouds. A cylinder form can be recognized in both the lamp point cloud
and the mug point cloud. Therefore, we use the cylinder model-based SAC segmentation
method to divide the lamp and the mug point clouds.

For cylinder segmentation, we use the SACMODEL CY LINDER as the SAC segmentation
model. The cylinder model has seven coefficients: (point on axis.x,
point on axis.y, point on axis.z,axis direction.x,axis direction.y,axis direction.z,
radius).

Lamp: Fig.4.26 shows the segmentation result of the lamp by using the cylinder model-
based SAC segmentation method. The blue part is the original point cloud, the red part is
the segmented plane point cloud, and the green part is the segmented cylinder point cloud.
The method incorrectly treats the lamp racket as a cylinder. This segmentation leads to non-
coincident segments in different point clouds. Therefore, the segmented point cloud cannot
be used as the input to the ICP algorithm.

Mug: Fig.4.27 shows the segmentation results of the mug by using the cylinder model-
based SAC segmentation method. In figures below, the blue part is the original point cloud,
and the green part is the rest points. We saved the green part by using the member func-
tion pcl :: ExtractIndices.setNegative(True). The cylinder segmentation will segment the
points within the cylinder and output INLIERS points, the true value in the above function
will extract indices in the point cloud except for the points within the cylinder.

4.4.2 Region Growing:

Settings: Fig.4.28 shows the flow of region growing segmentation by using the Point Cloud
Library. The filter used here is the VoxelFilter introduced in the Section 4.4.1. For nor-
mal estimation, PCL provides class pcl :: NormalEstimation and uses the least square
estimation[109] to calculate the surface normal.

The region growing segmentation contains the following steps:

72

4.4. PCL-Based Segmentation with Pipeline

Figure 4.27: The cylinder model-based SAC segmentation results of mug showing a frag-
mented result.

Figure 4.28: Flow of region growing segmentation method in PCL

• Sort points based on the normal and curvatures;

• Choose the points with lowest curvatures as seed;

• For seed and its neighborhood points, compare the angle between normal of seed and
its neighbor. If the angle difference is less than the smoothness threshold, save this
point into the next step;

• For angles less than the threshold, add the current neighborhood points to the cluster.

The class pcl :: RegionGrowing is used to cluster the point cloud based on normals and
curvatures. The implementation of region growing requires input of some initial parameters,
such as cluster size, neighbor number (number of neighbors to use), smoothness threshold
and curvature threshold.

After all clusters have been segmented, we build vectors for each cluster by using the func-
tion std :: Vector, then we use the function pcl :: RegionGrowing :: extract for cluster ex-
traction.

Fig.4.29 shows the region growing segmentation results by using the following parameters:

• RegionGrowing.setMinClusterSize(500);

73

4. EXPERIMENTS AND RESULTS

• RegionGrowing.setNumberO f Neighbours(300);

• RegionGrowing.setCurvatureT hreshold(1.0);

Figure 4.29: Region growing segmentation results of a chair, lamp and mug. Each row
from left to right is point clouds captured from camera1, camera2, camera3 and camera4.
Different color indicates different clusters.

The results in Fig.4.29 are all obtained by running the region growing segmentation under
the same parameters. However, for the same object, the number of clusters varies in different
point clouds. Table.4.3 shows the number of clusters of each point cloud.

Table 4.3: Number of clusters of object point clouds

camera1 camera2 camera3 camera4

Chair 1 1 1 3

Lamp 3 4 3 2

Mug 3 4 4 5

74

4.4. PCL-Based Segmentation with Pipeline

From Table 4.3 we learn that for the same object, region growing method causes splitting
in a different number of clusters. In our project, we need to find the common parts of
different point clouds based on these clusters, the different number of clusters means that
this segmentation method cannot segment object based on its components (parts), which
means that the common cover part of the point clouds from different cameras is hard to
determine. Therefore, this method is also ineffective in our project. Another limitation of
region growing segmentation is that it relies on multiple input parameters. Fig.4.30 shows
the segmentation results when use different parameters. Fig.4.30(a) shows the segmentation
result of the lamp by using parameters described before, Fig.4.30(b) shows the segmentation
result of the lamp by using the following parameters:

• RegionGrowing.setMinClusterSize(50);

• RegionGrowing.setNumberO f Neighbours(300);

• RegionGrowing.setCurvatureT hreshold(1.0);

(a) parameters 1 (b) parameters 2

Figure 4.30: Region growing segmentation results of lamp by using different initial param-
eters. Fig(a) has 2 clusters, Fig(b) has 8 clusters. The red part is the original point cloud.

Segmentation with settings as in (a) results in 2 clusters and segmentation with settings as in
(b) leads to 8 clusters. From Fig.4.30, we can conclude that in this case, the (a) result is more
suitable because too many clusters make it is unable to find a cluster that can completely
contain a part of the lamp. In case (b), we set smaller MinClusterSize, which means that
clusters with fewer points are still considered to be a cluster, leading to an increase in
the number of clusters. Also, the smaller NumberO f Neighbours leads to search within a
shorter distance, which also affects the number of clusters and their sizes. The T hreshold
also influences the number of clusters, because for a larger T hreshold, points on a distance
will be treated as similar points and be segmented into the same cluster. In Chapter 5 we
analyze the influence of initial parameters on the segmentation results in more details.

75

4. EXPERIMENTS AND RESULTS

In theory, the region growing segmentation algorithm is based on normal and curvature,
while the point cloud data obtained from the depth camera is noisy on depth, the curvature
changes and does not reflect the actual object surface and will confuse the algorithm.

In conclusion, region growing is not very useful; the first reason is that the region growing
segmentation produces different numbers of clusters for point cloud of the same object,
which is not conducive to the subsequent comparison and selection of point cloud clusters.
Secondly, the region growing algorithm relies on the input parameters. In practice, different
input parameters are required for diverse objects. If we want to achieve an ideal result,
manual operation is required, which does not meet the requirements of a real-time system.

76

4.5. PointNet++ with Pipeline

4.5 PointNet++ with Pipeline

In our next experiment, we validate the pipeline with a deep learning network. We test the
pipeline with different dataset. In this section, we will illustrate the experiment settings,
goals and presents the experimental results.

4.5.1 Validate with Chair Dataset

Goals: In the experiment of point cloud segmentation by using the Point Cloud Library in
Section.4.4, only the plane model-based SAC segmentation results of chair ware found to be
suitable to be used in our system. The point cloud segmentation using PCL has the following
limitations: first, the point cloud segmentation method using PCL is difficult to generalize to
other objects. In our experiment, of the three objects only fits the chair point cloud. Second,
objects with different shapes in the same category have different segmentation results. It is
uncertain that this method is valid for all objects in a category. Finally, the result of plane
model-based SAC segmentation is only based on the plane surface, not on the components
(parts) of the object. Therefore, it is not possible to select and compare the common parts
of the point cloud captured by different cameras.

Settings: In order to compare with the previous experimental results, in this experiment
we use the same set of point cloud data as in the previous experiments. The PointNet++
part segmentation is done in a pre-processing step. This experiment is conducted in the
following settings:

System: Ubuntu 16.04
GPU: NVIDIA GeForce GTX 1050 (notebook)
GPU driver: 396
Deep learning framework: Tensorflow with Cuda Toolkit 9.0 and cuDNN SDK 7.0
Python: version 2.7

In this experiment, we first selected and set the training set from ShapeNet[104] for model
training, which contains 4765 3D chairs with four labelled parts (back, seat, arm and leg).
Then, we test the trained model with the rest data from the same dataset.

The next step is to test the real data from the RealSense camera with the trained model. We
transfer the PLY file into PTS file and set the predicted parts with different colors: back (12,
242, 12), arm (242, 12, 242), seat (12, 12, 242) and leg (242, 12, 12), and then export the
predicted chair into PLY file and send it to a C++ program.

The volume calculation and part selection are done in C++. In order to compare the simi-
larity of multiple point clouds, we first calculated the cube diagonal of point cloud by using
their XYZ coordinates. The diagonal can represent the volume value of the point cloud.
The similar (selected) parts should meet the following conditions:

• The diagonal value of same part (color) from four cameras should have the minimum
Mean Square Error.

• The number of points in the selected parts point cloud should be higher than 200.

77

4. EXPERIMENTS AND RESULTS

The part with the smallest MSE value represents that parts acquired by different cameras
are the most similar parts in volume, and the limit of the number of points excludes the parts
with too few points. In practice, parts with smaller than 200 points are not enough to form
a complete part and cannot be used in point cloud registration. With these conditions, we
then select the most suitable part as the input point cloud data for the ICP registration step.

Results: Fig.4.31 shows the segmentation results by using PointNet++: the chair is seg-
mented into four parts: arm, back, seat and leg. Each part is labelled with different colors.
Based on the color information, we input this segmentation result into the part selection
process.

Figure 4.31: Output point cloud from PointNet++ network

In part selection step, we first use SegObject to segment point cloud based on the color
information, in this step, we get 16 point clouds from 4 cameras. The function Dcalculator
then calculates the cube diagonal of these point clouds. For each set of point clouds with
the same color, we use calMSE to compute the MSE value for each part, and the function
PartChoice will finally choose the part with the smallest MSE value. In this experiment, the
program automatically selects the chair back as the best part for point cloud registration.

The selected part will be processed in the ICP algorithm, Fig.4.32 shows the fusion visual-
ization results after point cloud registration. Due to the small number of points in the point
cloud, it is a little bit difficult to visually judge the degree of coincidence. In this case, we
mainly analyze the result based on the statistical metrics.

Analysis: The goal of this experiment is to replace the manual selection of the appropriate
part into the automatic selection. Therefore, we analyze and compare the experiment results
with results in section 4.3.

Table 4.4 shows the metrics comparison in all conditions. From the table we can conclude
that: deep learning requires the shortest processing time due to the small number of points
in the point cloud. In 3D real-time reconstruction, this feature will save processing time and
help to reduce the time delays. For fitness score, the deep learning method performs better
than the original point cloud and is less than the manual selection process. The reason

78

4.5. PointNet++ with Pipeline

Figure 4.32: Aligned point cloud (from four cameras) after 40 iterations.
The red point cloud comes from camera2, the green point cloud from camera3 and blue
point cloud from camera4

is that in the manual selection process, we select the most appropriate part based on our
human experience and judgment, and we manually select a complete and similar part from
all captured point clouds. However, in the deep learning process, the predicted segment
result is not as ”perfect” as the manual selection, so the convergence result is less than
manual selection. However, this method still improves the performance of the classical ICP
algorithm and avoids the drawback of falling into a local optimum. Compared with the SAC
segmentation method, the deep learning method shortens the processing time but achieves
worse registration accuracy. Due to the fact that the deep learning method contains 4765
items in the training data, the deep learning method can be extended to a variety type of
chairs. Also, the output of the deep learning method divides the chair into different parts
according to the components, which is more suitable for the comparison and selection of
the appropriate parts used for ICP registration.

4.5.2 Validate with other Datasets

In order to verify the effectiveness of the system, we use different calibration objects datasets
to train the deep learning network and segment the point cloud data. In this section we will
demonstrate and analyze the experimental results of different calibration objects.

Lamp

We validate the pipeline with the Lamp dataset in the ShapeNet. In this experiment, we input
original point clouds from four cameras to our pipeline. Fig.4.33 shows the registration
results.

Then, we train the PointNet++ with lamp dataset and segment the original point clouds by

79

4. EXPERIMENTS AND RESULTS

Table 4.4: Evaluation and comparison of registration based on the original point cloud,
manual selection, SAC segmentation and deep learning (DL) processed point cloud - Chair
Point Cloud

Point Cloud
Processing

Time
Number of

iteration
Fitness Score

Source Camera2

Original 24782ms 40 1.112e-3

SAC-based 11764ms 40 7.325e-5

DL-based 6939ms 40 1.875e-4

Manual 10524ms 40 1.075e-4

Source Camera3

Original 46031ms 40 3.397e-3

SAC-based 17501ms 40 2.386e-4

DL-based 4654ms 40 1.507e-4

Manual 18192ms 40 1.791e-4

Source Camera4

Original 39096ms 40 5.687e-3

SAC-based 11195ms 40 1.802e-4

DL-based 4885ms 40 1.167e-3

Manual 15226ms 40 4.518e-4

using the output trained model. Fig.4.34 shows the result of segmentation. The lamp is
divided into three parts: the lampshade part is blue, the lamp bracket is pink and the lamp
holder is labelled with green. The part selection program chose the lamp bracket as the most
suitable part for point registration and after 40 iterations. Fig.4.35 shows the aligned point
cloud of the segmented lamp.

Table 4.5 shows the statistical comparison between the original point cloud and the seg-
mented point cloud. Due to the incomplete input point cloud data, the point cloud seg-
mentation resulting from the deep learning network is not good enough. For example, the
selected part, in this case, is the lamp bracket, and the white point cloud in Fig.4.35 contains
both the lamp bracket and the lampshade.

Also, the original point clouds have obtained the ideal registration result, and there is no
interference part in the lamp object that makes the ICP algorithm fall into a local optimum.
We conclude that the feature-based point cloud registration pipeline does not improve the
accuracy much, but it shortens the processing time.

80

4.5. PointNet++ with Pipeline

Figure 4.33: Aligned lamp point cloud of four depth cameras 40 iterations.

Figure 4.34: The PointNet++ segmented point cloud of the lamp

81

4. EXPERIMENTS AND RESULTS

Figure 4.35: Aligned segmented lamp point cloud after 40 iterations

Table 4.5: Registration evaluation and comparison of registration of the lamp point clouds

Point Cloud Fitness Score
Number of
Iterations

Processing time

Original
source camera2 2.509e-4

40 14653ms
source camera3 2.403e-4

source camera4 2.500e-4

Automatic
source camera2 6.342e-4

40 4781ms
source camera3 3.602e-4

source camera4 2.800e-4

Mug

We also validate the PointNet++ with mug dataset. The original point cloud is shown in
Fig.4.36. For the mug, the training point cloud only contains two parts: mug body and mug
handle. Fig.4.37 shows the deep learning segmentation results of a mug.

For figure (a) from camera1, the mug body and mug handle are separated due to occlusion,
for figure (b) from camera2, the shape of the mug is destroyed due to the inconsistent point
cloud of the mug body. Due to the incomplete and occlusion problems, the deep learning
network was unable to segment the mug captured from the depth camera correctly.

82

4.5. PointNet++ with Pipeline

(a) Camera1 (b) Camera3

Figure 4.36: Original mug point clouds.

(a) Camera1 (b) Camera3

Figure 4.37: The PointNet++ segmented mug point cloud.

Earphone

In this experiment, we also validate the pipeline with earphones as a calibration object.
We capture point clouds of a person wearing an earphone and train the PointNet++ net-
work using the dataset of headphones. The original and segmented point clouds are shown
in Fig.4.38. The segmentation network cannot correctly segment the point cloud, so this
pipeline cannot divide the point cloud of human wearing earphones.

From Fig.4.38 we can conclude that the earphone part cannot be easily identified in the
original point cloud. Due to the unrecognizable shape of the point cloud of the human
head and earphone, the PointNet++ network is unable to segment this kind of point clouds
correctly.

83

4. EXPERIMENTS AND RESULTS

(a) Original Point Cloud (b) Segmented Point Cloud

Figure 4.38: The original and segmented point clouds of a person wearing a earphone

Figure 4.39: Flow of FPFH feature estimation and alignment

4.6 Feature-Based Coarse Registration with Pipeline

Goals: The typical camera calibration method requires additional calibration objects such as
checkerboard[128] or printed pattern[57]. The steps it involves are cumbersome and time-
consuming. In our pipeline, the coarse registration is a one-time operation, but if the camera
position changes, the initial transformation matrix needs to be recalculated. PCL provides a
series of feature extraction and alignment classes, which can be used to calculate the initial
transformation matrix. In this experiment, we test the result of FPFH feature extraction and
alignment functions and compare it with results of MATLAB toolkit calibration.

Settings: Fig.4.39 shows the work flow of FPFH feature extraction and alignment. Fast
Point Feature Histogram (FPFH) is extended from the Point Feature Histogram, which pro-
vides simplification and optimization for accelerating the calculation process as described
in 2.5.2. The input of FPFH is the point cloud with standard XY Z information. The output
is the histogram which can reflect the features of the points. We first use the FPFH to extract
features, calculate the histogram and build feature vectors for alignment, then we use the
Sample Consensus Initial Alignment to align features and calculate spatial correlation.

Voxel Filter: The filter used here is the voxel filter, which is introduced in Section.4.4.1.
The class used here is pcl :: VoxelGrid < pcl :: PointXY Z >.

Normal Vector Computation: The normal information is used here to measure the his-
togram component values. The region growing segmentation also computes normal vec-

84

4.6. Feature-Based Coarse Registration with Pipeline

tors for point sorting, which is introduced in Section.4.4.2. The class used here is pcl ::
NormalEstimation.

FPFH Feature Estimation: The feature histogram is calculated separately and then com-
bined into a feature vector. The FPFH feature estimation includes the following steps:

• Obtain the neighborhood elements of point p;

• Calculate the three angular values (α,ϕ,θ) of p and its neighbor k. These angular
values are calculated based on the difference of point normal;

• Output the statistical values to a SPFH histogram;

• Obtain the nearest neighborhood element of point p;

• Use the SPFH calculated from the third step and weigh it to get the final FPFH.

The above steps are fulfilled by using functions in class pcl :: FPFHEstimation < pcl ::
PointXY Z, pcl :: Normal, pcl :: FPFHSignature33 >. The feature vector is represented by
FPFHSignature33 point type.

Alignment: The alignment is based on the Sample Consensus Initial Alignment (SAC-IA)
algorithm[97]. This algorithm contains the following steps:

• Select sample points from a point cloud within a distance d;

• Select a list of points from another point cloud which is similar to this sample points’
histogram based on the FPFH features;

• Use Huber Penalty[61] metric to measure the transformation matrix between sample
points and its corresponding points. The transformation with the lowest metric value
is the output transformation matrix.

Results: Fig.4.40 shows the results of a lamp based registration by using the FPFH feature
extraction and alignment. The left one shows the original point clouds. The right one shows
the aligned point clouds, which demonstrates that the alignment method matches the target
point cloud and the source point cloud.

Fig.4.41 shows the registration results of a chair based registration by using the FPFH fea-
ture extraction and SAC-IA alignment. The left column represents the original spatial rela-
tionship of the target point cloud and source point cloud. The right column is the alignment
results. From Fig.4.41, we can conclude that this alignment method can only provide a
coarse registration result.

Analysis: We compare the performance of feature-based alignment with MATLAB cali-
bration toolkit method by evaluating the ICP registration performance. We use the initially
calculated transformation as the input of the ICP algorithm. For the same point cloud data,
we let the ICP program iterate for 40 times and compare the performance of processing time

85

4. EXPERIMENTS AND RESULTS

(a) Original (b) Aligned

Figure 4.40: The alignment result of the lamp by using FPFH feature extraction and SAC-IA
alignment.

and fitness score. In this experiment, we tested two datasets; one is the original chair point
cloud, another one is the deep learning network segmented point cloud. Table.4.6 shows the
statistical comparison of ICP algorithm performance when using a different initial transfor-
mation matrixes. The c represents the source camera that captures the point clouds.

From Table 4.6 we can conclude that in general these two methods have comparable per-
formance. The running time and fitness score of these two methods are similar. Regarding
to performance, these two methods behave similarly. For practical applications, MATLAB
toolkit calibration is complex and relies on handling a calibration checkerboard. This pro-
cess requires the manual acquisition of RGB images and manual corner detection. The
FPFH&SAC-IA method only needs to input the PLY files and does not require any addi-
tional calibration objects. Therefore, the FPFH&SAC-IA method is more suitable for use
in our pipeline.

86

4.6. Feature-Based Coarse Registration with Pipeline

(a) Camera2-Original (b) Camera2-Aligned

(c) Camera3-Original (d) Camera3-Aligned

(e) Camera4-Original (f) Camera4-Aligned

Figure 4.41: The alignment results of the chair by using FPFH feature extraction and SAC-
IA alignment: The left column is the original point clouds, the right column is the aligned
point clouds.

87

4. EXPERIMENTS AND RESULTS

Table 4.6: Evaluation and comparison of the ICP algorithm by using different initial trans-
formation matrixes on original and segmented Chair point cloud

Transformation
Matrix

Processing
Time

Number of
Iterations

Fitness Score

Original(c2)
MATLAB 24782ms 40 1.112e-3

FPFH&
SAC-IA

13294ms 40 1.159e-3

Original(c3)
MATLAB 46031ms 40 3.397e-3

FPFH&
SAC-IA

25094ms 40 3.332e-3

Original(c4)
MATLAB 39096ms 40 5.687e-3

FPFH&
SAC-IA

20959ms 40 3.811e-3

Segmented(c2)
MATLAB 6939ms 40 1.875e-4

FPFH&
SAC-IA

7733ms 40 4.411e-4

Segmented(c3)
MATLAB 4654ms 40 1.507e-4

FPFH&
SAC-IA

4663ms 40 1.409e-4

Segmented(c4)
MATLAB 4885ms 40 1.167e-3

FPFH&
SAC-IA

4861ms 40 5.764e-4

88

Chapter 5

Analysis

In Chapter 4, we introduced the goals and settings of the experiments conducted in this
thesis and showed the experimental results. In this chapter, we will analyze the experimen-
tal results and pipeline performance through qualitative analysis, quantitative analysis and,
comparison with the state-of-the-art.

In this thesis, we present a feature-based multi-camera calibration pipeline. The system
segments the relatively complete common part of the captured point clouds by point cloud
segmentation and part selection and uses the segmented part to perform point cloud registra-
tion, thereby making up for the defect that the ICP registration algorithm ignores the point
cloud 3D shape and falls into the local optimum error. In this chapter, we conduct a qualita-
tive analysis of the results of the segmentation and registration of each test object. For point
cloud registration, we use three metrics for quantitative analysis. Finally, we compare and
analyze the pipeline in this paper with the state-of-the-art.

5.1 Qualitative Analysis

In the qualitative analysis, we evaluate the performance of the point cloud segmentation and
registration visualization results based on subjective experience.

In the feature-based multi-camera calibration and point cloud registration pipeline, we used
different point cloud segmentation methods to divide the point cloud. The results of point
cloud segmentation have an impact on the subsequent feature-based point cloud alignment
results.

The point cloud segmentation methods used in this paper include manual segmentation,
SAC segmentation, region growing and PointNet++. In the quantitative analysis of the
point cloud segmentation results, the performance of the segmentation results is analyzed
by the completeness and accuracy. The completeness is used to measure whether the seg-
mentation result is complete and contains as many target points as possible. The accuracy
is used to measure whether the segmentation result contains incorrect segmentation parts,
segmentation results with points that are incorrectly divided will result in low accuracy.

In this project, we used a chair, lamp, mug and cap as a calibration object to validate the

89

5. ANALYSIS

pipeline. The point clouds captured from multiple depth cameras are in different camera
coordinate systems. The purpose of point cloud registration is to make the point cloud cap-
tured in the source camera align with the target point cloud through rotation and translation,
so that the point clouds in different coordinate systems can be transformed into the same
coordinate system. The transformation results provide camera pose estimation and tracking
information for the next 3D reconstruction step. The qualitative analysis of point cloud reg-
istration is based on the alignment visual results, the correctness of point cloud coincidence
is judged according to the 3D shape and structure of aligned point clouds.

In this section, for each object, we first qualitatively analyze the results of different segmen-
tation methods to evaluate the segmentation performance. Then, the qualitative analysis
of original point cloud registration and feature-based point cloud registration results is per-
formed.

5.1.1 Calibration Object - Chair

In the project, we use a chair as the calibration object. Chairs are common in daily life and
can be conveniently used as a calibration object, and the size of the chair is also suitable for
calibrating multiple cameras. The next aim of our project is to calibrate and track the camera
according to the human point cloud. The position of the camera needs to be suitable for
capturing the complete human 3D point cloud data. The oversized or too small calibration
object (such as a mug) will limit the camera position. In this section, we qualitatively
analyze the results of chair point cloud segmentation and registration.

Chair Point Cloud Segmentation

Fig.5.1 shows the segmentation results by using different segmentation methods including
SAC-based plane segmentation, region growing segmentation and PointNet part segmenta-
tion.

The red part in the plane model-based SAC segmentation results is the segmented plane.
The different color in region growing segmentation point cloud represents different clusters
(parts). For deep learning segmentation results, the green part is the chair back, the blue
part represents the chair seat, the purple part is the armrest, and the red part represents the
chair legs.

The manual segmentation is achieved by using MeshLab[23] to remove points outside the
chair back. This operation is based on the subjective experience and judgment of the ex-
perimenter; the manual segmentation result is treated as the best result of segmentation in
qualitative analysis.

In order to realize automatic point cloud segmentation, we segmented the chair using the
functions provided by the Point Cloud Library (PCL). The 3D geometry structure of target
chair back part is a plane, the SAC plane segmentation function provides a model for seg-
menting a plane in a given point cloud. Therefore, we used the plane model-based SAC
segmentation to subdivide the chair point cloud. This algorithm extracts a set of point
clouds that satisfies the plane model constraints and contains the largest number of points
as the segmented plane. In the experiment, we obtain segmentation results shown in Fig.5.2

90

5.1. Qualitative Analysis

(a) Original-target (b) Manual-target (c) SAC-target (d) RG-target (e) DL-target

(f) Original-source2 (g) Manual-source2 (h) SAC-source2 (i) RG-source2 (j) DL-source2

(k) Original-source3 (l) Manual-source3 (m) SAC-source3 (n) RG-source3 (o) DL-source3

(p) Original-source4 (q) Manual-source4 (r) SAC-source4 (s) RG-source4 (t) DL-source4

Figure 5.1: Chair Point Cloud Segmentation Results. From the top to the bottom are point
clouds from target camera1, source camera2, source camera3 and source camera4. From
left to right of each line are the original point cloud, manual segmentation, SAC segmenta-
tion, region growth and PointNet++ segmentation results.

by inputting different DistanceT hreshold parameters.

The SAC segmentation method iteratively calculates a set of INLIERS (valid) points from
the input point cloud (observation points) as the segmented part, which satisfies the param-
eter constraints of the specified model (in this case the model is a plane). In the experiment,
we set different thresholds t by using function setDistanceT hreshold(), the rest of the pa-
rameters are the same. Furthermore, DistanceT hreshold represents the threshold of the
distance between the observation point and the model, and distance represents the value of
the dot product between the observation point vector and the plane normal vector. When the

91

5. ANALYSIS

(a) Target (t=0.01) (b) Source2 (t=0.01) (c) Source3 (t=0.01) (d) Source4 (t=0.01)

(e) Target (t=0.04) (f) Source2 (t=0.04) (g) Source3 (t=0.04) (h) Source4 (t=0.04)

(i) Target (t=0.1) (j) Source2 (t=0.1) (k) Source3 (t=0.1) (l) Source4 (t=0.1)

Figure 5.2: Segmentation results of chair when t = 0.01, 0.04 and 0.1. The parameter t
represents the DistanceT hreshold. Target and Source represents different capture cameras.
The blue point cloud is the original input, and the red part is the segmented point cloud.

distance is greater than this threshold, the observation point is not within the target model.
As can be seen from Fig.5.2, when the threshold is too small (t = 0.01), the plane segmenta-
tion result contains only parts of the chair back, and the segmentation results are incomplete.
When the threshold is too large (t = 0.1), the incorrect points with larger distance from the
model is judged as being part of the back of the chair, which cause wrong segmentation
results in (k) and (l). When t = 0.04, the algorithm achieves the best segmentation result,
the 3D shape of the chair back is complete, and the segmented part does not contain non-
backrest points.

However, the SAC segmentation method has limitations. The SAC segmentation can only
make a subdivision based on a specified model, such as the plane used in this experiment,
and cannot segment the chair according to its component structure. In our pipeline, we
manually select the back of the chair by first determining which part of the chair is the
most complete and common part of different cameras, then we divide the chosen part out
and enter it into the registration step. In order to automation the above operation, the auto-
segmentation also requires the following steps: first, the point cloud is segmented according

92

5.1. Qualitative Analysis

to the component composition of the object, and then the most suitable portion is compared
and selected based on the volume (or other criteria) of the segmented parts. The SAC
segmentation method cannot divide the point cloud into different parts, which does not
fully meet the requirements of automatic point cloud segmentation and part selection.

In order to automatically segment the point cloud into different parts, we use the normal-
based region growing algorithm for point cloud segmentation. In the experiment, we set
the same input parameters for point clouds captured by different cameras. From the seg-
mentation results in the fourth column of Fig.5.1, we can conclude that under the same
initial parameters and experimental conditions, different input point clouds obtained differ-
ent numbers of segmentation clusters. For the target point cloud and source2, the algorithm
completely separates the chair back. For source3, the algorithm assigns the chair back and
chair seat into the same cluster. For source4, the algorithm segmented the point cloud into
two clusters. The region growing segmentation results of the chair have high completeness
and low accuracy. This method completely segments the seat back in all cases, but for
source3, due to the depth information and capture angles of the point cloud, the method
incorrectly divides the seat into the back cluster, which leads to the low accuracy.

In conclusion, the segmentation results of the region growing algorithm are not accurate,
and different numbers of clusters are obtained under the same initial conditions (see Sec-
tion4.4.2). In our pipeline, the next step of segmentation is the part selection. Since seg-
mentation leads to different numbers of clusters for various point clouds, these clusters
have no features or labels that can be compared with each other. For example, in this exper-
iment, based on the segmentation results we cannot judge which one of these two clusters of
source4 belong to the chair back. If there is no human intervention, we also can not confirm
whether the cluster in target, source2 and source3 is the chair back. Therefore, the region
growing algorithm is not fit for our pipeline.

In the next step, we use PointNet++ to segment the chair in a more intelligent way. The
experimental results show that the PointNet++ can divide the chair according to its compo-
nents: back, seat, armrest, and leg. In the experiment, we assign different parts to different
color values as labels and select a specific part based on the color values; then we select
the most appropriate part for the point cloud registration by comparing the volume of the
selected part. The two requirements for automatic segmentation and part selection are: seg-
menting point clouds by component composition; automatically selecting specific parts and
comparing the volume of the point cloud. The PointNet++ segmentation method can meet
these two requirements. Therefore, this method is suitable for our pipeline. From the ex-
perimental segmentation results, we can conclude that the PointNet++ can roughly divide
the point cloud, but there are still large errors in the results. The point cloud segmentation
in different parts is not complete and there are many incorrect classification points, so the
completeness and accuracy of PointNet++ segmentation result are low.

Chiar Point Cloud Registration

After the point cloud segmentation step, we use the segmentation results as the input of point
cloud registration. Next, we will qualitatively analyze the alignment results of different
point clouds.

93

5. ANALYSIS

Fig.5.3 shows the point cloud registration results comparison of original point cloud, manual
segmentation, SAC segmentation and PointNet++ segmentation point cloud.

(a) Original-source2 (b) Manual-source2 (c) SAC-source2 (d) PointNet-source2

(e) Original-source3 (f) Manual-source3 (g) SAC-source3 (h) PointNet-source3

(i) Original-source4 (j) Manual-source4 (k) SAC-source4 (l) PointNet-source4

Figure 5.3: Chair Point Cloud Registration Results. The white point clouds represent the
target ones, the red point clouds represent the point clouds captured from source camera2,
the green points represents source camera3 and the blue ones represent source camera4.
From left to right of each row shows the registration results by using the original point cloud,
manual segmentation, SAC segmentation and PointNet++ segmentation point clouds.

From Fig.5.3 we can conclude that for the original point cloud, the alignment results have
significant errors. The point clouds in each set of registration results are not correctly
matched. The cause of this error is due to the incompleteness of the captured point cloud.
Taking the point cloud from source camera3 (the second row) as an example, the seat edge
of the source3 point cloud is trying to coincide with the armrest of the target point cloud, so
that the ICP algorithm falls into this local optimum and results in large errors in overall reg-
istration results. The alignment result errors of the other two sets are also due to interference
from the armrest or the edge of the seat.

For this problem, we propose the following solution: select a part of the point cloud which is

94

5.1. Qualitative Analysis

complete and be covered by both target and source cameras as the point cloud to be aligned,
thereby removing the errors caused by the incomplete point cloud. In this experiment, the
armrest that causes the error and the incomplete parts (the seat of the chair and chair legs) are
removed, only the back part of the chair is retained as a f eature for point cloud registration.
From the experimental visualization results, it can be observed that each source point cloud
is correctly aligned to the target point cloud.

According to the 3D shape and contour of the chair registration in Fig.5.3, We can conclude
that the accuracy of point cloud registration using the SAC segmentation is much better
when compared to the original point cloud alignment. The segmented chair back point
cloud obtained by using the PointNet++ is selected as the most suitable part for registration
based on the calculation and comparison of the point cloud volume. However, the chair back
part obtained by the deep learning network is more incomplete than the SAC segmentation
results, from the figure we can hardly recognize the 3D shape and coincidence degree of the
back point cloud. Therefore, qualitative analysis can not be used to determine the accuracy
of point cloud registration, the quantitative analysis is required to evaluate the point cloud
registration accuracy.

In summary, the feature-based point cloud registration has a better performance in quali-
tative analysis than the original point cloud registration. After removing the armrest and
the seat edge, the ICP algorithm avoids the errors that fall into local optimum and ignore
globally 3D information.

5.1.2 Calibration Object - Lamp

In the project, we use the lamp as the calibration object. Although the size of the lamp is
appropriate, it needs to be placed on a table or other object to reach a suitable height. In
this section, we will analyze the segmentation and registration results when using a lamp as
a calibration object.

Lamp Point Cloud Segmentation

Fig.5.4 shows the segmentation results of the lamp by using different segmentation methods.
The lamp tested in the experiment consisted of three parts: a lampshade, a bracket, and a
lamp holder. The lampshade is a hemisphere, the bracket is a combination of several cuboid
sticks, and the lamp holder is a cylinder. Because the lampshade and the lamp holder are
objects of uniform shape, the shape characteristics at different angles are the same, and
the determined position information and features cannot be provided in the point cloud
registration process. Therefore, these parts are not suitable for use in the ICP registration
program. The 3D shape of the bracket in the lamp vary at different angles and these can
be used to characterize the spatial orientation. Therefore, in the manual segmentation step,
we made a subdivision based on the bracket as the ideal feature and use the bracket part for
point cloud registration.

Similar to the chair, in the SAC segmentation of the lamp, we test the effect of different
DistanceT hreshold parameter values on the segmentation results. From the test results
shown in Fig.5.5, we can see that the larger the threshold, the more points are included in

95

5. ANALYSIS

(a) Original-target (b) Manual-target (c) SAC-target (d) RG-target (e) PointNet-target

(f) Original-source2 (g) Manual-source2 (h) SAC-source2 (i) RG-source2 (j) PointNet-source2

(k) Original-source3 (l) Manual-source3 (m) SAC-source3 (n) RG-source3 (o) PointNet-
source3

(p) Original-source4 (q) Manual-source4 (r) SAC-source4 (s) RG-source4 (t) PointNet-source4

Figure 5.4: Lamp Point Cloud Segmentation Results. The point clouds in each column
from left to right are original, manual segmentation, plane model-based SAC segmentation,
region growing, and PointNet++ segmentation results.

the segmentation result. The reason is that a large threshold causes a point with a large
distance from the model to be judged as INLIERS and is included in the valid point set so
that the red point cloud is large in volume and the number of points included is increased.

When t = 0.01, the SAC plane segmentation method extracts the cross-sectional plane of
the bracket from the lamp. In the point cloud segmentation results of four different cameras,
the cross-sectional plane does not include the complete bracket, but only part of the bracket,
which represents different sections and angles from the four point clouds. When the thresh-
old increases, the SAC method did not correctly separate the bracket from the lamp, and the
red point cloud contains many non-bracket parts. Therefore, the SAC segmentation results

96

5.1. Qualitative Analysis

(a) Target (t=0.01) (b) Source2 (t=0.01) (c) Source3 (t=0.01) (d) Source4 (t=0.01)

(e) Target (t=0.04) (f) Source2 (t=0.04) (g) Source3 (t=0.04) (h) Source4 (t=0.04)

(i) Target (t=0.1) (j) Source2 (t=0.1) (k) Source3 (t=0.1) (l) Source4 (t=0.1)

Figure 5.5: Segmentation results of lamp when t = 0.01, 0.04 and 0.1. Parameter t represents
the DistanceT hreshold. Target and Source represent different capture cameras. The blue
point cloud is the original input, and the red part is the segmented point cloud.

cannot be used in the point cloud alignment step.

The SAC segmentation algorithm provides different segmentation models. The lamp con-
sists of a cuboid, cylinder, and hemisphere. Based on its components, we use the cylinder
segmentation model to subdivide the lamp point cloud. Fig.5.6 shows the segmentation
results of the lamp by using a cylinder model-based SAC segmentation. The blue part in
the figure is the original point cloud, the red part is the segmented plane, and the green part
is the segmented cylinder. The results show that for the same object lamp, this algorithm
divides the lampshade as the cylinder in source2 and source4 point clouds and divides the
part of the bracket as the cylinder in target and source3 point clouds. Therefore, the seg-
mentation results of the lamp are inconsistent, and thus this model cannot correctly segment
the lamp point cloud.

The fourth column in Fig.5.5 shows the region growing segmentation results of the lamp.
These figures show that the region growing segmentation method did not successfully seg-
ment the bracket part, and different input point clouds will be segmented into different num-
bers of clusters. Therefore, this method cannot provide effective results for subsequent part

97

5. ANALYSIS

(a) Target (b) Source2 (c) Source3 (d) Source4

Figure 5.6: SAC-based Cylinder Model Segmentation results of the Lamp

comparison and selection. Moreover, the region growing approach is dependent on the input
parameters. Based on the normal and curvature of the point cloud surface, region growing
segmentation method combines the points satisfying the smooth constraint (see below) into
one cluster and divides the input point cloud into different parts. There are several parame-
ters in this method that affect the segmentation result. Fig.5.7 shows the effect of different
parameters on the segmentation results. The parameters tested in the experiment include:
MinClusterSize(p1), CurvatureT hreshold(p2) and SmoothnessT hreshold(p3). The results
in (a) are tested under the following parameters:

• MinClusterSize(p1) = 50;

• CurvatureT hreshold(p2) = 1.0;

• SmoothnessT hreshold(p3) = π/60;

In the rest of the images, we change the value of one parameter, the other two parameters
remain the same. The caption of each image represents the value of the changed parameter.

MinClusterSize is the minimum size of each cluster. This term limits the minimum number
of points included in each cluster. Case (b) increases the value of the MinClusterSize com-
pared to (a), which means that the number of points contained in each cluster increases, and
the clusters with less than 500 points in case (a) are discarded in (b). Therefore, the number
of clusters of the case (b) is reduced as compared with (a).

CurvatureT hreshold sets the curvature difference threshold of the points within the same
cluster. If the curvature difference between the two points is less than the threshold, these
two points belong to the same cluster. From cases (d) to (f), the threshold of curvature
gradually decreases, which means that only points with smaller curvature differences can
be included in the same cluster. Compared with case (d), the number of points included in
each cluster in case (e) is decreasing because the conditions of curvature are more strict, and
points with bigger curvature differences are discarded. The number of clusters in case (f) is
reduced because the curvature threshold is decreased, and some points having big curvature
differences do not satisfy the curvature condition to form a cluster.

98

5.1. Qualitative Analysis

(a) Initial; cluster=7 (b) p1=500; cluster=2 (c) p3=π/6; cluster=2

(d) p2=0.1; cluster=7 (e) p2=0.01; cluster=7 (f) p2=0.005; cluster=4

Figure 5.7: Region growing segmentation results of lamp by using different values of pa-
rameters. The parameter p1 represents MinClusterSize, p2 represents CurvatureT hreshold,
p3 represents SmoothnessT hreshold, cluster represents the number of clusters in point
cloud.

SmoothnessT hreshold sets the maximum value of the normal angle difference between two
points within the same cluster. Compared with case (a), the SmoothnessThreshold in case
(c) becomes larger, which means that some points in case (a) are segmented into different
clusters because the normal angles differ significantly. In case (c), with the larger threshold,
the cluster expands and adds new points. Therefore, the number of clusters in case (c) is
reduced, the number of points within the same cluster is increased, and the difference in the
normal angle between the points within the same cluster becomes larger.

Based on the above analysis, we can conclude that the region growing method relies on ini-
tial parameters. In practice, different point clouds and objects require various parameters to
achieve ideal segmentation, which is a complicated and time-consuming operation process.
Therefore, this method cannot be used in our project.

The PointNet++ method divide the lamp point cloud into three parts: the blue part is the
lampshade, the pink part is the lamp bracket, and the green part is the lamp holder. For each
point cloud shown in the figure, the completeness and accuracy of the segmentation results
compared to manual segmentation are not good. Each part is labelled with a color value,
which is useful in the part selection and ICP registration step.

Lamp Point Cloud Registration

Fig.5.8 shows the point cloud registration results of the original point cloud, manual seg-
mentation and PointNet++ segmentation point cloud. From the figure we can conclude that

99

5. ANALYSIS

for the lamp point cloud, the original point cloud has a good alignment result, the point
clouds in the original three sets of registration results can be ideally matched. Unlike the
chair object, due to the incomplete handle point clouds, the registration result of a chair
has significant errors. The captured lamp point cloud does not contain symmetrical parts
like the armrest and the edge of a chair seat and the lamp point clouds are relatively com-
plete. Therefore, we cannot compare matching results based on qualitative analysis, the
quantitative analysis is needed for evaluation.

(a) Original-source2 (b) Manual-source2 (c) PointNet-source2

(d) Original-source3 (e) Manual-source3 (f) PointNet-source3

(g) Original-source4 (h) Manual-source4 (i) PointNet-source4

Figure 5.8: Lamp Point Cloud registration Results. The white point clouds represent the
target ones, the red point clouds represent the point clouds captured from source camera2,
the green represents source camera3 and the blue ones represent source camera4. From left
to right of each row shows the registration results by using the original point cloud, manual
segmentation and PointNet++ segmentation point clouds.

100

5.1. Qualitative Analysis

5.1.3 Calibration Object - Mug

In this project, we also validate the pipeline with a mug as a calibration object. In general, a
mug consists of two parts: mug body and mug handle. The handle is an irregular shape and
the body is a uniform rotation invariant cylinder. In practice, depending on the placement
of the mug, the composition of the captured point cloud can be divided into two cases. The
first is that all cameras can capture the mug body and the mug handle, in which case the
point cloud can be aligned based on the handle, Another case is that there is one camera
that can only capture the mug body, and due to its rotation invariance the uniform cylinder
cannot provide spatial information. Therefore, in the point cloud registration process, the
mug handle can provide valuable spatial information and 3D space features. In the manual
segmentation, we divide the mug handle as the target segmented part. Fig.5.9 shows the
segmentation results of the mug by using various segmentation methods.

From the SAC segmentation results, we can see that the algorithm recognizes a plane (red
part) in the mug body. The red part is a part of mug body or combination of mug body and
handle, so the segmentation results are invalid.

According to the 3D shape of the mug, we use the cylinder model-based SAC segmentation
method to segment the mug point cloud. Fig.5.10 shows the segmentation results under dif-
ferent DistanceT hreshold. The blue part in figures is the segmented cylinder, and the green
point cloud is the rest. DistanceT hreshold is the angular distance between the point normal
and the dir vector, dir is the point projection on the cylinder axis. The larger threshold
value represents that points with a large distance are also assigned to be part of a cylinder.
Compared with case (e), more points in the case (m) are assigned to a cylinder. However,
for case (o) and (p), because the threshold is set too large, the algorithm incorrectly divides
the point cloud of the handle portion into the cylinder model. Although the algorithm ef-
fectively splits the mug handle in some cases, the algorithm is not valid for all inputs due to
occlusion and noise problems.

In addition to the DistanceT hreshold, we also test the effect of different cylindrical radius
RadiusLimits on the segmentation results. RadiusLimits sets the radius of the cylinder
model. When the radius is reduced like in case (c) and (f), the radius of the segmented
cylinder is too small to cover the body of the mug, so the algorithm fails. Therefore, if we
want to get a valid segmentation result, the radius should not be too small.

The region growing segmentation method divides most of the mug handle into the same
cluster in target, source2 and source3 point clouds; but for source4, the handle of the mug
contains 3 clusters, so this algorithm is ineffective for the mug object. Moreover, different
point clouds are subdivided into a different number of parts, and these parts are not marked.
We cannot find the part representing the handle from these point clouds, so we conclude
that this algorithm cannot be applied in our pipeline.

The PointNet++ method did not subdivide the mug into two parts, the output point cloud
contains only one cluster. For target and source3 the handle is separated from the mug body,
the mug body point clouds in source2 and source4 are discontinuous and the complete mug
shape is not included in all captured point clouds, we conclude that the algorithm fails for

101

5. ANALYSIS

(a) Original-target (b) Manual-target (c) SAC-target (d) RG-target (e) PointNet-target

(f) Original-source2 (g) Manual-source2 (h) SAC-source2 (i) RG-source2 (j) PointNet-source2

(k) Original-source3 (l) Manual-source3 (m) SAC-source3 (n) RG-source3 (o) PointNet-
source3

(p) Original-source4 (q) Manual-source4 (r) SAC-source4 (s) RG-source4 (t) PointNet-source4

Figure 5.9: Mug Point Cloud Segmentation Results. The point clouds in each column
from left to right are original, manual segmentation, plane model-based SAC segmentation,
region growing, and PointNet++ segmentation results.

the mug object.

102

5.1. Qualitative Analysis

(a) Target (t=0.05) (b) Source2 (t=0.05) (c) Source3 (t=0.05) (d) Source4 (t=0.05)

(e) Target (t=0.05) (f) Source2 (t=0.05) (g) Source3 (t=0.05) (h) Source4 (t=0.05)

(i) Target (t=0.1) (j) Source2 (t=0.1) (k) Source3 (t=0.1) (l) Source4 (t=0.1)

(m) Target (t=0.1) (n) Source2 (t=0.1) (o) Source3 (t=0.1) (p) Source4 (t=0.1)

Figure 5.10: SAC segmentation results of mug when t = 0.05 and 0.1. The parameter t
represents the DistanceT hreshold. Target and Source represent different capture cameras.
The blue point cloud is the segmented cylinder points, and the green part contains other
points.

5.1.4 Calibration Object - Earphone

The point cloud data we will capture and reconstruct is human body data. In this experiment,
we test with an object in the dataset and combine it with the human body for point cloud
registration. Fig.5.12 shows a point cloud with a person wearing headphone. From this
angle, only one side of the earphone can be observed, and the headphone in the figure is
not easy to recognize, the PointNet++ network cannot divide the earphone. Therefore, our

103

5. ANALYSIS

(a) Target (r=(0,0.5)) (b) Target (r=(0,0.05)) (c) Target (r=(0,0.005))

(d) Source3 (r=(0,0.5)) (e) Source3 (r=(0,0.05)) (f) Source3 (r=(0,0.005))

Figure 5.11: SAC cylinder model segmentation results of a mug by using different values
of RadiusLimits parameter. Target and Source represents different capture cameras.

approach fails in this situation.

Figure 5.12: The original point cloud of a person wearing a earphone

5.1.5 Analysis of PointNet++ segmentation results

From the previous results, we can conclude that the PointNet++ network effectively subdi-
vides the chair and the lamp. It reaches relatively good results but the accuracy and com-
pleteness of the segmentation result are not sufficiently good in some cases. For instance,
for the human body wearing an earphone and the mug object, the PointNet++ network can-
not successfully segment the object.

In the experiments, we use the complete, clean and labelled 3D point cloud models in
ShapeNetCore[104] to train the model, and use the incomplete and noise-containing point

104

5.1. Qualitative Analysis

cloud captured by the camera as the testing data. The different data distribution and insuffi-
cient training dataset are the reasons why the PointNet++ is not effective enough. Fig.5.13
shows the segmentation results by using point clouds in ShapeNeteCore and point clouds
captured by the camera.

(a) Chair-Camera (b) Chair-Camera (c) Chair-GT (d) Chair-Segmented

(e) Lamp-Camera (f) Lamp-Camera (g) Lamp-GT (h) Lamp-Segmented

(i) Mug-Camera (j) Mug-Camera (k) Mug-GT (l) Mug-Segmented

(m) Earphone-Camera (n) Earphone-Camera (o) Earphone-GT (p) Earphone-Segmented

Figure 5.13: PointNet++ segmentation results by using different testing data. The first
column is the original point cloud captured by the camera, and the second column is the
segmentation result of the camera captured point cloud. The third column is the ground
truth (GT) of the complete 3D model, and the fourth column is the segmentation result of
the 3D model.

The segmentation results shown in Fig.5.13 indicate that PointNet++ fails for some objects

105

5. ANALYSIS

captured by the RealSense cameras. For the test data in ShapeNetCore, PointNet++ effec-
tively subdivides all point clouds. Therefore, in our project, the limitations of PointNet++
are due to the different data distribution of the training and the testing sets and the insuffi-
cient diversity of the training sets.

• Data distribution: The data distribution of the example used in the training and
the sample used in the testing is inconsistent, which leads to the problem of domain
adaptation[29][63]. Due to the limitation of training data, We train the model in a
specific source domain, but we need to deploy our model to one or several different
target domains. The segmentation model which used complete clean point cloud as
training data cannot be ideally adapted to segment the incomplete, noisy point clouds.

• Insufficient training data: Since the captured point cloud is affected by noise and
incompleteness, the surface of the point cloud is not smooth, but the training point
clouds are clean 3D models. Therefore, the training data used in this project is in-
sufficient. This limitation can be enhanced by adding noise and sampling (leading to
incompleteness) in the training point clouds through data augmentation[27].

106

5.2. Quantitative Analysis

5.2 Quantitative Analysis

In the quantitative analysis, we used three metrics to evaluate the results of point cloud
registration, including processing time, number of iterations and fitness score.

Real-time performance is an essential feature in dynamic 3D reconstruction system. The
multi-camera registration pipeline in this paper provides camera position information for
real-time 3D reconstruction, and the processing time is an important metric. The camera
calibration provides important registration information for the accuracy of subsequent 3D
reconstructions. Therefore, accuracy is an important indicator of pipeline performance.
The ICP algorithm iteratively calculates and matches the point cloud, and the number of
iterations affects the running time and accuracy.

• Processing time: This value records the duration of the point cloud registration. For
the alignment of the original point clouds, this value includes the running time of the
ICP algorithm for a certain number of iterations. For point cloud registration based
on SAC segmentation, the processing time includes SAC point cloud segmentation
and ICP algorithm run-time. For the deep learning based point cloud registration
method, the processing time includes point cloud segmentation, part selection and
ICP algorithm running time.

• Fitness score: This value determines the point cloud registration accuracy by calcu-
lating the sum of the squared Euclidean distance[5] of the target point cloud and the
aligned source point cloud. A smaller fitness value represents a higher registration
accuracy. This fitness score is obtained by using the getFitnessScore function in the
Point Cloud Library.

• Number of iterations: This value is the number of iterations of the ICP algorithm.
The ICP algorithm iteratively aligns point clouds until convergence. In order to com-
pare the performance of different methods in our experiments, we set the same num-
ber of iterations in our experiments to be able to compare the processing time and
fitness score of different methods.

5.2.1 Calibration Object - Chair

Table5.1 shows the quantitative evaluation and comparison of the original chair point cloud,
manually segmentation, SAC segmentation and PointNet++ segmentation point cloud reg-
istration.

Fig.5.14 shows the polyline chart of processing time and fitness score. From the table and
figures, we can observe: the similar to the conclusion of the qualitative analysis, the re-
sult of manual segmentation and the selection of the chair back for point cloud registration
shows the highest accuracy. Compared with other methods, manual segmentation achieves
a smaller fitness score with the same number of iterations, which means that manual seg-
mentation can achieve the most accurate registration results. This result proves that the
feature-based point cloud registration can effectively improve the accuracy of the alignment

107

5. ANALYSIS

Table 5.1: Quantitative evaluation and comparison of different point cloud registration re-
sults - Chair Point Cloud (DL represents deep learning network PointNet++)

Point Cloud
Processing

Time
Number of
iterations

Fitness Score

Source Camera2

Original 24782ms 40 1.112e-3

SAC-based 11764ms 40 7.325e-5

DL-based 6939ms 40 1.875e-4

Manually 10524ms 40 1.075e-4

Source Camera3

Original 46031ms 40 3.397e-3

SAC-based 17501ms 40 2.386e-4

DL-based 4654ms 40 1.507e-4

Manually 18192ms 40 1.791e-4

Source Camera4

Original 39096ms 40 5.687e-3

SAC-based 11195ms 40 1.802e-4

DL-based 4885ms 40 1.167e-3

Manually 15226ms 40 4.518e-4

results. However, the manual segmentation method requires a long running time and hu-
man intervention, which cannot be applied in a real-time camera pose estimation and 3D
reconstruction system.

For the automatic point cloud segmentation and registration pipelines, having the same
number of iterations, the point cloud part segmented by the SAC segmentation method has
better performance in accuracy than PointNet++, In summary, the automatic segmentation
method has higher accuracy than the original point cloud, and it requires less processing
time having the same number of iterations of the ICP algorithm. It demonstrates that the
above methods can effectively improve the accuracy of point cloud registration. Among the
four mentioned methods, the deep learning method has the shortest running time. Compared
to the original point cloud, the PointNet++ segmented point cloud reduces the processing
time by four-fifths during the point cloud registration process.

For the same number of iterations, the processing time depends on the number of points in
the point cloud. Point cloud segmentation and filtering can reduce the number of points.
In the experiment, the feature-based point cloud registration method reduces the number of
points by doing the alignment based on the chair’s back only. In all the methods mentioned
earlier, we use filters to reduce the number of points. Among them, the PointNet++ method
performs down sampling twice which results in the lowest number of points for alignment,

108

5.2. Quantitative Analysis

(a) Processing Time

(b) Fitness Score

Figure 5.14: Polyline Chart of Processing Time and Fitness Score - Chair Point Clouds

so the processing time is the shortest.

The fitness score is determined by the Euclidean distance difference between the aligned
point clouds. Compared with the original point cloud, the feature-based point cloud reg-
istration method improves the accuracy, because the point cloud segmentation process re-
moves the part of the chair that makes the ICP algorithm ignore the global 3D shape and
fall into the local optimum.

In conclusion, feature-based point cloud registration and camera calibration improve the
accuracy of alignment and shorten the processing time compared to the original process. In
the experiment by using the chair’s back to calibrate the cameras, the deep learning pipeline
requires the shortest running time and gets a better accuracy than the original pipeline.

109

5. ANALYSIS

However, deep learning algorithms are limited in producing the best matching object com-
ponents. It is not able to completely and correctly segment the point cloud for the incom-
plete captured point cloud. The data distribution and insufficient training data discussed in
Section 5.1.5 is the reason why the accuracy of the deep learning algorithm is lower than
the ideal situation.

5.2.2 Calibration Object - Lamp

Table 5.2 shows the quantitative evaluation of the original lamp point cloud, manual seg-
mentation point cloud and PointNet++ segmentation point cloud registration results.

Table 5.2: Quantitative evaluation and comparison of different point cloud registration re-
sults - Lamp Point Cloud(DL represents deep learning network PointNet++)

Point Cloud
Processing

Time
Number of

iteration
Fitness Score

Source Camera2
Original 4272ms 40 2.509e-4

Automatic 1567ms 40 6.342e-4

Manually 1703ms 40 2.288e-4

Source Camera3
Original 5484ms 40 2.403e-4

Automatic 1577ms 40 3.602e-4

Manually 2120ms 40 6.859e-5

Source Camera4
Original 4897ms 40 2.500e-4

Automatic 1637ms 40 2.800e-4

Manually 2430ms 40 1.165e-4

Fig.5.15 shows the processing time and fitness score of point cloud registration for different
input point clouds. For the lamp, the original point clouds based method has good accuracy,
and the manual feature-based method improves the registration accuracy somewhat further.
All metrics are compared based on the same number of iterations. The processing time
shown is the total time, so the ICP(Auto) time includes part selection and ICP running time,
and the ICP&DL includes the PointNet++ segmentation running time and ICP algorithm
running time. If we only count the processing time of the ICP algorithm, the required time
for the automatically segmented point cloud is the shortest of all methods. If we add the
running time of the PointNet++ segmentation process, the time for automatic segmentation
and registration are still shorter than the time needed for the original point cloud registra-
tion. Compared with the original point cloud, the automatic segmentation and registration
method shortens the processing time (see Section 5.2.1), but the automatic segmentation and
registration method did not improve the performance in accuracy. In conclusion, feature-

110

5.2. Quantitative Analysis

(a) Processing Time

(b) Fitness Score

Figure 5.15: Polyline Chart of Processing Time and Fitness Score - Lamp Point Clouds

based registration improves the registration accuracy and shortens the processing time. In
our experiment, the automatic segmentation method did not obtain the ideal segmentation
results can be obtained by manual segmentation, which influences the accuracy of point
cloud registration.

111

5. ANALYSIS

5.2.3 Feature-based Coarse Registration

From the above analysis, we can conclude that feature-based point cloud segmentation and
registration method can effectively improve the accuracy and shorten the processing time.
However, the coarse registration step in our pipeline still requires a checkerboard as a cali-
bration object and a complicated calibration process to get the initial transformation matrix.
Although the camera position is fixed in the system, once the camera position changes, this
step needs to be re-run. Therefore, we use the FPFH and SAC-IA algorithm instead of the
MATLAB toolkit for coarse registration.

The input of the MATLAB toolkit is a set of RGB images of a pair of cameras that have
a view from different angles to the same calibration object. The transformation matrix is
calculated by Zhang’s calibration algorithm[127]. The FPFH method directly processes
point cloud data (PLY file) to calculate the matrix. Then the calculated transformation
matrix is used as the initial matrix in the ICP algorithm for point cloud registration, the
quality of this affects the performance of the ICP algorithm.

In order to compare the performance of these two coarse registration methods, we input the
calculated transformation matrix into the ICP program and compare the processing time and
fitness score by running the same number of iterations. Thereforethe algorithm with shorter
processing time and smaller fitness score performs better. We input the matrix into the
original point cloud and feature-based point cloud registration program to compare the per-
formance of the two types of coarse registration. Table5.3 shows the quantitative evaluation
of the coarse registration methods. Fig.5.16 and Fig.5.17 shows the difference between the
MATLAB and FPFH&SAC-IA methods when using original point clouds and segmented
point clouds.

According to the table and polyline charts, we can observe that for both the original point
cloud and the segmented point cloud, the two coarse registration methods have compa-
rable performance. In the comparison based on the original point cloud, it can be seen
that compared with the MATLAB toolkit method, the transformation matrix obtained by
FPFH&SAC-IA method results in shorter processing time and slightly higher accuracy. In
the comparison of the segmented point cloud, the two methods have a similar performance.
Therefore, we can conclude that based on the impact of the initial transformation matrix
on the performance of the ICP algorithm, the two methods have comparable effects and
performance in the coarse registration procedure.

Of these two methods, the MATLAB toolkit requires a calibration object and complicated
operations, the process involves manual manipulation such as taking RGB pictures, chang-
ing the angle of the checkerboard, selecting corners in pictures and entering the commands
in MATLAB. These operations take around an hour in the MATLAB coarse registration
process. In contrast with this, the FPFH&SAC-IA method only needs a PLY file and the
calculation takes about 150s, which only takes twenty fourth of the time required by the
MATLAB toolkit. As the resulting matrixes are of comparable quality, we conclude to
make use of the FPFH&SAC-IA method in the coarse registration step.

112

5.2. Quantitative Analysis

Table 5.3: Evaluation and comparison of ICP algorithm by using different inital transfor-
mation matrixes on original and PointNet++ segmented Chair point cloud

Transformation
Matrix

Processing
Time

Number of
Iterations

Fitness Score

Original(c2)
MATLAB 22805ms 40 1.112e-3

FPFH&
SAC-IA

13294ms 40 1.159e-3

Original(c3)
MATLAB 37980ms 40 3.397e-3

FPFH&
SAC-IA

25094ms 40 3.332e-3

Original(c4)
MATLAB 34972ms 40 5.687e-3

FPFH&
SAC-IA

20959ms 40 3.811e-3

Segmented(c2)
MATLAB 3090ms 40 1.874e-4

FPFH&
SAC-IA

3844ms 40 4.411e-4

Segmented(c3)
MATLAB 3032ms 40 1.508e-4

FPFH&
SAC-IA

3041ms 40 1.409e-4

Segmented(c4)
MATLAB 3098ms 40 1.167e-3

FPFH&
SAC-IA

3074ms 40 5.764e-4

113

5. ANALYSIS

(a) Processing Time

(b) Fitness Score

Figure 5.16: Polyline Chart of Processing Time and Fitness Score - Original Point Clouds

114

5.2. Quantitative Analysis

(a) Processing Time

(b) Fitness Score

Figure 5.17: Polyline Chart of Processing Time and Fitness Score - Segmented Point Clouds

115

5. ANALYSIS

5.3 Comparison with State of the Art

In this study, we present a markerless, flexible, feature-based multiple depth cameras cali-
bration pipeline. Next, we will compare the advantages and disadvantages of this pipeline
with other state-of-the-art systems from several perspectives.

The calibration of depth cameras can be divided into two types. One type of calibration
system[57][72][80][3] relies on additional calibration object (specific marker, checkerboard
or boxes with QR code) to calculate camera parameters. These systems require human
intervention (such as artificial placement of the calibration object) and other constraints
(position of the calibration object, lighting) during the calibration process. Another type
of calibration system[56] does not require any additional calibration, which is dynamically
calibrated by using human’s skeleton and joints information. But such a system requires
a specific type of camera to provide human skeleton data. Due to the limitation of the
types of data provided by the cameras on the market, this kind of system is not easily
generalized. Compared with state-of-the-art, this thesis proposes a flexible multi-camera
calibration pipeline. In this section, we compare the flexibility of this system with other
systems from the following aspects:

• Additional Marker: The need for additional calibration markers is one of the lim-
itations of the camera calibration system. The current methods relying on specific
calibration object are complicated and time-consuming. Eliminating the limitations
of additional calibration object will simplify the calibration process and shorten the
processing time.

• Operation Complexity: The complexity of the process is influenced by several fac-
tors: additional calibration markers; special requirements for the placement of the
calibration object; special requirements for the calibration environment; accessibil-
ity of the calibration objects and human intervention (parameters manipulation and
marker placement).

• Supported Sensor: The supported camera is affected by two factors: the limitations
of the 3D data type captured by the camera, and the type of data used by the calibra-
tion system. If the calibration system can be extended to various types of cameras,
the system can get rid of the limitations of a particular sensor.

116

5.3. Comparison with State of the Art

Table 5.4: Comparison with State of the Art depth camera calibration systems

LiveScan3D
[57]

OpenPTrack
[72]

Human
Body

Tracking[80]

Live
3D Motion
Capturing[3]

Skeleton-
based[56]

Thesis
Pipeline

Core Tech-
nologies

Orthogonal
Procrustes
[101],ICP

ROS[28],
bundle ad-
justment

[10]

Corner
detec-

tion,skeleton
fusion

SIFT[64],
Procrustes
analysis[55]

Least-
squares

[117]

Feature-
based,ICP

Extra
Marker

Required
Yes Yes Yes Yes No No

Skeletal
Tracking

No No Yes No Yes No

Calibration
Object

Marker[98]
Checker-

board
Checker-

board

Labelled
IKEA
boxes

Human
Skeleton

Chair,Lamp

Operation
Complex-

ity
High High High High Low Medium

Human-
based

Calibration
No Yes Yes Yes Yes No

Supported
Sensor

Kinect v2
Kinect;

SR4500;
Stereo

Kinect Kinect Kinect

Depth
sensors

with point
cloud

capturing

Year 2015 2016 2017 2017 2018 2018

Additional Marker: As can be seen from Table 5.4, most calibration systems require ad-
ditional calibration objects such as markers, checkerboards, and labelled boxes. The human
skeleton-based calibration system[56] can get rid of the use of additional calibration object,
but it only works for specific depth sensors - Kinect. Currently, our system can use chairs
and lamps as calibration objects, and no additional markers are required, the diversity of
calibration objects can be extended based on the deep learning training dataset.

Operation Complexity: Compared with many systems, the operation of our pipeline is
more simple. For example, systems[57][72][80][3] require additional markers for calibra-
tion, which may put limits on the placement of objects, the operation process and the fixed

117

5. ANALYSIS

camera position. In the OpenPTrack system, after all cameras have captured the calibration
object, the calibration object needs to be manually removed in the next step. In the human
body tracking system[80], the calibration object needs to be fixed on the ground, and the
process needs to ensure that the calibration object is complete and not occluded. Therefore,
there is a limit of human movement in the working space. In the live 3D human tracking
system[3], the labelled IKEA boxes require to be placed in a specific order to be able to
calibrate the system calibrates the cameras based on a QR code on boxes. The pipeline
proposed in this thesis does not require an additional calibration marker. The cameras can
be calibrated using different calibration objects without artificially changing parameters.
By using a feature-based approach, our pipeline improves the accuracy of the point cloud
registration and reduces the running time.

Supported Sensor: Most of the systems in the table, except OpenPTrack[72], only support
the Kinect series depth cameras. Such systems rely on the software tools that go with the
sensor and cannot be easily used for other types of depth cameras, as the production of the
Kinect has stopped the future of these methods may be limited. Our pipeline can be used
in any type of multiple camera systems, and the only requirement is that the depth camera
needs to be able to capture the point cloud data, and most of the depth cameras on the
market fulfill this requirement. Therefore, this pipeline can be generalized into more types
of cameras, and it is more flexible in practical applications.

However, our pipeline is not the most convenient system. Compared with the skeleton-
based system[56], our pipeline cannot be directly calibrated based on a human body. For
our method, a static calibration object is needed in the scene. The reason is that we use a
deep learning network for feature-based point cloud segmentation and registration. As at
this moment there is no dataset of labelled human point cloud, we were not able to handle a
human-based point cloud as the calibration object to perform the multi-camera calibration.

118

Chapter 6

Conclusions

6.1 Summary

In this thesis we studied on multiple depth cameras calibration and pose estimation for
real-time 3D reconstruction. Most of the existing calibration systems[57][80][3] require
complex calibration objects such as labelled boxes and checkerboards, and the process of
camera calibration is complicated and time-consuming. Some systems also require man-
ual placement of calibration objects and have limitations on camera position and human
movement in the scene. The skeleton-based calibration system[56] provided an alternative
solution to complex calibration objects. Inspired by this idea, we propose a feature-based,
markerless and flexible point cloud registration and pose estimation system.

Our pipeline consists of the following stages: pre-processing, coarse registration, fine reg-
istration and point cloud update. According to our research on RGB-D camera-based 3D
reconstruction system in recent years, we choose the ICP algorithm for point cloud registra-
tion in the fine registration step. The advantage of the ICP algorithm in achieving continuous
and re-calibration system is that we can redo the calibration process by setting a threshold to
achieve an automatic re-calibration process. Besides, the ICP algorithm requires an initial
transformation matrix. In order to provide a more accurate coarse transformation matrix,
we use the MATLAB toolkit to calibrate four cameras in the coarse registration step.

The problems we deal with in this thesis are: how to get rid of the limitations of extra cal-
ibration objects and specific camera types to ensure that complex operation and calibration
requirements are not needed; and how to deal with the error of the ICP algorithm caused by
the incomplete parts of the captured point clouds.

For the first problem, We propose a feature-based calibration system that performs point
cloud registration by using point cloud data and the ICP algorithm. Point cloud data can be
converted from the 3D coordinates captured by the depth camera and is currently available
from most depth cameras on the market (Kinect series, Xtion, RealSense series). Also, we
replace the MATLAB calibration method with the feature extraction and matching functions
provided by the Point Cloud Library.

The MATLAB toolkit used in the coarse registration step in our system is complicated,

119

6. CONCLUSIONS

which requires a calibration checkerboard and involves manual operations. Although this
procedure is a one-time procedure, any camera movement in multiple cameras systems
force this step to be re-executed. Therefore, we use the feature extraction and alignment
method to replace the MATLAB toolbox. This feature-based coarse registration method
has comparable performance with the MATLAB toolkit procedure, and it only requires a
PLY file as input, which simplifies the procedure and shortens the processing time into
twenty-fourth of the other method.

Figure 6.1: The system architecture. The grey module (coarse registration) is a one time
process; the blue modules are continuously processing procedures. In this thesis we validate
the modules within the yellow dotted box and propose a suggestion (green modules) for
achieving an automatic re-calibration system.

In the experiment of using the chair as the calibration object, we notice that the camera
could not capture the complete chair point cloud data due to the limitation of the range and
the scope of cameras, and the incomplete point cloud from different cameras will make
the ICP algorithm fall into a local optimum and lead to errors, which means that the ICP
algorithm tries to match two inconsistent parts and causes errors for the whole object.

In order to solve this problem, we use the point cloud segmentation algorithm to divide the
point cloud into different parts, and perform ICP registration by using selected appropriate
parts which are commonly covered by different cameras. This method reduces registration
errors caused by the incomplete part of the point cloud. We first use the SAC segmentation
(based on plane and cylinder model) and region growing algorithm in the PCL library to
segment the point cloud. For the three calibration objects we test chairs, lamps and mugs,
only the plane model-based SAC segmentation is shown to be effective for the chair. How-
ever, this calibration method only selects the largest plane in the chair as the segmentation
output, we cannot judge whether the selected part is the common and suitable part of all
cameras. Therefore, this method does not meet the requirement to be used in our system.

In the next step, we use a deep learning network PoineNet++ to train the model and perform
point cloud segmentation. Compared with the previously tested methods, the deep learning
network can segment the object according to the components (parts) of the object. We can

120

6.2. Future Work

determine and select the appropriate part for ICP registration by volume comparison of the
segmentation result. The deep learning network method is effective for chairs and lamps, it
improves the registration accuracy and shortens the processing time.

Experimental results show that the feature-based pipeline can shorten the registration time
and improve the registration accuracy. For example, for a chair object (target point cloud
captured by camera1, source point cloud captured by camera2), the original point cloud
data is affected by an incomplete chair armrest, and the registration result is inaccurate. The
entire registration process requires 24782ms for 40 iteration times, and the fitness value
is 1.112e-3. The SAC segmentation method requires 11764ms to reach 7.325e-5 fitness
score. After using deep learning network method, the whole process needed 6939ms for 40
iterations, and the fitness score is 1.875e-4. In summary, compared with the original point
cloud, the use of PointNet++ segmented point cloud effectively shortens the running time
and improves the registration accuracy.

6.2 Future Work

Although our pipeline improved the point cloud registration results, our pipeline still has
limitations. In this section we make suggestions for future work and further development.

Indistinguishable data: In this thesis, we try to combine a human body with the static
object for multi-camera calibration. For example, calibration based on a person wearing an
earphone as shown in Fig.6.2. For these point clouds, because the earphone object cannot
be recongized by the algorithm, this method is unable to segmentation and registration of
this kind of situations. For this type of data, we need to first be able to recognize the static
object and separate it from the original point cloud. How to distinguish and recognize the
static object is a challenge. One possible solution is that we can divide the object by using
color-based or texture-based recognition methods. Based on the recognition result, we can
then apply the feature-based registration on a static object.

Figure 6.2: The point cloud of a person wearing an earphone

121

6. CONCLUSIONS

Human-based calibration: The ultimate goal of our project is to calibrate cameras and
reconstruct 3D scenes with human body point cloud data. Due to the limitations of the
training dataset, there is currently no point cloud dataset for human-based segmentation.
For this pipeline, the appropriate human point cloud data should classify the human data
according to the biological composition and assign parts with different colors. For example,
the human body can be segmented into a head, upper limb, trunk, lower limb and foot. In
the human tracking and motion capturing process, the point cloud can be divided according
to the above classification, and the parts such as the upper limb and lower limb can provide
spatial position information for matching. After segmentation of the human point cloud, we
can then do ICP registration based on the chosen parts and align point clouds.

Occlusion and Incomplete point cloud: In this project, we did not find a suitable solution
for the mug point cloud. None of the segmentation methods used in our experiments can
correctly subdivide the mug into two parts and leave a clean, complete mug handle as the
segmentation result. Fig.6.3 shows the mug segmentation results of deep learning network
of source1 and source3. The mug has a uniform body and a handle. For point cloud reg-
istration, the handle part is more useful for determining the spatial location. However, the
captured point cloud is incomplete due to occlusion problems, so the point cloud cannot be
correctly segmented. For figure (a), the handle is separated from mug body, for figure (b),
the mug body is divided into two parts due to the discontinuity. How to solve the problem
of occlusion and point cloud discontinuity and how to improve the deep learning segmen-
tation accuracy of incomplete input point clouds are still big challenges. One suggestion
is to enhance the training data by adding noise and sampling to solve the problem of data
distribution.

(a) Camera1 (b) Camera3

Figure 6.3: The PointNet segmented mug point cloud.

Common part selection optimization: In the segmented point cloud selection phase, we
select the most suitable common part for registration stage based on the volume of the point
cloud. This method cannot be applied in all situations and thus is limited in its use. The

122

6.2. Future Work

point cloud data is sparse and unordered, due to the limited amount of geometric information
provided by the point clouds, the 3D spatial similarity measurement of different point cloud
data is still a challenge.

123

Bibliography

[1] TAN Yunlan JIA Jinyuan PENG Shuoet al. Survey on some key technologies of
virtual tourism system based on Web3D. 2014.

[2] Geoffrey E. Hinton Alex Krizhevsky, Ilya Sutskever. ImageNet Classification with
Deep convolutional Neural Networks. Accessed Aug 2018. http://vision.stanfor
d.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf, 2015.

[3] Dimitrios S Alexiadis, Anargyros Chatzitofis, Nikolaos Zioulis, Olga Zoidi, Georgios
Louizis, Dimitrios Zarpalas, and Petros Daras. An integrated platform for live 3d
human reconstruction and motion capturing. IEEE Transactions on Circuits and
Systems for Video Technology, 27(4):798–813, 2017.

[4] Xing An, Gang Li, Linwei Xu, and Ying Shi. A survey on application of
virtual reality technology in u. s. military simulation training. Dianguang yu
Kongzhi(Electronics, Optics & Control), 18(10):42–46, 2011.

[5] Howard Anton. Elementary Linear Algebra, Binder Ready Version. John Wiley &
Sons, 2013.

[6] Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques, and Jitendra
Malik. Multiscale combinatorial grouping. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 328–335, 2014.

[7] ASUS. Xtion-2 Depth Camera Introduction. Accessed Aug 2018. https://www.as
us.com/3D-Sensor/Xtion-2/overview/, 2017.

[8] Marco Attene. A lightweight approach to repairing digitized polygon meshes. The
visual computer, 26(11):1393–1406, 2010.

[9] Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. The wave kernel sig-
nature: A quantum mechanical approach to shape analysis. In Computer Vision
Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 1626–
1633. IEEE, 2011.

125

http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf
http://vision.stanford.edu/teaching/cs231b_spring1415/slides/alexnet_tugce_kyunghee.pdf
https://www.asus.com/3D-Sensor/Xtion-2/overview/
https://www.asus.com/3D-Sensor/Xtion-2/overview/

BIBLIOGRAPHY

[10] Filippo Basso, Riccardo Levorato, and Emanuele Menegatti. Online calibration for
networks of cameras and depth sensors. In OMNIVIS: The 12th Workshop on Non-
classical Cameras, Camera Networks and Omnidirectional Vision-2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA 2014), 2014.

[11] Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor
Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–607.
International Society for Optics and Photonics, 1992.

[12] OpenMP Architecture Review Board. OpenMP: Open Multi-Processing. Accessed
Aug 2018. https://www.openmp.org, 2013.

[13] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab. Accessed Aug 2018.
http://www.vision.caltech.edu/bouguetj/calib_doc/, 2015.

[14] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer vision with the
OpenCV library. ” O’Reilly Media, Inc.”, 2008.

[15] Patrick Breheny. Robust regression.

[16] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Generative and
discriminative voxel modeling with convolutional neural networks. arXiv preprint
arXiv:1608.04236, 2016.

[17] Michael M Bronstein and Iasonas Kokkinos. Scale-invariant heat kernel signa-
tures for non-rigid shape recognition. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 1704–1711. IEEE, 2010.

[18] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs. arXiv preprint arXiv:1312.6203, 2013.

[19] CERTH. camera calibration by CERTH. Accessed Aug 2018. http://pathway2hea
lth.eu/centre-for-research-and-technology-hellas-certh/, 2018.

[20] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and Vladlen
Koltun. Probabilistic reasoning for assembly-based 3d modeling. In ACM Trans-
actions on Graphics (TOG), volume 30, page 35. ACM, 2011.

[21] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung. On visual sim-
ilarity based 3d model retrieval. In Computer graphics forum, volume 22, pages
223–232. Wiley Online Library, 2003.

[22] Yang Chen and Gérard Medioni. Object modelling by registration of multiple range
images. Image and vision computing, 10(3):145–155, 1992.

[23] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio
Ganovelli, and Guido Ranzuglia. Meshlab: an open-source mesh processing tool.
In Eurographics Italian chapter conference, volume 2008, pages 129–136, 2008.

126

 https://www.openmp.org
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://pathway2health.eu/centre-for-research-and-technology-hellas-certh/
http://pathway2health.eu/centre-for-research-and-technology-hellas-certh/

Bibliography

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[25] Brian Curless and Marc Levoy. A volumetric method for building complex models
from range images. In Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 303–312. ACM, 1996.

[26] Andrew J Davison. Real-time simultaneous localisation and mapping with a single
camera. In null, page 1403. IEEE, 2003.

[27] Li Deng, Dong Yu, et al. Deep learning: methods and applications. Foundations and
Trends R© in Signal Processing, 7(3–4):197–387, 2014.

[28] Jorge Francisco Madrigal Dı́az and Jean-Bernard Hayet. Color and motion-based par-
ticle filter target tracking in a network of overlapping cameras with multi-threading
and gpgpu. Acta Universitaria, 23(1):9–16, 2013.

[29] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. In International conference on machine learning, pages 647–655, 2014.

[30] Mingsong Dou, Sameh Khamis, Yury Degtyarev, Philip Davidson, Sean Ryan
Fanello, Adarsh Kowdle, Sergio Orts Escolano, Christoph Rhemann, David Kim,
Jonathan Taylor, et al. Fusion4d: Real-time performance capture of challenging
scenes. ACM Transactions on Graphics (TOG), 35(4):114, 2016.

[31] SM Ali Eslami, Nicolas Heess, Christopher KI Williams, and John Winn. The shape
boltzmann machine: a strong model of object shape. International Journal of Com-
puter Vision, 107(2):155–176, 2014.

[32] Jannat Falah, Soheeb Khan, Tasneem Alfalah, Salsabeel FM Alfalah, Warren Chan,
David K Harrison, and Vassilis Charissis. Virtual reality medical training system
for anatomy education. In Science and Information Conference (SAI), 2014, pages
752–758. IEEE, 2014.

[33] Yi Fang, Jin Xie, Guoxian Dai, Meng Wang, Fan Zhu, Tiantian Xu, and Edward
Wong. 3d deep shape descriptor. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2319–2328, 2015.

[34] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Com-
munications of the ACM, 24(6):381–395, 1981.

[35] Andrew W Fitzgibbon and Andrew Zisserman. Automatic camera recovery for
closed or open image sequences. In European conference on computer vision, pages
311–326. Springer, 1998.

127

BIBLIOGRAPHY

[36] Andreas Geiger, Frank Moosmann, Ömer Car, and Bernhard Schuster. Automatic
camera and range sensor calibration using a single shot. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3936–3943. IEEE, 2012.

[37] Walter Gellert, M Hellwich, H Kästner, and H Küstner. The VNR concise encyclope-
dia of mathematics. Springer Science & Business Media, 2012.

[38] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

[39] Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram Izadi. Real-time rgb-d
camera relocalization via randomized ferns for keyframe encoding. IEEE transac-
tions on visualization and computer graphics, 21(5):571–583, 2015.

[40] Kan Guo, Dongqing Zou, and Xiaowu Chen. 3d mesh labeling via deep convolutional
neural networks. ACM Transactions on Graphics (TOG), 35(1):3, 2015.

[41] Masaki Hayashi, Steven Bachelder, Masayuki Nakajima, and Akihiko Iguchi. A new
virtual museum equipped with automatic video content generator. In Cyberworlds
(CW), 2014 International Conference on, pages 377–383. IEEE, 2014.

[42] D. O. Hebb. The Organizatino of Behavior. John Wiley Sons, Inc., 1949.

[43] Geoffrey E Hinton. Training products of experts by minimizing contrastive diver-
gence. Neural computation, 14(8):1771–1800, 2002.

[44] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[45] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554, 2006.

[46] John J Hopfield. Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8):
2554–2558, 1982.

[47] Peter J Huber et al. Robust estimation of a location parameter. The annals of mathe-
matical statistics, 35(1):73–101, 1964.

[48] Aldous Huxley. Brave New World. 1932.

[49] Aldous Huxley. Brave new world. Ernst Klett Sprachen, 2008.

[50] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22nd ACM international conference
on Multimedia, pages 675–678. ACM, 2014.

128

Bibliography

[51] Andrew E Johnson and Martial Hebert. Using spin images for efficient object recog-
nition in cluttered 3d scenes. IEEE Transactions on Pattern Analysis & Machine
Intelligence, (5):433–449, 1999.

[52] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen Koltun.
A probabilistic model for component-based shape synthesis. ACM Transactions on
Graphics (TOG), 31(4):55, 2012.

[53] Branko Karan. Calibration of kinect-type rgb-d sensors for robotic applications. FME
Transactions, 43(1):47–54, 2015.

[54] Ladislav Kavan, Steven Collins, Jiřı́ Žára, and Carol O’Sullivan. Skinning with dual
quaternions. In Proceedings of the 2007 symposium on Interactive 3D graphics and
games, pages 39–46. ACM, 2007.

[55] David G Kendall. A survey of the statistical theory of shape. Statistical Science,
pages 87–99, 1989.

[56] Suraj Raghuraman Kevin Desai, Balakrishnan Prabhakaran. Skeleton-based contin-
uous extrinsic calibration of multiple rgb-d kinect cameras. 2018.

[57] Marek Kowalski, Jacek Naruniec, and Michal Daniluk. Live scan3d: A fast and
inexpensive 3d data acquisition system for multiple kinect v2 sensors. In 3D Vision
(3DV), 2015 International Conference on, pages 318–325. IEEE, 2015.

[58] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs
with gaussian edge potentials. In Advances in neural information processing systems,
pages 109–117, 2011.

[59] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape by space carving.
International journal of computer vision, 38(3):199–218, 2000.

[60] Wen Huey Lai, Sie Long Kek, and Kim Gaik Tay. Solving nonlinear least squares
problem using gauss-newton method.

[61] Denis Le Bihan, Robert Turner, Chrit TW Moonen, and James Pekar. Imaging of
diffusion and microcirculation with gradient sensitization: design, strategy, and sig-
nificance. Journal of Magnetic Resonance Imaging, 1(1):7–28, 1991.

[62] Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y Ng. Convolutional
deep belief networks for scalable unsupervised learning of hierarchical representa-
tions. In Proceedings of the 26th annual international conference on machine learn-
ing, pages 609–616. ACM, 2009.

[63] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I Jordan. Learning trans-
ferable features with deep adaptation networks. arXiv preprint arXiv:1502.02791,
2015.

129

BIBLIOGRAPHY

[64] David G Lowe. Object recognition from local scale-invariant features. In Computer
vision, 1999. The proceedings of the seventh IEEE international conference on, vol-
ume 2, pages 1150–1157. Ieee, 1999.

[65] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. Hierarchical con-
volutional features for visual tracking. In Proceedings of the IEEE international
conference on computer vision, pages 3074–3082, 2015.

[66] Jonathan Masci, Davide Boscaini, Michael Bronstein, and Pierre Vandergheynst.
Geodesic convolutional neural networks on riemannian manifolds. In Proceedings
of the IEEE international conference on computer vision workshops, pages 37–45,
2015.

[67] Daniel Maturana and Sebastian Scherer. 3d convolutional neural networks for land-
ing zone detection from lidar. In Robotics and Automation (ICRA), 2015 IEEE Inter-
national Conference on, pages 3471–3478. IEEE, 2015.

[68] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional neural network
for real-time object recognition. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 922–928. IEEE, 2015.

[69] John McCormac, Ankur Handa, Andrew Davison, and Stefan Leutenegger. Seman-
ticfusion: Dense 3d semantic mapping with convolutional neural networks. arXiv
preprint arXiv:1609.05130, 2016.

[70] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[71] Shaohua Mi, Zengguang Hou, and Fan Yang. An 3d interactive virtual reality soft-
ware toolkit for minimally invasive vascular surgery. In Mechatronics and Automa-
tion (ICMA), 2014 IEEE International Conference on, pages 588–593. IEEE, 2014.

[72] Matteo Munaro, Filippo Basso, and Emanuele Menegatti. Openptrack: Open source
multi-camera calibration and people tracking for rgb-d camera networks. Robotics
and Autonomous Systems, 75:525–538, 2016.

[73] British Museum. British Museum virtual exhibits. Accessed Aug 2018. http://ww
w.britishmuseum.org, 2018.

[74] Olympic Museum. Olympic museum virtual tours. Accessed Aug 2018. https:
//www.olympic.org/museum/visit/seminars-and-corporate-events, 2018.

[75] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltz-
mann machines. In Proceedings of the 27th international conference on machine
learning (ICML-10), pages 807–814, 2010.

130

 http://www.britishmuseum.org
 http://www.britishmuseum.org
 https://www.olympic.org/museum/visit/seminars-and-corporate-events
 https://www.olympic.org/museum/visit/seminars-and-corporate-events

Bibliography

[76] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David
Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In Mixed
and augmented reality (ISMAR), 2011 10th IEEE international symposium on, pages
127–136. IEEE, 2011.

[77] Richard A Newcombe, Dieter Fox, and Steven M Seitz. Dynamicfusion: Recon-
struction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 343–352, 2015.

[78] Brandon J Newendorp, Christian Noon, Joe Holub, Eliot H Winer, Stephen Gilbert,
and Julio de la Cruz. Configuring virtual reality displays in a mixed-reality environ-
ment for lvc training. In ASME 2011 World Conference on Innovative Virtual Reality,
pages 423–430. American Society of Mechanical Engineers, 2011.

[79] Hyeonwoo Noh, Seunghoon Hong, and Bohyung Han. Learning deconvolution net-
work for semantic segmentation. In Proceedings of the IEEE international confer-
ence on computer vision, pages 1520–1528, 2015.

[80] Juan C Núñez, Raúl Cabido, Antonio S Montemayor, and Juan J Pantrigo. Real-time
human body tracking based on data fusion from multiple rgb-d sensors. Multimedia
Tools and Applications, 76(3):4249–4271, 2017.

[81] PCL. Point Cloud Library. Accessed Aug 2018. http://pointclouds.org/, 2018.

[82] Panagiotis Petridis, Ian Dunwell, Fotis Liarokapis, George Constantinou, Sylvester
Arnab, Sara de Freitas, and Maurice Hendrix. The herbert virtual museum. Journal
of Electrical and Computer Engineering, 2013:16, 2013.

[83] Bui Tuong Phong. Illumination for computer generated pictures. Communications
of the ACM, 18(6):311–317, 1975.

[84] François Pomerleau, Francis Colas, Roland Siegwart, et al. A review of point cloud
registration algorithms for mobile robotics. Foundations and Trends R© in Robotics,
4(1):1–104, 2015.

[85] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning
on point sets for 3d classification and segmentation. Proc. Computer Vision and
Pattern Recognition (CVPR), IEEE, 1(2):4, 2017.

[86] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep
hierarchical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, pages 5099–5108, 2017.

[87] Qinzhuan QIAN. State of the art in real-time 3d reconstruction based on rgb-d cam-
eras. 2018.

131

http://pointclouds.org/

BIBLIOGRAPHY

[88] Tahir Rabbani, Frank Van Den Heuvel, and George Vosselmann. Segmentation of
point clouds using smoothness constraint. International archives of photogrammetry,
remote sensing and spatial information sciences, 36(5):248–253, 2006.

[89] B. Rusu. Radu. PointClouds.org: A new home for Point Cloud Library (PCL).
Accessed Aug 2018. http://www.willowgarage.com/blog/2011/03/27/point-clo

ud-library-pcl-moved-pointcloudsorg, 28 March 2011.

[90] Intel RealSense. The Intel RealSense Depth Camera D415 Product Brief. Accessed
Aug 2018. https://simplecore.intel.com/realsensehub/wp-content/uploads/s

ites/63/D415_Series_ProductBrief_010718.pdf, 2017.

[91] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances in neural
information processing systems, pages 91–99, 2015.

[92] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[93] Scott D Roth. Ray casting for modeling solids. Computer graphics and image pro-
cessing, 18(2):109–144, 1982.

[94] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning represen-
tations by back-propagating errors. nature, 323(6088):533, 1986.

[95] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. Align-
ing point cloud views using persistent feature histograms. In Intelligent Robots and
Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 3384–
3391. IEEE, 2008.

[96] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael Beetz. Learn-
ing informative point classes for the acquisition of object model maps. In Control,
Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Confer-
ence on, pages 643–650. IEEE, 2008.

[97] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature histograms
(fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE Inter-
national Conference on, pages 3212–3217. Citeseer, 2009.

[98] Tomasz Rybus, T Barciński, J Lisowski, J Nicolau-Kukliński, K Seweryn, M Ciesiel-
ska, K Grassmann, J Grygorczuk, M Karczewski, M Kowalski, et al. New planar
air-bearing microgravity simulator for verification of space robotics numerical sim-
ulations and control algorithms. In 12th ESA Symposium on Advanced Space Tech-
nologies in Robotics and Automation, Noordwijk, The Netherlands, 2013.

[99] Amela Sadagic. Next generation of physical training environments: Bringing in
sensor systems and virtual reality technologies. In International Conference on Aug-
mented Cognition, pages 717–726. Springer, 2013.

132

 http://www.willowgarage.com/blog/2011/03/27/point-cloud-library-pcl-moved-pointcloudsorg
 http://www.willowgarage.com/blog/2011/03/27/point-cloud-library-pcl-moved-pointcloudsorg
https://simplecore.intel.com/realsensehub/wp-content/uploads/sites/63/D415_Series_ProductBrief_010718.pdf
https://simplecore.intel.com/realsensehub/wp-content/uploads/sites/63/D415_Series_ProductBrief_010718.pdf

Bibliography

[100] Jorge Sánchez, Florent Perronnin, Thomas Mensink, and Jakob Verbeek. Image
classification with the fisher vector: Theory and practice. International journal of
computer vision, 105(3):222–245, 2013.

[101] Peter H Schönemann. A generalized solution of the orthogonal procrustes problem.
Psychometrika, 31(1):1–10, 1966.

[102] William R Scott, Gerhard Roth, and Jean-François Rivest. View planning for au-
tomated three-dimensional object reconstruction and inspection. ACM Computing
Surveys (CSUR), 35(1):64–96, 2003.

[103] Shy Shalom, Ariel Shamir, Hao Zhang, and Daniel Cohen-Or. Cone carving for
surface reconstruction, volume 29. ACM, 2010.

[104] ShapeNet. 3D ShapeNet dataset. Accessed Aug 2018. https://www.shapenet.org
/model-querier, 2018.

[105] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard
Moore, Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts
from single depth images. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1297–1304. Ieee, 2011.

[106] Miroslava Slavcheva, Wadim Kehl, Nassir Navab, and Slobodan Ilic. Sdf-2-sdf:
highly accurate 3d object reconstruction. In European Conference on Computer Vi-
sion, pages 680–696. Springer, 2016.

[107] Miroslava Slavcheva, Maximilian Baust, Daniel Cremers, and Slobodan Ilic. Killing-
fusion: Non-rigid 3d reconstruction without correspondences. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), volume 3, page 7, 2017.

[108] Justin Solomon, Mirela Ben-Chen, Adrian Butscher, and Leonidas Guibas. As-
killing-as-possible vector fields for planar deformation. In Computer Graphics Fo-
rum, volume 30, pages 1543–1552. Wiley Online Library, 2011.

[109] Harold W Sorenson. Least-squares estimation: from gauss to kalman. IEEE spec-
trum, 7(7):63–68, 1970.

[110] Statista. Forecast augmented (AR) and virtual reality (VR) market size world-
wide from 2016 to 2022 (in billion U.S. dollars). Accessed Aug 2018.
https://www.statista.com/statistics/591181/global-augmented-virtual

-reality-market-size/, 2018.

[111] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition. In Proceedings of the
IEEE international conference on computer vision, pages 945–953, 2015.

[112] Robert W Sumner, Johannes Schmid, and Mark Pauly. Embedded deformation for
shape manipulation. In ACM Transactions on Graphics (TOG), volume 26, page 80.
ACM, 2007.

133

 https://www.shapenet.org/model-querier
 https://www.shapenet.org/model-querier
https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/
https://www.statista.com/statistics/591181/global-augmented-virtual-reality-market-size/

BIBLIOGRAPHY

[113] Yi Sun, Ding Liang, Xiaogang Wang, and Xiaoou Tang. Deepid3: Face recognition
with very deep neural networks. arXiv preprint arXiv:1502.00873, 2015.

[114] J Suriansky and M Cmarada. Analysis of methods for camera calibration in 3d scan-
ning systems. Annals & Proceedings of DAAAM International.–2012, 2012.

[115] Richard Szeliski. Structure from motion. In Computer Vision, pages 303–334.
Springer, 2011.

[116] P. Shilane P. Min W. Kiefer A. Tal S. Rusinkiewicz T. Funkhouser, M. Kazhdan and
D. Dobkin. Modeling by example. 2004.

[117] Shinji Umeyama. Least-squares estimation of transformation parameters between
two point patterns. IEEE Transactions on Pattern Analysis & Machine Intelligence,
(4):376–380, 1991.

[118] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets. arXiv preprint arXiv:1511.06391, 2015.

[119] VPL. VPL Research. Accessed Aug 2018. https://www.vrs.org.uk/virtual-rea
lity-profiles/vpl-research.html, 1984.

[120] Shenlong Wang, Sean Ryan Fanello, Christoph Rhemann, Shahram Izadi, and Push-
meet Kohli. The global patch collider. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 127–135, 2016.

[121] Thomas Whelan, Michael Kaess, Maurice Fallon, Hordur Johannsson, John Leonard,
and John McDonald. Kintinuous: Spatially extended kinectfusion. 2012.

[122] Thomas Whelan, Renato F Salas-Moreno, Ben Glocker, Andrew J Davison, and Ste-
fan Leutenegger. Elasticfusion: Real-time dense slam and light source estimation.
The International Journal of Robotics Research, 35(14):1697–1716, 2016.

[123] Math World. Hessian Normal Form. Accessed Aug 2018. http://mathworld.wolf
ram.com/HessianNormalForm.html, 2018.

[124] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1912–1920, 2015.

[125] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu
Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework
for region annotation in 3d shape collections. SIGGRAPH Asia, 2016.

[126] Zhengyou Zhang. Iterative point matching for registration of free-form curves and
surfaces. International journal of computer vision, 13(2):119–152, 1994.

134

https://www.vrs.org.uk/virtual-reality-profiles/vpl-research.html
https://www.vrs.org.uk/virtual-reality-profiles/vpl-research.html
 http://mathworld.wolfram.com/HessianNormalForm.html
 http://mathworld.wolfram.com/HessianNormalForm.html

Bibliography

[127] Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown
orientations. In Computer Vision, 1999. The Proceedings of the Seventh IEEE Inter-
national Conference on, volume 1, pages 666–673. Ieee, 1999.

[128] Zhengyou Zhang. A flexible new technique for camera calibration. IEEE Transac-
tions on pattern analysis and machine intelligence, 22, 2000.

135

	Contents
	List of Figures
	Introduction
	Objectives and Research Questions

	Background
	AR/VR Scenarios and Point Clouds
	Depth Sense Cameras
	3D Reconstruction Technologies Based on RGB-D Cameras
	Camera Calibration
	Point Cloud Feature Extraction and Segmentation Based on PCL
	3D Data Deep Learning Network

	Contributions and Methodology
	Challenges
	Contributions
	Methodology and Architecture

	Experiments and Results
	Pre-experiments
	Validate the Pipeline (Two Cameras)
	Validate the Pipeline (Four Cameras)
	PCL-Based Segmentation with Pipeline
	PointNet++ with Pipeline
	Feature-Based Coarse Registration with Pipeline

	Analysis
	Qualitative Analysis
	Quantitative Analysis
	Comparison with State of the Art

	Conclusions
	Summary
	Future Work

	Bibliography

