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Foreword
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1
Summary

Many cardiovascular problems can be solved, or at least alleviated, with very cheap and
low-risk medicine (Braunschweig et al., 2011; Weinstein and Stason, 1985). If we can detect
such problems early, we can increase the average life-expectance significantly. The most
comprehensive detection method is ultrasound. However, ultrasound imaging is a complex
job, and sonographers are scarce (Craig, 2003; Bowman et al., 2019).

Figure 1.1: Render of the BedBasedEcho
prototype

The BedBasedEcho could be the solution to this
problem. It is a robotic system,

. If the BedBasedEcho would be
provided with software to autonomously gather im-
ages of the heart, we can alleviate the pressure cur-
rently exerted on sonographers.

The aim of this project is to develop a start-to-finish
process that entails gathering data for, training, and
deploying an AI model. This pipeline will be used to
train the robot to find one specific view. The deploy-
ment of the AI model would point to where the robot should move the echo probe, accord-
ing to the output images of the probe. This would eventually lead to the probe moving to
the optimal position for that specific view of the heart.

To realise these three components in one project, the team has followed a weekly workflow,
with each week containing two smaller sprints. The team met on Mondays and Thursdays,
and kept a continuous backlog of features. These features were extracted from the project
requirements, and were often assigned to sub-groups of the team.

As a result of this workflow, the team was able to realise all previously stated goals. Ap-
plying the developed process on the Parasternal Long Axis view (PLAX), yielded promising
results. When the probe was position high above the PLAX, the trained model was able to
autonomously move towards the correct view1.

1https://youtu.be/WZ7-pRN4qHY
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2
Introduction

To give the reader the necessary background to understand this report, we will first give an
introduction on multiple topics. This includes a brief medical context, the motivation and
ultimate aim of the BedBasedEcho, the scope of the project, and finally an overview of the
report.

2.1. Medical Context
As this project ultimately revolves around a medical topic, it is prudent to start by explain-
ing the medical terminology and background.

2.1.1. Physiology
The heart contains 4 chambers, as can be seen in figure 2.1.

Figure 2.1: Cross-section of the heart (Cleveland
Clinic)

The topic at hand is "cardiac echos": videos
of the heart, taken by a ultrasound probe, in a
process also known as sonography. The probe
produces sound waves, which enter the body
and reflect back when hitting different materi-
als. The type of the material determines the
strength of the reflection, which is seen in the
echo view as a brighter or darker spot. No-
tably, blood reflects very little, while muscle re-
flects more. This means that the structure of the
heart (being comprised largely of muscle) can
be clearly shown using sonography. An echo
probe can capture these "frames" quickly, at a
rate of more than 30 per second. The result is
a near-live video of the heart in motion, which
lets echocardiographers diagnose complex is-

sues of the heart.

An echo probe takes a 2D slice of whatever it is looking at, in a fan-like pattern. This fan can
be seen as protruding from the head of the probe, slicing into the body. To look at a different

2
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part of the heart, the probe can be rotated on any axis, or moved laterally. In echocardio-
graphy there are a number of "views": these are fixed positions relative to the heart, that
sonographers can consistently find and use to make a diagnosis (Landzaat, 2020). For in-
stance, the apical 4-chamber view (A4C) looks at the heart from below, through the apex,
showing all 4 chambers of the heart. Another view discussed in this project is the paraster-
nal long axis view (PLAX). To reach this view, one places the probe perpendicular to the
center of the chest (or sternum), and rotates it such that 2 chambers are seen: the left ven-
tricle and the left atrium (see figure 2.1).

2.1.2. Quick-look echos
Sonographers often make so called "quick-look echos". These involve making images of
the heart according to the aforementioned standard views. While there are fourteen of
such views in total, a quick-look echo usually only needs five of them. Multiple views are
required to be able to identify most common issues.

During a quick-look echo, a sonographer will position the probe such that the display will
show one of the required views. When the display shows the correct image, the sonographer
will record a short video to show the motion of the heart. The sonographer will repeat this
process for each of the required views. The result that will be analyzed by the cardiologist
will be a set of short videos, each showing one view.

2.2. Motivation
In the Netherlands, roughly 29 percent of 140.000 deaths in 2019 are caused by cardiovas-
cular disease. Many cardiovascular problems can be solved, or at least alleviated, with very
cheap and low-risk medicine. If we can detect such problems early, we can increase the
average life-expectancy significantly.

There is a plethora of cardiographic tools available, some of the more well known being:
ECG, MRI and most importantly, ultrasound. Ultrasound is one of the most useful tools
for cardiologists. It provides them with an actual image of the inside workings of the heart,
while at a fraction of the cost of other visual methods like MRI.

The one downside of ultrasound, is that it takes skilled experts to extract the important de-
tails from the heart. For example, in the Reinier de Graaf Hospital in Delft, Netherlands, in
total, five sonographers are employed. These five are responsible for making 10,000 high-
end ultrasound recordings each year. If we could find some way to automate this process,
cardiologists can elect to use echocardiography more freely, and therefore detect cardio-
vascular problems earlier.

The BedBasedEcho (BBE) is a prototype robot that attempts to automate "quick-look" ul-
trasound recording.

.
. Using the BBE we might be able to automate quick-look echos. A side

facing image of the BBE can be found in figure 1.1.
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2.3. Problem Definition
When a patient with suspected heart issues enters the hospital, a cardiographer ideally
makes a quick-look echo to find out if there is something wrong with the heart. Unfortu-
nately, due to the limited number of sonographers, this is not always possible. Instead, car-
diographers have to resort to the easier, but less comprehensive ECG scans instead (Ahmed,
2020). The goal of the BedBasedEcho is therefore to automate quick-look echos.

2.3.1. Automation
Automating quick-look echos would allow more patients to receive such a treatment, while
freeing up time for the sonographers to do more complex echos.

When the patient is laid down on the BBE, the software should make a full quick-look echo,
without any human intervention. This means that the probe should move towards the cor-
rect position for each of the required views, and save a short video. When the system has
imaged all the required views, it should move the probe to a resting position and allow the
patient to get up, all without human interaction.

2.4. Problem Analysis
Creating the BedBasedEcho is a large project, possibly spanning multiple years of devel-
opment and testing. The time allotted to this project is merely ten weeks. Therefore, the
scope of this project is limited compared to that of the entire BedBasedEcho. Luckily, a sub-
stantial part of the project is already in the prototyping stage. In this section, we will first
explain what has already been done, followed by what we will do, and what is left as future
work.

2.4.1. Current state
The hardware side of the BedBasedEcho is in an advanced stage.

. These
mechanical components can be controlled in software. There are still improvements to be
made, but the functionality is sufficient for what we need to do with it.

The available scanning software for the BBE is a lot more limited. It is already capable of
finding an apical 4-chamber view with very limited success. The search algorithm imple-
mented is based on a heuristic. It estimates the quality of the current image using a neu-
ral network, and switches between searching modes like: "lawnmower", "angle-vary", and
"gray-scale" based on this estimation.

2.4.2. Requirements
In this project, we will write software that finds the parasternal long axis view autonomously.
Our software should be written such that it is usable in the final product. This requires that
the software is easy to extend and maintain. It should also be resilient to errors, such that
no manual intervention is required under regular conditions. Explanations for these design
goals can be found in appendix section E.1.4.

To find the parasternal long axis view, we will train a network that is able to de-
termine the desired direction given a short video fragment recorded by the echo-probe.
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The algorithm will do this by outputting a vector pointing in the direction of the PLAX
view.

Our requirements have slightly changed since the research report, reasons for this can be
found in chapter 4. Also, these requirements are not prioritised since they all depend on the
success of their predecessors (Non-essential requirements can be found in section E.1.5).
The extracted requirements (with changes highlighted in bold) are as follows:

• The software must be able to read echo images from the probe on command, using
the Software Development Kit provided by , manufacturer of the echo probe.

• The algorithm must generate instructions that would move the probe towards the
Parasternal Long-axis view.

• There must be a way to record the position and angle of the probe as it is suspended
in the BBE.

• There must be a way to record the aforementioned data in conjunction with echo im-
ages, such that the results are stored together in a synchronised fashion. This allows
them to be used as training data.

• The algorithm must have low enough latency to run in semi-real-time: it is allowable
that movement instructions sometimes stop for no more than 5 seconds to allow
processing of video data, such that the next movement may be determined.

• There must be an method of executing the trained algorithm, either simulated or
implemented in the real world, thereby visualising its behaviour.

These requirements for the algorithm can be divided into three categories corresponding
with the final three components of the system: data collection, network training and de-
ployment. Each category is dependant on the success of the previous category. In the fol-
lowing sections the specific requirements for each of the categories will be explained.

Data collection
To train our algorithm, we need echo data combined with the position of the echo probe.
During the research phase, we found no data sets supplying both properties. This requires
us to collect our own data. To do that, we must have the ability to record and store echo
images, and we must have the ability to record the position of the echo probe. Finally, we
must be able to link both recordings.

Usually, a neural network requires a lot of data to train. Because of this, one of the goals is
to be able to gather training data in bulk, and with high accuracy. It should be convenient
for an experienced sonographer to gather new data for training the network.

Network training
The final product is a neural network trained in TensorFlow (TensorFlow, 2020) that takes
a series of echo images, and produces a vector indicating the direction of the parasternal
long axis view. The final product should run on a Ryzen 3200G CPU with eight gigabyte
of memory, so it should not be too resource intensive. To label the model performance as
successful, it must find the correct view within three minutes in 80% of the cases on the sup-
plied hardware. It must do so without pausing for more than five seconds. The algorithm
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should also provide some way to identify when the optimal parasternal long axis view is
reached. The algorithm could be optimised such that the movement instructions run real-
time. That is to say, the instructions are generated with such low latency that movement
never has to stop.

During this project, we will only focus on probe movement towards the parasternal long
axis view. Other views will not be considered. The algorithm will use plain echo images
only, and will not be able to change to colour doppler mode when the correct view is
reached. It will not set color boxes around key features of the image either. Lastly, the
algorithm is only required to support Windows 10. No explicit support for other operating
systems will be given.

Deployment
In the end, the algorithm defined above should be able to control the probe

. To achieve this, the deployment part of the software should support sending
images captured by the probe to the neural network. These images should be combined
with position data received from the hardware in the BBE. The network will then process
that data and give a vector as output. That vector should be converted to movement com-
mands for . That way, could move towards the correct parasternal
long axis view.

2.5. Outline of the report
We will start by discussing the design of the final solution, after this we will elaborate on the
implementation of this design. Because the project was volatile in nature (It required many
design revisions to get right), we would also like to highlight the process that has taken the
team from the start to the final design. After this, we will show the conclusions that can be
taken from our research and design, and finally we will discuss our future recommenda-
tions and ethical considerations.



3
Design

In this chapter, we will discuss the final design of each of the three components of the
project, in the logical order of data flow. However, to grasp the physical layout of these
components, we will first quickly discuss the physical architecture.

Physical Architecture
The architecture is comprised of two separate components. One component is built around
the Robot Operating System (ROS) framework, which on the BedBasedEcho (BBE). The
other component is built around a Software Development Kit (SDK) by , which
is needed to interact with the probe.

Since ROS only runs on Linux systems, and the drivers are written only for
32-bit Windows, the only option for now is to use two machines: The aforementioned BBE
and a second machine running Windows 10. Via an Ethernet cable, these two systems are
connected and are able to share information.

The Windows machine is responsible for communicating with the probe. For this, it needs
to have the drivers installed. The probe can be connected using a simple USB
cable. The Windows machine will also produce predictions using a pre-trained TensorFlow
model. It will try to do this at the highest rate possible using an Intel i7 7700HQ CPU.

The more complicated physical component is embedded into the BBE. It is responsible
for recording positional, angular and temporal data. The positional and angular data is
needed to calculate a vector to the desired position for each timestamp. This conversion is
discussed further in section 3.1.7.2. Temporal data is needed to sync the related positional
and angular data with the captured images.

Later on in the product pipeline, when the network has been trained to provide predic-
tions, the BBE also functions as an interpreter for the generated predictions. This element
is elaborated on in section 3.3.4.

3.1. Data Collection
Before we could train any neural network, we needed to collect a large amount of accurate
training data. Notably, this data collection is not only about volume and accuracy, but

7
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also ease of use: one of the core design goals of the project is to make collecting new data
in the future simple for any sonographer, even if they are otherwise unfamiliar with the
project.

3.1.1. Design considerations
Data labelling
The trained network expects to receive a still frame, or multiple frames, from the echo
probe. In return, it outputs a vector to where it thinks the heart is, in both translation and
rotation. For instance, if the probe is placed too high on the chest, we want the network to
output a vector pointing down. In the final product, the robot would simply have to follow
this vector to reach the heart.

To train this behaviour, the training data should consist of frame-by-frame echo images,
where each image has a label: this label is the exact vector pointing towards the target view,
at the instant the image was taken.

Core problems
Any proposed solution to gather these images and labels would have to address a number
of points:

• How can the probe be moved to the desired view?

• How can the images be read from the probe? As mentioned, this can not be done by
the BBE robot, as its operating system is incompatible with the SDK.

• How can we read out the position of the probe on demand?

• How can the position and the image be synchronised in time?

• How do we ensure the collected data is diverse, i.e. that it covers the entire heart and
its surroundings?

Data gathering concept
To answer these questions, multiple options were explored. Those that did not emerge
successful have been documented in section 4.2. The method we settled on uses the BBE
robot itself: the echo probe is mounted into the BBE, which moves it autonomously and
tracks the position of the probe at every moment. This solves the problem of finding the
probe’s position accurately.

A controller is attached to the BBE, which can be used to adjust all 6 move-
ment axes independently. This addresses how the correct view can be reached in the first
place.

As mentioned, a second computer, running Windows, is connected to the echo probe.
When a recording is started, it stores images continuously. To aid navigation, it always
displays the latest echo frame in a GUI.

Lastly, both these computers use a combination of internal clocks and ethernet communi-
cation to synchronise when images and positions are read out. This solves the second-to-
last requirement.
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Figure 3.1: Component Diagram of the Data Collection Component

The basic idea is that we lie a member of the team on the BBE. A sonographer will then
use the controller to move the probe towards the target view, using the live echo image
to navigate. Then, we will make the probe move randomly around the heart, and collect
images and positions during this random movement. Over a longer period of time, the
random movement should cover the area around the target view, giving us a diverse data-
set.

To facilitate this data collection, we have designed a software architecture which automat-
ically exports our needed data. An overview of the components it contains and how those
components interact with each other can be found in figure 3.1. Furthermore, we will de-
scribe each of the relevant components in their own separate section

3.1.2. Data Collection Controller
The Data Collection Controller (DCC) is the component responsible for controlling the BBE
robot during data collection. The core behaviour when collecting data revolves around
knowing our goal position (a good view of the heart), and then moving to points away from
this position, while recording where we are and what this position looks like on the echo
probe.

Design Considerations
The DCC should operate in "cycles", where each cycle produces a series of labelled images.
Before every cycle, the probe must already be positioned at the optimal position for the de-
sired view. When the cycle starts, it starts recording positional data, and tells the Windows
machine to start recording image data. It then finds a next random position to move to us-
ing a "random walker" (a component described in section 3.1.3). While recording, the robot
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should continue moving randomly around the heart, until an interrupt is issued.

When interrupted, the robot should move back to the optimal position, and stop recording
image and positional data when it arrives. This recording is then written to one separate
file, and the robot is immediately ready to start recording again. This design makes it possi-
ble to create ’checkpoints’ in the data, so that when something goes wrong, we do not lose
all previous data.

With the "checkpointing" system, it is also possible to adjust what the robot sees as the
"optimal" position. For instance, if the person on the bed moved a bit, or if we decide we
can improve the view somewhat with manual input, this respite between the recordings can
be used for adjustments with the dual-axis controller (see figure 3.1). When the movement
cycle is started anew, the adjusted position will be used as the goal.

A visualisation of the complete cycle can be found in figure 3.2.

Figure 3.2: State machine diagram of the data collection cycle

Implementation
The implementation of the component above was straightforward in terms of behaviour.
The DCC would have to be encapsulated as a ROS node, which subscribes to topics and can
publish commands.

To illustrate an issue in implementation that arose due to ROS, we will elaborate on how
the BBE uses it. ROS, in combination with Python, is used to parse input, make decisions,
and physically move the robot arm. For our purposes, this poses a problem: ROS is near
impossible to install on Windows, and requires Python 2 (which is deprecated in favour of
Python 3) to communicate with directly. Moreover, it is unlikely that ROS-dependent code
could run in a CI setting. The existing bed code uses Python 2 and basic ROS, thereby sac-
rificing CI and testability. However, if at all possible our additional code should be written
in Python 3, avoiding the issues mentioned above. What we needed for this was a way to
separate our components from the BedBasedEcho, while retaining access to ROS.

The solution to this problem came in the form of roslibpy. Roslibpy is a bridging library
built for Python 3, which allows abstracting a ROS installation behind socket calls. Effec-
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tively, this meant our code could run in Python 3, run in any CI scenario, and be testable
on systems that did not even have ROS installed.

Very briefly, roslibpy accomplishes this by establishing socket-based links to the services
and topics provided by a ROS installation. This allows it to communicate with other ROS
nodes as intended, while running on a completely different version of the Python language.
It is testable by mocking these linking calls away. You can read the call list of these mocks
to determine how the roslibpy node behaves.

The DCC can be seen as a "mock" ROS node, which in fact uses roslibpy to communicate
with the rest of the BBE. The same was done for all other major components on the bed,
such as the Data Writer (section 3.1.4) and the Autonomous Controllers (section 3.3.4).

3.1.3. Random Walker
The Random Walker is a sub-component used by the DCC to generate movement over
time.

Design Considerations
The most important feature of the random walker is simply that it should "walk". That is,
the movement should be coherent (not too jerky), but also not too predictable.

Coherence is important for training recurrent networks: if consecutive frames do not move
in about the same direction, it becomes very hard for a network that takes time into account
to give a meaningful prediction

On the other hand, movement should not be in perfectly straight lines. A recurrent neural
network could infer the direction of travel from a series of images, and simply output that
as the direction to move in.

Lastly, movement should be limited in some sense, such that the walker does not arbitrarily
go anywhere on the body: the heart is still the centre of attention.

The desired behaviour is one where the walker circles the heart randomly, but is ’pulled’
harder towards the optimal position, the further away from the optimal position it gets.

As an added bonus, we value exactly perfect views, not just views that are quite close but
just barely not there. Hence, the walker should pass straight through the optimal position
whenever it comes close, instead of barely missing it.

The walker should move in this way on both the translational and rotational axes.

Implementation
To adhere to these design choices, we opted for a random heading change system. To this
end, the walker was given a heading, in the form of an angle, and a continuous change
in this heading. The change in heading is adjusted for every movement step, leading to
coherent left or right turns. Furthermore, the change in heading is biased, such that it
prefers to adjust left if that is the direction of the optimal position, or vice versa. This effect
becomes stronger the further the walker is from the optimal position.

Furthermore, this change in angle also decays with 20% each cycle, which facilitates a nat-
ural bias back to 0°change (moving straight). Also, for each cycle, we check if the walker is
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within a certain radius and angle threshold to the optimal position. If it is, we set its head-
ing to point exactly to the optimal position, causing it to ’snap’ to it, and to exactly cross
it.

Figure 3.3: Visualisation of the random walker around
an optimal position

Figure 3.4: Visualisation of the randomly varied
rotational angles

A visualisation of this walker can be found
in figure 3.3. Note that over a longer ran-
dom walk, most areas are explored at least
once, and that a lot more data is gathered
near the center. Also note that very close to
the center, the paths are straight, and pass
through a single point: this is the snap-
ping behaviour mentioned above: it en-
sures there are many data points of a move-
ment towards the perfect view.

Besides altering the position each cycle, all
three rotational axes should be varied in a
similar fashion. For this purpose, a similar
velocity based system was implemented.
This time, each cycle, all angles are updated
according to their own velocities. These
velocities also get randomly updated and
decayed each cycle. An example of these
randomly generated angle changes can be
found in figure 3.4.
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3.1.4. Data Writer
The data writer is a separate roslibpy node that is responsible for writing the positional and
angular data to disk. It receives this information via a separate ROS topic that is published
to whenever a move command is made on the hardware. It also stores the timestamp at that
instant. This is needed so we can synchronise the position data with the echo images after
data collection is completed (the images are stored locally on the Windows computer, with
their own timestamps). The chosen data format is a file, with the timestamp stored n
nanoseconds, and all six axes stored separately as floats

3.1.5. Graphical User Interface
In order to also provide meaningful interaction with the end user, a graphical user inter-
face is a must. The most important functions of this interface would be viewing the ultra-
sound image coming from the probe, and controlling ultrasound settings such as depth,
frequency and gain. Lastly, the user should be able to change the save location of the gath-
ered data.

The example code provided by contained a rudimentary GUI written in the
. Due to the complexity of extending a form like this, we

decided to rewrite this form in C# using the library, allowing us to make
use of the managed aspect of this language. This gave us access to a more robust what-
you-see-is-what-you-get form designer and event functionality, speeding up development
significantly.

Outside of the previously mentioned fundamentals, we have also added a control to enable
a built-in despeckling algorithm, named .

Figure 3.5: The Graphical User Interface
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3.1.6. Image Capturing
During a data gathering session, we want to store the images recorded by the probe to
a hard-drive. To make that possible, three components are required. Since recording is
started and stopped by user input on the BedBasedEcho, the first component is one that
receives messages in some way. Next, a separate component should gather images from
the echo probe. It passes these to a third component, which stores them on disk. In the
following sections, each component is described in detail.

Socket communication and recordings
To enable communication between the Windows machine and the BBE, the choice was
made for a socket server over ethernet. On the Windows side, this required a socket server
that would listen for incoming connections. The socket server uses blocking IO, so we run
it in a separate thread to prevent interference with the other components.

When the bed component starts a cycle as described in section 3.1.7, the bed will send a
start message to the socket server. That message contains a unique recording ID and a start
time. These will be sent to a property manager, responsible for maintaining recording state
and generating file-names. Upon receiving a start message, the property manager will start
a stopwatch with the initial time set to the start time in the message.

The property manager generates file paths for the recorded images, which are stored in
a folder corresponding with the cycle ID. The filename is simply the current time at the
moment of recording. When a cycle ends, the BBE sends a stop message with the same
ID as the start message. This allows the protocol to support multiple parallel recordings,
although this does not occur in the current implementation. The property manager will
stop a running recording if it receives a stop message with the ID of the current recording.
All other stop messages are ignored.

Frame Saver
Our goal was to record the view of the probe at the highest frame-rate possible. The probe
doesn’t produce images with a consistent frame-rate, so setting a fixed frame-rate before-
hand could result in duplicated or missing frames. Instead, we opted for an event-based
method where the SDK would notify us when a new frame is ready. This allows for the
highest frame-rate without duplicates.

The SDK documentation provided a code sample for processing ultrasound im-
ages in real-time.

.
. We

extended the sample by additionally passing the image to a frame saver.

The frame saver will check the property manager to see whether a recording is in progress.
When we are recording, it will enqueue the image asynchronously, together with the file-
name generated by the property manager, for later processing. The reason for this is that
the SDK will only start recording the next frame after all callbacks have returned. Since the
primary design goal is the highest possible frame rate, the majority of the processing work
was moved outside of the callback function.
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Image Processor
The image processor is the component responsible for actually saving the images to the
disk. It listens on its own thread for tasks added to a queue. When an image-name pair is
received, the image will be saved to a file with the specified name. We write to disk on a
separate thread, since it is a blocking operation.

The frame saver will still be able to write images to the queue when the image processor is
blocked. The queue will act as a buffer when the image processor temporarily can’t keep
up with the probe recording speed. The buffering should not take too long, because it is
still running in a 32 bit process, which has a maximum memory limit of about 2 GB. The
external disk we are using is able to keep up with the frame-rate of the probe, so for us this
is not a problem. We do have to ensure that the disk is spinning when we start recording,
since the disk’s startup time exceeds the time we can buffer.

3.1.7. Usage in practice
This section will describe the workflow of a data gathering session in detail. A data gather-
ing session usually consists of three parts: setup, random walk cycles, and post-processing.

Setup
In terms of setup, a number of steps have to be taken.

• An ethernet connection between the Windows machine and the BBE.

• A test subject on the bed with their optimal position roughly in the middle of the hole
in the BBE.

• A started socket server on the Windows machine.

• The probe positioned on the chest of the subject, such that the image is perfect

When all these components are ready, we are ready to start our data collection session. This
was described in more detail in section 3.1.2.

Post-cycle
After a sufficient number of cycles are recorded, the data has to be post-processed into a
form that is usable for the network to train on. For this, a process called vector interpolation
is applied to each frame of video.

The goal of vector interpolation centres on finding a "label" for a given frame of echo video.
When this frame was taken, the probe was at a specific position relative to the goal. The
vector from this position to the goal is the label for the image, as this is also what we want
the network to produce as output: given an image, where do we have to go to find the
heart? The problem is that there are comparatively few positional data-points saved on the
bed: this only happens if the probe gets a new target to move to, which it does in a straight
line.

Hence, the vector interpolation component first takes the instant at which the frame was
captured, and looks for the nearest 2 positions that were saved: the one before, and the one
after. Because we know the time of these 2 positions, and that the robot moves at a constant
speed in a straight line, we can linearly interpolate the exact position.
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After this, we calculate the vector from this position to the final stored position, which is
defined to be the optimal goal that we want to move towards (every clip ends on the heart).
Once we have this data, we are ready to proceed to the next component, the learning.

3.2. Machine Learning
In this section, the software components associated with our use of machine learning are
described. Even though this project only considers one echo view, the machine learning
setup should support as many as needed. Hence, modularity is important. This caused us
to split the software architecture into two main logic components: one to transform any
training data into an internally consistent format, and one to train the network based on
this data. Note that this section does not extensively cover the machine learning models
that were tried. Instead, these are described individually in appendix C.

To allow for modularity, an interface between the data gathering component and the ma-
chine learning architecture is necessary. This interface will be responsible for transforming
the data format. Its output should be flexible, as different models could receive different
kinds of labels. As the same data might be used to train multiple models, some kind of stor-
age is necessary in between these components as well. For an overview of the component
structure, see figure 3.6.

Figure 3.6: Component Diagram of the Machine Learning architecture
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3.2.1. Data format/storage
The machine learning component should be compatible with multiple data sources. To
allow this, we put restrictions on the format the data should be in. We also need to make
sure that it supports adding other information (e.g. labels) and that it properly translates
the data between the components.

Design considerations
The data storage and format have a few functional requirements:

• It should allow for storing large binary files, as the majority of the data stored will be
image files.

• It should allow for relations between the image files and some label data, which can
take multiple forms.

• Data should be separable based on specific attributes, since more views might be
added in the future.

• It should allow for multiple learning strategies (e.g. regression, multi-class classifica-
tion, multi-label classification).

A few options have been considered for the exact storage solution and format. A standard
solution used within the machine learning community is allowing the directory structure
to dictate the labels, i.e. every image with label X should be stored in a folder called X .
While this is a viable strategy for single-label classification problems, it is flawed for re-
gression problems, since labels are continuous, which will result in the data being overly
segmented.

Another option would be to encode label information within the file name. This allows for
the labels to support multiple types and amounts. Some issues, however, are that there will
a small complexity cost, as the format of the labels is not immediately clear. Furthermore,
issues arise regarding extensibility and consistency, due to it being difficult to constrain the
exact format image names should have. Storing label data in the image name also comes
with a small computational cost for retrieving, validating and parsing.

Two more options have been considered, which were based on popular database storage
schemas. The first was document-based storage. This allows for easy separation (using col-
lections) and extensible and flexible labels. It also allows for data analysis using multiple
documents. However, the flexibility that document-based storage has, allows for separate
documents to have different structures. While the flexibility of the storage solution is nec-
essary to allow for new strategies and different kinds of data, samples do need to have the
same labels in order to train a model with them. In a sense, this option is too flexible.

Finally we considered a relation-based solution. This allows for enough flexibility to expand
the data for newer strategies, by adding new relations, as well as good separation between
different relations. The largest downside is the difficulty to store binary data within a rela-
tion. However, due to how closely a relational based schema reflects the relation between
an image and corresponding label data, it was the most appropriate solution.

Instead of storing images directly within the relational schema, we opted to store a refer-
ence to the image, saving the image itself to a file system.
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Besides the image reference itself and the labels, there was also need to store extra informa-
tion about the image, as they might belong to specific sessions, or are captured in a specific
order. This needs to be stored alongside the image.

Implementation
As the current data only has a single relation, i mag e → l abel s, we opted to use a
to store these relations instead of setting up . The functionality
that offers would be largely unused, as there is no need to serve multiple
clients concurrently, nor are we cross-referencing information. The separation is provided
by simply creating different for each group, as it is not possible for a single sample
to belong to multiple groups (in case of views and similar criteria). The exact relation used
for each image is . We opted to use a natural key
instead of a surrogate key, as the uniqueness of the data is guaranteed based on the

. We also do not need the performance boost of using smaller keys, as cross-
referencing and selection are seldom performed.

. The validity of the file should be checked during the creation or insertion of
the data, this allows us to prevent explicit checks during the reading of the labels.

3.2.2. Transforming to the internal format
The data transformation component should serve as a black box that interfaces between
the data collection component and the machine learning model, by transforming the out-
put from the data collection component into the internally consistent format.

Design considerations
This conversion process exists out of three major steps:

1. Parse the data from the collection component.

2. Transform the parsed data.

3. Write the data in the correct format to the store.

However, as the exact format to store the data in depends on the strategy for the learning
architecture, the transformations should also be modular. We therefore provide an inter-
changeable and composable transformation component. The parsing and writing should
be compatible with the majority of possible transformations. Also, they should not need
to change based on the exact transformation used. Parsing the data depends only on the
format provided by the data collection architecture and provides a consistent interface for
the transformations. Writing the data to the store is slightly more complex, as this requires
the output to be flexible enough to allow for multiple possible results from the transforma-
tions.

Implementation
A generic transformation interface from which all classes can inherit was implemented,
the interface is set up in such a way that it both defines the output and the labels. The
label writer then combines those appropriately. Besides these, simple transforms and a
compose have been implemented. New transformations can be easily added, however, no
restrictions to the output and input has been explicitly made, so it is the responsibility of
the programmer to ensure the transformation can be composed.
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3.2.3. Training a convolutional model
The learning problem boils down to predicting the probe movement based on ultrasound
images. As it entails processing images, a convolutional neural network (CNN) seems most
appropriate. A few variants of CNN are used to further improve the accuracy of the predic-
tion. For the exact details on how these models have been created, see appendix C. Besides
the different model architectures, we also used two different approaches: multi-label clas-
sification and regression. For both approaches the model structure roughly remains similar
except the final layers of the network. The input, however, should stay consistent for each
network, as the data should follow the interface described in section 3.2.1.

Input layer
There are two variants of input layers that are needed, one which takes a sequence of im-
ages, and one that takes an individual image. This is to allow for both a recurrent variant as
well as a regular convolutional network. As the network itself should not be bound to the
exact resolution and color type of the image, these details can be changed without much
work.

Regression
Our problem fit naturally to a regression problem, as the movement of the probe is essen-
tially a 6 dimensional vector, with all values representing movement on a specific transla-
tional or rotational axis. However, it is difficult to compare different dimensional vectors,
as they might seemingly differ a lot. For example, there are different sets of rotations that
have, when combined, the same effect: 90 degrees pitch, 90 degrees roll and 90 degrees yaw
combined are equivalent to just 90 degrees roll. Hence, before using the regression data as
labels, we normalized the translational vector (consisting out of a x, y, z component), added
a distance value, and finally calculated a directional vector based on the Euler angles, using
(α as the yaw, β as the pitch, and γ as the roll:cos(α) −sin(α) 0

sin(α) cos(α) 0
0 0 1

 cos(β) 0 sin(β)
0 1 0

−sin(β) 0 cos(β)

1 0 0
0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)

1
0
0

 (3.1)

Classification
The natural representation of the problem needed some conversion in order to create a
classification problem from it. We decided to subdivide the translational and rotational
axis into bins. To do this, the network classifies the situation of each axis

and . This classification picks one of multiple bins: how
many of these bins are used drastically changes both the precision of the model, and the
training difficulty. For example, 2 bins implies a simple decision for one axis: "go left" or "go
right". 3 bins allows for a third choice, "no movement". Upping the bins to 5 provides more
granularity, allowing for "far left", "a little left", "no movement", "a little right", and "far
right". The number of bins is a trade-off between ease of training (few bins), and precision
of output (many bins).

As translational axes need more granularity we decided to use 5 bins for the -axis and
only 3 bins for the -axis. Furthermore, 3 more bins were created to classify the
distance to the desired position. For every axis, a single sample should only fit in exactly
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one bin, so for each sample and bin we use a one-hot encoding, to represent the label.
We use as our loss function, and also track the total accuracy of the
problem. For backpropagation we use a . For the final layer we
use a .

CNN with _______ _________ ______
We used a simple network consisting out of

the output is then fed through .
For the exact details, see appendix C. A small variation, while still using the same struc-
ture, . .

. Image feature extractors like ImageNet (Krizhevsky et al., 2017) and
SqueezeNet (Iandola et al., 2016) have been considered, as they either perform well accuracy-
wise or speed-wise.

CNN with ____ ______
Temporal data is relevant for detecting the position of the probe, as attributes like heart-
beats can contribute significantly to the prediction.

might boost accuracy. This would entail adding
. The

model would still need to
infer the correct labels.

The Pipeline
A single model is composed of at least an input layer, and

. However, the exact model should be flexible: the architecture
itself should allow for multiple variants, as that would ease the burden of trying different
approaches. We divided the training pipeline into multiple stages, each having their own
responsibility. A model has 4 components, a builder, a trainer, an oracle and a evaluator.
The builder is responsible for creating the exact structure of the model:

. All these attributes are
variable to a certain extent, while still being easily applicable to classifying ultrasound im-
ages. The trainer is responsible for the flow of the training process:

. The oracle is responsible for predicting specific im-
ages after the model has been trained. This component should provide some flexibility,
as the exact details of the output and input are defined within the model itself. The ora-
cle provides abstraction, such that the requested input mirrors the data format specified
in 3.2.1, but the model can still process the data. Simultaneously, it provides the ability for
the output to have varying numbers of labels. Finally, the evaluator allows for a rough in-
dication of the performance of the model. These metrics are also tracked during training.
For example, the evaluation allows for on data the model has never seen
before, to estimate how well the model generalises to new data.

Implementation
For the exact implementation of each model, refer to appendix C.
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3.3. Deployment
Deployment involves setting up a software solution that allows the trained network to make
predictions in practice. Originally, our plan was to do this virtually, using a 3D visualisation
of the AI’s movement. However, as the project progressed and working with the BedBasedE-
cho hardware turned out easier than expected, this plan was adjusted: instead, we would
attempt to physically deploy the trained network on the BedBasedEcho, such that it can
move the probe based on what it sees. For this, a few components are required. From start
to finish, we must pass images from the probe to the network, pass the network’s answer to
the BBE, and move the BBE robot arm based on this message.

Core Challenges
• The SDK only runs on Windows, in a 32-bit executable

• TensorFlow only runs in a 64-bit executable

• The bed only runs on Linux, since it uses ROS.

Architecture
To account for these constraints, we decided to divide our setup into four connected com-
ponents.

First, the FrameSaver component performs almost the same function as in data gather-
ing: it is written in C#, runs on the Windows machine, and collects images from the probe.
These are passed to the second, TensorFlow, component, which is implemented in Python
and runs on Windows. The resulting raw network output is sent using a third component,
the Instruction Sender. Lastly, these instructions are received by one of two Autonomous
Controllers, programmed in Python and running on the BBE. The autonomous controllers
produce the actual commands that move the robot. An overview of these components can
be found in figure 3.7.

In the following sections we will explain how each of those components will work and how
they communicate, in the order they were introduced.

3.3.1. Frame Saver
This framesaver component is largely the same as the framesaver component used in data
gathering (section 4.2).

Design
The TensorFlow component requires a rolling window of images. Because it runs in a dif-
ferent process than the probe, we need a fast way to transfer these image files between
processes. Using Inter Process Communication techniques we can share information and
files between these two processes.

Implementation
The frame saver is responsible for writing images to shared memory accessible by the Ten-
sorFlow component. Most of the functionality required here is already implemented in the
frame saver, described in section 3.1.6. We only need the save location to be in memory
rather than on disk. Note that we no longer need separate recording IDs. We completely
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Figure 3.7: Component diagram of the Deployment Component

reused the property manager and the frame saver, but immediately tell the property man-
ager to start recording, instead of waiting for a start command.

To this end, a new image processor has been written, responsible for maintaining the rolling
window and writing it to shared memory. We use
to communicate with the TensorFlow component.

.
.

.

3.3.2. TensorFlow component
The TensorFlow component should run image predictions based on the rolling window de-
fined in the previous section. The results should be decoded and passed to the instruction
sending component. Ideally, we run a new prediction every time that the rolling window
moves. However, we anticipate that TensorFlow will not keep up. Luckily, not all images
are required for correct movement, so the actual achieved speed is allowed to be much
slower.

We initially intended to program the TensorFlow component using the official C++ Tensor-
Flow library, or unofficial C# bindings. However, the C++ support for TensorFlow is very low
level, and doesn’t have most of the tools provided by Python. The alternative is also not an
option, since the unofficial C# bindings were not updated for TensorFlow 2.0 yet. Lastly, we
are forced to use kernel-level inter process communication regardless of the chosen solu-
tion, because you can’t have a mixed 32-bit ( SDK) and 64-bit (TensorFlow) binary.
If the images will have to be communicated across processes, we decided that we might as
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well provide ourselves the convenience of writing this component in Python.

To load all images without problems, a mutex needs to be used in both the TensorFlow
component and the frame saver. The frame saver already creates a kernel level Mutex, but
reading that in Python proved to be difficult. Therefore, we couldn’t load more than one or
two images at a time before running into synchronization issues.

Luckily we’ve only tested models that take a single image as input during our deployment
sessions. Therefore,

. This circumvents the synchronization issue. The TensorFlow predictions take on av-
erage twice as long as capturing a frame from the probe, which is sufficient for our pur-
poses.

3.3.3. Instruction sending
The Instruction Sender is a simple roslibpy component with the sole task of passing in-
structions along, from the Windows machine to the BBE. The ROS Topic that this instruc-
tion is published to, has subscribers on the BBE in the form of 2 autonomous controllers.

3.3.4. Autonomous Controllers
The autonomous controllers are roslibpy nodes running in separate threads on the Bed-
BasedEcho. Fundamentally, they transform raw network predictions to coherent move
commands for the robot itself.

The majority of internal logic in these components deals with inaccuracies and noise in
the raw output of the neural network. There are two variations of these autonomous con-
trollers, which are distinct in the type of network output they expect. One is for regres-
sion networks, which try to output an exact vector to the goal. Such output only requires
smoothing out and averaging to be useful. The other variation is for classification networks,
which give simple hard answers. An example would be, "are we too far left, too far right, or
in the middle"? This produces a very rough answer that gives us little information. There-
fore, more post-processing is required to get coherent movement.

Regression Controller
The regression controller (RC) receives raw commands from regression networks one by
one, in normalised form.

The first step is to un-normalise the commands and smooth them out somewhat. This is
done by taking a simple average of multiple commands, called a ’batch’. From this point
onward the batch is viewed as a single coherent command.

Next, we want to determine what move we would like to perform. There are a number of
factors to keep in mind for this decision:

• The expected maximum FPS is , but
.

• .

.
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• The network can be expected to perform worse in terms of absolute accuracy, the
further it is from the heart.

To account for we only send a movement command once a batch
is filled . Every time we
have a new batch, we look at the last few batches in another averaging operation. This is
because even commands averaged together could still be too noisy, especially far away
from the heart. Depending on the estimated distance from the heart, we use more or
fewer batches in this second average. Notably, we use a weighted average, that biases more
strongly for the recent batches. This has a logical reason: more recent batches work on
more recent data, and are therefore more representative. The produced effect is that we
take a very broad, rough average if we are far away, which hopefully produces smooth, in-
accurate movement that tends in the right direction. As we get closer, the average uses
fewer batches, making it "sharper" and more precise, at the cost of smoothness. Within

, we take no average at all, and just use the last batch as our direct answer.

Every separate move command is scaled such that, at a physical movement rate of around
, the ordered move should be done by the time the next batch is filled.

Finally, we stop moving if the estimated distance goes below a fixed threshold, such as
.

Classification Controller
The Classification Controller (CC) receives raw commands as well, but only from classifi-
cation networks. It expects an output in terms of the chosen bins, one for each axis. These
bins were described in more detail in section 3.2.3.3.

The CC accepts as input a list of choices, one for each axis, picking a bin the network finds
most representative. The mean value of each bin has been set in the CC, so that when these
bins are selected, we form an "expected" value for it. As an example, if the samples sorted
into the "far left" bin on the had a mean value of , then this is the value we
would use here as well, should this bin be selected. With this method we form a vector,
stating the approximate direction to the heart. This vector is then used to create a batch,
using exactly the same method as described in the section on regression. All further steps,
eventually leading to movement, work the same as in the RC as well.

3.4. Testing
A crucial part of ensuring software quality is testing. It can prevent unexpected behaviour
from occurring, and helps to verify intended behaviour. Hence, we ensured that all relevant
code was tested in some form.

3.4.1. Automated Testing
As our project was set up using two main languages, C# and Python, multiple testing frame-
works were used. Furthermore, to assure test quality, each test suite uses coverage analy-
sis, and undergoes manual reviewing from peers during merge requests to prevent blindly
trusting the metrics (Bouwers et al., 2012).
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C# Testing
Tests were written using an xUnit style testing library called NUnit. However, as C# has
harsh limitations on inheritance, i.e. the need to declare virtual methods if behaviour
should be overridden, code had to be closely designed to be compatible with testing. This
resulted in all code being programmed with interfaces abstracting behaviour, and depen-
dency injection being used for multiple classes. This structure allowed mocking to be pos-
sible using the Moq testing framework. Other commercial alternatives for mocking were
available, which did not require such strict programming to interfaces. However, as this
also made our code more maintainable and modular, we decided to use the approach de-
scribed earlier. To ensure that behaviour was well-tested, branch-coverage analysis was
performed on the tests, reaching over 90% branch coverage. Code that was not covered ei-
ther included external code, or SDK reliant code. However, due to abstracting most of the
dependency on the SDK, the coverage missed was minimal.

Python Testing
For the Python components tests, were written using PyTest. Due to the flexibility of Python’s
type system and powerful reflection and introspection capabilities, mocking code was rel-
atively simple. Most behaviour has been unit-tested, except launch scripts and external
code. As we created abstractions for interaction with back-ends like Keras, most code was
easily testable due to mocking external dependencies. Similar to C#, branch-coverage anal-
ysis has been performed to ascertain the quality of the tests, reaching 91% branch cover-
age.

3.4.2. Manual Testing
Not all our components are equally testable with unit and integration tests. Most impor-
tantly, the performance and prediction delivered by the neural network can vary greatly.
To make sure that performance of this network was up to par, we have performed man-
ual tests. These tests also ascertain that the whole system runs as expected, and no unex-
pected crashes happen during normal execution, mainly with respect to issues like memory
leaks.

3.4.3. Software Quality Assurance
In order to keep the code maintainable and well-structured, several static analysis, code-
style and linting tools have been used. Furthermore, code also needed to be well docu-
mented and commented. While most of these requirements were already checked using
automated tools, like Resharper, DupFinder, PyLint, Radon, etc, all code afterwards has
been peer-reviewed extensively, with code reviews going up to 66 comments per merge
request. Furthermore, an independent group (the Software Improvement Group) has per-
formed some code evaluation, after which we received a review of the entire code base,
identifying our great and not so great points. After the feedback, the code was adjusted to
comply with most requirements. For the complete review on how we processed the feed-
back, refer to appendix A.



4
Challenges

The largest body of work in this project could be described as experimental research and
development. As such, many of the currently functioning components had predecessors
that, using different methods, were less functional. This chapter highlights key points in
the development process where we discovered flaws in our plans, and how we readjusted
accordingly.

4.1. Software Architecture
4.1.1. C++ (Testing) and CI
Problems arose when trying to test code that is dependent on the This SDK
does not support testing and is very difficult to mock, which is why we’ve decided to forego
testing on purely framework-dependent code, which is written in Native C++. The higher
logic, written in C#, can be tested.

Another problem is the testing that can be done on the data gatherer cannot be automated
through Continuous Integration (CI). The TUDelft Gitlab supplies us with test runners for
Linux only, which works fine for our Python implementations, but as Windows-based run-
ners are not available, all tests of this C++/C# code have to be run manually.

4.2. Data Gathering
Although the ultimate goal of the BEP was to design and train a neural network, most of the
actual work done was in creating a data gathering setup. The resulting data would then be
used to train the aforementioned network. Setting up data gathering posed a number of
unique challenges, as described below.

4.2.1. Gyroscope and Accelerometer
Initially, a plan was made to gather translational and angular positional data using

. However, shortly after implementing a basic
way to read out of these sensors using an , a flaw in this plan appeared: it seemed
that the was nowhere near as accurate as we needed it to
be.
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This flaw came from trying to extract positional data from acceleration data. The code ini-
tialised the position of the as 0, 0, 0. Then, using acceleration read from the probe, the
change in velocity could be calculated, which in turn could be used to update the position.
The problem with this, is that small errors in the acceleration measurement and in the tim-
ing will cause the error of the position to increase exponentially, rendering the positional
data useless within seconds.

This lead us to discover that this method was completely unfeasible. Our machine learning
would need very precise data, so we experimented with two alternatives: Visual Motion
Tracking (section 4.2.2), and moving the probe with the robot instead of by hand (section
3.1.3). Of these options, we chose the latter, while the former is described below.

4.2.2. Visual Motion Tracking
To get positional and angular data, we would put a large number of tracking dots on the
echo probe, and externally record it while it is being used. We would then have to post-
process the footage in existing motion tracking software, which would solve the motion of
the dots into a coherent set of coordinates for every frame of video.

This option presented a few unique advantages:

• The probe can be operated by hand, which is much more natural for the sonographer.
They can perform exactly the movements they would in real life.

• Motion tracking has the possibility of giving very precise results: the internal consis-
tency of the model, measured in pixels of error, is typically around 0.5 pixels. This
means that on a 1080p video captured at such a distance that the screen width is
100cm, a half-pixel accuracy can be viewed equivalently as a 0.26mm accuracy.

• No hardware or software setup would be required beforehand.

Video tracking was explored in a number of practical tests: small household items were 3D
tracked using the VFX package in Blender 2.82a, using video from a phone camera. The
pixel error was calculated, and the result assessed by eye. In this testing, a number of dis-
advantages were revealed:

• Video tracking is quite labour-intensive if tracking dots happen to get obscured from
view, only to reappear later. This requires manually remarking them. It can also hap-
pen that fast motion or other interference causes Blender to lose track of a dot. This
makes motion tracking quite doable for <5 min clips,

• The coordinates produced by the solve are not necessarily axis-aligned or scaled to
match those of the robot. Each solve could end up using a different coordinate sys-
tem. Ultimately, we want all of the coordinate systems to align with the real world
as much as possible, because they dictate the image labels, which in turn impact the
output of the neural network. If the labels do not correspond well with the real world
because they are scaled poorly or off-axis, the same will happen to the output of our
network.

• Getting data for each frame is not guaranteed. A blip in the camera footage, or the
sonographer moving their body between the camera and the probe, or any other
technical mishap could all lead to a complete loss of data for a few frames. We would
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prefer a more systematic setup that can (to some extent) guarantee we find accurate
data for every frame.

Ultimately, these negatives together outweighed the possible benefits, and we opted for
automated movement by the robot.

4.2.3. Data gathering in practice
After agreeing to use robotic movement to steer the probe during data gathering, a first
Data Collection Controller was written. Unfortunately, during our first data gathering ses-
sions, multiple flaws were revealed in this controller and in other parts of the design.

Movement cycle
The first method of randomly moving the probe was a "sunflower pattern" (Vogel, 1979):
a set of points arrayed in a circular shape that grows outwards infinitely. The points are
distributed to cover the area as evenly as possible. The random movement came in cycles:
starting in a "home" position, the probe would go to one of the points in the sunflower
pattern (typically towards increasingly far points). Upon arrival, recording of the probe
was started as it moved back towards the home position. When it came back, the opera-
tor had the chance to adjust the probe’s position and angle by small increments, if needed.
Finally, the recording would be stopped again. By pressing a button, this cycle can be re-
peated.

The largest problem with this strategy of movement is a lack of diversity: ideally, we want
many points close the heart to be traversed in many directions, not just straight at the
heart. This data would give the neural network some "bad examples" together with the
good ones, which improves network performance. Also, if the movement is always in a per-
fectly straight line, there is the possibility that the "straightness" is interpreted to be the
desired quality. A trained recurrent network could infer the direction of movement and
achieve perfect accuracy by giving this movement direction as the label (since we are al-
ways moving directly at the heart). Finally, the movement strategy does not vary the angle
at all, even though this is another key component the network has to get right in deploy-
ment.

All of these problems were addressed in a second version of the random walk cycle, as de-
scribed in section 3.1.3.

Ease-of-use
Ultrasound imaging is normally done by holding the probe in your hand. As with any tool,
an experienced user would feel the tool to be an extension of the hand. Mounting the probe

and providing a controller distances the user from the feeling of the
probe.

An experienced cardiologist, who assisted us in finding the apical 4-chamber view, could
not work with this controller, instead relaying commands to a third person who moved the
probe as instructed. Despite many attempts with many different subjects, we were unable
to consistently pinpoint the correct location and rotation for a proper view.

As previously listed in 2.4.2, these difficulties with finding the apical 4-chamber view moved
us to change our efforts into finding the parasternal long-axis view instead.
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4.2.4. Outcome of challenges
A week after the first data gathering session, we had implemented the new random walker
and switched to the parasternal long-axis view. With these changes, and the practical ex-
perience gained in the previous week, we were able to find a good view, and gather data
around it quickly and without much user input. In total, we gathered 355.000 images on
that day, which we used .

4.3. Learning
Finding an appropriate network architecture for the problem often is a process of trial and
error. There are many hyper-parameters that can be tweaked, the format of the data can
be adjusted, etc. We also encountered numerous challenges before finding an appropriate
architecture.

4.3.1. Mismatch between perceived and absolute translational vector
Label data gathered from the probe stored the position based on the position

, however as the images were rotated, this did not reflect the actual translation vec-
tor on the image itself. The network was therefore rightly confused about learning the di-
rection to move in, as it could not be extracted from the features of the image itself. To fix
these, we performed an inverse rotation transformation on the absolute translation vector
to find the vector corresponding to the image. The performance of the model improved
significantly, having an increase in accuracy of 20% on all axes.

4.3.2. Noisy images
.

.
.

.

4.3.3. Hardware limitations and memory issues
The data gathered existed out of over 350 000 images. All these images do not fit within
memory and should therefore processed in batches. Data generators can be used for this
purpose, which only load the images corresponding to a specific batch into memory. While
this solves the memory issues regarding loading samples. The amount of VRAM required
to load the model was lacking for complex models, Hence, we opted to
move towards simpler models instead.

4.3.4. Overfitting
An issue that often occurs during training of a model is overfitting. Seemingly this hap-
pened a lot in the earlier, bad performing models, as the mean absolute error quickly in-
creased for the validation set. To prevent this we added dropout layers (Srivastava et al.,
2014), without much success. The later models did not have a large issue with overfitting,
however to at least be able to rewind the model back to before it overfitted, we implemented
a checkpointing system, that saves only the best model during training and the final model
after training has been completed.
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4.3.5. Normalization of translational and rotational data
As the labels consist out of data that have different scales, i.e. translational and rotational
data, a good normalization technique needed to be used to put all the data within the
same range. While it was trivial to extract a directional vector from the translation vec-
tor, by normalizing the components, finding similar operations for the distance and rota-
tion was more difficult. We opted to scale the total distance by the maximum distance the
probe could travel, i.e. For rotation we transformed the eu-
ler angles to a directional vector by applying rotational transformations to the unit vector
(1,0,0).



5
Process

In this chapter, we will touch upon the methods used during development. Firstly, we will
discuss the tools and techniques we used to drive the development process. Secondly we
will cover the method of communication, both within the development group and with
our client and coach. This also includes a section on every member’s code contributions.
Finally, we briefly discuss a non-disclosure agreement that had to be signed to access the
SDK.

5.1. Tools and techniques
To support our development cycles, we have opted to use techniques to keep track of de-
velopment, and tools to help us keep track of version control and testing. These can be
considered must-haves for software development.

5.1.1. SCRUM
To keep our development in order, we made use of an agile software developing method,
loosely resembling SCRUM. Due to the short time period of our project, we had decided
that sprints should last half a week. As short iteration times typically introduce a large
overhead in terms of time spent on meetings, we have decided to keep these meetings short
and to the point.

Our fixed meeting times were as follows:

• Monday 10.00 - 11.00

• Thursday 10.00 - 11.00

During these meetings, we would both do a short retrospective and also plan the next
sprint. Unfinished backlog tasks were forwarded to the next sprint and, if needed, tasks
would be formulated more concretely or tasks would be added, usually quite abstractly in
the beginning.

Product review did not regularly take place at set times. Instead, our client would some-
times join us during sessions, whenever we gathered data or tested deployment.

31



5. Process 32

5.1.2. Gitlab
As the TU Delft hosts its own GitLab instance, we were expected to use this for version
control.

We made use of the so-called ’Git Feature Branch Workflow’. As described by Atlassian (nd),
this means the master branch should always contain working code, while development on
new features takes place in so-called feature branches. When a feature is finished, a merge
request is to be created, allowing other developers to review this code. This way, we always
ensure we have a working copy of our code, whilst keeping new features separate from the
main codebase until these are deemed finished and of high quality.

The agreement was made that code review should be done independently by two different
developers, only giving their approval when they felt the code was of high enough quality
to be incorporated into the master branch.

5.1.3. Continuous Integration
Continuous Integration(CI) provides us with automated code analysis and testing. As ex-
plained in subsection 4.1.1, automated C++/C# testing was unavailable. Only code written
in Python was automatically analyzed and tested.

Our CI-pipeline contained four steps: Setup, static analysis, testing and a test coverage
check. Setup sets up the cache, the latter three together produce one of these three out-
puts:

• Pass: All tests pass, no further work required.

• Warning: All tests pass, but the code quality is low or testing is insufficient.

• Fail: One or more tests fail.

Static Analysis
In order to guarantee readable and maintainable code, static analysis checks the code for
two things: whether the programmer has followed the agreed-upon code conventions and
whether the programmer has written code that has a low cyclomatic complexity (i.e., the
amount of independent paths through a piece of code). Additionally, this helps us adhere
better to the SIG analysis as described in Appendix A.

To force adherence to code conventions, we analyze our code using pylint, which will
return a rating on a scale of 1 to 10. Code conventions are important to us, which is why
we’ve decided that code rated lower than a 9 will produce a warning.

Low cyclomatic complexity is important for code maintainability, and in this case the lower
this metric is, the better. We analyze our code using xenon on the strictest settings: It pro-
duces a warning when the program receives a grade worse than A. According to Radon
(2020), a grade of A means a complexity no higher than 5.

Testing
Tests written for Python will be executed to test the program, this is further described in
section 3.4. For this, pytest is used. This job fails if any of these tests fail.
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Test Coverage Check
Code coverage is a measure of how many statements and branching paths were actually
tested. High code coverage gives a greater guarantee that all program functionality is tested.
For this, coverage.py is used.

Using the data from the previous job, this job checks whether testing can be considered
sufficient. A warning will be produced when the average branch coverage of the code is
below 85%.

5.2. Communication
At the time of writing, the university is still closed due to COVID-19. Physical meetings
were discouraged, with the government and companies advising people to work from home
whenever possible. For this reason, meetings were primarily done digitally.

5.2.1. In-group communication and cooperation
Initially, group meetings were held using Jitsi, an open-source software package, hosted by
the TU Delft. Eventually, it was decided to switch to Discord, as most group members were
more familiar with this software and it produced fewer technical issues. Meeting notes and
any other documentation that was not protected by a non-disclosure agreement were all
hosted on Google Drive. Additionally, a WhatsApp group was created for any communica-
tion not directly related to a meeting.

COVID-19 made things significantly more difficult. There were no physical group meetings
until a few weeks in, with one group member not being able to attend any these meetings
in person due to symptoms. The main drive towards meeting physically was for data gath-
ering and deployment, which made working from home impossible in this instance. Ad-
ditionally, the close quarters near the bed combined with the government-mandated 1.5m
distance made development challenging.

As is quite often the case, group workload was not uniformly distributed, with some mem-
bers eventually having done more work than others. For example, machine learning was
probably the biggest time sink during the project, but knowledge of machine learning is not
equal within the group, meaning the more knowledgeable members spent a large amount
of time on this.

Despite this, the division of labour was as follows:

All Members
• Contributed to the report

Joey Haas
• Designed the GUI of the data gatherer

• Contributed to the probe interface used for data gathering and deployment

Rembrandt Klazinga
• Wrote the Random Walker (translation)

• Investigated Visual Motion Tracking
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• Set up BedBasedEcho for deployment

• Wrote the Data Collection Controller and Data Writer

• Wrote the Autonomous Controllers

Nick van Stijn
• Wrote the Random Walker (rotation)

• Wrote the Data Collection Controller and Data Writer

• Set up BedBasedEcho for deployment

• Test subject for data gathering

Jasper Teunissen
• Contributed to the Frame Saver

• Set up CI with caching

• Contributed to final deployment

• Implemented memory mapped files

Ying Zhang
• Performed all machine learning research and implementation

• Contributed to the Frame Saver

• Implemented memory mapped files

• Ensured software quality in Merge Requests

5.2.2. Communication with coach and client
The communication with our client, Eelko Ronner, was mostly informal. This started out
with a few meetings on Jitsi, getting to know each other. Later on, when starting the data
gathering, he joined our sessions to help us out with cardiac ultrasounds and to give us
an introductory lecture on cardiology. When COVID-19 lockdown rules were relaxed and
restaurants opened back up, he even took us to have a more informal meeting over dinner.
Just like with our core development group, we created a WhatsApp group with our client
and other important parties to keep them informed.

Our communication with our coach, Marco Loog, was more formal and less frequent. Dur-
ing these meetings, hosted by him on Zoom, we discussed eventual problems we were fac-
ing. He was of great help to us, especially in readjusting our targets for the project and
in fixing issues with machine learning performance. Any communication outside of these
meetings was done over email.

5.3. Non-disclosure agreement
There were two reasons why a non-disclosure agreement(NDA) was necessary: intellectual
property and patient data.
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5.3.1. Intellectual Property
The document called for a broad non-disclosure clause on everything that can reasonably
be understood to be confidential. In practice, this referred to the SDK, which was,
by itself, protected by an NDA signed by our client.

When initially sharing the SDK files, care was taken to encrypt these files before we up-
loaded this a 3rd party source. While Gitlab contains some header files and interop li-
braries, the actual SDK libraries are not put into the repositories.

5.3.2. Patient Data
The second non-disclosure clause on the document was for GDPR-complaince (referred
to as the AVG in Dutch). The initial plan was to use patient data for training purposes,
which meant that any footage had to be re-encoded with ffmpeg to redact any personal
data.

Eventually we decided to forego using patient data and use exclusively use data gathered
ourselves using the data gatherer component.



6
Conclusion

In this chapter, we will assess if the requirements and design goals that were set at the start
of the project, have been reached by the end of it. Based on our final deployment day,
during which we briefly managed to see the network in action on the BedBasedEcho, we
can determine how well the requirements are met. This is described factually in section
6.1, and analysed in more detail in section 7.1.

6.1. Results Based on Requirements
In order for us to consider the project a success, we need the requirements defined in sec-
tion 2.4.2 to be met. To judge this, we will list these requirements below and estimate sep-
arately if each one was fulfilled.

• The software must be able to read echo images from the probe on command, using
the provided Software Development Kit. The developed Frame Saver is capable of
doing this at a refresh rate of FPS or higher.

• The algorithm must generate instructions that would move the probe towards the
Parasternal Long-axis view. During the final deployment day, the algorithm was able
to correctly identify where the probe should move next, as tested on four different
cardinal directions. When allowed to issue movement commands, there was lim-
ited success in reached the target view. Further interpretation of these results can be
found in section 7.1.

• There must be a way to record the position and angle of the probe as it is suspended
in the BBE. This was successfully done using the Data Writer component, executed
on the BBE.

• There must be a way to record the aforementioned data in conjunction with echo
images, such that the results are stored together in a synchronised fashion. This
allows them to be used as training data. This is done by the aforementioned Frame
Saver, and the separate Data Collection Controller, which runs on the BedBasedEcho.
By using tools developed for model training, this data can be synchronised reliably.

• The algorithm must have low enough latency to run in semi-real-time: it is allow-
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able that movement instructions sometimes stop for no more than 5 seconds to
allow processing of video data, such that the next movement may be determined.
This requirement was exceeded by some margin: the complete deployment pipeline
is able to run at FPS, in real-time. At no moment is there a technical limitation
that requires movement to stop.

• There must be an application for the trained algorithm, either simulated or imple-
mented in the real world, making the progress visual. This was done successfully in
the deployment phase, where live images of the chest were used to move the robot.

6.2. Results Based on Design Goals
We will list our design goals as defined at the start of the project. For each one, we discuss
if we think these goals have been achieved.

Performance
The algorithm should run on a Ryzen 3 2200G. Because the prediction algorithm was run
on a separate machine, it is currently not clear if this is the case. However, the algorithm
did run on an Intel i7 7700HQ, which is very similar in performance. Furthermore, both
machines have the same amount of RAM (8 GB). Because of these reasons, we consider
this design goal to be met.

Accuracy
The algorithm should find the apical four chamber-view within 3 minutes for 80% of
cases.
This design goal might have been somewhat ambitious. First of all, the algorithm has not
been tested on anyone other than one team-member, the same team-member that the
data was trained on. Moreover, the algorithm cannot find the trained view completely au-
tonomously (see section 7.1).

Presentability
We need the product to appeal to individuals unfamiliar with echos / software engineer-
ing.
A Graphical User Interface (GUI) was designed to create this appeal. Also, by implementing
the algorithm into the BBE, demo’s can be given to indicate the potential of the product. We
consider this design goal to be met.

Consistency
We cannot have the system stop in the middle of a scanning session, causing discomfort
to the patient.
We have been careful to ensure the system has failsafes in place for this criterion. On top of
this, we consider the different software components to be well-tested. At the time of writ-
ing, the system has never stopped in the middle of a scanning session. Thus, we consider
this design goal to be met.

Maintainability/Extensibility
The software architecture should be both maintainable and extensible. By using libraries
like roslibpy (Section 3.1.2.2), we have decoupled the separate modules (the existing code,
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recording, and executing) as much as possible. Doing this resulted in a maintainable and
extendable project. Therefore, we consider this design goal to be met.

Recommendations for further development can be found in section 7.2.



7
Discussion

In this chapter, we will first discuss our interpretation of the results, after which we will
state our recommended further course of action for the product as a whole. Finally, we will
discuss some important ethical aspects of the project.

7.1. Deployment Results
Overall, we consider the final deployment of our product a success, since it was able to
prove the potential of the BBE, and able to fulfil all our success criteria. The deployment
took place in stages. Firstly, the probe was placed in the wrong location, relatively close to
the heart, and not allowed to move. When placed too far up, down, left, or right, the model
correctly classified its location and indicated the right direction to move in.

Secondly, we allowed movement in steps: by periodically toggling whether the robot was
allowed to move, we produced slower movement, in bursts. This gave us the advantage of
stopping the movement when we judged the probe to be at the right view. This produced
the most promising results of the deployment. The model gave directions that moved it in
a nearly straight line to a decent PLAX view1.

Finally, the robot was allowed to move without restriction. This did not produce the de-
sired results. It seemed that the sternum, a dimple in the centre of the chest, acted as a
trap for the model. The sternum often became partially visible, after which the model got
confused and went towards it rather than away from it (which would have been the correct
action).

There was a second issue with autonomous movement, namely that
was known to be poor, even beforehand. This meant that the model had great difficulty
determining whether it had actually reached its goal. Even if it steered to the right spot, it
could not "step on the brakes".

Hence, when moving fully autonomously, even if the probe came quite close to a good view,
a lack of an autonomous "stop" command, combined with the sternum trap mentioned
above, caused it to veer far from the heart. At this distance, there was no training data, so

1https://youtu.be/WZ7-pRN4qHY
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the network had little chance of returning to familiar territory.

This list of findings leads to some foreseen future developments. Recommendations for
these can be found in the following section.

7.2. Recommendations
While this project could be considered successful within its own scope, many improve-
ments should be made in different areas in the future. We will provide recommendations
which either improve the scientific value or the commercial value of the product.

7.2.1. Improving inference speed
First, we will discuss how to improve inference time. Currently the predictions can be per-
formed in or near real-time. In case data becomes more complex (higher resolution im-
ages, more color channels, etc), the inference speed could drop below acceptable levels. In
order to prevent this scenario, we give some suggestions on how to improve model infer-
ence.

Built-in pre-processing
Currently, images are pre-processed right before they are . An ad-
vantage of this is that data gathered from different sources (e.g. from another probe) can
undergo the exact same pre-processing procedure as the images currently used. However,
as probes differ a lot from each other, even if the images experience similar pre-processing,
they cannot be mixed in. An option would be to move the pre-processing to the probe
setup. Many probe frameworks already provide some functionality for pre-processing im-
ages, such as despeckling.

. This might reduce the pre-
processing overhead when inferring images. Besides the built-in functionality of many
probes, the image capturing happens in parallel with prediction. This means that this
burden is moved to another process than the inference. This might give a performance
increase, as inference is currently the bottleneck within the architecture.

Real-time inference with ________

. .

.

Freezing graphs
Freezing graphs might improve inference time, as there is less overhead when processing
data through the network. Weights are frozen and therefore do not allow for possible ad-
justments. The overall size of the model is also reduced, as many hyperparameters are not
required anymore.

Pruning models to reduce the number of neurons
Model pruning might be an option as well. Often, the model used has inactive neurons,
which only encumbers the forward propagation through the network. Pruning would re-
duce the amount of neurons and therefore decrease the amount of calculations needed for
a single prediction.
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7.2.2. Data storage
The current data solution is scalable in case new views are added, as it would only require
the creation of . However, issues could arise if there was a need to centralise
the database of images: it would then be possible for multiple devices to access the same
data concurrently. Some guarantee for atomicity would be required. Furthermore, while
data might be easily extensible for different views, there could be a situation where more
variables are at play. In that case, a multi-relational schema would provide better sup-
port.

SQL
A suggestion would be to move the current data-store to a SQL-backed one, for example
PostgreSQL. During this move, it would be advisable to introduce surrogate keys instead of
natural keys as well. We believe that moving towards an existing database solution would
improve the maintainability of the system.

7.2.3. Improving model accuracy
While we have trained a model which can make predictions about the movement of the
probe, it is not sufficient for actual use within hospitals. This is due to the lack of precision
in certain areas, as well as missing information for large subject groups. Furthermore, the
consistency of the system is lacking. Since this product considers the health of humans,
the performance of the current model is not acceptable.

Expanding the sample set
The main improvement that should be made is extending our sample set. Currently all data
has been gathered on a single day, with a single subject. Different subject groups however
might give drastically different results. We recommend that multiple ethnicities, genders,
and health conditions should be taken into account when gathering a complete data set.
However, it is hardly feasible to expect all edge cases to be taken into account. We, therefore,
suggest an always evolving dataset, where the user of the product can provide their own
samples, to improve accuracy in specific areas. Besides that, data should also be gathered in
a more distributed time period, as things like environment and gel applied might influence
the quality of the data.

Mixing __________ ___ ____________
.

.

.

Include realistic temporal data
The pattern in which the data currently is gathered (random walking) does not completely
reflect how the probe should move. Image sequences that are currently within the data set
are therefore rarely seen, when actually deploying the software. A recommendation would
be to also gather more natural movements of the probe, by actually simulating movements
that happen during normal sonography. This might improve the results of recurrent neural
networks. Another improvement for recurrent data, is to allow for more variable amounts
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of time between images. Short time intervals allow the software to see how a single location
evolves over time, while larger intervals show how the probe behaves over time.

Increasing the complexity of the networks
Our current setup did not allow for training extremely complex models,
as the hardware we used for training could not cope with the amount of data that needed to
be processed. However, using existing parts of well-performing machine learning networks
can prove to be beneficial, should these hardware limitations be lifted in the future.

Deep reinforcement learning
The current scope of the project is mainly focused on the neural network itself. However,
interesting research has been done on the application of Reinforcement Learning on simi-
lar problems (Milletari et al., 2019). Since the movement of an agent can be relatively easily
mapped to a reinforcement problem, applying similar concepts to our problem might give
better results.

Optimizing hyperparameters
Furthermore, using different hyperparameters or different optimization algorithms can
give drastically different results. Some more trial and error might be needed to achieve
satisfactory performance.

7.2.4. Human Computer Interaction
The product is meant to be used by medical professionals. Therefore, the software should
feel intuitive to them. While we have not performed any physical tests with medical experts
using the interface, we believe it to be severely lacking. To improve the accessibility and
usability of the software, we provide some recommendations.

Improving the user interface
Currently the user interface is very bare-bones and suffices only for initial testing and re-
search. In the case it should become a commercial product to be used by doctors and
other medical experts, the interface would have to be made more user-friendly. Currently
it would be difficult for someone without a computer science background to completely set
up the project and run it on a local machine. Furthermore, components need to be started
up separately. When integrating all components within the same user interface, creating a
start up sequence would be advisable.

Improving manual controls
Currently, manual input is provided using , with a custom control
scheme. This can seem unintuitive to the user, as there is no natural mapping from the
controller to the probe. Other control schemes could be tested, such as touch controls, a
single joystick, or simply a mimic of the probe itself.

7.3. Ethical considerations
Developing a product for the medical field requires careful consideration, as software often
influences the health and lives of human beings. Besides the implementation and design of
software, there are many ethical considerations to be taken into account. We try to address
the major concerns, which range from safety to privacy, within this section.
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This section is split into two parts. First, we explain the necessity of our product from a
moral standpoint. Then, we will try to evaluate possible ethical issues. Each part is subdi-
vided in a few arguments examining different aspects of the product.

7.3.1. Positive influences on health care
Currently there many heart patients that cannot be appropriately treated due to a lack of
diagnostic tools.

Availability
The main cause for the lack of tools is due to the limited availability of sonographers. There
is a large gap between the number of sonographers and the number of patients requir-
ing diagnosis. Our product reduces the gap by providing replacements for professional
sonographers, thereby allowing health care to be more effective and equally available for
all.

Affordability
In comparison to human labour, and expensive probe equipment, the product is afford-
able. It allows for high quality imaging by taking advantage of the fact that the patient lies
on their chest. Furthermore, the client has chosen a mass-producible probe in consult with
the probe manufacturer and a few medical experts. The initial research and development
costs are also relatively low. The result is that diagnosis can be provided with a lower price
tag than before. This would allow people in third world countries to take a test as well.

7.3.2. Possible concerns
Safety
As our product will be primarily used as a method of testing for specific health issues, which
concerns human lives, it is crucial that tests are taken accurately and safely. Therefore,
the product should not be used unless actually proven to perform similarly or better than
a medical expert. Currently the BBE does not provide direct interpretation and requires
a medical professional to interpret the data correctly. As the system allows for manual
adjustments, and requires some human interpretation, similar levels of safety to current
situations can easily be reached. As the apparatus does not directly endanger a patient
condition, no steps have been taken to improve safety there. However, more autonomous
version of the system that might be developed in the future need to take extra care to keep
this concern in mind.

Responsibility
The product goal is to replace the need for a sonographer when taking quick-look ultra-
sounds. However, in case of a misdiagnosis, it will be hard for the machine itself to take
responsibility. Often when software fails, responsibility lies with the development team. An
issue with this, however, is that while we have knowledge about programming, our knowl-
edge about ultrasounds does not rival those of the medical experts. We have consulted
with medical experts about the process and implemented their advice. However, this does
not remove all risk. As such we suggest that the tool should not be used as a complete re-
placement, but more as a tool to reduce the workload on sonographers. Also, it should be
possible to make manual adjustments to the probe’s location. This keeps the sonographer
in the loop and avoids putting all responsibility on the machine.
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Privacy
As the product will handle personal medical data, we need to carefully consider how to
handle this data. While the software has the need for limited networking capabilities (in or-
der to communicate between the components), we limit this to only a local network. Data
should therefore never leak outside. Data will further only be stored temporarily within on
the local system and should thereafter be moved to the intended storage location, already
used by hospitals alike.



Glossary

A4C Apical 4-Chamber View. 3

BBE Bed Based Echo. 3–6, 36, 37, 39, 43

CI Continuous Integration, automated testing. ii, 10, 11, 26, 32, 52

FPS Measure of amount of Frames Per Second. 23, 36, 37

inference When a trained neural network provides a prediction, based on input. iii, 40

PLAX Parasternal Long Axis View. 1, 3, 5, 39

ROS Robot Operating System. 7, 10, 11, 13, 21, 23

roslibpy A bridging library for Python 3, that allows communicating with a ROS system
without having ROS installed yourself. 10, 11, 13, 23, 37

SDK Software Development Kit, a set of tools to ease software development. In the case
of the _______ SDK, it contains the libraries required to interface with the ultrasound
probe.. 7, 8, 14, 21, 22, 25, 26, 35

SIG Software Improvement Group. 32, 46–48

sternum Long, flat bone in the chest, connecting the ribs.. 3, 39

45



A
SIG Feedback

A.1. Introduction
At the 75% mark of the project, the code was submitted for review at the Software Improve-
ment Group (SIG). The results from this submission and our response are described from
here up to section A.6. Section A.7 lists the final scores from the 100% submission.

Property Rating
Duplication 4.9

Unit Size 3.9
Unit Complexity 4.5
Unit Interfacing 3.6

Module Coupling 5.5

Table A.1: SIG refactoring candidates

A.2. Duplication
Code Duplication is simply a measure of how often duplicate code is found in the project.
When code is copied, the maintenance effort for fixing bugs or making changes increases.
In our submission, we received 4,9 stars for Code Duplication, as we had two instances of
code duplication. Both of these were removed in a refactor, which moved our FrameSaver
code base from C++ to C#. This allowed us to use existing mocking tools, which replaced
our own, hence removing one of the duplications. The second code duplicate came from
running the same test setup in two tests. This was refactored to the better convention of
using a setup method when testing.

A.3. Unit Size
Unit Size is gauged by measuring the lines of code (LOC) of all methods and functions in
the project. Behind Unit Interfacing this metric is the second worst aspect of our project.
There are nine methods with an unacceptable Unit size in the project, causing us to receive
a rating of 3.9 stars. The problematic methods will have their functionality split, separated
and extracted into additional methods. It is worth noting that the team has opted to ignore
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some minor unit size violations, in favour of code readability. This avoids the "treating the
metric" pitfall of software design (Fowler, 2013).

A.4. Unit Complexity
The Unit Complexity analysis makes use of the McCabe complexity measure to grade the
projects Unit Complexity. Complex code has more execution paths, making it harder to
understand and requires more test cases. In our submission, we received 4.5 stars for Unit
Complexity, with two problematic methods, present in the FrameSaver component. To
fix these, we extracted some functionality present in the problematic methods to separate
methods.

A.5. Unit Interfacing
The Unit Interfacing metric is determined by the number of parameters a method or class
constructor has. SIG deems 0-2 parameters to be low risk, and 3-4 parameters to be mod-
erate risk. Unit Interfacing was the lowest scoring metric in our submission, resulting in 3.6
stars for the project. This score came from multiple sources: a few methods were obviously
sub-optimal, with one taking 10 parameters as input.

A larger number of methods were still very much suited for improvements, having around
5 parameters and decently high complexity.

Finally, around 15 methods had a parameter count of 3 or 4, and a low cyclomatic complex-
ity and line count. These were lowest in SIG’s list of refactoring candidates, and we applied
our best judgement to these cases, choosing to leave most of them as is. To explain our rea-
soning for this we can look at an example. The utility method "limit" takes in the number
we want to limit, as well as two other parameters: the maximum and minimum value used
when limiting. This allows you to ensure a number is capped within the given range. To
make this method risk-free, we would likely have to encapsulate the min and max into a
tuple or other data structure. This would improve our Unit Interfacing score, but we think
it would ultimately harm the readability of our code: well-documented "max" and "min"
parameters are clearer and quicker to use than a tuple.

On top of this, many of the smaller violations are in Python, which supports named default
parameters. Where possible, we have opted to make all parameters named, such that a
programmer using the method, can clearly see which parameters are which. This avoids
confusion with parameters ordering.

A.6. Module Coupling
Module Coupling is determined by the number of incoming dependencies in a module.
SIG has drawn the boundary for acceptable MC to be 10 dependencies per module. In our
submission, we received 5.5 stars for Module Coupling, as there were no modules with a
coupling higher than 10, both in the Python and C++ components. We are obviously quite
happy with this score, and can see no way to improve it. We will try to keep all dependencies
below 10 for new files as well.
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A.7. Second Feedback
At the time of writing, this feedback has not been made available.

Property Rating
Duplication TBD

Unit Size TBD
Unit Complexity TBD
Unit Interfacing TBD

Module Coupling TBD

Table A.2: SIG scores after refactor



B
Project Description

The following text was taken verbatim from this project’s description on Project Forum1

Project proposals for a BEP project - information technologie/it and should keep 5 busy for
ten weeks.

As a cardiologist in Delft, I hereby submit a proposal for a Bachelor’s Final Bachelor Project
(BEP) for the first half of 2020 (until summer).

As known, and from a personal experience it is a serious problem that there are too few
people and means worldwide to diagnose heart disease well, quickly and cheaply. We have
therefore robotized an echo our workhorse, the echo of the heart, with a number of enthu-
siastic TU Delft Bachelor students (Nick v Stijn, Nick Yu). Our prototype will be presented
on 24 January. This is a robot product for short echoes in between, at night in an emergency,
pre-operatively, or echoes used as the first screening tool, for example.

In terms of software, we face challenges that are tackled to a small extent by the participat-
ing IT bachelor students in the robotics project.

The challenges ahead in terms of software is of a scope and depth that they are suitable for
a BEP project I believe (in cooperation with the students involved.. I am happy to explain
that to you. Furthermore, it would of course be nice if it could be offered as a BEP for the
group that will graduate at the end of the summer (and perhaps especially interesting for
the current students to continue with).

Specific problem: Current robotics product with the two students from your department,
makes 1 kind of images from 1 direction of looking at the heart.

Ultrasounds are made via standard routines in multiple directions, via 3 spots on the chest.
Various settings are varied (measurements in 2D, doppler, "color flow" for example). In
certain situations (a narrowed valve, fluid around the heart) extra determinations are made,
whereby measurements are needed to take part in calculations.

BEP proposal; Extending current software with pattern recognition and complex adjust-
ment of echo probe settings, with the aim of generating an optimal data set for images. (So

1https://projectforum.tudelft.nl/course_editions/19/projects/721
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focused on image acquisition optimization). I would like to discuss details of wishes / specs
if the possibility of a Bachelor’s final project is possible and with any input.

In addition; pathology is usually from top 5 diseases. (mitral valve leaks, aorta valve calci-
fies, walls movement decrease, heart or compartments thickened/widened and right sided
heart abnormalities, on it’s own, or lung-related). For each case, different heuristic steps
and measurements are of importance and one finding leads to cascades of events, and thus
echo steps to be taken, leading to a check on findings (one finding should be logical related
to other findings in other views. Else, a warning for inconsistency). It is with either LUMC or
Sorbonne data that we can work. (we hear this week) Else, with Reinier de Graaf data.

Other information As a startup we are in the process of first preliminary funding and creat-
ing a team; no funding yet, minor expenses can of course be covered by me.
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Info Sheet
Issued by: Zoekbeter BV
Final presentation date: 02-07-2020

Description
The core challenge of the BedBasedEcho BEP project is to create an algorithm to find the heart, and
apply it on a robotic echocardiography solution. The team has found multiple complex solutions
that are related to this problem, and has extracted useful information from these solutions to apply
to this problem. However, some of these complex solutions were too complex, causing the team
to run out of physical resources, or to have the solution fail entirely. By taking a step back, and
simplifying the solution, the team has managed to create a system that performs marginally better
than the complex solutions. The designed product consists of three major components: the data
gathering, the learning, and the deployment. When used in this order, the result is an algorithm
that can predict which way it should move to gain the optimal view of the heart. The algorithm will
be used as a component in a larger automated echocardiography system. Ultimately, the algorithm
showed promise by autonomously finding a good view of the heart.

Members
Name: Joey Haas
Interests and experience: Embedded Systems, IT Security, FinTech
Contributions: GUI, Ultrasound Interfacing

Name: Rembrandt Klazinga
Interests and experience: AI, Automation
Contributions: Data collection, random walk algorithm, robot controller for regression

and classification networks, deployment

Name: Nick van Stijn
Interests and experience: Robotics, Founding member of BedBasedEcho
Contributions: Robotic control, Data Collection, Prediction Handling, deployment

Name: Jasper Teunissen
Interests and experience: CI/CD, Concurrent programming, caching
Contributions: probe-bed communication, main loop deployment, ultrasound image

gathering, CI, static analysis, caching

Name: Ying Zhang
Interests and experience: AI, Embedded Systems, Legacy system interaction
Contributions: Machine learning (models and architecture), ultrasound probe interac-

tion, data storage and transfer, software quality assurance.

Client: Eelko Ronner
Affiliation: Founder of Zoekbeter BV and BedBasedEcho

Coach: Marco Loog
Affiliation: EEMCS, Intelligent Systems

Contact: Eelko Ronner
Email: eronner@icloud.com
Affiliation:

The final report for this project can be found at: http://repository.tudelft.nl
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E
Research Report

E.1. Introduction
E.1.1. Problem definition
Nowadays, medicine for cardiovascular disease can be as cheap as five euros per month. For just
these five euros per month, the life expectancy and quality of life of people with cardiovascular prob-
lems can be extended and increased greatly. There is a catch, however. Who do we administer this
medicine to? To find out if an individual needs this treatment, we need to diagnose them first.

Currently, the most accurate option is echo-cardiograms, however, creating one is a time-consuming
process, and there is a large shortage of sonographers, not only in the Netherlands, but worldwide.
There are other options but these cannot replace the accuracy that an echo-cardiogram provides.
Due to the shortage, doctors are forced to use these less effective alternatives, while they actually
would like an echo-cardiogram to be made.

This is where the BedBasedEcho (BBE) comes into play. The BBE is a robotic solution
.

. If it can find a certain view of the heart automatically, it can reduce the
currently large queue for echo-cardiograms in size. Currently, the search algorithm implemented in
the BBE is based on a heuristic. It estimates the quality of the current image using a neural network,
and switches between searching modes like: "lawnmower", "angle-vary", and "gray-scale" based
on this estimation. Its ability to find the targeted view (the apical 4-chamber view) is moderate at
best.

Now, the client needs a more accurate and consistent approach to find the heart, based on the
images that we gather. Furthermore, since integrating it into the robot might lie outside of the scope,
the client would like some way of visualising the result of the algorithm.

This leads us to our problem definition. How do we consistently find this apical 4-chamber view of
the heart? More specifically, given an input consisting of image data, how to we extract instructions
to move the probe?

Very generally, the current plan includes gathering expert image and motion data. By using a
we plan to gather motion data from a trained professional. This data will then

be used by pre-processing and machine learning technologies combined to decide the optimal next
move.

53



E. Research Report 54

E.1.2. Target Audience
This report is intended for interested individuals with prior machine learning experience and some
rudimentary medical knowledge.

E.1.3. Current State
There is a small existing body of research around the topic we are studying. Notably, we could not
find any previous project that matches with our goals of robotising an echo probe and looking at
the heart. Some existing projects have overlap with our work:

• A software system was developed by Mustafa et al. that finds the liver and scans it completely,
and autonomously. This system was successfully run on a 6-axis robot arm. Notable software
features include finding the liver using echo images, and applying sufficient but not excessive
force as the patient breathes.

• Van Woudenberg et al. developed software that is capable to identify one of 14 cardiac views,
as well as determine the quality of the current view.

• More specific research exists that can help us with subsections of the project. This includes
cardiac edge detection (Ketout et al., 2011), ultrasound denoising (Tay et al., 2010), and user
guidance in echocardiography (Toporek et al., 2019).

E.1.4. Design Goals
In section E.1.5, we will define the requirements for the project. To be able to infer these require-
ments we will first define our design goals. This section lists these goals and explains them very
briefly.

Performance
We want the software to be able to provide a robot with instructions in a reasonable amount of time,
such that the patient is not waiting on the robot to finish calculations. This means that it should run
without issues on a Ryzen 3 2200G, and should not consume more than 8 GB of RAM at any point in
time.

Accuracy
To ensure that the product is worth using over manual work, we need it to finish operation within
a reasonable amount of time. The goal is to find the apical four chamber-view within 3 minutes for
80% of cases, at minimum.

Presentability
We need the product to appeal to individuals unfamiliar with echos / software engineering. A sep-
arate visualisation tool that shows simulated movement can make the product more attractive, and
simultaneously allow us to check the behaviour of the algorithm more easily.

Consistency
We cannot have the system stop in the middle of a scanning session, causing discomfort to the
patient. We allow some crashes, should they appear not fixable, but the system should be able to
restart itself. Barring issues outside our control, such as power or component failure, the software
should never stop the procedure unintentionally.

Maintainability/Extensibility
Optimally, the software will be used in the final version of the BBE. This means that the software
architecture should be both maintainable and extensible, in case a future development team con-
tinuous work on the project, perhaps to add more features.
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E.1.5. Requirements
We formulate the requirements using the MoSCoW method, meaning all requirements are catego-
rized as either a "must have", "should have", "could have" or as a "won’t have".

Must have
• The software must be able to read echo images from the probe on command, using the pro-

vided SDK.

• The algorithm must generate instructions that would move the probe towards the apical four-
chamber view.

• There must be a way to track the position and angle of the probe as it is being used by a
person: this is to gather training data only.

• There must be a way to record the aforementioned data in conjunction with echo images,
such that the results are stored together in a synchronised fashion. This allows them to be
used as training data.

• The algorithm must have low enough latency to run in semi-real-time: it is allowable that
movement instructions sometimes stop for no more than 5 seconds to allow processing of
video data, such that the next movement may be determined.

Should have
• There should be a way to identify when the optimal apical four chamber view is reached

• There should be a separate software component that can visualise the movement instruc-
tions

Could have
• The algorithm could be further extended such that the movement instructions actually work

on the physical machine: an interface would have to be made that supports this conversion
of commands.

• The algorithm could be optimised such that the movement instructions run real-time. That
is to say, the instructions are generated with such low latency that movement never has to
stop.

Won’t have
• The algorithm will not be able to change to colour doppler mode when the apical four cham-

ber view is reached.

• The algorithm will not set color boxes around key features of the image.

• The algorithm will not consider views other than the apical four-chamber view.

• The product will not have explicit support for other any operating system other than Win-
dows 10
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E.1.6. Success Criteria
The design goals and requirements will be guidelines for the success of the project. These criteria
have been decided in consultation with the client. For the project to be considered successful, we
require that all "must haves" should be met, as well as most design goals. We put emphasis mostly
on the software quality, however, due to the demands of the client, we also take presentability into
consideration. So, we would like the visualization software to be included in the success criteria as
well. However, due to limitations in resources, some concessions have to be made. Therefore, while
we do strife to create a general applicable algorithm, we take into account that it will be difficult to
apply the algorithm to females and specific edge cases in the initial development. This project can
be seen as mostly a proof of concept and exploration of the possibilities.

In summary, the project is considered a success when we can lay the foundations for a maintain-
able algorithm can consistently and accurately find the apical four-chamber view, and this search
process can be captured visually to appeal to the client.

E.2. Hardware Components
E.2.1. Gyro and Accelerometer
We will train our algorithm with video data from a human using the echo probe. However, in order
to collect additional training data, we also want to track the angle and position of the probe while it
is in use. This allows us to directly correlate visual data from the echo with it’s exact orientation in
space, which is hopefully very helpful for any algorithm we attempt to train later on.

Gyroscopic and acceleration data can be gathered in a number of ways. The simplest would be
to use our own phones: apps such as “Physics Toolbox Sensor Suite" can directly record the data
from these sensors to a readable file format. However, we quickly discounted this as an option,
because the angle seemed to fluctuate with an error of +-4 degrees, which we deemed to be too
noisy. Another issue is that a phone is quite large and heavy, making use of the probe uncomfortable
for extended periods.

As an alternative, we can also purchase these sensor chips directly. This would allow us to pick a
possibly higher-end component (giving us more accuracy), while remaining low weight and low cost
overall. Chips that stands out for us are the MPU-6500, and the MPU-6050 produced by InvenSense.
They contain gyroscopic and acceleration sensors and are purpose-built for motion tracking.

Because of the lightweight solution these chip offers, we elect to use one of them in the project.
Because of their low cost, we opt to try them both and see which trade-off we want to make, imple-
mentability or update rate.

Smartphone MPU-6500 MPU-6050

Cost – – ++ ++

Accuracy +– + +

Implementability – + ++

Update rate +– ++ +

Table E.1: Comparisons between the investigated gyro/accelerometer combo’s
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E.2.2. Microcontroller
To read data from the MPU-6500/6050, we need a microcontroller that can power it and interface
with the data pins. The microcontroller must be lightweight, similar to the sensor chip. The first
choice would be one of the multiple Raspberry Pi’s we already have from other projects. Closer
inspection of the MPU-6500 reveals that there are 10 different pinouts we would have to interface
with, which eliminates the use of a smaller Raspberry Pi board. A model like the Pi 2B could be
used, but would certainly be overkill for the simple use case we have. Instead, we have opted for a
smaller board that still fulfills the functionality requirements: an Arduino Nano. As the name might
imply, this board has a small form factor, making it easier to mount on the probe without causing
ergonomic issues. Additionally, Arduino’s are often used for lower-level applications like this one,
meaning there is plenty of existing documentation on reading out sensor chips, for example.

Rasberry Pi 2B Arduino Uno Arduino Nano

Cost – + ++

Ease of implementation – + +

Table E.2: Comparisons between the investigated microcontrollers

E.2.3. Echo Probe
The probe is a

. . . The applications of this probe include abdominal imaging and cardiology. The
driver hardware(beamformer) is a , which has support for most common
types of ultrasound imaging, including B-mode and color doppler imaging. We will use this probe
because it was the choice of our client.

.

. Nevertheless, these properties make it
ideal for cardiac ultrasound imaging.

E.3. Software Components
The following section will describe the team’s considerations regarding the algorithms to be used.

E.3.1. Pre-processing
Some amount of pre-processing may be required before we feed the data into our main algorithm.
The original echocardiographic images could contain more information than is needed. To remove
the unnecessary noise, the useful information would then have to be extracted. This can be done in
a few ways, and the ways described can also possibly be combined. However, these methods might
not be necessary: nowadays, image pre-processing is becoming obsolete, as deep CNN’s will just
"learn" the pre-processing if it is needed. We will still consider pre-processing as there might still be
performance increase to be gained from it.

It is worth noting that echo data has a very low Signal-to-noise (STN) ratio, meaning that there is
a lot of noise and so-called snow. Often, traditional edge detection algorithms perform worse on
low-STN data. Hence, if we do use feature detection, it would be more optimal to use purpose-built
algorithms, as described below.
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Denoising and Despeckling
Because of the low-STN nature of echocardiographic data, we cannot apply an edge-detection al-
gorithm directly to it. We need a way to bring out the contrast between walls and emptiness. This
operation is called denoising (or despeckling). For all denoising algorithms described below, it holds
that no open-source implementation was found.

The first despeckling algorithm we will inspect is the Squeeze Box Filter (SBF). Proposed by Tay et al.
in 2010, SBF was specifically developed with ultrasound in mind. Performance of SBF has been
empirically tested on ultrasound data and has shown to outperform various standard algorithms in
this use case.

The second algorithm to consider is the Multi-Valued Neurons Cellular Neural Network filter (MVN-
CNN) (Ketout et al., 2011). This filter has the effect of very accurately turning white walls of the heart
into white pixels, and components like the atria as black pixels. this makes it so that when we apply
a fuzzy edge detection algorithm, we end up with relatively accurate representations of the edges of
the heart (also described by Ketout et al. and mentioned further in section E.3.1.2).

The third method uses a genetic algorithm-based mixture model (Uddin et al., 2016). However, by
visual inspection, it can be determined that this method preserves more detail than other methods,
making it less suited for our purposes: Ultrasound despeckling can be done with the aim to improve
diagnosability, but in our case we want to despeckle to determine our general location, which will
likely benefit little from very detailed images. The large-scale structure is more important.

Finally, the manufacturer of the used echo probe described in E.2.3 has also implemented some
speckle reduction methods into their SDK. These methods are described in section 10.1.13 of their
software user manual. The methods described include their proprietary
technologies. These are not well documented in the manual, and will have to be tested to give an
indication of their efficiency.

SBF MVN-CNN

Estimated Effectivity + ++ –

Implementability – – – ++

Speed + – +

Table E.3: Comparisons between the investigated denoising methods

In practice, the best approach will probably amount to a combination of the integrated
methods, combined with the squeeze box filter, or another fairly implementable despeckling algo-
rithm.

Edge Detection
For the edge detection, we have found a number of options: Canny (using the Canny operator or
otherwise), Differential and FCNN.

Firstly, the Canny edge detection algorithm is discussed. The Canny edge detection algorithm can
be run with a multitude of operators such as:

• Canny

• Deriche
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• Sobel or dimension extended Sobel (Abdul and Lateef, 2019)

• Prewitt or dimension extended Prewitt (Abdul and Lateef, 2019)

• Roberts Cross

The most interesting of these are extended Sobel and Prewitt. By extending their 3x3 neighbour-
hood to a larger neighbourhood, we trade resolution for more continuous and thicker edges. This is
preferable for our use case, since we only want to highlight the most apparent edges in our low-STN
images.

Whether Canny edge detection with any of these operators is a suitable solution will have to be
tested on actual data. That way their individual performance can be seen, compared to the other
options.

The second option is differential edge detection. This edge detection method is able to detect edges
with sub-pixel accuracy by computing a second-order differential equation. Differential edge detec-
tion does not have any other benefits over Canny-like methods other than this sub-pixel accuracy.
For our use case, we don’t need this accuracy at all, so we discard this method.

Lastly, we will discuss Fuzzy Cellular Neural Networks (FCNN). FCNNs have proven to be more ef-
fective than traditional edge detection methods when the data is low-STN (Yang and Yang, 1997).
Especially because our data is low-STN, this method could work very well. An example of FCNN
used on echocardiograms specifically shows that it has high potential to accurately highlight im-
portant edges, with little to no false positives (Ketout et al., 2011).

One downside of FCNNs is that up until this moment in time, an implementation in a major com-
puter vision library has yet to be found. This would mean that the team would have to implement
this complex algorithm themselves, which might lie outside the scope of the project.

ext Sobel ext Prewitt FCNN

Estimated Effectivity + + ++

Implementability + + – –

Speed + + –

Table E.4: Comparisons between the investigated edge detection methods

E.3.2. Learning Architecture
The software should be able to route the probe such that high-quality ultrasound images are ac-
quired. More traditional image processing techniques for finding the instructions for the probe
based on the general position of the heart have proven unsuccessful in earlier endeavors. Therefore,
we look towards machine learning architectures to provide us with a solution. After researching the
application of machine learning on the guidance of ultrasound equipment, we identified three ma-
jor architectures. Due to the usefulness of a convolutional neural network when dealing with image
data, this model is used in all three major architectures. The first one uses just a CNN. The second
architecture combines a CNN with a RNN. The final architecture uses deep reinforcement learning.
Note that the latter solution differs a lot from the first two, which will be discussed in more depth in
E.3.2.3.
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Convolutional Neural Network
Convolutional neural networks are often used when dealing with image data. As the majority of the
input of the algorithm will be an ultrasound image, they could provide a solution. However, as our
problem considers more than just the image, it would ideally also to take the position of the probe
into account. In the approach used by Toporek et al. (2019), optical recognition is used to track
the 6-DOF of the probe. The 6-DOF are all based on a relative location, which has been marked
by the sonographer. As we do not have the hardware needed to do optical recognition, this should
be replaced by another technique, for which we propose using the gyroscope and accelerometer.
Besides the required meta information, the ultrasound images should be labeled based on their
quality. As this requires medical knowledge, an expert would perform this labeling.

The convolutional model itself exists of multiple components. Toporek et al. (2019) describe using
SqueezeNet as a primary feature extractor with eight fire modules, followed by one convolutional
layer and a global average pooling. To predict the instructions, two separate regression layers with
a π tanh activation function were added after the primary feature extractor. Furthermore, for the
quality assessment and view classification, a softmax classification layer was added.

This approach is close to the desired solution. However, there are some notable differences. First,
due to the lack of optical recognition hardware, another technique should be used to track the 6-
DOF, as suggested before, this could be done using the gyroscope and accelerometer. Second, the
approach used is generalized for multiple views used; they consider apical two-chamber, apical
four-chamber, parasternal long-axis, parasternal short-axis, subcostal long-axis, and subcostal four-
chamber. For this project, we only consider apical four-chamber views, and therefore the model
should be adjusted to not classify the view. Since the final layer that is used for view classification is
also relevant for quality assessment, no drastic changes to the model should be necessary.

Summary of CNN

Data Usage
x,y-coordinate This is used to find the relative location of the probe, this is used as

the expected result during learning only. (for example as data for
backpropagation)

Rotation Similar to the x,y-coordinates, this is used as the expected result
during learning only. (for example for backpropagation through the
model)

Ultrasound image This is used as input for the convolutional network.
Quality score This represents the quality of the image, this is used as the expected

result during learning only, (for example for backpropagation)

Table E.5: Necessary components of the data
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Figure E.1: Architecture described by Toporek et al. (2019)

Recurrent Neural Network
Creating an echocardiogram might benefit from using former predictions (Toporek et al., 2018).
Therefore, the usage of a Recurrent Neural Network would be a possibility. We examine the ap-
proach used by Van Woudenberg et al. (2018). However, as this approach is mainly focused on
assessing the quality of an ultrasound image, methodologies for extracting probe guidance instruc-
tions are not mentioned.

Van Woudenberg et al. (2018) use feature extraction by a neural network, which is fed forwards to an
RNN. The RNN architecture in question is Long Short Term Memory (LSTM), a very popular archi-
tecture that lends itself well to videos. To make a single complete classification, Van Woudenberg
et al. work with 10 frame clips. Each frame is classified separately with the LSTM network, which
has a memory component that allows it to remember previous classifications in detail. This gives
10 separate verdicts on what view is seen in the 10 frames, and what quality this view has. Both of
these factors are averaged together to produce the final classification of the whole clip.

Since our probe will also provide sequential video data, we believe using this temporal component
in classification is certainly attractive for our purposes. It is notable that Van Woudenberg et al.
had to perform feature extraction with a CNN, which in turn was fed to the RNN. Likely, the same
architecture would be required in our case, as using only an RNN does not give the network enough
depth to properly analyze the highly detailed and possibly noisy images. A key difference between
the work of Van Woudenberg et al. and our own is the situation in which the RNN is used: they
provide it with an echo view, and the only task for the network is to choose one of 14 preset options,
and determine how good the quality is. In our case, the probe could be in any orientation around the
heart, possibly so far that the heart is barely on screen at all. Our RNN would have a more abstract
task to perform, namely reasoning about its position, and then reasoning the direction in which the
heart is likely to be. Once it is close to a good view, this prediction would have to similarly increase
in accuracy so as to end up with high picture quality. We conclude that if we were to use RNN’s, they
would need to be used in a more complex architecture than in the work by Van Woudenberg et al.,
to allow for this behavior.
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Summary of RNN

Data Usage
Ultrasound cine This is used as input for the convolutional network.

Quality score This represents the quality of the image, this is used as the expected
result during learning only, (for example for backpropagation)

Table E.6: Necessary components of the data

Figure E.2: Architecture described by Van Woudenberg et al. (2018)

Reinforcement Learning
The problem of giving instructions based on specific observations can be modeled using reinforce-
ment learning, where the policy predicts the instructions needed. As traditional deep learning
approaches would be hard to perform using image data, we instead examine deep reinforcement
learning.

An important issue that needs to be covered, however, is the need for a learning environment. It
is impossible to realize a learning environment using physical equipment, as training would be too
slow, not to mention that it would require a human subject. (Milletari et al., 2019) suggest a simu-
lated training environment as a replacement. They construct a simulated training environment by
subdividing the chest area into several bins. Each bin is filled with at least 25 frames of data. All the
bins that are within the wanted area are marked as correct. These parameters allow the policy to
learn about how to position the probe. However, additional information is needed to find the cor-
rect rotation and tilt. To incorporate these instructions into the policy, it is required to fill "correct"
bins with 5 additional clips. 50 ’correct’ frames, 50 frames for both excessive clockwise and counter-
clockwise rotation, and 50 frames for both excessive inferomedial and superolateral tilt should be
captured.

Besides an environment providing the state of agent, the actions an agent has access to should be
modelled as well. It was suggested to support the following set of actions:
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Action Effect
NOP Stops the virtual probe. Should be issued at correct view

Move Lateral Translates the probe towards the patients left
Move Medial Translates the probe towards the patients right

Move Superior Translates the probe towards the patients head
Move Inferior Translates the probe towards the patients feet

Tilt Supero-laterally Tilts the probe towards the head of the patient
Tilt Inferro-medially Tilts the probe towards the feet of the patient

Rotate Clockwise Rotates the probe clockwise
Rotate Counter-clockwise Rotates the probe counter-clockwise

Table E.7: Set of actions that should be supported by the agent as suggested by Milletari et al. (2019)

Milletari et al. employ a deep Q-network to learn the policy. The Q-values are found using a con-
volutional neural network. The agent learns by simulating movement of the probe within the con-
structed virtual environment. The virtual probe is reset to a random location, and observes one of
the images assigned to that location (i.e. bin). Based on the observation it will decide the best ac-
tion, and is rewarded only if it moves to the "correct" bin. The exploration uses an ϵ-greedy strategy.
As we’d like the network to learn based on the images and not the exact location of the bin, which
might differ from person to person, the state is decided based solely on the image. A possible im-
provement would be taking into account relative position, which should increase accuracy with less
danger of overfitting than using absolute position.

Summary of RL

Data Usage
x,y-coordinate To decide which images fall into which bin

Rotation To decide which image belong to which rotation in a bin
Ultrasound image The images should be taken in a grid, such that a virtual environ-

ment can be created
Labeling of images To be able to label the correct bins

Table E.8: Necessary components of the input data

Figure E.3: Architecture described by Milletari et al. (2019)
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Comparisons

CNN RNN RL

Data collection Ultrasound im-
ages, which have
been labeled with
position, rotation
and quality

Ultrasound im-
ages, which have
been labeled with
position, rotation,
quality and time,
and have been
grouped based on
sessions

Ultrasound images
of the chest area
in a grid pattern,
which have been
labeled with po-
sition. Images
within the right
areas have been
marked as cor-
rect. For correct
areas, images with
different rotation
and tilt have been
taken and labeled
by quality.

Model adjustment Data collection
needs to be al-
tered to use the
gyroscope and
accelerometer

Model should be
adjusted to pre-
dict instructions,
instead of only
classifying views
and assessing
quality

Almost no adjust-
ments needed

Data set size used 30 subjects,
611,000 frames

1,600,000 frames
(assuming 100
frame cines)

27 subjects,
200,000 frames

Accuracy obtained classification: 98%
quality: 89%
transl.: 2.0 ±
1.6mm
rotation: 3.5±2.7◦

guidance: 86.1% classification:
86.21%

Predicted performance fastest
(25 Hz on pre-
mium mobile
device)

slowest
(3 Hz on Samsung
S8+)

slow

Table E.9: Comparisons between the methods proposed by Toporek et al. (2019), Van Woudenberg et al.
(2018), Milletari et al. (2019)
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CNN RNN RL

Ease of data collection + - –

Model adjustment - – +

Accuracy: + ++ +

Speed + – -

Table E.10: Quick estimation of performance by Toporek et al. (2019), Van Woudenberg et al. (2018), Milletari
et al. (2019)

Conclusion
Initially, we have thought about combining CNN, RNN, and RL to create an accurate model. How-
ever, this may lead to a complex model and require specific data to be gathered. Furthermore, train-
ing will be slow as multiple components need to be trained correctly. To reduce complexity and to
keep training an accurate model feasible, we have chosen to use .
This should result in accurate instruction tracking as well as should be an improvement over earlier
approaches. To implement this model, we will use components suggested by both Toporek et al.
(2019) and Van Woudenberg et al. (2018). However, there are some limitations due to the techni-
calities of this project. We have a limited amount of data sources available, as well as data being
inherently noisy. As the only test subjects we currently have available consist of young males, the
trained model might be lacking in identifying females and older subjects.

E.3.3. Metrics
To be able to judge the model’s performance, some metric needs to be chosen. To find the most
applicable metric, we explain several different metrics and compare them (Minaee, 2019).

Accuracy

Accuracy = Number of correct predictions

Total number of predictions

Accuracy is a good metric when using nominal classes and having equivalently distributed data
across these classes. It fails to provide good performance, however, when the distribution is unbal-
anced, as it favors the classes with the most data the most. Another issue is that it does not consider
relations between possible results, as there is no such concept between nominal data. However,
when dealing with ordinal or interval data, this can be relevant. Despite this, accuracy often pro-
vides us with a simple way to quantify performance quickly.

Logarithmic Loss

Logarithmic Loss = −1

N

N∑
i=1

N∑
j=1

yi j ∗ log(pi j )

N : The number of samples
M : The number of classes
yi j : Whether the sample i belongs to class j (1) or not (0)
pi j : The probability of sample i belonging to class j

Logarithmic loss works when the classifier assigns some probability to each class for a specific sam-
ple. The loss function penalizes false classifications and for optimization purposes should be as
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close to 0 as possible. A notable issue is that logarithmic loss goes up based on the number of sam-
ples as well as the number of classes. Therefore, it is difficult to use when comparing data sets.

F1 Score

F1 = 2
1

precision + 1
recall

F1 score tries to find the balance between precision and recall. This fixes one of the problems with
accuracy, that specific cases are inaccurate but are not reflected in the accuracy score. This is due to
precision measuring the instances that are classified as correct are correct and recall measuring the
number of samples classified as correct. However, the issue with not taking into account interval
data is still existent.

Mean Square Error

MSE = 1

N

N∑
i=1

(yi − ŷ)2

The mean square error is often used for regression problems. It calculates the average squared error
between the predicted and the actual values. An issue still remains, as large errors are exaggerated
due to the squaring behavior of the metric. This might result in images taken far away from the
target position influences the algorithm too much, and thereby it may result in a decrease in accu-
racy.

Mean Absolute Error

MSE = 1

N

N∑
i=1

∣∣yi − ŷ
∣∣

The mean absolute error is similar to the mean square error but suffers less from large errors im-
pacting the overall prediction. There are still some issues with the mean absolute error, as errors far
away from the target are expected to have a larger deviation due to either a decrease in data density
or simply due to the larger distance. These values have the same impact on the metric as values
closer to the target, which has a smaller expected deviation.

Conclusion
As the problem of finding the apical four-chamber view consists of both deciding the quality of the
image, which can be seen as a binary classification problem and finding the instructions to improve
the image, which is essentially a regression problem, we need to choose at least two different met-
rics. We decided that for regression MAE has the least problems and is the most applicable to the
problem. We could also suggest altering MAE by using the square root of each term, as this would
resolve the issue with differing deviations. For the binary classification problem, we will initially
start with using accuracy. However, if it proves insufficient, we will consider F1 Score.

E.4. Frameworks
There are two things that we need to decide on in this section: programming language and frame-
work. We argue that the chosen framework will be the main contributing factor in how the software
will be built. Therefore, we will first decide which framework will be used, and only secondly decide
the language.
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E.4.1. Libraries
PyTorch and TensorFlow seem to be the most used libraries. TensorFlow is two years older than
PyTorch. PyTorch is considerably more popular under researchers, while TensorFlow remains more
popular in a corporate environment. Support for both applications should be a non-issue.

TensorFlow is a low level library. Keras and Sonnet are both higher-level libraries built on top
of it. PyTorch is considered to be higher level than TensorFlow, but still low level compared to
Keras.

The general consensus is to use a high level library, unless you need features that are not offered by
it. Therefore, the ideal library would be a high level library that provides a fallback to a lower level
one.

Some members in our team had good experiences with Keras, so we focus our attention there. Keras
used to be a high level API that could run on several backends. TensorFlow was by far the most pop-
ular of the several choices available. Since the release of TensorFlow 2.0 in the end of 2019, the Keras
api is fully integrated into TensorFlow and the support for other backends is discontinued.

Because of the tight integration between Keras and TensorFlow, we expect that starting with the
Keras API in TensorFlow will be the best choice. We will be able to use the high level APIs for most of
our features, while the tight integration with TensorFlow will allow us to fall back to the lower level
APIs should pure Keras not suffice.

E.4.2. Language
Python is by a large margin the most popular tool for machine learning. While TensorFlow is im-
plemented in C++, TensorFlow, too, is mostly used in a Python environment. Most of the available
documentation is also about the Python interfaces, making it the language of choice for Tensor-
Flow.

It is not the only choice, however. Several other programming languages are officially supported by
the TensorFlow library. However, only the Python API provides the Keras API. Because we specifi-
cally want to use the Keras API, we have to use Python.

However, there is a second factor that determines our language choice: we need to use the
SDK in order to interact with the probe. This SDK only supports C++/.Net, C# and native C++. We
identified two possible solutions to solve this problem.

The first option is to split our software in two. The part of our software that has to train the model
needs the Keras API, but doesn’t need to interact with the probe. This part can be written in Python.
The other part will be in charge of controlling the robot using the trained model. This part needs
to make use of the SDK. Since the C++ API provided by TensorFlow does allow us to load a
pre-trained Keras model, we can program this part in C++.

The second option is to write both parts in Python. This would require us to write Python bindings
for the SDK. Considering the size of the SDK, doing this manually would require signifi-
cant work, even if we only write bindings for the methods that we use. There are automated tools
available, but we’ve not evaluated their results on large projects like the SDK.

In our team, none of us have experience with writing bindings, while there is experience with writing
C++. Considering this, we choose to use the first option where we train the model in Python, and
control the robot in C++. Since the SDK only supports Windows, there is no reason not to use the
.Net libraries, so we’ll use those as well.
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E.4.3. Conclusion
We will write a Python program that trains a TensorFlow model. We will use the Keras API wherever
possible, only falling back to raw TensorFlow when the Keras API doesn’t fulfill our needs. The part
of our software that interacts with the SDK and is responsible for the real-time predictions
will be written in C++ using the .Net libraries. The model trained using the Python program will be
imported in the C++ version of TensorFlow.
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