Reinforcement Learning based
Fnergy Management System
for Smart Buildings

Reinforcement Learning
based Energy Management
System for Smart Buildings

by

Nick van den Bovenkamp

Student number: 4376226

Thesis committee: Dr. ing. J.L.(Jose) Rueda Torres, TU Delft, Chair
Dr. PP. (Pedro) Vergara Barrios, TU Delft, Supervisor
Dr. L. (Luciano) Cavalcante Siebert, TU Delft

This thesis is confidential and cannot be made public until March 7th 2022. The work in this thesis will be
submitted as a scientific paper to the to the ISGT Europe 2022 conference.

An electronic version of this thesis is available at: http://repository.tudelft.nl/.

]
TUDelft SUNROCK

http://repository.tudelft.nl/

Abstract

Smart buildings, including photovoltaic (PV) generation, controllable electricity consumption, and a battery
energy storage system, are expected to fulfill a crucial role in balancing out supply and demand in future
power systems. Energy management systems (EMS) present in these smart buildings control the operation
of these various components. Achieving an optimal dynamic control strategy is still challenging due to the
stochastic nature of PV generation, electricity consumption patterns, and market prices. Hence, this research
developed an EMS that minimizes day-ahead electricity costs based on reinforcement learning (RL) with
linear function approximation. The proposed Q-learning with tile coding (QLTC) EMS is compared to the
solutions found by the deterministic mixed-integer linear programming (MILP) model, which is needed to
validate if the proposed approach reaches good-quality solutions. Furthermore, the QLTC’s generalization ca-
pabilities are evaluated, a missing feature in literate. A case study on an industrial manufacturing company
in the Netherlands with historical electricity consumption, PV generation, and wholesale electricity prices
is carried out to examine the QLTC EMS’s performance. The results show that the QLTC’s returns conver-
gence consistently to the MILP’s negative electricity costs, indicating that the QLTC reaches a good-quality
control policy. The EMS effectively adjusts its power consumption to favorable price moments during one
week of operation, where the electricity costs made by the QLTC comes 99% close to MILP’s electricity costs.
Furthermore, the results demonstrate that the QLTC approach can deploy a decent control policy without
encountering the exact day of data by generalizing on previously learned control policies. On average, it can
deploy a control policy of 80% near the MILP’s optimum on a test week after being trained for 85 days of data.

iii

Preface

This thesis report is the result of my research project at Sunrock Investments BV. Writing my thesis at Sunrock
gave me the opportunity to work with highly motivated people that want to bring innovative ideas to market
to accelerate the energy transition. Being surrounded by colleagues was really enjoyable and also helped me
to get not entirely stuck on my thesis island, which was fairly easy in times of lockdowns and restrictions due
to the COVID pandemic. I am glad that I will continue to work on a clean energy future at Sunrock after my
thesis.

When starting this research the concept of reinforcement learning was completely new to me. The first
months were overwhelming in the sense of all the different approaches out there. When getting more familiar
with the concept I started to see the potential it has and I really began to enjoy working on this topic.

First of all, I want to thank my supervisor Dr. Pedro P. Vergara Barrios for his outstanding guidance
throughout this thesis project. I can myself lucky by having weekly meetings getting his valuable feedback
and recommendations. I also want to thank Mauricio Salazar for his advice during the development of the
algorithm, especially for noting the bug in the tile coding software package. Moreover, I want to thank Noud
Jaspers for his support in getting familiar with the Python programming language and for the help within
Sunrock. I would also express my gratitude to Dr. ing. Jose Rueda Torres and Dr. Luciano Cavalcante Siebert
for their feedback and for being part of my thesis committee. Lastly, I want to thank my family, friends and
girlfriend for their support throughout my student days at Delft University of Technology.

Nick van den Bovenkamp
Amsterdam, March 7, 2022

Nomenclature

1

Introduction

1.1 Reinforcement Learning and Function Approximation
1.2 Objective and Research Question.
1.3 ThesisOutline

State-of-the-Art

2.1 EnergyarbitragewithaBESS
2.2 Energy management with a BESS and non-controllableloads
2.3 Energy management with a BESS, non-controllable loads, and VRESs . .
2.4 Energy management with a BESS, controllable loads, and VRESs
25 KeyFindings L

Reinforcement Learning Background

3.1 ReinforcementLearning
3.1.1 Markov DecisionProcess.
3.1.2 Policy & Action-value Function
3.1.3 Explorationvs. Exploitation
3.1.4 Model-free Reinforcement Learning
3.1.5 Q-learning.

3.2 Function Approximation
321 TileCoding.« . e

Methodology

4.1 ResourcesandTools
4.2 SystemLayout 0
4.2.1 ControllableLoads.,
4.2.2 Battery Energy Storage Systems L.
4.3 Proposed Algorithm: Q-learning with Tile Coding.
4.3.1 BoundaryConditions
4.3.2 State Space & ActionSpace.
433 RewardFunction.
434 TileCoding. L
4.3.5 Pseudocodes Learning and Deployment.
4.4 Mathematical Optimization.

Case Study

5.1 Data Sets, Variables, and Hyperparameters
5.1.1 EPEXSPOT Day-Ahead Market.
5.1.2 Electricity Consumption.
5.1.3 PVGeneration. e e
5.1.4 BESS. e e

5.2 Training & Hyperparamter settings
5.2.1 Evaluationmethods
5.2.2 Training, Validation & TestSets.
5.2.3 Hpyperparameter Settings

53 Results e e e e

5.3.1 Convergence and Operational Performance on the Validation Set

5.3.2 Convergence and Generalization on the Trainingset.
54 Discussion L Ll e e e

vii

Contents

viii Contents

6 Conclusion & Recommendations 35
6.1 Conclusion e e e e e e e e e e e 35
6.1.1 Answerstothesub-questions L L o 35

6.1.2 Answer to the mainresearchquestion 36

6.2 Recommendations e e e e e e 37

A Appendix A: Case Study 43
B Appendix B: Validation Set Convergence 47

C Appendix C: Test Set Convergence 51

2.1
3.1
3.2

4.1
4.2

5.1
5.2
5.3

5.4
5.5

5.6

5.7

5.8

5.9

Al

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Cl1

List of Figures

Encountered electricity market prices. L 6
Markov decision process agent-environment interaction schematic. 10
The Q-value function approximation for a two-dimensional state space under different tile cod-

ing settings and an identicalresolution. L L L L o 12
The energy management system’s layout and its components. 14

The 20 episodes moving average return with 95% confidence interval of the R % reward signal for
five repetitive simulations on a single day under different reward functions where (a) contains
the complete policy of the classical reward function, (b) the complete policy of the proposed
reward function, (c) the greedy policy of the classical reward function, and (d) the greedy policy
of the proposed reward function. e 18

The average EPEX SPOT settlement prices, wholesale natural gas price, and electricity con-

sumption of Company X by month for 2019and 2020. 22
Company X’s average power consumption and its minimum and maximum deviation for each

dayoftheweekbyseason. L 22
Flowchart for the QLTC training process with two training days and one testday. 25
Performance under different step-size and e-greedy decay hyperparameter settings. 25

The negative costs reached by the MILP model and the QLTC’s 20 episodes moving average
return with 95% confidence interval of the R} reward signal for 20 repetitive simulations on the
first day of the validation set, where (a) contains the complete policy, and (b) the greedy policy. 26
The BESS and CD operation for the learned and directly deployed policy on the validation set.
(a) Consumption, PV generation, net consumption, grid consumption, and electricity price. (b)
BESS, CD, and electricity price. (c) BESS SOC compared to the MILP optimum. (d) Controllable
demand shifted compared to the MILPoptimum. 27
The QLTC's 20 episodes moving average return with 95% confidence interval of the R} reward
signal for five repetitive simulations on the first three days of the test set expressed in the
measure, where (a) contains the complete policy, and (b) the greedy policy. 29
BESS and CD operation for the test set. (a) Consumption, PV generation, net consumption, grid
consumption, and electricity price. (b) BESS, CD, and electricity price. (c) BESS SOC compared

to the MILP control strategy. (d) CD shifted compared to the MILP control strategy. 30
The n measure throughout the training process for an increasing number of tiles for the relative
pricestate variable. L. e 31

The 20 episodes moving average return with 95% confidence interval of the R% reward signal for
five repetitive simulations on a single day under different reward functions where (a) contains
the complete policy of the classical reward function, (b) the complete policy of the proposed
reward function, (c) the greedy policy of the classical reward function, and (d) the greedy policy

of the proposedreward function. e 43
Validation set near optimum convergencefor 1July. 47
Validation set near optimum convergencefor2July. 48
Validation set near optimum convergencefor3July. 48
Validation set near optimum convergencefor4July. 49
Validation set near optimum convergencefor5July. 49
Validation set near optimum convergence for6July. 50
Validation set near optimum convergencefor 7July. 50
Training set near optimum convergence for tile settings: [24,10,20,3,10] and [24,10,20,3,15].. . . 52

List of Figures

C.2 Training set near optimum convergence for tile settings: [24,10,20,3,20] and [24,10,20,3,25] . . . 53
C.3 Training set near optimum convergence for tile settings: [24,10,20,3,30]. 54

2.1

5.1
5.2
5.3
5.4

Al

List of Tables

Revenue for different charge strategy scenarios. 6
Single unit battery specifications. L 23
Summary - variables and hyperparameter settings 26
Electricity costs of the QLTC compared to the MILP optimum and a zero output control policy. . 28

The day specific and average nn measure for the test set under different tile hyperparameter set-
tings after completing a training sessionof85days. L L L oL 32

Incident irradiation in 2019,2020,2021 on average in the Netherlands. 44

Nomenclature

Abbreviations

ANN artificial neural network.

BESS battery energy storage system.

CD controllable demand.

CPP critical peak pricing.

DAM day-ahead market.

DDQN Dueling Deep Q-Network.

DL deep learning.

DNN deep neural network.

DOD depth of discharge.

DP dynamic programming.

DQN deep Q-network.

DR demand response.

DRL deep reinforcement learning.

EMS energy management system.

EPEX European Power Exchange.

ESS energy storage system.

EWH electric water heater.

HVAC heating, ventilation, and air-conditioning.

IHT index hash table.

MC Monte Carlo.

MDP Markov decision process.

MILP mixed-integer linear programming.

NN-DDQN NoisyNet-double deep Q-network.

PV photovoltaics.

QLTC Q-learning with tile coding.

RBF radial basis function.

RL reinforcement learning.

RTP real-time pricing.

SOC state of charge.

TD temporal-difference.

TD3 twin delayed deep deterministic policy gradient.

TOU time-of-use.

VRES variable renewable energy source.
Symbols

S Set of states or state space.

A(s) Set of actions or action space.

R Set of rewards.

xiii

Xiv

Symbols

p(s'ls, a)

St

Ay

Ry

Gy

b4
n(als)
IET[
Qr(s,a)
Q«(s,a)

€
A
a
W, Wi
7}
Q(s, a,w)
x(s,a)
m
n
P
G .
min
pyY
PP
peb

CD
Pmax

APEP
PP
Plrg;mx
EB

SOC;

SOCmin’ Socmax

C

State-transition probability function.

Discount factor hyperparameter.

A state, and a next state.

An action.

A reward.

Discrete time step.

State at time step .

Action at time step .

Reward at time step .

Return following time ¢.

Policy.

Stochastic policy for the probability of taking action a in state s.
Expected value of a random variable following policy 7.
Q-value function of taking action a in state s under policy 7.
Q-value function of taking action a in state s under the optimal
policy.

Probability of taking a random action.

e-greedy decay hyperparameter.

Step-size hyperparameter.

Weight vector, and the ith component of weight vector.
Dimensionality of weight vector w.

Approximate action-value function of a given weight vector w.
Feature vector for taking action a in state s.

Number of tiles.

Number of tilings.

Power taken from the grid at time step ¢.

Minimum allowable power transfer over the line..

Power generation of the PV system at time step .

Power demand at time step t.

Controllable power demand at time step .

Maximum controllable power demand.

Shifted controllable power demand at time step .

Power output of the BESS at time step .

Maximum power input and output of the BESS.

Total capacity of the BESS.

SOC of the BESS at time step .

Minimum and maximum SOC of the BESS.

Electricity costs.

Introduction

Greenhouse gas emissions need to drop significantly in the coming decades to avoid surpassing critical ir-
reversible tipping points in the race against global warming. Accelerated deployment of renewable energy
sources, electrification, and energy storage are the key components to achieve large amounts of CO, emis-
sion reduction [1]. These key components force a massive change in the current energy systems. According
to simulations performed by LUT University [2], Europe’s 100% renewable energy systems by 2050 will pri-
marily rely on solar photovoltaics (PV) as variable renewable energy source (VRES). Furthermore, they state
that batteries will perform up to 98% of all electricity storage. Combined with intelligent energy manage-
ment, these battery energy storage system (BESS) are essential to handle the variability and uncertainty of
high penetration of VRESs [3].

Smart buildings incorporating these BESS, and local PV generation, are expected to play a more critical
role in future energy systems [4]. In combination with intelligent devices, electrification enables buildings to
control a larger share of their electricity demand, making them even more suited to participate in demand
response (DR) programs [5]. These DR programs stimulate short-term changes in participants consumption
patterns to induce shedding or shifting loads to a different time [6-8]. This can improve the power system’s re-
liability and prevent rise in electricity prices. Typically, these DR signal are offered by utilities when wholesale
electricity price becomes high or when system reliability is at risk . According to [7], these DR programs can
be categorized in incentive-based and price-based programs. Incentive-based DR programs offer incentive
payments to electricity consumers to change their power demand in times of extreme market prices or when
the system reliability is at risk [9], in the form of direct load control, interruptible curtailment, or a combina-
tion of those two in a market-based form [10]. These incentive-based DR programs are less suitable for small
energy consumers since individual contracts between utilities and consumers must be in place. Establishing
these contracts for only a slight power reduction is not beneficial. Therefore, price-based DR programs are
more suited for smaller electricity consumers. These price-based DR programs motivate consumers to adapt
their electricity consumption by offering time-varying prices, e.g., time-of-use (TOU) rates, critical peak pric-
ing (CPP), and real-time pricing (RTP) [11], [12]. TOU and CPP have predetermined static prices, while RTP
programs forward the hourly wholesale market prices directly to the customer [10], [7]. The time-varying
prices persuade stabilizing consumer behavior that can balance out surplusses or deficits of power, or when
reflected accordingly, they can also relieve grid congestion [8]. This study focuses on an RTP DR, where the
consumer receives day-ahead market (DAM) prices. The consumer, i.e., the smart building, has to pay the
wholesale electricity price times their aggregated grid demand, which includes the power demand, PV gener-
ation, and BESS and power demand. The smart building will benefit from participating in the DR programs
by receiving lower energy bills if controlled accordingly.

An intelligent energy management system (EMS) can determine energy management control strategies
within smart buildings. Energy management involves the planning and the operation of energy resources
associated with the balance of energy generation and consumption, trying to conserve resources and achieve
energy cost savings [13]. Finding an dynamic control strategy remains a challenge due to the stochastic na-
ture of power consumption, weather-dependent PV generation, and electricity prices. Popular mathematical
optimization methods like mixed-integer linear programming (MILP) and stochastic programming can find

2 1. Introduction

optimal energy management strategies. However, these methods lack or find it hard to acquire a detailed dis-
tribution of uncertainties, particularly if these uncertainties are intertwined [14]. Besides that, mathematical
optimization methods do not scale well. Their computational burden increases rapidly if the problem grows
in complexity, e.g., more sophisticated system dynamics or more decision variables. They require significant
problem simplifications to make them applicable. Another disadvantage is that the entire computational
process needs to be executed if there is a change in input variables. Forecasts set-points, especially weather-
dependent VRES generation forecasts, frequently change throughout the day. Performing the complete opti-
mization for each forecast update makes the computational burden even bigger. Moreover, if a computation
takes several minutes, it becomes impossible for the EMS to react in time, making them unsuitable for real-
world applications. Adaptable, fast reacting, and dynamic optimization methods can offer solutions for the
above-stated obstacles mathematical optimization methods encounter.

Reinforcement learning (RL) is a dynamic data-driven approach for solving stochastic optimization prob-
lems that either is model-based or model-free. Model-based RL methods such as dynamic programming (DP)
determine control policies by considering future situations based on assumptions made on a detailed model
of environment’s dynamics [15]. However, developing an accurate and detailed model is often challenging
and time-consuming, demonstrated by [16], [17], [18]. Model-free RL methods forego the need for a model
that describes the system’s dynamics. Instead, they learn the dynamics and the control policy by interacting
with the environment. The absence of a model is an outstanding advantage since model-free approaches
can also capture complicated dynamics that are hard to model. Furthermore, the model-free character gives
them great self-adaptability since they can adapt to changing dynamics [19]. Moreover, a well-trained model-
free algorithm can react instantly to changes instead of performing calculations, making them perform well
in stochastic environments [20]. Due to these advantages and the astonishing performances achieved by RL
methods, the current trend in energy management optimization is RL [21].

1.1. Reinforcement Learning and Function Approximation

RL is an optimization method that learns a control policy by interacting with the environment, mathemati-
cally modeled as an Markov decision process (MDP). The RL agent tries to measure how good a sequential
decision is for each possible state-action pair by a so-called Q-value and stores them in a large table. If the
number of state-action pairs becomes very large, it becomes infeasible to store all possible Q-values in a table,
also known as the curse of dimensionality. A solution for this problem is to approximate the Q-values with a
set of complex parametric or non-parametric functions. This function approximation technique is also used
by supervised learning methods, another machine learning paradigm. In the early days of RL mostly lin-
ear function approximation methods were used [22], [23]. Later, by the advancements and breakthroughs of
non-linear supervised learning methods the interest shifted towards applying those methods to RL. Mnih et
al. introduced a new paradigm called deep reinforcement learning (DRL) that firstly successfully combined
non-linear deep learning (DL) with RL. They achieved outstanding performance on playing Atari videogames
[24], [25] by storing the approximate Q-values in a non-linear deep Q-network (DQN).

Since this breakthrough, DRL and DQN’s are frequently used for solving energy management problems.
For instance, [19] and [26] both applied a DQN for deploying an operation strategy of a BESS. Energy man-
agement studies for a BESS, a load and optionally a VRES also used a DQN for function approximation [14],
[27-31]. These studies demonstrate that DRL methods can achieve good performing control policies on the
studied task. However, their experiments show that these DRL methods have stability concerns. Moreover,
their performance is highly sensitive to the hyperparameter settings, remarked by [19], [26], [27]. Therefore,
these algorithms need extensive, time-consuming hyperparameter grid search to achieve stable performance
across multiple training sessions. In [32] and [33] they show that the linear function approximation method
tile coding is also effective for approximating Q-values. Good performance on an energy management task
is also achieved by [34] using a radial basis function for function approximation. In general, these linear
function approximation methods have less powerful generalization capabilities than the non-linear DQNs.
However, when looking at return convergence, the linear methods have better convergence guarantees than
DQNs [35]. For small optimization problems, convergence is guaranteed with linear function approximation,
while convergence for non-linear methods is not. Convergence guarantees are prioritized over powerful gen-
eralization since applicable generalization is useless without convergence to good-quality solutions. Another
advantage is that their linear behavior is far more transparent than these non-linear function approximation
methods, making these methods more favorable from a debugging and engineering point of view.

1.2. Objective and Research Question 3

Typically, studies evaluate the performance of RL algorithms by how well the agent performs on its trained
task. This is done by training on a particular data set and then deploying the learned policy on the same data
set. Next, they show the return convergence and the achieved power adjustments. However, these state-of-
the-art studies lack to evaluate the generalization of their proposed approach. This study aims to fill this gap
and test the proposed approach on its generalization capabilities.

1.2. Objective and Research Question

This research aims to develop an EMS that minimizes the electricity costs for a smart building, using RL
with linear function approximation. The energy management optimization problem consists of an electricity
consumer with controllable loads, solar PV generation, and a BESS. The research question derived from the
research goal is the following:

How to design a reinforcement learning based energy management system for cost minimized operation
of a smart building equipped with solar PV, battery storage, and controllable loads?

Six sub-questions are defined to assist in answering the main research question.

1. What type of RL approaches are most suitable and used for solving energy management problems
based on the state-of-the-art?

2. How can the linear function approximating tile coding be implemented in the energy management
problem to solve the curse of dimensionality?

3. How to model an RL-based EMS with aload and a BESS?
4. How can solar PV generation be added to the RL EMS efficiently?

5. What is the customer-dependent controllable electricity demand, and how can this controllable de-
mand effectively be modeled in RL?

6. What is the performance of the RL-based EMS when compared to MILP in a market-size case study?

These sub-questions are stated in this specific order to support the design and evaluation process of the
smart building’s RL-based EMS. First, by investigating the most suitable and used RL approaches for energy
management problems. Other related problems are also examined during this study to take learnings and in-
sights from. Second, by studying the implementation of the intended linear function approximation method
in more detail. Third, developing a smaller EMS model with only a BESS and non-controllable power demand
as energy resources. Fourth, by adding the PV generation to the EMS model considering the findings from
the literature study. Fifth, by investigating the customer-dependent controllable electricity demand and de-
signing a scalable implementation strategy. Sixth, by comparing the fully developed RL-based EMS to a MILP
model in a market-size case study. The MILP optimization model will be developed for evaluating the ef-
fectiveness and performance of the proposed EMS. This MILP is needed to evaluate the return convergence,
control strategy, electricity costs, and generalization.

When the consecutive sub-questions are answered this research will have the following contributions:

* An EMS for a smart building equipped with solar PV, battery storage, and controllable loads that can
learn an effective control policy for the BESS and controllable demand that minimizes the day-ahead
market electricity costs based on RL with linear function approximation. The proposed approach in-
cludes a reward function design for fast convergence and a clever state space design for effective gen-
eralization.

* A novel testing procedure for RL methods with function approximation that evaluates the generaliza-
tion capabilities of these methods. In current literature, RL methods with function approximation are
not tested on generalization.

1.3. Thesis Outline

This thesis is organized as follows. The first chapter presented the relevance, motivation, research objective,
research questions, and sub-questions. Chapter 2 dives into prior research that applied RL to energy man-
agement problems or related problems. Following a chapter about the theoretical background of RL. Chapter
4 describes the design of the proposed algorithm by this research. Chapter 5 shows the performance of the

4 1. Introduction

proposed algorithm in a case study, including an analysis of the data set, component sizing, hyperparameter
tuning, proof of convergence, and proof of generalization. The last chapter summarizes the key finding and
conclusion and provides recommendations for future research.

State-of-the-Art

This chapter discusses state-of-the-art model-free RL approaches for solving energy management, demand
response, and energy arbitrage problems. The literature review tries to point out the main research gap in
state-of-the-art papers. Furthermore, this chapter aims to answer partially or completely the first, third,
fourth and fifth sub-question.

Studies are categorized based on the energy resources present in the energy management problem or the
type of problem they try to solve. A requisite is that all studies try to minimize electricity costs or maximize
profits based on market prices. When examining the various RL approaches used in literature, this study puts
extra emphasis on the following aspects:

1. The type of RL approach and function approximation method.
2. The state space and action space design.

3. The reward function design.
4

. Hyperparameter tuning and stability of the algorithm.

The first section reviews papers about energy arbitrage with solely a BESS. The second section discusses
studies where a BESS combined with a load is used for energy management to minimize the consumer’s
electricity costs. Third, literature is reviewed where a VRES, a BESS and a non-controllable load is present
in the system. The findings in this section are compared to the findings in the second section to assist in
answering the fourth research sub-question: How can solar PV generation be added to the RL EMS efficiently?
The fourth section discusses how RL is applied to demand response problems. First, by analyzing studies
with only controllable loads. Second, by considering the entire energy management problem, consisting of,
a BESS, VRES, and a controllable load.

This review assumes that if a study considers an energy storage system (ESS) a BESS is suited to operate
as ESS.

2.1. Energy arbitrage with a BESS

This literature review starts by examining studies that solely focus on a BESS. Since these battery systems
operate independently, they do not deliver any energy management services to electricity consumers. They
gain economic value by performing energy arbitrage. When performing energy arbitrage the BESS makes
use of the price difference between moments throughout the day. They try to earn a profit by buying energy
at low price moments and selling power back to the grid at high price moments. Energy arbitrage offers a
grid stabilizing effect since they help balance out demand and supply by trading energy. In that sense, they
provide the same stabilizing and congestion relieving service as the price-based DR programs.

Due to the groundbreaking performance of Google’s Deep minds DQN algorithm in playing Atari video
games [24], [25], the research and interest in applying DRL to other optimization problems proliferated. Sev-
eral studies applied the same DRL technique to energy arbitrage problems. [26] used an identical DQN for ap-
proximating the Q-values as the Deep mind researchers did. This technique stores the approximate Q-values
in a convolutional deep neural network (DNN), a non-linear artificial neural network (ANN) with more than

6 2. State-of-the-Art

three layers [36]. These DQNs enable RL agents to handle large state spaces and capture non-linear behavior.
The energy arbitrage study used four variables in their state space: the SOC of the BESS, the market price, the
hour of the day, and the average electricity price. Another study uses a more advanced variant of a DQN, to
store the approximate Q-values, an NoisyNet-double deep Q-network (NN-DDQN) [19]. This study only uses
two state variables, the electricity price and the SOC of the BESS. It is worth mentioning that both designs
have stability concerns and that the hyperparameter selection highly influences their performance. Another
element that both approaches have in common is the way they model the set of actions. They discretized the
BESS’s power output by dividing the maximum charge and discharge rate into intermediate steps. Then the
total length of the discrete action set becomes an odd number, for example a set of 5 actions: A = {—P,?mx,
-0.5P8 ., 0,-0.5P5 , PB 1 Where PE isthe maximum charge rate of the battery.

Another way of modeling the action space is by creating a discrete action set of A = {-P5__ 0, P3 .}
where intermediate discrete charge steps are not present[37], [38]. The agents outputs the maximum amount
of power possible, described by: P . = min{P2, , AEB/At}. Where AE® is the available energy in the
battery in kWh and At the time between each time step in hours.

Modeling the action space without intermediate steps results in a smaller action space than if interme-
diate steps are present. Learning time decreases since the agent has to explore fewer possible actions and
reach a (sub)optimal charging strategy sooner. However, this comes with a trade-off. The agent may not able
to choose the best charging strategy.

Scenario Charge strategy Revenue (€)

20 «—I 1 0.51+0.301 17.5

15 4 2 0.5071 +0.30% 17
10 3 0.30%p + 0.501 18.5

f

Electricity price (€/MWh)

%)

Time (hours)

Table 2.1: Revenue for different charge strategy sce-
Figure 2.1: Encountered electricity market prices. narios.

Consider a fully charged 1 MWh battery of 0.5C and 80% depth of discharge (DOD) encountering the
three highest price moments of the day. At maximum discharge rate, a battery of 0.5C can discharge 50% of
its battery capacity in 1 hour. The most favorable charge strategy would be to release power at the maximum
charge rate at the highest price moment and deliver the other 30% at the second-highest price moment.
Figure 2.1 shows that this optimal charge strategy is impossible for the given prices when no intermediate
charge steps are present. The first discharge step is always at the maximum discharge rate, and the second
is at a 60% discharge rate, described by scenarios 1 & 2 in Table 2.1. Scenario 3, the optimal charge strategy,
cannot be achieved by an action space design without intermediate charge steps. In conclusion, an action
space design with intermediate charge steps is favorable over the one without intermediate steps.

Wang and Zhang [37] used tabular Q-learning to solve an energy arbitrage problem in real-time markets.
They tackled the curse of dimensionality by rounding off state values, also known as state aggregation. In their
study they introduce a more effective reward function design that has faster convergence than the standard
r; = —e;PBAt. Their new reward function subtracts the moving average electricity price, denoted with e,
from the current electricity price e;, as shown in (2.1). It reinforces the principle of energy arbitrage: charging
below-average prices and discharging above-average prices. For example, if the electricity price is lower than
the average price (e; <€), charging will gain a positive reward signal, and discharging yields a negative reward
signal. Vice versa, if electricity prices are above average (e; > €;), charging and discharging are rewarded
negatively and positively, respectively. In short, good behavior gets rewarded positively and bad behavior
negatively. Their results show that this new reward function outperforms the regular reward function by
obtaining higher return rates over time.

re=—(e;—e,)P? = (e, —e,) PP @2.1)

2.2. Energy management with a BESS and non-controllable loads
[27] and [28] solve an energy management problem for a BESS combined with aload. That is why both studies
construct a reward function where the electricity price times the energy taken from the grid is minimized. The

2.3. Energy management with a BESS, non-controllable loads, and VRESs 7

power taken from the grid is the aggregated load and battery consumption.
re=—ePCAL 2.2)

Both studies solve the problem by applying DRL, an actor-critic method combined with a DQN. These
Actor-critic methods do not directly derive their policy from a value function. The actor learns a policy by
using policy gradient techniques. The critic’s role is to evaluate the policy derived by the actor. The actor uses
the estimate of the expected return derived from the critic to select gradients with a lower variance.

Another study applies an even more advanced twin delayed deep deterministic policy gradient (TD3)
algorithm [27], introduced first by [39]. It consists of four neural networks: the actor, critic, primary, and
target. The more advanced actor-critic algorithm does not generate better results. Their experiments show
that the TD3 is sensitive to changes in hyperparameter and exploration settings. Extensive hyperparameter
grid search is needed to achieve stable performance across multiple training sessions.

2.3. Energy management with a BESS, non-controllable loads, and VRESs
This section discusses studies considering a BESS, power demand by one or several loads, and production
by VRES. It aims to give insights into how PV power generation can be added efficiently to the simplified
EMS model, hence trying to assist in answering the third sub-question. Therefore, this section will frequently
compare the discussed studies with studies from section 2.1.

Since the VRES are not considered controllable, it should not impact the action space of the RL problem.
The classical reward function is still Equation (2.2) because the EMS’s goal to minimize electricity costs based
on grid consumption and electricity market price has not changed. However, the underlying power balance
of the system changes and, therefore, impacts how the grid demand is determined. The other earlier defined
aspects change throughout literature.

As for the previously discussed energy management problems a DQN is frequently applied for function
approximation. A Dueling Deep Q-Network (DDQN) is proposed by [30] for the operation of a community
BESS. [29] compares DQN variant to their proposed rainbow method that uses features from different DQN
methods to improve the stability of the learning process. Also for energy management in a microgrid, an
RL model uses a DQN [31]. Another study does not use a DQN, but a more basic type of ANN. They use a
multi-layer perception network, which is a feed-forward ANN, for function approximation [40].

While the function approximation methods do not vary greatly for these studies, the number of state
variables does. Two studies proposed a three-dimensional state space. [30] does not consider the power
produced or consumed as state variables. It only uses the current time step, the state of charge (SOC), and
the electricity price. The other studies mentioned above do consider the power consumed or generated in the
system. Moreover, they also include the SOC of the BESS. Strangely, [40] does not consider the current time
step, which makes planning very hard, especially when the time-dependent electricity price is not present as
a state variable.

In [31] and [29] are up to eight state variables present. They consider the power produced and consumed,
the SOC, and the current time step for [31]. [29] ads the electricity price, the number of the week, and if it is
a workday or not to the state space. Adding a day and week-specific variable makes it harder for the agent to
generalize because it also has to detect relationships between this variable and others. The results show that
the last-mentioned algorithm cannot perform consistently close to the linear programming model.

2.4. Energy management with a BESS, controllable loads, and VRESs
This section discusses energy management studies that utilize the same energy resources as considered en-
ergy management problem in this study. Studies that use a controllable generator instead of controllable
loads are also analyzed. The way they model could be an inspiration for modeling a controllable load.

One paper proposes an energy management system for residential demand response using Q-learning
and Fuzzy Reasoning [41]. The authors use state aggregation to approximate the Q-value, where the state
variables are modeled as low, average, or high. User feedback is integrated into the reward function using
fuzzy reasoning control logic. The Q-learning agent reschedules the operation of smart home appliances by
shifting controllable loads from high price moments to low price moments. It can either do nothing, fill valley
(increase demand), or shift (lowering demand).

8 2. State-of-the-Art

The first study tries to minimize electricity costs and maximize comfort levels for a building owner with a
DQN [14]. It considers a BESS, PV, a base load, and several extensive modeled controllable loads: an electric
water heater, several electric vehicles, and a heating, ventilation, and air-conditioning system. These systems
do have one to three variables present in the state space. For example, the SOC of the electric vehicle needs
to be known and the water temperature of the water reservoir for the electric water heater. Having to know
all these data makes the algorithm not very scalable. The action space has binary outputs; it can be either full
power or off. The controllable loads cannot produce twice as much power output to make up for the lowered
power output during other time steps, which is necessary to keep the total power consumption over one day
the same as when DR is not applied. Another downside of this binary action space is one value for charging
and one value for discharging the BESS. Charging and discharging could be switched on simultaneously,
which is impossible in real life.

Another study uses cooperative reinforcement learning to optimize the economic dispatch in a microgrid,
consisting of a BESS, a load, PV, and a diesel generator. The action space consists of discrete power outputs
from the battery and the diesel generator. Most algorithms use ANNs to store the Q-values, while this study
uses a bell-shaped Gaussian radial basis function (RBF) linear function approximation method. A Gaussian
RBF uses the same principles as tile coding, where an update in one state also affects neighboring states. A
significant difference is that their features are a continuous value between 0 and 1 instead of binary values.

The BESS agent and the diesel generator agent have a trinary and binary action space. According to [42],
the stochastic and high dimension microgrid environment leads to too low learning efficiencies. That is why
they propose a multi-agent architecture that runs several sub-Q-learning optimizations simultaneously to
reduce complexity and stochasticity. This algorithm divides each state variable into three possible levels: low,
medium, or high. Then only the relevant states are presented to each agent by the service agent.

2.5. Key Findings
The most significant findings of this state-of-the-art literature review are given down below. These findings
assist in answering three of the previously defined sub-questions.

* Q-learning in combination with function approximation is the most frequently used RL method for
solving energy management problems. Studies have proven its effectiveness and suitability for sequen-
tial decision-making. Even the more advanced actor-critic methods use the TD error update principle.

* Most studies use DRL or other non-linear function approximation methods. Linear methods are barely
used in recent literature while [34] shows it can achieve good performance in an energy management
problem. Linear function approximation methods generally have less powerful generalization capa-
bilities than ANNs. However, their convergence is stronger and can even be guaranteed for small op-
timization problems. Moreover, their behavior is far more transparent than these non-linear function
approximation methods, making them more favorable from a debugging and engineering point of view.
Several studies highlight that DRL methods are hard to tune. They state that finding optimal hyperpa-
rameter settings takes a significant amount of time, and stable learning is hard to obtain.

» The discrete set of actions for the BESS appears with and without intermediate steps. Section 2.1 shows
that a discrete action set with intermediate charge steps is favorable over the discrete action set without
intermediate charge steps.

¢ Every study analyzed in this literature review models DR as a binary on/off variable. If multiple con-
trollable units are present, the binary DR variable becomes part of the action space. In some studies,
they use multi-agent reinforcement learning to solve the problem.

» State-space design frequently differs for the same type of energy management problems. Most studies
do not argue why they add certain variables to the state space while the number of variables impacts
convergence and generalization capabilities. Most studies add PV generation as a variable to the state
space if PV generation is present in energy management problems. Hence, the agent can consider the
panels’ power output in the decision-making process.

¢ Reward function design influences the performance of the algorithm. Subtracting the average elec-
tricity price from the electricity price at that time step improves the return convergence and decreases
learning time for energy arbitrage problems, as shown in [37].

Reinforcement Learning Background

This chapter, divided into two main sections, provides theoretical background information on RL. The first
section discusses the characteristics of RL, introduces the MDP framework with its additional features, and
highlights the model-free off-policy approach Q-learning. The second section explains function approxima-
tion methods’ necessity and working principles, including the tile coding approach applied in this study.

3.1. Reinforcement Learning

RL is part of the machine learning family, which are computer programs that learn from data. Besides RL,
there are two other categories within machine learning: supervised and unsupervised learning. Supervised
learning, the primary researched type of machine learning, tries to learn a function that maps an input to
output by training on a set of labeled examples [43]. Unsupervised learning tries to find structures hidden
in collections of unlabeled data. RL learns by interacting with the environment and is classified as a goal-
directed learning approach. Therefore it is the most suited machine learning approach for decision-making
and optimization problems.

RL tries to maximize the cumulative reward by discovering actions that yield the most reward by receiv-
ing positive and negative feedback (i.e., a reward signal) from the environment. This RL interaction process
comes close to trial-and-error learning animals, and humans experience. These reward signals are not al-
ways received immediately. Consequently, an action performed at a particular time impacts future states
and rewards. This delayed reward is the second characteristic of RL. Another distinguishing aspect is the
trade-off between exploration and exploitation. The agent should take high rewarding actions, which it has
tried before, to exploit good behavior, but it should also try other actions to find potentially better behavior.
Unfortunately, the agent cannot do this simultaneously. The agent should gradually favor exploitation over
exploration. However, if the agent exploits too early, it could have missed more favorable actions. Hence,
finding the most optimal pace is still a challenge in RL. Besides the characteristics mentioned above, an RL
algorithm consists of a policy, a reward function, a value function, and optionally a model of the environ-
ment’s dynamics.

3.1.1. Markov Decision Process

RL has a mathematical framework to model the goal-oriented decision-making in the form of a finite MDP,
defined as the five tuple (8, A(s), R, p,y), where § is the state space, A(s) the action space, and R the set of
rewards, which are all finite. Variable p: 8§ x 8§ x A(s) — [0,1] is the state-transition probability function and
describes the environment’s dynamics, given by:

p(s'ls,a) =Pr{S; 1 =5'|S;=s,Ar=a} =) p(s,rls,a) 3.1)
reR
The last variable of the five-tuple is the discount factor y € [0,1]. It determines the contribution of possible
future rewards to the cumulative reward. A smaller number makes the agent more myopic. The agent’s goal
is to maximize the cumulative discounted reward, i.e., the return G;, following:

10 3. Reinforcement Learning Background

T 00
Gr= Z Yk_[_le = Z Yth+k+1 (3.2)
k=t+1 k=0

Figure 3.1 shows the MDP’s agent-environment interaction process, where the agent is the learner and the
decision-maker, and the environment is everything outside the agent. The agent interacts with the environ-
ment by a sequence of discrete-time steps ¢ = 0,1,2,3,..,etc. First, the agent observes the current state S; € S.
Then, by performing an action at time step ¢, A; € A(s), the environment responses by giving a reward, R,
€ R, and a state, S¢y) . Then the agent transitions to the next state, Sy+; becomes S;, and the obtained state
and reward become R; and S;. This sequence repeats until the agent reaches the final discrete time step. The
sequence from the initial state to the terminal state is called an episode. After performing one episode, the
agent starts at the initial state and repeats the previously described sequence again and again until it reaches
the last episode.

Reward: R¢

Agent

Action: At
State: St+1

Environment

Reward: Rt+1

Figure 3.1: Markov decision process agent-environment interaction schematic.

3.1.2. Policy & Action-value Function

A policy is a mapping function that determines the action selection from a certain state. Symbol = denotes a
policy that an agent can follow. If an agent follows a stochastic policy at time step t, m(als) : § x A(s) — [0,1]
expresses the probability that A; = a if S; = s, where each state s € 8 has a probability distribution over a €
A(s). In case of a deterministic policy the probability distribution gives a probability of 1 for a single action
and zero for all the other. The policy maps from a state s € S to an action a € A(s) with 100% certainty. Hence,
the deterministic policy is denotes as 7(s) : & — A(s).

The action-value function or Q-value function estimates how good a particular action is in a given state
while following policy 7 by estimating the expected return. Where E;; denotes the expected value under 7.

Qn(s,a) =By [Gy|S; =5, A; = a (3.3)

Eventually, in the case of a finite MDBP, the agent finds an optimal policy that yields the highest reward.
The optimal policy, 7., is better or the same as all other policies, which could be more than one policy if
multiple policies are optimal. Nonetheless, they have the same optimal action-value function:

Q+(s,a) = max Qx(s,a) (3.4)

The Bellman equation describes a relationship between the Q-value of a state and the Q-values of the
possible next states. The optimal Bellman equation for the action-value function is given by:

Qu(5,a) = B[R4y +ymaxQ.(Ses1,a)|S1 =5, A = a]
— / / !
=2 p(s,ris,a)[r+ymaxQ.(s',a')] (3.5)

s',r

3.1. Reinforcement Learning 11

3.1.3. Exploration vs. Exploitation

As already mentioned, one of the characteristics of reinforcement learning problems is the trade-off between
exploration and exploitation. Off-policy methods separate exploration and exploitation into two policies: the
optimal policy or target policy, learned by exploiting good behavior, and the exploratory policy or (random)
behavior policy. If an action is selected when the target policy is active, it is called a greedy action. Random
actions are non-greedy.

The most frequently used behavior distribution is the e-greedy strategy. The behavior policy gets selected
by probability € and the greedy actions by probability 1-e. Decaying e-greedy is a technique where the € term
slowly decreases over time, the agent gradually favors exploitation over exploration by the following decaying
function:

1

€= —r,
1+(A-1)
where A is the tunable decay constant and i the i-th episode the agent encounters.

(3.6)

3.1.4. Model-free Reinforcement Learning

An RL approach can either be model-based or model-free. The more on planning relying model-based meth-
ods require an accurate model of the MDP’s environment dynamics that produce a probability distribution
for the possible next states and next rewards. Hence, model-based approaches are often mathematically well
developed. A frequently used model-based approach for energy management problems [16], [17], [18] is DP
[44]. DP produces a probability distribution model for all possibilities. However, developing an accurate
distribution model is intensive and time-consuming. As the name suggests, model-free approaches do not
need an environment dynamics model. They learn the state-transition probabilities by interacting with the
environment. If state-transition probabilities change, they can learn the new function that describes them.
Therefore, model-free methods have great self-adaptability.

Monte Carlo (MC) and temporal-difference (TD) are both model-free RL approaches. TD combines the-
ories of MC and DP. Therefore, TD has two significant advantages over MC. First, TD methods have faster
learning capabilities because they update estimates based on other estimates, also known as bootstrapping,
while MC only updates after completing an entire episode. Second, TD methods converge faster on stochastic
tasks, which is the case for the energy management problem.

3.1.5. Q-learning

Q-learning is a model-free off-policy TD control method introduced by Christopher Watkins in 1989 [45].
The proposed approach by Watkins directly approximates the optimal action-value function. By doing this,
the agent learns Q-values in a relatively simple way and eventually learns how to act optimally in an MDP
framework. In his paper [45], he proves Q-learning converges to an optimal action-value function. Depending
on the policy followed, the agent decides to take a random action at time step ¢ or the action with the highest
Q-value (greedy):

Ap = argmaxQy(Sy, @) 3.7

The agent receives the next reward and the next state from the environment after it has acted on the
environment, as shown in Figure 3.1. Then, the agent finds the highest Q-value from this next state and
updates the Q-value updates according to the following equation:

Q(St, Ap) — Q(St, Ap) + a[Rys +Ym;1XQ(St+1, a) — Q(Ss, Apl. (3.8)

Step-size parameter a determines the share of the new learned values when updating the Q-value. For
example, if @ = 0.1, each update has a 10% share of the new learned value and a 90% share of the old Q-value.

In tabular Q-learning, the Q-values are written to a table that captures all possible state-action pairs (s, a)
€ 8 x A(s). The size of the Q-table increases exponentially by the number of state variables and the number of
discretization present for each state space and action space variable. If the number of discretization becomes
very large or the state space becomes continuous, it is impossible to store all possible Q-values in a table.
This phenomenon is called the curse of dimensionality. The exact Q-values need to be approximated by a
function, which could be a set of linear, non-linear, or non-parametric functions.

12 3. Reinforcement Learning Background

3.2. Function Approximation

The main goal of these approximations is to get a general overview of all the possible states. Eventually, a
limited subset of the state space should produce a good approximation over a much larger subset. This type
of generalization is named function approximation and is part of supervised learning.

The approximate action-value function, Q(s, a,w) = Q, (s, @), is not presented in a table but as a parameterized
functional form with weight vector w € R%. Where d is the dimensionality of the weight vector, which should
be much smaller than the number of states, d « |S|. As a result, certain states become dependent on each
other. When a single weight is updated, the estimates of many other states are also changed.

Linear function approximation methods construct a linear function of the weight vector w to obtain the
approximate action-value function. The vector X(s, @) = (x1 (s, @), X2(S, @), ..., X4(s,a)) " is called a feature vec-
tor, it represents state-action pairs s. The approximate state-value function is then constructed by taking the
inner product between w, w; and x(s, a).

d
s, a,w) =w'x(s,a) = Y w;x;(s) (3.9)
i=1

3.2.1. Tile Coding

Tile coding [46] divides the entire state space into smaller grid-like sub-parts. Each sub-part is called a tile,
denoted with m, and has a component m; for each state variable, |m| = |§]. One layer of tiles together is called
a tiling, n. Multiple layers of tilings are present in tile coding, each with a small offset of 1/7n. The number of
tiles and tilings together determine the function approximation resolution in the corresponding state space
dimension, described by 1/(m; - n) Figure 3.2 shows the configuration of two different tile coding settings that
result in an identical Q-value approximation resolution.

m=[2,2],n=4 m=[4,4],n=2

- Approximate __4—
Q-value

Figure 3.2: The Q-value function approximation for a two-dimensional state space under different tile coding settings
and an identical resolution.

The binary feature vectors present in tile coding make it computational very efficient. It enables the agent
to handle multi-dimensional state paces with ease. Instead of performing d amount of additions and mul-
tiplication, tile coding only adds up the n amount of active weights. Because of this, tile coding is the most
functional feature representation for modern computers [15].

In tile coding, the number of active features is constant for every state, namely the number of tilings.
Therefore, the step-size parameter is also constant and scales by the number of tiles, given by the following
relationship:

@0

= (3.10)

n

Tile coding software usually uses hashing to reduce memory size. Hashing subdivides a tile into a set of
smaller subtiles to obtain a higher resolution for random locations within the state space. Hashing requires
significantly less memory than tile coding the entire state space in high resolution, while it has minor perfor-
mance loss.

Methodology

This chapter describes the approach for solving the RL energy management problem. The first section ex-
plains the utilized resources and tools for this research project. Then the system’s layout and components are
discussed. The third section presents the proposed Q-learning with tile coding (QLTC) algorithm, including
its unique state space, action space, and reward function design. The last section explains the mathematical
optimization used for validation and testing the proposed algorithm.

4.1. Resources and Tools

This research project, including the proposed algorithm, data analyses, and additional programs, was devel-
oped in the Spyder 5.05 Development Environment [47] in Python 3.8.5 [48]. On top of the built-in python
libraries, several additional libraries and software packages are used. The Pandas [49] library enabled efficient
data import, export, and manipulation. Array programming and matrices calculations are performed with the
help of the Numpy [50] library. The Matplotlib package [51] and the Matplotlib-based library Seaborn [52] fa-
cilitated data visualization and confidence interval plotting. The tile coding package published by Sutton [53]
is utilized to implement tile coding. This software package is already optimized, simplified, and streamlined
for reinforcement learning problems. The mathematical optimization described in Section 4.4 is developed
with the Pyomo modeling library and handbook [54], [55]. The Pyomo library is an easily readable optimiza-
tion library that compiles the problem into a low-level programming language for fast computations. The
GNU Linear Programming Kit (GLPK) solver software [56] performs these computations. All training, model-
ing, and simulations are performed on an office laptop with an Intel Core i7 processor and 16GB RAM.

4.2. System Layout

As illustrated in Figure 4.1, the smart building’s energy management problem consists of an electricity con-
sumer with controllable and non-controllable loads, local PV generation, and a BESS. All controllable and
non-controllable loads present in the system aggregate to a controllable and a non-controllable power de-
mand denoted with PtCD and PtD , respectively. The power in the system should be in balance for every discrete
time step ¢, expressed by the following power balance equation:

PS¢ =pP_pPV 4 pB pCh 4.1)

Pf expresses the grid power demand, that has a one-way transport limit P’S’; in < PtG. The minimum al-
lowable power import Pgl ;n 18 equivalent to a maximum allowable power export. The power produced by the
PV system at ¢ denotes with PPV, Variable P? is the power output of the BESS for each time step, where a
positive value denotes charging and a negative value discharging.

The smart building participates in an RTP DR program where the EMS receives the wholesale DAM elec-
tricity prices. The building’s daily electricity costs are determined by taking the cumulative sum of the for-
warded DAM price times the grid electricity consumption for each time step of the day. The EMS tries to
minimize these electricity costs by adapting the grid electricity consumption to favorable price moments.

13

14 4. Methodology

PV (P{")

%

Grid (P) BESS (Pf)

Non-controllable Controllable
I Loads (PP) Loads (P£P)

Figure 4.1: The energy management system’s layout and its components.

Thus, the EMS attempts to find an optimal control policy for the BESS and controllable loads power output.
This EMS’s objective can be mathematically expressed as,

minC=) e,P{At, 4.2)
teT

where C denotes the electricity costs, e; the electricity price, At the difference in hours between two
subsequent time steps, and T is the set of discrete time steps. Since the EMS operates at the hourly DAM, the
size of the set of discrete-time steps is 24, a time step for each hour of the day.

4.2.1. Controllable Loads

As already mentioned, the controllable loads present in the smart building are aggregated to one single con-
trollable demand (CD) variable. Modeling the controllable loads as a single variable has several advantages
compared to modeling each load as a separate action variable, which is frequently done in the state-of-the-art
literature. First, modeling the controllable loads as one variable reduces the action space significantly since
it sizes by the cross product of the controllable load actions. The agent must explore fewer possible actions
or action combinations when the action space is smaller. Therefore, this aggregated CD variable approach
has better convergence guarantees. Second, this approach does not need additional information from the
controllable loads. Some RL models need additional information from the loads, such as the inner and outer
wall temperatures for heat pumps, the water buffer size for electric water heating, or the SOC of the parked
electric vehicles. Needing all those input variables for your model makes it hard to implement. Third, the
single CD variable approach is better scalable than modeling the loads separately. Smart buildings can have
different types of controllable loads. For instance, some smart buildings have electric water heating, and
some still operate on gas heating. Modeling electric water heating as a separate variable makes the model
unsuited for gas-heated buildings, whereas a single CD variable approach is suited for all types of heating.

Most RL studies model a controllable load as a binary set of actions, where the decision is either power on
or power off. This study uses a trinary set of CD actions, a®P(s): maximum power decrease, do nothing, and
maximum power increase, as shown in Equation (4.3). This trinary set enables the agent to "catch up" for
previous power reductions, described as the so-called "rebound effect" by [8]. A binary set of actions cannot
increase its power output. The trinary set of CD actions does not have intermediate steps between maximum
power increase/decrease and zero power output since the best control action is always at maximum power.
This study assumes that the CD increases or decreases its power output with the same case-specific maximum

CD power rate, PSP . Furthermore, it is assumed that the controllable power demand is always available.

a“P(s)=[-pPSh.,0,PSD] 4.3)

max’

4.3. Proposed Algorithm: Q-learning with Tile Coding 15

At each time step, the discrete action taken equals the power output of the controllable demand PICD
= atCD (s). The power demand shifted at ¢ is denoted with APED and updates according to the following

relationship:

APEDR = APEP 4 pCP (4.4)

The shifted power is limited by one time the maximum CD power, given by —P5D < APtCD < PSP | en-

suring the DR has minimal impact on regular business operation. Another constraint is that the total amount
of power shifted over one day is equal to zero, APlcT? = 0. Controlling the loads does not impact the overall

power consumption. Therefore, this modeling approach only does demand shifting, not demand shedding.

4.2.2. Battery Energy Storage Systems

The battery energy storage system (BESS) stores energy in electrochemical bonds to deliver this energy at a
later moment in time. The SOC expresses the amount of energy stored in the BESS as a percentage of the
total capacity EZ. The SOC updates each discrete time step according to the function given in Equation (4.5).
The initial and final SOC are denoted with SOCy and SOC |, respectively. SOCy is an input variable, whereas
SOC 1| = SOCy to guarantee continuous operation between subsequent days.

PBAt

SOCi11=S0C +—-

(4.5)

Most battery manufacturers define a DOD limit to prevent batteries from unwanted fast degradation that
shortens their lifespan. The DOD gives the maximum allowable subtractable energy from the battery as a
percentage of the total battery capacity. The DOD value serves as the lower limit of the SOC, whereas the
upper limit is mostly the battery’s full capacity. Thus, the SOC boundary conditions are described by:

SOCin = SOC; = SOCpax (4.6)

As previously explained in Section 2.1, a set of discrete BESS actions with intermediate charge steps is
favorable over a set of discrete BESS actions without intermediate charge steps if the C-rate is smaller than
one. The number of discretizations X2 is an odd number, including zero output and an equal number of
charge and discharge steps. More discretizations result in better possible utilization of the SOC, eventually
leading to higher potential returns. However, more discretizations increase training time since the agent ex-
plores more possible actions. This trade-off should be considered for choosing the number of discretizations.
The power difference between each discrete action is defined by AP® = 2P /(XB —1), for which P2 . is
the maximum power output of the BESS. The following relationship describes the entire set of discrete BESS
actions:

abs)=[-PE,.,aPB-PB) eAaPB-PE), .. (PE, . —2APP),(PE

max max max max

-APB),PE . 4.7)

Implementing a ramp rate constraint for the BESS prevents it from fast degradation. It limits the cur-
rent possible charge rate by the difference between the maximum charge rate and the previous charge rate,
described by the following equation:

pE —pB <pPB<pB +pPB (4.8)

max — max:

This measure restrains the agent from performing a complete charge-discharge cycle with minimal re-
ward gain. The number of charge-discharge cycles drops significantly with little lost income.

4.3. Proposed Algorithm: Q-learning with Tile Coding

This section explains the various elements of the proposed Q-learning with tile coding approach. As the
name of the proposed algorithm indicates, the action-value function updates according to the Q-learning
update function given by Equation (3.8). This update function directly approximates the optimal action-
value function. Step-size @ and discount factor y are the hyperparameters for adjusting the update/learning
process. The proposed QLTC uses the decaying e-greedy technique to balance exploration and exploitation,
earlier explained in Section 3.1.3. The decaying constant A induces the gradual favoring of the greedy policy
over the non-greedy policy, which is another tunable hyperparameter for the learning process. The following
subsections discuss the other characteristics of the QLTC, such as the reward function, in more detail.

16 4. Methodology

4.3.1. Boundary Conditions

There are two possible ways to implement the boundary conditions described in the previous section. A com-
mon practice is to penalize behavior that exceeds the boundary conditions by incorporating a penalty in the
reward function [29]. The agent learns that exceeding the boundary conditions is lousy behavior by receiving
negative rewards, and it starts to avoid those states when it tries to find the optimal policy. Penalizing incor-
rect behavior is very effective for tabular RL. However, this technique is not favorable for RL with function
approximation since these function approximations generalize between neighboring states. For instance, if
the agent gets penalized for violating a boundary condition, it will update the exact encountered state and
neighboring states. Inherently good states could get penalized, and the agent starts to avoid these good states,
resulting in poor overall performance.

Action blinding is an alternative and more favorable boundary condition implementation for RL with
function approximation. If the agent encounters a boundary condition, it receives an adjusted set of actions,
a(s) < A(s). This subset of the action space makes sure the agent cannot violate the boundary condition.
In this manner, action blinding does not affect neighboring states. Another beneficial side-effect of action
blinding is that the agent has to explore fewer possible actions, making the agent more efficient, resulting in
faster convergence.

4.3.2. State Space & Action Space

In literature, the number of state variables differs frequently. Energy management problems with identical
energy resources have state spaces ranging from four to eight variables. Unfortunately, studies barely argue
why they add or leave out certain state variables, while it significantly impacts the convergence and general-
ization capabilities of the algorithm. If more state variables are present, it is easier for the agent to distinguish
between different states, enhancing the chance of converging to the most optimal solution. However, a large
state space increases simulation time because the agent has to explore more possible state-action pairs to
find an optimal policy, resulting in a slower convergence rate. Besides convergence, the agent finds it harder
to generalize between different states if the state space is large. It has to consider more variables to acquire
a general overview. Nonetheless, it needs to be regarded that the agent can only generalize over variables
present in the state space. These trade-offs should be considered when designing the set of states.

This study proposes a state space design that minimizes the number of state variables for fast conver-
gence and generalization while retaining enough variables to achieve high accuracy. Furthermore, two clever
designed variables enhance the generalization capabilities of the agent. The state at ¢ consists of the current
discrete-time step, the net power consumption, the SOC of the BESS, the power demand shifted, and the
relative electricity price, presented by:

S;={(t,PN,80C,;,APSP,(é,~®)), S;€8 4.9)

The discrete-time step state variable ¢ enables the agent to plan and store sequential decisions. Learning
an optimal control policy without this variable becomes unstable, and convergence cannot be guaranteed.

As highlighted in the literature review, if a VRES is present in the problem, it is added as a separate variable
to the state space. This study combines the PV generation with the non-controllable electricity consumption
into a new variable that subtracts the PV power generation from the power demand to obtain the net power
demand, PN = PP — PPV, Consequently, the number of state variables reduces while still taking both gen-
eration and consumption into account. Furthermore, it enables the agent to relate more easily to the grid
power demand since the grid power demand variable combines the net power demand and the BESS and
controllable demand actions.

The SOC of the BESS and the controllable power demand shifted are added as a state space variable,
enabling the agent to relate states to moments when it gets an adjusted set of actions presented. For instance,
without these variables, the agent could take the best possible action for an active boundary condition at a
moment when the actions are not blinded at all.

The last state variable is the relative electricity price, essential for generalization between different days
of data. Several studies include the regular electricity price as a state variable, aiming to generalize over this
variable. The two energy arbitrage studies with improved also do this. Moreover, they also add the mov-
ing average electricity price used in their reward function as a state variable. This study combines the regular
and average electricity prices into one variable: the relative electricity price. The relative electricity price state
variable is more advantageous than modeling regular and average electricity prices as two separate state vari-
ables. First, it enables the agent to find the highest and lowest prices of the day more efficiently since it only

4.3. Proposed Algorithm: Q-learning with Tile Coding 17

has to consider one variable. Second, and most importantly, the agent finds it easier to generalize between
different days when using a relative price since relationships and dependencies become better comparable
between days. For instance, when using the regular price, a value of 30 could be a low price or a high price
depending on the other prices of the day. Therefore, the agent finds it hard to make a general policy if a
state-action pair sometimes yields a high reward and sometimes a low reward.

The action space is a combination of the set of actions from the BESS and the controllable demand, |A(s)] :
a®(s) x a®P(s), given in Equation (4.10). Therefore, the size of the state space scales linearly with X2. The set
of actions is state-dependent since it is blinded based on whether the particular state is located at an active
boundary condition or not.

A(s) = {aP(s),a"P(s)) (4.10)

4.3.3. Reward Function

RL agents find an optimal control policy based on the reward signals they receive from the environment.
The agent tries to maximize their cumulative discounted reward, i.e., their return. Therefore, the reward
function is a crucial part of the design that heavily impacts the agent’s performance. The EMS’s objective
is to minimize the electricity costs formulated by Equation (4.2). Since RL agents maximize their return,
the objective function is reformulated as maximizing the negative electricity costs, resulting in the reward
function given by Equation (4.11). This representation is the standard approach for energy management
problems in literature.

R} =-e,POAL (4.11)

This study proposes a new reward function design for energy management problems, inspired by an ef-
fective reward function design for energy arbitrage problems [37], shown in Equation (2.1). The proposed
reward function takes the standard function design given in Equation (4.11) and subtracts the daily average
electricity price from the electricity price at the corresponding time step. The resulting proposed reward
function is given by:

R?=—(e,~@)PCAt
= (e—e)PCAt (4.12)

By subtracting the daily average electricity price from the electricity price at the current time step, the
agent can distinguish better whether a price is above or below average. Since a price below average has a
negative value and a price above average has a positive value. When looking at the proposed reward function
in Equation (4.12), now the agent receives a positive reward signal for good behavior: positive grid power
demand at relatively low prices and negative grid power demand at relatively high prices. Vice versa, the
agent receives a negative reward signal for bad behavior: negative grid power demand at relatively low prices
and positive grid power demand at relatively high prices. RL agents find it easier to learn a control policy
when good behavior is rewarded positively and bad behavior negatively. The standard reward function in
Equation (4.11) receives only a positive reward signal, and therefore it finds it harder to distinguish whether a
state-action pair is good or bad.

As aresult, the agent’s return converges faster to a control policy with the proposed reward function than
the standard reward function, as shown in Figure 4.2. Subfigures (a) and (c) show the complete and greedy
policies for the standard reward function, respectively. Subfigures (b) and (d) show the complete and greedy
policies for the proposed reward function, respectively. When comparing subfigures (a) and (b), it is evident
that the proposed reward function converges faster. The lower two subfigures illustrate by the greedy policy
that the proposed reward function reaches a better solution in fewer episodes than the standard reward func-
tion. Thus, the number of episodes needed can be reduced dramatically while gaining better and more stable
performance when applying the proposed reward function.

4.3.4. Tile Coding

Sutton’s RL-optimized tile coding software package contains the tile coding Python function and several tile
coding related Python functions [53]. The tile coding Python function needs four input variables: the index
hash table (IHT), the number of tilings, the state variables, and the action variables. The previous subsections

18 4. Methodology

100
) @)
= 50r <
E 5
;:n") =——=AMIIIE E) —— MILP
0 — QLTC i TS ETNG
1 1 UL L L 1 i L L BAICA LS § T Al - | EL 1 1
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
Episode Episode
(9) (d)
100 f f
g |
~ 50F
£ i
d:: | MILP —— MILP
0 H i —— QLTC greedy - —— QLTC greedy
i

1. 1 LU | i
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
Episode Episode

Figure 4.2: The 20 episodes moving average return with 95% confidence interval of the R; reward signal for five repetitive
simulations on a single day under different reward functions where (a) contains the complete policy of the classical reward
function, (b) the complete policy of the proposed reward function, (c) the greedy policy of the classical reward function,
and (d) the greedy policy of the proposed reward function.

already defined the state and action variables. The software package also has an IHT Python function to
create an IHT that ensures every new confronted tile gets a new separate index. The IHT Python function
needs the size of the table as input and should be a large power of two. The manual suggests setting the
number of tilings to a power of two equal or greater than four times the number of state variables. Therefore,
the minimum amount of tilings n for the proposed five-dimensional state space becomes 32. The number of
tilings is one of the adjustable hyperparameters that must be defined beforehand.

The number of tiles in each state space dimension determines the generalization for the corresponding
state variable. A small number of tiles generates a broad generalization, while a large number generates a
narrow generalization. An advantage of a small number of tiles is that the agent acquires approximate Q-
values for every possible state more quickly since an update of an approximate Q-value impacts a wider area
of the state space. Consequently, the agent needs fewer training days, and therefore a smaller data set for
training is sufficient. However, if too few tiles are present, the QLTC agent can overgeneralize. Neighboring
states that differ significantly are updated unintentionally. As a result, the agent finds it harder to convergence
to a good-quality solution since it is harder to distinguish between high-rewarding and low-rewarding states.
If a state variable has a large number of tiles, it still generalizes, but for a small area in the state space. Hence,
for a large number of tiles, more training and training data is needed to obtain an approximate Q-value for
every possible state in the state space.

Thus, the number of tiles present in each dimension can be adjusted to generalize more or less on cer-
tain state variables. The tile coding Python function from the tile coding software package cuts off a tile at
each integer boundary. Hence, the number of tiles in the corresponding dimension is adjustable by scal-
ing correctly. The number of tiles in each dimension becomes one of the tunable hyperparameters given by
Equation (4.13). The first element corresponds to the first state variable, the last element to the last state
variable.

m = [my, my, m3, my, ms| (4.13)

4.3.5. Pseudocodes Learning and Deployment

The pseudocode for the learning process of the proposed Q-learning with tile coding approach is depicted
in Algorithm 1. The proposed algorithm needs several inputs. First, the Q-learning hyperparameters a, v,
A, and the number of episodes. Second, the tile coding hyperparameters IHT size, m, and n. Thirdly, the
problem-specific component and system variables: P55, P5 ., X®, E®, SOCpin, SOCnax, SOCo, and P, .
Third, the data sets of the DAM prices, power demand, and PV power generation for every time step of the
day. Last, if the agent trains on multiple days of data, it needs the IHT and weight stored from the previous

learning process. Next, the set of actions is determined based on the input variables. Then, the agent starts

4.3. Proposed Algorithm: Q-learning with Tile Coding 19

Algorithm 1 Q-learning with tile coding (QLTC) learning process

1: Inputs:
Hyperparameters: a, v, A, episodes, m, n, IHT size
Variables: pPSh ., P8 . XB, EB, SOCpin, SOCpmax, SOCo, PC.
Data sets: e;, PP, PPV VteT

Q-values (optional): IHT, w
2: Initialize:
Action space
3: for each episode do
4 Initialize:
Initial state Sy
5 for each time step do
6: Blind: determine a(s)
7: Take A; depending on e-greedy
8
9

Receive R}, |, R?, | and S;4

Blind: determine a(s)
10: Determine max, Q(SHl, a,w)
11 w—w+a[R?, | +ymax, Q(Sr+1,a,w) — Q(S, Ay, W)
12: Str1 St
13: end for
14: end for
15: Outputs:

IHT, w

training on the data set for the planned number of episodes, starting by initializing the initial state Sy. The
following sequence repeats every discrete time step until reaching the final time step. First, the action space
is blinded by taking out invalid actions, depending on the agent’s state. Then, the agent takes a greedy or non-
greedy action based on the followed policy. The agent receives the next step’s rewards and state. After that,
the subsequent blinded set of actions is determined and used to pick the next best possible approximate
Q-value. Next, the weights of the current state are updated before transitioning to the next state and next
episode. After completing all episodes, the QLTC outputs the learned approximate action-value function,
stored in the IHT and weights. The outputs can be used as input for the next learning process. The agent
stores the newly learned approximate Q-values of the following learning process on top of the already learned
approximate Q-values. Thus, the agent memorizes the previously learned control policy. When starting a new
learning process, the tile coding hyperparameters and variables should be kept the same. The Q-learning
related hyperparameters can be altered to adjust the learning characteristics. However, in practice, these
hyperparameters are barely changed after being set well.

Algorithm 2 Q-learning with tile coding (QLTC) policy deployment

1: Inputs:
Hyperparameters: m, n
Variables: PGE s PR s XB, EB, SOCimin, SOCpax, SOCy, PS .
Data sets: e, PP, PPV vieT
Q-values: IHT, w

2: Initialize:
Action space

Initial state Sy
: for each time step do

Blind actions: determine a(s)
Take A; = argmax, Q(S;, a,w)
Receive R}, | and S;4;
St+1 <S¢

end for

: Outputs:

7(s)

© e N2 g Rw

20 4. Methodology

After completing one or several training sessions, the outputs of the learning process are input for de-
termining the control policy. The real-time policy deployment process is depicted in Algorithm 2. As input,
it needs the same number of tiles, number of tilings, and problem-specific variables utilized in the learning
process to read out the stored Q-values correctly. Furthermore, the agent needs the data set of the desired
deployment day. After initializing the action space and state, the agent repeats the following sequence for
each discrete time step. First, the agent takes the best possible action, determined by the highest approxi-
mate Q-value, from the set of blinded actions. Second, it receives R} +1 and S;,; before transitioning to the
next discrete time step until reaching the terminal time step. At this point, the control actions and rewards
for every discrete time step are known by following the learned policy.

During the learning process and the policy deployment, the R} rewards are determined. This R} reward
signal is not used for updating the weights, shown in line 11 in Algorithm 1. This reward signal is present
to determine the return convergence during learning and the return achieved when deploying the learned
policy. Since the QLTC's electricity costs are determined by taking the negative return value, Corrc = _GIIT\‘

4.4. Mathematical Optimization

A mathematical optimization model is developed to validate the proposed algorithm’s performance. Since
the QLTC agent determines its policy on deterministic points, this research developed an effective and effi-
cient deterministic mathematical optimization method: MILP. This method can optimize a combination of
continuous and integer variables needed for replicating the QLTC agent. MILP mathematical optimization
does not guarantee global optimality, but it can ensure a high-quality solution. Since the MILP tries to mimic
the proposed QLTC approach, it has the same objective and constraints as the QLTC algorithm, restated be-
low.

minC=) e,PYAt (4.14)
teT
subject to:
PS¢ =pP_pPV, pB, pCp VteT (4.15)
G G
PG, <Pt VteT (4.16)
—-pSh < pCl < pCh. VieT, PP eaP(s) 4.17)
APER = APEP 4+ pEP VteT (4.18)
C C C
—PSD < APEP < pCD. VteT (4.19)
APEP =0 (4.20)
AP =0 (4.21)
-pB <pB<pB vieT, PEedP(s) (4.22)
pB —pB <PB<pB +pPB . vieT, PEedP(s) (4.23)
PBAr

SOCt+1=SOCi+—3 VteT (4.24)
SOCpin < SOC; < SOCpax VteT (4.25)
SOCi11=S0Cy (4.26)

The optimal control strategy and electricity costs reached by the MILP optimization method denotes with
Cwumirp- Now, the electricity costs by following the control policy learned by the QLTC agent are comparable to
the electricity costs made by applying the MILP control strategy. How close the QLTC agent gets is expressed
as a percentage of the relative electricity costs, denoted with 7 in Equation (4.27). Cy is the electricity costs of
a control policy where PED and Pf power outputs are zero for every discrete time step.

_ Core =% 00, (4.27)
Cmirp — Co

This measure enables convergence and generalization comparison between different simulation days.

More details on convergence and generalization are given in Chapter 5.

Case Study

This chapter shows the effectiveness and performance of the proposed algorithm in a case study, considering
an industrial manufacturing company that operates heavy machinery and has an electrified heat and cooling
system in its building. The first section specifies the data sets and variables for the case study. The second
section discusses the evaluation methods, the split-up within the data set, and the hyperparameter settings.
Next, the results are examined and analyzed.The last part of this chapter evaluates the results’ relevance,
importance, and limitations.

5.1. Data Sets, Variables, and Hyperparameters

This section discusses the case-specific input data sets and variables for the QLTC agent. The input data
sets consist of the EPEX SPOT DAM prices, Company X'’s power demand, and Sunrock’s PV system power
generation. This section also provides the agent’s input variables: the BESS, controllable demand, and grid
variables.

5.1.1. EPEX SPOT Day-Ahead Market

Energy systems in Europe have an hourly-based day-ahead market (DAM) for short-term energy trade. Mar-
ket participants need to set their bids before noon one day before delivery. After that, the market price for each
hour of the day-ahead settles where power demand and supply intersect. Therefore, the electricity demand
and available supply are highly influencing factors for the settlement price. The exact settlement price is un-
known before making a bid. For that reason, market participants use a price forecast for making their bids.
This study assumes a perfect forecast without error for the DAM settlement prices. The Dutch DAM electricity
prices settle at the European Power Exchange (EPEX) SPOT market. Due to market connection and increased
share of VRES as wind and solar in the energy mix, weather conditions in other countries impact Dutch set-
tlement prices. Despite the growing penetration of VRES, gas-fired power plants are the price-setting assets
in the Dutch DAM [57]. Therefore, the natural gas prices also heavily influence the DAM settlement prices.

The 2019 and 2020 EPEX SPOT DAM prices retrieved from Sunrock’s Data Warehouse are converted from
UTC timestamps to Central European Time (CET) and Central European Summer Time (CEST) timestamps.
Data gaps in the original dataset between CET/CEST alternation were filled by interpolating neighboring
electricity prices.

5.1.2. Electricity Consumption

This case study considers one of Sunrock’s customers, an industrial manufacturing company that operates
heavy machinery, denoted as Company X. According to the facility manager of Company X, the bulk of their
electricity consumption is related to heavy machinery processes. These continuous processes can be ad-
justed partly but not stopped entirely. Moreover, Company X has an heating, ventilation, and air-conditioning
(HVAC) system for the temperature regulation of the building. An electric water heater (EWH) provides warm
water. Lightning and other building-related devices account for the rest of their electricity consumption.
Company X shared their electricity consumption data from 2019 until 2020. Regarding privacy concerns, a
confidential factor scales the 15-minute interval consumption data. After that, the 15-minute interval data

21

22 5. Case Study

I Consumption Electricity price = Natural gas price

Electricity consumption (kWh)
Market price (€/MWh)

Figure 5.1: The average EPEX SPOT settlement prices, wholesale natural gas price, and electricity consumption of Com-
pany X by month for 2019 and 2020.

aggregates to hourly data. Figure 5.1 shows the average EPEX SPOT market price, wholesale natural gas price,
and electricity consumption of Company X by month for 2019 and 2020. This figure shows that the electricity
price undergoes a significant drop in the first half of 2020, caused by low natural gas prices and lower electric-
ity demand due to the first lockdown in the Netherlands. This decline in electricity consumption throughout
the Netherlands also holds for Company X, which had to operate their processes at a lower capacity con-
firmed by their facility manager. The deviating consumption with low electricity prices makes 2019 more
suitable than 2020 for a case study.

Spring Summer
600

= 500 r

2

= 400 r

2 300 F :

E 200 b -

c

S 100 L

0
Autumn Winter
600

= 500

2

= 400 | r

5

2 300 F -

E 200}

c

S 100 f L

0
Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

Figure 5.2: Company X’s average power consumption and its minimum and maximum deviation for each day of the week
by season.

The 2019 data set is divided into four subsets to analyze the consumption data by season. The four mete-
orological seasons start at March first, June first, September first, and December first. If heating and cooling
effects in Company X’s electricity consumption are present, are these primarily related to the seasonal out-
door temperature deviations. Hence, the seasonal weekly average power demand profiles with minimum
and maximum deviation are constructed, shown in Figure 5.2. These figures depict the possible allowable
power adjustments without violating their regular operation. Public holidays during weekdays are shifted to
weekend days since they have similar power demand profiles. Remarkably, the average power consumption
profiles show no significant differences between spring, summer, and autumn. For weekdays, the average
power consumption during working hours reaches approximately 400 kW. Outside working hours, it stays
around 135 kW on average. The 135 kW on average power consumption also holds for weekend days, where
the summer weekend days display a slight power increase during daytime, implying a small air-conditioning
effect. This air-conditioning effect also shows up at the slightly higher power demand at the end of a working
day. The average power consumption profile during winter is similar to the consumption profiles of the other
seasons, except that the winter consumption has an additional 65 kW of baseload power over the entire week.

5.2. Training & Hyperparamter settings 23

This additional baseload of power demand accounts for the extra heating necessary during winter. Most
striking about these subfigures are the stable difference between the minimum and maximum power devi-
ation throughout working and non-working hours for all seasons, which indicates that the heavy machine
processes operating during working hours do not have a margin of freedom to increase or decrease power
consumption. Thus, the primary power demand flexibility is offered by the HVAC and EWH systems, assum-
ing that lightning and other building-related devices are undesirable control appliances. The subfigures show
an approximately 100 kW of power demand difference between the minimum and maximum values through-
out the year, except for the winter weekend days that have a deviation up to 150 kW. These seasonal power
consumption figures indicate that the EMS can increase and decrease 50 kW of power demand. Hence, the

maximum controllable power demand variable PSP is set to 50 kW.

5.1.3. PV Generation

Sunrock’s PV asset and its generation data at Company X’s roof is scaled with the same confidential factor
used for the consumption data to maintain the original ratio between consumption and generation. The
800 kWp PV system became operational in February 2020 and can deliver a maximum of 560 kW of power to
the grid. This is the grid transport limit, qu in = 560 kW. Since the PV system became operational in 2020,
the 2019 PV generation data is constructed by scaling 2020 and partly 2021 data with the monthly incident
irradiation in the Netherlands, retrieved from the KNMI's monthly weather overview [58].

5.1.4. BESS

The BESS is a modular battery system. Several batteries are connected in parallel to create a complete sys-
tem. The central battery management system coordinates the operation of the batteries. Table 5.1 shows the
essential specifications for one single battery unit.

Table 5.1: Single unit battery specifications.

Capacity 15 kWh
Depth of discharge 80%
Usable capacity 12 kWh

Maximum charge/discharge rate 10 kW

From a relative cost perspective, a large BESS is more favorable than a small BESS considering the fixed
costs of installation. However, the P,?u.n transport limit of 560 kW limits the size of the BESS. As long as the
grid power demand stays within the transport limits, the revenue scales linearly with the number of batteries.
If the grid demand reaches the transport limit, the BESS or controllable demand has to increase or decrease
power output at different time steps. These alternative time steps are accompanied by sub-optimal prices
since there is only one optimal price. For that reason, the BESS sizes to the extent that the grid demand does
notreach P¢ . regularly.

The minimum reached net power demand over 2019 is -458 kW, equivalent to approximately 460 kW of
power supply to the grid. If the agent decreases the power demand by the maximum rate of 50 kW, there
is 50 kW of power range left before reaching Pf“.n. Hence, the BESS sizes to a maximum power output of
50 kW, accomplished by stacking five modular battery packs in parallel, reaching a total BESS capacity of 75
kWh. The number of discretizations of the BESS’s power output, X2, is set to 11. This results in five charge
and five discharge steps corresponding to each modular battery’s maximums positive and negative control
action. Furthermore, 11 discretizations are the highest number of discretizations found in the state-of-the-art
literature.

5.2. Training & Hyperparamter settings

5.2.1. Evaluation methods

RL uses data significantly different than the other two machine learning approaches. RL learns to make good
decisions by interacting with the environment, where the data set is part of the environment. Supervised
and unsupervised learning try to generalize the data set they examine. This significant difference in data set
handling and learning principles makes the evaluation methods vary.

24 5. Case Study

1. Typically, the performance of RL algorithms is evaluated by how well the agent performs on its trained
task, done by training on a particular data set and then deploying the learned policy on the same data
set. Studies show the EMS’s power adjustments control policy learned by the agent. Furthermore, they
show the electricity cost made during deployment and compare it with the zero output control pol-
icy, an alternative RL method, or a mathematical optimization method. Another requisite figure is the
return convergence graph, showing that the policy converges during the learning process. However,
indicating that the policy converges does not imply that the agent convergences to a good quality pol-
icy. A policy can converge to a sub-optimal policy without any indication in the convergence graph.
This research compares the developed MILP optimization method to the proposed QLTC approach to
evaluate whether the policy converges to a good-quality solution.

2. Supervised and unsupervised learning methods are evaluated by how well they generalize to new cases
after training [59]. Usually, the data set divides into a training set and a test set. The training set trains
the algorithm, and the test set tests its generalization performance by measuring the error rate on the
test set.

The first evaluation method would be sufficient if the proposed algorithm were a tabular RL algorithm.
However, due to the presence of a function approximation, the generalization capabilities need to be evalu-
ated since function approximation methods belong to the supervised learning paradigm. The generalization
capabilities of RL algorithms are not evaluated in current literature, while robust convergence and strong gen-
eralization make this machine learning approach powerful. This study aims to evaluate both the convergence
and the generalization capabilities of the proposed algorithm.

5.2.2. Training, Validation & Test Sets

The entire 2019 data set, consisting of the DAM prices, power demand, and PV power generation, is divided
into four subsets based on the meteorological season described earlier in section 5.1.2. The summer data
subset, containing June, July, and August, is used for the remainder of this research. The subset is divided
into a training set and a test set needed to evaluate generalization. The test set is one week of data starting on
Monday July 15th and ending on Sunday July 21st. The training data set consists of the entire subset minus
the test set to test the proposed algorithm’s generalization capabilities.

Before evaluating the generalization capabilities, the agent should achieve robust convergence to an op-
timal policy. If the agent cannot find a good-quality policy, generalization performance is undoubtedly poor.
To achieve robust convergence, the QLTC hyperparameter settings should be tuned well. A so-called vali-
dation set is taken from the training set for hyperparameter tuning. Also, the convergence and operational
performance evaluation in the result section is based on this set. This validation set starts on Monday June
1st, and ends on Sunday June 7th.

Figure 5.3 shows the data flow of the training process consisting of two training days and one test day.
The QLTC agent receives one day of data, the variables, and hyperparameter settings. Then the agent trains
and finds a control policy. After completing training, the agent’s control policy convergence is evaluated
by comparing it to the MILP optimum. The trained Q-values, stored in the IHT and weights, are input for
the next training day. The agent follows the same procedure again until the last day of training is reached.
Then, the agent’s trained policy generalization is evaluated on the test day by testing the near-optimum per-
formance. The agent is not trained on the test day but generates an instant output based on the learned
Q-values throughout the training process.

5.2.3. Hyperparameter Settings

Itis essential to set the hyperparameters properly since it influences the learning process and the action-value
function approximation. Consequently, it impacts the agent’s convergence and generalization performance.
Some hyperparameters can be set by arguing their influence, and others need a more extensive hyperparam-
eter search where performance under different settings is compared. The validation set, defined in section
5.2.2, is used to perform the hyperparameter search. The Q-learning hyperparameters «a, y, A, and the num-
ber of episodes are discussed first.

¢ The number of episodes is fixed to 15000. The agent learns a control policy before 12000 episodes for a
wide range of settings. Nevertheless, to ensure the agent has converged, the number of episodes is set
to 15000.

5.2. Training & Hyperparamter settings 25

Settings
T —
R D
P Training
A pPv = Q-values{ IHT, weights} l
| . & Convergence
N "
| Settlngf
|\ R
G
po -
s o
E pPv Training Q-values{ IHT, weights} l
e & Convergence
T
_ Settings
T
E —
s po
T _ pPv |
e
S
E -
T

Figure 5.3: Flowchart for the QLTC training process with two training days and one test day.

* The discount factor y determines how far the agent is looking forward. A value close to zero makes

100% r

95%

90%

85%

80%

75%

the agent myopic, and a value close to one makes it look far ahead. Since the EMS needs to determine
a control strategy for the entire day ahead at once, the agent should consider each hour of the day as
equally important. Therefore, the agent should not discount future rewards, resulting in a discount
factor of 1.

The initial step-size parameter « is set to 0.64. Figure 5.4 shows that independent of the decay pa-
rameter A, a small step-size parameter has poor performance. It is more favorable to set the step-size
parameter to 0.48 or higher. An a of 0.64 gives a good trade-off between learning pace and finding a
stable optimal policy.

The convergence decay parameter A determines the policy selection process by the agent, given by
equation (3.6). Figure 5.4 shows there is no significant difference between the different decay hyperpa-
rameter settings. It is chosen to set the convergence decay parameter A to 0.0006, the one with the most
exploration. The agent discovers more possible states than for the other two A settings, and therefore,
the action-values for a wider area of the state space get updated. After 15000 episodes, it has a 90 %
chance of selecting a greedy policy.

——)\ =0.006 (90% greedy)
——)\ =0.00127 (95% greedy)
—— X =0.0026 (97.5% greedy)

Qo

Figure 5.4: Performance under different step-size and e-greedy decay hyperparameter settings.

The tile coding hyperparameter settings, IHT size, m, and n are discussed below.

¢ The minimum number of tilings n should be a power of two greater or equal to four times the number

of state space variables, resulting in a minimum of 32 tilings. Increasing » to 64 while keeping all other
hyperparameters the same reduces the learning pace dramatically without gaining better results. Thus,
the number of tilings is set to 32.

26 5. Case Study

¢ The number of tiles present for each state variable determines the generalization along the correspond-
ing state dimension. If many tiles are present, it gets better at distinguishing between states, but it gen-
eralizes less. The time variable has one tile for each discrete time step. The net power demand has ten
tiles. The SOC of the BESS also has ten tiles, which is 10 % of the battery capacity per tile. The agent
finds it hard to separate boundary values from near boundary values for fewer tiles for this state vari-
able. The APCP state variable only needs three tiles since the demand shifted variable can only be in
three different states: the upper value, median value, and lower value. The relative price needs a higher
resolution to enable the agent to differentiate between relative prices and find an optimal policy close
to the MILP optimum. The 20 tiles present for this state variable generate a resolution of 0.1 %.

¢ The size of the IHT is 8388608. An IHT table four times smaller can store a week of training. However,
the THT runs out of memory when the agent trains on the entire training set. For this reason, the IHT
size is increased to prevent a full IHT when the agent trains on more data.

At this point, all data sets, variables, and hyperparameter settings needed as input for the QLTC algorithm
are defined. These settings stay fixed throughout the entire training process, summarized in Table 5.2.

Table 5.2: Summary - variables and hyperparameter settings

CD PSP =50 kw
BESS XB=11,P8 =50kW, E;q, =75 kWh
SOCpmin =20%, SOCpax = 100%, SOCy = 20%
: G _
Grid P =-560 kW
ap=0.64, v = 1.0, 15000 episodes, A = 0.0006
QLTC THT size = 8388608

m=[24,10,10,3,20 |, n=32

5.3. Results

The first section aims to show the robust return convergence, present the control policy, and offer the elec-
tricity cost savings of the proposed QLTC algorithm for one week of operation on the validation set. The
second section dives into how well the QLTC algorithm generalizes over the entire training set by deploying
the learned policy on the test set.

5.3.1. Convergence and Operational Performance on the Validation Set

To show the robust convergence of the QLTC agent, the agent learns repetitively on the first day of the val-
idation set for 20 separate simulations. The other inputs are the previously defined variables and hyperpa-
rameters in Table 5.2. The learned Q-values from a previous simulation are not input for the next simulation.
Thus, the agent starts every simulation without any prior knowledge.

(a) (b)

—138 — MILP L —— MILP
— QLTC —— QLTC greedy

1 1 1 1 i 1 L 1 1
0 2500 5000 7500 10000 12500 0 5000 7500 10000 12500
Episode Episode

2
8
o
o

Figure 5.5: The negative costs reached by the MILP model and the QLTC’s 20 episodes moving average return with 95%
confidence interval of the R} reward signal for 20 repetitive simulations on the first day of the validation set, where (a)
contains the complete policy, and (b) the greedy policy.

5.3. Results 27

Figure 5.5 (a) shows the MILP’s negative electricity costs and the return of the R} reward signal during
the learning process for 20 separate simulations by giving the moving average mean of 20 episodes and the
95 % confidence interval. The moving average return graph shows that the QLTC agent’s policy consistently
converges to a return value close to the negative electricity costs reached by the MILP optimization. This
subfigure proves that QLTC'’s control policy convergence is guaranteed, provoked by the tile coding’s linear
function approximation on a relatively small optimization problem. A more insightful graph is Figure 5.5 (b)
that extracts the return values from Figure 5.5 (a) if the agent follows a greedy policy. Since the agent eventu-
ally deploys the greedy policy, this subfigure illustrates the policy improvement throughout the learning pro-
cess. During approximately the first 1500 episodes, the moving average return does not show a value because
the agent mainly follows the exploratory policy at the beginning of the learning process. After performing
roughly 5700 episodes, the moving average return stabilizes at a constant value equal to the MILP optimum.
This demonstrates that the agent repetitively finds the same control strategy as the MILP mathematical opti-
mization. At 5700 episodes, the 95 % confidence interval of the return disappears, which is another indication
that the QLTC agent’s control policy settles repetitively at the same control strategy as the MILP model. Note
that this identical control strategy is not the optimum since both models use a discrete set of actions. Only
continuous control outputs can achieve the most optimal control strategy.

600

400 4
200 -

:ifiii H L“IM

Power (kW)
f=}

Rﬁw@ %m

¥

—600

——— Demand =—— PV generation

(b)

Net demand =—— Grld demand

Electricity price

Power (kW)

1A

H

m 18R

L
I

LI

i

RE

11

—— (b —— BESS

Electricity price

soc

1 1 1 1 1 1 1 1 1 1 1 1 1 1

100%
80%
60%
40% -
20%
0% | ISP POV POV DUVOR POV |
—— MILP —— QLTC

. H | H |
|

. " . . . |
0 6 12 18 24 30 36 66 72 78 84 90 126 132 138 144 150 156 162 168
Time step (hours) QLTC

A PEP (kW)
3
e
—_—
—]
—_—]
—_—

96 102 108 114 120

—— MILP

Figure 5.6: The BESS and CD operation for the learned and directly deployed policy on the validation set. (a) Consump-
tion, PV generation, net consumption, grid consumption, and electricity price. (b) BESS, CD, and electricity price. (c)
BESS SOC compared to the MILP optimum. (d) Controllable demand shifted compared to the MILP optimum.

This paragraph exhibits the operational performance of the proposed algorithm during one week of op-
eration on the validation set. First, by showing the QLTC’s power adjustment decisions and the difference
between the QLTC’s and MILP’s SOC and AP®P cycles. Second, by comparing the QLTC, the zero output, and
the MILP electricity costs made by operating on this specific week.

Again, the QLTC agent takes the variables and hyperparameters summarized in Table 5.2. The agent de-

28 5. Case Study

ploys the learned policy directly for each day of the validation set while not taking the learned Q-values from
the previous day as input for the next day. Note that this procedure differs from the training procedure shown
in Figure 5.3 since the IHT and weights are not forwarded to the next day. The learning time for a single day
takes 16 minutes on average, resulting in a total simulation time of 1 hour and 53 minutes for operation on
the entire validation set.

Figure 5.6 shows the operation for the entire week of the validation set. The upper subfigure depicts the
power demand, the PV power generation, the net power demand, the grid power demand, and the DAM
electricity prices at every discrete time step for the entire week. This subfigure shows that the electricity
prices have high price moments during the morning and evening peak hours and low price moments after
midnight and around noon, except for the weekend days (120 until 168). These two weekend days show low
prices during the morning peak. Moreover, the high price moment is less evident on Sunday’s evening peak.
The power demand in subfigure (a) follows the same week weekend day pattern as shown in Figure 5.1. Due
to the high PV power generation in summer, the net power demand is several times negative during the day;,
despite the increased power demand. The net power demand becomes negative for a more considerable
portion of the day during the weekend since the higher power demand during the daytime is absent.

Subfigure (b) shows the electricity price and the power output of the BESS and CD by the QLTC. It can
be seen that the agent operates accordingly, it increases the power output of the BESS and CD during low
price moments, and it decreases power output during high price moments. The BESS frequently operates
at maximum charge and discharge rate. However, due to its limited storage capacity, the BESS sometimes
charges and discharges lower than the CD’s power output, evident for hours 27 & 28 and 34 & 35. The ramp
rate constraint of the BESS is visible at hours 19 & 20, where the CD outputs both times at maximum power
and the BESS at +20kW. The ramp rate prevents the BESS from performing a complete charge-discharge
cycle with a slight price difference, apparent for these two hours. These minimal price differences offer a
lower financial gain than the indirect costs of reduced battery life.

The control strategies of the BESS and CD are compared to the MILP optimum in Subfigures (c) and
(d), respectively. Subfigure (c) shows that the control policy of the QLTC is very similar to the MILP control
strategy. Between hours 0 & 26, 45 & 60, and 146 & 157 the charge-discharge cycle are identical. Between time
steps 31 & 34, the MILP model discharges and charges, while the QLTC gives zero output. The electricity price
does not show a difference during that time interval, making the QLTC’s control strategy even more favorable.
When comparing subfigures (c) and (d), it is evident that the control strategies of the BESS deviate more from

the MILP than the control strategies of the controllable demand. For one week of operation, the AP cycles
of the QLTC is, for a significant part, identical to the MILP strategy.
Table 5.3: Electricity costs of the QLTC compared to the MILP optimum and a zero output control policy.
Mon 1st Tue2nd Wed3rd Thud4th Fri 5th Sat 6th Sun 7th
Oh-24h 24h-48h 48h-72h 72h-96h 96h-120h 120h-144h 144h-168h Total
CpmiLp 132.22 116.69 89.05 96.84 122.50 11.17 7.10 €575.57
Corrc 132.22 116.70 89.05 96.91 122.56 11.32 7.11 €575.85
Co 138.22 122.07 95.05 101.26 127.49 14.47 10.26 €608.82
n 100% 99.94% 100% 98.46% 98.92% 95.49% 99.78% 98.94%

As earlier explained in chapter 4, the electricity costs made by the deployment of the QLTC control are
denoted with Cgrrc, determined by taking the negative cumulative reward signal of R%. The electricity costs
made by taking the MILP control strategy and using the zero output control policy are given by Cysr1p, Cy, re-
spectively. The electricity costs made by following these three different control strategies are depicted in Table
5.3. This table shows that the electricity costs during weekdays are significantly higher than during weekend
days for all strategies. This difference is a result of the fact that the total grid electricity consumption for a
weekday is substantially higher than the grid electricity consumption during a weekend day, partly caused
by the difference in power demand between weekdays and weekend days, and partly by the relatively high
electricity generation by the PV system for weekend days. The impact of high PV generation on the electricity
costs is also evident for working days July 3rd & 4th . These two days have the largest PV generation and the
lowest electricity costs for the workweek. When looking at the total electricity costs for one week of operation,
the Cy reaches a total of €608.82. The total electricity costs for deploying the QLTC’s control policy and the
MILP control strategy are €575.85 and €575.57, respectively. The difference in electricity costs between these

5.3. Results 29

two control strategies is only €0.28. Both control strategies obtain an approximate electricity cost saving of
€33 for one week of operation.

From Figure 5.1, it was already evident that for Monday July 1st, the control strategies of the QLTC and
MILP were identical. However, Table 5.3 shows that the electricity costs between those two strategies were
equivalent for July 3rd. The QLTC agent finds a control policy above 98% near the MILP optimum for each
day of the validation set, except for Saturday July 6th. Nonetheless, this slightly underperforming day reaches
an 1 above 95%. On average, the QLTC reaches a remarkable 98.94% near the MILP optimum performance.

5.3.2. Convergence and Generalization on the Training set

The agent trains on the training set and deploys the learned policy on the test set to prove and measure the
proposed algorithm’s generalization capabilities, following the training process earlier described in Section
5.2.2. The agent starts training on 1 June and ends training on 31 August while skipping the test set in mid-
July, performing 85 training days in total. The learned Q-values are input for the next training day during this
training process, illustrated in Figure 5.3. Eventually, the agent obtains an approximate Q-value for a signifi-
cant share of all possible state-action pairs, enabling the agent to deploy a control policy without training on
that specific day. For the training process, the variables and hyperparameters from Table 5.2 are input.

The training process for the first three days of the training set is repeated five times to prove the conver-
gence of the QLTC agent on the training set. Figure 5.7 (a) shows the 20 episodes moving average return with
95% confidence interval of the R! reward signal for five repetitive simulations on the first three days of the test
set expressed in the n measure. The extracted greedy policy from Figure 5.7 (a) is depicted in Figure 5.7 (b).
The electricity costs reached by following the MILP control strategy are denoted as 100%. The upper subfigure
shows that the agent consistently converges to a control policy close to the MILP control strategy for all three
training days. The lower subfigure gives insights into the greedy policy improvement. The moving average
return does not depict values for approximately the first 1500 episodes since the agent primarily performs
non-greedy actions at the beginning of the learning process. The QLTC agent settles at a control policy for
the first, second, and third day at approximately 10500, 10700, and 5200 episodes, respectively. For all three
days, this control policy comes about 99% close to the electricity costs made by the MILP model. What stands
out is that the return already starts at 40% for the third training day. This indicates that the agent encounters
similar state-action pairs and uses stored Q-values from the first and second training day for determining a
control policy on the third day.

(@)

—— MILP
—— QLTC

— MILP
—— QLTC greedy

1 i
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
Episode

Figure 5.7: The QLTC’s 20 episodes moving average return with 95% confidence interval of the R% reward signal for five
repetitive simulations on the first three days of the test set expressed in the 1 measure, where (a) contains the complete
policy, and (b) the greedy policy.

The operation on the test set after the agent is trained on the entire training set is depicted in Figure 5.8.
The first Subfigure (a) shows the power demand, the PV power generation, the net power demand, the grid
power demand, and the DAM electricity prices for every discrete time step of the test week. The electricity
prices follow the same general pattern as the validation set during weekdays. However, the weekend days for
the test set differ significantly. Saturday has minor price deviations, peaking in the morning and evening. On

30 5. Case Study

600
400 A
200 4

Power (kW)

—200 4
—400 4
—600

I
T

100% A
80%
60% -
40%
20% -

0% 1 1 1 1 1

50 |
04

L)

Net demand —— Grid demand Electricity price

PO U, T
Tiﬁ UﬂMW]ﬂm

—— (D —— BESS Electricity price

Power (kW)
s
|
L=
=0
]

(©)

socC

| 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1
—— MILP —— QLTC

LT

|
U LA IE L

78 8 90 96 102 108 114 120 126 132 138 144 150 156 162 168
Time step (hours)

A PP (kW)

|
36 42 48

=
-
o
=
3
)
=
=3

—— MILP

QLTC

Figure 5.8: BESS and CD operation for the test set. (a) Consumption, PV generation, net consumption, grid consumption,
and electricity price. (b) BESS, CD, and electricity price. (c) BESS SOC compared to the MILP control strategy. (d) CD
shifted compared to the MILP control strategy.

Sunday the prices are relatively low, except for the evening when it reaches the price moment of the weekend.
The net power demand curve depicted in Figure 5.8 (a) reaches relatively low values on days with high solar
PV generation, especially on Sunday when power demand is lower than during weekdays. If a combination or
a neighboring combination of electricity prices and net power demand is not present in the training set, the
agent has not determined an approximate Q-value for the state-action pairs in that specific area in the state
space. The QLTC agent finds it hard for those states to select a high rewarding control policy.

The relatively low performance of 58.94% on Saturday July 20th can be designated to this phenomenon.
The QLTC’s performance expressed in the 11 measure for this Saturday and the other six days of the test set are
given in Table 5.3. Figure 5.8 (b) shows that the QLTC increases the power output of the BESS and controllable
demand at hour 121, an unfavorable decision since this hour has a relatively high price. The relatively low
performance of this Saturday is also evident in the difference in SOC cycles when comparing the QLTC and
MILP models. Furthermore, it is visible at hour 140 in Subfigure (d), where the controllable demand performs
an opposing decision.

The best performing days are Tuesday July 16th and Wednesday July 17th reaching an 1 of 91.49% and
95.73%, respectively. The SOC and AP®P cycles for the QLTC and MILP appear to be very similar for those
two days. On average, the QLTC agent finds a control policy of 80.71% on the test week.

This paragraph presents the policy improvement during training under different tile hyperparameter set-
tings expressed by the 1 measure. It aims to prove that the agent can reach adequate generalization for a
range of settings, ensuing an extensive hyperparameter search is not needed.

The number of tiles present in each state space dimension determines the generalization over the cor-

5.3. Results 31

responding state variable. A large number of tiles make narrow generalizations, and a small number of tiles
make broad generalizations. The relative price variable is the most critical state variable for determining
a control policy. A good control policy lowers grid power demand during high price moments and increases
grid power demand during low price moments. Due to this strong dependency on the relative price, the train-
ing and testing process is repeated for five different relative price tile settings, denoted with ms. The other
four tile sizes stay the same. Simulations are performed under a value of ms of 10, 15, 20, 25, and 30. The
learned policy is evaluated against the test set during training to create insights into the policy improvements
process.

100% [24, 10, 10, 3, 10]
75%
" 50%
25%
0% == Mon 15th Tue 16th Wed 17th Thu 18th Fri 19th Sat 20th Sun 21st
100% [24, 10, 10, 3, 15]
75%
" 50%
25%
0% = Mon 15th Tue 16th Wed 17th Thu 18th Fri 19th Sat 20th Sun 21st
100% [24, 10, 10, 3, 20]
75%
" 50%
25%
0% —="Mon 15th Tue 16th Wed 17th Thu 18th Fri 10th Sat 20th Sun 21st
100% [24, 10, 10, 3, 25]
75%
" 50%
25%
0% Mon 15th Tue 16th Wed 17th Thu 18th Fri 19th Sat 20th Sun 21st
100% [24, 10, 10, 3, 30]

Mon 15th Tue 16th Wed 17th Thu 18th Fri 19th Sat 20th Sun 21st
BN 7 W 14 N 21 N 23 BN 35 BN 42 W 49 BN 56 W 63 MMM 70 MM 77 W 85

Figure 5.9: The 1 measure throughout the training process for an increasing number of tiles for the relative price state
variable.

Figure 5.9 shows the 7 measure for an increasing number of training days on the test set under the afore-
mentioned different tile hyperparameter settings. When comparing the first day of the test set under the five
different settings, it can be seen that the 1 drops at 42 days of training for the two most upper subfigures. At
the next evaluation point at 49 days, the 1 goes up to about 90% before declining to a final value under 75%.
This shows that for these settings, the policy does not gradually improve. More training can result in worse
performance. If ms is 20, 25, or 30, the agent improves its policy more gradually improves, resulting in an

32 5. Case Study

equal final performance of approximately 86%, depicted in Table 5.4. If the relative price has more tiles, the
policy improves more gradually, also evident for the 16th and 21st day of the test set. However, this more grad-
ual policy improvement can also yield lower final performance. This is shown on Tuesday July 16th, where
the m; size of 30 yields significantly lower performance than 15, 20, and 25. In this case, the m; tile size of 30
needs more training.

The final average performance on the test set when trained on the entire training set is given in the last
column of Table 5.4. This column shows that the agent yields an average n of approximately 80% for 15, 20,
and 25 m; tiles. It shows that the agent can reach adequate generalization for a range of mi5 tile settings.

Table 5.4: The day specific and average 7 measure for the test set under different tile hyperparameter settings after com-
pleting a training session of 85 days.

Mon 15th Tue 16th Wed 17th Thu18th Fri 19th Sat 20th Sun 21st
ms Oh-24h 24h-48h 48h-72h 72h-96h 96h-120h 120h-144h 144h-168h Average
10 70.57% 70.70% 92.94% 25.02% 69.35% 62.71% 65.69% 65.28%
15 74.48% 90.61% 92.12% 91.19% 82.34% 63.79% 71.01% 80.79%
20 86.76% 91.49% 95.73% 79.65% 78.39% 58.94% 74.00% 80.71%
25 86.02% 92.13% 91.52% 84.51% 80.46% 47.16% 74.78% 79.51%
30 86.56% 83.70% 96.33% 73.03% 65.14% 50.64% 76.08% 75.92%

5.4. Discussion

This research aimed to develop an RL-based EMS to minimize electricity costs of the electricity consumer.
The performance of the proposed QLTC approach was tested in a case study on an industrial manufacturing
company in the Netherlands. The results show that the QLTC’s return repetitively convergences to the MILP
negative electricity costs, both for the validation and test set. This indicates that the QLTC reaches a control
policy comparable to the good-quality control strategy of the MILP optimization model. After one week of
operation, the electricity costs made by the QLTC comes 99% close to MILP’s electricity costs. Furthermore,
the results show that QLTC generalizes adequately for a range of tile hyperparameter settings. The general-
ization was tested by training the QLTC agent on 85 days of data and deploying a policy based on previously
learned policies on a test week of data it has not encountered before. For a range of settings, the average
deployed policy on the test week comes 80% close to the MILP optimum. This makes the QLTC agent suited
to output a decent control policy without having seen the exact day of data.

The operational performance results showed that the proposed QLTC approach is comparable to the
MILP optimization method. Unfortunately, the proposed approach has its limitations. The QLTC uses a
discrete set of actions for both the BESS and CD. Therefore, the agent comes close but never finds the most
optimal solution. The discrete set of BESS actions also disables the utilization of the full battery capacity for
some BESS variable settings. This happens if the difference between the SOC; and the SOC,;;;, or SOC 44 is
smaller than the smallest charge or discharge action. Increasing the set of BESS actions can lower the impact
of unused battery capacity, but it can never solve this issue. Moreover, using more discretization deteriorates
convergence, and more episodes are needed to find a solution since the agent has to explore more possible
actions. The controllable demand uses a set of three actions, assuming all power is shifted at once. If more
controllable power comes available for only specific periods of the day, a set with more discrete actions is
needed. Having only three possible actions is a limitation of the current approach. However, as already men-
tioned, more discretizations lead to increased convergence time. Therefore, methods that enable continuous
actions should be investigated to solve the aforementioned discretization issues.

Another limitation is that the charge and discharge efficiencies are not considered. Adding those will
make the model more realistic. Another drawback of the BESS modeling is that it is scaled to a size that the
BESS and CD’s power output together rarely activate the one-way grid constrain. In theory, more modular
battery packs could be added to the BESS. These extra battery packs will charge and discharge at sub-optimal
prices more frequently, but they can still deliver electricity costs savings.

The case study only considered data from the meteorological summer, a shortcoming of this research.
Simulations on the other three meteorological subsets should also be performed to validate if the agent

5.4. Discussion 33

achieves comparable performances throughout the year. For instance, the share of PV generation is sub-
stantially smaller during winter, and electricity prices patterns can be different. In a follow-up study, training
on a more extensive training set can be conducted to evaluate if the agent can yield better performance on
the test set. The agent could also be trained on the entire year, excluding four test sets for each meteorolog-
ical subset. Besides performance evaluation on larger training sets, alternative tile hyperparameter settings
can be explored. This research altered the number of tiles of the relative electricity price state variable. The
conducted in-depth analysis can also be performed when varying one of the other five state variable tile sizes.
More computing power should be allocated for these suggested follow-up studies since a single day of train-
ing takes approximately 16 minutes on an office laptop.

Conclusion & Recommendations

6.1. Conclusion

This research aimed to develop an EMS that minimizes the electricity costs for a smart building, using RL
with linear function approximation. The energy management optimization problem consists of an electricity
consumer with controllable loads, solar PV generation, and a BESS. From this research objective, a research
question and six sub-question were derived. First, the six sub-questions will be answered. Second, a final
answer to the main research question will be formulated.

6.1.1. Answers to the sub-questions

1. What type of RL approaches are most suitable and used for solving energy management problems based
on the state-of-the-art? In Chapter 2, research was conducted on energy management, energy arbitrage,
and demand response problems that applied state-of-the-art model-free RL methods to the problem.
This analysis has shown that Q-learning is the most used RL method in literature. Most studies use
Q-learning in combination with a DQN to store the approximate Q-values. Q-learning has fast learning
capabilities because it updates estimates based on other estimates, also known as bootstrapping. It can
offer quick convergence making Q-learning suited for solving energy management problems.

2. How can the linear function approximating tile coding be implemented in the energy management prob-
lem to solve the curse of dimensionality? To solve the curse of dimensionality, the tile coding function
approximation was implemented by the open source tile coding software package, which was already
optimized for RL problems. The utilized software package cuts off a tile at each integer boundary of a
state variable. Thus, the state variables needed to be scaled accordingly to set the number of tiles for
the corresponding state dimension. This study introduced the tile hyperparameter m for scaling the
state variables.

3. How to model an RL-based EMS with a load and a BESS? The first simplified EMS model with non-
controllable loads and a BESS was developed. The EMS made use of Q-learning with tile coding (QLTC)
function approximation that tries to minimize the electricity costs by maximizing the return of the re-
ward signal. This study proposed a new reward function design for energy management problems. This
proposed reward function takes the standard reward function and subtracts the daily average electricity
price from the electricity price. By this means, good behavior is rewarded positively and bad behavior
negatively. Subsequently, the agent finds it easier to learn a control policy. Simulations showed that
the proposed reward function reaches a better solution in fewer episodes than the standard reward
function.

4. How can solar PV generation be added to the RL EMS efficiently? The simplified EMS was improved by
adding the PV generation to the problem. The improved proposed QLTC has a clever state space design
that minimizes the number of state variables to enhance the generalization capabilities while remain-
ing enough distinguishing states for powerful convergence. It subtracts the PV power generation from
the power demand and uses this as a single state variable. Furthermore, the state space includes the
relative electricity price, enabling the QLTC agent to generalize between different training days more
easily.

35

36 6. Conclusion & Recommendations

5. What is the customer-dependent controllable electricity demand, and how can this controllable demand
effectively be modeled in RL?

The controllable loads present in the smart building were aggregated to a single controllable demand
variable to model the controllable demand more effectively. This approach has several advantages
compared to modeling each load as a separate action variable. First, this approach reduced the action
space significantly. Second, no additional information from the controllable loads was needed. Third,
it made the approach more scalable. This study used a trinary set of actions: maximum power decrease,
do nothing, and maximum power increase. This trinary set enabled the agent to "catch up" for previous
power reductions, which is not possible with the binary on/off method frequently used in literature.

A case study was performed on an industrial manufacturing company in the Netherlands that oper-
ates heavy machinery. Furthermore, this company has a HVAC and an EWH system. The customer-
dependent controllable electricity demand was determined by analyzing the company’s historical elec-
tricity consumption data. The company’s data was divided by meteorological seasons to determine the
seasonal related consumption patterns and the allowable power adjustments without violating regular
operation. From this analysis it was evident that the EMS can increase and decrease 50 kW of power
demand.

6. What is the performance of the RL-based EMS when compared to MILP in a market-size case study? Fi-
nally, the proposed Q-learning with tile coding (QLTC) EMS was developed that considers solar PV gen-
eration, a BESS, and controllable and non-controllable loads. Moreover, a MILP optimization model
was developed to evaluate the proposed QLTC’s performance in a case study on the industrial man-
ufacturing company. This case study assessed historical consumption and PV generation data, EPEX
SPOT Day-ahead market data, and a real-size modular BESS.

The proposed approach effectively minimized the smart building’s electricity costs, determined by the
grid power consumption and the DAM electricity prices. The results showed that the QLTC’s return con-
vergence is guaranteed for both the validation set and training set. Moreover, the results demonstrated
that the agent can effectively learn and deploy a control policy for the next day of operation, compa-
rable to the good-quality control strategy of the MILP optimization model. For one week of operation,
the electricity costs made by the QLTC comes 99% close to MILP’s electricity costs. Furthermore, this
study evaluated the generalization capabilities of the proposed approach by training the QLTC agent on
a training set of 85 days and deploying the learned policy on a test week of data it has not encountered
before. The results showed that the QLTC adequately generalizes on previously learned control policies
for a range of tile hyperparameter settings, foregoing the need for extensive and time-consuming tile
hyperparameter tuning. The average deployed policy on the test week comes 80% close to the MILP
optimum. This demonstrated that the QLTC agent can output a decent control policy without having
seen the exact day of data.

6.1.2. Answer to the main research question
The main research question was formulated as follows:

How to design a reinforcement learning based energy management system for cost minimized operation of
a smart building equipped with solar PV, battery storage, and controllable loads?

This research started the design process by studying energy management, energy arbitrage, and demand
response problems that applied state-of-the-art model-free RL methods to the problem. The study’s insights
and findings were taken to design a first simplified EMS for a non-controllable load and a BESS using Q-
learning and the RL-optimized tile coding software package. This simplified EMS was gradually improved
by adding the PV generation and the controllable loads to the problem. Finally, the proposed Q-learning
with tile coding (QLTC) EMS was developed that considers solar PV generation, a BESS, and controllable and
non-controllable loads. The proposed QLTC has a more powerful reward function for faster and better return
convergence. The QLTC also has a clever state space design that minimizes the number of state variables to
enhance generalization while remaining its strong convergence. It subtracts the PV power generation from
the power demand and uses this as a single state variable. Furthermore, the state space has a relative elec-
tricity price variable for better generalization between training days. Another feature of the QLTC’s design is
the aggregated controllable demand for better convergence, implementation and scalability.

The QLTC EMS effectively minimized the smart building’s electricity costs in a case study. The results
showed that the agent can effectively learn and deploy a control policy for the next day of operation, achiev-

6.2. Recommendations 37

ing electricity costs 99% close to the MILP model. Furthermore, this case study evaluated the generalization
capabilities of the proposed approach. The results showed that QLTC generalizes on previously learned con-
trol policies to come 80% close to the MILP optimum for a range of tile hyperparameter settings. Hence, the
QLTC agent can output a decent control policy without having seen the exact day of data.

6.2. Recommendations

This research showed the effectiveness of the proposed QLTC EMS approach. However, further research is
needed before the proposed architecture can be used for real customers. Improvements need to be made to
make the model more realistic, and more efficient. The proposed QLTC should also be tested on more and
different data. The following recommendations are given for future research.

¢ The development of a BESS model with less assumption. This model should include efficiencies and
continuous actions. Continuous action space could be achieved by actor-critic methods. Therefore, it
would be interesting to investigate an actor-critic method with tile coding as function approximation.

¢ More data efficient and computational efficient linear function approximation methods could be ex-
plored, such as LSTD, or LSPI [60].

* More efficient learning method can be investigated to reduce the number of episodes needed. The n-
step TD is a mix between TD(0) and Monte Carlo. In general, this method needs fewer episodes to learn
a policy.

* Areward function can be designed that forces the agent to only perform a charge-discharge cycle when
there is a price spread bigger than a certain value. This will make the agent only perform a charge
discharge cycles if there is sufficient financial gain.

¢ Another case study can be performed to validate and test the proposed approach on 15min interval
data. This increases the size of the problem significantly. It can be validated if the proposed approach
can find good control policies.

* The case study only considered the meteorological summer data set. Simulations on the other three
meteorological subsets should be performed to validate if the agent achieves comparable performances
throughout the year.

» Training on a more extensive training set can be performed. Another option is to alter the training and
test set to validate if the agent is not biased.

Bibliography

[11 IRENA. Global Energy Transformation: A Roadmap to 2050. Apr. 2019. URL: https://www . irena .
org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_
2019. pdf.

[2] University LUT and SolarPower Europe. 100% Renewable Europe. Apr. 2020. URL: https : / / www .
solarpowereurope . org / wp - content /uploads /2020 /04 / SolarPower - Europe - LUT _ 100 -
percent-Renewable-Europe_mr.pdf?cf_id=29704.

[3]1 Ganesh Kumar Venayagamoorthy et al. “Dynamic Energy Management System for a Smart Microgrid”.
In: IEEE Transactions on Neural Networks and Learning Systems 27.8 (2016), pp. 1643-1656. DOI: 10 .
1109/TNNLS.2016.2514358.

[4] Milos Manic et al. “Intelligent Buildings of the Future: Cyberaware, Deep Learning Powered, and Hu-
man Interacting”. In: IEEE Industrial Electronics Magazine 10.4 (2016), pp. 32-49. DOI: 10.1109/MIE.
2016.2615575.

[5] International Energy Agency. “Perspectives for the Clean Energy Transition: The Critical Role of Build-
ings”. In: (2019), pp. 1-117. URL: https: //www . iea . org/reports/the - critical - role - of -
buildings.

[6] Alwyn Mathew, Abhijit Roy, and Jimson Mathew. “Intelligent Residential Energy Management System
Using Deep Reinforcement Learning”. In: IEEE Systems Journal 14.4 (2020), pp. 5362-5372. DOI: 10 .
1109/JSYST.2020.2996547.

[71 Jungiao Han and M. Piette. “Solutions for Summer Electric Power Shortages: Demand Response andits
Applications in Air Conditioning and Refrigerating Systems”. In: 29 (Nov. 2007).

[8] Peter Palensky and Dietmar Dietrich. “Demand Side Management: Demand Response, Intelligent En-
ergy Systems, and Smart Loads”. In: IEEE Transactions on Industrial Informatics 7.3 (2011), pp. 381-388.
DOI:10.1109/TII.2011.2158841.

[9] USDepartment of Energy. “Benefits of Demand Response in Electricity Markets and Recommendations
for Achieving Them”. In: Report to the United States Congress (Feb. 2006). DOI: http://eetd.1bl.gov.

[10] M. H. Albadi and E. E El-Saadany. “Demand Response in Electricity Markets: An Overview”. In: 2007
IEEE Power Engineering Society General Meeting. 2007, pp. 1-5. DOI: 10.1109/PES. 2007 . 385728.

[11] Chongging Kang and Wenzhao Jia. “Transition of tariff structure and distribution pricing in China”. In:
2011 IEEE Power and Energy Society General Meeting. 2011, pp. 1-5. DOI: 10.1109/PES.2011.6039547.

[12] B. Severin, J.Michae, and R. Arthur. “Dynamic Pricing, Advanced Metering and Demand Response in
Electricity Markets”. In: Center for the Study of Energy Markets, University of California Energy Institute,
Berkeley, CA, USA, Working Paper (2002). URL: https://escholarship.org/uc/item/11w8d6m4.

[13] Gokan MAY etal. “Energy management in manufacturing: From literature review to a conceptual frame-
work”. In: Journal of Cleaner Production 167 (Nov. 2017), pp. 1464-1489. DoI: 10.1016/j . jclepro.
2016.10.191.

[14] Z. Liang et al. “Deep Reinforcement Learning based Energy Management Strategy for Commercial
Buildings Considering Comprehensive Comfort Levels”. In: 52nd North American Power Symposium
(NAPS) (2020). URL: https : // ieeexplore - ieee - org . tudelft . idm. oclc . org/abstract /
document/9449817.

[15] RichardS. Sutton and Andrew G. Barto. Reinforcement Learning. 2018. URL: http://www.incompleteideas.
net/book/the-book.html.

[16] Luu Ngoc An and Tran Quoc-Tuan. “Optimal energy management for grid connected microgrid by us-
ing dynamic programming method”. In: 2015 IEEE Power Energy Society General Meeting. 2015, pp. 1-5.
DOI: 10.1109/PESGM. 2015.7286094.

39

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Apr/IRENA_Global_Energy_Transformation_2019.pdf
https://www.solarpowereurope.org/wp-content/uploads/2020/04/SolarPower-Europe-LUT_100-percent-Renewable-Europe_mr.pdf?cf_id=29704
https://www.solarpowereurope.org/wp-content/uploads/2020/04/SolarPower-Europe-LUT_100-percent-Renewable-Europe_mr.pdf?cf_id=29704
https://www.solarpowereurope.org/wp-content/uploads/2020/04/SolarPower-Europe-LUT_100-percent-Renewable-Europe_mr.pdf?cf_id=29704
https://doi.org/10.1109/TNNLS.2016.2514358
https://doi.org/10.1109/TNNLS.2016.2514358
https://doi.org/10.1109/MIE.2016.2615575
https://doi.org/10.1109/MIE.2016.2615575
https://www.iea.org/reports/the-critical-role-of-buildings
https://www.iea.org/reports/the-critical-role-of-buildings
https://doi.org/10.1109/JSYST.2020.2996547
https://doi.org/10.1109/JSYST.2020.2996547
https://doi.org/10.1109/TII.2011.2158841
https://doi.org/http://eetd.lbl.gov
https://doi.org/10.1109/PES.2007.385728
https://doi.org/10.1109/PES.2011.6039547
https://escholarship.org/uc/item/11w8d6m4
https://doi.org/10.1016/j.jclepro.2016.10.191
https://doi.org/10.1016/j.jclepro.2016.10.191
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9449817
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/abstract/document/9449817
http://www.incompleteideas.net/book/the-book.html
http://www.incompleteideas.net/book/the-book.html
https://doi.org/10.1109/PESGM.2015.7286094

40

Bibliography

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

[30]

(31]

(32]

(33]

(34]

[35]

Zheng Zhao, Elham B. Makram, and Yuliang Tong. “Impact study of energy storage for optimal energy
scheduling in microgrid”. In: 2012 IEEE Power and Energy Society General Meeting. 2012, pp. 1-7. DOI:
10.1109/PESGM.2012.6344915.

Mohamed-Hamza Laraki et al. “Energy management system for a Stand-alone Wind/ Diesel/ BESS/
Fuel-cell Using Dynamic Programming”. In: 2021 18th International Multi-Conference on Systems, Sig-
nals Devices (SSD). 2021, pp. 1258-1263. DOI: 10.1109/SSD52085.2021 .9429362.

J. Cao et al. “Deep Reinforcement Learning-Based Energy Storage Arbitrage With Accurate Lithium-Ion
Battery Degradation Model”. In: (Sept. 2020). URL: https://ieeexplore-ieee-org.tudelft.idm.
oclc.org/document/9061038.

Xin Chen et al. Reinforcement Learning for Decision-Making and Control in Power Systems: Tutorial,
Review, and Vision. 2021. arXiv: 2102.01168 [cs.LG].

Jiajun Duan et al. “Deep-Reinforcement-Learning-Based Autonomous Voltage Control for Power Grid
Operations”. In: IEEE Transactions on Power Systems 35.1 (2020), pp. 814-817. DO1: 10.1109/TPWRS.
2019.2941134.

J. Shewchuk and T. Dean. “Toward learning time-varying functions with high input dimensionality”.
In: Proceedings. 5th IEEE International Symposium on Intelligent Control 1990. 1990, 383-388 vol.1.
DOI: 10.1109/ISIC.1990.128485.

C.-S.Lin and H. Kim. “CMAC-based adaptive critic self-learning control”. In: IEEE Transactions on Neu-
ral Networks 2.5 (1991), pp. 530-533. DOI: 10.1109/72.134290.

Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: (2013). URL: https://
www.cs.toronto.edu/ vmnih/docs/dqn.pdf.

Volodymyr Mnih, Koray Kavukcuoglu, and David Silver. “Human-level control through deep reinforce-
ment learning”. In: Nature (Feb. 2015). URL: https://www-nature-com.tudelft.idm.oclc.org/
articles/naturel4236.pdf.

C. Hau et al. “Reinforcement Learning Based Energy Management Algorithm for Energy Trading and
Contingency Reserve Application in a Microgrid”. In: IEEE PES Innovative Smart Grid Technologies
Europe (ISGT-Europe) (2020). URL: https : //ieeexplore - ieee- org. tudelft . idm. oclc. org/
document/9248752.

Sven Myrdahl Opalic et al. “A Deep Reinforcement Learning scheme for Battery Energy Management”.
In: (2020). URL: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9243797.

Zhiqgiang Wan, Hepeng Li, and Haibo He. “Residential Energy Management with Deep Reinforcement
Learning”. In: (2018). URL: https ://ieeexplore-ieee-org.tudelft . idm. oclc.org/stamp/
stamp. jsp?tp=&arnumber=8489210.

Daniel J. B. Harrold, Jun Cao, and Zhong Fan. “Data-driven battery operation for energy arbitrage using
rainbow deep reinforcement learning”. In: June 2021). URL: https://arxiv.org/abs/2106.06061.

Van-Hai Bui, Akhtar Hussain, and Hak-Man Kim. “Double Deep Q-Learning-Based Distributed Opera-
tion of Battery Energy Storage System Considering Uncertainties”. In: IEEE TRANSACTIONS ON SMART
GRID, VOL. 11 (2020). URL: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/
8742669.

Wenzheng Bi et al. “Real-time Energy Management of Microgrid Using Reinforcement Learning”. In:
(2020). URL: https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9277821.

Shimon Whiteson, Matthew Taylor, and Peter Stone. “Adaptive tile coding for value function approxi-
mation”. In: (Jan. 2007).

Richard Sutton. “Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse
Coding”. In: (Aug. 1996).

Weirong Liu et al. “Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement
Learning”. In: IEEE Transactions on Neural Networks and Learning Systems (June 2018). URL: https:
//ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8306311.

Shangtong Zhang and Richard S. Sutton. A Deeper Look at Experience Replay. 2018. arXiv: 1712.01275
[cs.LG].

https://doi.org/10.1109/PESGM.2012.6344915
https://doi.org/10.1109/SSD52085.2021.9429362
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9061038
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9061038
https://arxiv.org/abs/2102.01168
https://doi.org/10.1109/TPWRS.2019.2941134
https://doi.org/10.1109/TPWRS.2019.2941134
https://doi.org/10.1109/ISIC.1990.128485
https://doi.org/10.1109/72.134290
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
https://www-nature-com.tudelft.idm.oclc.org/articles/nature14236.pdf
https://www-nature-com.tudelft.idm.oclc.org/articles/nature14236.pdf
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9248752
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9248752
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9243797
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=8489210
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/stamp/stamp.jsp?tp=&arnumber=8489210
https://arxiv.org/abs/2106.06061
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8742669
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8742669
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9277821
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8306311
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8306311
https://arxiv.org/abs/1712.01275
https://arxiv.org/abs/1712.01275

Bibliography 41

(36]

[37]

[38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]
(48]

(49]

[50]

(51]

(52]

(53]

[54]

[55]

[56]
[57]

IBM Cloud Education. “Deep Learning”. In: IBM Cloud Learn Hub (2020). URL: https://www . ibm.
com/cloud/learn/deep-learning.

Hao Wang and Baosen Zhang. “Energy Storage Arbitrage in Real-Time Markets via Reinforcement Learn-
ing”. In: (2018). URL: https : // ieeexplore - ieee - org . tudelft . idm. oclc . org/document /
8586321.

Hanchen Xu et al. “Arbitrage of Energy Storage in Electricity Markets with Deep Reinforcement Learn-
ing”. In: (Apr. 2019). URL: https://arxiv.org/abs/1904.12232.

S. Fujimoto, H. van Hoof, and D. Meger. “Addressing function approximationerror in actor-critic meth-
ods”. In: (2019). URL: https://arxiv.org/abs/1509.02971.

M. K. Perera, K. T. M. U. Hemapala, and W. D. A. S. Wijayapala. “Developing a Reinforcement Learning
model for energy management of microgrids in Python.” In: 2021 International Conference on Com-
putational Intelligence and Knowledge Economy (ICCIKE) (2021). URL: https://ieeexplore-ieee-
org.tudelft.idm.oclc.org/document/9410754.

Fayiz Alfaverh, M. Denai, and Yichuang Sun. “Demand Response Strategy Based on Reinforcement
Learning and Fuzzy Reasoning for Home Energy Management”. In: (2020). URL: https://ieeexplore-
ieee-org.tudelft.idm.oclc.org/document/9000577.

Fu-Dong Li et al. “Optimal control in microgrid using multi-agent reinforcement learning”. In: ISA
Transactions (2012). URL: https://www-sciencedirect-com. tudelft.idm.oclc.org/science/
article/pii/S0019057812000894.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (4th Edition). Pearson,
2020. 1SBN: 9780134610993. URL: http://aima.cs.berkeley.edu/.

D. Bertsekas. Dynamic Programming and Optimal Control: Volume I. Athena scientific optimization
and computation series v. 1. Athena Scientific, 2012. 1SBN: 9781886529434. URL: https : / / books .
google.nl/books?id=qVBEEAAAQBAJ.

Christopher J.C.H Watkins. “Q-learning”. In: Machine Learning (1989), p. 14. URL: https: //1link-
springer-com.tudelft.idm.oclc.org/content/pdf/10.1007/BF00992698.pdf.

James S. Albus. “New Approach to Manipulator Control: The Cerebellar Model Articulation Controller
(CMAC)1”.1In: 1975.

Pierre Raybaut. “Spyder-documentation”. In: Available online at: pythonhosted. org (2009).

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Infor-
matica Amsterdam, 1995.

Wes McKinney et al. “Data structures for statistical computing in python”. In: Proceedings of the 9th
Python in Science Conference. Vol. 445. Austin, TX. 2010, pp. 51-56.

Harris et al. “Array programming with NumPy”. In: Nature 585 (2020), pp. 357-362. DOI: 10 . 1038/
s41586-020-2649-2.

John D Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in science & engineering 9.3
(2007), pp. 90-95.

Michael Waskom et al. mwaskom/seaborn: v0.8.1 (September 2017). Version v0.8.1. Sept. 2017. DOI: 10.
5281/zenodo.883859. URL: https://doi.org/10.5281/zenodo.883859.

Richard S. Sutton. “Tile Coding Software — Reference Manual, Version 3.0”. In: (2018). URL: http://
incompleteideas.net/tiles/tiles3.html.

William Hart et al. “Pyomo: Modeling and solving mathematical programs in Python”. In: Mathemati-
cal Programming Computation 3 (Sept. 2011), pp. 219-260. DOI: 10.1007/s12532-011-0026-8.

William E. Hart et al. Pyomo - Optimization Modeling in Python.2017. URL: https://link-springer-
com.tudelft.idm.oclc.org/book/10.1007%2F978-3-319-58821-6.

free software foundation (FSF). “GLPK - GNU project”. In: (2021).

M. Mulder and B. Scholtens. “The impact of renewable energy on electricity prices in the Netherlands”.
In: Renew Energy 57 (2013). URL: https: //www- sciencedirect- com. tudelft.idm. oclc.org/
science/article/pii/S09601481130005057via)%3Dihub.

https://www.ibm.com/cloud/learn/deep-learning
https://www.ibm.com/cloud/learn/deep-learning
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8586321
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/8586321
https://arxiv.org/abs/1904.12232
https://arxiv.org/abs/1509.02971
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9410754
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9410754
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9000577
https://ieeexplore-ieee-org.tudelft.idm.oclc.org/document/9000577
https://www-sciencedirect-com.tudelft.idm.oclc.org/science/article/pii/S0019057812000894
https://www-sciencedirect-com.tudelft.idm.oclc.org/science/article/pii/S0019057812000894
http://aima.cs.berkeley.edu/
https://books.google.nl/books?id=qVBEEAAAQBAJ
https://books.google.nl/books?id=qVBEEAAAQBAJ
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007/BF00992698.pdf
https://link-springer-com.tudelft.idm.oclc.org/content/pdf/10.1007/BF00992698.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
http://incompleteideas.net/tiles/tiles3.html
http://incompleteideas.net/tiles/tiles3.html
https://doi.org/10.1007/s12532-011-0026-8
https://link-springer-com.tudelft.idm.oclc.org/book/10.1007%2F978-3-319-58821-6
https://link-springer-com.tudelft.idm.oclc.org/book/10.1007%2F978-3-319-58821-6
https://www-sciencedirect-com.tudelft.idm.oclc.org/science/article/pii/S0960148113000505?via%3Dihub
https://www-sciencedirect-com.tudelft.idm.oclc.org/science/article/pii/S0960148113000505?via%3Dihub

42 Bibliography

[58] KNMI. Maandoverzicht van het weer in Nederland (MOW). 2021. URL: https : // www . knmi . nl /
nederland-nu/klimatologie/gegevens/mow.

[59] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow : concepts, tools, and
techniques to build intelligent systems. Sebastopol, CA: O’Reilly Media, 2017. 1SBN: 978-1491962299.

[60] Michail G. Lagoudakis and Ronald Parr. “Least-Squares Policy Iteration”. In: (Mar. 2003). URL: https:
//jmlr.csail.mit.edu/papers/v4/lagoudakisO3a.html.

https://www.knmi.nl/nederland-nu/klimatologie/gegevens/mow
https://www.knmi.nl/nederland-nu/klimatologie/gegevens/mow
https://jmlr.csail.mit.edu/papers/v4/lagoudakis03a.html
https://jmlr.csail.mit.edu/papers/v4/lagoudakis03a.html

Appendix A: Case Study

(@)
100 T
) w
Z 0r =
E E
& — mp | 3
0 — QLTC -
1 1 T N TR 1] 1 L 111 1 O T PN TN NN Y L1l | MEEL ! 1l 1 1
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
Episode Episode
(9) (d)
100 f X . . . 3 . . -
W | W | J
g i
E | 5 |
:zfa i —— MILP :zf) | —— MILP
0 :H! —— QLTC greedy - - —— QLTC greedy
L L Ll i L alll L L L 1 1 1 L 1
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500
Episode Episode

Figure A.1: The 20 episodes moving average return with 95% confidence interval of the R% reward signal for five repetitive
simulations on a single day under different reward functions where (a) contains the complete policy of the classical reward
function, (b) the complete policy of the proposed reward function, (c) the greedy policy of the classical reward function,
and (d) the greedy policy of the proposed reward function.

43

44

A. Appendix A: Case Study

Table A.1: Incident irradiation in 2019,2020,2021 on average in the Netherlands.

month | irradiation 2019 | irradiation 2020 | irradiation 2021
Jan 7147 6625 7248
Feb 17476 11825 16599
Mar 26211 34710

Apr 50250 56442

May 57979 70826

Jun 65160 59937

Jul 60620 57094

Aug 52912 51750

Sep 33044 36453

Oct 17654 15462

Nov 9458 10287

Dec 6552 5325

45

||“|||iFridagEnergg

efgu

“““I“ FridauEn

Friday Battery is een geavanceerd Energie Management Systeem (EMS), door de combinatie van bewezen
batterijtechnologie en slimme software. Door Friday Battery samen met zonnepanelen te installeren,
vermindert de afhankelijkheid van energiebedrijven door energiestromen automatisch te optimaliseren.
Op weg naar € 0 energiekosten!

230£3.00 .
Type v NCM 200 598
Capaciteit 15 kWh - 150 kWh
Bruikbare energieopslag 15 kWh (12 kWh bij 80% DoD) T .
Spanning 350 - 478V I
Maximale laad-/ontlaadstroom 30A I 27
Nominale laad-/ontlaadstroom 15A .h.
Maximaal laad-/ontlaadvermogen 10 kW [[' Height
Nomianaal laad-/ontlaadvermogen 6 kW]
Laadcycli (levensduur) > 5000 I E :
Round-trip efficiency >95% 7 8
Interne weerstand <100 mQ :‘:
Elektrische beveiliging Hoofdschakelaar & zekering 0
Communicatie CAN =
Omvormer Extern |
Garantie 10 jaar (pro rata)
[['
Bedrijfstemperatuur -10°C - 45°C
Luchtvochtigheid 5°C - 95%
Koeling Natuurlijke convectie Ll -
1 ! ~_|
Cel ULL642 — —
Batterijmodules IEC62619 & UL1973 647 £ 5.00
Transport UN38.3
IP-beschermingsklasse P54
Hazardous Material Classification Class 9 +31 (0)85 002 0135
info@friday.energy
Breedte 647 + 5mm Padualaan 8,
Diepte 230 + 3mm 3584 CH Utrecht
Hoogte 1205 £ 5mm www.friday.energy
Gewicht 138 kg

Appendix B: Validation Set Convergence

2019-07-01
100% sy
—— global optimum
5% = return convergence
& 50%
£
E 25%
2
S 0%
3
=
—25%
—50%
0 2000 4000 6000 8000 10000 12000 14000
Episode
100%
—— global optimum
75% —— greedy return convergence
& 50% 1
£
2 25% -
B
S 0% A
3
=
—25% 1
—50% A
0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.1: Validation set near optimum convergence for 1 July.

47

48 B. Appendix B: Validation Set Convergence

2019-07-02

100%

—— global optimum

80% —— return convergence
60%
40%
20%

0%

Near optimum (%)

—20%

—40%

0 2000 4000 6000 8000 10000 12000 14000
Episode

100%

—— global optimum

0/
80% —— greedy return convergence
60% -
40%
20% -

0% 1

Near optimum (%)

—20% 1

—40%

0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.2: Validation set near optimum convergence for 2 July.

2019-07-03
100%
—— global optimum
5% return convergence
$ 50%
£
g 25%
E
§ 0%
=
—25%
—50%
k T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Episode
100%
—— global optimum
75% —— greedy return convergence
S 50% A
£
g 25%
g
5 0%
=
—25% A
—50%
T T T T T T T
0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.3: Validation set near optimum convergence for 3 July.

49

2019-07-04
100%
75%

L 50%
£
g 25%
E
= 0%
[
=

—25% ;

—— global optimum
—50% 1 return convergence
0 2000 4000 6000 8000 10000 12000 14000
Episode
100%
75%

T 50%
£
g 25% A
E
= 0% A
L
=

—25% A .

—— global optimum
—50% o — greedy return convergence
0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.4: Validation set near optimum convergence for 4 July.

2019-07-05
100%
—— global optimum
0,
80% return convergence
. 60%
2
T 40%
£ 2%
g
3 0%
=
—20%
—40% A
0 2000 4000 6000 8000 10000 12000 14000
Episode
100%
—— global optimum
0/
80% —— greedy return convergence
. 60%
2
T 40% o
E
£ 20% -
g
5 0%
=
—20% A
—40% A
0 2000 4000 6000 8000 10000 12000 14000

Episode

Figure B.5: Validation set near optimum convergence for 5 July.

50 B. Appendix B: Validation Set Convergence

2019-07-06
100%
75%
= 50%
E
£ 2%
g
5 0%
- |
o
o —— global optimum
—50% return convergence
0 2000 4000 6000 8000 10000 12000 14000
Episode
100%
T
75%
£ 50%
£
g 25% A
g |
5 |
5 0% A
=
(AN
—25% 1 — global optimum
50% 4 T greedy return convergence
0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.6: Validation set near optimum convergence for 6 July.

2019-07-07
100%

—— global optimum

0,
75% return convergence
50%
25%

0%

—25%

Near optimum (%)

—50%

—75%

0 2000 4000 6000 8000 10000 12000 14000
Episode

100%

——— global optimum

75%
50% Il
25%
0% o

—— greedy return convergence

—25%

Near optimum (%)

—50% A

—75% A

0 2000 4000 6000 8000 10000 12000 14000
Episode

Figure B.7: Validation set near optimum convergence for 7 July.

C

Appendix C: Test Set Convergence

51

52 C. Appendix C: Test Set Convergence

[24, 10, 10, 3, 10] Mon Tue Wed Thu Fri Sat Sun Average
Week 22 98.87% 98.74% 98.80%
Week 23 99.17% 99.03% 100.00% 100.00% 95.80% 97.50% 98.28% 98.54%
Week 24 99.64% 97.75% 99.66% 99.97% 99.48% 99.65% 99.49% 99.38%
Week 25 99.60% 98.63% 99.12% 99.87% 100.00% 99.54% 99.47% 99.46%
Week 26 99.04% 99.98% 99.86% 99.60% 99.78% 99.43% 98.44% 99.45%
Week 27 99.82% 99.87% 99.98% 98.98% 99.20% 95.88% 99.65% 99.05%
Week 28 99.59% 99.98% 99.61% 98.18% 99.86% 98.28% 99.37% 99.27%
Week 29 testday testday testday testday testday testday testday test week
Week 30 99.90% 98.90% 99.75% 99.79% 99.22% 99.07% 99.36% 99.43%
Week 31 99.77% 99.47% 99.82% 99.46% 99.83% 99.85% 99.39% 99.66%
Week 32 99.29% 99.95% 99.85% 99.72% 98.22% 96.39% 99.20% 98.94%
Week 33 99.80% 99.81% 99.45% 99.48% 99.30% 99.07% 99.46% 99.48%
Week 34 99.84% 97.19% 99.50% 99.84% 99.26% 99.64% 99.41% 99.24%
Week 35 99.43% 98.86% 99.84% 99.10% 99.47% 99.38% 99.35%
Average 99.57% 99.12% 99.70% 99.50% 99.12% 98.66% 99.19% [SSEEH
[24, 10, 10, 3, 15] Mon Tue Wed Thu Fri Sat Sun Average
Week 22 99.00% 98.74% 98.87%
Week 23 99.15% 98.96% 99.98% 100.00% 97.03% 97.24% 99.02% 98.77%
Week 24 99.22% 97.43% 99.83% 99.66% 99.86% 99.71% 99.32% 99.29%
Week 25 99.37% 94.69% 99.62% 99.93% 99.56% 99.92% 98.52% 98.80%
Week 26 99.69% 99.94% 99.79% 100.00% 99.83% 99.92% 97.88% 99.58%
Week 27 100.00% 99.76% 98.42% 99.98% 99.46% 95.67% 99.65% 98.99%
Week 28 99.62% 99.81% 99.11% 98.96% 99.52% 98.60% 100.00% 99.37%
Week 29 testday testday testday testday testday testday testday test week
Week 30 99.82% 99.64% 99.84% 99.66% 98.93% 99.27% 99.29% 99.49%
Week 31 99.43% 99.16% 99.80% 99.95% 99.80% 99.56% 99.62% 99.62%
Week 32 99.71% 99.95% 99.88% 99.91% 98.56% 97.04% 98.91% 99.14%
Week 33 99.69% 99.20% 96.89% 97.91% 99.09% 100.00% 99.36% 98.88%
Week 34 99.76% 99.21% 99.57% 99.13% 99.51% 97.73% 95.30% 98.60%
Week 35 98.60% 98.98% 99.81% 99.32% 99.81% 99.77% 99.38%
Average 99.50% 98.89% 99.38% 99.53% 99.25% 98.72% 98.80% [SSHEH

Figure C.1: Training set near optimum convergence for tile settings: [24,10,20,3,10] and [24,10,20,3,15].

[24, 10, 10, 3, 20] Mon Tue Wed Thu Fri Sat Sun Average

Week 22 98.71% 99.15% 98.93%
Week 23 99.29% 99.52% 100.00% 99.97% 96.34% 97.13% 99.00% 98.75%
Week 24 99.64% 98.53% 99.72% 99.87% 99.53% 99.74% 99.32% 99.48%
Week 25 99.35% 97.27% 99.53% 99.95% 99.96% 99.27% 99.23% 99.22%
Week 26 99.56% 99.94% 99.43% 99.93% 99.75% 99.72% 99.03% 99.62%
Week 27 100.00% 99.96% 100.00% 99.89% 99.96% 96.03% 99.97% 99.40%
Week 28 99.40% 99.88% 99.92% 97.85% 99.56% 98.86% 100.00% 99.35%
Week 29 testday testday testday testday testday testday testday test week
Week 30 100.00% 99.54% 99.67% 99.35% 99.88% 99.17% 98.48% 99.44%
Week 31 99.97% 99.36% 99.74% 99.95% 99.24% 99.41% 99.68% 99.62%
Week 32 99.48% 99.95% 99.59% 99.83% 97.58% 96.94% 99.69% 99.01%
Week 33 99.48% 99.40% 98.83% 99.74% 99.06% 99.97% 98.94% 99.34%
Week 34 99.86% 98.45% 99.67% 99.70% 99.83% 99.21% 99.30% 99.43%
Week 35 99.98% 98.18% 99.75% 99.06% 99.86% 99.98% 99.47%
Average 99.67% 99.17% 99.65% 99.59% 99.21% 98.78% 99.32% [SSEEA
[24, 10, 10, 3, 25] Mon Tue Wed Thu Fri Sat Sun Average
Week 22 98.93% 99.25% 99.09%
Week 23 99.74% 99.07% 99.81% 100.00% 97.34% 97.13% 99.36% 98.92%
Week 24 99.67% 98.42% 98.99% 99.91% 99.56% 99.67% 98.45% 99.24%
Week 25 99.79% 97.32% 98.37% 99.82% 99.54% 99.62% 98.37% 98.97%
Week 26 97.95% 99.93% 99.65% 99.39% 99.73% 99.76% 98.67% 99.30%
Week 27 99.95% 99.63% 99.90% 99.16% 99.68% 95.88% 100.00% 99.17%
Week 28 99.27% 99.90% 99.40% 98.31% 99.52% 98.60% 99.25% 99.18%
Week 29 testday testday testday testday testday testday testday test week
Week 30 99.90% 99.72% 99.90% 99.90% 99.40% 99.17% 98.98% 99.57%
Week 31 99.72% 99.49% 100.00% 99.89% 99.95% 98.71% 99.59% 99.62%
Week 32 98.96% 99.95% 99.27% 99.98% 98.12% 96.97% 99.00% 98.89%
Week 33 99.52% 99.50% 98.97% 98.61% 99.60% 100.00% 99.26% 99.35%
Week 34 99.91% 99.15% 99.74% 99.77% 99.46% 98.79% 99.38% 99.46%
Week 35 99.93% 99.49% 99.85% 99.79% 99.95% 99.49% 99.75%
Average 99.53% 99.30% 99.49% 99.54% 99.32% 98.67% 99.13% [ESRTA

Figure C.2: Training set near optimum convergence for tile settings: [24,10,20,3,20] and [24,10,20,3,25]

54 C. Appendix C: Test Set Convergence

[24, 10, 10, 3,30] Mon Tue Wed Thu Fri Sat Sun Average
Week 22 99.48% 98.83% 99.16%
Week 23 99.89% 99.29% 99.97% 99.70% 98.24% 97.38% 99.68% 99.16%
Week 24 98.66% 98.39% 98.82% 99.74% 99.93% 99.68% 98.72% 99.13%
Week 25 99.68% 97.37% 98.96% 100.00% 99.56% 99.46% 98.05% 99.01%
Week 26 98.67% 99.96% 99.83% 99.72% 99.94% 99.70% 98.62% 99.49%
Week 27 99.95% 99.96% 100.00% 99.96% 99.96% 95.88% 99.75% 99.35%
Week 28 99.52% 99.90% 99.11% 98.43% 99.59% 97.92% 99.40% 99.13%
Week 29 testday testday testday testday testday testday testday test week
Week 30 99.74% 99.75% 99.02% 99.71% 99.70% 99.33% 98.69% 99.42%
Week 31 99.72% 99.73% 99.79% 99.79% 99.71% 99.89% 98.66% 99.61%
Week 32 99.48% 99.98% 98.71% 99.83% 98.94% 97.17% 99.91% 99.15%
Week 33 99.53% 98.87% 99.24% 98.51% 98.53% 99.80% 98.70% 99.03%
Week 34 99.78% 98.53% 99.86% 99.38% 99.71% 99.58% 99.81% 99.52%
Week 35 99.91% 99.86% 99.81% 98.85% 99.92% 99.13% 99.58%
Average 99.54% 99.30% 99.43% 99.47% 99.48% 98.80% 99.07% [JS5IES%

Figure C.3: Training set near optimum convergence for tile settings: [24,10,20,3,30].

	Nomenclature
	Introduction
	Reinforcement Learning and Function Approximation
	Objective and Research Question
	Thesis Outline

	State-of-the-Art
	Energy arbitrage with a BESS
	Energy management with a BESS and non-controllable loads
	Energy management with a BESS, non-controllable loads, and VRESs
	Energy management with a BESS, controllable loads, and VRESs
	Key Findings

	Reinforcement Learning Background
	Reinforcement Learning
	Markov Decision Process
	Policy & Action-value Function
	Exploration vs. Exploitation
	Model-free Reinforcement Learning
	Q-learning

	Function Approximation
	Tile Coding

	Methodology
	Resources and Tools
	System Layout
	Controllable Loads
	Battery Energy Storage Systems

	Proposed Algorithm: Q-learning with Tile Coding
	Boundary Conditions
	State Space & Action Space
	Reward Function
	Tile Coding
	Pseudocodes Learning and Deployment

	Mathematical Optimization

	Case Study
	Data Sets, Variables, and Hyperparameters
	EPEX SPOT Day-Ahead Market
	Electricity Consumption
	PV Generation
	BESS

	Training & Hyperparamter settings
	Evaluation methods
	Training, Validation & Test Sets
	Hyperparameter Settings

	Results
	Convergence and Operational Performance on the Validation Set
	Convergence and Generalization on the Training set

	Discussion

	Conclusion & Recommendations
	Conclusion
	Answers to the sub-questions
	Answer to the main research question

	Recommendations

	Appendix A: Case Study
	Appendix B: Validation Set Convergence
	Appendix C: Test Set Convergence

