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Executive Summary

This thesis investigates how public transport passengers’ route choice preferences change in response
to a planned disruption, using Automated Fare Collection (AFC) data from the Washington DC metro
system. The study aims to understand not only whether passengers change their routes, but also
which factors drive these changes and whether the adjustments persist over time. In doing so, it also
assesses the strengths and limitations of using revealed preference data alone to model route choice
behavior in the context of service disruptions.

A detailed case study was conducted around a selected planned disruption that affected multiple route
alternatives between a key origin-destination (OD) pair. By dividing the analysis into a pre-disruption
period and three post-disruption periods, the study captures both short-term and long-term behavioral
adaptations. Descriptive analyses show that while travel times and wait times remained relatively stable
across periods, passengers shifted from direct routes to those with more transfers but shorter in-vehicle
times. This indicates a change in preferences, where minimizing travel time appeared to take prece-
dence over avoiding transfers.

However, discrete choice models such as the Multinomial Logit (MNL) and Mixed Logit (ML) yielded
counterintuitive results, with some positive coefficients for time-related attributes. These inconsisten-
cies were largely attributed to the strong correlation between in-vehicle time and the number of transfers,
as well as the presence of dominated alternatives in the choice set. The ML model allowed for random
taste variation and showed a statistically better fit than the MNL model, but practical improvements
were limited and the results remained difficult to interpret.

Although the discrete choice models encountered challenges in isolating the exact factors driving these
changes—mainly due to the strong correlation between in-vehicle time and the number of transfers—
the broader behavioral patterns were clear. Even though some coefficients had unexpected signs,
the shift from positive to negative coefficients for in-vehicle time suggests a change in preferences.
Whether this change is due to increased sensitivity to travel time, a decreased reluctance to transfer,
or a combination of both could not be fully determined.

The study also highlights that while AFC data is highly valuable for detecting real-world changes in
travel behavior, it has important limitations when used alone. The absence of perceptual factors such
as comfort, reliability, and route familiarity makes it difficult to fully explain why some passengers make
seemingly suboptimal choices. Additionally, the high degree of overlap between available routes in the
metro network limited the ability to observe distinct trade-offs between route alternatives.

From a policy perspective, these findings suggest that disruptions should not only be seen as opera-
tional challenges, but also as potential moments where lasting changes in travel patterns can occur.
If passengers become more sensitive to travel time after experiencing a disruption, it becomes impor-
tant for agencies to ensure that fast and convenient alternatives remain available afterward, to support
passenger satisfaction and avoid the risk of losing travelers to other modes.

Finally, while this study focused on a single disruption in a single metro network, it provides a foundation
for broader research. Future studies should aim to apply similar analyses to different networks, with
longer and more diverse route options, and explore whether disruption characteristics such as duration
influence the persistence of behavioral changes. Combining AFC data with additional perception-based
information could also offer deeper insights into the factors driving passengers’ adaptation processes.
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1
Introduction

As cities around the world struggle with increasing traffic congestion and rising emissions, public trans-
port plays a critical role in ensuring sustainable urban mobility (Lako and Gjevori, 2023). Efficient
and reliable transit systems reduce dependence on private vehicles, which in turn helps to reduce
overcrowding and lower carbon emissions. However, maintaining public transport as an attractive al-
ternative to driving requires ensuring high levels of passenger satisfaction with service quality (Tuan
et al., 2022).

A key factor influencing passenger satisfaction is reliability, as unpredictable service can discourage
people from using public transport regularly (Soza-Parra et al., 2019). One of the main threats to relia-
bility are disruptions, which can lead to increased travel times, missed connections, and overcrowding.
These disruptions not only affect overall service quality but also influence passengers’ transit route
choices, forcing them to adapt their travel behavior in response to service changes due to the disrup-
tion.

Research has already been conducted on passengers’ public transport route choices during disrup-
tions, often using discrete choice models (Dixit et al., 2023). These models help reveal transit riders’
preferences by assessing the relative importance of various travel attributes, offering policymakers
valuable insights into how passengers make route choices in response to disruptions.

Many earlier studies on public transport route choice analysis were based on stated preference (SP)
data (Shires et al., 2019, Li et al., 2020, Zhu et al., 2017), where passengers respond to hypothetical
situations. However, SP surveys may not fully capture actual passenger behavior, potentially leading
to biased estimates (Mo et al., 2022a). Later studies therefore turned to revealed preference (RP)
data from travel surveys to estimate actual route preferences (Marra and Corman, 2023). Although RP
surveys offer more accurate data, they are often costly and limited in sample size (Ingvardson et al.,
2024). With the rise of large-scale disaggregate datasets, such as automatic fare collection (AFC) data,
RP data can now be collected more efficiently, enabling a more accurate and large scale analysis of
route choice behavior (Berggren et al., 2022).

AFC data has already been used in analyzing public transport users’ choices during disruptions. For
instance, Marra and Corman (Marra and Corman, 2023) used AFC data to examine how network distur-
bances affect passengers’ route choices, while Eltved et al. (Eltved et al., 2021) analyzed the impacts
of long-term service disruptions on travel behavior using smart card data. Whilst AFC data has been
used to analyze passenger behavior during and after disruptions, it has rarely been applied to study
route choice preferences specifically in the context of disruptions. Most existing studies rely on a com-
bination of RP and SP surveys (Rahimi et al., 2020, Li et al., 2020), making it unclear whether AFC
data alone can sufficiently capture route choice preferences. One exception is the study by Mo et al.
(Mo et al., 2022b), which uses AFC data to examine mode choice preferences during disruptions rather
than route choices. This means there is a gap in studies using only AFC data to look at route choice
preferences in response to a disruption.

1



1.1. Research objective and Questions 2

Another gap in the literature is that most research focuses on route choice during the disruption itself,
rather than what happens after the disruption ends. While some studies, such as Eltved et al. (Eltved
et al., 2021), have examined route choice before and after a disruption, their dataset only covered a
period of three weeks before and after, making it difficult to determine whether changes in preferences
persist over time.

This study aims to fill these gaps by extending the analysis period from weeks to several months before
and after a disruption, allowing for a better understanding of whether changes in route choice prefer-
ences persist over time. Additionally, this research relies solely on AFC data to analyze changes in
route choice preferences, a methodology that has not yet been applied to the Washington DC metro
system. These contributions provide valuable scientific insights into how public transport users adapt
to planned disruptions over extended periods and demonstrate the feasibility of using AFC data alone
to infer route choice preferences.

Beyond its academic relevance, this research also has important practical implications. The Washing-
ton Metropolitan Area Transit Authority (WMATA), a key stakeholder in this study, plays a crucial role in
promoting public transport as a sustainable alternative to private vehicles. Unlike unexpected disrup-
tions, planned disruptions provide transit agencies with the opportunity to proactively manage service
changes, as they can adjust mitigation strategies, improve passenger communication, and even modify
disruption plans in response to anticipated behavioral shifts. By understanding how passenger pref-
erences evolve during and after planned disruptions, this research can help refine policies, optimize
service planning, and develop strategies that better retain and attract riders. These insights ultimately
support the government’s broader sustainability goals, such as reducing congestion and emissions by
increasing public transport usage.

1.1. Research objective and Questions
Following the gaps in literature the objective of this research is to analyze transit users’ route choice
preferences in response to planned disruptions, using smart card data from the Washington DC metro
network. Based on this objective the following research question was constructed.

How do public transport passengers’ route choice preferences change in response to a planned public
transport disruption?

To answer this main questions the following sub-questions need to be answered.

• Which disruptions can be used to analyze changes in route choice preferences?
• What are the main factors influencing passengers’ route choices in response to planned public
transport disruptions?

• How do route choice preferences evolve over time during the post-disruption period?
• How suitable is revealed preference data for analyzing changes in route choice preferences in
response to a planned public transport disruption?

1.2. Thesis Structure
This thesis is organized as follows: Chapter 2 reviews the existing literature, providing the state of the
art in the field. Chapter 3 outlines the methodology used to address the research questions. In Chapter
4, this methodology is applied to data from the Washington D.C. metro network. Chapter 5 presents
the results, followed by Chapter 6, which discusses the findings, draws conclusions, and offers insights
for future research.



2
Literature review

To find the knowledge gap in the current body of literature it is important to first establish the state of
the art on planned public transport disruption literature. To determine this, first a search strategy was
adopted to find articles related to public transport disruptions and how people tend to behave during
these disruptions. Based on these articles there are certain themes that are relevant to zoom in on
more. First the state of the art on disruptions in literature will be discussed. This entails the type of
disruption, the duration of the disruption, the research focus and whether or not there is an analysis
after the disruption. Once we know the state of the art we can look at the data sources that have been
used in the different studies and after that the study methods that were used will be outlined. Based
on these themes the gap in the literature will be established in the literature discussion.

2.1. Search Strategy
To find articles that have to do with the behavior of passengers during a public transport disruption there
are three topics upon which search words were based. The first topic is planned disruptions in public
transport, to evaluate what articles are already written in the context of transit user behavior during
planned public transport disruptions.

We have a smart card dataset available for this thesis, which is a form of Revealed preference data.
Therefore it was decided to also look at literature on the use of revealed preference data in public
transport behavior research.

Based on these topics search words were constructed which can be found in table 2.1. The articles
that were found that had to do with passenger behavior during public transport disruptions were se-
lected and can be found in this table. The search engines that was used for this literature review was
Sciencedirect/Elsevier and the TU Delft Library website.

3



2.2. Disruptions in public transport systems 4

Table 2.1: Search words for disruptions in public transport

Topic Search words Articles found

Planned disruptions
in public transport

Planned AND disruption
AND public AND transport

Planned AND disruptions OR
disturbances AND travel AND
behavior OR behavior

Marra and Corman, 2023,
Yap and Cats, 2022,
Eltved et al., 2021,
Deng et al., 2022,
Arslan Asim et al., 2021,
Li et al., 2020,
Shires et al., 2019,
Yap et al., 2018,
Yap and Cats, 2021a

Revealed preference
in public transport

”Revealed preference” AND public
AND transport Adelé et al., 2019

Smart card data
in public transport

”smart card data” OR AFC AND public
AND transport OR transit AND
disruption OR disturbance

Bernal et al., 2016,
Sun et al., 2016,
van der Hurk, 2015,
Wang et al., 2024,
Mo et al., 2022a,
Mo et al., 2022b,
Liu et al., 2021,
Nazem et al., 2018

There are also articles that were found via snowballing. The article of Zhu et al. (Zhu et al., 2017) was
found via backward snowballing from the article of Eltved et al. (Eltved et al., 2021).

The articles of Rahimi et el. (Rahimi et al., 2019, Rahimi et al., 2020) were also found via backward
snowballing, this time via the article of Mo et al. (Mo et al., 2022b).

The articles that were found and shown in table 2.1 were analyzed and will be discussed based on the
following topics: public transport disruptions, the data source that is used in each article and the study
methods that are used in these papers.

2.2. Disruptions in public transport systems
A disruption in a public transport system is an event that prevents a bus, tram, metro, or train from
following its standard route. Over the past decade, the focus on managing public transport disruptions
has shifted from an operations-oriented perspective to a passenger-oriented approach (van der Hurk,
2015, Zhu et al., 2017, Krishnakumari et al., 2020). This shift means that disruptions are no longer
assessed solely in terms of operational delays; instead, their effects on passengers have become a
key consideration. In particular, recent studies have analyzed the impact of disruptions on passengers,
with a focus on changes in their route or mode choices (Marra and Corman, 2023, Eltved et al., 2021,
Deng et al., 2022).

Besides route and mode choice, some studies also look at how disruptions affect overall demand in
public transport systems (Yap and Cats, 2022, Yap et al., 2018, van der Hurk, 2015). While research
covers different aspects of disruptions, most studies still focus on how passengers adjust their route
and mode choice behavior when disruptions occur.

Studies on disruptions differ not only in their research focus but also in the type of disruption they exam-
ine. Disruptions can be either unplanned, such as those caused by technical failures or accidents, or
planned, such as those due to scheduled maintenance. The nature of a disruption heavily influences
how passengers react, particularly in adjusting their route or mode choice. The impact of a planned
disruption is smaller than if this same disruption would occur unplanned, due to the ability for passen-
gers to anticipate their route or mode change. However, planned disruptions usually last longer than
unplanned disruptions, which means the accumulated disruption impact can be far greater for planned
disruptions (Yap and Cats, 2021a). This can also lead to a loss of public transport ridership on the
affected routes, leading to revenue losses.



2.3. Data sources for public transport disruption studies 5

A key advantage of planned disruptions, however, is that they provide public transport authorities with
the opportunity to implement mitigation strategies such as alternative routes, shuttle services, or im-
proved communication. This makes them particularly useful for policy-oriented studies, as they allow
researchers and transit agencies to assess how well different mitigation measures work. Understand-
ing how passengers adapt to planned disruptions can help improve contingency planning and long-term
infrastructure strategies.

There is a fairly balanced amount of research on the effects of planned and unplanned disruptions in
the literature examined for this study. Examples of studies on unplanned disruptions include Marra and
Corman (Marra and Corman, 2023) and Li et al. (Li et al., 2020), while research on planned disruptions
can be found in Eltved et al. (Eltved et al., 2021) and Zhu et al. (Zhu et al., 2017).

A key takeaway from the literature is that most studies focus on passenger behavior or demand pre-
diction only during the disruption itself (Wang et al., 2024). While this makes sense for short-term
disruptions, as they are unlikely to have lasting effects, it is also valuable to examine the impact of
longer-term disruptions after they have ended. However, only a small number of studies extend their
analysis beyond the disruption period, such as those by Eltved et al. (Eltved et al., 2021, Shires et al.
Shires et al., 2019, and Nazem et al. Nazem et al., 2018).

Another notable trend in the literature is that most disruptions studied are short-term, typically lasting no
more than a day (Arslan Asim et al., 2021, Bernal et al., 2016). When assessing post-disruption effects,
longer-term disruptions—which last at least several weeks—are more relevant, as they are more likely
to influence passenger behavior even after normal operations resume. Despite this, research on the
long-term effects of disruptions remains limited.

2.3. Data sources for public transport disruption studies
The literature not only highlights differences in the types and durations of disruptions but also reveals
significant variation in the data sources used to study them. Many earlier studies on public transport
route choice analysis were based on stated preferences (SP) data for which surveys are used. Like
the study of Arslan et al. (Arslan Asim et al., 2021) that used SP surveys to analyze transit users’ mode
choice behavior during light rail transit short term planned service disruptions. However, SP surveys
require passengers to respond to hypothetical situations, which may not reflect the actual travel choices
of passengers and might therefore result in biased estimates (Mo et al., 2022a).

Later studies therefore started using revealed preference (RP) data in the form of travel surveys to
reflect the actual choice passenger made. Like the study of Marra and Corman (Marra and Corman,
2023) that used travel surveys to analyze how different network disturbances affect public transport
passengers, regarding the chosen route and the travel cost. Or the study of Zhu et al. (Zhu et al.,
2017) which, based on travel surveys distributed before and after disruptions, identified three types of
behavioral changes. Using surveys allows for a very detailed analysis, they are however costly and
often limited in sample size (Ingvardson et al., 2024).

However, with the use of smart cards there is also a new way of collecting revealed preference data that
can be used. The usage of smart cards allows for automatic fare collection (AFC). The AFC system
is a system which automatically collects the entrance and/or exit of each passenger in the network,
allowing to infer their trips. AFC data can be used to analyze and predict the way passengers make
choices during disruptions. This is a more reliable way of collecting data than via surveys because the
data reflects real behavior without relying on memory or subjective interpretation. It also eliminates the
disadvantage of the limited sample size that is the case for RP surveys. Smart card data often covers a
large number of users, providing a broad and diverse dataset for analysis. So with the coming of smart
cards and its AFC data there is now a vast amount of RP data available for a wide range of analysis
within public transport planning and modelling.

AFC data is already used to analyze and predict the way passengers make choices during disruptions.
One of the papers investigating public transport route choice under disturbances from AFC data is
(Yap et al., 2018). Focusing on four planned disruptions, they identified that the in-vehicle time of
rail-replacing services and the associated waiting time are perceived worse than the ones of normal
services.
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While AFC data provides valuable insights into passenger movements, it has limitations. One major
drawback is the lack of descriptive statistics about the passengers using smart cards, as privacy regula-
tions often prevent access to personal data. Additionally, AFC data does not capture subjective factors
such as perceived comfort, safety, or satisfaction—elements that can play a crucial role in route choice
decisions. In discrete choice modeling, additional variables are often included to enrich the analysis,
but when relying solely on AFC data, researchers are limited to the attributes recorded by the system.
As a result, some important factors influencing route choice may be overlooked.

This issue does not arise in Revealed Preference (RP) and Stated Preference (SP) surveys, as these
methods allow researchers to collect both passenger demographics and perception-based data. For
example, Rahimi et al. (Rahimi et al., 2019) conducted a combined RP-SP survey to analyze rail users’
responses to a subway disruption in Toronto. The RP section gathered information about passengers’
real-life experiences with unplanned rail disruptions, while the SP section presented hypothetical disrup-
tion scenarios and asked respondents how they would react—such as canceling their trip or switching
modes. Additionally, the survey collected demographic details such as age and gender, which AFC
data alone does not provide.

Given these differences, combining smart card data with survey data—where possible—could help
address the limitations of AFC data and provide a more complete picture of passenger behavior during
disruption.

Beyond the type of data used, the location where AFC data is collected also plays a crucial role in
shaping study conclusions. Differences in public transport networks, passenger demographics, and
travel patterns mean that findings from one region may not be directly transferable to another. The
data used in this study originates from Washington, D.C., a transit system that has not been widely
analyzed in the context of disruptions. To the author’s knowledge, the only study that has previously
used this data to examine disruptions is the study of Yap and Cats (Yap and Cats, 2021a), which
focused on predicting unplanned disruptions and their impact on passenger delays.

2.4. Study methods for analyzing and predicting transit users’ choice
behavior during disruptions

In addition to differences in disruption types and data sources, studies also vary in the methods used to
analyze and predict transit users’ choice behavior during disruptions. Broadly, these methods can be
categorized into aggregate and disaggregate approaches. Aggregate-level analysis examines overall
trends and patterns across the transit system, providing high-level insights into system performance.
This approach is particularly useful for policymakers when assessing the broader impact of disruptions.
In contrast, disaggregate-level analysis focuses on individual travel behavior, considering factors such
as personal characteristics, route choices, and decision-making processes. This allows for a more
detailed understanding of how different passenger groups respond to disruptions. Different methods
are employed within both aggregate and disaggregate analyses. The following section provides an
overview of the key study methods identified in the literature.

2.4.1. Aggregate study methods
Aggregate-level methods focus on identifying general patterns, trends, and system-wide responses
to public transport disruptions. The following subsections describe the aggregate methods most com-
monly found in the literature.

Data analysis
Data analysis is an aggregate-level method widely used to examine transit user behavior during disrup-
tions, identifying patterns, trends, and key influencing factors. One of the most common approaches
involves using AFC data, which provides large-scale, objective insights into passenger movements.
Studies such as those from Liu et al. (Liu et al., 2021), Nazem et al. (Nazem et al., 2018), and Zhu et
al. (Zhu et al., 2017) have leveraged AFC data to analyze how travel patterns shift during disruptions.

Beyond overall trends, data analysis can also help categorize different forms of passenger behavior.
For example, the study of Sun et al. (Sun et al., 2016) used AFC data to classify passengers into
three behavioral groups: continue, detour, or leave the system. These categorizations offer a deeper
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understanding of how disruptions influence individual decision-making.

To analyze relationships, trends, and behavioral responses in greater detail, various statistical methods
have been applied in disruption studies. One commonly used method is regression analysis, which
examines the relationship between disruptions and ridership. For example, Bernal et al. (Bernal et
al., 2016) applied regression models to evaluate how service disruptions impact passenger demand.
Another statistical approach is the Accelerated Failure Time (AFT) model, which analyzes the time until
specific events occur. Rahime et al. (Rahimi et al., 2019) used an AFTmodel to investigate passengers’
waiting time tolerance during a disruption, providing insights into how long passengers are willing to
wait before adjusting their travel plans.

In addition to regression-based models, other studies have explored categorical relationships in pas-
senger behavior. Multiple Correspondence Analysis (MCA), for example, has been used to analyze
relationships between categorical variables. The study of Adelé et al. (Adelé et al., 2019) applied MCA
to study how suburban train users responded to disruptions, uncovering behavioral patterns among dif-
ferent groups of commuters. Another method used to estimate population-level behaviors is statistical
inference modeling. In the study by Mo et al. Mo et al., 2022a, statistical inference techniques were
applied to predict the mean and variance of the number of passengers who share the same behavioral
response to disruptions.

While regression analysis and AFT modeling focus on quantitative relationships and timing, MCA and
statistical inference explore categorical trends and broader behavioral patterns. Together, these meth-
ods provide valuable insights into how passengers react to disruptions, helping transit agencies develop
more effective mitigation strategies and service improvements.

Simulation and/or modelling
Simulation techniques are aggregate-level methods used to analyze passenger flows, predict changes
in demand, and test service adjustments during disruptions. They help researchers and planners un-
derstand the impact of different scenarios and improve public transport operations through data-driven
decisions.

In the context of passenger behavior during disruptions, simulation has been employed as an analytical
method in several studies. Deng et al. (Deng et al., 2022) utilized an agent-based model to predict
passenger flow distribution in a planned metro station service disruption scenario. Similarly, Yap et al.
(Yap et al., 2018) developed a public transport ridership prediction model to estimate ridership levels
under four different disruption types, demonstrating how simulation can help anticipate the impact of
disruptions on public transport usage. Additionally, Wang et al. (Wang et al., 2024) applied simula-
tion techniques to model service disruptions, restoration processes, and various disruption scenarios
caused by natural disasters.

These studies highlight how simulation and modeling are already being used to analyze passenger
behavior during public transport disruptions and underscore their potential as valuable tools for transit
planning and management.

Machine learning
Machine learning is another aggregate-level method used to analyze passenger behavior during public
transport disruptions. By processing large datasets, machine learning models can uncover patterns
in travel behavior, predict demand changes, and assess the impacts of disruptions. These techniques
offer valuable insights into how passengers adapt their travel choices in response to different disruption
scenarios.

An example of machine learning applied in transit research is the study by Yap and Cats (Yap and Cats,
2022), which used machine learning techniques to predict passenger demand during a planned clo-
sure. Similarly, Yap and Cats (Yap and Cats, 2021a) employed machine learning to predict disruptions
and their passenger delay impacts for different disruption types. Their study developed a supervised
learning approach to estimate how frequently different types of disruptions occur at various stations
within a public transport network and to predict the resulting passenger delays. This method allows
for station-specific and time-period-specific predictions without requiring extensive empirical disruption
observations for each location and time period.
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While the previously mentioned studies used machine learning for prediction, it can also be applied for
clustering analysis. K-means clustering, for example, is a machine learning technique that partitions a
dataset into a predetermined number of clusters by grouping similar data points together while keeping
dissimilar points separate. The algorithm iteratively assigns data points to the nearest cluster centroid
and recalculates the centroids based on the mean of each cluster. Eltved et al. (Eltved et al., 2021)
used k-means clustering to group passengers based on their travel behavior before and after a dis-
ruption. This approach allowed them to observe how different passenger groups adjusted their travel
patterns following the disruption, while also comparing these changes to reference lines unaffected by
disruptions to account for general travel trends.

2.4.2. Disaggregate study methods
Disaggregate-level methods focus on understanding individual passenger behavior, preferences, and
decision-making processes during disruptions. Discrete choice modeling is the primary disaggregate
method identified in the reviewed literature.

Discrete choice modelling
Discrete choice modeling is a disaggregate-level method that examines individual preferences for travel
attributes and to predict passenger flows in response to network changes (Dixit et al., 2023). By estimat-
ing the relative valuation of different travel attributes, discrete choice models provide insights into how
passengers make route or mode choices under varying conditions. Most discrete choice models are
based on the Random Utility Maximization (RUM) framework, which assumes that individuals choose
the alternative that provides them with the highest utility among the available options. The utility of each
alternative is determined by observable attributes, such as travel time and cost, as well as unobserved
factors that influence decision-making. While discrete choice models share a common foundation in
RUM, they differ in their specifications and utility functions. The following section discusses the most
frequently applied discrete choice models in the literature.

• Multinomial Logit (MNL)

One of the most widely-used discrete choice methods is the Multinomial Logit (MNL) model. It es-
timates the probabilities of selecting each alternative from a set of options, based on the attributes
or characteristics of the alternatives and and individual specific factors (McFadden, 1974). It has
the property that the relative probabilities of each pair of alternatives are independent of the pres-
ence or characteristics of all other alternatives. This property, known as the independence of
irrelevant alternatives (IIA), implies that the introduction or improvement of any alternative will
have the same proportional impact on the probability of each other alternative Koppelman and
Wen, 1998. Through the estimation of parameters using maximum likelihood estimation tech-
niques, the MNL model provides insights into decision-making processes in various domains. In
the context of transit disruptions, the MNL model can be applied to analyze passenger prefer-
ences for travel attributes and how these preferences influence their choices when faced with
alternative travel options.

Several studies have applied the Multinomial Logit (MNL) model to analyze passenger behavior
during transit disruptions. Marra and Corman (Marra and Corman, 2023) quantified the impact
of disturbances on individual trips by developing a metric for service degradation and analyzing
how disruptions influence passengers’ route choices. Similarly, Shires et al. (Shires et al., 2019)
used MNL to examine how passengers respond to planned engineering-based disruptions, as-
sessing whether they change their route, switch modes, or forgo travel altogether. In the context
of unplanned service disruptions, Rahimi et al. (Rahimi et al., 2019) employed MNL to investi-
gate passengers’ waiting tolerance and identify the factors influencing their behavior when facing
unexpected delays.

• Mixed Logit (ML)

The Mixed Logit (ML) model is a flexible and widely used statistical model for analyzing discrete
choices. As an extension of the Multinomial Logit (MNL) model, it offers several advantages. One
key benefit is that it does not exhibit the Independence of Irrelevant Alternatives (IIA) assumption,
allowing for more realistic modeling of choice behavior. Additionally, ML accounts for correlations
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in repeated choices made by the same individual, making it well-suited for panel data (Algers
et al., 1998, Chorus, 2019).

ML overcomes three major limitations of the standard logit model. First, it allows for random taste
variation, meaning individuals may have different sensitivities to travel attributes. Second, it en-
ables unrestricted substitution patterns across choices, meaning alternatives are not assumed
to be independent in how they compete. Third, it accounts for correlations in unobserved fac-
tors over time, making it particularly useful for datasets with multiple observations per individual
(Chorus, 2019).

An example of ML being applied in transit research is the study by Yap et al. (Yap et al., 2020),
which employs a mixed logit model with panel effects to evaluate crowding in urban tram and bus
travel. Since their dataset contains multiple route choice observations from the same smart card
number (representing the same individual), using an ML model corrects for possible correlations
between choices made by the same passenger. By extending the standard MNLmodel to a panel-
data ML model, the study accounts for within-individual variation in route choices and improves
the accuracy of crowding valuation.

Another study by Rahimi et al. (Rahimi et al., 2019) applies a random parameter multinomial
logit model to account for heterogeneity across observations and panel effects. Their analysis re-
veals that a wide range of factors, including socio-demographic attributes, personal attitudes, trip
characteristics, and built environment factors, significantly influence passenger behavior during
unplanned transit disruptions. Moreover, the study finds that the effect of service recovery time
varies depending on the type of transit service affected, with rail users being more sensitive to re-
covery times than bus users. These findings provide valuable insights for transit agencies aiming
to improve service quality, enhance user satisfaction, and strengthen transportation resilience.

Given the variety in estimated parameters and the observed heterogeneity in passenger responses,
the ML model proves to be a valuable approach for analyzing transit behavior during disruptions.
By capturing unobserved heterogeneity and accounting for repeated choices, ML provides amore
comprehensive understanding of how passengers respond to service changes. This makes ML a
valuable tool for transit agencies to inform policy decisions and improve disruption management
strategies.

• Nested Logit (NL)

The Nested Logit (NL) model is one of the most widely recognized extensions of the Multinomial
Logit (MNL) model, allowing for interdependence between alternatives within the same group. It is
based on the idea that some alternatives share common characteristics and can be grouped into
nests. Within a nest, the error terms of alternatives may be correlated, whereas the error terms
across different nests remain uncorrelated (McFadden, 1978). This relaxation of the MNL model
structure helps address violations of the Independence of Irrelevant Alternatives (IIA) assumption,
making it more suitable when alternatives are not completely independent.

An example of NL being applied in transit research is the study by Mepparambath et al. (Meppa-
rambath et al., 2023), which uses a nested logit model to calibrate an integrated taxi and transit
mode and route choice model. The study explores behavioral interdependencies between taxi
and transit options, testing both a two-level nested logit model and a cross-nested logit model.
While this application is not specific to disruptions, the methodology is relevant to mode and route
choice modeling and could be extended to study passenger behavior during disruptions. How-
ever, NL is particularly useful when analyzing mode choice distinctions rather than exclusively
focusing on route choices, as it captures the structural relationships between different transport
modes more effectively.

• Latent Class Model (LCM)

The Latent Class Discrete Choice Model (LCM) recognizes that individuals within a population
may have different preferences and behavior patterns. Unlike standard models that assume a
homogeneous decision-making process, LCM allows for unobserved (latent) classes or segments
within the population, each characterized by distinct preferences and behaviors. Individuals are
probabilistically assigned to these classes based on their observed choices (van Cranenburgh,
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2021). Separate sets of parameters are estimated for each class, enabling the model to capture
heterogeneity more effectively than the MNL model by identifying distinct groups of decision-
makers with unique characteristics.

An example of this approach is the study by Li et al. (Li et al., 2020), which applies a latent
class model to analyze behavioral heterogeneities in metro passengers’ travel plan choices dur-
ing unplanned service disruptions with uncertainty. By segmenting passengers into different la-
tent classes, the study reveals how distinct groups respond differently to disruptions, providing
valuable insights into passenger decision-making under uncertainty.

• Path Size Logit (PSL)

The Path Size Logit (PSL) model is a state-of-the-art approach for modeling route choice in pub-
lic transport (Nielsen et al., 2021, Yap and Cats, 2021b). It builds upon the Multinomial Logit
(MNL) model by introducing an additional path size correction term, which penalizes correlated
alternatives within a choice set. This adjustment accounts for the fact that passengers may per-
ceive routes with overlapping segments as less distinct alternatives, reducing the Independence
of Irrelevant Alternatives (IIA) assumption typically found in MNL models.

Given its ability to account for route overlap, PSL is particularly relevant for public transport net-
works, where many alternative paths share common segments. This makes it a useful tool for
analyzing passenger behavior in transit disruptions, as it provides a more realistic representation
of route choices compared to standard MNL models.

2.4.3. Summary of approaches to analyze passenger behavior during disruptions
As demonstrated, both aggregate-level and disaggregate-level methods are used to analyze and pre-
dict passenger behavior during public transport disruptions. Aggregate approaches, such as data anal-
ysis, simulation, and machine learning, are suited for identifying system-wide patterns and forecasting
the broader impacts of disruptions. Disaggregate methods, particularly discrete choice modeling, focus
on individual decision-making, capturing preferences and behavioral differences among passengers.
Together, these methods show that a wide range of approaches can and have been used to analyze
and predict passenger behavior during public transport disruptions.

2.5. Discussion and Conclusion
From the literature review, it becomes evident that there is a substantial body of research on transit
users’ behavior during service disruptions. These studies utilize various data sources, including re-
vealed preference (RP) and stated preference (SP) surveys, as well as smart card (AFC) data, and
apply different methodological approaches. A summary of these studies is provided in Tables 2.2 and
2.3, which highlight key research themes, data sources, and study methods.
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Table 2.2: Summary of Disruption Types, Duration, and Data Sources in Public Transport Studies

Study Geographical
Context

Disruption
Type

Disruption
Duration

Disruption
Analysis

Data
Source

Planned Unplanned < 1 day 1-7 days > 7 days During After SP
survey

RP
survey

Smart
card

Marra and Corman, 2023 Zürich, Switzerland x x x x
Yap and Cats, 2022 Amsterdam, Netherlands x x x x
Eltved et al., 2021 Copenhagen, Denmark x x x x x
Deng et al., 2022 Shanghai, China x x x x
Arslan Asim et al., 2021 Calgary, Canada x x x x
Li et al., 2020 Guangzhou, China x x x x x
Shires et al., 2019 London, England x x x x
Adelé et al., 2019 Paris, France x x x x
Yap et al., 2018 The Hague, Netherlands x x x
Wang et al., 2024 Hangzhou, China x x x x
Mo et al., 2022a Chicago, USA x x x x
Mo et al., 2022b Chicago, USA x x x x
Liu et al., 2021 - x x x x
Nazem et al., 2018 Montreal, Canada x x x x x
Bernal et al., 2016 Chicago, USA x x x x x
Sun et al., 2016 Beijing, China x x x x
van der Hurk, 2015 Netherlands x x x x
Zhu et al., 2017 Washington D.C., USA x x x x x x x
Rahimi et al., 2019 Chicago, USA x x x x x
Rahimi et al., 2020 Chicago, USA x x x x x
Yap and Cats, 2021a Washington D.C., USA x x x x
Current
Study Washington D.C. USA x x x x
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Table 2.3: Summary of Methodologies and Research Focus in Public Transport Disruption Studies

Study
Study
Method

Research
Focus

Discrete
choice

modelling

Data
analysis

Simulation or
Modelling

Machine
learning

Cluster
modelling

Route
choice

Mode
choice

Demand
prediction

Waiting
Tolerance

Delay
impacts

Marra and Corman, 2023 x x
Yap and Cats, 2022 x x
Eltved et al., 2021 x x x
Deng et al., 2022 x x
Arslan Asim et al., 2021 x x
Li et al., 2020 x x x
Shires et al., 2019 x x
Adelé et al., 2019 x x x x
Yap et al., 2018 x
Wang et al., 2024 x
Mo et al., 2022a x x x
Mo et al., 2022b x x
Liu et al., 2021 x x x
Nazem et al., 2018 x x
Bernal et al., 2016 x x
Sun et al., 2016 x x
van der Hurk, 2015 x x
Zhu et al., 2017 x x x
Rahimi et al., 2019 x x
Rahimi et al., 2020 x x x
Yap and Cats, 2021a x x
Current
Study x x
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The review of existing literature on public transport disruptions reveals several key insights regarding
disruption types, data sources, and study methodologies. Many studies focus on passenger behavior
during disruptions, particularly in terms of route and mode choices (Marra and Corman, 2023, Eltved et
al., 2021, Deng et al., 2022), while others examine demand prediction (Yap and Cats, 2022, Yap et al.,
2018) or waiting tolerance and delay impacts (Rahimi et al., 2019, Yap and Cats, 2021a). However, a
common trend in the literature is that most studies focus on passenger behavior during the disruption
itself, with limited attention given to how passengers adjust their travel choices after the disruption ends.
While some studies, such as Eltved et al. (Eltved et al., 2021), analyze pre- and post-disruption behav-
ior, their short observation period (three weeks before and after) makes it unclear whether passenger
route choices revert to pre-disruption patterns or remain permanently altered.

Another key observation is the variation in data sources used in disruption studies. Early studies relied
on stated preference (SP) surveys (Shires et al., 2019, Li et al., 2020, Zhu et al., 2017), which, while
useful for understanding hypothetical decision-making, may not fully capture actual passenger behav-
ior, leading to potential biases in route choice estimations (Mo et al., 2022a). Later studies incorporated
revealed preference (RP) data through travel surveys (Marra and Corman, 2023), providing more re-
alistic insights into passenger decision-making. However, RP surveys are costly and often limited in
sample size (Ingvardson et al., 2024). With the increasing availability of AFC data, researchers now
have access to large-scale, real-world datasets that enable more detailed analyses of passenger be-
havior. AFC data has been utilized in studies examining passenger behavior during disruptions (Marra
and Corman, 2023, Eltved et al., 2021), but very few studies have applied AFC data specifically to
analyze route choice preferences during and after disruptions. Most studies investigating route choice
preferences rely on RP or SP surveys, and even when AFC data is used, it is typically focused on
mode choice rather than route choice (Mo et al., 2022b). This presents an important research gap in
using AFC data to analyze passenger route choice preferences during and after disruptions, particu-
larly when relying solely on AFC data, which does not include socio-demographic characteristics or
subjective factors like perceived comfort and safety.

Furthermore, another key gap in the literature is the lack of research on route choice preferences in
the Washington, D.C. metro system. The geographical context plays a crucial role in shaping study
conclusions, as differences in public transport networks, passenger demographics, and travel patterns
mean that findings from one region may not be directly transferable to another. Despite the availability
of AFC data inWashington, D.C., this system has not been widely analyzed in the context of disruptions.
To the author’s knowledge, the only study that has examined disruptions in this region using AFC data
is Yap and Cats (Yap and Cats, 2021a), which focused on predicting unplanned disruptions and their
impact on passenger delays, rather than route choice preferences.

To address the identified research gaps, this study focuses on analyzing passenger route choice pref-
erences during and after planned disruptions using AFC data from the Washington, D.C. metro system.
Unlike previous studies that primarily rely on RP and SP surveys, this research aims to assess whether
AFC data alone can be used to infer route choice preferences, even in the absence of descriptive and
subjective factors. By leveraging smart card data, this study offers a large-scale, real-world dataset,
providing insights into actual passenger behavior rather than stated intentions.

Furthermore, this study extends the post-disruption analysis period from weeks to several months, al-
lowing for amore comprehensive understanding of whether passenger behavior returns to pre-disruption
patterns or remains altered over time.

Additionally, this study contributes to bridging the geographical gap by focusing on theWashington, D.C.
metro system, a network that has not been widely studied in the context of disruptions. Since public
transport networks, demographics, and travel patterns vary across cities, findings from other regions
may not be directly applicable to Washington, D.C. This study will provide empirical insights tailored to
this transit system, offering valuable information for local policymakers and transit agencies.

Based on these considerations, the aim of this research is to analyze transit users’ route choice prefer-
ences before and after planned disruptions, using AFC data from the Washington, D.C. metro network.



3
Methodology

This section introduces the designed methodology for this research. A detailed visualisation of the
methodology is shown in figure 3.1.

This study aims to analyze the impact of planned disruptions on passenger route choice preferences
through a discrete choice modeling approach. Themethodology is structured into a series of systematic
steps to ensure a comprehensive analysis of pre- and post-disruption behavior. The process begins
with Disruption Identification (Step 1), where significant disruptions are identified. Once a disruption is
identified, the analysis moves to choosing the Pre- and Post-Disruption Period (Step 2), where appro-
priate time frames before and after the disruption are selected to capture any changes in passenger
preferences regarding route choice.

Following this, an Affected Origin-Destination (OD) Pair is selected (Step 3) to narrow down the analysis
to routes most impacted by the disruption. This OD pair forms the basis for generating a choice set for
both the Pre- and Post-Disruption Period (Step 5). This choice set reflects the different route options
available to passengers during the selected periods, providing a detailed dataset for the subsequent
modeling steps. However, to be able to generate this choice set, we first need to identify the relevant
attributes available to us (Step 4).

After the choice set generation several discrete choice models are estimated (Step 6). These are the
Multinomial Logit (MNL) model, a Mixed Logit model to account for panel data and a Path Size Logit
(PSL) model that accounts for the overlap between routes. After estimating these models, the ’best’
model is selected based on a trade-off between its fit and complexity (Step 7).

Finally, the study conducts a beta coefficient analysis (Step 9) to assess how the estimated model
parameters change between the pre- and post-disruption periods. This comparison provides insights
into shifts in passenger preferences, highlighting the disruption’s effect on route choice preferences.

Figure 3.1: Flowchart of methodology
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3.1. Disruption Identification Process
The first step in this research is to identify disruptions that significantly impact passenger behavior and
meet specific criteria. This step is essential for setting a strong foundation for analyzing how travel
patterns shift before, during, and after disruptions. To do this, a set of criteria must first be established
to ensure the selection of disruptions that provide meaningful insights into passenger behavior. These
criteria draw inspiration from the work of Fariba Tavakoli (Tavakoli, 2024), who used a similar dataset
for disruption analysis.

Once the criteria are set, the next task is to identify suitable disruptions from the planned disruptions
file. This file provides information on the date, time, and a description of the disruption.

Disruption Identification Criteria
The first step is to identify disruption criteria. The criteria and their explanation can be found below:

• The disruption should occur both on week and weekend days

This criterion ensures that the analysis captures passenger behavior throughout different travel
patterns seen on weekdays and weekends. Weekday travel often reflects commuting patterns
(work and school), while weekend travel can be more leisure-oriented. Including both provides
a comprehensive understanding of how passengers adapt to disruptions under varying demand
conditions.

• The disruption should last several days in a station or a set of adjacent stations.

A disruption that spans several days allows for more robust data collection and analysis of how
passenger behavior adapts over time. It provides sufficient time to observe adjustments in travel
patterns and allows passengers to settle into new routines or route choices during the disruption.
Focusing on a single station or a set of adjacent stations ensures that the disruption’s impact is
concentrated in a specific area, making it easier to analyze changes in travel behavior

• There must be at least one month prior to the disruption, as a pre-disruption period, and a mini-
mum of 3 months following the disruption for the post-disruption analysis

Having a defined pre-disruption period of at least one month ensures a baseline of passenger
behavior before the disruption occurs, providing a point of comparison. A post-disruption period
of at least three months allows for the analysis of long-term changes in travel behavior after the
disruption has ended. This longer duration is necessary to capture any residual effects of the
disruption and ensure that the observed changes are stable and not just temporary adjustments.

• There should be no other disruption lasting more than several hours in the affected area during
both the pre- and post-disruption period.

This criterion ensures that the observed changes in passenger behavior can be attributed solely
to the disruption being studied. If other disruptions occur in the same area, it becomes chal-
lenging to isolate their effects and understand how passengers are responding specifically to the
disruption of interest. Eliminating other significant disruptions ensures the clarity and accuracy of
the analysis.

• There should be other route options to take during the disruption.

The presence of alternative routes is crucial for a study focused on route choice behavior. It
allows for an analysis of how passengers change their travel routes when their preferred route is
disrupted. A disruption where detours or alternative routes are not possible would not provide the
necessary variation in choice behavior, making it less suitable for understanding how passengers
adjust their travel decisions.

Disruption identification from planned disruptions file
The disruption should be identified from the planned disruptions file, which includes the start date, time
of day, and message for each disruption. Disruptions that span multiple days have the word ”Thru” in
the message column. By initially selecting these disruptions, we can then determine if they meet the
additional criteria, before selecting a final disruption for analysis.
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3.2. Selection of Pre- and Post-Disruption Periods
Selecting appropriate time frames for the pre- and post-disruption periods is crucial for accurately an-
alyzing the impact of a disruption on passenger behavior. These periods serve as a reference to
understand changes in travel patterns and route choices caused by the disruption, helping to isolate
the effects of the disruption from other external factors that could influence travel behavior.

Pre-Disruption Period
The pre-disruption period is selected to represent typical passenger behavior before the disruption. A
minimum of one month is chosen for this period to ensure that a stable baseline is established. This
time frame provides enough data to capture regular travel patterns, accounting for any day-to-day
variations or weekly trends. By understanding the baseline behavior, the analysis can more accurately
detect shifts in travel patterns caused by the disruption. Additionally, a longer pre-disruption period
helps to control for potential seasonal effects, ensuring that the data reflects typical conditions before
any disruption occurred. So it would therefore be preferable to have a pre-disruption period of 2 months.
The selected pre-disruption period will therefore be between 1 and 2 months.

Post-Disruption Period
The post-disruption period needs to be long enough to observe how passenger behavior evolves after
the disruption has ended. For this study, a post-disruption period between 3-5 months is selected to
capture both short-term adjustments and longer-term changes in travel patterns. This extended period
allows for the analysis of immediate reactions to the end of the disruption, as well as any gradual shifts
as passengers settle into new routines or potentially revert to their pre-disruption behavior.

To gain a deeper understanding of how passenger preferencesmay change over time, the post-disruption
period will be analyzed in two ways: first, as a single comprehensive post-disruption period, and sec-
ond, by dividing the period into separate months. This approach helps to assess whether any initial
changes in route choice behavior gradually revert to pre-disruption patterns or if new preferences per-
sist throughout the entire post-disruption period.

It is also important to allow sufficient time for passengers to adjust their travel patterns after the disrup-
tion. Immediately following the disruption, passengers may continue using alternative routes before
gradually returning to their preferred routines. By including a longer post-disruption period, the analy-
sis can capture both the initial adjustments and any longer-term changes in route choices, ensuring a
comprehensive assessment of the disruption’s impact on travel behavior.

3.3. Choose affected OD pair
The selection of the affected Origin-Destination (OD) pair is a critical step in understanding how disrup-
tions influence passenger route choices. This selection is particularly important because the chosen
OD pair forms the basis for generating the choice sets used in the discrete choice models. The ob-
jective is to identify OD pairs where at least one of the available routes passes through the disrupted
segment of the network. This ensures that the disruption directly affects travel options between the
selected origin and destination, allowing for a meaningful analysis of route choice adjustments. The
process of selecting the affected OD pair involves the following steps:

1. Identification of all OD pairs

The initial step is to identify all possible OD pairs within the transit network. An OD pair represents
a journey from a specific origin station to a destination station. By mapping out all OD pairs, the
analysis covers a comprehensive range of travel movements within the affected area, ensuring
that no potential journeys are overlooked.

2. Identification of Routes for Each OD Pair

Once the OD pairs are identified, the next task is to determine all routes that passengers use
between each OD pair. This includes both direct routes and those that involve transfers between
lines. Understanding the full range of routes available between each OD pair helps identify the
different travel paths that might be impacted when a disruption occurs.

3. Selection of OD Pairs with Multiple Route Options
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The analysis focuses on OD pairs that have multiple route options between the origin and destina-
tion. These pairs are ideal for studying route choice behavior, as they offer alternative routes that
passengers might switch to if one is disrupted. OD pairs with only a single route are not suitable
for this analysis, as there would be no variability in route choice when that route is disrupted.

4. Selection of OD pairs with transfer variability

The analysis also places emphasis on OD pairs where the available routes differ in the number
of transfers required. Transfer variability is important because, even when multiple routes exist
between an origin and destination, these routes can sometimes follow the same tracks or overlap
significantly. In such cases, the analysis might not capture the full extent of route diversity if
differences in the number of transfers are not considered. By focusing on OD pairs with a variety
of transfer options this step ensures that the study includes routes with genuinely different travel
paths. This distinction allows for a more nuanced understanding of how disruptions influence
route choice behavior, as passengers may weigh transfer convenience against travel time and
other factors when selecting among routes with different transfer counts.

5. Selection of the Final OD Pair for Analysis

The final step involves selecting an OD pair, from the remaining candidates, where at least one
of the available routes passes through the disrupted segment of the network and has a high
volume of passenger observations. This ensures that the selected OD pair is directly affected by
the disruption, providing a meaningful context for analyzing how passengers adjust their route
choices. By prioritizing an OD pair with a large number of observations, the analysis gains a
richer dataset, allowing for a more comprehensive exploration of route choice behaviors and
yielding more statistically robust results. Initially the OD pair going over the disrupted section
with the highest amount of observations will be selected. If this OD pair proves unsuitable during
further analysis, the next candidate with the highest number of passenger observations will be
considered, continuing in this manner until a suitable OD pair is identified.

By following this systematic process, the chosen OD pair is one with multiple available routes with
transfer variability that goes over the disrupted section. This allows for generating a meaningful choice
set in the next step of the process.

3.4. Identify Relevant Attributes
To generate a choice set, we first need to know which attributes to include in that choice set. That is
why this section aims to identify the relevant attributes.

There are many different factors that affect passengers route choice in public transport. It is well-known
from literature that time and cost are very important for public transport travellers. Previous studies have
included various time components, namely in-vehicle time, access/egress time, and transferring time,
as the main descriptors of passengers’ route choices (Nielsen et al., 2021, Jánošíková et al., 2014).
Also, there is often a general penalty for transfers. Next to that, fare and/or frequency of the lines are
also commonly used parameters in route choice models. Also personal characteristics, like age and
gender, are often affecting passenger public transport route choice (Grison et al., 2017).

These all would be good attributes to include in this study. We however are dependent on the available
data in the dataset. Since the data uses anonymous smart card data, there are no personal character-
istics included. This means we cannot use personal characteristics in this study.

The inclusion of attributes such as time and fare components will be determined based on data avail-
ability during the case study phase during which the data will be analyzed.

3.5. Choice Set Generation
The process of generating a choice set is crucial for modeling route choice behavior, as it defines the
range of route options available to passengers between a selected Origin-Destination (OD) pair. This
choice set is generated separately for the pre-disruption and post-disruption period(s), allowing for a
comparison of travel behavior across these periods. The goal is to create a realistic set of route alter-
natives by incorporating all routes that passengers have actually chosen while also finding a balance



3.5. Choice Set Generation 18

in the size of the choice set.

On one hand, a small choice set may not be able to reproduce the chosen route, and consequently may
not capture the individual’s behavior and preferences. On the other hand, a very large choice set might
cover the chosen route but could lead to misinterpretation of the estimated route choice coefficients,
as relatively few alternatives are actually perceived by individuals (Yao and Bekhor, 2020). Therefore,
the choice set generation process aims to include all meaningful alternatives that passengers could
realistically consider, without overwhelming the analysis with routes that are unlikely to be perceived
as viable options.

3.5.1. Data Selection, Filtering, and Cleaning
The data preparation process involves three main steps: selecting the relevant data, filtering out invalid
entries, and ensuring the dataset is clean and consistent for analysis.

Data Selection
The first step involves selecting data for the chosen OD pair across two time frames—before and
after the disruption. This ensures that the dataset captures passenger travel behavior during both
periods. The analysis focuses on passengers who are present in both time frames, allowing for a direct
comparison of their route choices. This is done by selecting passengers whose Card ID number is in
both datasets. The result is a dataset that includes all relevant trips for these travelers across the two
periods.

Data Filtering
Once the data is selected, it needs to be filtered to remove entries that may distort the analysis. The
following entries are considered invalid and are removed:

• Transactions where tap-in and tap-out data are identical.
• Metrobus entries, as the focus is on Metrorail trips.
• Transactions with missing tap-in and/or tap-out information.
• Transactions where the tap-out time is earlier than the tap-in time.
• Transactions with journey times longer than three hours, as the longest paths in the network are
a bit over two hours.

• Transactions with journey times shorter than two minutes, since the shortest paths in the network
are around two minutes.

• Duplicate entries

Data Cleaning and Attribute Preparation
After filtering the data, further cleaning ensures the dataset is free from incomplete or inconsistent
entries. This involves:

• Retaining only records with complete information for key attributes.
• Calculating additional route-specific attributes, like the number of transfers required for each route,
to better understand the convenience of different travel options.

• Correcting any inconsistencies in route descriptions to ensure uniformity across all records.

By following these steps, the resulting dataset is robust, accurate, and well-suited for analyzing the
impact of network disruptions on passenger route choices.

3.5.2. Choice set generation logic
The next step in the analysis involves identifying potential route alternatives for each journey between
the observed OD pairs. Since this study is based on smart card data, the observed routes provide a
foundation for determining non-chosen alternatives, which together form the full choice set. To ensure
the choice set represents realistic route options, the following steps are applied:

• The dataset with chosen routes includes only those passengers who are present in both the pre-
disruption and post-disruption datasets, ensuring a consistent sample for comparison.
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• Routes that are chosen less than 1% of the time are excluded from the dataset. This step helps
to focus on more realistic and frequently chosen routes, ensuring that the analysis is not skewed
by rarely selected alternatives.

To ensure that attribute values (e.g., travel time, wait time, number of transfers) reflect realistic travel
conditions, values are derived from observed AFC data rather than hypothetical assumptions. Since
passengers make decisions based on expected travel conditions, attribute values for both chosen and
non-chosen alternatives are calculated based on historical travel conditions, using the followingmethod-
ology:

• Time interval logic

Since travel conditions fluctuate throughout the day, the ideal approach would be to calculate
average attribute values per hour. However, in some cases, there may be insufficient data within
a single hour to produce a reliable average. To maintain realism while ensuring more robust
estimates, attribute values are instead calculated based on broader time frames. This allows for
a better balance between capturing variations in travel conditions and having a sufficient number
of observations to derive meaningful averages. The time frames used are:

– Morning peak: 6am - 9am
– Midday: 10am - 3pm
– Evening rush: 4pm - 7pm
– Evening: 8pm - 12pm

Each observation is assigned to a time frame based on when the trip occurred. The average
attribute values for each route are calculated separately for each time frame, ensuring that non-
chosen alternatives reflect conditions that would have been expected at the time of travel.

• Fallback logic for missing data If attribute values for a non-chosen alternative are missing in a
specific time frame, the system selects values from the closest comparable time frame rather
than applying broad averages. For instance, if data is unavailable for the midday time frame,
values from the evening time frame are used as a substitute.

Choice Set Format for Discrete Choice Modeling
Once the choice set is prepared, it is formatted for use in discrete choice modeling software like Bio-
geme. Each observation is structured to include:

• One chosen alternative, representing the route that the passenger selected.
• Several non-chosen alternatives, representing other viable routes that the passenger could have
taken.

• A binary variable indicating whether a route was chosen (CHOSEN = 1 for the selected route and
CHOSEN = 0 for alternatives).

This structured choice set allows for detailed modeling of route choice behavior, providing insights into
how passengers respond to changes in network conditions, such as disruptions. By using observed
data and applying systematic fallback methods, the choice set represents a realistic range of alterna-
tives for passengers, ensuring a robust foundation for the subsequent analysis.

3.6. Set up of the discrete choice models
Discrete choice models are used to explain or predict an individual’s selection from a set of two or more
discrete alternatives, making them well-suited for analyzing route choices.

At the core of these models is a utility function, which represents the attractiveness of each alternative
in the choice set. This function is typically expressed as a linear combination of observed attributes,
such as travel time, cost, or number of transfers, along with corresponding coefficients, known as betas
(β), which indicate the relative importance of each attribute.

The utility of an alternative consists of two parts: a systematic component, which is based on the
observed attributes and their coefficients, and a random component, which accounts for unobserved
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factors that influence individual choices but are not included in the model. The probability of choosing
a particular alternative depends on how its utility compares to the utilities of all other available options.

While it is possible to include Alternative Specific Constants (ASCs) in the utility function to account
for inherent preferences for certain alternatives, this approach is less suitable for this study. Since
passengers may choose different routes within the same trip, it is unlikely that they have a fixed inherent
preference for a specific combination of routes. Instead, their choices are more likely influenced by
varying travel conditions and route attributes rather than a persistent bias toward a particular route
option.

While all discrete choice models share the same fundamental structure based on utility maximization,
they differ in how they handle specific aspects such as correlation between alternatives, repeated
choices, and route overlap. Since it is not immediately clear which discrete choice model will best
capture the patterns in the data and provide the best model fit, this study will estimate and compare
three different models: the Multinomial Logit (MNL) model, the Panel Logit model, and the Path Size
Logit (PSL) model. All models will be estimated using Biogeme in Python to determine which one
provides the most accurate representation of passenger route choice behavior.

3.6.1. Multinomial Logit (MNL) Model
The Multinomial Logit (MNL) model is one of the most commonly used models for analyzing choices
between multiple alternatives. It provides a straightforward way to examine how route attributes like
affect choice probabilities. One key feature of the MNL model is that it assumes the choice between
two options is not influenced by other available alternatives, known as the Independence of Irrelevant
Alternatives (IIA). This makes the MNL model relatively simple to use, as it calculates the probability of
choosing an option based on how its attributes compare to those of the other options.

In the MNL model, the utility of each alternative i for individual n is given by:

Uni = Vni + ϵni

Where ϵni is the random error term, capturing unobserved influences on the choice and Vni is the
systematic utility that depends on the observed attributes of alternative i (such as travel time, cost, or
number of transfers). The systematic utility Vni is a linear combination of the observed attributes and
their respective coefficients:

Vni = β1X1ni + β2X2ni + · · ·+ βkXkni

In this equation, xkni represents the observed attributes of alternative i, such as travel time, cost, or
the number of transfers. The coefficients βk indicate the relative importance of each attribute, reflecting
how much they contribute to the overall utility of an alternative.

In the MNL model, the probability that individual n chooses alternative i from a choice set is given by
the following formula:

Pni =
eVni∑
j e

Vnj

While the MNL model’s assumption of IIA simplifies the analysis, it can be a limitation when alterna-
tives share common characteristics. Despite this, the MNL model remains a popular choice for un-
derstanding how factors like travel time or cost influence route choice preferences, particularly when
alternative-specific effects such as the ASC are included. And it is a good basic model to start with.

Transfer penalty
In this study, a transfer penalty approach is also considered to address the potential correlation between
in-vehicle time and the number of transfers. Since preliminary analysis suggested that routes with more
transfers often have shorter in-vehicle times, explicitly including both attributes in the utility specification
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could lead to multicollinearity. To avoid this, the disutility of transfers can be incorporated indirectly by
applying a fixed penalty to the in-vehicle time of routes that require a transfer.

The process for selecting an appropriate transfer penalty is as follows. First, several different penalty
values will be tested by adding them to the in-vehicle time for alternatives involving a transfer. For
each tested value, a Multinomial Logit (MNL) model will be estimated, and its final log-likelihood will
be recorded. The penalty value that results in the best model fit — indicated by the highest final log-
likelihood — will be selected for use in the final model. This approach allows the effect of transfers to
be captured without introducing multicollinearity into the utility function.

3.6.2. Mixed Logit (ML) Model with panel data
The Mixed Logit (ML) model is considered because it can account for differences in individual prefer-
ences and does not rely on the strict Independence of Irrelevant Alternatives (IIA) assumption, which
is a limitation of the Multinomial Logit (MNL) model. The notation follows the framework from Algers et
al. (Algers et al., 1998).

In a choice situation, an individual i chooses an alternative j at time t based on the utility of that
alternative:

Uijt = βixijt + ϵijt (3.1)

where:

• xijt represents the characteristics of the alternative, such as travel time or cost.
• βi is a set of coefficients that measure how much an individual values each attribute. Unlike in
the MNL model, where these values are the same for everyone, the ML model allows them to
vary between individuals.

• ϵijt is a random error term that captures other factors influencing the choice that we do not ob-
serve.

In the MNL model, the coefficients β are fixed for everyone. However, in the Mixed Logit model, we
assume that people have different preferences, and these coefficients follow a probability distribution:

βi ∼ f(β|θ) (3.2)

where θ describes the characteristics of the distribution, such as the mean and standard deviation.
For example, some individuals might value shorter travel times more than others, and the ML model
accounts for this variation by estimating both a mean preference (β) and a standard deviation (σ).
The standard deviation captures the extent to which individual preferences deviate from the average,
allowing the model to account for heterogeneous tastes.

Given an individual’s specific preferences βi, the probability of choosing alternative j is calculated using
the standard logit formula:

Lij(βi) =
eβixij∑
j

eβixij
(3.3)

However, since we do not directly observe each individual’s preferences βi, we need to account for all
possible values that βi could take, based on the assumed distribution:

Lij(θ) =

∫
eβixij∑
j

eβixij
f(βi|θ)dβi (3.4)

This means we compute the probability of choosing an alternative by considering all possible preference
variations in the population.
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Since we have panel data, meaning that each individual makes multiple choices over time, we must
account for the fact that choices from the same person are related. Instead of looking at each choice
independently, we consider the probability of observing an entire sequence of choices:

Si(βi) =
∏
t

Lij(t)(βi) (3.5)

Since we do not know the true value of βi, we integrate over all possible values:

Si(θ) =

∫ ∏
t

Lij(t)(βi)f(βi|θ)dβi (3.6)

This integral does not have a simple solution, so we approximate it using simulation techniques.

Because the Mixed Logit model involves random draws from a probability distribution to estimate choice
probabilities, each time the model is run, the results could slightly change. To ensure that results are
consistent and reproducible, a random seed is used in the Python implementation. This ensures that
the same random numbers are used each time the model is estimated, preventing variations caused
by different random draws.

The Mixed Logit model provides a more flexible way to analyze route choices compared to the MNL
model. By allowing preferences to vary between individuals and incorporating repeated choices, it can
better capture real-world decision-making. However, because it requires simulation-based estimation,
it is computationally more complex. In this study, the ML model is evaluated alongside other models to
determine the best approach for understanding route choice behavior.

In relation to the research questions, the Mixed Logit model is used to explore whether differences in
how travelers value route attributes could have influenced the changes in route choice preferences after
the disruption. Although this study does not focus directly on individual-specific behavior, identifying
whether travelers responded differently is important. It helps determine whether the observed changes
reflect a broad shift in preferences or if they are driven by variation between individuals. Understanding
this is important for correctly interpreting the disruption’s impact on route choice preferences.

3.6.3. Path Size Logit (PSL) Model
The Path Size Logit (PSL) model is an extension of the Multinomial Logit (MNL) model designed to ac-
count for the correlation between overlapping routes in a choice set. A key assumption of the standard
MNL model is the Independence of Irrelevant Alternatives (IIA) property, which implies that the relative
probabilities of choosing two alternatives remain unaffected by the presence of additional options. How-
ever, when multiple routes share significant portions of their paths, this assumption is violated, leading
to an overestimation of the probability of selecting similar routes.

To address this issue, the PSL model introduces a path size factor, which adjusts the utility of each
alternative based on the extent of its overlap with other routes in the choice set. This ensures that
alternatives sharing a large number of links receive a penalty, reducing their relative attractiveness.
The notation follows the framework from Duncan et al. (Duncan et al., 2020).

The systematic utility Vi in the PSL model extends the traditional utility function by incorporating the
path size term γi, which captures the distinctiveness of each route:

Vi = β′Xi + βPS ln(γi) (3.7)

where:

• βPS is the coefficient associated with the path size factor, indicating the weight given to the path
size adjustment. A higher value of βPS means that the model places more importance on penal-
izing overlapping routes.
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• ln(γi) is the natural logarithm of the path size term γi, which ensures that the penalty for route
overlap is applied proportionally. Since γi is always between 0 and 1, taking the logarithm results
in a negative term that reduces the utility of highly overlapping routes. The more a route overlaps
with others, the smaller the value of γi, leading to a stronger penalty.

The path size term γi for route i is computed as follows:

γi =
∑
a∈Ai

ta
ci

1∑
k∈R δa,k

(3.8)

where:

• γi measures how unique a route is compared to others in the choice set.
• The denominator

∑
k∈R δa,k represents the total number of routes that share link a. If many routes

use the same link, this term increases, reducing γi and applying a stronger penalty.

The probability of choosing an alternative in the PSL model follows the same general structure as the
MNL model, with the only modification being the inclusion of the path size factor. Since the probability
formula remains unchanged except for this additional adjustment, the PSL model can be considered a
direct extension of the MNL framework, incorporating a correction for route similarity.

The PSL model provides an effective way to account for overlapping routes in route choice modeling,
addressing a major limitation of the MNL model. By introducing a path size factor, it ensures that
alternatives with significant overlap are penalized, improving the realism of the estimated choice prob-
abilities. This approach is particularly useful in public transport networks where multiple routes often
share infrastructure.

The PSL model is considered in this study because it offers a way to address potential overlap between
different route alternatives. Since it is likely that multiple routes between the selected OD pair share
common track segments, overlap could bias the results if not properly accounted for. By including a
path size factor, the PSL model adjusts for similarities between alternatives, ensuring that estimated
route choice preferences more accurately reflect true traveler behavior. This is important for answer-
ing the research questions because it improves the ability to detect genuine changes in route choice
preferences following the disruption, without confounding effects from overlapping infrastructure.

3.7. Model Selection
The process of selecting the best model involves comparing the fit of the previously discussed models
using several criteria, including the log-likelihood, Akaike Information Criterion (AIC), and Bayesian
Information Criterion (BIC). While the log-likelihood measures the model’s goodness of fit, AIC and BIC
penalize overfitting, helping to identify the model that best balances predictive accuracy and complexity

Log-Likelihood Comparison
The log-likelihood values of each model are compared to assess how well each model captures the
observed choices. A higher (less negative) log-likelihood indicates that the model is better at explaining
the decision-making behavior of passengers.

Rho-Square and Likelihood Ratio test
The Rho-square (ρ2) statistic is often used to assess model fit in discrete choice models. A Rho-square
value between 0.2 and 0.4 is considered to indicate a model with good explanatory power (Lam and
Xie, 2002).

Another important measure for model selection is the Likelihood Ratio (LR) test, which tests whether
a more complex model provides a significantly better fit than a simpler model. It is calculated as (King,
1989):

LR = −2(LLrestricted − LLunrestricted)
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where:

• LLrestricted is the log-likelihood of the restricted (simpler) model.
• LLunrestricted is the log-likelihood of the more complex model.

The likelihood ratio statistic follows a chi-square (χ2) distribution, and its significance is evaluated based
on the degrees of freedom equal to the difference in the number of parameters between the two models.

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)
In addition to log-likelihood, the AIC (Akaike, 1974) and BIC (Stone, 1979) are calculated to evalu-
ate the trade-off between model fit and complexity. These criteria adjust for the number of estimated
parameters in the model, penalizing more complex models to avoid overfitting:

AIC = −2× LLmodel + 2K

BIC = −2× LLmodel +K × ln(N)

where:

• LLmodel: Log-likelihood of the model on the estimation sample.
• K: Number of estimated parameters.
• N : Number of observations.

Lower values of AIC and BIC indicate a better balance between model fit and complexity, with BIC
applying a stronger penalty for model complexity than AIC. These measures help prevent overfitting
and guide the selection of a model that generalizes well to unseen data.

Final Model Selection
The final model is selected based on a combination of log-likelihood, ρ2, the likelihood ratio test, AIC,
and BIC. The model with the highest log-likelihood, a reasonable ρ2 value, and the lowest AIC and BIC
is preferred. However, statistical significance from the likelihood ratio test is also considered to ensure
that added complexity is justified by an improvement in model fit.

The selected model is then used for further analysis to interpret how the disruption has influenced route
choice behavior and to draw conclusions about changes in passenger preferences before and after the
disruption.



4
Case Study

This case study focuses on the Washington D.C. Metrorail system and demonstrates how the method-
ology outlined in Chapter 3 is applied to analyze passenger route choice preferences before and after
planned disruptions. Using smart card data from the Washington Metropolitan Area Transit Authority
(WMATA), the case study highlights the key steps of disruption identification, pre- and post-disruption
period selection, and route choice modeling. This analysis supports the main goal of this research: to
understand how disruptions affect transit users’ route choice preferences.

The data that is provided for this study is provided by WMATA through the Smart Public Transport Lab
at TU Delft. Data from the Washington DC Metrorail is very interesting for research because it provides
transit service for more than 600,000 customers a day throughout the Washington DC area, making it
a critical component of the region’s transportation infrastructure. Its system is the second busiest in the
United States and consists of six color-coded rail lines: Red, Orange, Silver, Blue, Yellow, and Green,
which together form a network spanning over 98 stations and more than 129 miles of track Washington
Metropolitan Area Transit Authority, 2024. The layout of the system can be seen in Figure 4.1.

The data utilized in this study is a comprehensive set of records from August 2019 to December 2022.
This period captures a range of operational conditions, including regular service patterns, planned
maintenance activities, and unforeseen disruptions. The data sources include the following that will be
used in this study:

1. Automated Fare Collection (AFC) Data: This dataset provides detailed records of individual
passenger journeys, including tap-in and tap-out data, time stamps, card IDs, and travel duration.
It is therefore suitable for tracking passenger movement patterns across the network, allowing for
an analysis of route choice behavior before, during and after service disruptions. It can thus help
in identifying how passengers adjust their travel paths in response to disruptions.

2. Disruption Documentation: The dataset also includes a detailed log of all planned and un-
planned service disruptions during the study period. This documentation provides specific infor-
mation about each disruption, including its start and end times, affected stations, impacted train
lines, and a description of the event’s nature. This allows for understanding how disruptions
impact passenger behavior and the network performance.

For this case study the methodology from the previous chapter will be used. Therefore, the first section
will focus on identifying a suitable disruption for further analysis. Then the pre- and post-disruption pe-
riod will be determined. The identification of the affected OD pair is next. The a section will be dedicated
to data preparation and lastly the attributes that will be used in the later stages will be identified.

4.1. Disruption Identification
The first step in the case study involves identifying disruptions that meet the criteria outlined in the
methodology section on disruption identification. Adopting this approach, ensures that we focus on
disruptions most likely to influence passenger behavior. To begin, disruptions lasting several days

25
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Figure 4.1: Washington DC Metro Network

were identified by searching for entries containing the word ’Thru’ in the detail column of the dataset.
This initial search yielded a selection of disruptions, which were further screened to ensure that they
occur on both weekdays and weekends. This process resulted in a list of 15 disruptions. Each of these
disruptions fell within a suitable time range, allowing for the definition of both a pre- and post-disruption
period. Next, the feasibility of detours or alternative routes during each disruption was assessed. This
narrowed the selection to four disruptions that met all the criteria, specifically:

Table 4.1: Final disruptions

Date Line Affected Stations
21/06/2020 -
27/06/2020 Green Between L’Enfant Plaza and

Shaw Howard University
28/06/2020 -
02/07/2020 Green Between Mt. Vernon Square and

U street
06/07/2020 -
18/07/2020 Green Between U street and

Fort Totten
19/07.2020 -
25/07/2020 Red Between Judiciary Square and

Rhode Island Avenue

The final criterion is that there should be no other disruptions lasting more than several hours in the
affected area during both the pre- and post-disruption periods. However, in this case, all observed
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disruptions are relevant when traveling betweenGallery Place and Fort Totten, as they occur at adjacent
stations and impact the same sections of the line. For this reason, we will treat these disruptions as
a single, continuous disruption affecting the area. As a result, the disruption period was defined as
lasting from 21/06/2020 to 25/07/2020, with the disruption occurring consistently along the Green or
Red Line between Gallery Place and Fort Totten. The identified disruption takes place due to trackwork
and platform repairs.

4.2. Pre-and post disruption period
With the disruption now identified, the pre- and post-disruption periods can be established. The pre-
and post-disruption periods are defined based on the criteria outlined in section 3.2 of the methodol-
ogy. The selected pre-disruption period provides a stable baseline of passenger behavior, while the
post-disruption period captures both short-term adjustments and potential longer-term changes in route
choices. Post-disruption period 1 reflects passengers’ immediate responses once the disruption has
ended, providing insight into short-term adjustments in route choice. Post-disruption period 2 repre-
sents an intermediate phase, where it becomes possible to observe whether passengers maintain their
new habits or begin reverting to their original routes. Finally, post-disruption period 3 captures longer-
term behavior and indicates whether passengers have settled into a new, stable pattern of travel.

In the pre-disruption period there are no other big disruptions on the selected line, meaning we can
use the preferred pre-disruption period of two months. In the post-disruption period there are some
disruptions on the selected part of the Green Line. In the period from 31/10/2020 until 22/11/2020
there is a planned disruption message each evening. It would therefore not seem suitable to take
this period into account for the post-disruption analysis. From the preferred 3-5 month post disruption
period we will therefore go for a 3 month period, excluding the time in which there are other disruptions
on the line. This leads to the selection that can be found in table 4.2.

Table 4.2: pre- and post disruption periods

Period Start date End date Duration
Pre-disruption 21/04/2020 21/06/2020 2 months
Post-disruption total 25/07/2020 25/10/2020 3 months
Post-disruption 1 25/07/2020 25/08/2020 1 month
Post-disruption 2 26/08/2020 25/09/2020 1 month
Post-disruption 3 26/09/2020 25/10/2020 1 month

4.3. Identification of affected OD pair
In this section, we apply the methodology’s approach to OD pair selection, as described in Section 3.3.
By narrowing down OD pairs to those with multiple route options and transfer variability, the analysis
targets cases where passengers are likely to have adjusted their routes during the disruption.

After identifying all OD pairs in the network (over 4,000 in total), the next step is to determine the routes
available for each pair. Each route can consist of a single line or multiple lines, identified by their color
codes [GR (Green), RD (Red), YL (Yellow), SV (Silver), OR (Orange), BL (Blue)]. For instance, a
passengers’ route can be labeled as BL for a direct route or as RD > YL or BL > SV > GR, where the
”>” symbol indicates a transfer between different lines.

With the routes identified, each OD pair is categorized based on whether it has one or multiple route
options. The analysis focuses on those OD pairs that offer multiple route options across all three
datasets used for the disruption period. This selection process reduces the number of OD pairs to
around 1,600.

By also adding the transfer variability criteria we are left with 169 OD pairs that have both multiple
routes and a variability in their amount of transfers.

To narrow down the selection further, an OD pair is needed where at least one route passes through
the disrupted section of the network, specifically the Green Line between Gallery Place and Fort Totten.
When ordering the remaining OD pairs based on the amount of passengers between them, we get the
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following first 10 OD pairs, that can be found in table 4.3.

In the table we get the number of trips between each OD pair over the disrupted line in the period
between 21/04/2020 and 25/10/2020.

Table 4.3: Possible OD pairs

From To # Trips
Columbia Heights Southern Avenue 6658
Columbia Heights Minnesota Avenue 2930
Fort Totten Pentagon 2774
Foggy Bottom Greenbelt 2501
Prince George’s Plaza Foggy Bottom 2497
Fort Totten Congress Heights 2228
Foggy Bottom West Hyattsville 2167
Prince George’s Plaza Waterfront 2008
Fort Totten Suitland 1956
Prince George’s Plaza Ballston 1309

When analyzing the routes between the first OD pair of Columbia Heights and Southern Avenue it
becomes evident that there is no significant route variation. When removing the routes that are chosen
less than 1% of the time, there is actually no route variation left. This means the first OD pair is not
suitable to use in further analysis.

The second OD pair between Columbia Heights and Southern Avenue has the same shortcomings as
the first OD pair and is therefore also not suitable for further analysis.

When looking at the third OD pair from Fort Totten to Pentagon, there is route variation. However, the
route that is chosen most of the time is not one that is actually existing. It is only the Green line, without
any transfers. The problem is that it is not possible to reach Pentagon station without any transfers.
This OD pair therefore also does not seem suitable.

The fourth OD pair between Foggy Bottom and Greenbelt is the next route that is analyzed. This route
has different options that are actually chosen and transfer variability. Therefore, this OD pair seems
suitable for further analysis. This means the OD pair that is used for estimating the discrete choice
models will be the OD pair of Foggy Bottom and Greenbelt.

4.4. Data preparation
The data of the OD pair Foggy Bottom - Greenbelt is filtered and cleaned based on the criteria described
in the methodology. Furthermore there is also another data preparation step that we decided to include.
Regarding this specific OD pair, we have chosen to reassign all instances of the yellow line (YL) to the
green line (GR) for the specific OD pair between ”Foggy Bottom” and ”Greenbelt.” This decision is
based on the assumption that the Yellow Line does not provide a realistic travel route for this OD pair.
While the dataset may show YL as part of a journey, in reality, the Yellow Line does not serve Greenbelt
directly, and taking the Yellow Line would involve a walk of approximately 8 miles between the nearest
Yellow Line stop and Greenbelt station.

Such a walking distance is impractical for typical metro passengers, making this route an unrealistic
alternative. Therefore, we are consolidating YL into GR to reflect the more accurate and feasible routing
options between these two stations. This assumption helps ensure that the route choice set consists
of realistic travel alternatives, leading to more reliable results in the subsequent modeling and analysis.

This leaves us with the following routes between this OD pair, which will be continuously used during
the rest of this thesis:

• Route 1: BL > GR
• Route 2: OR > GR
• Route 3: SV > GR
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• Route 4: OR > RD > GR
• Route 5: BL > RD > GR
• Route 6: SV > RD > GR

4.5. Identified attributes
Based on the WMATA data we were able to identify the attributes that we will take into account for
estimating the discrete choice models. These are the following:

• Veh_sec: This is the total in-vehicle time for the passengers of this stage, expressed in seconds.
• Wait_sec: This is the cumulative platform wait time of all rail rides in this stage, expressed in
seconds.

• Transfers: This attribute is inferred from the route taken, with the number of transfers identified
as the number of routes taken, minus 1.

There were more attributes in the dataset that were considered; however, they were not chosen due to
various reasons, which are explained below:

• Denied

The attribute Denied represents the number of times a passenger was inferred to have been
denied boarding. However, since this value was zero in the vast majority of cases, there was little
variation to observe, making it impossible to identify a meaningful trade-off.

• Max_ppc

This represents the maximum number of passengers per car (ppc) experienced during a fare
stage. Given that each metro car has approximately 60 seats, and the highest recorded max_ppc
value in the dataset was only 37.2, it suggests that seating availability was not a limiting factor,
as all passengers likely had a seat. The limited impact of this variable makes it an unsuitable
attribute for modeling.

• Reliability

Reliability could have been measured based on the delay column and potentially represented
as On-Time Performance (OTP). However, the delay data was found to contain many inconsis-
tencies and incorrect values, making it unreliable for analysis. Due to the lack of accurate delay
measurements, this attribute was excluded from the model.

• Fare

The fare values in the dataset were often zero, and even when nonzero, the differences in fare
between alternative routes were minimal. Since fare variation between options was very small, it
would not have had a significant impact on the model’s utility function. Additionally, passengers
with transit passes or employer-funded transit benefits may not consider fare as a decisive factor,
further reducing its relevance in modeling route choice.

• Frequency

The frequency of a route is based on the route with the lowest service frequency in the dataset.
However, this value was the same across all routes in the choice set, meaning there was no vari-
ation in this attribute between alternatives. Since frequency does not differentiate route options,
it was excluded from the utility function.

4.6. Conclusion
This case study demonstrates the practical application of the methodology developed in Chapter 3. By
applying the methodology to theWashington D.C. Metrorail system, we were able to identify disruptions,
define appropriate pre- and post-disruption periods, select affectedOD pairs, prepare the data for model
estimation and and determine the attributes to be used in the discrete choice models.
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Results

This chapter looks at how the disruption affected route choice preferences. It starts by examining
changes in key route attributes and travel patterns, including trends in travel and wait times, differences
across routes, and overall ridership levels. Then, it explores route choice behavior using discrete choice
models, showing how factors like travel time, transfers, and wait times influenced decisions and how
these preferences shifted due to the disruption.

5.1. Analysis of Route Attributes
This section focuses on analyzing transit data to explore how travel attributes (e.g., travel time, wait time)
evolved across periods and their potential influence on route choices. The goal is to provide descriptive
insights into route-specific patterns and establish a foundation for the next part of the analysis.

5.1.1. Travel time

Figure 5.1: Average travel time per route across periods

The graph of average travel times (Figure 5.1) shows clear distinctions between the different routes
across all periods. Transfer-heavy routes, such as BL > RD > GR and SV > RD > GR, consistently
have shorter average travel times compared to direct routes like SV > GR and BL > GR. This patterns
stays like that across all different periods. The average travel time for the transfer-heavy routes stays
consistent across periods. In contrast, the average travel time for the direct routes increases after the
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disruption. This shows that transfer-heavy routes not only had shorter travel times, but also remained
more consistent throughout the disruption period.

Figure 5.2: Boxplot travel time per route across periods

The boxplots in Figure 5.2 provide further insights into the variability of travel times across different
routes and periods. Before the disruption, travel times for more direct routes, such as BL > GR, exhibit
greater variability, while transfer-heavy routes appear more stable. However, this could be partly due
to the fact that transfer-heavy routes were chosen less frequently in the pre-disruption period, result-
ing in less observed variation. After the disruption, travel time variability decreases for most routes,
particularly in the total post-disruption period and Post-Disruption Period 1, as shown by the narrower
interquartile ranges. In Post-Disruption Period 3, however, variability increases slightly for some routes,
suggesting a potential shift back toward pre-disruption patterns. Overall however all routes have pretty
similar travel time variability.

5.1.2. Wait time

Figure 5.3: Average wait time per route across periods

Figure 5.3 shows the average wait times per route across all periods. Overall, there is no clear trend in
howwait times change over time. Some routes experience increases while others show decreases, and
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this varies across periods. The variation in wait time appears to be route-specific rather than following
a consistent pattern linked to the disruption.

One noticeable outlier is the high average wait time forOR > RD > GR in the pre-disruption period. This
is likely due to the low number of observations for that route in that period, which makes the average
more sensitive to extreme values. Aside from this, the differences in wait times across routes remain
relatively modest, and no single route consistently stands out across all periods. This suggests that,
unlike travel time, wait time was less clearly impacted by the disruption in a consistent or systematic
way.

Figure 5.4: Boxplot wait time per route across periods

The distribution of wait times, as depicted in Figure 5.4, provides additional insights into variability
across routes and periods. Pre-disruption, routes such asOR>RD>GR show high variability, indicated
by the wide range of values and routes as OR > GR show high variability by their numerous outliers.
Other routes, such as SV > RD > GR and BL > RD > GR exhibit narrower distributions. As mentioned
before, the notably high wait time forOR > RD > GR in the pre-disruption period stands out as an outlier,
likely due to the low number of observations for this route during that time frame. The few recorded
observations tend to have higher wait times, which explains this anomaly.

Post-disruption, wait time distributions do not seem to change that much. There is some variability
across routes. However, when we look at post disruption period 3, the wait time distributions have
stabilized quite a bit. The role of wait times in influencing route choice preferences is further explored
in the discrete choice models.

5.2. Analysis of Route Choice Changes
This section shifts focus from route attributes to route choices, analyzing changes in ridership patterns
and passenger behavior across periods. By examining aggregate trip counts, route transitions, and
individual preferences, this section provides a detailed understanding of how passengers adapted their
route choices after the disruption.

5.2.1. Total Trip Counts Across Different Periods
Figure 5.5 shows the total trip counts per route across five distinct periods: the pre-disruption period,
the post-disruption total period, and three individual post-disruption sub-periods. The x-axis represents
each route, while the colored bars reflect the number of trips taken during each period.

The visualization highlights changes in route usage over time. During the pre-disruption period, the
routes BL > GR and OR > GR had the highest usage, while multi-transfer routes like BL > RD > GR,
OR > RD > GR, and SV > RD > GR were used much less frequently. After the disruption, ridership on
thesemulti-transfer routes increased significantly, suggesting a shift in behavior as passengers adapted
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Figure 5.5: Trip counts per route

their travel patterns.

Looking at the post-disruption sub-periods, ridership on the multi-transfer routes remains higher than
before the disruption, indicating that many passengers continued using these alternatives even after
normal service resumed. Meanwhile, usage of single-transfer routes like SV > GR declined slightly
over time. This pattern suggests that some travelers may have permanently adjusted their route choice
preferences following the disruption.

5.2.2. Sankey Diagram of Route Choices
While total trip counts provide a high-level overview of how passengers adapted their route choice to
the disruption, they do not capture how the changes in ridership translate into shifts between specific
routes. A Sankey diagram is used to visualize the flow of passengers across routes from the pre-
disruption to the post-disruption period. This visualization can be found in figure 5.6. Each node on the
left represents a route taken during the pre-disruption period, while each node on the right corresponds
to a route in the post-disruption period. The width of the flows between nodes reflects the relative
proportion of passengers who transitioned between routes, scaled to account for the higher total number
of routes taken post-disruption (586 total trips) compared to the pre-disruption period (381 total trips).

From the diagram, we observe several trends. Direct routes, such as BL > GR and OR > GR, saw a
significant decline in total passenger volumes during the post-disruption period, with many passengers
shifting to alternative routes. Transfer-heavy routes, such as BL > RD > GR, SV > RD > GR, and
OR > RD > GR, gained a larger share of passengers, absorbing much of the demand from disrupted
direct routes. Passengers redistributed themselves across the network, often moving from direct to
multi-transfer routes. For example, flows from BL > GR and SV > GR shifted toward BL > RD > GR
and SV > RD > GR, respectively.

While transfer-heavy routes gained stability or growth in passenger volumes, some routes experienced
an overall reduction in ridership, as seen by the thinner nodes for BL >GR andOR >GR post-disruption.
This redistribution highlights a complex adjustment to changing service conditions.

The diagram provides valuable insights into how passenger flows changed during the disruption, setting
the stage for the discrete choice model analysis. The model will examine the extent to which travel time,
wait time, and transfers influenced these transitions.
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Figure 5.6: Sankey diagram of route changes

5.2.3. Route choices per passenger
The Sankey diagram provided an overview of how passengers redistributed themselves across routes
during the disruption, highlighting aggregate flows between routes. However, these aggregate trends
do not capture how individual passengers adjusted their route choices. To explore this, the next section
uses heatmaps to analyze route choice preferences and changes at the individual level, offering deeper
insights into passenger behavior before and after the disruption.

Figure 5.7 illustrates the route choices before the disruption. The intensity of the color corresponds
to the frequency with which each passenger used specific routes. Passengers such as Passenger 11
and Passenger 35 relied heavily on the BL > GR route, as indicated by the darker blue shading. Other
routes, such as SV > GR and BL > RD > GR, were used less frequently by most passengers. Overall,
this heatmap reveals a strong reliance on direct routes, with lower utilization of multi-transfer options
during the pre-disruption period.

Figure 5.8 shows the route choices after the disruption. Unlike the pre-disruption period, passengers
display a greater reliance on transfer-heavy routes such as BL > RD > GR and SV > RD > GR, as seen
in the darker red shading for passengers like Passenger 13 and Passenger 35. Direct routes such as
BL > GR see significantly lighter shading for most passengers, indicating a reduced usage compared
to the pre-disruption period. This suggests a substantial redistribution of route choice preferences
post-disruption, with passengers adapting their choices to the altered network conditions. Another
notable observation is that passengers do not consistently prefer a single route. Those with multiple
observations tend to choose different routes, suggesting that route choice is not driven by fixed habits.

Figure 5.9 visualizes the changes in route choices by comparing post-disruption route frequencies with
pre-disruption frequencies. Positive changes are shown in shades of red, while negative changes are
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Figure 5.7: Heatmap of Pre-Disruption Route Choices per Passenger

displayed in shades of blue. Passengers such as Passenger 13 and Passenger 35 show significant
increases in their use of BL > RD > GR, as indicated by the darkest red shading. Conversely, routes
like BL > GR show widespread reductions in usage, with many passengers, such as Passenger 11
and Passenger 25, exhibiting negative changes marked by blue shading. This heatmap highlights
the varying degrees of passenger adaptability, with some passengers making significant shifts to new
routes and others maintaining more consistent behavior.

5.2.4. Summary
The combined analysis of route choices through aggregate trip counts, the Sankey diagram, and
individual-level heatmaps provides a comprehensive understanding of passenger behavior in response
to the disruption. The trip counts reveal significant shifts in ridership levels, highlighting that passengers
redistributed their travel across routes, with transfer-heavy routes gaining popularity while direct routes
saw a decline. The Sankey diagram complements this by visualizing proportional transitions between
routes, emphasizing how groups of passengers adapted their choices by switching to alternatives with
additional transfers or greater reliability.

The heatmaps offer a granular perspective, showing that individual passengers responded differently
to the disruption. While some passengers made substantial shifts to new routes, others retained a mix
of pre- and post-disruption choices. These variations underscore the complexity of decision-making
processes and highlight the influence of factors such as travel time, wait time, and transfers.

Together, these analyses demonstrate the need for a discrete choice modeling approach, such as an
MNL model, to quantify the impact of specific route attributes on passenger decisions. By analyzing
travel behavior at both the aggregate and individual levels, the groundwork has been established to
explore the factors driving route choices in a structured and explanatory framework. The MNL model
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Figure 5.8: Heatmap of Post-Disruption Route Choices per Passenger

will enable us to measure the relative importance of travel time, wait time, and transfers in shaping
route choice preferences, both before and after the disruption, providing deeper insights into passenger
decision-making.
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Figure 5.9: Heatmap of Changes in Route Choices per Passenger (Post vs. Pre-Disruption)

5.3. MNL results
Before estimating a MNL model, it is important to examine the correlation between attributes, as highly
correlated variables can lead to multicollinearity. This poses a problem in MNL models because it
affects parameter estimation. When two or more independent variables are strongly correlated, the
model struggles to estimate their individual effects, resulting in unreliable and unstable estimates. For
the data used, the correlation between the variables is displayed in figure 5.10.

As we can see there is a strong negative correlation between in-vehicle time and the number of transfers,
meaning that travel time is generally shorter when there are more transfers, and vice versa. Including
both attributes in the MNL model would introduce multicollinearity, making it difficult to estimate their
individual effects. To avoid this issue, only in-vehicle time was included in the model. This choice was
further justified by the fact that in-vehicle time exhibits greater variation in the data. Unlike the number
of transfers, which has only two distinct values, in-vehicle time fluctuates more across different trips,
capturing a broader range of travel experiences. This greater variability makes in-vehicle time a more
informative attribute, allowing for a more meaningful estimation of its effect on route choice.

The estimation results from the MNL model with only in-vehicle time and wait time in table 5.1 and
5.2 show that the final log-likelihood (LL) of the model is greater than the null LL, which means the
model provides a better fit than a random model. Also, the rho-square of 0.114 indicates a semi rea-
sonable model fit, as McFadden suggests that ρ2 values between 0.2 and 0.4 represent an excellent
fit McFadden, 1977.

For the estimated parameters a negative coefficient suggests that an increase in the attribute decreases
the probability of choosing an alternative, whereas a positive coefficient suggests an increase in prob-
ability. Time related attributes are expected to be negative, since a longer wait or travel time has a
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(a) Pre-Disruption (b) Post-Disruption Total

(c) Post-Disruption Period 1 (d) Post-Disruption Period 2

(e) Post-Disruption Period 3

Figure 5.10: Correlation Heatmaps for data used in the MNL model

negative impact on utility. However, when looking at these results we see that there are quite a lot of
positive coefficients that are significant (p-value < 0.05). Like for example the beta for wait time in the
pre- and post disruption total period.

Typically, the in-vehicle time coefficient is expected to be negative, as travelers generally prefer shorter
travel times. However, the positive coefficient observed in some periods is counterintuitive. This can
be attributed to the strong negative correlation between transfers and in-vehicle time, where routes
with more transfers often have shorter travel durations due to optimized connections or more direct
paths. Since transfers were not included as a separate variable in the model, their effect may have
been absorbed into the in-vehicle time coefficient, leading to an unexpected sign reversal.

To address this issue, two alternative model specifications were tested:
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Table 5.1: Model Estimation Results MNL

Statistic Value
Number of estimated parameters 10
Sample size 1577
Null log-likelihood -2728.461
Final log-likelihood -2416.265
Rho-square 0.115
Rho-square-bar 0.111
Akaike Information Criterion (AIC) 4852.530
Bayesian Information Criterion (BIC) 4906.163

Table 5.2: Estimated Parameters MNL

Parameter Value Rob. Std Err Rob. t-test Rob. p-value
BETA_VEH_POST_1 0.170982 0.019461 8.785678 0.000000
BETA_VEH_POST_2 -0.246755 0.026767 -9.218534 0.000000
BETA_VEH_POST_3 -0.171042 0.026250 -6.515931 0.000000
BETA_VEH_POST_TOTAL -0.054247 0.011350 -4.779524 0.000002
BETA_VEH_PRE 0.601684 0.045771 13.145656 0.000000
BETA_WAIT_POST_1 0.051765 0.038428 1.347084 0.177953
BETA_WAIT_POST_2 -0.009663 0.053035 -0.182209 0.855419
BETA_WAIT_POST_3 -0.041786 0.035506 -1.176862 0.239251
BETA_WAIT_POST_TOTAL 0.093753 0.017437 5.376732 0.000000
BETA_WAIT_PRE 0.043243 0.021738 1.989264 0.046672

• An interaction term between in-vehicle time and the number of transfers was included to account
for the potential correlation between these variables. As presented in Appendix A.1, the inclusion
of the interaction term did not substantially improve model performance. Most interaction effects
were statistically insignificant, and the estimated coefficients for in-vehicle time remained largely
positive, suggesting that this approach did not fully resolve the underlying issue.

• Another alternative specification involved applying a transfer penalty to in-vehicle time, capturing
the disutility of making transfers without introducing transfers as a separate variable. These re-
sults are presented in Appendix A.2. However, determining an appropriate penalty value proved
challenging, as no single value significantly improved model fit. While the in-vehicle time coeffi-
cient became negative under some penalty values, the coefficient for wait time remained counter-
intuitive in certain cases. This suggests that additional underlying factors or data limitations may
be influencing the results.

These experiments confirmed that strong attribute correlation posed a fundamental modeling challenge
that could not be easily resolved through re-specification.

5.3.1. Domination
Further investigation revealed that the constructed choice set contained dominated alternatives: routes
that were consistently worse across all attributes but were still frequently chosen (Table 5.3). This is
a problem in discrete choice models since they operate under the premise that individuals are utility
maximizers, selecting the option that provides the highest perceived benefit. However, as seen in
Table 5.3, the second route, OR > GR, is the most frequently chosen among the routes with only one
transfer, despite performing worst across all considered attributes. This inconsistency suggests that
factors beyond the observed attributes may be influencing travelers’ choices, leading to counterintuitive
positive estimates for some coefficients. The presence of dominated alternatives distorts the estimated
utility functions, making it difficult to derive meaningful behavioral insights from the model.

To partially address domination, a simplified choice set was constructed by merging routes with the
same number of transfers (Appendix A.3). While this approach reduced some inconsistencies, the
strong negative correlation between in-vehicle time and transfers persisted. Despite this, the simplified
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Table 5.3: Choice set evening rush post-disruption

Route Transfers In vehicle time
(in seconds)

Wait seconds
(in seconds)

Max person
per car

Observed
count

BL > GR 1 2317 584 9.2 36
OR > GR 1 2334 713 12.3 70
SV > GR 1 2313 477 6.8 16
BL > RD > GR 2 1858 563 9.9 81
OR > RD > GR 2 1860 565 10.8 74
SV > RD > GR 2 1868 585 9.5 47

model showed some improvement: the wait time coefficients were no longer strongly positive and
were either negative or statistically insignificant. This suggests that merging routes reduced distortions
in model estimation. However, collapsing routes into just two categories limited the model’s ability
to capture more nuanced variations in route choice preferences, making it less sensitive to potential
differences between individual routes. Although this approach provided useful insights into the role of
route structure in model estimation, it did not fully resolve all issues, highlighting the need to consider
additional factors that may influence route choice.

5.3.2. Other attributes
Beyond in-vehicle time and wait time, the possibility that habitual behavior influenced route choice was
also explored. If travelers consistently selected the same route out of habit, this might help explain
some of the observed deviations from utility-maximizing behavior. However, as shown in Figure 5.11,
no strong patterns of habitual behavior were observed. Instead, many travelers frequently switched
between different routes, suggesting that inertia was not a dominant factor affecting decisions. This
finding supports the idea that other unobserved factors, such as perceived comfort or reliability, are
more likely to explain the unexpected model results.

Figure 5.11: Route choices per person
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5.4. Mixed Logit Model Results
To better understand the unexpected and inconsistent findings observed in the MNL model, a Mixed
Logit (ML) model was estimated. Although this research does not primarily focus on individual-specific
behavior, it is important to assess preference heterogeneity because variation across travelers could
influence the overall patterns seen in the data. In particular, if passengers perceive attributes like
in-vehicle time and wait time differently, then averaging their behavior in a simple MNL model could
producemisleading or counterintuitive results. Estimating aMixed Logit model allows us to test whether
the inconsistencies found earlier could be explained by underlying differences in how travelers respond
to key attributes.

The overall estimation results of the ML model are shown in Table 5.4, and the estimated parameters
are shown in Table 5.5.

Table 5.4: Estimation Report Mixed Logit

Statistic Value
Number of estimated parameters 20
Number of respondents 42
Sample size 1577
Initial log-likelihood -2784.947
Final log-likelihood -2393.276
Rho-square (initial model) 0.141
Rho-square-bar (initial model) 0.133
Akaike Information Criterion (AIC) 4826.552
Bayesian Information Criterion (BIC) 4933.832

Table 5.5: Estimated Parameters Mixed Logit

Parameter Value Std Err z-test p-value
VEH_SEC_PRE 0.670900 0.125000 5.386000 0.000000
VEH_SEC_POST_TOTAL -0.025700 0.076000 -0.340000 0.734000
VEH_SEC_POST_1 0.201400 0.088000 2.284000 0.022000
VEH_SEC_POST_2 -0.272600 0.146000 -1.862000 0.063000
VEH_SEC_POST_3 -0.161400 0.087000 -1.859000 0.063000
WAIT_SEC_PRE 0.107100 0.080000 1.345000 0.179000
WAIT_SEC_POST_TOTAL 0.163200 0.221000 0.739000 0.460000
WAIT_SEC_POST_1 0.140800 0.257000 0.547000 0.584000
WAIT_SEC_POST_2 0.009600 0.184000 0.052000 0.958000
WAIT_SEC_POST_3 -0.053000 0.233000 -0.228000 0.820000
Sigma VEH_SEC_PRE -0.067700 0.326000 -0.207000 0.836000
Sigma VEH_SEC_POST_TOTAL 0.073600 0.043000 1.699000 0.089000
Sigma VEH_SEC_POST_1 0.110700 0.093000 1.195000 0.232000
Sigma VEH_SEC_POST_2 -0.151200 0.171000 -0.883000 0.377000
Sigma VEH_SEC_POST_3 0.125600 0.136000 0.923000 0.356000
Sigma WAIT_SEC_PRE 0.146200 0.179000 0.819000 0.413000
Sigma WAIT_SEC_POST_TOTAL -0.135200 0.120000 -1.124000 0.261000
Sigma WAIT_SEC_POST_1 0.254600 0.266000 0.959000 0.338000
Sigma WAIT_SEC_POST_2 -0.019500 0.537000 -0.036000 0.971000
Sigma WAIT_SEC_POST_3 0.025300 0.350000 0.072000 0.942000

Based on the ML results, none of the sigma coefficients are statistically significant. This indicates that
there is no strong evidence of preference heterogeneity in the dataset: travelers appear to perceive
in-vehicle time and wait time relatively similarly.

The estimated mean coefficients for in-vehicle time still vary across periods, with some unexpected
positive values—particularly in the pre-disruption and early post-disruption periods. Since no signifi-
cant heterogeneity is detected, these unexpected results are unlikely to be explained by differences in
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individual sensitivities.

In addition to exploring preference heterogeneity, a Path Size Logit (PSL) model was also considered
to address the issue of overlapping routes. The idea was to account for the similarity between alterna-
tives by introducing a path size factor.1 However, because the path size factors offered no meaningful
differentiation between the routes, PSL modeling was ultimately not pursued.

5.5. Comparison MNL and ML model
To assess whether the ML model provides a significantly better fit than the MNL model, a Likelihood
Ratio (LR) test was conducted. This test compares the log-likelihood values of the two models, where
the MNL model serves as the restricted model (L0), and the ML model serves as the unrestricted model
(L1). The LR test statistic is computed as follows:

LR = −2× (L0 − L1) = −2× (−2393.276 + 2416.265) = 45.978 (5.1)

The LR statistic follows a chi-square (χ2) distribution, which is used to test whether a more complex
model provides a significantly better fit than a simpler one. The number of degrees of freedom in this
test are equal to the number of additional parameters estimated in the ML model compared to the
MNL model. In this case, the ML model includes 10 extra parameters, which account for the estimated
standard deviations (σ values) of the random coefficients. To determine whether the improvement in
model fit is statistically significant, we compare the LR statistic to a critical chi-square value. For 10
degrees of freedom and a significance level of α = 0.05, the critical chi-square value is 18.31. If the LR
statistic is greater than this value, we can reject the null hypothesis (H0) that the MNLmodel is sufficient
and we can conclude that the ML model provides a significantly better fit than the MNL model.

However, despite the statistical improvement in model fit, the AIC (Akaike Information Criterion) and
BIC (Bayesian Information Criterion) values suggest that the ML model does not substantially enhance
model performance. The AIC for the MNL model is 4852, compared to 4826 for the ML model, showing
only a marginal improvement. Meanwhile, the BIC for the MNL model is 4906, while the BIC for the
ML model is 4933, which is actually slightly worse. Since BIC penalizes additional parameters more
heavily than AIC, the higher BIC value for the ML model suggests that the added complexity does not
justify the improvement in model fit.

Furthermore, the ML model still produces unexpected coefficient signs. While the ML model accounts
for heterogeneity, the lack of substantial preference variation across individuals, combined with these
inconsistencies in coefficient signs, suggests that it may not be the most appropriate model for this
dataset.

Given the minimal improvements in log-likelihood, AIC, and BIC, the Mixed Logit model does not ap-
pear to offer significant advantages over the simpler MNL model. While estimating the ML model was
important to check whether hidden differences in passenger preferences could explain the unexpected
findings in the MNL model, no significant preference heterogeneity was detected. This suggests that
the unexpected results are more likely due to structural limitations in the dataset rather than variation
across travelers. Therefore, although the statistical test confirms a better fit, the practical implications
of the added complexity remain limited.

1The path size factors, calculated based on both overlapping links and overlapping stations, were found to be nearly identical
across all routes. This indicated that the available alternatives were not meaningfully distinguishable based on overlap. As
a result, the Path Size Logit model was not estimated. A full explanation of the path size factor computation is provided in
Appendix A.4.
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Discussion and Conclusion

This study examined how public transport users’ route choice preferences changed in response to
a planned disruption, using AFC data from the Washington DC metro system. The research aimed
to address gaps in the literature by analyzing whether passengers’ preferences for route attributes
shifted after the disruption and whether these changes persisted over time. In addition, the study
assessed whether AFC data fromWMATA alone is sufficient for analyzing route choice behavior during
disruptions, or whether additional data sources are needed to fully capture passenger decision-making.

The descriptive analysis showed that travel times and wait times remained relatively stable across
different periods. However, despite this stability in measured attributes, passengers’ route choices
changed significantly. Before the disruption, travelers tended to prefer direct routes, even when they
had longer travel times. After the disruption, passengers increasingly chose routes with more transfers
but shorter in-vehicle times. This shift suggests a change in route choice preferences, with travelers
placing greater importance on minimizing in-vehicle time and showing a greater willingness to tolerate
transfers.

To further investigate these changes, discrete choice models were estimated. However, the modeling
results revealed unexpected findings: some models produced positive coefficients for travel time and
wait time, contrary to theoretical expectations. These counterintuitive results are likely explained by the
strong negative correlation between in-vehicle time and the number of transfers, which made it difficult
to separately identify their effects. Additionally, the presence of dominated alternatives — routes that
were worse across all measured attributes but were still chosen — complicated the estimation process,
indicating that unobserved factors also played a role in passenger decisions.

Beyond the basic Multinomial Logit (MNL) model, a Mixed Logit (ML) model was estimated to account
for individual differences in preferences. While the ML model provided a statistically better fit than the
MNL model, practical improvements were limited, and the problem of counterintuitive coefficient signs
remained. Similarly, a Path Size Logit (PSL) model was tested to account for route overlap, but the path
size factors were nearly identical across routes, meaning that overlap did not meaningfully differentiate
alternatives.

While these modeling and data challenges complicate the interpretation of individual coefficients, the
broader patterns observed still provide valuable insights into how passenger behavior and preferences
evolved in response to the disruption. To structure the interpretation of the findings, the next sections
reflect on the research sub-questions.

6.1. Reflection on research questions
To answer the main question — How do public transport passengers’ route choice preferences change
in response to a planned public transport disruption — four sub-questions were constructed. These
covered which disruptions were suitable for analysis, what factors influenced route choices, how pref-
erences changed over time, and whether AFC data was suitable for studying this kind of behavior.
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1. Which disruptions can be used to analyze changes in route choice prefer-
ences?
Finding a suitable disruption to analyze wasn’t straightforward. Many of the disruptions in the dataset
were too short, didn’t offer clear alternative routes, or overlapped with other events, making it hard to
isolate their effects. After going through all options, one planned disruption was selected that clearly
affected multiple routes between a key OD pair and didn’t overlap with other major changes. This
was the disruption occurring consistently along the Green or Red Line between Gallery Place and Fort
Totten lasting from 21/06/2020 to 25/07/2020. Even though this meant focusing on just one case, it
provided a clear and useful opportunity to look at how passengers adjusted their behavior.

This also shows one of the limitations of using AFC data for this kind of analysis, which is that there just
aren’t that many disruptions that meet all the necessary conditions. Still, the selected disruption offered
a solid basis for exploring how route choice preferences can change in response to a disruption.

2. What are the main factors influencing passengers' route choices in response
to planned public transport disruptions?
This study focused on in-vehicle time, the number of transfers, and wait time as key factors that in-
fluence route choices in the Washington DC metro network. However, a strong negative correlation
between in-vehicle time and the number of transfers made it difficult to estimate their individual effects
in the model. In this network, routes with more transfers often had shorter in-vehicle times, which
created multicollinearity. Because of that, transfers were not included directly in the model, and only
in-vehicle time was used. This likely distorted the results, since the model may have picked up the
effect of transfers through the travel time coefficient.

Before the disruption, passengers mostly chose direct routes, even when those had longer travel times.
After the disruption, many shifted to transfer-heavy routes with shorter in-vehicle times, suggesting that
travel time became more important. However, due to the correlation between transfers and travel time,
it is difficult to determine whether this shift was driven primarily by a desire to reduce travel time, by a
greater willingness to transfer, or both.

Wait time was also included in the model, but its influence proved difficult to interpret. In some cases,
wait time coefficients were unexpectedly positive or not statistically significant. This may be due to the
presence of dominated alternatives in the choice set or to missing or unreliable data for certain time
periods.

Other potentially important factors like delay and crowding could not be included because the available
variables were either inaccurate or incomplete. And as with most AFC-based studies, attributes like
comfort, perceived reliability, or familiarity were not available at all.

In conclusion, while the descriptive analysis shows that route choice preferences clearly changed af-
ter the disruption, the model could not identify a single main factor driving this change. Due to the
correlation between in-vehicle time and transfers, it is not possible to say whether passengers were
responding more to time savings or to changes in transfer behavior. The influence of wait time is also
unclear. These limitations highlight the challenges of modeling route choice behavior with AFC data
alone.

3. How do route choice preferences evolve over time during the post-disruption
period?
The analysis indicates that route choices shifted in response to the disruption and that these changes
persisted afterward. In the later post-disruption periods, many passengers continued to choose faster,
multi-transfer routes instead of returning to the more direct options they had used before. This suggests
that passengers did not simply revert to their previous habits once the disruption ended.

Even though the estimated coefficients for in-vehicle time had unexpected signs, there was still a no-
table change: the coefficients shifted from positive values in the pre-disruption period to negative values
in the post-disruption periods. This indicates that passengers’ preferences changed following the dis-
ruption, even though it remains unclear whether this was due to an increased sensitivity to in-vehicle
time, a reduced reluctance to transfer, or a combination of both. While the strong correlation between
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in-vehicle time and the number of transfers complicates interpretation, it can be concluded that the
disruption triggered a lasting change in route choice preferences.

This is an interesting finding because a systematic review by Noureldin and Diab Noureldin and Diab,
2024 showed that most existing studies on disruptions focus on mode changes and that much less is
known about changes in route choice. This study therefore adds new evidence that disruptions can
also lead to lasting changes in passengers’ route choice preferences.

4. How suitable is revealed preference data for analyzing changes in route choice
preferences in response to a planned public transport disruption?
The use of AFC data in this study proved very suitable for detecting changes in route choice behavior in
response to the planned disruption. It allowed for tracking real passenger behavior over a long period
and provided insights into how travel patterns shifted after the disruption. These are things that would
be difficult to achieve with stated preference (SP) data alone. However, while AFC data was effective in
capturing that a change occurred, it proved more difficult to identify exactly which factors were driving
these changes.

One major limitation was that AFC data does not include perceptual factors like comfort, reliability, or
familiarity with a route, which likely influence decision-making but are not directly observable. This issue
became apparent when some passengers consistently selected dominated alternatives, suggesting
that factors outside the available travel attributes affected their choices. Another difficulty was the
strong negative correlation between in-vehicle time and the number of transfers, which made it hard to
separate the effects of individual route attributes in the discrete choice models.

These limitations show that while AFC data is useful for capturing real-world changes in behavior, it can
be difficult when the aim is to understand the underlying preferences that drive these changes. In future
studies, combining AFC data with additional perception-based data might offer a way to better explain
why passengers make certain route choices, especially in complex networks where unobserved factors
are likely to play a role.

Nevertheless, AFC data can be useful for analyzing route choice preferences. For example, Yap et
al. Yap et al., 2020 successfully estimated a discrete choice model using only AFC data to analyze the
impact of crowding on route choices. This shows that AFC data can be sufficient to estimate passenger
preferences, provided that the key explanatory variables are well captured and there is enough variation
between alternatives. Therefore, while this study encountered limitations, the findings do not imply that
AFC data is unsuitable by itself. Instead, researchers should carefully assess the structure of the
network, the availability of relevant variables, and the potential for multicollinearity when determining
whether AFC data alone is sufficient for their analysis.

6.2. Scientific and Societal Contributions
This study contributes to both the academic understanding of transit behavior and the practical chal-
lenges faced by transport agencies in managing disruptions.

Scientific contributions
From a scientific perspective, this research adds to the body of literature that uses revealed preference
(RP) data to study passenger behavior in the context of disruptions. While earlier studies often relied
on stated preference (SP) surveys or limited RP datasets, this study shows that smart card data alone
can capture real behavioral changes over time, offering a view of how route choice preferences can
shift in response to network disruptions.

At the same time, the study highlights important limitations of using AFC data in isolation. Although
large-scale behavioral shifts were clearly observable, it proved difficult to pinpoint the exact factors
driving these changes. This was mainly due to strong correlations between key route attributes, limited
variation between alternatives, and missing perceptual factors like comfort or reliability.

As such, the study contributes to the scientific literature by emphasizing that researchers who want to
use AFC data alone must carefully check for correlation between variables and ensure that enough
meaningful and independent variables are available to capture travelers’ decision-making processes
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accurately. Without this, it becomes very difficult to reliably interpret changes in route choice prefer-
ences.

Overall, this study provides methodological insights for future research on transit behavior during dis-
ruptions, showing both the potential and the limitations of relying exclusively on smart card data.

Societal contributions
From a societal and policy perspective, the findings of this study are valuable for transit agencies
planning and managing service disruptions. The analysis shows that route choice preferences are not
fixed: disruptions can trigger changes that persist well after normal service is restored. This highlights
that planned disruptions can be used not only to manage temporary changes, but also to reshape travel
patterns in lasting ways.

The results suggest that passengers may have becomemore sensitive to travel time after the disruption,
although the exact drivers behind the change in preferences remain uncertain. If greater sensitivity to
in-vehicle time is indeed part of the behavioral shift, it is important for agencies to ensure that fast
travel options remain available after the disruption ends. If post-disruption services offer slower routes
or longer travel times, there is a risk that more time-sensitive passengers will become dissatisfied and
may ultimately abandon public transport altogether. Maintaining attractive, time-efficient options in the
recovery phase would then be critical to retain riders and supporting long-term satisfaction.

However, the study also shows that without a better understanding of what drives these changes, it is
difficult to translate insights into concrete policy actions. Therefore, future efforts should aim to integrate
passenger feedback or perception data to support more targeted and effective interventions.

6.3. Limitations and Future Research
While this study provides valuable insights into route choice behavior in response to a planned disrup-
tion, there are several limitations that should be acknowledged. These limitations also point toward
areas where future research can build on and improve the current approach.

• Data limitations: The study relied solely on AFC data, which, although rich in actual behavior,
lacks information on perceptual factors such as comfort, reliability, or familiarity. These unob-
served factors likely influenced passengers’ choices, particularly since dominated alternatives
were selected.

• Multicollinearity between route attributes: A strong negative correlation between in-vehicle
time and the number of transfers made it difficult to disentangle the individual effects of each
attribute. As a result, the interpretation of the discrete choice models was complicated, limiting
the ability to identify the precise drivers behind changes in route choice preferences.

• Limited generalizability: This study focused on a single disruption event within one transit sys-
tem. While the selected disruption provided a clear and valuable case study, the findings may not
generalize to other types of disruptions (e.g., unplanned disruptions) or to transit networks with
different structures, frequencies, or passenger demographics.

• Limited variation between alternatives: Although multiple routes were technically available
between the selected OD pair, the high degree of overlap meant that in practice only two truly
distinct alternatives existed. Most routes shared large sections of track and had similar travel
times and transfer patterns. While this did not prevent estimation, having a third distinctly differ-
ent route would have allowed for a richer analysis of how passengers trade off different route
attributes. The limited variation made it more difficult to observe clear differences in route choice
preferences, especially when trying to disentangle the effects of travel time and transfers.

Future research
Based on the limitations identified in this study, several directions for future research can be proposed.

First, future studies should consider combining AFC data with additional data sources, such as stated
preference (SP) surveys or qualitative passenger feedback. This would allow researchers to capture
important unobserved factors like perceived comfort, reliability, and familiarity, which are not available
in AFC data but are likely to influence route choice decisions.
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Second, it would be valuable to apply a similar analysis to other public transport networks. Conducting
studies in networks with longer routes, greater variation between alternatives, and different structural
characteristics—such as suburban rail or regional train systems—could provide further insights into
how disruption-induced changes in preferences occur and whether the findings from this study are
generalizable.

Once the analysis approach is well-established, an interesting extension would be to investigate whether
the duration of a disruption affects the persistence of preference changes. Analyzing networks with mul-
tiple disruptions of varying lengths could help assess whether longer disruptions reinforce behavioral
changes more strongly than shorter ones.

6.4. Conclusion
This study set out to answer the question: How do public transport passengers’ route choice prefer-
ences change in response to a planned public transport disruption?

The findings show that planned disruptions can lead to lasting changes in route choice preferences.
In the case of the Washington DC metro network, a clear shift was observed. Before the disruption,
passengers often chose direct routes, even if these involved longer in-vehicle times. After the disrup-
tion had ended and normal service was restored, many travelers chose faster, transfer-heavy routes
instead of returning to the more direct options they had previously used. This suggests that passengers
reassessed their travel options following the disruption and adjusted their preferences accordingly.

Although the discrete choicemodels faced challenges in isolating the exact factors driving these changes,
largely due to the strong correlation between in-vehicle time and transfers, the broader behavioral shift
is clear. Even though some coefficients had unexpected signs, the fact that the coefficients for in-
vehicle time shifted from positive before the disruption to negative afterward indicates that passengers’
preferences changed. Whether this change was due to a greater sensitivity to travel time, a reduced re-
luctance to transfer, or a combination of both cannot be fully determined. However, it can be concluded
that the disruption lead to a change in route choice preferences.

The study also highlights that while AFC data is very useful for observing real-world behavioral shifts,
it has important limitations when used alone. The absence of perceptual factors such as comfort and
reliability made it difficult to fully explain why some passengers made seemingly suboptimal choices.
Future studies could strengthen this type of analysis by combining AFC data with additional information
about travelers’ perceptions and motivations.

Overall, this study shows that route choice preferences are adaptable and can change in response
to disruptions. A planned disruption prompted many passengers to reconsider their travel options
and adopt different routes, and these new patterns persisted after normal service was restored. This
highlights that disruptions should not only be seen as temporary challenges but also as moments where
long-term changes in travel behavior can occur. For transit agencies, this means that it is important to
anticipate how disruptions may shift passenger preferences, and to ensure that fast, convenient travel
options remain available to support satisfaction and retention after the disruption ends.

Although this research focused on a single disruption in one metro network, it provides a foundation for
broader investigations. Future research should examine how different types of disruptions, variations
in network structure, and differences in disruption duration influence the extent and persistence of
changes in route choice preferences. Expanding this analysis across multiple cases would help to
better understand how planned disruptions shape passenger preferences and how transit agencies
can respond to these changes.
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A
Results

This appendix presents the methods that were explored during the research but were not directly in-
cluded in the final results. These approaches were tested to assess their potential contribution to the
analysis, but for various reasons they were ultimately not incorporated into the main findings. Docu-
menting these methods provides insight into the decision-making process behind the chosen approach
and highlights alternative strategies that were considered along the way.

A.1. Interaction effect
To address the multicollinearity between the number of transfers and in-vehicle time, an interaction term
between transfers and in-vehicle time was introduced instead of removing transfers altogether. Table
A.1 presents the overall model fit statistics, and Table A.2 shows the estimated coefficients. The model
achieves a Rho-square of 0.123, which is comparable to earlier models without the interaction term.

Table A.1: Model Estimation Results MNL with interaction effect

Statistic Value
Number of estimated parameters 20
Sample size 1577
Null log-likelihood -2728.461
Final log-likelihood -2392.240
Rho-square 0.123
Rho-square-bar 0.116
Akaike Information Criterion (AIC) 4824.480
Bayesian Information Criterion (BIC) 4931.746

From the results it becomes evident that most of the estimated interaction effects between transfers
and in-vehicle time are not statistically significant, as indicated by the high p-values. This suggests that
including the interaction term does not substantially improve the model’s explanatory power regarding
the relationship between transfers and in-vehicle time. The estimated coefficients for in-vehicle time and
transfers separately also vary across periods, with some remaining positive. Also the betas for transfers
that are significant are all highly positive. Although the interaction was intended to capture potential
correlation effects, the results indicate that the unexpected signs for in-vehicle time and transfers cannot
be explained by this interaction.

Thus, while introducing the interaction effect was a theoretically valid approach to addressing multi-
collinearity, it did not significantly resolve the observed counterintuitive estimation results.

A.2. Transfer penalty
The unexpected positive sign for in-vehicle time in some periods suggests that the effect of transfers
may have been absorbed into the in-vehicle time coefficient. To address this, an adjusted in-vehicle
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Table A.2: Estimated Parameters MNL with interaction effect

Parameter Value Rob. Std Err Rob. t-test Rob. p-value
BETA_INT_VEH_TRANS_POST_1 0.000208 0.001142 0.181738 0.855788
BETA_INT_VEH_TRANS_POST_2 0.008979 0.369694 0.024288 0.980623
BETA_INT_VEH_TRANS_POST_3 -0.000498 0.000794 -0.627144 0.530565
BETA_INT_VEH_TRANS_POST_TOTAL -0.000527 0.000576 -0.913993 0.360721
BETA_INT_VEH_TRANS_PRE -0.278837 0.279812 -0.996515 0.319000
BETA_TRANSFERS_POST_1 4.330822 1.702636 2.543598 0.010972
BETA_TRANSFERS_POST_2 1.245630 13.959036 0.089235 0.928895
BETA_TRANSFERS_POST_3 1.595732 1.604861 0.994312 0.320071
BETA_TRANSFERS_POST_TOTAL 2.283053 0.952007 2.398148 0.016478
BETA_TRANSFERS_PRE 6.302853 9.253691 0.681118 0.495797
BETA_VEH_POST_1 0.724433 0.219702 3.297343 0.000976
BETA_VEH_POST_2 -0.062851 0.707560 -0.088827 0.929219
BETA_VEH_POST_3 0.030441 0.199578 0.152526 0.878772
BETA_VEH_POST_TOTAL 0.234299 0.120195 1.949316 0.051258
BETA_VEH_PRE 0.432921 0.380031 1.139174 0.254631
BETA_WAIT_POST_1 0.030753 0.041850 0.734834 0.462440
BETA_WAIT_POST_2 -0.007315 0.055746 -0.131227 0.895595
BETA_WAIT_POST_3 -0.039767 0.035877 -1.108427 0.267678
BETA_WAIT_POST_TOTAL 0.096979 0.018115 5.353441 0.000000
BETA_WAIT_PRE 0.074348 0.024783 2.999916 0.002701

time variable was introduced, incorporating a transfer penalty to account for the disutility of making
transfers. This approach allows the model to reflect the inconvenience of transfers while avoiding the
multicollinearity issues that arise when including transfers as a separate variable. The goal was to
better capture travelers’ true preferences and improve model interpretability.

Various transfer penalty values were tested separately for the pre- and post-disruption periods, with the
corresponding final log-likelihood values presented in Table A.3.

Table A.3: Final log-likelihood values for different transfer penalties

Transfer penalty time frame 1 Transfer penalty time frame 2 Final LL
X X -2416.266
300 300 -2640.258
600 600 -2480.627
300 600 -2672.960
600 300 -2447.925
700 300 -2442.287
600 200 -2430.973
700 200 -2425.335
700 100 -2418.795
800 200 -2422.512
800 100 -2415.972
800 0 -2413.162
900 0 -2411.533
1500 0 -2408.456

While the introduction of a transfer penalty did not significantly improve the model fit in terms of log-
likelihood, it did help correct the expected negative sign for in-vehicle time, making the model more be-
haviorally plausible. Based on these results, a penalty range of 800–900 seconds (13–15 minutes) for
pre-disruption and 100–200 seconds (1.5–3 minutes) for post-disruption was selected, as this ensured
that the in-vehicle time coefficient remained negative while reflecting the perceived inconvenience of
transfers. The estimated parameters for a transfer penalty of 800 seconds (pre-disruption) and 100
seconds (post-disruption) are shown in Table A.4.
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Table A.4: Estimated Parameters with Robust Standard Errors

Parameter Value Rob. Std Err Rob. t-test Rob. p-value
BETA_VEH_POST_1 -0.011929 0.001724 -6.920923 0.000000
BETA_VEH_POST_2 0.021448 0.002317 9.258074 0.000000
BETA_VEH_POST_3 0.013837 0.002145 6.450786 0.000000
BETA_VEH_POST_TOTAL 0.004997 0.000948 5.273258 0.000000
BETA_VEH_PRE -0.004186 0.000344 -12.181111 0.000000
BETA_WAIT_POST_1 0.215022 0.015689 13.705272 0.000000
BETA_WAIT_POST_2 -0.006862 0.054128 -0.126767 0.899125
BETA_WAIT_POST_3 -0.034881 0.034631 -1.007223 0.313827
BETA_WAIT_POST_TOTAL 0.093456 0.017592 5.312464 0.000000
BETA_WAIT_PRE 0.079289 0.022605 3.507586 0.000452

As shown in the results, the in-vehicle time coefficient is now negative in most periods, except for Post-
Disruption Period 1. Further refinements, such as applying different penalties for each post-disruption
period, could potentially resolve this issue. However, determining an appropriate penalty remains chal-
lenging, as there is no clear theoretical basis for selecting an optimal value. Additionally, while the sign
of in-vehicle time improved, the wait time coefficients remain counterintuitive. This suggests that the
transfer penalty alone does not fully resolve the issue, and other unobserved factors or data inconsis-
tencies may still be influencing the model results.

A.3. MNL 2 routes
Since the routes with the same number of transfers contained dominated alternatives, a modified ap-
proach was tested in which routes with an equal number of transfers were merged into two broad
categories: routes with one transfer and routes with two transfers. This adjustment aimed to simplify
the choice set and reduce inconsistencies caused by dominated alternatives.

A.3.1. Correlation
Before re-estimating the model, we first examined whether the strong negative correlation between in-
vehicle time and number of transfers persisted after merging the routes. Figure A.1 presents correlation
heatmaps across different time periods.

The results confirm that even after merging routes, a strong negative correlation remains between
in-vehicle time and transfers.

A.3.2. MNL Results
Given the persistent correlation, we estimated a simplified Multinomial Logit (MNL) model using only
in-vehicle time and wait time as explanatory variables. The results are summarized in Tables A.5 and
A.6.

Table A.5: Estimation Report combined routes

Statistic Value
Number of estimated parameters 10
Sample size 1562
Initial log-likelihood -1082.326
Final log-likelihood -754.296
Rho-square 0.303
Rho-square-bar 0.294
Akaike Information Criterion (AIC) 1528.593
Bayesian Information Criterion (BIC) 1582.130

The model fit of this MNL model is relatively strong, with a rho-square value of 0.303, indicating rea-
sonable explanatory power despite the simplified choice set. Compared to the previous model with six
distinct routes, the wait time coefficients are no longer strongly positive. In most cases, they are either
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(a) Pre-Disruption (b) Post-Disruption Total

(c) Post-Disruption Period 1 (d) Post-Disruption Period 2

(e) Post-Disruption Period 3

Figure A.1: Correlation Heatmaps for combined routes

negative or statistically insignificant, addressing one of the key issues observed earlier.

While merging routes helped resolve some inconsistencies, the approach also introduced limitations.
By collapsing routes into just two categories, the model lost explanatory power, making it less capable
of capturing route-specific variations that may still be relevant to travelers’ decision-making. The strong
negative correlation between in-vehicle time and transfers remained present, suggesting that structural
factors in the dataset are driving these effects. Although the wait time coefficients now behave more
consistently with theoretical expectations, the trade-off in losing route-level detail raises concerns about
how well this simplified model represents actual route choice behavior.

Overall, while merging routes provided some improvements in interpretability and helped reduce dis-
tortions in coefficient estimation, it did not fully address all issues. The results suggest that additional
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Table A.6: Estimated Parameters for Combined Routes

Parameter Value Rob. Std Err Rob. t-test Rob. p-value
BETA_VEH_POST_1 0.111033 0.018844 5.892172 0.000000
BETA_VEH_POST_2 -0.247088 0.027427 -9.008924 0.000000
BETA_VEH_POST_3 -0.159024 0.024281 -6.549355 0.000000
BETA_VEH_POST_TOTAL -0.067005 0.010917 -6.137395 0.000000
BETA_VEH_PRE 0.684800 0.066580 10.285366 0.000000
BETA_WAIT_POST_1 -0.001726 0.057154 -0.030194 0.975912
BETA_WAIT_POST_2 -0.109021 0.084565 -1.289196 0.197330
BETA_WAIT_POST_3 0.056456 0.074234 0.760504 0.446953
BETA_WAIT_POST_TOTAL 0.010878 0.035602 0.305532 0.759961
BETA_WAIT_PRE 0.115290 0.076673 1.503653 0.132671

factors, may still be influencing route choice and warrant further investigation.

A.4. Path Size Logit
A Path Size Logit (PSL) model was also explored. The path size factor was determined using the
equations outlined in the methodology. These path size terms quantify the distinctiveness of routes,
penalizing routes that share a significant number of links with other alternatives. Since the goal was to
assess the degree of overlap between links across different station pairs, the first step was to calculate
the distances between stations. These distances were estimated using the station coordinates provided
in the dataset. The resulting distances between stations are presented in Tables A.7 and A.8.

Table A.7: Distance between stations routes with 1 transfer

Station 1 Station 2 Distance (km)
Foggy Bottom-GWU Farragut West 0.811
Farragut West McPherson Sq 0.721
McPherson Sq Metro Center 0.520
Metro Center Federal Triangle 0.505
Federal Triangle Smithsonian 0.636
Smithsonian L’Enfant Plaza 0.642
L’Enfant Plaza Archives 0.958
Archives Gallery Place 0.488
Gallery Place Mt Vernon Sq 0.910
Mt Vernon Sq Shaw-Howard U 0.770
Shaw-Howard U U St 0.613
U St Columbia Heights 1.390
Columbia Heights Georgia Ave-Petworth 1.168
Georgia Ave-Petworth Fort Totten 2.551
Fort Totten West Hyattsville 2.914
West Hyattsville Hyattsville Crossing 1.590
Hyattsville Crossing College Park-U of Md 2.830
College Park-U of Md Greenbelt 3.873

Based on these distances, the path size factors for overlapping links were determined. These results
are presented in Table A.9. As we can see, these values are very similar across all routes, indicating
that the degree of overlap among the different paths is fairly uniform. This suggests that no particular
route stands out as significantly more distinct or more overlapped than others within this set. The
similarity in path size factors implies that the network structure leads to comparable levels of route
sharing, meaning travelers choosing between these alternatives are exposed to similar levels of overlap
in terms of shared links. Consequently, the impact of the path size factor on route choice behavior may
be limited, as all routes are penalized to a similar extent for their shared links.

We also examined a path size factor based on overlapping stations to assess whether this approach
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Table A.8: Distance between stations routes with 2 transfers

Station 1 Station 2 Distance (km)
Foggy Bottom-GWU Farragut West 0.811
Farragut West McPherson Sq 0.721
McPherson Sq Metro Center 0.520
Metro Center Gallery Place 0.810
Gallery Place Judiciary Sq 0.480
Judiciary Sq Union Station 0.892
Union Station NoMa-Gallaudet U 0.977
NoMa-Gallaudet U Rhode Island Ave 1.677
Rhode Island Ave Brookland-CUA 1.472
Brookland-CUA Fort Totten 2.149
Fort Totten West Hyattsville 2.914
West Hyattsville Hyattsville Crossing 1.590
Hyattsville Crossing College Park-U of Md 2.830
College Park-U of Md Greenbelt 3.873

Table A.9: Path Size Factors for Overlapping Links

Route Path Size Factor
BL > GR 0.240833
OR > GR 0.240833
SV > GR 0.240833
BL > RD > GR 0.231573
OR > RD > GR 0.231573
SV > RD > GR 0.231573

might better capture route distinctiveness. The results, presented in Table A.10, show very similar
values across all routes, much like the path size factors for overlapping links. This indicates that the
extent to which routes share stations is relatively uniform, with no particular route standing out as
significantly more or less overlapped than others.

Table A.10: Path Size Factors for Overlapping Station

Route Path Size Factor
BL > GR 0.210526
OR > GR 0.210526
SV > GR 0.210526
BL > RD > GR 0.238596
OR > RD > GR 0.238596
SV > RD > GR 0.238596

Given the similarity in path size factors across routes, both for overlapping links and overlapping sta-
tions , the PSL model was ultimately not used. The lack of variation in path size factors suggests that
the distinctiveness of routes is not well captured by these measures, as all routes receive nearly iden-
tical penalties. Since the primary purpose of incorporating a path size factor is to account for route
overlap and correct for correlation among alternatives, its effectiveness is limited when all routes are
penalized to a similar extent. As a result, adding a path size factor would not meaningfully improve
model estimation or provide additional behavioral insights.
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Abstract—Public transport disruptions can significantly affect
passengers’ travel behavior, yet little is known about how route
choice preferences evolve after a disruption ends. This study
investigates how passengers’ route choices change in response to
a planned disruption, using Automated Fare Collection (AFC)
data from the Washington DC metro system. Unlike previous
research that often relies on stated preference surveys or focuses
only on the disruption period, this study analyzes several months
of pre- and post-disruption behavior to assess whether changes
in preferences persist over time.

Descriptive analysis reveals that although travel times and
wait times remained relatively stable, passengers shifted from
preferring direct routes to favoring routes with more transfers
but shorter in-vehicle times after the disruption. Discrete choice
models, including Multinomial Logit and Mixed Logit models,
were estimated to explore these shifts, but the results showed
unexpected coefficient signs, likely due to strong multicollinearity
between travel time and transfers, and the presence of dominated
alternatives. While the Mixed Logit model improved the model
fit slightly, practical interpretability remained limited.

The findings suggest that disruptions can lead to lasting
behavioral changes, with passengers reassessing their travel
options rather than returning to previous habits. Although AFC
data is valuable for detecting such shifts, it alone is insuffi-
cient to fully capture the factors driving route choice behavior,
highlighting the need for complementary perception-based data
in future research. From a policy perspective, understanding
these behavioral adaptations can help transit agencies design
better service recovery strategies that sustain ridership after
disruptions, supporting broader goals of promoting sustainable
urban mobility.

I. INTRODUCTION

As cities around the world struggle with increasing traffic
congestion and rising emissions, public transport plays a
critical role in ensuring sustainable urban mobility (Lako and
Gjevori, 2023). Efficient and reliable transit systems reduce
dependence on private vehicles, which in turn helps to reduce
overcrowding and lower carbon emissions. However, main-
taining public transport as an attractive alternative to driving
requires ensuring high levels of passenger satisfaction with
service quality (Tuan et al., 2022).

A key factor influencing passenger satisfaction is reliability,
as unpredictable service can discourage people from using
public transport regularly (Soza-Parra et al., 2019). One of the
main threats to reliability are disruptions, which can lead to
increased travel times, missed connections, and overcrowding.
These disruptions not only affect overall service quality but
also influence passengers’ transit route choices, forcing them

to adapt their travel behavior in response to service changes
due to the disruption.

Research has already been conducted on passengers’ public
transport route choices during disruptions, often using discrete
choice models (Dixit et al., 2023). These models help reveal
transit riders’ preferences by assessing the relative importance
of various travel attributes, offering policymakers valuable
insights into how passengers make route choices in response
to disruptions.

Many earlier studies on public transport route choice anal-
ysis were based on stated preference (SP) data (Shires et al.,
2019, Li et al., 2020, Zhu et al., 2017), where passengers
respond to hypothetical situations. However, SP surveys may
not fully capture actual passenger behavior, potentially leading
to biased estimates (Mo et al., 2022a). Later studies therefore
turned to revealed preference (RP) data from travel surveys to
estimate actual route preferences (Marra and Corman, 2023).
Although RP surveys offer more accurate data, they are often
costly and limited in sample size (Ingvardson et al., 2024).
With the rise of large-scale disaggregate datasets, such as
automatic fare collection (AFC) data, RP data can now be
collected more efficiently, enabling a more accurate and large
scale analysis of route choice behavior (Berggren et al., 2022).

AFC data has already been used in analyzing public trans-
port users’ choices during disruptions. For instance, Marra and
Corman (Marra and Corman, 2023) used AFC data to examine
how network disturbances affect passengers’ route choices,
while Eltved et al. (Eltved et al., 2021) analyzed the impacts
of long-term service disruptions on travel behavior using smart
card data. Whilst AFC data has been used to analyze passenger
behavior during and after disruptions, it has rarely been applied
to study route choice preferences specifically in the context
of disruptions. Most existing studies rely on a combination
of RP and SP surveys (Rahimi et al., 2020, Li et al., 2020),
making it unclear whether AFC data alone can sufficiently
capture route choice preferences. One exception is the study
by Mo et al. (Mo et al., 2022b), which uses AFC data to
examine mode choice preferences during disruptions rather
than route choices. This means there is a gap in studies using
only AFC data to look at route choice preferences in response
to a disruption.

Another gap in the literature is that most research focuses
on route choice during the disruption itself, rather than what
happens after the disruption ends. While some studies, such



as Eltved et al. (Eltved et al., 2021), have examined route
choice before and after a disruption, their dataset only covered
a period of three weeks before and after, making it difficult to
determine whether changes in preferences persist over time.

This study aims to fill these gaps by extending the analysis
period from weeks to several months before and after a
disruption, allowing for a better understanding of whether
changes in route choice preferences persist over time. Ad-
ditionally, this research relies solely on AFC data to analyze
changes in route choice preferences, a methodology that has
not yet been applied to the Washington DC metro system.
These contributions provide valuable scientific insights into
how public transport users adapt to planned disruptions over
extended periods and demonstrate the feasibility of using AFC
data alone to infer route choice preferences.

Beyond its academic relevance, this research also has im-
portant practical implications. The Washington Metropolitan
Area Transit Authority (WMATA), a key stakeholder in this
study, plays a crucial role in promoting public transport as a
sustainable alternative to private vehicles. Unlike unexpected
disruptions, planned disruptions provide transit agencies with
the opportunity to proactively manage service changes, as they
can adjust mitigation strategies, improve passenger commu-
nication, and even modify disruption plans in response to
anticipated behavioral shifts. By understanding how passenger
preferences evolve during and after planned disruptions, this
research can help refine policies, optimize service planning,
and develop strategies that better retain and attract riders.
These insights ultimately support the government’s broader
sustainability goals, such as reducing congestion and emissions
by increasing public transport usage.

II. RESEARCH OBJECTIVE AND QUESTIONS

Following the gaps in literature the objective of this re-
search is to analyze transit users’ route choice preferences in
response to planned disruptions, using smart card data from
the Washington DC metro network. Based on this objective
the following research question was constructed.

How do public transport passengers’ route choice pref-
erences change in response to a planned public transport
disruption?

To answer this main questions the following sub-questions
need to be answered.

• Which disruptions can be used to analyze changes in
route choice preferences?

• What are the main factors influencing passengers’ route
choices in response to planned public transport disrup-
tions?

• How do route choice preferences evolve over time during
the post-disruption period?

• How suitable is revealed preference data for analyzing
changes in route choice preferences in response to a
planned public transport disruption?

As cities around the world struggle with increasing traffic
congestion and rising emissions, public transport plays a
critical role in ensuring sustainable urban mobility (Lako and

Gjevori, 2023). Efficient and reliable transit systems reduce
dependence on private vehicles, which in turn helps to reduce
overcrowding and lower carbon emissions. However, main-
taining public transport as an attractive alternative to driving
requires ensuring high levels of passenger satisfaction with
service quality (Tuan et al., 2022).

A key factor influencing passenger satisfaction is reliability,
as unpredictable service can discourage people from using
public transport regularly (Soza-Parra et al., 2019). One of the
main threats to reliability are disruptions, which can lead to
increased travel times, missed connections, and overcrowding.
These disruptions not only affect overall service quality but
also influence passengers’ transit route choices, forcing them
to adapt their travel behavior in response to service changes
due to the disruption.

Research has already been conducted on passengers’ public
transport route choices during disruptions, often using discrete
choice models (Dixit et al., 2023). These models help reveal
transit riders’ preferences by assessing the relative importance
of various travel attributes, offering policymakers valuable
insights into how passengers make route choices in response
to disruptions.

Many earlier studies on public transport route choice anal-
ysis were based on stated preference (SP) data (Shires et al.,
2019, Li et al., 2020, Zhu et al., 2017), where passengers
respond to hypothetical situations. However, SP surveys may
not fully capture actual passenger behavior, potentially leading
to biased estimates (Mo et al., 2022a). Later studies therefore
turned to revealed preference (RP) data from travel surveys to
estimate actual route choice preferences (Marra and Corman,
2023). Although RP surveys offer more accurate data, they
are often costly and limited in sample size (Ingvardson et al.,
2024). With the rise of large-scale disaggregate datasets, such
as automatic fare collection (AFC) data, RP data can now be
collected more efficiently, enabling a more accurate and large
scale analysis of route choice behavior (Berggren et al., 2022).

AFC data has already been used in analyzing public trans-
port users’ choices during disruptions. For instance, Marra and
Corman (Marra and Corman, 2023) used AFC data to examine
how network disturbances affect passengers’ route choices,
while Eltved et al. (Eltved et al., 2021) analyzed the impacts
of long-term service disruptions on travel behavior using smart
card data. Whilst AFC data has been used to analyze passenger
behavior during and after disruptions, it has rarely been applied
to study route choice preferences specifically in the context of
disruptions. Most existing studies rely on a combination of RP
and SP surveys (Rahimi et al., 2020, Li et al., 2020), making it
unclear whether AFC data alone can sufficiently capture route
preferences. One exception is the study by Mo et al. (Mo
et al., 2022b), which uses AFC data to examine mode choice
preferences during disruptions rather than route choices. This
means there is a gap in studies using only AFC data to look
at route preferences during and after a disruption. Next to that
there are also very little studies that only use AFC data to
reveal preferences.

Another gap in the literature is that most research focuses



on route choice during the disruption itself, rather than what
happens after the disruption ends. While some studies, such
as Eltved et al. (Eltved et al., 2021), have examined route
choice before and after a disruption, their dataset only covered
a period of three weeks before and after, making it difficult to
determine whether changes in preferences persist over time.

This study aims to fill these gaps by extending the analysis
period from weeks to several months before and after a
disruption, allowing for a better understanding of whether
changes in route preferences persist over time. Additionally,
this research relies solely on AFC data to analyze changes in
route preferences, a methodology that has not yet been applied
to the Washington DC metro system. These contributions
provide valuable scientific insights into how public transport
users adapt to planned disruptions over extended periods and
demonstrate the feasibility of using AFC data alone to infer
route choice preferences.

Beyond its academic relevance, this research also has im-
portant practical implications. The Washington Metropolitan
Area Transit Authority (WMATA), a key stakeholder in this
study, plays a crucial role in promoting public transport as a
sustainable alternative to private vehicles. Unlike unexpected
disruptions, planned disruptions provide transit agencies with
the opportunity to proactively manage service changes, as they
can adjust

III. LITERATURE REVIEW

Public transport disruptions, whether planned (e.g., sched-
uled maintenance) or unplanned (e.g., technical failures, ac-
cidents), affect passenger travel behavior in significant ways.
Traditionally, studies on disruptions have focused on opera-
tional performance and minimizing service delays, but more
recent research has shifted towards understanding passenger
responses, particularly changes in route and mode choices
(Marra and Corman, 2023, Eltved et al., 2021). Many studies
have examined passenger decision-making during disruptions,
but relatively few have explored how passengers adjust their
behavior after the disruption ends (Wang et al., 2024).

The type of disruption influences how passengers respond.
Unplanned disruptions typically cause more uncertainty, forc-
ing passengers to make quick decisions with limited informa-
tion (Li et al., 2020, Mo et al., 2022b). In contrast, planned
disruptions allow passengers to anticipate changes in advance,
but they often last longer, meaning the cumulative impact can
be greater (Yap and Cats, 2021a). While several studies have
examined planned disruptions (Eltved et al., 2021, Zhu et al.,
2017), few have investigated whether passengers return to their
pre-disruption travel habits or adopt new long-term behaviors.

A. Data Sources in Disruption Studies

Research on public transport disruptions relies on various
data sources, each with strengths and limitations. Stated Pref-
erence (SP) surveys (Shires et al., 2019, Li et al., 2020)
are commonly used to understand hypothetical choices, but
responses may not always reflect actual behavior. Revealed
Preference (RP) surveys (Marra and Corman, 2023) collect

data on real travel choices, reducing hypothetical bias, but
these surveys tend to be expensive and limited in sample size
(Ingvardson et al., 2024).

With advances in data collection, Automatic Fare Collec-
tion (AFC) data (e.g., smart card records) has become an
increasingly valuable tool for studying passenger behavior
in disruptions (Yap et al., 2018). AFC data captures large-
scale travel patterns, allowing for detailed analysis of how
passengers adapt their route choices in real-world conditions.
However, one major limitation of AFC data is the lack of
demographic and perception-based information—it does not
capture factors like comfort, safety concerns, or personal
preferences (Mo et al., 2022a). As a result, AFC-based studies
may overlook some of the subjective factors influencing route
choice.

Despite its limitations, AFC data is particularly useful for
disruption studies because it provides detailed information on
how passengers adapt their behavior over time, which is crucial
when examining post-disruption effects. However, while AFC
data has been widely used to study mode choice and demand
forecasting, relatively few studies have applied it to route
choice analysis after disruptions (Mo et al., 2022b).

B. Study Methods in Disruption Research

Several methodological approaches have been used to study
passenger behavior during disruptions. Data analysis methods
(e.g., regression, clustering) have been applied to identify
general trends and categorize different passenger responses
(Liu et al., 2021, Nazem et al., 2018). Some studies use
simulation models to predict how disruptions impact ridership
(Deng et al., 2022, Wang et al., 2024), while others apply
machine learning to forecast disruption impacts or passenger
demand (Yap and Cats, 2022, Yap and Cats, 2021a).

One of the most widely used approaches for analyzing
individual passenger behavior is discrete choice modeling.
Multinomial Logit (MNL) models have been commonly used
to estimate how passengers weigh different travel attributes
when choosing routes (Marra and Corman, 2023, Shires et al.,
2019). However, MNL models assume that all passengers
have identical preferences, which may not always be realistic.
Mixed Logit (ML) models (Yap et al., 2020) improve on this
by allowing for individual heterogeneity. Another approach
is the Path Size Logit (PSL) model, which accounts for
route overlap by penalizing alternatives that share links or
stations(Yap and Cats, 2021b).

C. Research Gaps and Contribution

Despite growing interest in passenger behavior during dis-
ruptions, several key gaps remain. Most studies focus on
passenger responses during disruptions, with limited research
on how route choice preferences evolve after disruptions
(Eltved et al., 2021). It remains unclear whether passengers
revert to their pre-disruption route preferences or if they adopt
new, lasting travel behaviors.

Additionally, while Automatic Fare Collection (AFC) data
has been widely used in disruption studies, it has rarely been



applied to analyze route choice preferences after disruptions.
Most AFC-based research focuses on mode choice or overall
demand changes, rather than understanding how passengers
adjust their specific route preferences over time (Mo et al.,
2022b). This leaves an important gap in understanding long-
term shifts in route selection following planned disruptions.

Furthermore, limited research has been conducted on the
Washington, D.C. metro system in the context of disruptions.
While AFC data is available for this network, most studies
on transit disruptions focus on European or Asian systems.
The only known study using AFC data for Washington,
D.C. analyzed delay prediction, rather than how disruptions
influence route choice preferences (Yap and Cats, 2021a).

To address these gaps, this study examines route choice
preferences before and after a planned disruption using AFC
data from the Washington, D.C. metro system. Unlike previous
studies that primarily rely on RP and SP surveys, this research
investigates whether AFC data alone can provide meaningful
insights into route choice preferences. By analyzing an ex-
tended post-disruption period, this study offers a deeper un-
derstanding of whether travelers revert to pre-disruption route
preferences or if their choices remain permanently altered
following planned disruptions.

IV. METHODOLOGY AND CASE STUDY

This study follows a structured approach to identifying and
analyzing planned disruptions in the Washington D.C. metro.
To ensure meaningful analysis, disruptions must significantly
impact passenger behavior and meet specific criteria before
being selected for further study. Given the scale and impor-
tance of the Washington D.C. metro network, disruptions in
this system provide an opportunity to examine how passengers
adjust their route choices in response to disruptions.

The Washington D.C. metro, operated by the Washington
Metropolitan Area Transit Authority (WMATA), serves over
600,000 passengers daily and is one of the busiest metro
networks in the United States. The system consists of six
color-coded lines—Red, Orange, Silver, Blue, Yellow, and
Green—spanning 98 stations and more than 129 miles of track
(Washington Metropolitan Area Transit Authority, 2024). A
schematic of the network can be found in 1 Given its extensive
network and high ridership, analyzing route choice behavior
in response to disruptions provides valuable insights for both
academic research and transit planning.

To conduct this analysis, the study utilizes automated fare
collection (AFC) data provided by WMATA through the Smart
Public Transport Lab at TU Delft. The dataset covers the
period from August 2019 to December 2022, capturing vari-
ous operational conditions, including normal service, planned
maintenance, and disruptions. AFC data records individual
passenger journeys, including tap-in and tap-out times, al-
lowing for a detailed examination of how travelers adapt to
disruptions. By systematically selecting and analyzing these
disruptions, this methodology and case study allow for the
assessment of how passengers’ route preferences change after
a disruption.

A. Disruption Identification

To ensure that selected disruptions provide meaningful
insights into passenger behavior, the following criteria are
applied:

• The disruption should occur both on weekdays and week-
ends.

• The disruption should last several days in a station or a
set of adjacent stations.

• There must be at least one month prior to the disruption
as a pre-disruption period, and a minimum of three
months following the disruption for post-disruption anal-
ysis.

• There should be no other disruptions lasting more than
several hours in the affected area during both the pre-
and post-disruption periods.

• There should be alternative route options available dur-
ing the disruption.

Each criterion ensures that the disruption has a measurable
impact on passenger behavior and that changes in route choice
can be attributed specifically to the disruption itself.

The requirement for a disruption to span both weekdays
and weekends ensures that the analysis captures different travel
patterns, as weekday travel is typically dominated by commut-
ing behavior, while weekends often involve more discretionary
trips. Additionally, focusing on disruptions lasting several days
provides sufficient data to observe behavioral adjustments
and allows passengers time to settle into new route choices.
A clearly defined pre- and post-disruption period ensures a
robust comparison of travel behavior before and after the
disruption. The exclusion of overlapping disruptions ensures
that observed behavioral changes are not influenced by other
service interruptions. Finally, the availability of alternative
routes ensures that passengers have viable choices, making
the study of route preferences meaningful.

The selection process begins by identifying disruptions
that meet the established criteria. This is done by analyzing
the planned disruptions file, which contains details such as
the start date, affected stations, and a description of each
disruption. To filter for disruptions lasting multiple days,
entries containing the word “Thru” in the message column
are selected. These disruptions are then further examined to
ensure they meet all criteria. After applying this process,
an initial selection of 15 disruptions was made. These were
further screened to confirm they occurred on both weekdays
and weekends, had a clearly defined pre- and post-disruption
period, and included viable alternative routes. This resulted in
a final selection of four disruptions that met all criteria. These
disruptions can be found in Table I.

Since all disruptions impacted the same section of the
Green and Red Lines, they were combined into a single,
continuous disruption lasting from June 21 to July 25, 2020.
This approach provided a more comprehensive view of how
passengers adapted their routes over an extended period. The
disruption, caused by track work and platform repairs, offered



Fig. 1. Washington DC Metro Network

TABLE I
FINAL DISRUPTIONS

Date Line Affected Stations
21/06/2020 -
27/06/2020 Green Between L’Enfant Plaza and

Shaw Howard University
28/06/2020 -
02/07/2020 Green Between Mt. Vernon Square and

U street
06/07/2020 -
18/07/2020 Green Between U street and

Fort Totten
19/07/2020 -
25/07/2020 Red Between Judiciary Square and

Rhode Island Avenue

an opportunity to analyze passenger behavior after planned
disruptions.

B. Selection of Pre- and Post-Disruption Periods

Defining pre- and post-disruption periods is essential to ana-
lyze changes in passenger behavior while minimizing external
influences.

The pre-disruption period serves as a baseline for typical
travel behavior. A period of one to two months is chosen
to ensure stability in observed patterns while accounting for
variations in daily and weekly travel. For this case study, April
21, 2020 – June 21, 2020 is selected, as no major disruptions
occurred on the affected metro lines during this time.

To capture both short-term adjustments and longer-term
behavioral changes, a three- to five-month post-disruption

period is preferred. However, due to additional disruptions
affecting the Green Line from October 31, 2020 – November
22, 2020, the post-disruption period is limited to three months
to avoid interference.

To examine how passenger behavior evolves over time,
the post-disruption period is further divided into three one-
month intervals. This allows for a more detailed assessment of
whether passengers immediately revert to pre-disruption travel
patterns or if changes persist over time. Table II summarizes
the final pre- and post-disruption periods.

TABLE II
PRE- AND POST-DISRUPTION PERIODS

Period Start Date End Date Duration
Pre-disruption 21/04/2020 21/06/2020 2 months
Post-disruption total 25/07/2020 25/10/2020 3 months
Post-disruption 1 25/07/2020 25/08/2020 1 month
Post-disruption 2 26/08/2020 25/09/2020 1 month
Post-disruption 3 26/09/2020 25/10/2020 1 month

This structured selection ensures a clear comparison of pas-
senger behavior before and after the disruption while allowing
for an in-depth analysis of behavioral adaptation over time.

C. Selection of Affected OD Pair

The selection of the affected Origin-Destination (OD) pair
is a crucial step in understanding how disruptions influence
passenger route choices. This step ensures that the chosen



OD pair provides a meaningful basis for analyzing how
passengers adjust their travel behavior when their usual routes
are affected. The OD pair must have multiple viable routes, at
least one of which is impacted by the disruption, and exhibit
variation in the number of transfers required. The process of
identifying the affected OD pair follows these steps:

• Identification of all OD pairs: All possible OD pairs in
the network are first identified. Each OD pair represents
a journey from a specific origin station to a destination
station.

• Identification of routes for each OD pair: The next
step involves mapping out the different routes available
for each OD pair, including both direct routes and those
involving transfers between lines.

• Selection of OD pairs with multiple route options: OD
pairs with only a single route are excluded, as they do
not allow for an analysis of route choice behavior. Only
OD pairs with multiple viable routes are retained.

• Selection of OD pairs with transfer variability: OD
pairs where different routes involve a varying number
of transfers are prioritized. This ensures the dataset in-
cludes passengers who must decide between direct routes
and those requiring transfers, making the analysis more
meaningful.

• Final OD pair selection: From the remaining candidates,
the OD pair with the highest number of passenger trips
over the disrupted section is chosen, ensuring sufficient
data for robust statistical analysis.

Applying this methodology to the Washington D.C. Metro,
over 4,000 OD pairs were initially identified. After filtering for
OD pairs with multiple route options and transfer variability,
the dataset was reduced to 169 OD pairs. The selection was
further refined to OD pairs where at least one route passes
through the disrupted section on the Green Line between
Gallery Place and Fort Totten.

Ordering the remaining OD pairs by passenger volume
revealed that the first two candidates did not exhibit mean-
ingful route variation, and the third included an incorrectly
inferred route. The fourth OD pair, between Foggy Bottom
and Greenbelt, was found to meet all criteria, offering multiple
viable routes with different numbers of transfers. Thus, this
OD pair was selected for further analysis.

After selecting the OD pair, one adjustment was made: all
instances of the Yellow Line (YL) were reassigned to the
Green Line (GR). This decision was based on the fact that
the Yellow Line does not serve Greenbelt directly, and using it
would require an impractical 8-mile walk to Greenbelt station.
Changing YL into GR results in the following six realistic
routes between Foggy Bottom and Greenbelt, which will be
used throughout the rest of this study:

• Route 1: BL → GR
• Route 2: OR → GR
• Route 3: SV → GR
• Route 4: OR → RD → GR
• Route 5: BL → RD → GR

• Route 6: SV → RD → GR

This selection ensures a well-balanced dataset for analyzing
how passengers respond to disruptions and how route choices
evolve over time.

D. Attribute Identification

To generate the choice set, relevant attributes must first
be identified. Literature indicates that time and cost are key
factors influencing public transport route choice (Nielsen et al.,
2021, Jánošı́ková et al., 2014). However, the inclusion of
attributes in this study is constrained by data availability.

Based on the WMATA dataset, the following attributes are
selected for the discrete choice models:

• Veh sec: Total in-vehicle time (seconds).
• Wait sec: Cumulative platform wait time (seconds).
• Transfers: Number of transfers inferred from the route

taken.

Other attributes were considered but ultimately excluded.
For instance, Fare was not selected due to minimal variation
between routes, and Reliability was excluded as the delay data
contained many inconsistencies. Given these limitations, the
selected attributes provide the most reliable basis for analyzing
route choice behavior.

E. Choice Set Generation

The choice set defines the available route alternatives for
a given Origin-Destination (OD) pair. In this study, separate
choice sets are constructed for the pre-disruption and post-
disruption periods to assess changes in passenger route pref-
erences. A balance is maintained between including realistic
alternatives and avoiding excessively large choice sets that
could distort model estimates.

To ensure accuracy, the dataset is first filtered and cleaned,
removing invalid entries such as incomplete records, unreal-
istic journey durations, and duplicate transactions. The final
dataset consists of metro trips with complete tap-in and tap-
out data, focusing on passengers present in both time periods
to allow for direct comparison. Observed route choices from
smart card data serve as the foundation for constructing the
choice set. To maintain realism, only routes chosen at least
1% of the time are included, and non-chosen alternatives are
derived based on historically observed travel conditions rather
than hypothetical assumptions.

Route attributes such as travel time, wait time, and the
number of transfers are assigned based on historical data for
specific time periods to reflect variations in travel conditions.
The following time frames are used: morning peak (6 AM –
9 AM), midday (10 AM – 3 PM), evening rush (4 PM – 7
PM), and evening (8 PM – 12 AM). If data is unavailable for
a given time frame, values are assigned using the closest avail-
able period to ensure realistic estimates. This structured ap-
proach ensures that the choice set accurately reflects passenger
decision-making conditions while maintaining computational
feasibility.



F. Estimate Discrete Choice model

To analyze passenger route choice behavior, this study
employs discrete choice models, which estimate the proba-
bility of selecting a route based on its attributes. The models
assume that passengers choose the alternative with the highest
perceived utility, which consists of an observed component
(based on route attributes like travel time and number of
transfers) and an unobserved random component.

Given the complexity of route choice behavior and the need
to account for different sources of variation, three models are
estimated and compared: the Multinomial Logit (MNL) model,
the Mixed Logit (ML) model with panel data, and the Path
Size Logit (PSL) model.

The MNL model serves as a baseline and assumes that
all passengers have identical preferences and that choices are
independent of irrelevant alternatives (IIA). The ML model
relaxes these assumptions by allowing individual-specific pref-
erence variation, capturing differences in how passengers value
travel time and transfers. The PSL model further improves
route choice estimation by correcting for the correlation be-
tween overlapping routes, introducing a path size term that
penalizes highly similar alternatives.

To compare model performance, standard goodness-of-fit
measures are used, including log-likelihood, Rho-square, and
information criteria such as AIC and BIC. The final model is
selected based on its ability to balance explanatory power and
complexity while providing the most realistic representation
of passenger route choice behavior.

V. RESULTS

This section examines the impact of the disruption on route
choice behavior by analyzing key travel attributes and shifts
in route choices.

A. Route choice adjustments

The disruption led to a noticeable redistribution of pas-
sengers across routes. Figure 2 presents the total trip counts
per route across different periods, highlighting changes in
ridership patterns.

Before the disruption, the most frequently used routes were
BL → GR and OR → GR, while multi-transfer routes such
as BL → RD → GR, SV → RD → GR, and OR → RD →
GR had lower ridership. However, after the disruption, there
was a substantial increase in the use of transfer-heavy routes.
This indicates that passengers adjusted their route choices
in response to the disruption, potentially due to disruptions
affecting their usual travel patterns.

Despite this shift, travel attributes such as travel time
and wait time remained relatively stable across periods. The
disruption did not significantly alter the travel conditions
on the alternative routes. However, passenger route choices
still changed, suggesting that the disruption influenced how
passengers perceived these attributes rather than the attributes
themselves. This makes it particularly interesting to estimate
a discrete choice model, as it allows us to examine whether
the relative importance of travel time, wait time, and transfers

shifted after the disruption. By analyzing changes in perception
rather than just attribute values, we can better understand how
disruptions shape passenger decision-making.

B. MNL results

Before estimating the MNL model, correlation analysis
revealed a strong negative relationship between in-vehicle
time and the number of transfers, suggesting that longer
travel times are associated with fewer transfers. Due to this
correlation, only in-vehicle time was included in the model,
as it exhibits greater variation across trips and is a more
informative predictor of route choice.

The MNL model was estimated using in-vehicle time and
wait time as explanatory variables. The results, which can be
found in table III and IV, indicate that the model provides
a better fit than a random choice model, as evidenced by an
improvement in log-likelihood and a Rho-square (ρ2) value of
0.115. However, several estimated parameters exhibit counter-
intuitive signs. Specifically, the coefficient for in-vehicle time
is positive in some periods, which contradicts expectations that
passengers prefer shorter travel times. This is likely due to the
omitted transfer variable, as its correlation with in-vehicle time
may have led to a misrepresentation of effects. Similarly, wait
time coefficients were found to be unexpectedly positive in
certain cases, suggesting potential inconsistencies in the choice
set structure.

Further examination of the constructed choice set revealed
dominated alternatives, meaning that some frequently chosen
routes performed worse across all attributes compared to
other available options. This suggests that observed route
choices may be influenced by unobserved factors, distorting
parameter estimation. To address this, an alternative model was
tested where routes with the same number of transfers were
merged. While this approach mitigated some inconsistencies, it
limited the ability to capture more nuanced variations in route
preferences, highlighting the need for a more sophisticated
modeling approach.

C. Mixed Logit Model

Given the panel nature of the dataset, a Mixed Logit (ML)
model was estimated to account for preference heterogeneity
among travelers. Unlike the MNL model, which assumes
homogeneous preferences across individuals, the ML model
introduces random coefficients to capture individual-specific
variation. This allows for a more flexible representation of
route choice behavior, as different travelers may perceive in-
vehicle time and wait time differently.

The model results, summarized in Table V, show that the
final log-likelihood improved to -2393.276, compared to -
2416.265 in the MNL model (see Table III). This results in a
Rho-square (ρ2) value of 0.141, which is higher than in the
MNL model (0.114), indicating a better model fit. The AIC
value also improved slightly (4826.552 vs. 4852.530 in the
MNL model), although the BIC value increased (4933.832 vs.
4906.163), suggesting that the added model complexity does
not necessarily justify the additional parameters.



Fig. 2. Trip counts per route

TABLE III
MODEL ESTIMATION RESULTS MNL

Statistic Value
Number of estimated parameters 10
Sample size 1577
Null log-likelihood -2728.461
Final log-likelihood -2416.265
Rho-square 0.115
Rho-square-bar 0.111
Akaike Information Criterion (AIC) 4852.530
Bayesian Information Criterion (BIC) 4906.163

TABLE IV
ESTIMATED PARAMETERS MNL

Parameter Value Rob. Std Err Rob. t-test Rob. p-value
BETA VEH POST 1 0.170982 0.019461 8.785678 0.000000
BETA VEH POST 2 -0.246755 0.026767 -9.218534 0.000000
BETA VEH POST 3 -0.171042 0.026250 -6.515931 0.000000
BETA VEH POST TOTAL -0.054247 0.011350 -4.779524 0.000002
BETA VEH PRE 0.601684 0.045771 13.145656 0.000000
BETA WAIT POST 1 0.051765 0.038428 1.347084 0.177953
BETA WAIT POST 2 -0.009663 0.053035 -0.182209 0.855419
BETA WAIT POST 3 -0.041786 0.035506 -1.176862 0.239251
BETA WAIT POST TOTAL 0.093753 0.017437 5.376732 0.000000
BETA WAIT PRE 0.043243 0.021738 1.989264 0.046672

TABLE V
ESTIMATION REPORT MIXED LOGIT

Statistic Value
Number of estimated parameters 20
Number of respondents 42
Sample size 1577
Initial log-likelihood -2784.947
Final log-likelihood -2393.276
Rho-square (initial model) 0.141
Rho-square-bar (initial model) 0.133
Akaike Information Criterion (AIC) 4826.552
Bayesian Information Criterion (BIC) 4933.832

The estimated parameters, presented in Table VI,
show inconsistencies in in-vehicle time coefficients.
BETA VEH PRE is unexpectedly positive, while post-
disruption values vary, with BETA VEH POST 2 aligning

with expectations. Wait time coefficients are mostly
insignificant, contrasting with the MNL model results
where some were unexpectedly positive.

The sigma values suggest limited variation in individual



TABLE VI
ESTIMATED PARAMETERS MIXED LOGIT

Parameter Value Std Err z-test p-value
VEH SEC PRE 0.670900 0.125000 5.386000 0.000000
VEH SEC POST TOTAL -0.025700 0.076000 -0.340000 0.734000
VEH SEC POST 1 0.201400 0.088000 2.284000 0.022000
VEH SEC POST 2 -0.272600 0.146000 -1.862000 0.063000
VEH SEC POST 3 -0.161400 0.087000 -1.859000 0.063000
WAIT SEC PRE 0.107100 0.080000 1.345000 0.179000
WAIT SEC POST TOTAL 0.163200 0.221000 0.739000 0.460000
WAIT SEC POST 1 0.140800 0.257000 0.547000 0.584000
WAIT SEC POST 2 0.009600 0.184000 0.052000 0.958000
WAIT SEC POST 3 -0.053000 0.233000 -0.228000 0.820000
Sigma VEH SEC PRE -0.067700 0.326000 -0.207000 0.836000
Sigma VEH SEC POST TOTAL 0.073600 0.043000 1.699000 0.089000
Sigma VEH SEC POST 1 0.110700 0.093000 1.195000 0.232000
Sigma VEH SEC POST 2 -0.151200 0.171000 -0.883000 0.377000
Sigma VEH SEC POST 3 0.125600 0.136000 0.923000 0.356000
Sigma WAIT SEC PRE 0.146200 0.179000 0.819000 0.413000
Sigma WAIT SEC POST TOTAL -0.135200 0.120000 -1.124000 0.261000
Sigma WAIT SEC POST 1 0.254600 0.266000 0.959000 0.338000
Sigma WAIT SEC POST 2 -0.019500 0.537000 -0.036000 0.971000
Sigma WAIT SEC POST 3 0.025300 0.350000 0.072000 0.942000

preferences. None of the sigma values are significant, indi-
cating that travelers perceive travel attributes similarly.

To formally compare the MNL and ML models, a Likeli-
hood Ratio (LR) test was conducted, confirming that the ML
model provides a statistically significant improvement over
the MNL model. However, while the ML model improves
log-likelihood, the practical benefits remain limited. The AIC
and BIC values suggest only marginal gains, and unexpected
coefficient signs persist. The estimated sigma values, which
capture preference heterogeneity, indicate that none of the
attributes show significant variation among individuals. This
suggests that most attributes are viewed consistently across
the sample. This limited heterogeneity, combined with the
persistence of counterintuitive coefficient signs, suggests that
the added complexity of the ML model does not yield mean-
ingful insights over the simpler MNL model. Given the small
improvements in fit and the continued presence of estimation
issues, the ML model does not appear to justify its additional
complexity.

D. Path Size Logit

Given the overlapping nature of routes in the dataset, a
Path Size Logit (PSL) model was considered to correct for
correlation among similar alternatives. However, calculations
of the path size factors based on overlapping links and stations
revealed nearly identical values across all routes. This suggests
that the measure does not effectively differentiate between
alternatives, making it unlikely to add value to the model.
As a result, the PSL model was not estimated.

E. Summary

The results indicate that while the ML model offers a
statistically improved fit over the MNL model, it does not
substantially enhance explanatory power. The persistence of
counterintuitive coefficient signs suggests that additional unob-
served factors influence passenger route choice. While merging

dominated alternatives improved model consistency, it also
reduced the ability to capture variations in route preferences.
The findings highlight the complexity of modeling route
choices in disrupted transit networks and suggest the need
for further refinements, potentially through alternative model
specifications or additional data sources.

VI. DISCUSSION AND CONCLUSION

This study examined how public transport users’ route
choice preferences changed in response to a planned disrup-
tion, using AFC data from the Washington DC metro system. It
addressed gaps in the literature by investigating whether route
preferences shifted after a disruption, whether these changes
persisted over time, and whether AFC data alone is sufficient
to capture such behavior.

The descriptive analysis showed that although measured
travel times and wait times remained relatively stable across
different periods, passengers’ route choices changed signifi-
cantly. Before the disruption, travelers tended to prefer direct
routes, even when these had longer travel times. After the
disruption, however, passengers increasingly chose routes with
more transfers but shorter in-vehicle times. This shift suggests
a change in preferences, with travelers placing greater im-
portance on minimizing in-vehicle time and demonstrating a
greater willingness to accept transfers.

Discrete choice models were estimated to further explore
these changes, but the results revealed unexpected findings:
some models produced positive coefficients for travel time
and wait time, contrary to theoretical expectations. These
counterintuitive results are likely due to the strong negative
correlation between in-vehicle time and the number of trans-
fers, which made it difficult to isolate their individual effects.
In addition, the presence of dominated alternatives—routes
that were objectively worse across all measured attributes yet
still chosen by passengers—indicates that unobserved factors
also influenced decision-making.



Beyond the basic Multinomial Logit (MNL) model, a Mixed
Logit (ML) model was estimated to account for preference het-
erogeneity. While the ML model provided a statistically better
fit, practical improvements were limited, and the problem of
unexpected coefficient signs persisted. Similarly, a Path Size
Logit (PSL) model was estimated to account for route overlap,
but the path size factors were nearly identical across routes,
indicating that overlap did not meaningfully differentiate the
alternatives.

Despite these modeling challenges, the broader patterns
observed provide valuable insights. A lasting shift in route
choice behavior was evident following the disruption, even if
the underlying drivers of this change were difficult to pinpoint
precisely.

Reflecting on the research questions, several conclusions
can be drawn. Identifying suitable disruptions for analysis
proved challenging, as many disruptions were too short, lacked
viable alternatives, or overlapped with other events. Only one
disruption provided the necessary conditions for clear analysis.
Regarding the factors influencing route choice, the study
focused on in-vehicle time, transfers, and wait time, but strong
correlations between attributes limited the ability to isolate
their effects. Still, a behavioral shift was detected: after the dis-
ruption, passengers placed greater emphasis on minimizing in-
vehicle time, although it remains unclear whether this change
was driven by increased time sensitivity, a reduced reluctance
to transfer, or both. The evolution of preferences over time
also indicated that passengers did not revert to their previous
habits once the disruption ended. Finally, AFC data was highly
valuable for detecting real-world behavioral changes, but its
limitations in explaining underlying motivations highlight the
need for complementary data sources in future research.

This study makes several scientific and societal contribu-
tions. Scientifically, it demonstrates that AFC data can reveal
changes in behavior following a disruption, but researchers
must be cautious when relying solely on AFC data, especially
when key variables are strongly correlated or when perceptual
factors are likely to influence choices. Societally, the findings
suggest that planned disruptions can be opportunities, not
just challenges. If passengers become more sensitive to travel
time after disruptions, transit agencies must ensure that fast,
convenient travel options remain available to maintain satis-
faction and ridership. Proactively managing travel alternatives
during disruptions could lead to lasting improvements in travel
behavior.

Several limitations should be acknowledged. First, the use
of AFC data alone limited the ability to capture perceptual
factors such as comfort, reliability, or familiarity. Second,
multicollinearity between in-vehicle time and transfers com-
plicated model estimation. Third, the study focused on a single
disruption event in one network, limiting generalizability.
Fourth, the high degree of overlap between available routes
restricted the variation necessary for robust model estimation.

Future research should address these limitations. Combining
AFC data with stated preference surveys or qualitative passen-
ger feedback would allow researchers to better capture unob-

served influences. Conducting similar studies in networks with
longer routes, greater variation between alternatives, or differ-
ent structural characteristics would enhance generalizability.
Additionally, future work could explore whether disruption
duration affects the persistence of changes in preferences
by analyzing networks with multiple disruptions of varying
lengths.

In conclusion, this study shows that route choice preferences
are adaptable and can shift permanently following planned
disruptions. A disruption can prompt passengers to reconsider
and adjust their travel behavior in ways that persist even after
normal service is restored. For transit agencies, understanding
and anticipating these shifts is essential for designing effective
service recovery strategies that support passenger satisfaction
and long-term system resilience.
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