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Abstract—Generative AI has revolutionized domains such as
language, vision, and audio; yet, its application to the field
of haptics, specifically signals for friction modulation devices,
remains barely explored. A generative model could alleviate the
issues associated with recording friction-based texture signals,
such as the expenses of recording equipment and the limi-
tation to lab environments, which significantly constrain the
diversity of texture signals that can be rendered on friction
modulation haptic devices. We propose a generative latent
diffusion model called DreamTexture. The model is conditioned
on a feature vector derived from a psychophysical perceptual
space, where each dimension corresponds to an adjective pair
(e.g., Rough–Smooth, Sticky–Slippery). We investigate whether
DreamTexture can synthesize friction signals that align with
users’ perceptual expectations, despite the subjective nature of
tactile experiences, influenced by individual skin properties and
linguistic interpretation. Moreover, DreamTexture is optimized
for real-time inference on commercially available hardware,
making haptic content creation more scalable and accessible.
Our findings indicate that the diffusion process lends itself well
to the efficient generation of one-dimensional friction signals
and produces realistic signals, but it exhibits limitations in fully
capturing the variability inherent in the input space.

I. INTRODUCTION

In the modern digital landscape, screens and speakers domi-
nate our interactions, providing rich visual and auditory experi-
ences. Yet, the rich and nuanced sense of touch, an important
aspect of human perception, remains largely unaddressed in
most digital media. However, research has shown that incorpo-
rating haptic feedback into media significantly enhances users’
emotional responses, leading to stronger engagement, higher
product ratings, and more memorable experiences [1].

Consequently, physical haptic devices are a popular subject
of research [2], [3], [4]. Friction modulation devices, for
example, the electrovibration display [5], already achieve
effective rendering and have potential for widespread inte-
gration in products such as smartwatches and smartphones.
However, acquiring the proper input signals is not trivial, often
demanding complex laboratory equipment and specialized
expertise to record finger-surface interactions. This limitation
currently impedes the widespread adoption of such devices.
In this work, we propose an alternative approach: leveraging
diffusion models to generate friction signals. Inspired by their
success in synthesizing high-dimensional data across vision
and audio domains, we explore their capacity to synthesize
realistic texture signals for haptics. We aim to validate this

research direction and identify the core challenges in applying
generative models to haptic signal generation.

Designing tactile feedback is inherently complex, as it
depends on how humans perceive textures through touch.
When a finger slides across a surface, the tactile experi-
ence arises from mechanical cues such as softness, thermal
properties, and, central to this study, surface texture. Micro-
and mesoscale variations cause the skin to deform, leading
to lateral friction forces that vary depending on the surface
and interaction parameters. This interaction can be modeled
as a one-dimensional temporal signal (friction over time), but
the resulting signal is highly sensitive to applied pressure and
finger velocity [6].

The lateral friction force during touch can be described as:

Fl = µFn (1)

where Fl is the lateral force, µ the friction coefficient, and
Fn the normal (downward) force. Importantly, µ varies with
surface properties, and as faster movement results in sharper
changes, making velocity a critical parameter alongside Fn for
determining Fl when capturing or generating texture signals.

As a result, recording haptic textures requires accurate
tracking of both the lateral force and the interaction dynamics
over time. This necessitates specialized lab equipment, as used
in the SENS3 dataset [7], and makes it difficult to collect data
from immovable surfaces or through non-expert participants,
significantly limiting scalability and accessibility.

We are not the first to employ generative AI models to
alleviate this issue; prior work has explored the use of Vari-
ational Autoencoders (VAEs) [8] and Generative Adversarial
Networks (GANs) [9] to synthesize haptic signals. However,
diffusion models have recently demonstrated superior perfor-
mance across various domains, particularly in generating high-
quality and diverse samples of images [10] and music [11].
Despite this, they remain underexplored in the domain of
haptic signal generation. Moreover, existing models typically
rely on image inputs (photographs of surfaces) for texture
generation [7], [12], [13]. While intuitive, this has two key
limitations: image data does not reliably contain textural
information, and it complicates the generation of novel or
fictional textures that lack visual references.
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Instead, we propose conditioning on perceptual ratings from
the SENS3 dataset [7], which contains both high-quality
friction signals and subjective ratings of 50 real textures.
These ratings were collected from multiple participants us-
ing adjective-based scales like Rough–Smooth, Flat–Bumpy,
and Sticky–Slippery. Compared to images, these descriptors
provide a more direct and human-centered way to represent
texture.

By using these perceptual ratings as conditioning inputs, we
allow users to generate texture signals based on how they want
the surface to feel, rather than how it looks. This approach
makes it easier to create both realistic and imaginary textures,
and it opens the door to more accessible, scalable tools for
haptic content creation without requiring complex lab setups
or expert hardware.

To implement this, we introduce DreamTexture, a psy-
chophysical feature-to-texture diffusion model that synthesizes
tactile signals using a two-stage latent diffusion framework
[14], [15]. The first stage generates a compressed latent repre-
sentation of the texture, while the second stage reconstructs the
final friction signal conditioned on this latent representation.
This architecture splits the computational load, enabling real-
time inference on consumer-grade hardware.

Our model achieves a 512× compression ratio, allowing
us to generate 1.64-second texture signal fragments in 10
diffusion steps, completing in 0.75 seconds. Using v-objective
diffusion, we attain peak performance with an RMSE of
0.0051N . However, we find that the perceptual conditioning
has limited influence on the generated outputs, likely due to
contradictory or noisy data in the dataset.

Our contributions are as follows:

1) We propose the first psychophysical feature-to-texture
diffusion model, incorporating a two-stage latent archi-
tecture for scalable training and inference.

2) We demonstrate real-time generation on commercially
available hardware with only 12 hours of training time.

3) We surpass state-of-the-art image-conditioned GAN
models in RMSE-based signal reconstruction.

4) We identify critical limitations in current haptic datasets
that impede effective conditioning on perceptual ratings.

II. BACKGROUND

Diffusion models are a relatively recent development in
generative AI, first introduced in 2015 [16] and gaining
prominence after critical breakthroughs in 2020 [17]. Diffusion
models operate using two processes that are inverses of each
other: a “forward” diffusion process and a “reverse” diffu-
sion process. The forward process systematically destroys the
structure of input data by gradually adding noise in small steps.
The reverse process then seeks to restore the structure, starting
from a noise distribution and subtracting fractions of noise
iteratively. This iterative approach makes the reverse process
flexible and computationally feasible, resulting in enhanced
performance.

The forward process is defined by a function q(xt|xt−1),
which takes input data x and adds noise at each step. It is
defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (2)

Where βt controls the variance of the added noise.
The reverse process is not analytically tractable, so a neural

network is trained to approximate the denoising steps by
predicting the added noise. The goal is to minimize the loss
function − log(pθ(x0)), which maximizes the likelihood of
generating the original sample x0. Since x0 is dependent on
all states of x, we can not calculate this loss function directly
and the model predicts the noise ϵθ(xt, t) added in the forward
process, from which the mean of the reverse distribution is
derived as:

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(3)

Where αt = βt − 1. During training, the neural network is
tasked with predicting the noise present in each noisy data
version, with the loss function being the Root Mean Square
Error (RMSE) between the predicted noise and the actual noise
added in the forward process.

Some recent improvements, such as v-objective training
and DDIM sampling [18], enable faster inference and better
stability. These techniques allow diffusion models to approach
high generation quality in significantly fewer steps, critical for
real-time applications.

With DreamTexture, we aim to use the powerful iterative
generation of this technology for texture signal synthesis. We
extend its existing architecture by introducing an efficient,
custom training and inference procedure, along with a novel
conditioning mechanism, to fully realize its potential.

III. METHODS

A. Database Preparation

For the training of our model, we use the SENS3 Dataset
[7]. This dataset consists of several different types of recorded
interactions with 50 different textures. The textures are chosen
to cover a broad range of tactile sensations, and can be
divided into 10 categories. The categories are not balanced,
with ”Fabric” having 12 different textures (the most), while
”Rubber” only has 1 texture (the least).

We use two subsets of the SENS3 dataset [7] to train the
DreamTexture architecture.

1) Friction Signals: The first subset consists of finger-on-
texture sliding interaction data recorded during free explo-
ration of various surfaces by 2 participants. This includes
recordings of the lateral friction forces, as well as the normal
force and finger velocity at all times. Not all recordings are
of equal length, varying between 2 to 6 minutes per texture,
producing a potential data imbalance.

We apply a bandpass Butterworth filter [19], removing all
frequencies below 20 Hz that fall in the same range as the
finger’s motions and above 1 kHz that are outside of the per-
ceivable range [20]. Figure 1 shows an example texture from
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the database and its spectrogram before and after filtering. The
removal of low-frequency components significantly changes
the signal’s shape and amplitude, indicating that a significant
portion of the original signal was attributable to finger motion.
After filtering, the signal is centered around 0 N, rather than
exhibiting a constant positive offset.

Due to the unconstrained nature of the recordings, both
normal force and finger velocity vary widely across each
session. Ideally, these parameters would be provided as condi-
tioning inputs during training, enabling the model to generate
context-aware signals. However, due to the limited size of
the dataset, we omit this conditioning, which could result in
generations that do not reflect specific force or velocity profiles
and therefore have unpredictable sensations.

To alleviate this, the training data was filtered based on
specified speed and force ranges. As a result, users must
interact with the output signal within the same range, so the
values that were most comfortable for users to maintain during
interactions were chosen. A force range of 0.4–0.6 N and a
speed range of 66–99 mm/s were chosen, based on [21]. A
segmentation algorithm was designed to obtain a subset of
the data that includes only data recorded within the specified
ranges. The algorithm is defined as follows:

x =

N⊕
i=1

xi, where ∀i ∈ {1, . . . , N}, ∀t ∈ [ti, Ti] :

v(t) ∈ [vmin, vmax], f(t) ∈ [fmin, fmax], ti+1 − Ti < δ

TN − t0 > ψ

(4)

Here, x is the concatenated output signal composed of
valid segments xi, each spanning a time interval [ti, Ti]. The
velocity v(t) and force f(t) at every moment within each
segment must lie within the specified bounds. The parameter
δ = 0.1 s allows for short interruptions where the values may
briefly fall outside the target ranges, maintaining continuity.
The total duration of the final signal must exceed a minimum
length ψ = 1.64 s to ensure that each segment contains at least
one valid training sample.

Choosing δ = 0.1 s preserves enough samples while main-
taining high data quality. Larger values of δ run the risk of
introducing inconsistent data, while smaller values reduce the
dataset size to a point where training becomes ineffective.

Finally, the extracted data segments are divided into shorter
sections matching the target signal length used during training.

The start time of signals within each texture recording is
arbitrary because it was recorded as one long interaction;
therefore, we can apply a 50% overlap between consecutive
segments along the time axis. This overlap increases the
effective size of the dataset and ensures that temporal features
that might otherwise be truncated at the edges of a segment
are captured more fully, appearing centrally in other segments.
After slicing and overlapping, we obtain approximately 55,000
texture samples in the unfiltered dataset and 22,000 in the
filtered dataset for training.

2) Psychophysical ratings: The second subset consists of
subjective ratings given on 8 different axes by 12 different par-

ticipants for each of the 50 textures. Each axis is represented
and rated independently using a 9-point scale (0–8).

To reduce input dimensionality and avoid sparsity in the
psychophysical space, we selected a minimal set of adjectives
that efficiently describe textures without introducing redun-
dancy. Prior studies have shown that increasing the number
of adjectives only marginally improves the explained variance
in texture perception, as many descriptors are used inter-
changeably by participants, even if not strictly synonymous.
For example, ”jagged,” ”sharp,” and ”hard” were found to
provide little additional information beyond ”rough,” while
”wet,” ”damp,” and ”greasy” often overlapped with ”slippery”
[22]. Based on these insights, we selected the following six
perceptual axes as essential for spanning the texture space:

• Roughness
• Hardness
• Warmness
• Slipperiness
• Bumpiness
• Evenness
Since most friction-modulation devices cannot render ther-

mal or compliance-related properties, we discard warmness
and hardness. Evenness is discarded because we believed it
to be the most ambiguous, and we retain roughness, slip-
periness, and bumpiness as our final set of dimensions. This
reduces the input space to a manageable three-dimensional
psychophysical representation.

The validity of this reduced axis set is supported by [23],
which demonstrated that novel textures can be synthesized
by linearly interpolating between textures that are close in a
similar perceptual space.

The rating vectors were collected from 12 participants,
one for each texture. During the training, when we associate
texture ratings with texture signals, ratings are reused across all
corresponding texture signal segments, introducing a potential
bottleneck due to limited variation in conditioning data.

Moreover, since participants may interpret the 0–8 scale
differently (i.e., one participant’s “4” may reflect a different
intensity than another’s), we normalize each participant’s
ratings independently to follow a standard normal distribution,
across each of the rating dimensions separately:

X ∼ N (0, 1)

This normalization ensures that each participant contributes
equally to the learning process, mitigating bias from individual
rating tendencies. As a result, the average rating becomes 0,
and most values fall within the range of -2 to 2. We calculate
the average normalized ratings for all three dimensions for
each texture to visualize the average position of each texture
in perceptual space in Figure 2.

B. Designing DreamTexture

DreamTexture is comprised of two diffusion models work-
ing in series with each other:
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Fig. 1: A 1.64-second section of a friction signal recorded from a piece of fabric is depicted next to its mel-spectrogram. The top row is
directly from the database, and the bottom row is the result from applying a bandpass filter between 20 and 1000 Hz. As a result of the filter,
the waveform signal is now centered around 0 N, showing that a large portion of the signal’s magnitude was made up of the frequencies
outside of the bandpass.

1) DALE: Diffusion Adjective-to-Latent Encoder. Maps a
psychophysical feature vector to a latent representation
of texture characteristics.

2) LCTG: Latent-Conditioned Texture Generator. Converts
the latent representation into a time-domain texture sig-
nal suitable for rendering on friction modulation devices.

This division allows for heavy computation to be handled
upfront (in the DALE), keeping the LCTG lightweight for real-
time inference. Figure 3 illustrates this inference pipeline.

Our database provides the texture signals with the input
rating labels we need to connect the input to the output. How-
ever, since we are proposing the use of a latent representation
with an unknown relation to the input, we adopt a two-phase
training strategy:

• Train the LCTG: Learn to reconstruct texture signals
and simultaneously learn a latent representation encoding
from real texture data to facilitate the reconstruction.

• Train the DALE: Mimic the behavior of the LCTG’s
encoder by learning to map ratings to the same latent
space.

In the first training stage, the encoder of the Latent-
Conditioned Texture Generator (LCTG) learns to produce a la-
tent representation that maximizes the information’s usefulness
to its paired decoder. While this latent space does not carry
explicit semantic meaning, it is derived from spectrograms

of real texture signals. Although we could hypothesize what
features might be important to encode, training the encoder
jointly with the diffusion-based decoder enables the use of
backpropagation to learn an optimal representation.

In the second stage, the Diffusion Adjective-to-Latent En-
coder (DALE) is trained to replicate the behavior of the
LCTG encoder. By leveraging the dataset linking texture
signals to psychophysical ratings, DALE learns to map directly
from ratings to latent representations. This two-stage training
process is illustrated in Figure 4.

1) Part 1: Latent Conditioned Texture Generator: The
LCTG consists of three essential components:

• A Mel-spectrogram conversion
• An encoder that compresses the spectrogram signals into

a latent vector.
• A diffusion-based decoder conditioned on the latent vec-

tor, used to iteratively denoise a signal.
Ultimately, these components work as a type of autoencoder,
compressing the signal through the mel-spectrogram and en-
coder and then reconstructing it using the decoder. During
training or inference without the DALE, the LCTG’s sole
purpose is to reconstruct given textures.

Mel-Spectrogram Conversion To begin the encoding
process, each texture signal is transformed into a Mel-
spectrogram. This involves computing the Short-Time Fourier
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Fig. 2: Heatmap showing the average normalized rating given by
the 12 participants to each of the 50 textures for the adjectives:
Smoothness, Bumpiness, and Slipperiness. Values are annotated;
color bar included for quick pattern reference. Inter-category variety
exists, as for example, out of the Fabrics, Fabric 2 has the highest
bumpiness of 0.97 and 12 the lowest of -0.703, making for a spread
of 1.70 standard deviations.

Transform (STFT), which decomposes the signal into its fre-
quency components over time, resulting in a two-dimensional
representation of frequency magnitudes across successive time
frames. The frequency axis is then converted to the Mel scale.
This is a perceptual scale that more closely aligns with human
sensitivity to pitch changes by decreasing the resolution as fre-
quencies get higher. Given demonstrated similarities between
tactile and auditory perception [24], the Mel-spectrogram
serves as an effective representation. It emphasizes low-

Fig. 3: The two-step inference process for which our model is built.
Both models use noise as an input, and the only user input is the
ratings at the top (into the DALE). The output comes out of the
LCTG. In practice, these two models are integrated together.

frequency components, which are particularly noticeable in
human touch perception.

1D-Spectrogram Encoder The Mel-spectrogram is pro-
cessed by a 1D convolutional encoder consisting of 10 layers
with varying kernel sizes and strides. These layers operate
along the temporal axis, treating each Mel-frequency vector
as a feature descriptor at each time step.

The use of multiple kernel sizes enables the encoder to
capture both short-term temporal details and long-range struc-
tural patterns, creating a complete understanding of the signal.
Furthermore, the choice of 1D convolutions, rather than 2D,
offers a large computational advantage to perform real-time
inference. By focusing exclusively on the temporal dimension,
the model reduces both parameter count and memory use
while retaining the essential temporal dynamics necessary for
downstream tasks. This makes the encoder particularly suitable
for efficient training and deployment at scale.

The number of channels is reduced through a linear pro-
jection: each Mel-frequency bin, initially treated as a separate
input channel, is projected into a fixed-size representation of
16 channels.

The Mel-Spectrogram conversion and the encoding result
in an overall temporal compression factor of 512×. The
combination of channel reduction and temporal subsampling
leads to a substantial decrease in the number of parameters
and computational complexity.
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Fig. 4: The flow of in- and output data to and from the models during training is visualized with solid arrows. The flow of data for loss
computation and backpropagation is visualized with dotted arrows. The LCTG’s training is contained in the green area. The DALE’s training
is contained in the purple area, which overlaps with the green area. In the overlapping area, the LCTG’s encoder is trained during the LCTG’s
training and consequently used to compute the Latent Representations for training the DALE. n represents the batch size and a, b, c the
values of the Roughness, Bumpiness, and Slipperiness ratings. It is important to note that the Noise nodes are composed of the input data
with added noise, rather than pure noise.

This latent vector serves as a compressed yet expressive
summary of the original texture signal, optimized for use in
the generative decoding stage.

U-Net Decoder The decoder is implemented as a 1D U-
Net [25], consisting of seven layers in both the downsampling
and upsampling paths. The number of channels increases
progressively from 8 to 1024 as the temporal resolution is
reduced, enabling the network to extract increasingly abstract
and high-level features. Skip connections between correspond-
ing downsampling and upsampling layers facilitate the transfer
of fine-grained temporal information that might otherwise be
lost during downsampling. A symbolic representation of the
data flow through our U-Net is shown in Figure 5.

The U-Net architecture is particularly well-suited for gen-
erative tasks, as it allows for both global context modeling
and the preservation of local structure [25]. The hierarchical
encoding path captures coarse-level temporal dependencies,
while the decoding path reconstructs fine details with the help
of the skip connections. This design improves the fidelity
of the reconstructed signal by allowing low-level features to
bypass the compression bottleneck and be directly integrated
into the reconstruction.

At each layer of the U-Net, two types of conditioning are
applied:

Fig. 5: Symbolic representation of the data flow through the U-Net.
Data at different levels of the U-Net travels through the arrows to
other levels. At each level, noise modulation and conditioning on the
latent representation are applied. The spatial (temporal) dimensions
decrease as depth increases, while the number of channels increases
accordingly.

• Noise Modulation: The model conditions on the noise
level using a scale-and-shift operation, where the param-
eters are functions of the current noise level and learned
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during training. This mechanism allows the network to
adapt its behavior across denoising timesteps in the
diffusion process.

• Latent Conditioning: The latent representation is tiled
along the temporal axis to match the resolution of the cur-
rent layer and concatenated along the channel dimension.
This enables the decoder to integrate global information
from the encoded texture representation throughout the
denoising trajectory.

v-objective Diffusion Model
We adopt v-objective diffusion, introduced by Salimans

and Ho [26], which modifies the diffusion loss to predict
a weighted combination of the noise and the original data,
referred to as the velocity. This objective improves stability in
later timesteps and enables high-quality generation in fewer
steps compared to standard noise-prediction objectives used
in diffusion models.

The loss is defined as:

Lθ = Ex,ε,t

[
∥vt − v̂θ(zt, c, t)∥2

]
(5)

Here, vt = αtε− σtx is the velocity target, and v̂θ(zt, c, t)
is the model’s prediction. The model receives:

• zt: the noisy signal at timestep t,
• c: a conditioning vector from the latent space, and
• t: the current timestep, used to determine noise weights.
The noisy input is constructed as:

zt = αtx+ βtε (6)

αt = cos
(
π
2σt

)
, βt = sin

(
π
2σt

)
(7)

We use a linear noise schedule, where σt ∈ [0, 1] increases
linearly with t. Training across a broad range of σt values
teaches the model to progressively remove noise through
denoising iterations.

Once trained, the model can infer v̂θ at any noise level,
providing flexibility in the number of sampling steps. Fewer
steps enable faster inference, while more steps allow for finer
noise removal.

Sampling with DDIM
For inference, we employ Denoising Diffusion Implicit

Models (DDIM) [18], a fast, non-Markovian sampling strategy
compatible with v-objective training. Unlike standard DDPM
sampling, which requires many stochastic steps, DDIM en-
ables deterministic or semi-deterministic sampling with sig-
nificantly fewer iterations.

At each timestep, the following quantities are computed:

z0 = αtzt − βtv̂θ(zt, c, t) (8)

εt = βtzt + αtv̂θ(zt, c, t) (9)

zt−1 = αt−1z0 + βtεt (10)

This process allows iterative refinement of the signal while
maintaining consistency with the denoising dynamics learned
during training.

DDIM sampling is 10–50× faster than standard DDPM
sampling while retaining high sample quality. This makes it
particularly well-suited for real-time or resource-constrained
generation settings.

Frequency-Aware Loss Component
Inspired by [21], we explore an optional loss term that

incorporates frequency-domain information. Specifically, we
add a mean-squared error term between the Fourier transforms
of the predicted and target velocity signals. This stems from
the hypothesis that frequency content plays a central role
in texture perception. While this frequency-aware loss may
not necessarily improve reconstruction in terms of RMSE, it
has the potential to yield outputs that are perceptually more
faithful.

The modified loss function is defined as:

Lθ = Ex,ε,t

[
∥vt − v̂θ(zt, c, t)∥2 + λ ∥F{vt} − F{v̂θ(zt, c, t)}∥2

]
(11)

Here, λ is a weighting factor that controls the influence
of the frequency-domain component, and F{·} denotes the
Fourier transform.

Together, these design choices form a modular and efficient
autoencoding architecture that captures and reconstructs tex-
ture signals with temporal and perceptual fidelity, laying the
foundation for the 2-step latent generation using our DALE
model.

2) Part 2: Diffusion Adjective-to-Latent Encoder: We train
the second model, the Diffusion Adjective-to-Latent Encoder
(DALE), to approximate the output of the LCTG encoder
while conditioning on the psychophysical feature space rather
than raw texture signals. This enables the model to generate
novel texture representations, rather than merely reconstructing
existing ones.

We employ the same backbone for this model, using 1-
dimensional UNets, v-objective diffusion, and DDIM sam-
pling.

Dataset Generation
To generate the training data for DALE, we first use the

trained encoder of the LCTG model to encode the segmented
texture signals from the SENS3 database. We do not run the
decoder; only the latent representations are saved. Since each
texture in the SENS3 dataset is segmented into 1.64-second
fragments, this yields over 200 latent vectors per texture.

Each of these latent vectors is then paired with one of the 12
available sets of psychophysical ratings for the corresponding
texture. Rather than using only the average rating, we ran-
domly assign one of the 12 individual rating sets to each latent
representation. This strategy increases the diversity of the input
space and helps prevent sparsity in the training data.

As a result, we construct a dataset consisting of latent
texture representations paired with diverse psychophysical
feature vectors, which we use to train the DALE model.

Rating Embedding
The injection of the ratings is done through a cross-attention

mechanism at every level of the UNet. Before that, we first
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embed the ratings into a higher-dimensional representation
using sinusoidal functions to allow the model to find non-
linear and periodic patterns:

rweighted = r ·w⊤ · 2π (12)

rfreqs =
[
sin(rweighted)

∣∣ cos(rweighted)
]

(13)

rout =
[
r
∣∣ rfreqs

]
(14)

Here, r is the original rating vector and w is a learned linear
projection that scales the ratings according to their importance.
The resulting rout vector is a concatenation of the original
ratings and their sinusoidal embeddings, and serves as the
conditioning input to the cross-attention layers.

The cross-attention block enables the model to determine
which aspects of the latent representation should be influenced
by which ratings. Different parts of the latent are modu-
lated differently based on psychophysical importance, enabling
high-precision, context-dependent modulation.

Context Scaling in Cross-Attention
To further enhance the model’s ability to control the influ-

ence of the conditioning input, we introduce a learnable scalar
parameter that modulates the context vector before it is used to
compute the keys and values in the cross-attention mechanism.
Specifically, before computing the key–value pairs from the
context, we apply a learned multiplicative scale:

k,v = Linear(c · γ) (15)

Where c denotes the (normalized) context vector derived
from the conditioning input, and γ is a learnable scalar
initialized to a relatively high value (e.g., 10.0). This allows the
model to dynamically adjust the strength of the conditioning
during training, enabling more flexible alignment between the
latent features and the conditioning signal.

In preliminary experiments, we found this to improve
stability during early training and help prevent the attention
mechanism from prematurely ignoring the ratings, especially
in cases where the conditioning signal was initially noisy or
weakly informative.

Conditioning Usage Loss
Due to the subjective nature of the psychophysical ratings,

contradictions between ratings and textures are inevitable. As
a result, the model may learn to ignore the conditioning
input and instead model an unconditional distribution over the
output textures, effectively collapsing to p(x | z), where the
clean data x only depends on the noisy data z, rather than the
intended conditional distribution p(x | z, r), that incorporates
rating input r.

This lack of correlation between the ratings and the gen-
erated textures would severely impair the downstream per-
formance of our pipeline. To mitigate this, we introduce an
auxiliary loss term that explicitly encourages the model to
make use of the conditioning input.

Lθ, v1 = w(z, r, t) (16)
, v2 = w(z, rshuffled, t) (17)
Ldiv = − cos(v1, v2) (18)
Ltotal = Lθ + λdiv · Ldiv (19)

The model is represented by w and the timestep by t. v is
the predicted velocity following v-objective diffusion, which
is calculated twice, the second time using shuffled ratings. The
negative cosine similarity between the two predictions is added
as a loss component and weighted by λdiv .

Together, these components form the architecture of the
DALE. For more details about the exact number of layers and
hyperparameters, see Appendix A.

C. Training of DreamTexture

Both models undergo training on an NVIDIA GeForce
RTX 4060 Ti. This section underlines how the general model
structure was optimized and subsequently trained.

1) Training the LCTG: The Latent-Conditioned Texture
Generator (LCTG) is initially trained on the full dataset for
40 epochs. This pretraining phase enables the model to learn
generalizable frequency structures across a diverse set of
texture signals, thereby capturing broad latent representations
that form the foundation for subsequent specialization.

Following this initial stage, the model is fine-tuned on a
filtered subset of the data, limited to signals recorded under
controlled finger speed and force conditions. This subset is
selected based on predefined thresholds to reduce variability in
signal characteristics and emphasize more consistent patterns.
Fine-tuning in this constrained domain allows the model to
specialize its learned representations, enhancing its ability to
capture nuanced features and improving performance on data
within the defined parameter space.

Hyperparameters were selected through a trial-and-error
approach. Due to time constraints, an exhaustive Optuna-based
search was not feasible. Instead, ten experimental runs were
conducted with varied parameter settings to approximate opti-
mal values (see Appendix B for details). Parameters excluded
from this search were chosen based on prior work in music
generation [26] or set to commonly used defaults in related
architectures.

2) Training the DALE: The Diffusion Adjective-to-Latent
Encoder (DALE) is trained directly on the same filtered subset
used during the LCTG fine-tuning stage. For each training
sample, a latent representation is first extracted using the
encoder component of the pretrained LCTG. This latent vector
is then paired with a corresponding psychophysical rating,
forming the input-output pair for supervised training.

DALE is trained for 40 epochs using this fixed dataset. The
hyperparameter selection process mirrors that of the LCTG:
multiple models were trained with slight variations in key
parameters to empirically identify effective configurations.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

1) Generating Textures: The number of diffusion steps used
during inference can be freely selected, with higher step counts
generally leading to improved generation quality. However,
due to the efficiency of the v-objective formulation, high-
quality outputs can be achieved even with relatively few steps.
Figure 6 illustrates the trade-off between generation quality
and computation time across varying diffusion step counts.
On an NVIDIA RTX 4060, it is feasible to perform over
50 diffusion steps in real time, achieving an RMSE as low
as 0.0060. The optimal balance between performance and
efficiency, quantified as the product of RMSE and inference
time (RMSE×t), is at ten diffusion steps, as shown in Table I.
This configuration is therefore adopted for generating the
results presented in this work.

Steps Efficiency Score (RMSE × Time)
5 0.002936
10 0.002879
20 0.003718
40 0.006457
60 0.008664
80 0.010333

100 0.013104

TABLE I: Performance-Efficiency Trade-off across different step
counts

2) Criteria Overview: Evaluating texture signals is chal-
lenging due to their subjective nature and the lack of a precise
mathematical mapping to the psychophysical dimensions used
for conditioning. We use a combination of quantitative and
qualitative metrics to assess model performance. These in-
clude RMSE for both waveform and spectral representations
of LCTG reconstructions, as well as qualitative evaluations
of their perceptual fidelity. DALE performance is assessed
through reconstruction RMSE and by measuring latent shift
magnitudes in response to varying input ratings. For the
complete DALE–LCTG pipeline, we compute RMSE between
generated and original textures, and compare average spectra
for generations at extreme adjective values to evaluate seman-
tic responsiveness. Inference time is also measured to assess
computational efficiency.

Human experiments, which would offer crucial validation of
perceptual alignment, were omitted. Due to the limited mag-
nitude of latent shifts and inconsistencies within the dataset,
both discussed in later sections, we had concerns about the
reliability of the results and ultimately decided to exclude the
human evaluation component.

3) Evaluation of LCTG Reconstructions: We begin by
evaluating the reconstruction performance of the Latent-
Conditioned Texture Generator (LCTG), a critical step to
verify how well the latent space encodes perceptually and
physically relevant features of the input texture signals. To
this end, we reconstruct each texture in the validation set and
present four randomly selected examples in Figure 7.

Qualitatively, the reconstructed waveforms closely match
the original signals in magnitude and overall shape. Key global
features, such as prominent low-frequency components, are

Metric Mean Median Max Min
RMSE 0.011433 0.010723 0.018123 0.006164
FT RMSE 0.903572 0.903394 1.290457 0.517045
Power Difference 0.000050 0.000048 0.000100 0.000005
SNR (dB) -1.866411 -1.951638 -1.206888 -2.355481

TABLE II: Primary Quantitative Metrics for the LCTG’s reconstruc-
tion listed with their ranges. These are obtained from reconstructing
a part of the dataset that was kept separately as a validation set.

generally preserved. However, inspection of the Fourier spectra
reveals that some low-frequency content is underrepresented
in the reconstructions, and the amplitude of these components
tends to be lower than in the original signals. Conversely, the
reconstructions sometimes exhibit higher energy in frequencies
above 1 kHz, frequencies that lie beyond the typical human
tactile perception range and were not present in the training
data. These extraneous high-frequency components will be
filtered out during rendering, potentially degrading the per-
ceived texture quality and leading to weaker sensations unless
compensated by amplification.

To complement these qualitative observations, Table II sum-
marizes quantitative reconstruction metrics. The RMSE (Root
Mean Squared Error) values are low (mean ≈ 0.0114), indi-
cating close similarity between the original and reconstructed
signals in the time domain. The FT RMSE (Fourier Trans-
form RMSE) is higher (mean ≈ 0.9), reflecting noticeable
differences in frequency content, consistent with the spectral
observations. The Power Difference is very small (mean ≈
510−5), showing that the overall signal energy (power) is
well preserved during reconstruction. The SNR (Signal-to-
Noise Ratio) averages around -1.87 dB, which implies that
reconstruction noise or errors are slightly larger than the
original signal power, highlighting areas where reconstruction
quality can be improved.

Overall, these results suggest that while the LCTG effec-
tively reconstructs the main temporal structure and power
of texture signals, discrepancies remain in spectral fidelity,
particularly in the low-frequency range and the presence of un-
expected high-frequency content. Addressing these limitations
could further enhance the perceptual realism of synthesized
textures and their suitability for tactile rendering applications.

4) DALE Faithfulness Evaluation: To evaluate the faith-
fulness of the DALE model to its conditioning input, we
analyze the latent shift magnitude, which is defined as the
L2 norm between latent vectors generated from inputs with
varying rating values. This measure captures the extent to
which changes in the conditioning signal (i.e., psychophysical
ratings) result in meaningful shifts in the latent space.

To isolate the effect of the conditioning and control for
stochastic variation, we fix the noise vector across conditions.
For each adjective (Roughness, Bumpiness, Slipperiness), we
vary its rating value while holding the other two fixed at zero.
Rating values are sampled symmetrically around the zero mean
in increments of 0.2. For each input rating value, we generate
30 latent vectors using distinct noise samples and compute the
average pairwise L2 distance between latents generated at the
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Fig. 6: The full pipeline was run with different amounts of diffusion steps. The left plot shows the waveform RMSE, the middle plot shows
the Fourier RMSE, and the right plot shows the generation time, with each plot having the number of steps on the x-axis. The error bars
show large deviations in performance and small deviations in generation time.

chosen input value with the latents generated with an input
value of 0.

The resulting latent shift magnitudes are normalized by the
overall magnitude of the latent representations and plotted in
Figure 8. The y-axis indicates the normalized shift magnitude,
and the x-axis reflects the rating difference from the baseline
value. Each curve shows the response of the latent space to
variation along one adjective dimension.

The observed shifts are relatively small, with most values
falling within a 0–2% range of the latent magnitude. Rough-
ness and Bumpiness exhibit weak but consistent increases in
shift magnitude as the input rating diverges from the mean,
suggesting that DALE modestly incorporates conditioning
information for these dimensions. In contrast, Slipperiness
displays no discernible trend, indicating limited responsiveness
of the latent representation to this rating dimension under the
current configuration.

5) Full Inference Results: To evaluate the reconstructive
capabilities of the complete pipeline, we perform the following
procedure:

1) Randomly select a texture segment from the validation
dataset.

2) Load a corresponding set of ratings provided by a
randomly chosen participant.

3) Use the DALE model to generate a latent representation
from the ratings.

4) Generate the texture signal using the LCTG.
5) Compare the generated texture signal to the originally

selected segment.
An example is shown in Figure 9, where a randomly

selected texture signal (blue) is reconstructed three times using
three distinct sets of participant ratings. Each reconstruction
(orange) reflects the variation in the corresponding rating
vector, resulting in noticeable differences in the generated
signals, including in their magnitudes.

We repeat this process across 20 randomly selected distinct
texture segments, with 5 repetitions per segment, each using
a different randomly sampled set of ratings. This evaluation
yields a mean waveform RMSE of 0.005569 ± 0.001088 and

a spectral RMSE of 0.572766 ± 0.131719. For comparison,
the GAN-based image-to-friction model proposed by Cai et
al. [32] reports higher signal RMSEs ranging from 0.016 to
0.051, while achieving similar performance on the Fourier
spectrum (RMSE between 0.07 and 0.91).

To assess the influence of individual perceptual rating
dimensions on generated textures within the full inference
pipeline, we systematically varied one rating dimension at
a time over a range of –2 to +2 standard deviations (in
increments of 0.5), while independently sampling the re-
maining two dimensions from a standard normal distribution.
For each fixed value of the target rating, 50 texture signals
were generated using the complete DALE–ACTG pipeline.
The average frequency spectrum of the resulting signals was
computed using the Fast Fourier Transform (FFT) to identify
systematic trends in the spectral characteristics. A full set of
results is provided in Appendix D, while Figure 10 compares
the average spectra at the extreme values (–2.0 and +2.0) for
each rating dimension.

The mean L1 distance between the spectra for extreme
values was 0.13 for Smoothness (opposite of Roughness), 0.07
for Bumpiness, and 0.10 for Slipperiness. Across all condi-
tions, the frequency peaks remained largely stationary, with
the primary variation manifesting as amplitude scaling rather
than spectral shape deformation. Notably, both Smoothness
and Slipperiness exhibited gain changes predominantly in the
low-frequency range (< 200 Hz), whereas Smoothness showed
the most pronounced effects in the high-frequency domain
(> 200 Hz). Despite these variations, a qualitative analysis
of the figures reveals that all three rating dimensions exert a
comparable influence on the output, and the averaged spectral
profiles across generated textures suggest limited frequency
diversity.

The Frechet Audio Distance (FAD) [30] is a widely used
metric for evaluating the similarity between the distributions
of real and generated one-dimensional signals, typically in
the context of audio. However, it is equally applicable to our
use case involving texture signals. To compute the FAD, we
generated 500 texture samples using randomly sampled ratings
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Fig. 7: Reconstruction results for four texture signals from the SENS3 database [7] using the trained LCTG. Each row corresponds to a
different texture; the left image shows a photo of the material, while the right plots display its signal waveform and Fourier spectrum. In
both plots, the original signal is shown in blue and the reconstructed signal is overlaid in orange. Note that the y-axis scale varies between
signals. The Fourier spectrum is truncated at 1200Hz to focus on frequencies relevant to human tactile perception, which generally do not
exceed 1000Hz.

Fig. 8: Latent shift magnitude (y-axis) as a function of change
in the input rating (x-axis). Each curve corresponds to one rating
dimension, with others held constant. Values are normalized and
unitless. Roughness is shown in blue, Bumpiness in orange, and
Slipperiness in green.

drawn from a standard normal distribution, consistent with
the rating normalization applied during model training. The
resulting FAD score, calculated against the full set of real
textures in our database, was 21.62. For comparison, state-of-
the-art music generation models such as [26] typically achieve

FAD scores below 5, highlighting the greater distributional
distance in our generated textures.

V. DISCUSSION

By introducing DreamTexture, the first generative diffusion
model that maps psychophysical descriptors to texture signals,
we aim to initiate a broader conversation about how generative
AI can contribute to advancements in haptics. While the
strengths of diffusion-based generation are evident in our
results, it is equally important to acknowledge and address
the model’s current limitations.

1) Diffusion Model Performance: Our approach is the first
to use this particular input space, and therefore, no directly
comparable baselines exist. However, we can draw several
conclusions based on our results.

Texture Generation Quality Our model successfully learns
to generate valid texture signals without collapsing to a limited
variety, as evidenced by the diversity of outputs in Figure 9. A
clear mapping between the input space and generated outputs
is established, as shown in Figure 7 and Figure 10.

The full DALE-ACTG pipeline achieves a signal RMSE of
0.0056, indicating strong reconstruction fidelity in the time
domain. However, performance in the frequency domain is
less impressive, with a Fourier RMSE of 0.58. These results
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Fig. 9: Example using plastic as the reference texture. A single
randomly selected segment from the database is shown in blue (top),
with three reconstructions in orange below—each generated from a
distinct set of ratings, shown on the left. The rating vectors vary
significantly, leading to corresponding variations in the generated
textures, including differences in signal magnitude.

suggest that while the waveform is closely matched, some
spectral characteristics are not accurately captured.

LCTG Reconstruction Bottleneck The performance of the
encoder of the LCTG (Latent-Conditioned Texture Generator)
acts as an upper bound on reconstruction quality, since the
DALE can at best approximate it, and therefore, we consider
ways to improve its accuracy. We observe that high-magnitude
frequency peaks are not faithfully reconstructed. Interestingly,
some reconstructions include frequencies above 1000 Hz,
despite these being filtered out of the training dataset. Since
such components are imperceptible and potentially harmful
to perceptual fidelity, this mismatch may reduce the texture
sensations’ realism and accuracy.

To improve the performance, several strategies may be

Fig. 10: Comparison of the average frequency spectra for textures
generated at the extreme values (+2.00 and –2.00) of each perceptual
rating dimension. For clarity, ”Smooth” is shown in place of ”Rough”
to reflect the positive direction of the axis. The spectra corresponding
to –2.00 values are shown in blue, while those for +2.00 are shown
in orange.

helpful:
• Expand latent space: Increasing the size of the latent

representation may allow the model to store and recon-
struct richer frequency information.

• Data balancing: Augment the dataset to include more
textures with high amplitude frequency peaks, improving
the model’s ability to learn such cases.

• Filtering before loss: Applying a frequency-domain fil-
ter before loss computation may prevent high-frequency
artifacts from influencing the learning process.

Loss Function Insights During testing, we found that the
optimal weight for the frequency-aware loss component of the
LCTG was zero, meaning its inclusion did not improve RMSE
scores. This suggests that the current model or training setup
struggles to optimize for frequency reconstruction alongside
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time-domain accuracy. Several factors could contribute to this:

• RMSE in the time domain is more sensitive to low-
frequency errors, leading the model to prioritize these
components.

• The model architecture or training procedure may not be
well-suited to capture complex spectral patterns.

• The presence of high-frequency noise might be a compen-
satory effect for underrepresented low-frequency energy.

We suggest experimenting with alternative frequency-
domain loss components, such as one that is filtered or
weighted to prioritize perceptually relevant components (e.g.,
<1000 Hz). Alternately, experiment with scheduled loss
weighting to guide training phases.

Diversity of Generations Although the model demonstrates
strong performance in terms of RMSE, the diversity of the
generated signals could be improved. As shown in Figure
10, the frequency spectra of generated signals exhibit limited
sensitivity to variations in the input psychophysical ratings.
In contrast, Figure 7 reveals that the generated signals vary
in magnitude and display frictional peaks at different times.
Additional examples in Appendix D further illustrate that the
model is capable of producing a broad range of texture signals,
indicating some degree of generative diversity.

The Fréchet Audio Distance (FAD) score remains high,
suggesting a significant difference between the distributions
of the generated and real texture signals. One plausible ex-
planation is that the generative distribution is narrower than
the true data distribution. Another contributing factor may
be the use of normally distributed psychophysical ratings
during FAD computation, which may not accurately reflect
the actual distribution of textures in the psychophysical space
(as illustrated in Appendix B). This mismatch could be a major
contributor to the elevated FAD score, despite not necessarily
indicating poor generation quality. To more accurately assess
distributional alignment, alternative sampling strategies that
better capture the empirical distribution of the psychophysical
space should be explored.

2) Effect of Psychophysical Ratings: The influence of psy-
chophysical ratings on the generated textures is largely deter-
mined by the DALE model’s capacity to learn a meaningful
mapping between the psychophysical space and the latent
representation.

The question may arise whether the model genuinely con-
ditions on the input ratings or merely reproduces the tar-
get distribution without incorporating the conditioning infor-
mation. Supporting this concern, Figure 8 shows that the
latent representation changes by only approximately 1% in
response to a full standard-deviation increase in a single
rating dimension. However, we do observe that the magnitude
of latent shift increases with the difference in roughness
and bumpiness ratings, suggesting that some (albeit weak)
relationship is being captured. Complementing this, Figure 10
indicates that the average frequency magnitude increases by
up to 60% across certain frequency bands when comparing
signals generated from extreme values in the psychophysical

dimensions, implying that the model does not entirely ignore
the conditioning inputs.

Nevertheless, qualitative inspection reveals that the influ-
ence of each psychophysical dimension appears highly similar,
typically resulting in a gain across the signal. This raises con-
cerns about the model’s ability to meaningfully differentiate
between the psychophysical axes. Despite correct implemen-
tation, we suspect that the limited expressivity of the ratings
is primarily attributable to issues in the training data. The
mapping relies on the existence of a strong correlation between
the original texture signals in the dataset and their associated
psychophysical ratings, since DALE is trained to emulate an
encoder that maps texture signals to latent representations.

While the RMSE scores from the full pipeline suggest that
the model is capable of generating textures that resemble
the originals, the low correlations observed between the psy-
chophysical ratings and the texture signals cast doubt on the
validity of the conditioning framework. As such, we cannot
conclude that a strong or meaningful relationship between
the employed psychophysical feature space and the generated
texture signals has been successfully established.

3) Dataset Limitations: Several limitations in the SENS3
dataset became apparent during development. First, the se-
lected dimensions are not completely independent. Rough-
ness/Smoothness and Bumpiness are correlated (see Figure
11), reducing the model’s ability to isolate these features in
conditioning. Attempting to change one while keeping the
other fixed becomes perceptually ambiguous, since textures
like that do not exist and perhaps can not exist. Second,
Slipperiness ratings are unevenly distributed, showing a strong
bias toward slippery textures (see Appendix C). Most values
cluster in the upper portion of the scale, resulting in an
underrepresentation of rough or sticky textures. This likely
reduces the model’s sensitivity to that axis.

Fig. 11: Each of the fifty textures’ locations on the smoothness and
bumpiness axes. Each dot represents one texture and is labeled with
the number it has in the SENS3 catalog.

Third, participant disagreement is notable: the same texture
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often receives ratings that vary by more than one standard
deviation across individuals. This subjectivity challenges the
model’s ability to learn a clean mapping from psychophysical
space to texture signal and forces the model to rely less on
the conditioning and more on the overall characteristics of the
complete texture distribution. We observe the spread of ratings
within each particular texture and plot the ones with the largest
spread in figure 12. For the textures not included, the standard
deviations are shown in Appendix C.

Fig. 12: The four textures that had the most spread across participants
in the ratings are depicted here. Ratings have been normalised. Under
each violin, the corresponding rating is listed. Each datapoint is
visualised as a dot.

These limitations highlight why we can not draw any
conclusions about the strength of the model’s conditioning
on subjective inputs. In future work, a larger, more balanced
dataset with controlled psychophysical sampling would help
address these issues. This could perhaps be achieved by giving
example textures for the extremes of each axis or giving clearer
definitions of what each adjective means.

Possibly, to increase the size of the database, the model
could learn with shorter samples. Our choice of 1.6384 sec-
onds was made early in the design process, selected to be
a power of two, which facilitates reliable downsampling and
upsampling within the model architecture, while also being
as short as possible to maximize the number of available
training samples. This length was long enough to preserve
the presence of lower-frequency components in the signal.
However, since frequencies below 20 Hz are removed through
bandpass filtering, shorter durations could have been used
without significant information loss.

4) Generated Texture Database: Texture signal recordings
are inherently noisy due to the high sensitivity of the sensors
and the variability introduced by individual finger dynam-
ics. As a result, the same texture produces different signals
across participants. In our current dataset, texture signals are
associated with perceptual ratings collected from a different
group of participants than those who originally recorded the
signals. This mismatch introduces a potential source of noise

and uncertainty in the learning process. Furthermore, since
the ratings were collected from interactions with real textures,
our training pipeline relies on the friction modulation device’s
ability to accurately reproduce those recorded sensations.

As a future direction, we propose constructing a fully
synthetic texture database composed of digitally generated
signals with controlled spectral content. By collecting percep-
tual ratings directly from participants interacting with these
digitally rendered textures via a friction modulation device,
we can establish a clean one-to-one correspondence between
signal and rating. This approach is expected to benefit model
training by reducing noise and ensuring consistent signal-
label pairs. However, it may come at the cost of realism, as
synthetic textures tend to be more periodic and less complex
than real-world textures. Moreover, models trained exclusively
on digitally generated signals may overfit to the specific char-
acteristics of the rendering of the specific friction modulation
device that is used and generalize poorly to other haptic
display technologies.

5) Model Efficiency: Our results indicate that the model
is well-suited for real-time inference. As shown in Figure 6,
inference times remain consistently under one second when
using fewer than 50 diffusion steps. Notably, with the use of a
velocity-based diffusion objective, reconstruction performance
does not increase beyond approximately 20 inference steps,
suggesting that low step counts are sufficient for real-time
deployment while maintaining good performance.

This efficiency opens the possibility for real-time texture
generation conditioned on interaction parameters, such as
scanning speed and applied force. Such an application would
require the model to adapt texture outputs dynamically via
injection mechanisms. However, realizing this functionality
would necessitate a substantially larger dataset, compris-
ing a wide range of texture signals recorded under diverse
force–velocity conditions to ensure sufficient coverage of the
interaction parameter space.

In terms of training efficiency, the model demonstrates
fast convergence, with 40 training epochs on the full dataset
completing in under 12 hours. Nonetheless, due to time
constraints, we were unable to perform an exhaustive hyper-
parameter search across all components of the architecture.
A comprehensive exploration of the model’s hyperparameter
landscape remains an important direction for future work.

6) Human Validation: An essential direction for future
work is the empirical validation of the model using human
participants. Since the model operates within a subjective
perceptual space, its effectiveness cannot be fully assessed
without relying on human perception. Objective metrics alone
are insufficient to determine whether the generated textures
correspond to the intended psychophysical ratings, since we
are using a machine learning model to find correlations that
we don’t know of.

In the present work, we chose not to include a user study.
This decision was based on the fact that the current model
architecture and training data require further refinement to
ensure that perceptual ratings have a clear and consistent
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influence on the generated textures. Currently, the dataset
lacks the consistency and balance necessary to reliably support
perceptual validation.

Informal experimentation using an electrovibration display
revealed that differences in roughness were sometimes percep-
tible across generated textures. However, variations along the
other perceptual dimensions were often difficult to distinguish,
and small to medium changes in input ratings did not consis-
tently translate into noticeable perceptual differences. These
findings highlight the need for an improved training dataset
and more precise control over the texture generation before
formal perceptual studies can be conducted with confidence.

VI. CONCLUSIONS

We presented DreamTexture, a two-stage latent diffusion
model designed to generate tactile texture signals conditioned
on perceptual descriptors in psychophysical space. By leverag-
ing a modular architecture, DreamTexture effectively bridges
subjective human language and haptic signal generation, en-
abling real-time synthesis of textures that reflect perceptual
qualities such as roughness, bumpiness, and slipperiness.

Our evaluation demonstrates that diffusion models are well-
suited for modeling tactile signals, achieving low reconstruc-
tion errors and good qualitative results. These results indicate
that diffusion-based methods can effectively capture the com-
plex structure of real-world texture data.

Our analysis further reveals that the model exhibits some
responsiveness to variations in psychophysical input, with
changes in the perceptual descriptors resulting in measurable
differences in the generated textures. However, this effect
remains limited, likely due to constraints in the dataset,
including correlated ratings, conflicting ratings, and the lack
of direct correspondence between signal-recording and rating
participants.

In terms of practical deployment, the model performs real-
time inference on consumer-grade hardware, with fast sam-
pling enabled by DDIM and an efficient decoding pipeline.
This positions DreamTexture as a viable solution for inter-
active applications such as haptic prototyping and texture
authoring.

While as discussed in previous sections, some challenges
remain, the proposed architecture lays a foundation for future
advances, such as more expressive conditioning schemes,
adaptive user-in-the-loop feedback, broader compatibility with
tactile rendering platforms, and user studies.

Overall, DreamTexture advances the field of generative hap-
tics by integrating psychophysical understanding with state-
of-the-art generative modeling, paving the way toward more
intuitive, personalized, and scalable tactile content creation.
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A
Detailed Model Architecture

This appendix contains all of the parameters and the exact layers of the models we trained and used
to generate the results found in this paper.

LCTG Architecture
Mel-Spectrogram Conversion

• Mel spectrogram settings:

– Number of mel channels: 64
– Mel sample rate: 10,000 Hz
– Log normalization: enabled

• FFT settings:

– FFT size: 1024
– Hop length: 256
– Window length: 1024

• Other options:

– Center waveform before FFT: disabled
– Normalize waveform: disabled
– Normalize log-mel: disabled

Encoder
• Encoder settings:

– Input channels: 512
– Output channels: 64 (Reduced to this number of channels in the final layer)
– Channel multipliers: 1,1 (This means there are two sets of convolutions, each multiplying
the number of channels by 1 in total)

– Downscaling factor: 2
– Number of convolution blocks: 12
– Bottleneck activation: Tanh

UNet
• UNet settings:

– Latent injection depth: 6 (This is the layer(s) at which conditioning happens)
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– Channels per level: 8, 32, 64, 128, 256, 512, 1024 (total layers = 7)
– Downscaling factors per level: 1, 4, 4, 4, 2, 2, 2 (Downscaling of the data length)
– Number of blocks per level: 1, 2, 2, 2, 2, 4, 4 (Amount of convolutional blocks at each level,
stride depends on downscaling factor)

DALE Architecture
U-Net settings:

• U-Net settings:

– Input channels: 64 (must match the latent representation)
– Channels per layer: 64, 128, 256, 512, 1024 (total layers = 5)
– Downscaling factors per layer: 1, 1, 2, 2, 2
– Number of blocks per layer: 1, 2, 4, 4, 4
– Attention enabled on layers: 0, 0, 1, 1, 1 (0 is disabled, 1 is enabled)
– Cross-attention enabled on layers: 1, 0, 1, 1, 1
– Attention heads: 8
– Features per attention layer: 64



B
(Hyper)parameter selection

LCTG parameters
The encoder parameters were estimated based on [2]. The UNet parameters were set based onmanual
trial-and-error, considering the computational limitations while maximizing the performance. Training
hyperparameters were determined through hyperparameter optimization, which involved fully training
the model multiple times (40 epochs) and comparing validation losses for each run, as shown in Ta-
ble B.1. The final weights were based on the run with the best final validation loss. The following
parameters were chosen:

• learning rate = 1e-4; Chosen from the range [1e-5,1e-2]
• weight_decay = 0; Chosen from range [0,1e-3]
• batch_size = 48; Chosen from options [16,32,48,64,128]
• optimizer = Adam; Chosen from options [Adam, AdamW]

Table B.1: Hyperparameters tried in each of the ten runs and the validation loss achieved. This loss is the RMSE for a singular
diffusion step. Run 9 had the best performance.

Run Learning Rate Weight Decay Batch Size Optimizer Validation Loss
1 1e−5 0 128 Adam 0.143
2 1e−5 0 64 Adam 0.089
3 1e−4 1e−3 48 Adam 0.098
4 1e−2 1e−2 48 Adam 0.105
5 1e−3 1e−2 48 AdamW 0.114
6 1e−3 0 48 AdamW 0.099
7 1e−4 1e−3 16 Adam 0.089
8 1e−4 0 32 Adam 0.094
9 1e−4 0 48 Adam 0.086
10 1e−4 0 48 AdamW 0.092

DALE parameters:
The UNet parameters were set based on manual trial-and-error, considering the computational limita-
tions while maximizing the performance. The hyperparameters we chose were equal to those for the
LCTG.
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C
Distribution of SENS3 Database

This appendix shows a more detailed analysis of the SENS3 database [1], importantly the average
texture rating for each texture in the input space and the distribution of individual ratings per texture.

In the SENS3 database, the textures are distributed as follows:

• Textures 1-12: Fabric
• Textures 13-16: Sandpaper
• Textures 17-20: Vinyl
• Textures 21-22: Plastic
• Textures 23-24: Leather
• Texture 25: Rubber
• Textures 26-31: Paper
• Textures 32-36: Metal
• Textures 37-42: Wood
• Textures 43-50: Foam

Figures C.1, and C.2 illustrate the distribution of all 50 textures from the SENS3 database across pairs of
psychophysical axes (bumpiness vs roughness is present in the paper’s text). Each plot corresponds
to a unique combination of two axes, showing how the textures are positioned within the selected
dimensions of the psychophysical space.

For each texture, we quantified the variability in participant ratings across the three perceptual dimen-
sions. These inter-participant standard deviations, visualized in Figure C.3, reflect the degree of con-
sensus or disagreement among raters. Notably, most textures exhibit considerable variability in at least
one dimension, with standard deviations frequently exceeding half a normalized rating unit (which is
expressed in standard deviations of inter-participant ratings for that particular dimension).
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Figure C.1: Each of the fifty textures’ locations on the bumpiness and slipperiness axes. Each dot represents one texture and
is labeled with the number it has in the SENS3 catalog.

Figure C.2: Each of the fifty textures’ locations on the roughness and slipperiness axes. Each dot represents one texture and
is labeled with the number it has in the SENS3 catalog.
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Figure C.3: Standard deviation of participant ratings for each texture across the three perceptual dimensions. Red indicates
greater variability, suggesting higher disagreement among participants, while yellow indicates greater consensus. All values

are based on normalized ratings.



D
More Inference Results

This appendix presents a selection of textures generated by the model for various input rating vectors.
For each rating configuration, we display three generated textures to illustrate the model’s variability in
output given identical inputs, apart from the noise seed. The selected rating vectors include all cases
where one adjective is set to either -1.0 or +1.0, while the other two are held at 0.0. Additionally, we
include one case where all three adjectives are set to 0.0. This selection covers a representative range
of the input space while keeping the number of signals manageable for visual inspection. Signals are
shown in Figures D.1 and D.2.
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Figure D.1: Texture signals generated by our full inference pipeline. The input rating values are shown above the generated
textures.
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Figure D.2: Texture signals generated by our full inference pipeline. The input rating values are shown above the generated
textures.
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