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Preface

This document is the result of a research by Gidius van de Kamp under the supervision of Jacob
van der Woude. I hope this research helps providing new insights and asks relevant questions for
future study.
First of all I thank my supervisor Jacob van de Woude for his help and feedback. Due to the Corona
virus pandemic we had to find alternative ways to communicate instead of meeting in person. We
had many useful Skype meetings, thank you very much.
The thesis of C. A. Bryan named Compensator Design Extending Van der Woude-Jeltsema’s orthog-
onal projection approach was very interesting, as it asked the research questions I tried to answer.
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some background in the field of physics.
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1 Problem description

The power factor is a tool providing insight in the efficiency of an electrical circuit. The power
factor is used in the design of Railway Power Flow Control System for instance [4]. The aim of this
thesis is to study the power factor and compare different controllers to improve performance of the
power factor. Power is the product of the current and the voltage.
The power factor is defined as a fraction of two powers.

PF =
|P |
S
. (1)

The power factor PF depends on the powers P and S. P is the power consumed by the load called
the active or real power, and S is the power which is provided by the source called the apparent
power. A low PF means there is a transport of electricity not necessary for the load. The focus of
the thesis is to find a lossless compensator to improve the PF for a simple RLC network as shown
in figure 1. The compensator has to change the shape of the current in order to improve the power
factor. The optimal shape will have the same shape as the voltage source.
In this report we will study the power factor in a network with an alternating current with multiple
frequencies. This means we have a current and voltage that changes over time. We will note these
as functions of time; I(t) for the current and V (t) for the voltage. Ic(t) for the current we want
to compensate in the controller. This thesis will not focus on finding this current, but on how to
remove the unwanted current. The unwanted current is called reactive current.

Figure 1: simple RLC-circuit
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2 Functioning of a RLC netork

A RLC network consists of 3 elements that influence the current. These elements are called resistor,
coil (or inductor) and a capacitor. All these elements depend on a value with an different unit. To
note these values we use R for the resistor, L for a coil and C for the capacitor, hence the name
RLC-network.

• The unit for the resistor is called Ohm (Ω).

• The unit for the coil is called Henry (H).

• The unit for the capacitor is called Farad (F)

The coil and capacitor are lossless, they influence the shape of the current but do not reduce it,
whereas the resistor changes the electricity to heath. The change of current in a coil is described
in the following equation:

V (t) = L
I(t)

dt
. (2)

The change of current in a capacitor is described in the following equation:

dV (t)

dt
= CI(t). (3)

The change of current in a resistor is described in the following equation:

V (t) = RI(t). (4)

2.1 Kirchhoff

With the two laws of Kirchhoff one can find the current in a circuit consisting of multiple elements.
One law states that in every node the current entering is equal to the current leaving. The other
law states that the voltages in every loop together in a network is equal to zero. For both laws you
have to take the direction of the electricity into account. [1](p.37-43)
For instance in this circuit:

Iin

V1

I1

V2

I2

The laws would give:
Iin(t) = I1(t) + I2(t) (5)

V1(t)− V2(t) = 0. (6)
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2.2 Laplace transform

The Laplace transform is found to be useful for studying RLC circuits because of the differentiation
and integration properties of the transformation. The transformation is from the t domain/ time
domain to the s domain/ frequency domain. The Laplace transform is given by:

F (s) = L[f(t)] =

∫ ∞
0

e−stf(t)dt. (7)

One can transform the equations for the coil, capacitor and resistor and will obtain:

V (s) = sLI(s) (8)

sV (s) = CI(s) (9)

V (s) = RI(s) (10)

These equations look more simple in the s domain than in the t domain.[1] In these equations we
assumed the following initial conditions

V (0) = 0, I(0) = 0. (11)
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3 Possible improvements

The disadvantage of a small power factor is that there is a flow of electricity not used in the power
consumed by the load. This is especially a problem for networks having a resistor in the cables to
the actual load. In order to quantify what could be improved, we look at these two circuits:

Rin I1

R1

L1

C1

(a) circuit without controller

Rin Iin

R1

L1

C1

I1

L2

I2

C3

I3

(b) circuits with controller

Figure 2: circuits that will studied

The circuit in figure 2a is a simple RLC-circuit with an extra resistor to simulate the loss in a cable.
In figure 2b is the same RLC-circuit but with an added compensator, as proposed by Jacob van
der Woude and Dimitri Jeltsema. [5]
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3.1 Model

We will calculate the current in the two circuits from figure 2. To do this the Kirchhoff laws are
useful.

3.1.1 Model without controller

For the circuit in figure 2a we have the following equations;

Vin = I1(Rin +R1) +
Q1

C1
+ L1

dI1
dt
. (12)

Q is the Electric charge in the condensator. The unit for the electric charge is called Coulomb (C).

dQ1

dt
= I1. (13)

Written as a first order system of differential equations, gives:

dI1
dt

=
1

L1
Vin −

1

L1
I1(Rin +R1)− Q1

C1L1
(14)

dQ1

dt
= I1. (15)

If you use;

Q1 =

∫
I1dt (16)

you can solve the current with the method of undetermined coefficients.

3.1.2 Model with controller

For the circuit in figure 2b we have more equations. We obtain the following equations;

L1
dI1
dt

+ I1R1 +
Q1

C1
=
Q3

C3
(17)

dQ1

dt
= I1 (18)

dQ3

dt
= I3 = Iin − I1 − I2 =

Vin − Q3

C3

Rin
− I1 − I2 =

Vin
Rin
− Q3

C3Rin
− I1 − I2 (19)

L2
dI2
dt

=
Q3

C3
. (20)

Written as a first order system of differential equations, gives;

dI1
dt

= −I1R1

L1
− Q1

C1L1
+

Q3

C3L1
(21)

dQ1

dt
= I1 (22)
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dQ3

dt
=
Vin
Rin
− Q3

C3Rin
− I1 − I2 (23)

dI2
dt

=
Q3

C3L2
. (24)

In this circuit the method of undetermined coefficients does not seem to be useful.

3.2 PF as function of Rin

With the models found in the previous section we can find the PF for different values of Rin.
We will do this using a method based on complex Fourier coefficients described in An Orthogonal
Projection Method for Computing Active, Reactive, and Scattered Power and its Application to
Compensator Design by Jacob van der Woude and Dimitri Jeltsema. From now on referred to as
the Fourier method. In this method one writes a current as a vector with complex numbers. With
these vectors and the system of equations for the current one can find the current by solving one
matrix equation.
We study the relation of the PF and the Rin, for the following cases;
case 1:

R1 = 1, L1 =
1

2
, C1 =

2

3
, with or without controller: L2 =

4

3
, C3 =

1

4
. (25)

case 2:

R1 = 1, L1 =
1

2
, C1 =

2

7
with or without controller: L2 =

20

9
, C3 =

3

30
. (26)

With the source voltage given by:

V (t) =
√

2(100 sin(t) + 100 cos(3t)). (27)

These controllers are designed for the circuit without the Rin element. In figure 3 and 4 we see
the relation between the PF and the value of Rin. For case 1 there seems to be no influence of the
Rin element. The outcome here is the same as in the case when there is no Rin at all. However in
case 2 there seems to be a influence of Rin on the PF. In figure 3b we see that for case 2 without
controller the PF seems to decrease for increasing Rin. For case 2 with controller the PF decreases
first and then increases. The controller seems not to work as great in case 2 as it does in case 1.
There seems to be something special about case 1.
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(a) PF for case 1. (b) PF for case 2.

Figure 3: Relation PF and Rin without a controller.

(a) PF for case 1. (b) PF for case 2.

Figure 4: Relation PF and Rin with a controller.
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4 Two frequency voltage

4.1 Transfer function

The transfer function is a useful analytic tool for finding the response in a system. We will use
the Laplace transformation to find this function. We know the input, in this case the voltage, and
the wanted output, being the current we want to remove. Dividing the input and output in the
s domain gives a fraction which is called the transfer function. When dividing the voltage by the
current one obtains a function that is called the impedance (Z(s)). When we divide the current by
the voltage, the function is called admittance (Y (s)).[1] We will find the transfer function for a two
frequency voltage. In section 5.4 we will see how this transfer function is realisable with a network.

V (t) = b1 cos(a1t) + b2 cos(a2t) (28)

L[V (t)] = V (s) = b1
s

s2 + a21
+ b2

s

s2 + a22
=
b2s(s

2 + a21) + b1s(s
2 + a22)

(s2 + a22)(s2 + a21)
(29)

v(1)(t) = −b1a1 sin(a1t)− b2a2 sin(a2t) (30)

v(3)(t) = b1a
3
1 sin(a1t) + b2a

3
2 sin(a2t) (31)

We can write the current we want to remove as a linear combination of the odd derivatives of the
voltage.[5]

Ic(t) = αv(1)(t) + βv(3)(t) (32)

= (βb1a
3
1 − αb1a1) sin(a1t) + (βb2a

3
2 − αb2a2) sin(a2t). (33)

Ic(s) = L[Ic(t)] = (βb1a
3
1 − αb1a1)

a1
s2 + a21

+ (βb2a
3
2 − αb2a2)

a2
s2 + a22

(34)

= (βb1a
3
1 − αb1a1)

a1(s2 + a22)

(s2 + a21)(s2 + a22)
+ (βb2a

3
2 − αb2a2)

a2(s2 + a21)

(s2 + a21)(s2 + a22)
(35)

=
(

(βb1a
3
1 − αb1a1)a1(s2 + a22) + (βb2a

3
2 − αb2a2)a2(s2 + a21)

) 1

(s2 + a21)(s2 + a22)
. (36)

Y (s) =
Ic(s)

V (s)
=

(βb1a
3
1 − αb1a1)a1(s2 + a22) + (βb2a

3
2 − αb2a2)a2(s2 + a21)

b2s(s2 + a21) + b1s(s2 + a22)
. (37)

Z(s) =
V (s)

Ic(s)
=

b2s(s
2 + a21) + b1s(s

2 + a22)

(βb1a31 − αb1a1)a1(s2 + a22) + (βb2a32 − αb2a2)a2(s2 + a21)
. (38)

We see that the numerator of Z(s) is a polynomial, made of only odd powers of s. The denominator
is a polynomial of only even powers of s. For Y (s) we see the opposite. This seems to be a nice
property. This will be explained in the next section.
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4.2 Positive real function

The desired form of the transfer function is called positive real. This will guarantee that a config-
uration of inductors and capacitors that realises the transfer function actually exists. In Ch. 7 of
Passive Active and Digital Filters we find a characterisation of positive real [3]:

A rational function represented in the form

F (s) =
P (s)

Q(s)
=
m1(s) + n1(s)

m2(s) + n2(s)
(39)

where m1(s),m2(s) and n1(s), n2(s) are the even and odd parts of the polynomials P(s) and Q(s),
respectively, is positive real if and only if the following conditions are satisfied:

1. F (s) is real when s is real.

2. P (s) +Q(s) is strictly Hurwitz.

3. m1(jω)m2(jω)− n1(jω)n2(jω) ≥ 0 for all ω.

These three conditions are important to check. For the transfer function, Z(s), which we found in
Ch 4.1, we have m1 = 0 and n2 = 0. This means that condition 3 is satisfied. Condition 1 is also
satisfied. Condition 2 seems a bit more complicated. Also in chapter 7 we find: [3]

For P (s) + Q(s) to be strictly Hurwitz, it is necessary and sufficient that the continued-fraction
expansion [m1(s) +m2(s)

n1(s) + n2(s)

]±1
= α1s+

1

α2s+
1

. . . +
1

αks

(40)

yields only real and positive α’s, and does not terminate prematurely, i.e. k must equal the degree
m1(s) +m2(s) or n1(s) + n2(s) whichever is larger.

For the Z(s) we found in Ch4.1, we have;

Y (s) =
1

Z(s)
=
m1(s) +m2(s)

n1(s) + n2(s)
, (41)

again for the fact that m1 = 0 and n2 = 0. For this Z(s) condition 2 is exactly the same as having
positive coefficients in the first Cauer form. If Z(s) forms a partial faction decomposition with
positive elements and does not terminate prematurely then so does Z(s)−1. This means that if the
voltage is described as multiple cosines and the unwanted current is removable, it is always possible
with the first Cauer form. It also tells us that the first Cauer form will have at least the same
amount of elements as the highest power found in Z(s).

4.3 Why not cosine and sine?

If the voltage was not written as the sum of cos and sin, this fraction would lose some wanted
properties. say:

V (t) = b1 sin(a1t) + b2 sin(a2t), (42)
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then:
L[V (t)] = V (s) = b1

a1
s2 + a21

+ b2
a2

s2 + a22
. (43)

V (1)(t) = b1a1 cos(a1t) + b2a2 cos(a2t). (44)

V (3)(t) = −b1a31 cos(a1t)− b2a32 cos(a2t). (45)

Ic(t) = αV (1)(t) + βV (3)(t). (46)

Ic(t) = (αb1a1 − βa31b1) cos(a1t) + (αb2a2 − βa32b2) cos(a2t). (47)

L[Ic(t)] = Ic(s) = (αb1a1 − βa31b1)
s

s2 + a21
+ (αb2a2 − βa32b2)

s

s2 + a22
. (48)

which gives:
Ic(s)

V (s)
=

(αb1a1 − βa31b1)s(s2 + a22) + (αb2a2 − βa32b2)s(s2 + a21)

b1a1(s2 + a22) + b2a2(s2 + a21)
. (49)

It seems there are no problems here, because we have a fraction where the odd powers are in
the numerator and the even powers are in the denominator. So here we can find similar results.
However a problem arises when:

V (t) = b1 sin(a1t) + b2 cos(a2t). (50)

V (1)(t) = a1b1 cos(a1t)− a2b2 sin(a2t). (51)

V (3)(t) = −a31b1 cos(a1t) + a32b2 sin(a2t). (52)

Ic(t) = αV (1)(t) + βV (3) (53)

= (αa1b1 − βa31b1) cos(a1t) + (βa32b2 − αa2b2) sin(a2t). (54)

V (s) = b1
a1

s2 + a21
+ b2

s

s2 + a22
(a2t). (55)

Ic(s) = (αa1b1 − βa31b1)
s

s2 + a21
+ (βa32b2 − αa2b2)

a2
s2 + a22

. (56)

Ic(s)

V (s)
=

(αa1b1 − βa31b1)s(s2 + a22) + (βa32b2 − αa2b2)a2(s2 + a21)

b1a1(s2 + a22) + b2s(s2 + a21)
. (57)

We see that this fraction loses the wanted property. Theoretically we can still solve this, but it will
be more complicated. At first sight one may think a simple solution lays in the fact that:

sin(t) = cos(t− π

2
). (58)

However transforming this to the Laplace domain gives:

L[sin(t)] = L[cos(x− π

2
)] = e

−π
2 s s

s2 + 1
, (59)

where the e−
π
2 s, would complicate matters. We could apply the same method just as easily for a

sum of sin, but not as easily for a sum of both sin and cos.
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4.4 Different controllers

We will study different controllers, that realise the transfer function found in Ch 4.1. The controllers
we will study are called:

1. First Foster canonical form

2. Second Foster canonical form

3. First Cauer canonical form

4. Second Cauer canonical form

Again we will use chapter 7 from: Passive Active and Digital Filters by C. Wai-Kai.[3]
Because we didn’t check condition 2 from chapter 4.2 yet, we still have no guarantee that the found
elements will be positive. We will express the found elements in the controller in b1, a1, b2, a2, α
and β. Remember that α and β depend on R,L,C of the circuit to be controlled.

4.4.1 First Foster canonical form

If we have a Z(s) of this form:

Z(s) = Ds+
Es

s2 + F
, (60)

then this can be realised with this controller:

A

B C

Where;

A = D,B =
1

E
and C =

E

F
. (61)

If we rewrite Z(s) from Ch4.1 as a partial fraction decomposition, we find:

z(s) =
V (s)

Ic(s)
=

(b1 + b2)s

βa41b1 + βa42b2 − a21αb1 − a22αb2
+ (62)

b1b2(a1 − a2)2(a1 + a2)2(a21β + a22β − α)s

(b1β(a22 + s2)a41 + (βa42b2 − α(b1 + b2)a22 − s2b1α)a21 + s2a22b2(a22β − α))(βa41b1 − a21αb1 + a22b2(a22β − α))
(63)

Rewriting gives:

Z(s) =
(b1 + b2)

βa41b1 + βa42b2 − a21αb1 − a22αb2
s+ (64)

19



b1b2(a
6
1β−a

4
1a

2
2β−a

2
1a

4
2β+a

6
2β−a

4
1α+2a21a

2
2α−a

4
2α)s

(βa41b1+βa
4
2b2−a21αb1−a22αb2)

(a41a
2
2b1β + a21a

4
2b2β − a21a22αb1 − a21a22αb2 + (a41b1β + a42b2β − a21αb1 − a22αb2)s2)

(65)

=
(b1 + b2)

βa41b1 + βa42b2 − a21αb1 − a22αb2
s+ (66)

b1b2(a
6
1β−a

4
1a

2
2β−a

2
1a

4
2β+a

6
2β−a

4
1α+2a21a

2
2α−a

4
2α)s

(βa41b1+βa
4
2b2−a21αb1−a22αb2)2

a41a
2
2b1β+a

2
1a

4
2b2β−a21a22αb1−a21a22αb2

(a41b1β+a
4
2b2β−a21αb1−a22αb2)

+ s2
(67)

This would suggest the controller having the following A, B, C:

A =
(b1 + b2)

βa41b1 + βa42b2 − a21αb1 − a22αb2
(68)

B =
(βa41b1 + βa42b2 − a21αb1 − a22αb2)2

b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a
2
2α− a42α)

(69)

C =
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)

(βa41b1 + βa42b2 − a21αb1 − a22αb2)(a41a
2
2b1β + a21a

4
2b2β − a21a22αb1 − a21a22αb2)

. (70)

4.4.2 Second Foster canonical form

If we have:

Y (s) =
1

Ds
+

Es

s2 + F
, (71)

then this can be realised with the controller:

A

B

C

Where:

A = D,B =
1

E
and C =

E

F
. (72)

If we rewrite Y (s) as a partial fraction decomposition, we find:

Y (s) =
a21a

2
2(a21b1β + a22b2β − αb1 − αb2)

(a21b2 + a22b1)s
+
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)s

(a21b2 + a22b1)(a21b2 + a22b1 + b1s2 + b2s2)
.

(73)

Y (s) =
a21a

2
2(a21b1β + a22b2β − αb1 − αb2)

(a21b2 + a22b1)s
+
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)s

(a21b2 + a22b1)2 + (a21b2 + a22b1)(b1 + b2)s2
.

(74)
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Y (s) =
a21a

2
2(a21b1β + a22b2β − αb1 − αb2)

(a21b2 + a22b1)s
+

b1b2(a
6
1β−a

4
1a

2
2β−a

2
1a

4
2β+a

6
2β−a

4
1α+2a21a

2
2α−a

4
2α)s

(a21b2+a
2
2b1)(b1+b2)

(a21b2+a
2
2b1)

(b1+b2)
+ s2

. (75)

This would suggest a controller with A, B, C given by:

A =
(a21b2 + a22b1)s

a21a
2
2(a21b1β + a22b2β − αb1 − αb2)

(76)

B =
(a21b2 + a22b1)(b1 + b2)

b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a
2
2α− a42α)s

(77)

C =
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)s

(a21b2 + a22b1)2
. (78)

4.4.3 First Cauer canonical form

If we have:

Z(s) = As+
1

Bs+
1

Cs

(79)

Than this is realisable with:

A

B

C

If we write Z(s) as a continued fraction, we obtain:

Z(s) =
(b1 + b2)s

β(a41b1 + a42b2)− α(a21b1 − a22b2)
+ (80)

1
(βa41b1+βa

4
2b2−a21αb1−a22αb2)2s

b1b2(β(a61−a41a22−a21a42+a62)−a41α+2a21a
2
2α−a42α)

+
(βa41b1+βa

4
2b2−a21b1α−a22b2α)a21a22(a21b1β+a22b2β−αb1−αb2)

b1b2(a61β−a41a22β−a21a42β+a62β−a41α+2a21a
2
2α−a42α)s

.

(81)
This leads to the controller with A, B, C given by:

A =
(b1 + b2)

β(a41b1 + a42b2)− α(a21b1 − a22b2)
(82)
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B =
(βa41b1 + βa42b2 − a21αb1 − a22αb2)2

b1b2(β(a61 − a41a22 − a21a42 + a62)− a41α+ 2a21a
2
2α− a42α)

(83)

C =
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)

(βa41b1 + βa42b2 − a21b1α− a22b2α)a21a
2
2(a21b1β + a22b2β − αb1 − αb2)

. (84)

This controller has the same form as the one we found for the first Foster form. It also has the
same A, B, C.

4.4.4 Second Cauer canonical form

We can rewrite z(s) in the form:
1

1

As
+

1

1

Bs
+

1

1

Cs

. (85)

This would imply a controller of this form:

B

CA

With A, B, C given by:

A =
a21b2 + a22b1

a21a
2
2(a21b1β + a22b2β − αb1 − αb2)

(86)

B =
b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a

2
2α− a42α)

(a21b2 + a22b1)2
(87)

C =
(a21b2 + a22b1)(b1 + b2)

b1b2(a61β − a41a22β − a21a42β + a62β − a41α+ 2a21a
2
2α− a42α)

. (88)

4.4.5 Remark

Surprisingly these controllers do not consist of two but do consist of tree elements. One would
expect the minimal controller to have the same amount of elements as the frequency. After all, this
controller should be the minimal one. The found controller in second Foster canonical form is the
same as the controller proposed by C. Bryan in the case c1 < 0, where Ic(t) = c1v

(1) + c2v
(−1)(t).[2]

An explanation could be that for the voltage of two cos, one has always c1 < 0. However more
research is needed before concluding this.
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5 R L C influence with a two frequencies voltage

We did not check condition 2 yet, but we learned that this is the same as having positive coefficients
in the second Cauer form. Say;

V (t) = 100
√

2(cos(t) + cos(2t)). (89)

We make two tables to see the amount of negative numbers in the Cauer form, to study the influence
of R,L and C on when this method works.This method works when we have only positive numbers
for the controller. When R = 1, we have the following amount of negative controller elements;

L=1 0 2 2 3 3
L=0.8 0 2 2 2 3
L=0.6 0 2 2 2 2
L=0.4 0 0 2 2 2
L=0.2 0 0 0 2 2
L=0 0 0 0 0 0

C=0.2 C=0.4 C=0.6 C=0.8 C=1

We do the same for R = 0.2, and obtain:

L=1 0 2 2 2 3
L=0.8 0 3 2 2 2
L=0.6 0 0 3 2 2
L=0.4 0 0 0 3 2
L=0.2 0 0 0 0 0
L=0 0 0 0 0 0

C=0.2 C=0.4 C=0.6 C=0.8 C=1

We can make similar tables for the other controller forms. For the other controllers we see dif-
ferent numbers for the controller elements, but we see the exact same amount of negative numbers
for the controller elements as in the tables above.
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6 Higher frequency voltage

In theory, we can apply the same approach for higher frequency voltage made from cos, however we
will not show this in depth because the coefficients get absurdly large. Say we have a N frequency
voltage input:

V (t) =

N∑
n=1

bn cos(ant). (90)

L[V (t)] = V (s) =

N∑
n=1

bn
s

s2 + a2n
=

∑N
n=1 bnsΠm=1,m6=n(s2 + a2m)

ΠN
n=1(s2 + a2n)

. (91)

V (1)(t) =

N∑
n=1

−bnan sin(ant). (92)

V (3)(t) =

N∑
n=1

bna
3
n sin(ant). (93)

V (5)(t) =

N∑
n=1

−bna5n sin(ant). (94)

... (95)

Ic(t) = αv(1) + βv(3) + γv(5) + · · · + (−1)Nωv(2N−1) (96)

=

N∑
n=1

[(−αanbn + βa3nbn − γa5nbn + · · · + (−1)Nωa2N−1n bn) sin(ant)]. (97)

L[I(t)] = I(s) =

N∑
n=1

[(−αanbn + βa3nbn − γa5nbn + · · · + (−1)Nωa2N−1n bn)
ai

s2 + a2i
] = (98)

ΠN
n=1[

1

s2 + a2n
]·
N∑
n=1

[ai(−αanbn+βa3nbn−γa5nbn+ · · · +(−1)Nωa2N−1n bn)ΠN
m=1,m 6=n(s2+a2m)]. (99)

I(s)

V (s)
=

∑N
n=1[an(−αanbn + βa3nbn − γa5nbn + · · · + (−1)Nωa2N−1n bn)ΠN

m=1,m6=n(s2 + a2m)]∑N
n=1 bnsΠ

N
m=1,m 6=n(s2 + a2m)

.

(100)
Also for this fraction, above are the even powers of s, and under the odd powers of s. We see that
the highest power is 2N + 1. This means the controller needs at least 2N + 1 elements.
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7 R L C influence with a three frequencies voltage

Again we will study the influence of R,L and C on the amount of positive coefficients found for
the elements in the Cauer form. This time we use a 3 frequency voltage given by:

V (t) = 100
√

2(cos(t) + cos(2t) + cos(3t)). (101)

Say R = 1,

L=1 2 4 4 5 5
L=0.8 2 4 4 5 5
L=0.6 2 4 4 4 5
L=0.4 0 2 4 4 4
L=0.2 0 2 2 4 4
L=0 0 0 0 0 0

C=0.2 C=0.4 C=0.6 C=0.8 C=1

Say R = 0.2,

L=1 2 3 4 4 5
L=0.8 2 3 4 4 4
L=0.6 5 2 3 4 4
L=0.4 0 2 4 5 5
L=0.2 0 0 2 2 2
L=0 0 0 0 0 0

C=0.2 C=0.4 C=0.6 C=0.8 C=1

Also here we see for the other controllers different values for the controller elements but the same
amount of negative values for the controller elements as in the tables. It seems the different com-
pensators share the same influence of the R, L and C. Maybe the different controllers are equivalent.
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8 Example

Here we will show the different controllers one can make in the following case:

C = 0.4, L = 0.2, R = 1, (102)

with the voltage:
v(t) = 100 cos(t) + 50 cos(2t) + 10 cos(3t). (103)

The PF without any controller is 0.4989. The optimal PF is 0.8115 The current we want to remove
is

Ic = αv(1) + βv(3) + γv(5) (104)

with;
α = −0.40783, β = −0.042796, γ = −0.00063091. (105)

First we find the transfer function.

Z(s) =
V (s)

Ic(s)
. (106)

V (s) =
100s

s2 + 1
+

50s

s2 + 22
+

10s

s2 + 32
. (107)

I(s) =
36.566

s2 + 1
+

49.347

s2 + 22
+

6.6386

s2 + 32
. (108)

Gives:

Z(s) =
160s5 + 1850s3 + 4090s

92.551s4 + 1002.0s2 + 1787.1
. (109)

8.1 First Foster canonical form

Z(s) as a partial fraction decomposition is:

1.7288s+
0.015383s

s2 + 8.5748
+

1.2568s

s2 + 2.2518
. (110)

Leads to the controller:

1.729

65.01

0.001793

0.7957

0.5581
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8.1.1 PF first Foster form controller

To obtain the improved PF we look for the current in the following circuit. We do this with the
Fourier method.

L2 I2

C3

L3 I3

C4

L4 I4

R1

L1

I1

C1

The equations for this network are:

Vin = I1R1 +
dI1
dt
L1 +

Q1

C1
(111)

dQ1

dt
= I1 (112)

Vin = L2
dI2
dt

+
Q3

C3
+
Q4

C4
(113)

dQ3

dt
= I2 − I3 (114)

dQ4

dt
= I2 − I4 (115)

L3
dI3
dt

=
Q3

C3
(116)

L4
dI4
dt

=
Q4

C4
. (117)

After implementing this in MATLAB we obtain a PF of 0.8115.

8.2 Second Foster canonical form

1/Z(s) as a partial fraction decomposition is:

0.43693

s
+

0.14075s

s2 + 2.9776
+

0.00076498s

s2 + 8.5849
. (118)
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Which leads to the controller:

2.2887

7.104

0.04727

1307

0.000089107

8.2.1 PF second Foster canonical form

To obtain the improved PF we look for the current in the following circuit. We do this with the
Fourier method.

C1

L1

I1

R1
L4

I4

C4

L2

I2

L3

I3

C3

The equations for this network are:

Vin = I1R1 +
dI1
dt
L1 +

Q1

C1
(119)

dQ1

dt
= I1 (120)

Vin = L2
dI2
dt

(121)

Vin = L3
dI3
dt

+
Q3

C3
(122)

dQ3

dt
= I3 (123)

Vin = L4
dI4
dt

+
Q4

C4
(124)

dQ4

dt
= I4. (125)

After implementing these equations in MATLAB we obtain PF= 0.8115.

32



8.3 First Cauer canonical form

Z(s) as a simple continued fraction is:

1.7288s+
1

0.78606s+
1

0.54640s+
1

8.9218s+
1

0.013515s

. (126)

Which leads to the controller:

1.729

0.7861

0.5464

8.922

0.013515

8.3.1 PF first Cauer canonical form

To obtain the improved PF we look for the current in the following circuit. We do this with the
Fourier method.

C1

L1

I1

R1

L2 I2
L4 I4

L6 I6

C3 C5

The equations for this network are:

Vin = I1R1 +
dI1
dt
L1 +

Q1

C1
(127)

dQ1

dt
= I1 (128)

Vin = L2
dI2
dt

+
Q3

C3
(129)

dQ3

dt
= I2 − I4 (130)
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Q3

C3
= L4

dI4
dt

+
Q5

C5
(131)

dQ5

dt
= I4 − I6 (132)

Q5

C5
= L6

dI6
dt
. (133)

After implementing these equations in MATLAB with the Forier method we obtain PF= 0.8115.

8.4 Second Cauer canonical form

Z(s) as a simple continued fraction of 1/s in stead of s is:

0.43693
1

s
+

1

21.116 1
s +

1

0.14119 1
s +

1

26291 1
s +

3066.2
1
s

. (134)

Which leads to the controller:

2.289

0.04736

7.083

0.00003804

3066

8.4.1 PF second Cauer canonical form

To obtain the improved PF we look for the current in the following circuit. We do this with the
Fourier method.
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L2

I2

C3

L4

I4

C5

L6

I6R1

C1

I1

L1

The equations for this network are:

Vin = L1
dI1
dt

+
Q1

C1
+R1I1 (135)

dQ1

dt
= I1 (136)

Vin = L2
dI2
dt

(137)

Vin =
Q3

C3
+ L4

dI4
dt

(138)

dQ3

dt
= I4 + I6 (139)

dQ5

dt
= I6 (140)

Vin = L6
dI6
dt

+
Q3

C3
+
Q5

C5
(141)

After implementing these equations in MATLAB with the Forier method we obtain PF= 0.8115.
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9 Discussion

In this thesis I did not focus on the initial conditions for the elements in the original circuit or in
the controller. However we do know that these can be of importance.
In the example we saw that the values for the different forms differ as well. One could study which
form controller is more efficient from an economical perspective.
By expressing the α and β in R,L and C their influence on the controllers could be studied in more
depth. Personally, I think this will be interesting.
The restriction of only looking at voltage made of multiple cos is a restriction in usefulness. Maybe
the problem without this restriction can be solved by studying the characteristics of positive real
functions in depth. One could also study the problem with a different characteristic of positive real.
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10 Conclusion

In cases that the voltage source is made of multiple cos’s and we can compensate the current, it is
always possible with the first Cauer form.
This is caused by the shape of the found transfer function Z(s). This transfer function is a fraction
where the odd powers of s are in the numerator, while in the denominator are only even powers
of s. In this way the conditions 1 and 3 in chapter 4.2 are satisfied. For this special type of Z(s)
satisfying condition 2, is having positive coefficients in the First Cauer form, hence the conclusion.
In the tables in this thesis, it seems that when the first Cauer form works, the other forms are
working as well.
It seems that the method used in this thesis to find a controller only works for small R, L and C.
In the example the improved PF is optimal, like one would expect.
I conclude that the method used in this thesis is working fine.
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