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Influence of electromagnetic fluctuations on electron cotunneling
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We analyze electron cotunneling in systems of small normal tunnel junctions embedded in a dissipa-
tive electromagnetic environment. As an example we consider two junctions in series with an Ohmic
resistor R. We show that at low voltages the electromagnetic fluctuations can suppress the cotunneling
current strongly I < V3*22 where z=Re?/h. This effect can be used to improve the accuracy of proto-
types of the single-electron dc current standard (the pump and the turnstile device).

I. INTRODUCTION

In view of the striking progress in experimental work
on single-electron tunneling (SET) in ultrasmall tunnel
junctions and the confirmation of the “orthodox theory”
predictions! more elaborate descriptions of these phe-
nomena gain importance.> In particular, the effect of
macroscopic quantum tunneling of the charge or, simply,
an electron cotunneling® " !° was detected in several re-
cent experiments. ! 713

In a cotunneling event two (or, more generally, n >2)
electrons tunnel simultaneously and quantum coherently
through two (n) junctions of some multijunction circuit.
Such a transition occurs via n —1 intermediate virtual
states with macroscopically different values of charges at
the electrodes of the junctions involved. A single cotun-
neling event has a huge number ~E_N(0) of realizations
which lead to the microscopically distinguishable final
states of the system [here E, =e?/2C is the characteristic
charging energy and N(O) is the density of electron states
in the junction electrodes at the Fermi level]. In each of
these realizations the quantum interference occurs be-
tween n! discrete trajectories of the transition, which cor-
respond to the various sequences of macroscopically dis-
tinguishable virtual charging states. Therefore the mac-
roscopic character of quantum mechanics clearly mani-
fests itself in a cotunneling phenomenon.

The cotunneling process is the dominant channel for
the electron transport in systems of tunnel junctions at
low temperatures and small voltages, when the usual SET
is blocked due to the Coulomb effects. For this reason it
sets the ultimate limitations on the accuracy of SET de-
vices.!*!> This is particularly important for the turnstile
device!® and the pump,!” which can be considered as pro-
totypes of the first-principle dc current standard.

In Refs. 4-8, 14, and 15 cotunneling was analyzed us-
ing the simple model of the circuit electrodynamics,
which takes into account only capacitances of the junc-
tions and their electrodes. On the other hand, the con-
sideration of the lowest-order tunneling processes in sin-
gle junctions'®!® and in multijunction circuits?>2! has
shown that in general the electromagnetic environment
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influences the electron tunneling.?? The aim of this paper
is to investigate the effect of the electromagnetic environ-
ment on the electron cotunneling in systems of normal
junctions.

A similar problem was studied in Ref. 9. However, the
analysis of the specific circuit of a “resistive current
copier” in the limiting cases of small (in comparison with
Ry =h/e?) and infinitely large impedance Z(w) of the
environment did not reveal several crucial features of the
cotunneling. For instance, the nonanalytic behavior of
the transport characteristics (e.g., I-V dependence) at low
voltages and temperatures has not been found. No re-
sults for moderate or large values of the impedance have
been reported.

The paper is organized as follows. In Sec. II we de-
scribe the general formalism for the analysis of cotunnel-
ing in the presence of an arbitrary electromagnetic envi-
ronment. This formalism is applied to a system of two
Jjunctions in series with an external Ohmic impedance R
which models a dissipative environment (Sec. III). We
find a suppression of the cotunneling rate at low voltages
and temperatures. In particular, the zero-temperature I-
V characteristic obeys a power law I < V3%2% z =Re?/h
for an arbitrary R. We discuss the possibilities to observe
this effect and to make use of it in order to improve the
accuracy of SET devices (like pumps and turnstiles)
without increasing the number of junctions (Sec. IV).

II. MODEL AND GENERAL FORMALISM

To describe the effect of cotunneling of two electrons in
two junctions of some circuit, we consider the Hamiltoni-
an

H=H,+H,+H,, . (1)

The terms H,=H"+H"+H® correspond to the
junctions n=1,2 and H,,, describes the electromagnetic
environment. It is convenient to work in the interaction
representation with respect to the sum of H,, and the
Hamiltonians H{“® of the junction electrodes. The tun-
neling terms H\" of the Hamiltonian (1) then take the
form
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H,, =H§$21 +H§£f2, ng?n =H' +H in the jgnction electrodes. ' . .
The influence of the electromagnetic environment is

Hf= s T;nq)c;pcnqe"sn,p‘sn,q”ei%(”’ 2) described by tlze terms exp[i¢,(z)], where the phases
e 0T ¢,(t)=(e/#) [ V,(r)dT are related to the voltages

- - across the junctions.'® 722 The phases (and voltages) con-

H, =(H,)", sist of the classical parts ¢!V and fluctuations ¢'¢. The

latter should be treated as operators. The self (m=n)

where €, ,,) and c,:r_ s(q) (€np(q) are the energies and  and mutual (m+n) correlation functions of ¢¢’ can be
creation (annihilation) operators of the electronic states computed from the fluctuation-dissipation theorem:

]
K, ()=([$E(1)—8!$(0)]$£(0)) opy
. 62 dw Rezm,n(w) fiw P _
= hf27r coth [cos(wt)—1]—isin(wt) | for m(n)=1,2 . 3)

In the last equation we have introduced an impedance Z,, ,(w) which determines the linear response of the electromag-
netic circuit V, (0)=Z, ,(0)I,(®) in the absence of electron tunneling. The average in Eq. (3) is taken over the equi-
librium density matrix of the electromagnetic environment. In what follows we will use a bosonic model of the environ-
ment'8 22 characterized by the Hamiltonian H,,, =3 ,fiob I,b «- The fluctuational operators ¢\5’ can be considered as a
linear form of a large number of Bose operators bl and b, corresponding to normal modes of the environment.

Provided that the tunnel conductances of the junctions G\T’ are small, G\T’ << min[R,}",ReZ,,:},(w)] for fiw <eV,, )
we can use perturbation theory in the tunneling Hamiltonian H;, (similarly to how it was done in Ref. 9). In the
Coulomb blockade regime the usual second-order tunneling is exponentially weak, I ~ exp(—E_/T) at low tempera-
tures. The main contribution to the current arises in fourth order

; t t
L=z [ dn [ dry [ deg (T, Higg ) i (02 Hin )] oY - @

Here fn =(ie/#)(H," —H, ) is the current operator. The averages are taken over the equilibrium electron subsystem

n
and electromagnetic environment. The operators e and exp(ti¢, ) related to these systems commute.

n,p(q) (Cn,p(q))
III. DOUBLE JUNCTION SYSTEM

We now apply the general formalism to a system of two identical junctions connected with an external circuit charac-
terized by the impedance Z(w) (Fig. 1). In what follows we assume that the capacitances C of the junctions are much
larger than the gate capacitance C,. The standard Coulomb blockade of SET occurs in the region

__e _ 10 Ce¥s
2C C

14837 , Qo=C,V,—e (5)

(we denote the nearest to x integer as [x ]). The fourth-order tunneling of two electrons to (from) the central electrode
of the system is also exponentially suppressed in this region and can be neglected. Moreover, we will not take into ac-
count the coherent electron propagation through both junctions which (for not extremely low voltages and tempera-
tures) is weaker than the cotunneling by a factor E.N (0).° Taking averages over electronic states in Eq. (4) we obtain
the cotunneling current at low voltages (5) and temperatures (T <<E)

I=e(y =y, (6)
t
7/(+)=2Ref_t dtlfi dl‘zfj dt3{ G (13— 1)G,(t,— 1)

i6,(t3) idyty), —id (1) —igy(t)) —ig(t;) —idy(1)
X<ez¢1 1y el (15 [e utlre i, (t, —@(tl—tz)e i¢, Ve i$, ]>em
+Gl(t2_t)G2(l3_tl)
iy(13) id(1y), —id(1) —idyl1)) —ig(t)) —id(1)
X (') N TN TR _g e e TNy v )

Here '™ is the forward tunneling rate. The backward tunneling rate '’ can be obtained from Eq. (7) by changing
the signs in the exponents together with the sign of the whole expression. The functions G, are determined as follows:

i
—%(en,q—an,p)t

fle, 1= fle, )], (8)

1 n
G"(t)=;2|T1§,q)|zexp
pq

where f(€) is the Fermi distribution. The Fourier transformed function
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#G.T ©
e? 1—exp(—#iw/T)

G, (w)=
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9)

describes the electron tunneling rate in a single junction biased by a voltage V =7%w/e.
Keeping in mind that the operators #'8) are linear forms of Bose operators, we can compute?’ the averages of the ex-

ponents in Eq. (7). After Fourier transformation we obtain?*

do, do eV ev
'}’(+)= _27]_2'7—7-£ 1 ﬂ)1+—ﬁ_l ReD(wl,wz)Fz Cl)2+_“_ N (10)
T,(0)= [ dte’G, () exp[K, ,(1)] , (11
! io(t—ty) iwyt;— —t)—K(t;— —1). —K(— —K(1,—
D(wl,w2)=2ft dtlft dtzf 2 dt3{e sy t3)e oty tz)eK(t3 t)—K(t3—1))+K(t, t)[e K(t tl)—@(tl—tz)e K(1, t)]
+eiw1(t—-t2)eiw2(tl—13)eK(13'“t)—K(t3——tz)+K(t2——tl)
x[e KT @, —1,0e KTy (12)
[
where ReZm,,(a))=£ 1 2+(_1)m+,,‘n’8(w) ’
! 0, ’ 4 1+(0/9Q,) 2C
V,=— |V+(—1)"— (13) 2
2 o Q,=— . (15)
RC
are the voltages across the junctions and

K(t)=K,,(t)=K,(t). The backward tunneling rate
y'7) can be obtained from Eq. (10) by changing the signs
of voltages (13).

The functions I' ,(o=eV,, /%) correspond to the rate of
second-order tunneling through the nth junction embed-
ded in an electromagnetic environment. To see this more
clearly, we rewrite Eq. (11) as a convolution,'®

eV =fG,,

_n
#

of G,(w) [see text below Eq. (9)] and the conditional
probability P(Q)=(27)"" [ dt exp[iQt +K, ,(¢)] of elec-
tron tunneling with the transfer of energy # to the
modes of electromagnetic environment [ f P(Q)dQ=1].
The propagator D(w,,w,) describes the electromagnetic
coupling of the junctions, which is responsible for the
quantum correlations between two virtual tunneling
events in the act of cotunneling.

We now evaluate the cotunneling rate (10) for the
Ohmic external impedance Z(w)=R at zero tempera-
ture. The real parts of impedances Z,, ,(w) are

ev,

#i

—Q [P(Q)dQ, (14)

n

[1,9>

——]}
Z/2 (o o J_
Wl

|1,p>\_'jL 1202 H2 12,0>

/
= -v2
C 22

v/2

FIG. 1. Equivalent circuit of the system under consideration.
Electronic states in the electrodes of the junctions are denoted
by brackets.

The first term here describes fluctuations of the voltage
across two junctions. To simplify calculations we ap-
proximate it by (R /4)exp(—|w|/Q,), which is legiti-
mate for low frequencies w <<(2,. The second term de-
scribes the voltage fluctuations at the central electrode.
Its contribution exp(iw.t) to K,, ,(t) is related to the
single-electron Coulomb energy #w, =e2/4C.
Performing the integration in Eq. (3) we obtain

K, ()=(1+iQ,t)"*?exp{(=D)" """ liw.t} ,  (16)

where z=e2?R /h is the dimensionless external im-
pedance. Substituting (16) in (11) we obtain

3 ﬁG,(,T) i, 2 . 1+z/2
I, (o)= o2 r 2+—2— Q, Q,
XO(w—w,) for v—w, <<Q, . (17)

From Egs. (12) and (16) we compute (see the Appendix)
the function D(w;,®,) with the result

2

ReD(opo,)=7 |+ +-L | 8(a) for z=0, (18)
w0, W
1 1+z/2 1 1+z/2
ReD(wy,0))=mz | |—5 +2
@7 @103
1 1+z/2
+ | & " '®@) forz<<1,
@)

(19)
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2 z—1
1 1 1 )
ReD(0,0))= ———— | —+— | |2
Dlono)=r T 0 o T o | |0,
0] —
X exp | — (@) forz>>1. (20)
QZ
Here ®=20,—w,—w, is assumed to be small,

& << min(@,w,).

The arguments w,,, of the functions I';,, and D cor-
respond to the energies of intermediate states, which arise
after the first tunneling event in the cotunneling process.
To see this, we note that in the Coulomb blockade regime
(5) after such an event in the nth junction the Coulomb
energy of the system increases by?>

#Q, =to, —eV, >0 . 1)

Simultaneously the electron energy changes by
#im, =eW +el", where —¢}™ and £ are the electron en-
ergies (with respect to the corresponding Fermi levels) be-

fore and after the tunneling (Fig. 2). Therefore
fiw, =H#Q, +#id, (22)

are the energies of virtual states. The ® function in Eq.
(17) shows that at T=0 the electron energy can only in-
crease,

#o, >0, (23)

because of the Pauli principle. The total increase
#i, +#id, of electron energy cannot be larger than the
difference eV of chemical potentials of the external elec-
trodes (see Fig. 2),

#ito, + i, <eV . (24)

This condition clarifies the sense of ® functions in the ex-
pressions (19) and (20) for D, provided that
o=eV /fi—d,— @, [see Egs. (13), (21), and (22)]. The last
two expressions determine actual domain of integration
in Eq. (10).

-~---£
hQ, h
y
(1 ;
Sh - -
eV

2)
_______ %t

FIG. 2. Configuration of electrons (filled circles) and holes
(empty circles) arising after a cotunneling event. Solid lines
denote the positions of Fermi levels in electrodes of the junc-
tions (Fermi level of the central electrode corresponds to the
virtual state in an act of cotunneling, which arises after the tun-
neling of one electron through the left junction).

After an act of cotunneling an electron-hole pair with
the energy E, , =€\’ +¢{? is left at the central electrode
(Fig. 2). Simultaneously the energy difference
AE=eV —e'—¢? arises between the initial and the
final electron states in external electrodes. Purely capaci-
tive electromagnetic environment (z=0) does not absorb
energy, AE =E, ,, which is manifested by the 6 function
in Eq. (18). In this case the tunneling is elastic.?®

In the presence of dissipation a part of the electron en-
ergy #io=AE —E, , 20 can be transferred to the envi-
ronment. For the Ohmic impedance Z the function D is
proportional to @~ '@(&). Therefore for z <<1 the tun-
neling with low-energy transfer 7@ <<eV dominates.
Even for very small z the singularity in D is integrable,
lims_,ongda')—>0, which means that effectively only in-
elastic tunneling (%@ >0) occurs. [The alternative situa-
tion, where inelastic and elastic tunneling coexist, would
be described by a function D, containing a term
constd(@) together with some contribution at finite ener-
gies #i».>’] For larger impedances z ~ 1 the characteristic
energy transfer to the environment is no longer small,
%o ~eV. In particular, for z >>1 the processes with the
energy transfers %@ =2#®,,,=eV /2 dominate.

Substituting the results (17), (19), and (20) into Eq. (10)
we finally obtain the I-V characteristic

- eRIZ(G(lT)G(ZT) L 1+Z/2+2 1 1+z/2
4873 2 0,4,
3+
. 1 14272 oV ov z
Q} #Q, #
forz<<1, (25)
3
_eRRGYGT (1 1 | [er [T er
87 r(2z+4) | Q; Q, #Q), #

forz>1. (26)

These results are valid for the voltages
V << min(V,,#Q, /e) , 27

small in comparison with the Coulomb blockade thresh-
old V¥, and the characteristic frequency (, of the environ-
ment.

The I-V characteristic in the whole Coulomb blockade
region (5) was computed numerically. To facilitate the
calculations, we still use exponential approximation for
ReZ, ,(w) [see text below Eq. (15)]. The results for
several values of the impedance are shown in Fig. 3. One
can see that increase of the impedance suppresses the co-
tunneling current at low voltages. The I-V curves plotted
on a logarithmical scale [Fig. 3(b)] clearly display a
power-law behavior I« V3% for all values of z con-
sidered. Approaching the edge of the Coulomb blockade
(V—e /2C) the current formally tends to infinity because
of the energy denominators in Egs. (19) and (20). This
breakdown of perturbation theory can be overcome by
taking into account the contribution of higher orders in
the tunneling Hamiltonian. Such a procedure was car-
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FIG. 3. I-V characteristics of double junction in the
Coulomb blockade regime computed for @, =0 and T=0. The
curves from top to bottom correspond to the
impedances z=Re?/h =0,0.5,1,2,4. The results are shown on
linear (a) and logarithmic (b) scales. We denote
Iy=(e3/AC)N, =, o(#HG\T /2me?).

ried out® so far only for the capacitive electromagnetic
environment.

IV. DISCUSSION AND CONCLUSIONS

We discuss now the possibility to observe the effects of
the dissipative environment in experiment. The main
problem here is to place high Ohmic resistor with low
stray capacitance in the vicinity of tunnel junctions. The
best results, to our knowledge, were achieved by Kuzmin
and coauthors?® who fabricated thin resistive leads which
have the stray resistance R;=3.4 kQ/um, the stray ca-
pacitance C;=6X 107! F/um and the length /=28 pm.
A reasonable model of such an electromagnetic environ-
ment is an RC line.”® An impedance of the line Z /2 is
Ohmic Z/2=IR;, at small frequencies ©<<Qgc
=1/I’R;C; and decreases ReZ(w)=Rg(Qy/|0w|)'?
Q,=8R,;/C;R} at higher frequencies w>>Qg.. The
effect of dissipative environment is quite pronounced if its
impedance is large ReZ(w)> Ry for o ~eV /#. For the
experimental parameters this is the case for low voltages
V <#i)y/e =0.45 mV.
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For the voltages eV > #iQlz - our results are valid quali-
tatively (because a non-Ohmic dispersion of the im-
pedance is essential). For smaller voltages eV <#{zc
only low-frequency Ohmic parts of the impedance con-
tribute. Therefore we expect quantitative agreement,
and, in particular, the power-law behavior (25) and (26) of
the I-V characteristic.

The effect of cotunneling current suppression by the
dissipative environment can be used to improve the accu-
racy of SET devices,'®!” which transfer electrons one by
one. The simplest way to do this is to feed the devices by
means of high Ohmic resistors situated close to the junc-
tions (as shown in Fig. 1 for the double junction). The
suppression of cotunneling should be especially effective
in the pumplike devices, where an adiabatic transfer of
electrons occurs. A typical Coulomb energy change
eV g=(e/C)(NfC/G'D)/2] for a SET event in a pump
with N junctions decreases with decrease of the operating
frequency f.'*!5 The value eV /% determines a charac-
teristic frequency at which an environment contributes.
The less this frequency is, the larger is an impedance of
the environment (RC line) and the more effective is the
cotunneling suppression. For typical experimental pa-
rameters C=10"" F and f=0.05G'"/NC we obtain
eV g /#=5.4X10" s7'. An impedance of the environ-
ment at this frequency corresponds to z=3.5. This esti-
mate shows that suppression of cotunneling current,
characterized by the increase 2z ~7 of the power of volt-
age in Eq. (26), can be quite effective.

The effect of inelastic cotunneling considered in this
work for tunnel junctions can also occur in semiconduc-
tor nanostructures containing quantum dots, where a
conventional cotunneling was recently observed.!* In this
case our consideration should be generalized to include
possible effects of the discreteness of energy levels and of
the finite traversal time. We stress that a bosonic model
of electromagnetic environment used here is rather gen-
eral: it can describe the influence of various types of elec-
tronic system excitations (e.g., plasmons,” or electron-
hole pairs®®) on the tunneling.

In summary, we have calculated in the lowest nonvan-
ishing order of perturbation theory the cotunneling
current through two tunnel junctions coupled to a gen-
eral electromagnetic environment. For a dissipative
Ohmic environment a cotunneling event is shown to be
accompanied by a finite energy transfer #@ to the envi-
ronment, i.e., cotunneling is inelastic. For the low im-
pedance ReZ(w)<<h /e? of environment the small ener-
gy transfers dominate #i&d <<eV  whereas for
ReZ(w)>>h /e* we obtain #im~eV /2. In the last case a
drastic suppression of cotunneling rate occurs at low
voltages. This effect can be used to improve the accuracy
of the devices which pass electrons one by one.
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APPENDIX

In this appendix we present the calculation of the func-
tion D(w;,w,) (12) for high and low impedances of the
environment in the limit 7=0. The rates
I' (w,+eV, /#) (17) are nonzero for

x© —(io+et — 0T —® — _
D(wl,a)z):fo dTldtsz3e 2 [e 2T 1T3+e @17 “’273] ‘(

+[e‘wl(‘rl+r3)+e—w2(‘rl+‘r3j] [

where ®=2w, —w,—w, and €e— +0. Poles for all terms
in formula (A2) lie on the negative part of the imaginary
axis in the complex plain of #,. This means that if @ were
negative we could rotate the axis of integration over ¢, in
the positive direction by 7/2, t,—i7,, which in turn
would produce purely imaginary D. Thus, in order to
have nonzero real part of D, its arguments should satisfy
the condition

O<a<eV/# (A3)

[the last inequality comes from Eq. (Al)]. For zero im-
pedance from Eq. (A2) follows the result (18).

Below we concentrate on the small voltages V <<V,
[see Eq. (5)] when

W)~ 0 (1£2Qq/e), & << min(w;,w,) . (A4)

For low impedance z <<1 (i.e,, Q,>>w,.) exponential
functions under the integral (A2) determine the area from
which the main contribution to D is coming. For exam-
ple, for the first term, 7,~1/w,, T3~1/w,, t,~1/d.
This, together with (A4) gives Q,7,>>1, Q,73>>1,
t, >> max(7,7;). Therefore we can approximate this
term by the integral
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ev,
w, >0, ———>0 (A1)
#
[the right inequality follows from Eq. (5)]. Substituting

the correlator (16) in Eq. (12) and performing integration
in respect to ¢; and ¢; along imaginary axis (by means of
substitution t —t,— —iT,, t,—t;—iT3, t —t,—1, in the
first and third terms and t—t,—it, t,—t;—iTy,
t; —t,—1, in the other two terms) we obtain

(14+Q,7)(1+Q,73) 2
1—iQ,0,)(1+Q,7,+Q,7—iQ,1,)

(1+Q,7)(14+Q,7;) /2 "
(1+Q,7,—iQ,0,)(1+Q,7,—iQ,1,) » (A2

[

. © —(io+e), —w,T,—w,T
lzf dTldtsz3e Ze 21 3 /2
0

(ry73)*%t5 %,

which can be easily computed. Using the same line of
reasoning for the other three terms we obtain

D(w;,0,)=iT(1—2)['*(142z/2)

1+z/2 1 1+z/2
X - +2
w7 W10,
1+2z/2 1—z
1
+ — . - (AS)
[0 —o+ie

Taking the real part and omitting the terms of order of
z", n 22 we arrive at the formula (19).

In the opposite limit z>>1 (to be more precise
z '<<1—2|Qyl/e) the main contribution to the first
term in Eq. (A2) comes from 7,~1/w,<<1/Q,,
T3~1/0,<<1/8,, t,>> max(r,,73). Thus we can ap-
proximate it by

*(i&)+€)t2e —wyT 0Ty

fodeldtzdﬁe (1—iQ,t,)" %,

Considering the other terms in the same way, we obtain
Eq. (20).
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