
 
 

Delft University of Technology

Improving Contrast Agent Based Cerebral Perfusion Assessment
Arterial input function measurement and leakage correction
Tseng, C.

DOI
10.4233/uuid:92f49cdb-dc0b-4467-9598-7138957fec48
Publication date
2025
Document Version
Final published version
Citation (APA)
Tseng, C. (2025). Improving Contrast Agent Based Cerebral Perfusion Assessment: Arterial input function
measurement and leakage correction. [Dissertation (TU Delft), Delft University of Technology].
https://doi.org/10.4233/uuid:92f49cdb-dc0b-4467-9598-7138957fec48

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:92f49cdb-dc0b-4467-9598-7138957fec48
https://doi.org/10.4233/uuid:92f49cdb-dc0b-4467-9598-7138957fec48


 Im
proving C

ontrast A
gent Based C

erebral Perfusion A
ssessm

ent                 Chih-H
sien Tseng

 Improving Contrast Agent Based 
Cerebral Perfusion Assessment

Arterial input function measurement and leakage correction

Invitation

You are cordially invited to 
attend the public defense 
of the PhD thesis titled:

Improving Contrast Agent 
Based Cerebral Perfusion 

Assessment

Arterial input function measurement 
and leakage correction

by

Chih-Hsien Tseng

Wednesday 
19 March 2025

17:00 Laymen’s talk
17:30 Public defense

Senaatszaal, Aula
TU Delft

Mekelweg 5, Delft Chih-Hsien Tseng





56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

Improving contrast agent based cerebral
perfusion assessment

Arterial input function measurement and leakage correction



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 2PDF page: 2PDF page: 2PDF page: 2



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

Improving contrast agent based cerebral
perfusion assessment

Arterial input function measurement and leakage correction

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus, prof. dr. ir. T.H.J.J. van der Hagen,

chair of the Board for Doctorates

to be defended publicly

on Wednesday 19 March 2025 at 17:30 o’clock

by

Chih-Hsien TSENG

Master of Science in Biomedical Engineering,

National Taiwan University, Taiwan,

born in Taipei, Taiwan



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

This dissertation has been approved by the promotors:

Dr. F. M. Vos

Prof. dr. ir. M. J. P. van Osch

Prof. dr. M. Smits

Composition of the doctoral committee:

Rector Magnificus, chairperson

Dr. F. M. Vos, Delft University of Technology, promotor

Prof. dr. ir. M. J. P. van Osch, Leiden University Medical Center, promotor

Prof. dr. M. Smits, Erasmus MC, promotor

Independent members:

Prof. dr. J.A. Hemandez-Tamames Delft University of Technology

Prof. dr. L. Knutson Johns Hopkins School of Medicine, USA

Prof. dr. ir. W.H. Backes Maastricht UMC

Dr. ir. P.J. van Houdt Netherlands Cancer Institute

Prof. dr. S. Stallinga Delft University of Technology, reserve member

This research is part of the "HollandPTC-Varian consortium-confined call 2018" pro-
gram (project number: 2018017) financed by the HollandPTC-Varian consortium.

Keywords: Gadolinium-based contrast agent, perfusion MRI, cerebral perfusion,
vascular permeability, arterial input function, inflow artifact, partial vol-
ume effect, leakage correction, numerical methods.

Printed by: Gildeprint

Cover by: Chih-Hsien Tseng. Includes adapted images generated by OpenArt.

Copyright © 2025 by C. Tseng

ISBN 978-94-6518-024-3

An electronic copy of this dissertation is available at

https://repository.tudelft.nl/.

https://repository.tudelft.nl/


56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

In theory, there is no difference between theory and practice.
But, in practice, there is.

Jan L. A. van de Snepscheut
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SUMMARY

Magnetic resonance imaging (MRI) is a widely used medical imaging technique en-
abling detailed contrast in soft tissues such as the brain. Traditionally, MRI produces
qualitative, ’weighted’ images that merely emphasize properties like the longitudinal
(T1) and transverse (T ∗

2 ) relaxation times. Alternatively, quantitative MRI (qMRI) mea-
sures underlying tissue parameters directly, offering enhanced reproducibility and sen-
sitivity to various pathological conditions. This dissertation focuses on advancing the
qMRI techniques: dynamic susceptibility contrast (DSC) and dynamic contrast en-
hanced (DCE) MRI. Specifically, it aims to improve the accuracy and reliability of cere-
bral perfusion measurements in brain tumors.

Initially a comprehensive literature review on the application of DCE and DSC
MRI in glioma imaging is provided in Chapter 2. It highlights their potential to de-
rive biomarkers for assessing tumor hemodynamics, grading, treatment response, and
prognosis. In spite of this promise, significant barriers to clinical adoption are iden-
tified, including the lack of standardized acquisition protocols and analysis methods.
The chapter emphasizes the need for robust and reproducible frameworks to ensure
consistent perfusion measurements across different clinical settings and imaging plat-
forms, signifying the importance of the original research of this dissertation.

The arterial input function (AIF) is a critical factor for accurate perfusion parame-
ter estimation in DSC MRI. Therefore, we explore sophisticated strategies for AIF mea-
surement in Chapter 3. This study demonstrates that AIFs derived from DCE MRI ex-
hibit superior reproducibility and reliability compared to those obtained directly from
DSC MRI. Also, DCE-derived AIFs provide more consistent perfusion estimates. As
such utilizing a DCE-driven AIFs offers a more reliable alternative to traditional DSC-
based AIFs.

To further improve the AIF determination, we introduce in Chapter 4 an inno-
vative methodology to simultaneously correct for inflow and partial volume effects
(PVEs) on DCE AIF measurement. We establish that the PVE closely resembles the in-
flow effect, enabling their concurrent mitigation. Clinical validation involving ten pa-
tients with diverse brain tumors confirms the efficacy of the proposed method. What
is more, it is demonstrated that alternative AIF sources, such as the superior sagittal
sinus (SSS), are unsuitable due to contrast agent dispersion. Therefore, we advocate
to derive the AIF directly from arterial regions and applying a meticulous correction
method to ensure reliable vascular parameter assessment.

In Chapter 5, we propose a comprehensive method that integrates DCE and DSC
image analysis to correct for contrast agent leakage in DSC MRI. Simulations demon-
strate that it facilitates precise estimation of essential vascular parameters, includ-

XI
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XII SUMMARY

ing the volume transfer constant, vascular volume, and extravascular volume fraction.
Furthermore, it is shown that the method induces minimal bias in the parameter es-
timates. As a result, leakage artifacts are efficiently eliminated, which is pivotal for
cerebral blood volume estimation. Clinical application in ten patients showcases that
the proposed method preserves more realistic contrast agent levels than the current
standard. This preservation can ensure that vital properties of the vascularization can
be accurately measured, enhancing the DSC technique’s reliability.

In summary, the techniques introduced in this dissertation offer solutions to sev-
eral challenges inherent to DCE and DSC MRI. As such this research paves the way
for more accurate, reliable, and clinically applicable perfusion assessment, which may
have important implications for neuro-radiology.
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SAMENVATTING

Magnetic Resonance Imaging (MRI) is een vaak gebruikte medische beeldvormings-
techniek, die veel contrast geeft in zachte weefsels, zoals de hersenen. Traditioneel
levert MRI kwalitatatieve, zogenaamd ’gewogen’ beelden die slechts bepaalde fysische
eigenschappen benadrukken. Kwantitatieve MRI (qMRI), daarentegen, meet de on-
derliggende weefselparameters zelf, wat een verbeterde reproduceerbaarheid en ge-
voeligheid bij diverse ziektes levert. Dit proefschrift richt zich op de verbetering van
de qMRI-technieken Dynamic Susceptibility Contrast (DSC) en Dynamic Contrast En-
hanced (DCE) MRI. Uiteindelijk is het doel om hiermee de nauwkeurigheid en be-
trouwbaarheid van metingen van de bloeddoorstroming (perfusie) in hersentumoren
te verbeteren.

Aanvankelijk wordt in Hoofdstuk 2 een uitgebreide literatuurstudie gepresenteerd
over de toepassing van DCE- en DSC-MRI in de beeldvorming van veel voorkomende
hersentumor: gliomen. Daarbij wordt met name gekeken naar mogelijkheden om ei-
genschappen te meten met betrekking tot de hemodynamica in deze tumoren, maar
ook de gradatie, behandelrespons en prognose. Ondanks veelbelovende vooruitzich-
ten worden ook obstakels voor klinische implementatie genoemd, waaronder het ont-
breken van gestandaardiseerde acquisitie-protocollen en analyse methodes. Het hoofd-
stuk benadrukt de noodzaak van robuuste en reproduceerbare technieken om con-
sistente perfusiemetingen te waarborgen. Deze moeten kunnen worden toegepast in
verschillende klinische omgevingen en types MRI scanner, wat het belang van het on-
derwerp van dit proefschrift onderstreept.

De Arteriele Input Function (AIF) is een cruciaal onderdeel bij het schatten van
perfusieparameters gebaseerd op DSC-MRI. Daarom onderzoeken we in Hoofdstuk
3 geavanceerde werkwijzen voor AIF-meting. Deze studie toont aan dat AIF’s afge-
leid van DCE-MRI een superieure reproduceerbaarheid hebben vergeleken met AIF’s
verkregen uit DSC-MRI. Het gebruik van een DCE-gestuurde AIF biedt derhalve een
betrouwbaarder alternatief voor traditionele, op DSC gebaseerde AIF’s.

Om de bepaling van de AIF verder te verbeteren, ontwikkelen we in Hoofdstuk 4
een innovatieve techniek om gelijktijdig te corrigeren voor ongewenste instroom- en
Partiele Volume-Effecten (PVE’s) op de DCE-AIF-metingen. We laten zien dat PVE’s
sterk lijken op instroom effecten, waardoor een gelijktijdige compensatie mogelijk is.
Klinische validatie in tien patiënten met uiteenlopende hersentumoren toont de effec-
tiviteit van de ontwikkelde methode. Bovendien wordt aangetoond dat meting in de
Superior Sagittal Sinus (SSS), waar geen instroom effecten zijn, niet een geschikt alter-
natief is. Daarom pleiten wij ervoor de AIF direct te meten in arterien en een goede
correctiemethode toe te passen .

XIII
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XIV SAMENVATTING

In Hoofdstuk 5 stellen we een nieuwe methode voor die DCE en DSC beeldanalyse
integreert om te corrigeren voor ongewenste effecten van lekkage van contrastmid-
del in DSC-MRI. Simulaties tonen aan dat de methode een nauwkeurige meting van
belangrijke vasculaire parameters mogelijk maakt, waaronder een transfer constant,
het vasculaire volume en de extravasculaire volume-fractie. Daarbij worden lekkage-
artefacten dus op efficiënt wijze gecorrigeerd. Klinische toepassing bij tien patiënten
laat zien dat de voorgestelde methode realistische metingen geeft dan de huidige stan-
daard. Dit verhoogd de betrouwbaarheid van de metingen door DSC-MRI.

Samengevat bieden de in deze dissertatie geïntroduceerde technieken oplossin-
gen voor verschillende problemen die inherent zijn aan DCE- en DSC-MRI. Dit onder-
zoek effent daarmee de weg voor een nauwkeurigere, betrouwbaardere en beter kli-
nisch toepasbare perfusiebeoordeling, wat zeer belangrijk is voor de neuroradiologie.
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1
GENERAL INTRODUCTION
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1

2 1. GENERAL INTRODUCTION

Magnetic resonance imaging (MRI) is widely used for diagnosis and monitoring
of brain diseases, offering detailed images of the anatomy with high spatial

resolution. Conventional MRI techniques, such as T1-weighted and T2-weighted
imaging, enable identifying the location, size, and approximate extent of brain
tumors. These techniques rely on the different relaxation times of water protons in
various tissues to generate contrast and delineate pathological from normal brain
tissue. However, for a deeper understanding of the microstructural alterations and
vascular characteristics in a tumor, conventional MRI is insufficient. Specifically,
it does not facilitate optimal differentiation between tumor types, assessment of
tumor grade, and distinction between tumor recurrence and treatment-related
changes, such as radiation or post-surgical effects.

Advanced MRI techniques can offer information that goes beyond anatomical
details of a brain tumor. Specifically, perfusion MRI provides data on vascular
permeability and blood flow of the tumor and surrounding tissues. In this
way insight can be obtained into the tumor’s metabolic properties, which can
help in tumor grading, assessment of pathological progression, longitudinally
post-treatment monitoring, and predicting treatment response.

Perfusion MRI techniques encompass contrast-based methods, such as dynamic
contrast enhanced (DCE) and dynamic susceptibility contrast (DSC) MRI, which
rely on intravenous contrast agent injection to highlight blood vessels and blood
flow. Alternatively, arterial spin labeling (ASL) is a non-contrast-agent based
method that uses the spins in blood as an intrinsic tracer to estimate cerebral blood
flow. In general, the former methods generate high signal- and contrast-to-noise
ratio due to large relaxation changes induced by the contrast agents. Therefore,
they are more widely applied in clinical applications. This thesis focuses on new
image processing methods for contrast agent based perfusion MRI, applied to brain
tumor imaging.

1.1. BASIC PRINCIPLES OF MRI

MRI relies on quantum mechanical properties that hydrogen spins exhibit
when placed within a strong magnetic field (B0). Specifically, in the presence

of such a magnetic field, these spins tend to align with the field’s direction. As a
consequence, the aggregate of millions of spins locally creates a net magnetization
vector. This rest situation can be disturbed, however, by applying a radiofrequency
(RF) pulse, that tilts the net magnetization vector towards the transverse plane,
perpendicular to the main magnetic field direction. Once the RF pulse is turned
off, the protons relax back to the original equilibrium state, which is generally
referred to as relaxation. Particularly, this process is characterized by two distinct
relaxation times: the longitudinal relaxation time (T1), reflecting the time for
the spins to realign with the main magnetic field direction, and the transverse
relaxation time (T2), corresponding to the time for the magnetization to disappear
from the transverse plane. During the relaxation process, additional magnetic
fields are superimposed on the main magnetic field, varying linearly in strength
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along a particular axis (x, y, or z) to allow for localization and measurement of
the magnitude of the magnetization. The signals emitted during the relaxation
processes are detected by receiver coils, and are converted into images.

Image contrast in MRI is primarily determined by the differences in T1 and T2

relaxation times of various tissues, as well as the density of hydrogen protons. By
adjusting the parameters of the MRI protocols, such as the repetition time (TR), the
echo time (TE), and the flip angle (FA), the generated images can emphasize the
magnitude of the magnetization along the direction of the main magnetic field or
in the transverse plane, yielding T1-weighted or T2-weighted images, respectively.
Practically, T1-weighted images are useful for visualization of normal anatomy and
assessment of fat-containing structures, whereas T2-weighted images are sensitive
to changes in water content, typically associated with pathology (e.g. edema).

1.2. GADOLINIUM-BASED CONTRAST AGENTS

Gadolinium-based contrast agents (GBCAs) are paramagnetic substances that
modulate the relaxation times of the magnetization. These alterations of the

relaxation times can effectively increase the image contrast, providing valuable
insight into the dynamics of blood flow and the microvascular environment in
tissues, c.q. brain tumors.

GBCAs predominantly shorten the longitudinal relaxation time. As such
they enable a quicker realignment of the spins with the main magnetic field
after the application of a radiofrequency pulse. This acceleration of longitudinal
relaxation results in an increased signal intensity on T1-weighted images, especially
in areas with high contrast agent concentration, e.g. in regions with disrupted
blood-brain barrier (BBB) in the brain. Furthermore, this effect enables the
delineation of vascular structures and assessment of the perfusion of tissues (see
further below). T1-weighted images are often acquired before and after GBCA
administration for localization of tumors and assessment of the contrast-enhancing
volume. Additionally, dynamic T1-weighted imaging before, during and after
contrast injection can be applied to derive several meaningful parameters of the
vascularization. The latter application is generally referred to as DCE MRI and will
be described in detail in the next section.

While a primary use of GBCAs is based upon the enhancing T1 contrast effect,
the transverse relaxation time is also influenced by GBCAs, albeit through different
mechanisms. GBCAs cause a decrease in transverse relaxation time, through
dephasing which yields signal loss in T2- and T ∗

2 -weighted images. This reduction
of transverse relaxation results from susceptibility changes induced by the presence
of the GBCA in blood vessels. This phenomenon when monitored by dynamic
imaging, also allows for detailed assessment of hemodynamic parameters and
vascular integrity. It is particularly exploited in DSC MRI, in which the transient
decrease in signal intensity following the bolus injection of a GBCA is measured by
T2- or T ∗

2 -weighted acquisitions (see further below).
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1.3. DYNAMIC CONTRAST ENHANCED MRI

The relevance of DCE MRI lies in its ability to visualize and quantify the
kinetics of GBCAs within tissues. By monitoring the signal intensity changes

in T1-weighted images, DCE MRI facilitates assessment of the distribution and
clearance of the contrast agent, and offers insight into vascular properties of the
target tissues [1, 2]. In particular, this concerns physiological parameters including
blood flow, vessel permeability, and the volume of the extracellular extravascular
space (EES), which are critical for understanding tumor biology and the effects of
therapeutic interventions.

In normal brain tissue, the intact structure of the BBB prohibits leakage of the
GBCAs from the plasma to the interstitial space [3]. However, the BBB may be
damaged in tumors, leading to GBCA uptake in the interstitium [4]. To quantify
the integrity of the BBB and vascular characteristics, pharmacokinetic models are
employed, of which the extended Tofts model (ETM) is the most often applied. The
ETM asserts that the tissue signal emanates from two compartments: the blood
plasma and the EES [5]. Effectively, it models the contrast agent concentration in
tissue over time (Ct (t )) through the following expression:

Ct (t ) = vp ·Cp (t )+K tr ans ·
∫t

0
Cp (t ′) ·e−kep ·(t−t ′) d t ′, (1.1)

in which Cp (t ) is the contrast concentration in the plasma of an artery feeding the
tissue, which is known as the arterial input function (AIF). Conventionally, the AIF
is measured from a nearby artery close to the tissue of interest in the acquired
DCE images. The volume transfer constant K tr ans and the rate constant kep

represent the rate of the GBCA diffusing from the plasma to the interstitium and
vice versa while vp reflects the fractional volume of the plasma. These parameters
are estimated by fitting this model to the measured data.

The K tr ans parameter represents the product of the permeability of the
capillaries and the surface area available for exchange. A K tr ans value deviating
from zero can be observed in tumor tissue compared to normal brain tissue, which
is characteristic of low quality blood vessels supporting the growth of tumors,
the neovasculature. This parameter has been used for assessing tumor grade,
monitoring angiogenesis over the course of treatment, and evaluating the efficacy
of anti-angiogenic therapies [6, 7]. Additionally, the kep parameter describes the
rate at which the contrast agent returns from the EES back into the plasma space.
The two parameters combined describe the dynamic transitions of the contrast
agent between the plasma and the EES. kep is typically calculated as the ratio of
K tr ans and the fractional volume of the EES (ve ). A higher kep value may indicate
a more efficient exchange between the two compartments, which is assumed to be
associated with tumor characteristics, such as cellular density and the quality of the
newly formed tumor vasculature. Monitoring changes in kep can help evaluating
treatment response, particularly in therapies aimed at supressing tumor vasculature
[8]. Finally, vp represents the volume of the plasma compartment within the
voxel of interest. It is indicative of the blood volume of the tissue and provides
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insight into the vascularization of the tumor. High vp values have been associated
with strongly vascularized tumors, such as high-grade gliomas, and may reflect the
presence of large or numerous blood vessels within a tumor. Therefore, assessing
vp can be useful for distinguishing between tumor types, grading tumors, and to
evaluate the impact of treatment aimed at reducing the tumor’s blood supply.

1.4. DYNAMIC SUSCEPTIBILITY CONTRAST MRI

DSC MRI also plays an essential role in assessing cerebral hemodynamics and
evaluating the microvascular status of brain tumors. It involves the rapid

acquisition of T2- or T ∗
2 -weighted images before, during, and after intravenous

injection of a bolus of GBCA. The passage of this contrast agent bolus through
the cerebral vasculature induces transient changes in the magnetic susceptibility of
blood, leading to a decrease in signal intensity on T ∗

2 -weighted images [9]. This
phenomenon is grounded in the indicator dilution theory, which poses that the
concentration of a tracer (the contrast agent) can be used to infer the volume
and flow characteristics of tissue [10]. Accordingly, whole brain maps of cerebral
blood volume (CBV) and cerebral blood flow (CBF) can be generated from a DSC
analysis. Additionally, the mean transit time (MTT) describing the average time for
blood to pass through the capillaries in a brain region can be calculated as the
ratio of CBV over CBF.

In DSC MRI, a linear relationship between the contrast concentration and
the change of transverse relaxation (ΔR∗

2 ) is usually assumed. Accordingly, the
concentration over time during the passage of the GBCA in a volume of tissue C (t )
is often characterized through:

C (t ) ∝ΔR∗
2 = −1

T E
· ln

S(t )

S0
, (1.2)

in which T E is the applied echo time, S(t ) is the measured signal, and S0 is the
baseline signal before contrast administration. CBV is defined by the volume of
blood in a given amount of brain tissue. It is indicative of the capillary density
and can be derived by the normalized integration of the concentration over time,
i.e. the area under curve of C (t ) divided by the area under curve of the AIF. The
relationship between the tissue response and the AIF can be expressed in terms of
the following convolution integral:

C (t ) =C BF ·Cp (t )�R(t ), (1.3)

in which R(t ) is a residue function describing the fraction of tracer remaining in
the system at a given time t. Therefore, CBF can be estimated by deconvolving
C (t ) with the AIF (Cp (t )). Lastly, MTT can be computed as the ratio of CBV over
CBF [11].

The interpretation of CBV, CBF, and MTT in brain tumor imaging is important
for diagnosing, characterizing, and evaluating brain tumors. For instance,
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high-grade tumors often show increased CBV due to elevated angiogenesis and
vascular density. Alternatively, CBF can vary depending on the tumor’s metabolic
activity and the integrity of its vascular supply. Moreover, increased MTT might
indicate impaired blood flow or increased vascular resistance within the tumor.
As such, these parameters enable the differentiation between tumor classification,
discrimination of true tumor progression from treatment-induced abnormalities,
e.g. radiation necrosis or pseudoprogression, and assessment of treatment effects,
such as the efficacy of anti-angiogenic therapy [12, 13].

1.5. A COMBINED PROTOCOL

DCE and DSC MRI might be individually included in a clinical imaging protocol.
However, consecutive application of DCE MRI and DSC MRI could facilitate

to combine the best of two worlds.

A fundamental assumption underlying of traditional DSC imaging is that
the GBCA remains intravascular, and is not leaking into the EES. However, this
assumption may not hold in tumors, in which the integrity of the BBB can be
compromised. The leakage of contrast agent into the EES can significantly affect
the accuracy of hemodynamic parameter estimation. Typically, this extravasation
has a T1 shortening effect which makes that the measured signal is increased
compared to the situation without leakage. To mitigate this detrimental effect,
an additional preload injection of the contrast agent is often applied [14]. The
rationale behind the preload injection is to let the GBCA partially occupy the
EES, leading to decrease of the T1-value in advance of the main bolus injection.
Thereby, the undesired T1 shortening effect is minimized in the subsequent DSC
acquisition, facilitating a more accurate estimation of the DSC parameters.

The preload injection can be exploited for extra information by performing DCE
MRI during its injection. This approach leverages the initial GBCA administration as
it both functions as the preload for the DSC acquisition and provides the contrast
enhancement for DCE acquisition, enabling a comprehensive evaluation of tumor
perfusion and vascular permeability in a single MRI protocol. Thus, the consecutive
application of DCE MRI and DSC MRI could enhance the efficiency of the imaging
procedure, and might enrich the diagnostic and prognostic value of perfusion
MRI. This could pave the way for better informed clinical decision-making and
personalized therapeutic interventions.

1.6. RESEARCH CHALLENGES

1.6.1. IMPRECISE AIF MEASUREMENT IN DSC MRI

Accurate measurement of the AIF in DSC MRI is pivotal for unbiased
haemodynamic parameter estimation. Ideally, the AIF should be obtained in

an artery that directly feeds the target tissue. However, this is often impractical
due to limited spatial resolution. In brain imaging, the AIF is often determined
from larger arteries, such as the internal carotid artery (ICA) or the middle cerebral
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artery (MCA), which can be easily localized on DSC images. Several automatic
algorithms were proposed for AIF measurement, but still some challenges remain.

One important challenge lies in the uncertain relationship between the change
in the transverse relaxation rate (ΔR∗

2 ) and the actual concentration of the contrast
agent. It is common practice to assume that this relation is linear. At the same
time, however, there is ample evidence suggesting that this relationship is more
accurately described as quadratic [15, 16]. Also, the relation is known to vary with
the hematocrit levels in the blood. This complexity introduces inaccuracies in
quantifying the perfusion metrics.

What is more, precise delineation of the AIF is hindered by inherent limitations
in MRI resolution. The AIF is assumed to be measured inside an artery. However,
partial volume effects (PVEs) can lead to a mixture of signals from the different
tissue types within a voxel, resulting in nonlinear distortions of the AIF due to
different evolutions of the phase of the MRI signal between different compartments
[17]. In addition, the signal intensity measured in large arteries may diminish to
the point of blending with background noise during the transit of the contrast
agent, a phenomenon known as signal depletion [18]. This issue is exacerbated
by the clinical preference for using a single, extended echo time, optimized for
tracking the bolus passage in the brain’s tissue rather than in the arteries. Last but
not least, the peak of the time-concentration curve obtained from arterial voxels
can be distorted by displacement effects. These effects result from a change in
precession frequency induced by the paramagnetic properties of the contrast agent
which interferes the spatial localisation of the MRI sequence [19].

In practice, one might select arterial-like signals from tissue surrounding the
arteries to eliminate or diminish the above mentioned effects. However, this only
guarantees that at best the shape of the measured AIF is reliable, whereas the
amplitude may not reflect the real contrast concentration in blood, hindering the
absolute measurement of CBV and CBF. Therefore, a solid method to assess the
true AIF, revealing the feeding contrast to the tissue, is still needed for accurate
DSC analysis.

1.6.2. DETRIMENTAL EFFECTS ON THE DCE AIF

The AIF is also fundamental to accurate perfusion parameter estimation in DCE
MRI. In comparison to DSC MRI, however, the relation between the MRI signal

and the contrast agent concentration is much more stable and well established.
Still, PVEs in DCE MRI remain unavoidable even though DCE imaging comes with
higher resolution than DSC imaging. Typically, PVEs result in an underestimated
concentration of the GBCA. To solve this issue previous studies suggested to
normalize the AIF with the contrast agent concentration measured in the superior
sagittal sinus (SSS) [20, 21]. Alternatively, the signal from the SSS (also referred
to as the venous output function (VOF)) has been directly employed as an input
for the pharmacokinetic model [22, 23]. However, it is important to note that
normalization techniques are only reliable with minimal contribution of signal



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 22PDF page: 22PDF page: 22PDF page: 22

1

8 1. GENERAL INTRODUCTION

from surrounding tissue to the AIF [20]. Also, biases may be introduced due to the
dispersed nature of the concentration-time curve of the VOF compared to the AIF
[24].

Furthermore, it is usually assumed that the magnetization of the recorded
signal is in the steady state. This assumption is often invalid in arteries with
strong blood flow [25]. Here, the continuous influx of "fresh" spins, which
have not undergone sufficient excitations to reach a steady state, can lead to an
artificially heightened signal at baseline and an underestimation of the T1 signal
enhancement. Various approaches have been proposed to mitigate the influence of
this inflow effect, including the use of flow phantoms for calibration [26]. However,
such calibrations are typically dependent on the specific imaging sequence, subject,
and system, limiting their general applicability. As an alternative, measuring the AIF
downstream can enhance accuracy but may not be feasible in all imaging scenarios
[27]. Alternatively, the AIF can be derived from phase accumulation induced by
the GBCA, a technique that is not affected by inflow effects [28]. However, this
phase signal is susceptible to phase wrapping and flow-induced phase shifts. While
correction methods were developed for specific applications, such as liver DCE
imaging [29, 30], their general applicability remains constrained.

1.6.3. LEAKAGE EFFECTS ON DSC PARAMETERS

In DSC MRI, a critical assumption underpinning the analysis is that the GBCA
remains exclusively within the vasculature. Essentially, it is asserted that the

BBB is intact, preventing leakage into the interstitial space. However, in brain
tumors, the BBB is often damaged, rendering this assumption invalid. Leakage
of the contrast agent into the interstitial space introduces significant biases into
the estimated DSC parameters, especially of the CBV [31]. Thus, addressing this
leakage artifact is imperative for accurate estimation of the perfusion coefficients.

As mentioned above, a preload injection can help to limit the leakage effect,
but it can not entirely prevent the issue. The conventional approach to leakage
correction involves a model fitting technique that aims to estimate the leaked,
extravascular GBCA’s concentration and discounting its effect from the observed
tissue signal. The most widely used algorithm nowadays was developed by
Boxerman et al. [32]. However, this approach was shown to yield incorrect outcome
when the MTT differs between the normal and malignant tissue [33] and if the
GBCA induced T1 signal enhancement is larger than 30% [34]. Accordingly, a more
robust and sophisticated post processing method is wanted for optimal leakage
correction.

1.7. RESEARCH GOALS

The primary objective of this dissertation is to develop methodologies for
perfusion MRI that address the above-mentioned challenges.

A first aim is to enhance the accuracy and precision of cerebral perfusion
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parameters estimated through DSC MRI. I hypothesize that this can be achieved
by substituting the conventional DSC-derived AIF with an AIF derived from DCE
MRI. In a detailed investigation I will compare the DCE-derived AIF against
versions obtained from DSC MRI. Furthermore, perfusion coefficients computed
with the conventional DSC AIF will be compared with those calculated using the
DCE-derived AIF.

A second goal is to refine AIF measurement from DCE MRI by mitigating
adverse influences, specifically addressing the inflow effect and PVE. I will assess
the impacts of these confounding factors on the accuracy of DCE AIF measurement
through mathematical analysis and simulation studies. Furthermore, I will
introduce a method for simultaneously correcting both the inflow effect and PVE,
potentially advancing the accuracy of AIF determination in DCE MRI.

The third aim is to improve the correction of leakage effects on parameter
estimation in DSC analysis. Leveraging a unique dataset combining DCE and DSC
MRI, I will exploit the leakage estimation from DCE MRI for a new correction
approach in DSC analysis. The effectiveness of this novel approach will be
benchmarked against existing algorithms.

1.8. OUTLINE

This dissertation is structured to systematically address the above research
challenges and objectives.

In Chapter 2, I provide a review of the clinical application of DCE and
DSC MRI in patients with glioma. It provides a concise overview of the
theoretical foundations, imaging and analysis procedures, and inherent limitations
of practically applied methods. Additionally, this chapter discusses the current
clinical consensus on the use of perfusion MRI techniques.

Chapter 3 contains an analysis of AIFs derived from DCE and DSC MRI,
relying on consecutive DCE-DSC imaging sequence. A conventional, semi-
automatic algorithm is applied to identify the AIF, which is solely based on
signal characteristics, bypassing the need for anatomical cues. Furthermore, the
potential of employing an AIF from the DCE series as input for the DSC analysis is
explored, juxtaposing this approach against conventional DSC based AIF selection
techniques.

Chapter 4 studies the analogous impacts of inflow effects and PVEs on
AIF measurements in DCE MRI. Through theoretical analyses and numerical
simulations, I assess the feasibility of concurrently mitigating these influences. This
newly proposed method is implemented, leveraging an estimated number of pulses
experienced by spins in blood to remove the artefacts introduced both by inflow
effects and PVE.

In Chapter 5, I focus on the development of a novel leakage correction
technique for DSC analysis. Utilizing vascular permeability maps and tissue
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contrast concentration data from DCE MRI, this method seeks to precisely correct
for leakage effects on the DSC parameters estimations. The efficacy of this
approach is evaluated against a commercially available method, facilitating a direct
comparison of outcomes.

Chapter 6 offers a comprehensive discussion of my findings, highlighting the
strengths and potential limitations of the methodologies introduced. Additionally,
I also describe challenges and suggest future directions of research in the field,
underscoring the ongoing need for innovation and refinement in perfusion MRI
techniques.
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ABSTRACT
Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes
due to their infiltrative properties, still rely on conventional structural MRI, which
does not deliver information on tumor genotype and is limited in the delineation
of diffuse gliomas. The Glioma MR Imaging 2.0 group of the European Cooperation
in Science and Technology wants to raise awareness about the state-of-the-art
advanced MRI techniques in gliomas and their possible clinical translation or
lack thereof. This review describes current methods, limits, and applications
of dynamic susceptibility contrast and dynamic contrast enhanced MRI for the
preoperative assessment of glioma, summarizing the level of clinical validation of
two techniques.
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2.1. INTRODUCTION
Gliomas are a heterogeneous group of neuroepithelial tumors arising from the
glial cells, with an age-adjusted average rate of 6.03 per 100,000 population [1].
Traditionally, they are divided according to a four-step grading system where a
higher grade represents disease with more malignant features and a mostly dismal
prognosis. The traditional concept of the World Health Organization (WHO) grading
system based on histopathological assessment underwent significant changes in the
fifth edition of the WHO Classification of Tumors of the Central Nervous System
(CNS), published in 2021 [2]. This current classification introduced revisions to
tumor nomenclature and advances the integral role of molecular diagnostics for
tumor classification and grading that predicts the prognosis better [3] than the
previous 2016 version [4].

Compared with the 2016 version, the WHO 2021 classification incorporates
more molecular alterations into the diagnostics and divides gliomas into adult-type
diffuse gliomas, pediatric-type diffuse low-grade (LGG) and high-grade (HGG)
gliomas, circumscribed astrocytic gliomas, glioneuronal and neuronal tumors, and
ependymal tumors. The primary genetic markers used for glioma taxonomy
are now considered isocitrate dehydrogenase (IDH) 1 and 2 mutation status,
1p/19q co-deletion, H3F3A alterations, ATRX gene mutations, O6-Methylguanine-
DNA Methyltransferase (MGMT) promoter methylation status, loss of CDKN2A,
epidermal growth factor receptor (EGFR) amplification, a combined gain of
chromosome 7 and loss of chromosome 10, and TERT promoter pathogenic
variants. In adults, the term glioblastoma is now reserved only for IDH-wildtype
tumors and will always be graded as 4, whereas IDH-mutated astrocytomas present
a distinct progressive disease with WHO grade rising from 2 to 4. As a third class,
oligodendrogliomas are now distinct from astrocytomas by possessing both IDH
mutation and 1p/19q co-deletion and can range form grade 2 to 4 as well. As the
genetic profile of a particular tumor affects its metabolic pathways leading to a
certain product or a change in the cell’s phenotype, advanced MRI techniques can
be a very promising noninvasive approach to predict glioma type and behavior.

Preoperative glioma imaging by MRI is essential to localize and delineate the
tumor volume and to assess infiltrative behavior or compressive effects on adjacent
structures with related complications. The minimal recommendation for such
routine structural imaging protocols at 3T consists of T1-weighted imaging (before
and after the administration of gadolinium-based contrast agents (GBCA), 1 mm
isotropic resolution), T2-weighted imaging (after GBCA administration, < 3 mm
slice thickness), T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging
(< 3 mm slice thickness), and diffusion-weighted imaging (< 3 mm slice thickness,
b-values of 0, 500, and 1000 s/mm2), with further details to be found in Ellingson
et al [5].

With the advent of advanced sequences, quantitative imaging of multiple
pathophysiological features in the tumor and surrounding tissue became possible
[6, 7], providing the opportunity to noninvasively characterize different molecular
types of glioma against the background of the WHO 2021 classification [6, 8].
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While glioma genotyping based on tissue probes derived from neurosurgical tumor
resection or biopsy remains the standard, predicting genotypes by preoperative
advanced MRI could aid in clinical decision-making and facilitate individual
management tailored to the individual tumor characteristics [6, 9].

In most clinical settings for preoperative glioma assessment, however, only
conventional MRI is performed. The untapped potential of advanced MRI
seems related to a multitude of obstacles that prevent its wider translation into
the clinical routine [10]. A major hurdle is the lack of rigorous validation of
advanced MRI-derived biomarkers. Although recommendations for the acceleration
of imaging biomarker development in cancer, both for lesion segmentation and
imaging biomarker quantification, do exist, almost no regulatory qualifications
or specific guidelines of high quality have been adopted [11–13]. Finally,
advanced sequences beyond conventional structural MRI may require special
hardware and/or software combined with the need for dedicated expertise for
acquisition, post-processing, and evaluation [14]. This makes advanced imaging
of gliomas time-consuming, often involving manual data handling and dedicated,
custom-made processing pipelines.

The purpose of this chapter is to raise awareness and contribute to clinical
translations of contrast agent based perfusion MRI techniques, specifically dynamic
susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) MRI, by
describing the methods and applications for the preoperative assessment of glioma,
and summarizing whether these techniques can be routinely used. For each
technique, we aimed to provide a concise methodological overview, review the
strengths and weaknesses of glioma characterization and tumor heterogeneity
mapping, and use this as the basis for assessing the level of technical readiness of
each method.

2.2. METHODS
This review was initiated through the European Cooperation in Science and
Technology (COST) Glioma MR Imaging 2.0 (GliMR) initiative [10], which brought
together clinicians, engineers, and physicists with expertise in advanced MRI
techniques applied to brain tumor imaging in a series of virtual and onsite meetings
from July 2020 through September 2022. We defined the target audience of this
review as clinicians (eg, neuroradiologists, neurosurgeons, and (neuro-)oncologists)
and researchers without deep knowledge of advanced MRI who want to broaden
their routine or experimental protocols for brain tumor imaging. We used the
GliMR consortium’s technical expertise to aggregate the available evidence and
level of validation for cutting-edge MRI methods and the information derivable
from these.

These advanced MRI techniques allow (semi)quantitative imaging of tumor
composition, metabolism, physiology, or mechanical properties that are not
captured in routine clinical protocols. At the same time, we included
only acquisition, reconstruction, and postprocessing methods that have already
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demonstrated pilot results in brain tumors.

The reviews for the two perfusion techniques were designed to include the
following:

• An Overview of the technique with links to detailed reviews and
recommendations for implementation and use;

• An overview of the current evidence about the clinical application to brain
tumor imaging, focusing on how it can be used for glioma characterization
and grading according to the new WHO 2021 classification criteria and its
focus on molecular characteristics to distinguish between different molecular
glioma subtypes;

• A statement on the level of clinical and technological validation of the
method, summarizing the current status and the prospect for near-future
improvements;

• A summary of the recommended use.

2.3. RESULTS

2.3.1. DSC MRI
OVERVIEW

DSC MRI entails the acquisition of T2 or T ∗
2 -weighted images with a high temporal

resolution during which a GBCA is bolus-injected. A gradient-echo echo planar
imaging (GRE-EPI) sequence, heavily T ∗

2 -weighted, is most often used. With GBCA
confined to the vessels, as for the brain with an intact blood-brain barrier (BBB),
a gradient of susceptibility between the intra- and extravascular tissue is induced,
causing a transient shortening of the dynamic T ∗

2 -weighted signal (S(t)). The S(t)
is converted into the relaxation rate change (ΔR∗

2 (t )), which, when integrated,
provides a voxelwise estimate of the relative cerebral blood volume (rCBV) (relative
to the rest of the brain). In addition, voxelwise cerebral blood flow (CBF) can be
estimated if the ΔR∗

2 (t ) from large arteries (i.e., the arterial input function (AIF)) is
also separately measured and used, along with the tissue ΔR∗

2 (t ). Since rCBV is the
most common DSC MRI parameter used to evaluate brain tumors (Figure 2.1), the
remaining discussion will focus on rCBV.

Estimation of rCBV can be confounded by the extravasation of GBCA through
a disrupted BBB, a common condition in brain tumors. While this “leakage effect”
violates the assumption of GBCA vascular compartmentalization, DSC MRI can
still be successfully used to estimate brain tumor rCBV if this leakage effect is
appropriately considered [15–17]. A recent consensus on DSC MRI data acquisition
for brain tumors resulted in two recommended approaches [18]. The first, and
most robust approach incorporates a GBCA pre-dose to diminish T1 leakage effects
that might occur during the subsequent DSC MRI acquisition. A second GBCA
dose is administered during the collection of the DSC MRI data, using either a
low (30°) or intermediate (60°) flip angle and field strength-dependent echo times
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Figure 2.1: Elevated perfusion according to DSC MRI (a) in a 55-year-old male
patient with a left frontal HGG that showed high signal on FLAIR; b)
imaging and contrast enhancement on T1-weighted imaging (c, axial
non-contrast, and d, axial contrast-enhanced images). The borders of
the lesion with contrast-enhancing tumor parts, in particular, showed
hyperperfusion on DSC MRI (red circle, a).

(TEs) (40–50 msec at 1.5T, 25–35 msec at 3T). The second approach has the
advantage of not requiring a GBCA pre-dose while using a low flip angle (30°)
and field-strength-dependent TEs (1.5T: 40–50 msec; 3T: 25–35 msec). For both
approaches, a repetition time (TR) = 1000–1500 msec is recommended, and the
inclusion of a post-processing, the contrast-agent leakage correction method is
required. While the Boxerman-Schmainda-Weiskoff (BSW) method [16] for leakage
correction is most commonly used, other methods have also been proposed
[19–21].

CLINICAL APPLICATION

Studies have shown that rCBV ratios can predict glioma grade [15, 22–24] and are
able to stratify patients into low, intermediate, and high-risk groups, with shorter
survival corresponding to higher rCBV [25]. Both intra-tumoral and peri-tumoral
rCBV were shown to be reliable for the preoperative distinction of HGG from LGG
with excellent sensitivity and accuracy [26]. Similarly, delineations of pre-operative
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rCBV “habitats” within both contrast-enhancing and peritumoral regions were
found to be highly prognostic for patients who underwent standard-of-care
treatment [27].

Possibly, one of the most significant roles of pre-operative rCBV is to assist
with ensuring an accurate diagnosis as the heterogeneity of gliomas can lead
to misdiagnosis and undergrading. Brain tumor rCBV has been shown helpful
in identifying such cases retrospectively [25], or preferably, both can be avoided
altogether by identifying the best sites for surgical biopsy [28]. In a more
recent case report [29], rCBV class maps (referred to as fractional tumor burden
maps), which delineate regions of low, intermediate, and high vascularity (Figure
2.2), confirmed that tissue obtained from areas of zero to low rCBV received a
histopathologic diagnosis of non-tumor while the remaining unresectable tissue,
with a high pre-operative rCBV, was the site of early and aggressive recurrence.
Thus, knowledge of the spatial variation in rCBV in both resected and the
remaining tissue is fundamental for an accurate diagnosis and follow-up treatment
management.

Figure 2.2: Patient with recurrent glioblastoma. A)T1-weighted MRI with CE, B)
corresponding map of fractional tumor burden (FTB) showing regions
of zero-low (blue), intermediate (yellow), and high rCBV (red)within the
contrast agent enhancing region.

Pre-operative rCBV may also play an important role in the success of the 2016
WHO classification that newly includes molecular markers. Despite the known
heterogeneities, at both the cellular and molecular levels, patient stratification and
treatment are generally determined on the basis of molecular markers present in
a single tumor specimen. As a result, the power of this new classification is
being profoundly underutilized and may explain why, even with the advances of
molecular profiling, the improvements in patient outcome have been modest [30].
As a potential solution, rCBV was able to predict differences in IDH1 mutation
and MGMT status [31], and tissue from hypercellular and hypervascular microfoci
revealed greater expression of Ki-67, HIF-1a, CD31, and EGFR compared to tumor
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background [32]. Therefore, rCBV has the potential to guide surgical biopsy
and provide a more accurate diagnosis for both histopathological and molecular
analyses.

VALIDATION

Existing evidence reveals that rCBV is a valuable, and even necessary adjunct to
standard MRI. Yet, it has been argued that rCBV remains limited in its clinical
adoption due to a lack of standardization, which may explain the variability in
reported rCBV thresholds [33]. Still, in recent years several well-curated studies have
demonstrated excellent repeatability, cross-site consistency, and market availability,
suggesting a high technology readiness level for rCBV.

With DSC MRI data collected twice within 8 days, in HGG patients, rCBV was
found to be highly repeatable [34]. The within-patient coefficient of variation was
further reduced when using a standardization algorithm that precluded the need
for a user-defined reference region, which is required to normalize rCBV to normal
brain values. Similar results were found in a multi-site clinical trial, for which
rCBV repeatability was again shown to be excellent with standardized rCBV more
repeatable than normalized rCBV [35].

With multi-site analysis of a shared DSC MRI dataset, but using several
different analysis platforms, rCBV was also able to distinguish high-grade from
low-grade glioma in all cases [36]. Moreover, a single threshold, applicable to
all platforms, could be identified. This study further suggested that much of
the previous variability in reported thresholds may be due to differences in data
pre-processing, patient populations, or image acquisition settings, variables that
were held fixed in this multi-site study. Moreover, widespread implementation of
the recommended acquisition protocol [18] could greatly improve consistency in
reported rCBV data, including thresholds by which to distinguish tumor grades.
Indeed, two independent sites, using the same acquisition and post-processing
methods, were able to arrive at the same threshold to distinguish tumor from
treatment effect, validated with spatially matched biopsies [37, 38].

Finally, FDA-cleared and CE-marked platforms for the analysis of rCBV data
are now widely available, with studies published that compared platforms [36, 39,
40]. Using one such platform, the ease-of-use and ability to collect and analyze
multi-site rCBV data were demonstrated by incorporation into clinical trials, with
each showing the utility of rCBV to predict outcomes [35, 41, 42].

Challenges that remain for DSC MRI include optimization of the imaging
method itself. For example, GRE-EPI can experience signal dropout in regions
near air-tissue interfaces, bone, or resection cavities, making it difficult to
evaluate tumors in these regions fully. Technical improvements that enable higher
spatial resolution imaging and reduced sensitivity, or correction of the unwanted
susceptibility effects, are needed. Also, GRE-EPI retains a high sensitivity to large
normal vessels, which can make it difficult to evaluate tumor-specific vascularity in
these regions. Approaches that combine GRE-EPI and SE-EPI [15, 17, 24, 43] may
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be a solution, as this could offer images with differing vessel size sensitivity and
a more complete interpretation. However, such sequences are not yet available
for clinical use. Finally, the high temporal resolution required for DSC MRI often
precludes whole-brain imaging. Newer methods that incorporate advances in
parallel and simultaneous multi-slice imaging may offer a solution [44].

SUMMARY

The collection of pre-operative DSC MRI data with the generation of rCBV maps is
easy to obtain and has been shown to be invaluable for the diagnosis and treatment
management of glioma. Full clinical adoption should be accelerated with the
recent consensus recommendation for DSC MRI data acquisition and convergence
of analysis methods, thus overcoming previous concerns regarding standardization.
The remaining issues include improving image quality and coverage.

2.3.2. DCE MRI
OVERVIEW

DCE MRI is a perfusion technique that monitors the GBCA-induced T1-shortening
effect in blood plasma and tissue, if leakage occurs. The signal records
mixed information about blood perfusion, vessel permeability, and a fraction of
extracellular extravascular space (EES), and is often used to characterize tumor
microvasculature. The signal can be assessed semi-quantitatively by evaluating the
contrast arrival time, time to the peak, maximum intensity, the area under the
curve, wash-in slope, and wash-out rate. Alternatively, a quantitative analysis is
achieved by applying tracer kinetic models [45]. The most frequently applied model
in tumor assessment is the extended Tofts model, which asserts that the contrast
tracer distributes over two compartments: the intravascular space and the EES,
with a bi-directional exchange of the tracer across the blood vessel wall [46]. The
model enables numerical estimation of the volume transfer constant between the
blood plasma and the EES (K tr ans ), the reflux exchange rate from the EES to the
blood plasma (Kep ), the volume fraction of plasma (vp ), and the volume fraction
of EES (ve ) (Figure 2.3). The volume transfer constant, K tr ans , which reflects the
vascular permeability, is the most often applied DCE parameter in the context of
glioma [47]. General guidelines for applying DCE imaging in pre-clinical research
have been summarized in multiple papers [48, 49].

CLINICAL APPLICATION

Malignant gliomas are characterized by a remarkable increase in blood vessel
formation (angiogenesis) which leads to aberrant vascular structure, abnormal
blood flow, and increased permeability in vessels. DCE-driven parameters were
investigated to be potential markers of angiogenic activity in gliomas and are
therefore being used for tumor monitoring [51]. An extended systematic review
[52] summarized 14 studies about the discrimination between LGGs and HGGs
and five studies about the differentiation between primary CNS lymphomas and
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Figure 2.3: The contrast-enhanced T1-weighted image (a) and DCE-derived vascular
parameter maps: K tr ans (b), ve (c), and vp (d) of a glioblastoma
patient treated with concurrent radiation therapy and temozolomide
chemotherapy [50].

HGGs based on DCE parameters. The paper concluded that all these studies
demonstrated considerable specificity and sensitivity in relation to the studied
aspects, showing high diagnostic accuracy in discriminating between LGGs and
HGGs (AUC 0.96) and slightly lower performance for discriminating between
primary CNS lymphomas and HGGs (AUC 0.86).

Moreover, studies revealed that DCE-driven parameters were able to predict
some of the molecular characteristics used recently for the classification of
glioma tumors, including IDH and MGMT methylation. Hu et al reported
statistically significant differences in histogram parameters of K tr ans and ve

between IDH-mutated and IDH-wild-type glioma [53]. Furthermore, Zhang et
al found that glioblastoma with MGMT methylation showed significantly higher
K tr ans , indicating that MGMT methylation may be involved in glioma-associated
angiogenesis characterized by high endothelial permeability vasculatures [47]. The
prognostic value of DCE parameters has also been studied, with some studies
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showing higher K tr ans and ve to be associated with worse overall survival (OS), and
Ulyte et al showing that high ve is a consistent predictor of worse progression-free
survival and OS in HGG patients [54].

VALIDATION

DCE MRI has been studied for over three decades. An overwhelming amount of
papers have demonstrated the importance of DCE MRI for diagnosis, prognosis,
and therapy monitoring in glioma patients. However, one limitation is that the
DCE parameters may vary across vendors and systems, hindering cross-center
comparison. The variability of DCE parameters results from several factors
including different field strengths, imaging principles, sequence settings, and
analysis software. Kim has discussed the sources of variability in quantitating DCE
parameters and proposed several possible solutions [55]. Hence, a consensus for
the implementation of DCE imaging with reduced bias across multi-centers is still
needed to facilitate the integration of the DCE technique into standard-of-care
imaging in the clinic.

The selection of pharmacokinetic models is also a key factor that influences
the DCE parameters. Complex models with fewer assumptions are physiologically
more reliable than simpler models, which often make assumptions to constrain
the model. Such assumptions may not be appropriate and could bias estimated
parameters from the model. Conversely, complex models are more sensitive to
noise than simpler models [56].

SUMMARY

Preclinical and clinical studies have shown that the quantitative DCE MRI
parameters could be image biomarkers in glioma imaging. However, it is not yet
possible to use DCE MRI as a regular tool in the clinic due to the variability
resulting from differences in scanners, sequences, and software. Besides, improving
the acquired DCE image quality would facilitate the implementation of complex
models, which are more realistic in pathological conditions, and further provides
more reliable and precise DCE parameters.

2.4. DISCUSSION
In this review, we has summarized the evidence for clinical use of contrast-based
perfusion MRI for preoperative glioma characterization.

DSC is an exemplary case of accelerating the clinical translation of advanced
MRI. DSC involves contrast-agent injection, input function delineation, tracer-
kinetic modeling, and value normalization. Despite its complexity, DSC is
commonly used in glioma imaging[14] owing mainly to the extensive work invested
in DSC validation. This work culminated recently by introducing consensus
recommendations[18], which provide clear instructions on the measurement and
evaluation processes and is backed up by robust validation. Such recommendations



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 40PDF page: 40PDF page: 40PDF page: 40

2

26 2. PERFUSION MRI FOR GLIOMA

constitute an important step toward clinical acceptance and are missing for nearly
all other advanced MRI techniques.

The level of clinical validation also depends on more general determinants.
Glioma is a relatively rare disease, making it difficult to collect enough data for
statistically robust assessments. The Brain Tumor Segmentation (BraTS) repository
initiative partly addresses this by collecting multi-institutional pre-operative
multi-parametric MRI scans of patients with glioma [57]. Still, regardless of the
level of good-quality evidence, lack of widespread use may boil down to something
as simple as limited demand and early adoption from key practitioners due to
preference, education, and above all awareness. With increasing demand, shorter
time to read exams, and reduced hospital budgets, it may be difficult for the
radiologist or end user to stay up to date with the wide range of available methods,
or find the time and resources to lead the clinical implementation. For any new
technique, adaptation and priority of use will be weighed against the cost and
resources of the exam, its associated clinical workup, and the initial implementation
and training of bioengineers and neuroradiologists. In practice, this may be
a question of healthcare reimbursement policies and insurance coverage, which
usually do not include techniques that are not part of the guidelines. Several
initiatives are trying to make up for this difference by reviewing the abilities of
advanced MRI6; building networks of professionals in glioma imaging, providing
educational resources and processing tools for advanced MRI, and connecting with
other professionals in neuro-oncology as in GliMR [10]; working on providing open
source software for data analysis like the Open Science Initiative For Perfusion
Imaging (OSIPI) [58]; or seeking to improve the practical value of quantitative
imaging biomarkers as the Quantitative Imaging Biomarkers Alliances (QIBA) does
[59].

Despite the promise of improved diagnostic efficiency of the new imaging
biomarkers, clinical translation will need to respect the cost–benefit ratio of its use
and the patient’s health status. This translates to keeping the acquisition duration
mostly unchanged and replacing old sequences with newer ones only if the added
value compensates for the hurdles associated with introducing new techniques. For
example, while DCE measures both the permeability of the BBB and vascularization
and is potentially more useful than DSC, it is not straightforward to measure both
sequences within a single session. Therefore, DSC is currently prioritized as a
quicker and more robust technique that already has well-established guidelines
and a much higher level of validation. Overall, GBCA use in gliomas is likely to
be reduced in the future due to added burden to costs, logistics, and patient
discomfort burdens, as well as safety issues raised by both American and European
pharmacological safety agencies. arterial spin labeling (ASL) [60], BBB-ASL [61], and
machine-learning-based techniques are on a good path to complement and maybe
eventually replace DSC, DCE, and post-contrast T1-weighted scans, respectively, in
many glioma patients and especially children.

Even when advanced diagnostic tools are implemented and available to the end
user, their clinical use is challenged by an inherent paradox. As imaging techniques
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become more advanced, so do their resulting imaging biomarkers, where any metric
will move away from a simple binary (yes/no) or cutoff (above/below) value for
characterization. With a higher-level technique, the complex biology and function
of cancer will arguably be assessed in a more accurate and unique way, but at
the cost of more difficult interpretations. Multi-parametric assessment combining
several advanced MRI techniques may also further improve glioma characterization
and reduce the bias of any single technique toward certain biological or functional
properties of the tissue. However, a multi-parametric approach will also add to
the complexity of the analysis. As a result, in a busy practice there may be no
time, nor may it be technically feasible, for radiologists to process this data. For
advanced imaging methods to be widely adopted, a strong focus is required on
translating clinically ready technology into commercial software directly embedded
in the hospital-wide picture archiving and communication system (PACS). This will
allow for standardization and start-to-end automatic pipelines as an alternative to
laborious and user-dependent alternatives.

In conclusion, effective treatment of gliomas is still an unmet clinical need
that is, in part, reflected by their wide-ranging intra- and inter-individual biological
heterogeneity. Targeted therapy, which has demonstrated promising results in other
cancers, has largely failed in gliomas. To address this challenge, the perfusion
MRI techniques hold the potential to support better clinical decisions for tumor
characterization and subsequent treatment. By focusing on what they are currently
missing to advance their clinical readiness level, the imaging community can
help make advanced MRI for glioma diagnosis and therapy clinically available,
personalized, and effective.
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36 3. IMPROVED RELIABILITY OF DSC COEFFICIENTS BY USING DCE-AIF

ABSTRACT
The arterial input function (AIF) plays a crucial role in estimating quantitative
perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important
issue, however, is that measuring the AIF in absolute contrast agent concentrations
is challenging due to uncertainty in the relation to the measured R∗

2 -weighted
signal, signal depletion at high concentration, and partial volume effects. A
potential solution could be to derive the AIF from separately acquired dynamic
contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from
DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived
from DSC data using a DCE-driven AIF with perfusion coefficients determined
using a DSC-based AIF. AIFs were manually selected in branches of the middle
cerebral artery in both DCE and DSC data in each patient. In addition, a
semi-automatic AIF-selection algorithm was applied to the DSC data. The
amplitude and full-width-at-half-maximum of the AIFs were statistically compared
using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral
blood flow (CBF) was derived with different AIF approaches and further compared.
The results showed that the AIFs extracted from DSC scans yielded highly variable
peaks across arteries within the same patient. The semi-automatic DSC-AIF had
significantly narrower width compared to the manual AIFs, and a significantly
larger peak than the manual DSC-AIF. Additionally, the DCE-based AIF provided a
more stable measurement of relative CBF and absolute CBF values estimated with
DCE-AIFs that were compatible with previously reported values. In conclusion,
DCE-based AIFs reproduced significantly better across vessels, showed more
realistic profiles and delivered more stable and reasonable CBF measurements. The
DCE-AIF can, therefore, be considered as an alternative AIF source for quantitative
perfusion estimations in DSC MRI.
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3.1. INTRODUCTION
Over the past three decades, dynamic susceptibility contrast (DSC) MRI has
emerged as a powerful tool for studying the brain’s haemodynamic characteristics.
It is applied to estimate perfusion properties in patients with various pathologies
including stroke and cancer patients, e.g. the cerebral blood volume (CBV),
cerebral blood flow (CBF) and mean transition time (MTT) [1, 2]. Additionally,
timing parameters, such as time-to-bolus-peak, were found to have important
clinical value [3]. The estimation of tissue perfusion properties is based on
indicator dilution theory [4] and is driven by the measurement of the arterial input
function (AIF). The AIF represents the time varying contrast agent concentration
measured in arterial blood supplying the tissue under investigation. Ideally, it
should be measured directly in the artery supplying the tissue of interest. However,
in practice it is usually derived from a large artery, such as internal carotid artery
or middle cerebral artery (MCA).

An issue in estimating the perfusion properties is that the relation between
the ΔR∗

2 weighted DSC signal and the contrast agent concentration is uncertain.
For practical reasons it is often assumed that contrast-induced changes in R∗

2 are
linearly proportional to the contrast agent concentration. However, some studies
showed that the relation is rather more quadratic than linear as well as dependent
on the haematocrit level in blood [5–8]. Moreover, three effects can severely affect
the shape of the measured AIF. First, the AIF is assumed to be measured in pure
blood, which will never be the case as limited spatial resolution leads to mixing
of structures, known as partial volume effects [9]. Such partial volume effects can
lead to highly non-linear distortions of the measured AIF. Second, the signal in
large arteries tends to reach the noise floor during the passage of contrast agents,
leading to signal depletion [10]. This is due to the commonly applied choice
of a single, long echo time in clinical practice that is optimal for capturing the
bolus passage in brain tissue. Third, the time-concentration curve from voxels
inside an artery, especially the peak, can become distorted due to displacement
effects resulting from the increase of the local precession frequency induced by the
paramagnetic contrast agent within the artery [11].

Dynamic contrast enhanced (DCE) MRI is another perfusion technique
enabling estimation of cerebral haemodynamics, which is based on the R1-effects
induced by the contrast agent. Importantly, the relation between the R1 relaxation
rate and contrast concentration in blood has been comprehensively studied and is
more stable under different conditions than R∗

2 based measurements [12]. As such,
DCE imaging holds the potential to provide a more accurate AIF measurement in
absolute units (i.e. in mM). Furthermore, the Spoiled Gradient Recalled (SPGR)
imaging sequence that is commonly used for DCE MRI provides somewhat higher
spatial resolution reducing partial volume effects. Still there are two issues when
measuring the AIF with DCE MRI. First, fresh, unsaturated protons can flow
into the imaging volume, while they are assumed to be saturated, leading to
underestimation of the contrast agent concentration: this is referred to as ‘inflow
effects’ [13, 14]. Lately, however, several approaches were proposed to ameliorate
inflow effects [15–17]. Second, concomitant T ∗

2 effects induced by high contrast
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concentration may confound the measured R1-weighted signal enhancement [18].
This effect can be diminished by using a sufficiently short echo time for the DCE
sequence.

We hypothesized that a DCE-based AIF measurement might improve perfusion
measurement in DSC MRI compared to using a DSC-based AIF measurements. Of
course, the need for two contrast agent based MRI scans, might make such an
approach clinically impractical at first sight. However, a preload contrast injection
is frequently applied in DSC MRI in order to saturate the extravascular space to
minimise errors by contrast agent leakage [19, 20]. Therefore, this preloading stage
might be exploited by performing DCE-image acquisition from which a potentially
improved AIF could be obtained. In addition to AIF-determination, these data
could also be used for leakage quantification and estimating vascular permeability,
but it is not the focus of the current study.

In this study, we aimed to compare the AIFs measured from DCE and DSC
MRI as well as the effect of the different AIF approaches on the estimation of
perfusion properties. To do so, we performed combined DCE and DSC imaging in
patients suffering from diffuse gliomas as included in an ongoing study into effects
of radiotherapy. The characteristics of the AIFs from both DCE and DSC imaging
were systematically studied. Furthermore, perfusion parameters were compared
when using the two different AIFs.

3.2. METHODS

3.2.1. PATIENT COHORT

Data in this study was acquired as part of an associated clinical study in the
Netherlands: the Radiotherapy in isocitrate dehydrogenase (IDH) mutated Glioma:
Evaluation of Late outcomes (RIGEL) study (trial identifier: NCT04304300). The
first ten patients who had histologically confirmed, IDH mutated glioma (WHO
grade 2 or 3) and of whom the relevant imaging data were available were included
in this sub-study. Informed consent was obtained from all individual participants.
Postoperative radiation therapy and chemotherapy were given to every patient after
surgical tumor resection. MRI was performed before and approximately 4 months
after radiation therapy. From one patient DSC and DCE images were obtained
before and after radiation therapy, from two patients scans were only made
post-treatment, and from seven patients the pre-treatment images were included.
Table 3.1 collates the relevant information of our patient cohort.

3.2.2. IMAGING AND INJECTION PROTOCOL

Imaging was performed on a 3T MRI system (Signa Premier, GE Healthcare,
Wisconsin, USA) with a 48-channel head coil in the Erasmus MC (Rotterdam, the
Netherlands).

Prior to contrast-enhanced imaging, a high resolution T1-weighted image was
acquired using an inversion recovery preparation, 3D fast spoiled gradient echo
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Table 3.1: Patient cohort

Patient
number

Age Sex
Tumor

hemisphere
MRI

timing

N=10 36.1±10.3 Male 7 Right 8 Pre-treatment 7

Female 3 Left 2 Post-treatment 2

Both 1

sequence (brain volume imaging, BRAVO) with repetition time (TR)/echo time
(TE): 7.6/3.1 ms, inversion time: 450 ms, flip angle: 12°; FOV: 240 × 240 × 175
mm3, matrix size: 256 × 256 × 176, in-plane resolution: 0.94 × 0.94 mm2.

In each patient, 7.5 ml of Gadobutrol (Gadovist®, Bayer, Germany),
corresponding to a standard dose for a 75 kg patient, followed by a 15 mL saline
flush were automatically injected with a 22g cannula via the antecubital vein at 5
mL/s by a power injector (Spectris Solaris EP, MEDRAD, Pennsylvania, USA) during
which DCE imaging was performed. Immediately after DCE acquisition, a second
bolus of contrast agent with the same dose and protocol was injected during which
DSC imaging was done. The contrast agent injections were started 20 seconds after
commencing the DCE and DSC acquisitions.

DCE images were acquired using a differential subsampling with Cartesian
ordering (DISCO) sequence [21] with TR/TE: 2.7/0.9 ms, flip angle: 14°; FOV: 220
× 220 × 142 mm3, matrix size: 128 × 128, 72 slices, in-plane resolution: 1.7 × 1.7
mm2, slice thickness: 2 mm, temporal resolution: 2 s, yielding 183 dynamics at a
total scan time of 6 minutes and 20 seconds. DSC images were obtained with
a T ∗

2 -weighted gradient-echo echo-planar imaging sequence with TR/TE: 2000/45
ms, FOV: 220 × 220 × 140 mm3, matrix size: 100 × 100, 29 slices, in-plane
resolution: 2.2 × 2.2 mm2, slice thickness: 5 mm, temporal resolution: 2 s, yielding
50 dynamics in total.

3.2.3. PRE-PROCESSING

All image processing was done with in-house created software in MATLAB R2020a
(The MathWorks, Inc., Natick, Massachusetts, United States). Head motion between
the dynamic scans (both DCE and DSC images) was visually checked by monitoring
the three cross sectional lines of central coronal, sagittal and axial slices across
time. In case misalignment of the boundaries in these orthogonal slices was
observed, this was corrected by performing image registration of the entire series
to the first volume. Registration was done by a 3D rigid transformation optimizing
the normalized mutual information as implemented in SPM12 [22]. Subsequently
all DSC volumes were resampled to 72 slices and registered to the first DCE volume
with the same registration approach. Finally, all volumes were resampled to share
the same image coordinates and voxel size.
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3.2.4. AIF SELECTION

AIF measurements were obtained in three ways. From the DCE data, the DCE-AIF
was determined via manual selection based on the criteria described below. From
the DSC data, AIFs were obtained by two different approaches: 1) projection of the
manually selected voxels from the DCE images onto the DSC images followed by
a manual correction step (see below); 2) a semi-automatic identification from the
DSC series. The latter two AIFs will be referred to as the manual DSC-AIF and the
semi-automatic DSC-AIF, respectively.

DCE-AIF MEASUREMENT

In every dataset, five different arteries belonging to the territory of the MCA were
visually identified based on clearly observable signal changes during the upslope of
the contrast agent passage. In each such artery, a group of voxels were delineated
inside the artery. Such ROIs were placed in the central part of vessels to limit
partial volume effects as much as feasible. Subsequently, the selected ROIs were
projected onto the entire DCE time series. The resulting concentration-time curves
were not reviewed based on visual quality in any way.

DSC-AIF MEASUREMENT

First, the selected voxels of the five arteries in the DCE images were copied onto
all the registered DSC images. These copied ROIs could subsequently be slightly
adjusted to make sure that these were all located inside the artery. This step
was added to compensate for small misregistrations when deemed necessary. The
resulting ROI was then projected on the entire DSC series. Again, the resulting
concentration-time curves were not reviewed for visual quality.

Secondly, a semi-automatic technique for AIF-selection was applied based on a
clustering approach favouring early bolus arrival time, large area under curve and
small residual error of a fit with a gamma function [23]. Initial experiments were
performed first to optimize the search region and the optimal number of selected
voxels by the algorithm. The tuning procedure is illustrated in the supplementary
material (Figure S3.1). Subsequently, the optimal settings were applied in the same
five slices of the DCE-AIF determination. In each slice, the algorithm automatically
identified a group of voxels in which the signal resembled an AIF, irrespective
whether they resided inside an artery. No further corrections were applied to the
selected voxels.

The signals in each ROI (manual selection) and groups of voxels (semi-
automatic selection) were averaged to yield mean time-intensity curves. Thus, for
each type of AIF (DCE-AIF, manual DSC-AIF, semi-automatic DSC-AIF), five such
curves were generated for each patient. The mean time-intensity curves were
subsequently normalised by dividing them by the average signal of the first five
time points (i.e. baseline points) to produce signal ratio curves which were used to
derive contrast concentration-time curves. Figure 3.1 summarizes our AIF selection
procedure.
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DCE datasets

Choice of five slices 
Showing MCA branches

Delineation of ROIs
inside artery in each slice 

Projection of  ROIs 
from DCE images 

Manual adjustment
in case of  misalignment

Calculation of mean of signal intensity curves in each ROIs

Normalization with baseline signals

Derivation of concentration time curves

Application semi-automatic 
algorithm on the five slices

Generation of  a group of 
voxels  in each slice

DSC datasets

Identification of  a CE volume Registration to DCE data

*CE: Contrast Enhanced, MCA: Middle Cerebral Artery, ROI: Region of Interest

Figure 3.1: Flowchart of our AIF selection procedure.

3.2.5. AIF CALCULATION FROM DCE IMAGES

A previously published approach [17] was applied to compensate for potential
underestimation of contrast concentration due to inflow effects. Specifically, a
parameterized version of Orton’s AIF model [24], constrained by a fixed area under
the first passage reflecting the known injection dose, was first fitted to the DCE
signal ratio curve to estimate the number of excitation pulses experienced by the
protons. Subsequently, the estimated number of pulses was used to calculate the
contrast agent concentration at each time point so that the underestimation from
the inflow effect was corrected for. The inflow-compensated signal ratio curves
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from the DCE images were transformed into contrast concentration-time curves by
assuming a linear relation between the concentration and the T1-relaxivity [25]; the
longitudinal relaxivity in plasma (asserting a haematocrit level of 0.45) at 3.0 T was
assumed to be 4.5 L · (mM ·s)−1 for gadobutrol at 37°C [12], and the initial T1 value
of blood was set to 1.6 s [26].

3.2.6. AIF CALCULATION FROM DSC IMAGES

The DSC-driven AIFs were first translated into concentration-time curves by the
most commonly used conversion model. As such the ΔR∗

2 was assumed to be
linearly related to the contrast agent concentration. We initially computed:

ΔR∗
2 (t ) = −1

T E
· lnSr (t ) (3.1)

in which T E is the echo time of DSC sequence, and Sr (t ) is the signal ratio curve.
Subsequently, relying on the linearity assumption, we determined the contrast
agent concentration. We applied a proportionality constant of 16.5 (mM · s)−1

which we derived from the linear approximation of a quadratic model at contrast
concentrations ranging from 0-10 mM [8]. Dividing ΔR∗

2 by this constant yielded
the contrast concentration for the manual and the semi-automatic DSC-AIFs.

3.2.7. QUANTITATIVE ASSESSMENT OF AIF CURVES

For each method in every patient, the mean and variance of the peak values
and the full width of half maximums (FWHMs) of the AIFs were determined and
compared between the methods. Differences were statistically assessed using the
Wilcoxon rank-sum test. P-values smaller than 0.05 were considered as statistical
significant. Scatter plots and Bland-Altman plots were created for comparison of
differences between methods.

3.2.8. PERFUSION COEFFICIENTS

CBF was calculated from the DSC data based on a conventional tracer kinetic
model [27], in which the relationship between the tissue response and the AIF is
defined through a convolution integral:

1−HctLV

ρ · (1−HctSV )
·Ct (t ) =C BF · (Ca(t )∗R(t )) (3.2)

in which ρ is the assumed density of brain tissue set to 1.04 g/ml and HctLV

and HctSV are the presumed hematocrit levels in large and small vessels of 0.45
and 0.25 respectively, as used in Rempp et al.[28], Ct (t ) is the time-concentration
curve in tissue, Ca(t ) is the AIF and R(t ) is the tissue residue function. The latter
function describes the fraction of a hypothetical instantaneous bolus of tracer that
is still present in the tissue at time t and is obtained by deconvolving Ct (t ) with
Ca(t ). The maximum value of the deconvolution outcome represents the CBF value
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in the concerning voxel. The block-circulant deconvolution method was applied
for this calculation, which has been proven to be less sensitive to delay-effects
between AIF and tissue passage curves [29].

The relative CBF (rCBF) was used to compare the stability and reliability of
the various AIF types in perfusion estimation. A group of voxels was manually
selected in normal appearing white matter in a region contralaterally with respect
to the tumor location. The rCBF map was produced by dividing all CBF values
with the mean of the selected region. The coefficient of variation (CV) in rCBF was
computed using the three AIFs measured across the different slices (i.e. rCBF maps
were calculated based on the AIFs determined from the five different arteries).
The CV in each voxel was then derived by calculating the ratio of the standard
deviation and the mean.

In addition, the mean of the AIFs in each patient were used to estimate an
absolute (i.e. quantitative) CBF measure (aCBF). As such, tissue concentration
maps were generated by normalizing ΔR∗

2 (t) with a previously reported relaxivity
value r∗

2 in tissue:

C (t ) = ΔR∗
2

r∗
2

(3.3)

in which r∗
2 was set equal to 85 (mM · s)−1 [30]. Subsequently, aCBF maps were

produced by deconvolving the tissue concentration-time curves with the AIFs. This
aCBF was registered to the T1-weighted image via SPM12 for further processing.
Tissue probability maps were derived by applying the SPM12 segmentation function
on the T1-weighted image. The hemisphere from which the tumor was removed
was masked in each patient. Finally, aCBF values of the remaining, normal
appearing grey matter (GM) and white matter (WM) were sampled and compared
to values reported in literature.

3.3. RESULTS

3.3.1. EXAMPLE DCE- AND DSC-AIFS

One representative example of AIF-selection is shown in Figure 3.2. The selected
region was determined based on the DCE image containing the MCA (Figure 3.2a)
and projected onto the registered, corresponding DSC slice (Figure 3.2b). Observe
that the DCE-AIFs across voxels appear much more consistent and exhibit less
variation in peak height than the DSC-AIFs (Figure 3.2d). The selected arterial-like
voxels from the semi-automatic algorithm applied on the same slice are shown in
Figure 3.2c and the AIF calculations from every individually selected voxel is plotted
in Figure 3.2d. Figure 3.2f shows the characteristics of the AIFs obtained from the
three approaches. While overlapping the peaks of two manual approaches, the
shapes of the DCE-AIF and the manual DSC-AIF appear very similar, especially
during the first passage of the contrast bolus. Instead, the semi-automatic DSC-AIF
demonstrated higher peak values in combination with a more narrow width
compared to the manual DSC-AIF. Further results related to the optimization of the
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semi-automatic DSC-AIF estimation are included as supplementary material.
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Figure 3.2: Illustration of AIF measurements in a single artery of an example
patient. The ROI was manually selected in the DCE images (a)
and subsequently projected onto the registered DSC images (b). A
semi-automatic detection algorithm was applied to the same plane;
detected voxels are indicated in red (c). Contrast concentration changes
measured in the voxels from the selected regions in (a) and (b) are
plotted in (d). Blue lines are measurements from DSC MRI (left y axis);
red lines represent measurements from DCE MRI (right y axis). AIF
curves from the automatically detected DSC voxels (c) are shown in (e).
The mean DCE-AIF and the two mean DSC-AIFs are compared in (f).
The peak of the DCE-AIF was aligned with the peak of the manual
DSC-AIF to demonstrate the highly correlated shape of these two AIFs.

The DCE- and DSC-AIFs derived from different vessels (or slices) are plotted in
Figure 3.3. Overall the DCE-based AIFs visually exhibited better reproducibility than
the DSC-based AIFs in all patients. Only two patients are shown for illustration
purposes, one with relatively small variation of the DSC-AIF peak heights (Figure
3.3b,c) and one with larger variation in both the peak height and tail shape (Figure
3.3e,f) which is more representative for the other patients.

3.3.2. QUANTITATIVE ANALYSIS

The mean and the standard deviation of the peak values and FWHM from the AIFs
are summarized in Table 3.2. The CV of the peak values from all DSC-AIFs were
larger than those of the DCE-AIFs. The peak value of the DCE-AIF was significantly
higher than the peak value of the manual DSC-AIF (p-value: 0.00008). The peak
value of the semi-automatic DSC-AIF was significantly higher than the peak value
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Figure 3.3: AIFs measured in five arteries (see legend) in two representative
patients (top and bottom) using three approaches. The DCE-driven
AIFs (a, d) indeed show less variation than both the manual (b, e) and
semi-automatic (c, f) DSC-AIFs.

of the DCE-AIF (p-value: 0.03) and of the manual DSC-AIF (p-value: 0.00008).
There was no significant difference between the mean FWHM of the DCE-AIF and
the mean FWHM of the manual DSC-AIF. The mean FWHM of the DCE-AIF was
significantly larger than the mean FWHM of the semi-automatic DSC-AIF (p-value:
0.0004). Likewise the FWHM of the manual DSC-AIF was significantly larger than
the FWHM of the semi-automatic DSC-AIF (p-value: 0.0008). Scatter plots and
Bland-Altman plots for comparison of the FWHM values are shown in Figure 3.4.
The mean FWHM difference between the DCE-AIF and the manual DSC-AIF was
0.5±1.6 s (CI(95 % ) = [-2.5, 3.6]). The mean FWHM difference between the
DCE-AIF and the semi-automatic DSC-AIF was 3.2±1.6 s (CI(95 % ) = [0.1, 6.3]).
Finally, the mean FWHM difference between the two DSC-AIF methods was 2.7±1.2
s (CI(95 % ) = [0.3, 5.1]).

3.3.3. CBF ANALYSIS

The CV map of the rCBF with different types of AIFs in a representative patient
is shown in Figure 3.5. The mean CV of whole brain rCBFs calculated with the
different AIFs in every patient is listed in Table 3.3. One can observe that the
DCE-AIF provided a more stable rCBF measurement, i.e. showing smaller relative
variance than the DSC-AIFs did. Means and standard deviations of the sampled
aCBF values in the GM and WM masks across individuals are collated in Table 3.4.
The average aCBFs in GM and WM over all patients were 51.5 ml/100g/min and
24.0 ml/100g/min with the DCE-AIFs, 110.0 ml/100g/min and 44.2 ml/100g/min
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DCE-AIF Manual DSC-AIF Semi-automatic DSC-AIF

Peak(mM) FWHM(s) Peak(mM) FWHM(s) Peak(mM) FWHM(s)

Patient 1 9.4±1.1 6.5±0.7 2.5±0.7 5.9±1.2 7.4±2.1 4.6±1.1

Patient 2 5.3±0.3 7.8±0.4 2.8±1.0 10.3±1.4 7.4±1.7 5.7±2.1

Patient 3 6.4±0.3 6.7±0.4 2.6±0.1 6.8±1.9 5.2±1.3 3.9±0.5

Patient 3 † 5.7±0.5 8.9±1.6 2.7±0.6 8.5±1.4 5.8±1.5 5.7±1.9

Patient 4 † 4.6±0.3 9.0±0.3 2.8±0.4 9.0±0.6 3.4±0.7 7.4±0.8

Patient 5 4.4±0.4 10.5±3.1 2.6±0.7 10.1±1.3 6.0±1.9 6.1±1.1

Patient 6 4.5±0.5 9.4±2.2 2.5±0.7 8.4±0.9 3.8±0.4 6.8±0.3

Patient 7 † 4.0±0.1 10.3±0.5 2.9±1.3 10.1±1.4 7.0±0.6 5.6±0.9

Patient 8 4.6±0.5 13.0±2.1 3.0±0.7 8.8±1.7 6.8±1.5 6.0±2.7

Patient 9 5.5±0.7 10.1±2.0 3.0±0.7 9.6±0.8 6.8±1.4 7.6±2.3

Patient 10 6.7±0.3 8.9±0.8 2.6±0.7 7.9±1.5 5.1±1.9 6.3±2.8

Average 5.6±1.7 9.2±1.9 2.7±0.2 8.7±1.4 5.9±1.4 6.0±1.1

Note: Data are reported as mean ± standard deviation.
† Patient received radiation therapy

Table 3.2: Mean peak values and FWHM and corresponding standard deviations for
the different patients and AIF measurement methods.

with the manual DSC-AIFs, and 72.5 ml/100g/min and 28.4 ml/100g/min with the
semi-automatic DSC-AIFs, respectively. Patient 6 was excluded from the calculation
of the group average because severe ringing artefacts were observed (Figure S3.2).
Additional results related to CBV estimation are presented in the supplementary
material.
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a.

c.

b.

d.

f.e.

Figure 3.4: Scatter plot (a, c, e) and Bland-Altman plot (b, d, f) of FWHMs
calculated from the DCE-AIF, the manual DSC-AIF, and the semi-
automatic DSC-AIF.
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Figure 3.5: Representative CV map (for a single patient) derived from rCBF values
computed from the DSC series using the DCE-AIFs (left), the manual
DSC-AIFs (middle) and the semi-automatic DSC-AIFs (right). Observe
that the DSC-AIFs introduced larger relative variation than the DCE-AIF
did.

Table 3.3: Mean CV of rCBFs in whole brain for the different patients and AIF
measurement methods

Mean CV of rCBF

DCE-AIF Manual DSC-AIF Semi-automatic DSC-AIF

Patient 1 0.043 0.059 0.063

Patient 2 0.028 0.038 0.083

Patient 3 0.048 0.128 0.073

Patient 3 † 0.046 0.056 0.062

Patient 4 † 0.026 0.035 0.038

Patient 5 0.025 0.035 0.055

Patient 6 0.024 0.032 0.046

Patient 7 † 0.025 0.032 0.044

Patient 8 0.039 0.051 0.085

Patient 9 0.020 0.028 0.052

Patient 10 0.039 0.064 0.072

Average 0.033 0.051 0.061
† Patient received radiation therapy
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3.4. DISCUSSION
This paper studied the potential of replacing an AIF from DSC imaging with an AIF
from DCE to improve the precision of estimating DSC-based perfusion properties.
The DCE-driven AIF showed much more stable peak estimation and smoother
curves compared to the DSC-AIFs. In effect, less variation in calculated perfusion
parameters could be expected, which was confirmed by the reduced rCBF variance.

We attribute the better reproducibility of the DCE-driven AIF stems from
absence of detrimental effects, such as susceptibility artefacts, large partial
volume effects, signal depletion and voxel displacement which do affect the DSC
data. Some previous studies introduced an additional slice or sequence targeting
specifically the AIF measurement, to be succeeded by a more comprehensive DSC
series [31–33]. Instead of doing this, we exploited the preload injection to perform
DCE MRI. As such it facilitated acquisition of a quantitative AIF, i.e. representing
contrast agent concentration instead of change in R∗

2 over time.

There is no agreement in the literature on a standardized approach to measure
the AIF for perfusion estimation in DSC MRI due to several controversies [34].
Specifically, the AIF has been measured in arteries and veins, globally and locally,
inside and outside arteries, individually and population-based, and manually or
automatically. All these approaches were aimed at minimizing partial volume
effects, signal depletion, AIF dispersion or any other confounding effects on the
measured AIFs. Eventually, the chosen approach will be a compromise of these
detrimental effects. Several semi-automatic and automatic measurement methods
were proposed to avoid operational bias and simplify the procedure [23, 35–37].
Some of these approaches are widely available in commercial software. We used an
open-source semi-automatic DSC-AIF algorithm, which detects the arterial voxels
using a clustering algorithm with criteria as described by other researchers: early
bolus arrival, large area under curve, and good fitting with a gamma variate
function. However, the resulting AIFs had a higher peak with a narrower width
in comparison with the manual AIFs. This probably resulted from the algorithm
favoring a larger area under curve, as this might minimize partial volume effect.
However, van Osch et al. [9] suggested that the partial volume effect may induce
not only underestimation of AIF peak, but also lead to overestimations.

Previously, You et al. concluded that DCE based pharmacokinetic parameters
derived using a DSC-AIF yielded better diagnostic accuracy and reliability for
differentiating high grade astrocytoma from low grade astrocytoma than those
derived with a DCE-AIF [38], i.e. the opposite to this study. Another study from the
same group yielded a similar conclusion that the DSC-AIF helped differentiation
of glioblastoma from primary central nervous system lymphoma compared to
the DCE-AIF [39]. However, in these studies there was a mismatch in temporal
resolution of the DCE and DSC acquisition, which was 4 seconds and 1.6 seconds,
respectively. Furthermore, there was no correction for inflow effects performed
on the DCE-AIF measurement, which could cause underestimation of the peak
concentration. Indeed, in a later study from the group [40], the temporal resolution
was proven to be the key factor for obtaining high quality DCE-AIF measurements
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and yielding better reproducibility of DCE parameters.

Most commonly a linear relation is assumed between the transverse relaxation
change and the contrast concentration when deriving the DSC-AIF, as we did
in this study. Yet, others argued that the relationship between the contrast
concentration and the signal change in blood is better modeled by a quadratic
expression, albeit dependent on the hematocrit level [5–8]. In practice, however,
the hematocrit level is not always known. Furthermore, this will vary across the
vasculature, e.g. there will be a higher hematocrit level in the smallest vessels.
Also, the “arterial” voxels often combines both blood and tissue signals with
unknown proportion, which increases the linearity of the relation between contrast
concentration and the signal changes [7]. These issues complicate the application
of the quadratic model. In order to calculate aCBF based on the DSC-AIFs, we used
an assumed proportionality (r∗

2 ) for DSC-AIFs derived by a linear approximation of
the quadratic model which was adjusted for hematocrit level [8]: 16.5 (mM · s)−1.
Alternatively, it was theoretically assumed to be 5.9 (mM · s)−1 in Calamante et al.
[41] and Pedersen et al. [42]. Lind and her colleagues derived a linear constant
equal to 89 (mM · s)−1 by combining quantitative susceptibility mapping with DSC
measurements [43]. Furthermore, Knutsson proposed an approximated value: 20
(mM · s)−1 by linear fitting the quadratic model (with the contrast concentration
from 0 to 10 mM) [44]. These figures signify that there is no consensus regarding
an optimal r∗

2 constant for quantifying AIF in DSC MRI. By applying the AIF
derived from the DCE images, we could bypass such quantification issues.

The smaller variation in rCBF estimates using the DCE-AIFs in our opinion
reflects that this approach is more reliable and consistent than when using the
DSC-AIFs. In practice, only one vessel (or slice) is chosen as the AIF source.
Therefore, location independency of the AIF is preferred for optimal consistency
and to yield reduced operation bias in perfusion imaging. The average aCBF
estimated with DCE-AIFs in healthy GM and WM were 51.5±7.8 and 24.3±3.9 (unit:
ml/100g/min), respectively. These are close to CBF values obtained by previous
MRI [44–48], CT [49] and PET [50–52] studies. The average aCBF obtained with
the DSC-AIFs was larger than most reported ranges, both for GM as well as for
WM. One should notice that a wide range of perfusion values can be found in
literature. Therefore, we should be cautious not to overinterpret these numbers.
However, the obtained CBF values when using DCE-AIFs seem to be more in line
with literature values. Clearly, only a comparison to a true gold standard measured
simultaneously would be conclusive.

The rCBV is a biomarker that is often applied clinically to characterize brain
tumors and to monitor treatment response [53–57]. Since it is calculated as the
ratio between the area under the tissue concentration curve and the integral under
the curve of the first bolus passage of the AIF, it is directly affected by the choice
for a particular AIF. Essentially, the area under the first contrast passage acts as
a scaling factor of the CBV. This also implies that when calculating the ratio of
CBVs from a tumorous region and a collateral ROI, such effects will cancel out.
CBF-values can, however, be more non-linearly dependent on the shape of the
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AIF. Statistics on the area under the first passage of our AIFs is included in the
supplementary material. It confirms the larger variation of the DSC-AIFs compared
to the DCE-AIFs.

Our results may indicate that clinical research could be improved as follows.
First, DCE imaging could enhance perfusion analysis from DSC MRI by providing
a more reliable AIF. Such a DCE sequence can be acquired with minimal loss
of imaging time, since the AIF can be measured during injection of the preload
bolus. In our study, we employed a longer DCE sequence, since we also aim to
improve leakage quantification by combining DCE and DSC analysis in our future
work; this is however not necessary when the only goal is to measure the AIF.
For that purpose the same scan-duration as the DSC sequence could be chosen.
Second, having a DCE-AIF in absolute concentration units, could allow for making
CBV, CBF and MTT measurements from DSC MRI more quantitative. Clearly,
a remaining obstacle would be the lack of a suitable transformation, linear or
nonlinear, to convert the DSC tissue signal into physical contrast concentration
units. When the relaxivities of different tissue-types such as GM, WM, tumor and
necrotic tissue could be estimated, however, then an accurate aCBF map in every
individual could be generated.

There are several limitations of our study. First, the employed echo time (45
ms) is longer than what currently is advised (i.e. 25-35 ms)[58]. Moreover, we did
not have a ground truth AIF in our study as this can only be obtained by arterial
blood sampling. Also, a ground truth CBF was not available for similar reasons.
In addition, the aCBF was derived with a particular r∗

2 value for tissue and blood
(to convert the DSC signal to contrast agent concentration). While the r∗

2 in both
tissue and blood is still under debate, clearly our results will vary with different r∗

2
values for tissue or blood. Finally, the injection dose was not adjusted according to
patient weight, but fixed at 7.5 ml for all patients. This bias was corrected by using
an AIF model with normalized area under the bolus peak.

3.5. CONCLUSION
We conclude that the DCE-based AIFs are efficiently obtained during the preload
contrast agent injection prior to DSC imaging. DCE-based AIFs reproduce better
across vessels than the DSC-based AIFs, and can therefore improve the reliability of
assessing perfusion parameters from DSC MRI. In addition, the quantitative nature
of DCE-AIFs demonstrates great potential for truly quantifying perfusion parameter
estimates from DSC MRI.

3.6. SUPPLEMENTARY MATERIALS

3.6.1. OPTIMIZATION OF THE SEMI-AUTOMATIC DSC-AIF ALGORITHM

In its default setting the semi-automatic DSC-AIF algorithm searches for arterial-like
voxels in a central elliptic region in a chosen slice and the algorithm stops when 4
to 6 voxels have been automatically detected. One such group and corresponding
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AIF curves are shown in Figure S3.1a and b respectively. Figure S3.1c represents
the search result while increasing the voxel number limit to between 10 to 20
voxels. The detected AIFs show wider peaks, including bimodal profiles (Figure
S3.1d). In Figure S3.1e, the elliptic search area was positioned in region of the
manually annotated DCE-AIF voxels (see Figure 3.2). The detected AIFs appear
more noisy and contain more fluctuations than the AIF with default search region
(Figure S3.1f). Because of the poor AIF profiles with these modified settings, the
original approach was applied throughout the paper.

3.6.2. THE AREA UNDER FIRST CONTRAST PASSAGE

Table S3.1 collates the CV of the areas under first contrast passage of the AIFs,
i.e. the ratio of the standard deviation and the mean value calculated over five
measurements in each patient. These data show that the area under the first
contrast agent passage curve of DCE-AIF has less variation than the area under
first passage of DSC-AIFs, both within and between patients. In effect, the CBV
would show less variation with the DCE-AIFs.

Table S3.1: CV of area under the first bolus peak for the different patients and
measurement methods.

DCE-AIF Manual DSC-AIF Semi-automatic DSC-AIF

Patient 1 0.10 0.41 0.19

Patient 2 0.03 0.37 0.19

Patient 3 0.02 0.09 0.23

Patient 3 † 0.12 0.27 0.13

Patient 4 † 0.04 0.10 0.24

Patient 5 0.22 0.33 0.27

Patient 6 0.15 0.26 0.07

Patient 7 † 0.05 0.36 0.18

Patient 8 0.10 0.14 0.28

Patient 9 0.09 0.29 0.27

Patient 10 0.10 0.18 0.45

Average 0.09 0.26 0.23
† Patient received radiation therapy
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Figure S3.1: The optimizing process of the applied semi-automatic algorithm and
the corresponding detected AIF curves.
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Figure S3.2: The aCBF map from patient 6. An overall overestimation and ‘ring
artefact’ were observed.
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ABSTRACT
Both inflow and partial volume effects (PVE) are sources of error when measuring
the arterial input function (AIF) in dynamic contrast enhanced (DCE) MRI. This
is relevant as errors in the AIF can propagate into pharmacokinetic parameter
estimations from the DCE data. A method was introduced for flow correction by
estimating and compensating the number of the perceived pulse of spins during
inflow. We hypothesized that PVE has a similar impact on concentration time
curves as inflow. Therefore, we aimed to study the efficiency of this method
to compensate for both effects simultaneously. We first simulated an AIF with
different levels of inflow and PVE contamination. The peak, full width at half
maximum (FWHM) and area under curve (AUC) of the reconstructed AIFs were
compared with the true (simulated) AIF. In clinical data, PVE was artificially
included in AIFs by averaging the signal in voxels surrounding a manually selected
point in an artery. Subsequently, the artificial partial volume AIFs were corrected
and compared to the AIF from the selected point. Additionally, corrected AIFs
from the internal carotid artery (ICA), middle cerebral artery (MCA) and the
venous output function (VOF) estimated from the superior sagittal sinus (SSS) were
compared. As such we aimed to investigate the effectiveness of the correction
method with different levels of inflow and PVE in clinical data. The simulation
data demonstrated that the corrected AIFs had only marginal bias in peak value,
FWHM and AUC. Also, the algorithm yielded highly correlated reconstructed curves
over increasingly larger neighbourhoods surrounding selected arterial points in
clinical data. Furthermore, AIFs measured from ICA and MCA produced similar
peak height and FWHM, whereas a significantly larger peak and lower FWHM was
found compared to the VOF. Our findings indicate that the proposed method has
high potential to compensate for PVE and inflow simultaneously. The corrected
AIFs could thereby provide a stable input source for DCE analysis.
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4.1. INTRODUCTION
Dynamic contrast enhanced (DCE) MRI is an often used imaging method for
estimating vascular properties, especially in oncological applications [1]. Essentially,
a gadolinium-based contrast agent (GBCA) is intravenously administered, while
dynamic T1-weighted images are acquired for several minutes at a medium
temporal resolution (on the order of a few seconds). In normal brain tissue, an
intact blood brain barrier (BBB) prevents leakage of GBCA into tissue. However,
impairment of the BBB resulting from disease processes can lead to leakage of
GBCA from vessels to the extravascular space. To identify such BBB damage
and quantify its extent, parameters including the time to the peak [2], maximum
intensity [3], the area under curve (AUC) [4], wash-in slope, wash-out rate, and
signal enhancement ratio [5], can be derived from the DCE signal-intensity curve
[6]. Alternatively, tracer kinetic models enable estimation of vascular properties
(as summarized by Khalifa et al. [7]). The extended Tofts model (ETM) is
the most frequently applied model in tumor assessment. It assumes that the
GBCA distributes in two compartments: the blood plasma and the extravascular
extracellular space (EES), adopting a bi-directional exchange of the tracer across the
BBB [8]. By fitting this model to the measured signal intensity, vascular parameters
are obtained, e.g. the volume transfer constant (K tr ans ), reflux exchange rate from
EES to plasma (Kep ), fraction volume of plasma (Vp ), and fraction volume of
EES (Ve ). These quantitative parameters were shown to provide relevant clinical
information about the vasculature [9, 10].

The arterial input function (AIF) plays a crucial role in the estimation of the
aforementioned pharmacokinetic model parameters as it serves as the input to the
model. The AIF describes the contrast agent concentration in an artery feeding the
tissue of interest as a function of time. The use of a population-average AIF has
been proposed to simplify the fitting procedure and enhance the reproducibility
of the parameter estimations [11]. However, a population-average AIF ignores
the natural variation in individual subjects, which can erroneously propagate to
vascular parameter estimations [12, 13].

Simultaneously, there are also known issues with measuring a subject specific
AIF. In general, it is preferred that the AIF is obtained near the tissue of interest
to reduce travel time (delay) and dispersion, so that the shape and amplitude of
AIFs is accurately represented [14]. However, in the smaller arteries and even in
the larger brain-feeding arteries, limited spatial resolution can result in mixing
of signals: the partial volume effect (PVE) [15, 16]. As a consequence, signals
from the artery and surrounding tissue are combined, which generally results in
underestimation of the GBCA concentration. To deal with this, previous studies
have suggested either to normalize the AIF with the concentration measured in the
superior sagittal sinus (SSS) [16, 17], i.e. the venous output function (VOF), or to
use the VOF itself as an input to the pharmacokinetic model [18, 19]. Nonetheless,
Hansen et al. [16] pointed out that normalization methods are only valid when
the contribution of the tissue signal is limited. Furthermore, Cramer et al. [20]
found that using the VOF might lead to biased pharmacokinetic analysis due to
the increased dispersion of the concentration-time curve.
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Inflow effects have shown to affect the AIF, especially when it is measured in a
larger artery, away from the site of interest [21]. In general, it is assumed that the
recorded signal reflects the steady state magnetization. In tissue this is often a valid
assumption, but this may not hold in arteries. Here, "fresh" spins continuously
arrive in the image volume, which have received insufficient excitations to reach
steady state. Effectively, this results in a hyperintense signal in the baseline images
and underestimation of the T1 signal enhancement induced by the GBCA. Several
methods for reducing the impact of inflow effects were proposed. For instance, a
flow phantom could be used to calibrate the effect [22]. However, such calibration
is often sequence, subject, and system dependent. Measuring the AIF downstream
could significantly improve the accuracy, but this may not be applicable to all
in vivo imaging situations [23]. As an alternative, the AIF can be measured
from phase accumulation induced by higher magnetic susceptibility of GBCA. This
approach is insensitive to inflow effects that merely act on the magnitude of the
signal [24]. At the same time, however, this signal can suffer from phase wrapping
and flow-induced phase shift. Yet, other correction methods were designed for
particular applications, e.g. liver DCE imaging [25, 26], and therefore are not
generally applicable.

Recently, a method was proposed for correcting inflow effects by first estimating
the perceived pulse number and then correcting for the inflow effect [27]. However,
PVEs were not considered. In the current paper we aim to assess the efficacy
of this algorithm to compensate for both inflow and PVEs simultaneously. We
hypothesize that PVE can be interpreted as an underestimation of the perceived
pulse number due to its similar impact on concentration-time curves. Simulation
data was used to evaluate the correction method and clinical datasets were applied
to verify the applicability in practice.

4.2. THEORY
In this section we define the theory that was initially applied merely for modeling
and correcting of inflow, c.q. a low number of perceived pulses. The full derivation
of the introduced equations can be found in the appendix of van Schie et al. [27].

4.2.1. SIGNAL EXPRESSION

In a spoiled gradient echo sequence, the signal can be expressed as an excitation
of the longitudinal magnetization Mz (n) followed by T ∗

2 decay:

S(n) = sinα ·Mz (n) ·exp

(−T E

T ∗
2

)
, (4.1)

in which α is the flip angle, T E is the echo time, T ∗
2 is the tissue specific T ∗

2 -decay
time, and n represents the perceived number of RF-pulses by the spins, which
directly reflects the degree of saturation. Clearly, the T ∗

2 -decay term may be
neglected while the applied echo time is sufficiently small (T E � T ∗

2 ).
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The expression for Mz (n) is:

Mz (n) =

M0 ·
((

1− 1−E1

1−cosα ·E1

)
· (cos(α) ·E1)n + 1−E1

1−cosα ·E1

)
,

(4.2)

where

E1 = exp

(−T R

T1

)
(4.3)

with M0 the net magnetization in equilibrium, T R the repetition time, and T1 the
longitudinal relaxation time. Notice that when the spins have received enough
excitation pulses, which is usually achieved in stationary tissue due to a sufficiently
large number of start-up excitations, the longitudinal magnetization reaches a
steady state, in which Mz (n) can be simplified as:

Mz (n) = M0 ·
(

1−E1

1−cosα ·E1

)
. (4.4)

The magnetic unit won’t alter with increasing perceived pulse number n at some
point. Notice that this ’sufficient’ pulse number to saturate the magnetization is
depended on the applied repetition time and flip angle. The MRI signal in an
artery, however, frequently does not reach the steady state, because spins enter the
field of view with an inadequate number of excitation pulses, albeit still abiding to
Equation (4.2). As a consequence, a higher signal is obtained from these spins that
are in a transient state compared to what would have been measured had they
been in a steady state. This leads to the phenomenon of inflow artefacts due to
flow enhancement.

4.2.2. GBCA-INDUCED SIGNAL CHANGE

Under the influence of the GBCA, relaxation rates are modulated by the contrast
concentration C in plasma:

1

T1
= 1

T10
+ (1−Hct) · r1 ·C , (4.5)

and
1

T ∗
2

= 1

T ∗
20

+ (1−Hct) · r∗
2 ·C , (4.6)

in which T10 and T ∗
20 represent the initial longitudinal and transverse relaxation

time, respectively, Hct is the hematocrit level, and r1 and r∗
2 denote the longitudinal

and transverse relaxivity of the GBCA. As a result of this, the magnetization and
the measured signal become functions of both C and perceived pulse number (n):
Mz (C ,n) and S(C ,n).

The signal ratio, denoted as D , characterizes the relative change between the
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post-contrast and pre-contrast signal intensities, which can be expressed as:

D(C ,n) = S(C ,n)

S(0,n)
= Mz (C ,n)

Mz (0,n)
·e−T E ·r∗2 ·C . (4.7)

This signal ratio expression contains only two unknown terms that are the contrast
concentration (C ) and the perceived pulse number (n).

4.2.3. AIF MODEL

The AIF model from Orton et al. [28] was integrated in this approach to facilitate
the correction for inflow. This AIF model is defined as a sum of two functions,
one describing the first passage of the contrast agent and the other describing the
wash-out phase of the GBCA during the tail of the AIF. The bolus peak CB (t ) is
defined by:

CB (t − t0) = aB ·μ2
B · (t − t0) ·e−μB ·(t−t0), (4.8)

in which aB represented the area under the first bolus peak (that is related to the
total injected concentration, see below), μB the decay rate and t0 is the bolus
arrival time. The tail function is expressed as a convolution of the bolus peak and
a body transfer function G(t ):

G(t ) = aG ·e−μG ·t , (4.9)

where aG determined the starting level of this function and μG governed the decay
rate reflecting kidney function. Thus, the complete AIF is modeled as follows:

COrton(t ,θ) =CB (t − t0)+CB (t − t0)∗G(t ), (4.10)

in which θ contains all parameters for the AIF:

θ = [aB ,μB , aG ,μG , t0]. (4.11)

4.2.4. CORRECTION METHOD

This section summarizes the correction method. For further details we refer to the
comprehensive description in van Schie et al. [27].

Previously, it was observed that the area under the first bolus peak is related to
the ratio of contrast agent dose and cardiac output [22]. Furthermore, both dose
and cardiac output are generally proportional to body weight [29]. Accordingly,
the parameter representing the area under the first bolus peak of the AIF model
(aB ) was assumed to be constant across subjects. This constant was set to 50.58
mM · s−1 for a standard dosage (0.1 mmol/kg) [27, 28], and was scaled linearly
with the dose per body mass. Consequently, any discrepancies between the model
and a measured signal-ratio curve were attributed to inflow effects, which was
subsequently accounted for by estimating the perceived pulse number n.

To correct the measured AIF signal curve, the following minimization problem
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was solved:
(θ̂, n̂) = argmin

θ,n
‖Dmeas(t )−D(COrton(t ,θ),n)‖2, (4.12)

in which Dmeas(t ) is the measured signal ratio curve, and D(COrton(t ,θ),n) is the
fitted signal ratio curve incorporating Orton’s AIF-model. While doing so, the free
model parameters in θ (Equation (4.11)) and the perceived pulse number n were
estimated. The estimated parameters were constrained to be positive, and were
determined using a nonlinear least squares regression method.

Essentially, the estimation of n involved comparing the full measured
time-series data to the AIF-model, rather than considering each time point
separately. However, in practice some information might not be represented in the
model, such as the presence of a second peak. To address this, the concentration
(C (t )) at each time point was subsequently re-estimated using the estimated pulse
number (n̂), by solving C in:

D(C (t ), n̂) = Dmeas(t ). (4.13)

In effect this yielded the final AIF concentration curve compensating for inflow
effects and in this study we will study whether this also compensates for PVE.

4.3. MATERIALS AND METHODS

4.3.1. SIMULATION

The AIF model in Section 4.2.3 was used to generate a standardized AIF
concentration curve using population-averaged parameters: aB =50.58 mM · s−1,
μB =0.3 s−1, aG =0.02 s−1, μG =0.003 s−1 and t0=15 s [28]. The AIF curve first served
to compute an MR signal curve according to Equation (4.1) (via Equation (4.2) and
(4.3)) with T1 and T ∗

2 modulated by the contrast concentration. In this computation
these constants were applied: Hct : 0.45, T10 in blood: 1.8 s [30], T ∗

20 in blood: 0.02
s [31], r1: 4.5 (mM ·s)−1 for gadobutrol [32], and a theoretical r∗

2 : 5.9 (mM ·s)−1 [33,
34].This was done for a variety of perceived pulse numbers n, yielding different MR
signal curves S(C ,n), each of which was normalized according to Equation (4.7).
Notice that T ∗

2 decay was included, even though a small echo time was applied for
the in vivo experiments. Inflow simulations ignoring T ∗

2 decay were also explored
to verify its influence.

For tissue, the steady state signal (S′(∞)) was modeled assuming a certain
constant T1 and T ∗

2 : 1.2 s and 0.08 s, respectively, and setting n equal to infinity in
Equation (4.1). Finally, a linear combination of the AIF-signal and the tissue-signal
was applied to include PVE into the simulations:

SP ( f ,n) = (1− f ) ·S(n)+ f ·S′(∞), (4.14)

with PVE fraction f . Thus, our partial volume model mixes a constant background
signal S′(∞) into the (foreground) AIF signal. In the appendix it is shown that
the AIF signal under the influence of inflow (i.e. varying n) can be rewritten and
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approximated to obtain a similar representation. As a consequence, flow has a
highly comparable impact on the time concentration curve as PVE does.

White Gaussian noise was added to the resulting signal intensity curves to
achieve a signal-to-noise ratio (SNR) equal to 40 decibels, i.e. the same as the
SNR of the baseline signals measured in the ICA in our clinical data. Finally, the
simulated signal-intensity curves were transformed into signal ratio curves Dsimu(t )
by normalizing with the averaged baseline signal (before contrast agent arrival).

4.3.2. VALIDATION

First, simulations were run with only inflow effects incorporated: the PVE fraction
( f ) in Equation (4.14) was set to 0, and n ∈ {40,60,80,100,120,140}. For each
n, ten thousand simulations were performed with different noise realizations
yielding signal ratio curves Dsimu(t ). The correction algorithm was applied to
each simulated signal curve to estimate the perceived pulse number which was
then used to reconstruct the AIF concentration curve (Section 4.2.4). Finally, the
reconstructed AIF was supersampled 20 times to 0.1 seconds temporal resolution
using piecewise cubic interpolation [35], from which the peak value, full width at
half maximum (FWHM) and AUC were computed; these values were compared
with the ground truth values calculated from the simulated AIF (through the same
interpolation procedure).

Then, partial voluming was included by increasing the PVE fraction ( f ) from
10% up to 50% for different n (see above); again ten thousand noise realizations
with SNR equal to 40 decibels were obtained for each setting. Subsequently, the
correction algorithm was applied. To show the interaction between the correction
for inflow and PVE, we both employed the true simulated pulse number (without
PVE correction) and the estimated perceived pulse number to reconstruct the AIFs.
Furthermore, the peak value and FWHM of both the uncorrected as well as the
corrected AIFs were compared with the ground truth values.

4.3.3. CLINICAL DATA ACQUISITION

PATIENT COHORT

Data in this study were acquired as part of an associated clinical study in
Netherlands: the Radiotherapy in Isocitrate dehydrogenase (IDH) mutated Glioma:
Evaluation of Late outcomes (RIGEL) study (trial identifier: NCT04304300). The
first ten patients who had histologically confirmed, IDH mutated glioma (WHO
grade 2 or 3) and of whom the relevant imaging data were available were included
in this sub-study. Informed consent was obtained from all subjects. Postoperative
radiation therapy and chemotherapy were given to every patient after surgical
tumor resection. MRI was performed before and approximately 4 months after
radiation therapy. From three patients DCE images were obtained before and after
radiation therapy, from two patients scans were only made post-treatment, and
from five patients only pre-treatment data were included.
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IMAGING AND INJECTION PROTOCOL

Imaging was performed on a 3T MRI system (Signa Premier, GE Healthcare,
Waukesha, WI, USA) using a 48-channel head coil in the Erasmus MC (Rotterdam,
Netherlands).

DCE images were acquired using a differential subsampling with cartesian
ordering sequence [36] with TR/TE: 2.7/0.9 ms, flip angle: 14◦; FOV: 220 × 220 ×
144 mm3; matrix size: 128 × 128, 72 slices; in-plane resolution: 1.7 mm × 1.7
mm; reconstructed resolution: 0.9 mm x 0.9 mm; slice thickness: 2 mm, temporal
resolution: 2 s, to obtain 183 image volumes in total. The entire DCE sequence
took 6 minutes and 6 seconds. Some other sequences were also applied for clinical
purposes, but these are not relevant for this paper.

In each patient, 7.5 ml of Gadobutrol (Gadovist®, Bayer, Germany),
corresponding to a standard dose for a 75 kg patient were automatically injected
by a power injector. The contrast agent injections were started 20 seconds after
start of the DCE imaging to allow acquiring sufficient averages of the contrast-free
baseline signal.

PRE-PROCESSING

All image processing were done with in-house created scripts in Matlab (version
R2021b; MathWorks, Inc., Natick, Massachusetts, United States). Head motion
between the dynamic scans was visually checked by monitoring the three
cross-sectional lines of the central coronal, sagittal and axial slices across time.
Slight misalignment of the boundaries was observed in three cases; this was
corrected by performing 3D rigid registration of the entire series to the first volume.
We did not apply registration in the case without observed movement to avoid
introducing interpolation errors.

4.3.4. AIF MEASUREMENT

REGION OF INTEREST SELECTION

In all patients of this study, regions in an artery were selected in the hemisphere
contralateral to the tumor, to avoid any possible effects of the tumor on the AIF
measurement. These regions-of-interest (ROIs) were manually delineated on a
DCE volume after bolus arrival in which the arteries could be easily identified.
Specifically, ROIs were drawn in the internal carotid artery (ICA) and segments of
middle cerebral artery (MCA). Sampling of the AIF signals was performed before
registration to the T1 map to avoid additional blurring.

ARTIFICIALLY INCREASED PVE

To test whether the inflow correction method can also correct for PVE, one voxel
of interest was placed at the center of the ICA in a proximal imaging plane for
each patient. Then, the signal-time curve of this voxel was averaged with those
of surrounding voxels by applying an increasing kernel size from 3-by-3 to 9-by-9
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voxels applied within plane. This was done to mimic increasing PVE at a fixed
inflow effect.

DOWNSTREAM SAMPLING THE AIF

The inflow effect is expected to diminish gradually from ICA to MCA due to
increased exposure to excitation pulses. However, simultaneously it can be
expected that PVE becomes more severe, since the diameter of the arteries become
smaller. To test the sensitivity of our correction algorithm to these mixed effects,
we measured the AIF in the ICA (AIFICA), the M1 (AIFM1) and the M2 (AIFM2)
segments of the MCA. Accordingly, groups of 9 voxels were selected in the ICA and
the M1 and M2 segments of the MCA in each patient, for measuring the AIF from
upstream to downstream in the same arterial territory. Subsequently, the signal
over the ROI was averaged for each dynamic to obtain a signal-time intensity curve
reflecting the AIF.

CONCENTRATION ESTIMATION

Signal ratio curves Dmeas(t ) were first derived by dividing the time-signal intensity
curves from each region by the mean of the first ten baseline signals. Then, the
correction algorithm described in Section 4.2.4 was applied to the AIF signal ratio
curves, estimating the perceived pulse number. Finally, we used the estimated
pulse number to reconstruct the AIFs.

AIF ALTERNATIVE

Conforming to an often applied practical approach, we also measured the VOF
from the SSS (VOFSSS). As with the AIFs, ROIs consisting of 9 voxels inside the SSS
were manually delineated in an axial slice after which mean signal-time intensity
curves were obtained. Subsequently, contrast concentration curves were calculated
as described in Section 4.2.1, asserting that the spins were in steady state and
assuming T10= 1.8 s for blood.

EVALUATION

For assessing the influence of artificially increasing PVE, the estimated pulse
number from each kernel was compared with the estimated pulse number of the
central voxel. Also, the root mean square error was calculated from the difference
between the corrected AIF and the one from the central voxel (serving as the gold
standard reference) and further normalized with the peak value of the central voxel
to deliver the normalized root mean square error (NRMSE).

The AIFICA, AIFM1, AIFM2 and VOFSSS were compared based on the peak
values, the FWHMs and the products of the peak value and FWHM (i.e. the peak
FWHM product, PFP), which is related to area under first bolus peak. Differences
were statistically assessed using the Wilcoxon test. P-values smaller than 0.05 were
considered as statistical significant.
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4.4. RESULTS

4.4.1. SIMULATION

Figure 4.1 shows the employed Orton’s AIF model as calculated from population-
averaged parameters (a), MR signal ratio curves including only inflow effects (b),
and the signal ratio curves affected both by inflow effects and PVE (c). Notice that
no noise was added, so that the graphs show only the effects of inflow and PVE.
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Figure 4.1: Simulated AIF concentration curve from Orton’s model (a), signal ratio
curves from simulated AIF concentration curves with inflow effect only
(b) and likewise with partial voluming added (c). Notice that PVE led to
similar underestimation of the AIF curves as inflow.

4.4.2. VALIDATION

In the following experiments, Gaussian noise was added before deriving signal
ratio curves. Error percentages of the estimated pulse number, reconstructed peak
value, FWHM and AUC from simulated data that only included inflow effects, are
shown in Figure 4.2. A bias of a few percents (less than 3%) was observed in all the
plotted parameters. The variance increased when stronger inflow effects, i.e. lower
n, were simulated. Figure S4.1 collates the same estimations while T ∗

2 effects were
not included in the simulations. No bias has been detected in this simulation.

As PVEs were introduced, the estimated pulse numbers gradually decreased
when the partial volume fraction increased (Figure 4.3a). Simultaneously, only
little influence on peak values and FWHMs was observed on the corrected AIFs,
showing that the inflow correction method also compensated most of the PVE
(Figure 4.3b,c). This complementary correction becomes even more biased when
applying the real (input) pulse number to correct the AIFs, i.e. reflecting ’perfect’
correction for only the inflow effects (Figure 4.3d,e).

4.4.3. CORRECTION IN CLINICAL DATA

ARTIFICIALLY INCREASED PVE

Figure 4.4 shows three representative examples of PVE compensation in different
patients. Clearly, the AIFs were faithfully reconstructed even with large simulated
partial voluming. A decrease in estimated pulse number with increasing
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Figure 4.2: Error percentage of estimated pulse number (a), peak value (b), FWHM
(c) and AUC (d) of compensated AIFs while inflow and T ∗

2 effect is
simulated.

PVE fraction was observed in every patient (Table 4.1). Furthermore, the
NRMSE generally stayed small, albeit moderately higher with larger kernel sizes.
Supplementary Figure S4.2 shows the detrimental effect on the signal curves and
the reconstructions when a nearby vessel is include with a different enhancement
time (i.e. arrival of the peak).

AIF MEASUREMENTS UPSTREAM AND DOWNSTREAM

A box plot of estimated pulse numbers for the AIFs and the VOF is included
in supplementary Figure S4.3. Unsurprisingly, the VOF received markedly more
excitation pulses than the AIFs did. Figure 4.5 shows the peak values, FWHMs
and PFPs of the three AIFs and the VOF for all subjects. The peak values in the
VOFSSS were significantly lower than in the AIFICA (p-value: 0.03), and in the AIFM1

(p-value: 0.04). The peak values in the VOFSSS and AIFM2 were not significantly
different (p-value: 0.05). Significantly larger FWHMs were observed in the VOFSSS

compared to the AIFICA (p-value: 0.02) and the AIFM1 (p-value: 0.03). There was
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Figure 4.3: Variation in the estimated pulse number (a) when partial volume
correction is included in simulated signal ratio curves; the peak value
(b) and FWHM (c) of the reconstructed AIF using the estimated pulse
number; error in peak value (d) and FWHMs (e) when using the
true pulse number, i.e. without partial volume correction during AIF
reconstruction.

no significant difference between the FWHMs from the VOFSSS and AIFM1 (p-value:
0.10). Other comparisons, e.g. the PFPs, yielded no significant differences.



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

4

76 4. CORRECTING INFLOW AND PVE IN DCE-DRIVEN AIF

Signal ratio of AIF with PV e ect

Su
bj

ec
t 

1
Su

bj
ec

t 
2

Su
bj

ec
t 

3

0 10 20 30 40 50 60 70 80
Time (s)

0

1

2

3

4

5

6

7

8

Si
gn

al
 ra

tio

1x1
3x3
5x5
7x7
9x9

Reconstructed concentration time curve

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

10

12

Co
nc

en
tr

at
io

n 
(m

M
)

1x1
3x3
5x5
7x7
9x9

0 10 20 30 40 50 60 70 80
Time (s)

0

1

2

3

4

5

6

7

Si
gn

al
 ra

tio

1x1
3x3
5x5
7x7
9x9

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

10

12

Co
nc

en
tr

at
io

n 
(m

M
)

1x1
3x3
5x5
7x7
9x9

0 10 20 30 40 50 60 70 80
Time (s)

0

1

2

3

4

5

6

7

Si
gn

al
 ra

tio

1x1
3x3
5x5
7x7
9x9

0 10 20 30 40 50 60 70 80
Time (s)

0

2

4

6

8

10

12

Co
nc

en
tr

at
io

n 
(m

M
)

1x1
3x3
5x5
7x7
9x9

Figure 4.4: Simulation and compensation of increasing PVE in the ICA in three
different subjects (top to bottom). Left column depicts a cross-section
of the artery and the regions over which PVE is simulated (colored
squares). Mean signal ratio curves within the kernel’s footprint and
reconstructed AIF concentration curves are shown in middle and right
columns, respectively. Notice that only first 40 time points of the series
are plotted for clarity reasons.

4.5. DISCUSSION
In this paper we studied the potential of a method to simultaneously correct the
AIF measured in DCE MRI for PVE and inflow effects. This was inspired by the
observation that PVE induces a similar shape and amplitude changes of the AIF
as inflow does. In the Appendix we mathematically underpin that the two effects
indeed have a similar effect on the AIF measurement, which also implies that
they cannot be separated. Our results show that the correction algorithm sustains
combined correction for both inflow effect and PVE.
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Table 4.1: Difference in estimated pulse number (nd ) and normalized root mean
square error (NRMSE) of reconstructed AIFs with increasing PVE (i.e.
applied kernel size) in comparison to data from the central arterial voxel.

nd (%) NRMSE

3x3 5x5 7x7 9x9 3x3 5x5 7x7 9x9

Subject 1 −0.7 −5.3 −14.2 −26.6 0.008 0.016 0.032 0.055
Subject 2 −2.4 −8.8 −22.3 −33.0 0.003 0.008 0.039 0.046
Subject 3 −6.0 −16.2 −32.4 −44.1 0.023 0.038 0.074 0.098
Subject 3∗ −2.3 −9.0 −26.0 −35.1 0.007 0.028 0.068 0.092
Subject 4∗ −0.6 −1.4 −11.2 −22.4 0.004 0.019 0.036 0.080
Subject 5 −6.6 −12.0 −16.6 −26.7 0.023 0.036 0.054 0.145
Subject 6 −2.8 −6.7 −21.9 −30.7 0.003 0.021 0.016 0.023
Subject 6∗ 4.3 −3.2 −8.0 −17.9 0.035 0.011 0.025 0.023
Subject 7∗ −3.1 −10.6 −21.2 −30.2 0.004 0.016 0.033 0.043
Subject 8 −4.9 −13.1 −24.9 −33.4 0.004 0.010 0.028 0.039
Subject 8∗ −0.3 −6.5 −16.0 −24.5 0.006 0.012 0.025 0.034
Subject 9 −5.0 −11.7 −25.8 −36.4 0.004 0.015 0.022 0.033
Subject 10 −4.7 −13.3 −22.5 −32.0 0.007 0.022 0.029 0.040

∗Patient received radiation therapy
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Figure 4.5: Peak values (a), FWHMs (b) and PFPs (c) from AIFICA, AIFM1, AIFM2

(applying inflow and partial voluming correction), and VOFSSS (without
any correction). Colors denote independent measurements. The VOFSSS

had significantly lower peak value and higher FWHM than the AIFICA

and AIFM1.

While inflow correction has been widely studied, PVE on AIF measurement
remains a challenging issue. Practically, the temporal resolution is often maximized
for obtaining high quality AIFs and high accuracy and precision of permeability
estimates [37]. While doing so, the imaging resolution may be sacrificed in order to
accelerate the image acquisition, inherently resulting in mixing the arterial signal
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with tissue signals. A recent study emphasizes the importance of PVE correction
for enhanced reproducibility of pharmacokinetic coefficients derived from DCE
MRI [20]. To our knowledge, ours is the first study investigating the feasibility of
correcting inflow effect and PVE simultaneously. To comprehensively verify the
potential of the correction method, we performed realistic simulations, and also
checked the method in an array of AIF measurements in clinical datasets. The
studied method accurately reconstructed the AIF with marginal bias except for
some unrealistic cases. This shows that the correction method has great potential
for use in clinical DCE analysis.

When simulating only inflow effects, the method yielded a small bias (less than
3%) in the peak value and the width of the AIF (Figure 4.2 b, c), irrespective of the
extent of the inflow effect. The remaining bias results from T ∗

2 effects that were
included in simulated signals. Indeed, Figure S4.1 in the supplementary file shows
the outcomes on simulated signals generated without any T ∗

2 effects which do not
exhibit a bias. At the same time the interquartile range of the peak value and the
AIF width increased for more severe inflow effects. This reflects that with strong
inflow (small n) a small error in the number of estimated pulses has a relatively
large effect on the AIF parameters. Intuitively, this makes sense since closer to
steady state (i.e. with small inflow) variation in the number of pulses affects the
signal less, as such resulting in a more stable estimation of the AIF. At the same
time a small number of pulses suppresses the contrast of the signal ratio curves
as can be observed in Figure 4.1b. This could also hinder the estimation of the
number of pulses, and affect the peak height and FWHM estimations.

When including PVE but applying the correct number of pulses (i.e. perfect
correction of only the inflow effects), the peak value and AIF width became
significantly affected by PVE, especially when approaching steady state (see Figure
4.3d,e). This shows the dilemma in clinical use of DCE imaging, in which an AIF is
preferably derived from arteries as close as possible to the tissue of interest, which
would minimize inflow effects, but at the same time concerns arteries affected by
PVE due to their small size. Taking both effects into account, the proposed method
yielded only a small bias both in the peak value and FWHM of the reconstructed
AIF concentration curves (c.f. Figure 4.3b,c). This remaining (mild) bias might
be due to unaccounted differences between partial volume and inflow effects.
Especially the stability of the estimation (i.e. the constantly small width and bias of
the distributions), independent of PVE/degree of inflow gives the technique high
potential for clinical application.

Our experiments about mimicking PVE by averaging the signal over larger
numbers of voxels surrounding a central arterial voxel confirm the robustness of
the proposed approach as larger PVE hardly affected the outcome. Robustness
against such varying partial voluming is useful as it can be difficult to accurately
delineate a region in an artery in clinical DCE data. Simultaneously, however, it
is important to ascertain that surrounding tissue exhibits the same enhancement
timing as the studied artery. In particular, we observed that as the averaging
region in this experiment started to overlap with a region exhibiting a later
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enhancement, the outcome became increasingly biased. The combination of such
distinct enhancement profiles gave a distorted bolus peak profile, which resulted
in erroneous correction. Thus, one should avoid applying our correction to AIF
measurements in neighbourhoods with different vessels as they may show varied
enhancement timing, yielding a wrong outcome.

Measuring the AIF from the ICA is associated with the less PVE compared with
the MCA, but there are stronger inflow effects. Practically, the ICA may not always
be covered by the image volume due to imaging limitations, e.g. restrictions in
scan time. In that case, the MCA could be an alternative, which inherently goes
at the expense of larger PVE. We studied both AIF sources to demonstrate the
capability of our method with different combinations of inflow effect and PVE.
We did not find a significant difference in peak value and FWHM between the
measurements in the ICA and MCA (for both the M1 and M2 segments). Yet, a
small decreasing trend in the AIF peak and an increasing trend in the FWHM from
M1 to M2 segment of the MCA seems visible in our data (Figure 4.5). Essentially,
this corresponds with our simulation results in which mild inflow effects combined
with larger PVE caused increasing (albeit marginal) bias (Figure 4.3). Accordingly,
we propose to practically apply the correction method to an AIF from the most
upstream fragment of the covered vascular system as that should give the most
reliable outcome.

VOF measurement in the SSS has also been considered as a useful alternative
to arterial measurement due to limited inflow and PVE effects [38]. Indeed, by
applying the correction algorithm to the measured signal ratio curve from the SSS,
a large number of excitation pulses was estimated (Figure S4.3). This signified that
the spins were close to steady state. However, significantly lower peak values and
increased FWHMs were found when comparing the VOF from the SSS with the AIF
in the ICA or M1 segment of the MCA. This showed that the shape of the VOF was
not in agreement with the AIF. We attribute this difference to increased dispersion
of the contrast agent, limiting the usefulness of the SSS measurement as input of
a DCE analysis. This corresponds with the results from Cramer et al. [20], which
reported that the VOF measured in the SSS had a lower peak value than AIFs with
PVE corrections; also it was found that the VOF yielded low reproducibility, even
though the VOF is theoretically less prone to inflow artifact and PVE.

There are several limitations to our study. First, we didn’t have a real ground
truth AIF. Clearly, such true AIF can only be measured from blood sampling for
which we did not have ethical approval. Furthermore, the method assumed a fixed
area under first bolus peak to estimate the underestimation of inflow and PVE.
This might in reality vary across subjects and/or vessel of interest. However, it
was previously reported in Parker et al. [11] that the relative standard error in
this parameter is only 5.4%. In addition, we assumed that local extravasation of
contrast agent can be neglected. The extravasation might affect the ROI-signal in
which the AIF is determined when the leakage is substantial or for large degrees of
PVE. As such the ROI for the AIF should not be selected near tumor tissue, but for
example on the contralateral side of the brain. Finally, we did not study the effect
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of the AIF on the estimation of pharmacokinetic model parameters like the K tr ans

in tumor regions, since we did not observe any clear leakage of contrast in the T1

weighted images in any of our patients (comparing the signal in the baseline DCE
images with those after contrast injection).

4.6. CONCLUSION
This study demonstrated the potential of a method to simultaneously correct the
AIF for inflow effect and PVE. The method relies on interpreting larger PVE as
increasing inflow effect. Although the SSS is less susceptible to the referred effects,
it was found not to be an appropriate source for the input function as it showed
increased dispersion of the GBCA. As a result, this would lead to overestimation
of vascular permeability coefficients compared to the AIFs. Instead, applying the
studied approach of deriving AIFs from arteries with proper correction of inflow
and PVE could be a better strategy for DCE analysis.

4.7. APPENDIX
In this appendix, we aim to mathematically show that the PVE has a similar effect
as the inflow effect on DCE-AIF measurement.

Our derivation starts with writing out the expression for the spoiled gradient
echo signal as a function of the excitation pulse number n, by combining Equations
(4.1-4.3):

S(n) = sinα ·M0 ·
(⎛
⎝1− 1−e

−T R
T1

1−cosα ·e
−T R

T1

⎞
⎠ ·

(
cos(α) ·e

−T R
T1

)n

+ 1−e
−T R

T1

1−cosα ·e
−T R

T1

)
·e

−T E
T∗

2 .

(A.1)

Observe that in this expression the term M0 · (1−e
−T R

T1 )/(1−cosα ·e
−T R

T1 ) is equal to
the steady state magnetization given in Equation (4.4). Furthermore, the T1 and
T ∗

2 parameters are modulated by the contrast agent concentration as defined in
Equations (4.5) and (4.6), respectively. Taking these aspects into account, Equation
(A.1) can be rewritten as:

S(C ,n) = sinα·
((

M0 −Mz (C ,∞)
) · (cosα ·e

−T R
T1(C ) )n

+Mz (C ,∞)
)
·e

−T E
T∗

2 (C ) ,
(A.2)

In steady state, i.e. with very large n, this expression simplifies to

S(C ,∞) = sinα ·Mz (C ,∞) ·e
−T E

T∗
2 (C ) . Based on this, by reshuffling the terms the former
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equation yields:

S(C ,n) =M0 · sinα · (cosα ·e
−T R

T1(C ) )n ·e
−T E

T∗
2 (C )

+ (1− (cosα ·e
−T R

T1(C ) )n) ·S(C ,∞).
(A.3)

In the T1-weighted DCE sequence, the echo time is usually small (≈ 1 ms), so

that e
−T E

T∗
2 (C ) ≈ 1. Additionally, (cosα ·e

−T R
T1(C ) )n can be conceived as a weighting factor

w(C,n) that ranges from 0 (for large n) to 1 (for small n). As a result the above
equation can be approximated by

S(C ,n) ≈ w(C ,n) ·M0 · sinα+ (
1−w(C ,n)

) ·S(C ,∞). (A.4)

In this last equation, M0 · sin(α) is a constant term Thus, the AIF signal (S(C ,n))
indeed approximates the steady state AIF with large n, while a constant signal is
increasingly mixed in with decreasing n. This equation is compatible with Equation
(4.14). As such, flow can be considered as a PVE in which a fraction w(C,n) of the
background signal M0 · sin(α) is combined with the foreground AIF.
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4.8. SUPPLEMENTARY MATERIALS
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Figure S4.1: Error percentage of estimated pulse number (a), peak value (b), FWHM
(c) and AUC (d) of compensated AIFs while inflow correction without
simulating T ∗

2 effects.
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Figure S4.2: This figure demonstrates that averaging over surrounding voxels with
delayed enhancement makes the inflow and PVE correction erroneous.
In particular, the central arterial voxel and the corners of the kernels
(as indicated by the points in the image) were studied (a). Mean
signal-intensity curves in corners of large kernels showed apparently
delayed enhancement (red arrow in b). The signal ratio curves in
large kernels were thereby distorted by averaging over these voxels (c),
leading to errors in the reconstructed AIF concentration-time curves
(d).
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Figure S4.3: Boxplot of the estimated pulse number in the AIFs and the VOF
in all subjects. The AIFs showed relatively similar estimates while
there is increasing PVE accompanied by decreasing inflow effect. In
contrast, the estimations for the VOF exhibit large interquartile range.
This is related to the larger estimated pulse number, making that
the magnetization is approximating the steady state. In that case a
deviation in pulse number has little effect on the AIF shape, which
hinders the pulse number estimation.
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ABSTRACT
Gadolinium-based contrast agent (GBCA) leakage in dynamic susceptibility contrast
(DSC) MRI can significantly affect cerebral blood volume (CBV) estimation
in brain tumors. Conventional leakage correction methods, such as the
Boxerman–Schmainda–Weisskoff (BSW) approach, have limitations. In this proof
of concept study, we aimed to develop a novel leakage correction method for DSC
MRI that utilizes vascular parameters derived from dynamic contrast enhanced
(DCE) MRI to estimate and correct for GBCA leakage.
Simulations were performed to evaluate the accuracy and precision of the proposed
method. Subsequently, the method was tested with clinical data from ten patients
with various types of brain tumors. The BSW correction method was applied as a
reference approach.
In the simulations vascular parameters were estimated over a wide range of settings
exhibiting minimal bias. Furthermore, the corrected ΔR∗

2 curves closely aligned
with the ground truth, effectively eliminating leakage contamination. In the clinical
study, the mean estimated K tr ans was (9.31±7.56)×10−4s−1, the vascular volume
fraction vc was 0.05±0.03, and the extracellular extravascular volume fraction ve

was 0.17±0.06. The DCE model fitting achieved a mean adjusted R2 of 0.98±0.01.
From the DSC data, the estimated tissue relaxivity r∗

2,t i ssue was 71.9±49.2mM−1 ·s−1

with a mean adjusted R2 of 0.87±0.08. The method effectively reduced leakage
artifacts while preserving residual contrast levels post-bolus, unlike the BSW
method, which enforced the tail of the ΔR∗

2 curves to baseline.
In conclusion, the proposed method effectively mitigates leakage artifacts while
preserving important vascular information. These findings suggest that combined
DCE and DSC imaging analyses could improve CBV estimation in brain tumors.
Further studies with larger cohorts are warranted to validate these results and
support clinical adoption.
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5.1. INTRODUCTION
Dynamic susceptibility contrast (DSC) MRI is a perfusion imaging technique
that utilizes gadolinium-based contrast agents (GBCAs) to assess properties of
the cerebral perfusion through dynamic T ∗

2 -weighted imaging. Specifically, the
paramagnetic GBCA induces a signal drop as the contrast bolus passes through
a region of interest. By monitoring the signal changes and converting them
into concentration-time curves, quantitative perfusion parameters such as cerebral
blood volume (CBV), cerebral blood flow (CBF), and mean transit time (MTT) can
be estimated. Among these, CBV is particularly valuable in brain tumor diagnostics,
offering insight into tumor hemodynamics, grading, treatment response, prognosis,
and differentiation between tumor recurrence and radiation necrosis [1]. A crucial
assumption in the calculation of the CBV is that the contrast agent remains
confined within the cerebral vasculature, so that there is no extravasation into the
extracellular extravascular space (EES). However, in brain tumors the blood-brain
barrier (BBB) may be compromised, leading to contrast leakage during imaging.
This leakage induces T1 enhancement, that will counteract the T ∗

2 effects. A
common approach to mitigate this issue is to inject a preload bolus of the contrast
agent before the DSC acquisition [2]. The extravasation of the preload contrast
agent shortens the T1-time of the EES to such an extent that further extravasation
of contrast agent during the main DSC bolus induces but limited additional
signal increase. However, remaining leakage can still affect the measurements
via T ∗

2 changes as well as residual T1 effects [3], necessitating the application of
post-processing methods to avoid a bias in the parameter estimation [4–7]. Still,
a preload bolus combined with post-processing corrections is an often applied
strategy in clinical implementations due to their relative simplicity.

Among the post-processing algorithms addressing GBCA leakage, the
unidirectional Boxerman–Schmainda–Weisskoff (BSW) method [4] has been initially
widely used, e.g. via commercially available software [8]. The BSW method aims
to reconstruct a true ΔR∗

2 curve, which refers to the curve that would have been
measured without the T1 or T ∗

2 effects on the signal due to extravasation of
contrast agent. Implicitly, it is assumed that this true curve is linearly proportional
to the average ΔR∗

2 curve measured in areas without extravasation, i.e. in healthy
tissue. This assumption allows for compensating the measured ΔR∗

2 curve for
remaining leakage. Specifically, the correction term is a linear function of the time
integral of the averaged ΔR∗

2 curve. More recently, the BSW model was extended to
include bidirectional contrast agent exchange, accounting for the reflux of GBCA
from the EES back to the plasma [7]. Studies have shown that CBV measurements
from DSC imaging after a preload and using the BSW method correlate well with
histological data in high-grade glioma patients [9, 10]. Despite these results,
limitations remain regarding the accuracy of the correction method. For instance,
the assumption regarding the linearity to the average ΔR∗

2 curve is not valid when
the MTTs are different between normal and malignant tissues [5, 6, 11, 12], and
if the T1 enhancement exceeds about 30% [11, 13]. Therefore, a more accurate
estimation of tissue concentration without assumptions could further improve
leakage correction.
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Dynamic contrast enhanced (DCE) MRI is another technique that uses GBCA’s
to derive properties of the vascularization from T1-weighted imaging. The resulting
T1-weighted images can be used to classify tissue types, e.g. through qualitative
analysis of the signal intensity-time curves [14]. Furthermore, these data are often
analyzed using pharmacokinetic models, among which the extended Tofts model
(ETM) is the most widely applied approach [15, 16]. The ETM asserts that there
are two compartments in which the GBCA can reside: the blood plasma and
the EES. Importantly, it enables gauging of the quantitative vascular permeability
parameters, such as the volume transfer constant K tr ans .

In this paper, we aim to study the potential of leakage correction based on
DCE and DSC imaging performed sequentially, back-to-back, and including two
separate GBCA injections. In practice, this would imply that the preload injection
is used for the DCE-measurements. We aimed to combine the DCE and DSC data
analyses, using vascular parameters and tissue concentrations derived from DCE
imaging to predict and correct leakage effects in DSC imaging. We hypothesized
that this approach would diminish the impact of GBCA leaked into tissue on the
ΔR∗

2 curve, leading to more accurate CBV estimation. It would also use the strong
points of both techniques: leakage estimation by DCE and CBV mainly determined
by DSC. The BSW method was applied for comparison, as a reference correction
approach.

5.2. THEORY

5.2.1. GRADIENT ECHO SIGNAL

The spoiled gradient echo sequence is a commonly used MRI technique in GBCA
perfusion imaging. The steady state signal (S) in a homogeneous sample generated
by this sequence is described by the following equation:

S = M0 · sinα · 1−e
−T R

T1

1−cosα ·e
−T R

T1

·e
−T E
T∗

2 , (5.1)

in which M0 represents the net magnetization, α is the flip angle, T R is the
repetition time, T E is the echo time, and T1 and T ∗

2 denote the longitudinal and
transverse relaxation times, respectively. Upon administration of the GBCA, the two
relaxation times are altered, leading to a change in signal intensity as a function of
the local GBCA concentration C :

1

T1
= 1

T10
+ r1 ·C , (5.2)

and
1

T ∗
2

= 1

T ∗
20

+ r∗
2 ·C , (5.3)

in which T10 and T ∗
20 represent the initial longitudinal and transverse relaxation

time, respectively, and r1 and r∗
2 denote the longitudinal and transverse relaxivity
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of the GBCA, respectively.

5.2.2. FOUNDATIONS OF DSC MRI
In DSC imaging, it is usually assumed that contrast agent leakage is negligible and
that T ∗

2 effects induced by the GBCA in the capillaries dominates the signal in a
voxel, while T1 effects can be ignored. Under these circumstances, Equation 5.1
can be simplified as:

SDSC (t ) = M0 · sinα ·e
−T E( 1

T∗
20

+r∗2 ·Cv (t )
, (5.4)

in which Cv (t ) is the time-dependent GBCA concentration in the voxel. The GBCA
is confined to the capillaries in the absence of leakage, so that Cv (t ) =C BV ∗Cc (t ),
in which Cc is the GBCA concentration in the capillaries. From the equation it can
be deduced that the change in transverse relaxation rate is linearly related to the
concentration of the contrast agent, i.e. ΔR∗

2 (t ) = r∗
2 ·Cv (t ):

ΔR∗
2 (t ) =− 1

T E
· l n(

SDSC (t )

SDSC (0)
), (5.5)

in which SDSC (0) is the baseline signal before GBCA administration, corresponding
to Equation 5.4 with Cv (0) = 0.

In brain tumors, however, the GBCA can leak into the EES due to a
compromised BBB. Asserting a small volume of the capillaries, the T1-time in tissue
is especially affected by the extravasated GBCA concentration. As a consequence,
the DSC signal in a voxel in the presence of leakage is conventionally modeled as:

ŜDSC (t ) = M0 · sinα · 1−e
−T R·( 1

T10
+r1·CE (t ))

1−cosα ·e
−T R·( 1

T10
+r1·CE (t ))

·e
−T E
T∗

20 ·e−T E ·r∗2 ·(Cvc (t )+CE (t )), (5.6)

in which Cvc (t ) represents the contribution to the total voxel’s GBCA concentration
emanating from the capillaries (as above Cvc (t ) =C BV ∗Cc (t )); furthermore, CE (t ) is
the contribution to the voxel GBCA concentration resulting from the extravascular
space (analogously CE (t ) = (1−C BV )∗CEES (t )). Based on this equation and using
the baseline signal in which both concentrations are 0, an estimate of the change
in transverse relaxation rate when leakage is present (ΔR̂∗

2 (t )) can be defined as:

ΔR̂∗
2 (t )=− 1

T E
· ln(

Ŝ(t )

S0
) =ΔR∗

2 (t )

− 1

T E
· ln[

1−e
− T R

T10 ·e−T R·r1·CE (t )

1−cosα ·e
− T R

T10 ·e−T R·r1·CE (t )
· 1−cosα ·e

− T R
T10

1−e
− T R

T10

]+ r∗
2 ·CE (t ).

(5.7)

One can observe that the leaked concentration CE (t ) modulates the T1-time in the
second term in this equation that is subtracted from ΔR∗

2 (t ). Simultaneously, it
affects ΔR∗

2 (t ) in the third term that is proportional to r∗
2 . As such, estimates of

https://i.e.xn--r-4lb/
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CE (t ) and r∗
2 could enable the computation of these leakage terms, according to

which the contaminated transverse relaxation rate could be corrected to yield the
underlying true ΔR∗

2 (t ).

5.2.3. LEAKAGE ESTIMATION

DCE MRI is well known to facilitate measurement of the K tr ans parameter, which
reflects capillary permeability. We exploit DCE imaging performed during DSC
preloading to determine the leaked concentration CE (t ).

Importantly, the signal from DCE imaging also adheres to Equation 5.1.
However, since the applied echo time is typically small, the T ∗

2 effect is usually
ignored, so that the DCE signal in a homogeneous sample can be described as:

SDC E (t ,C (t )) = M0 · sinα · 1−e
−T R·( 1

T10
+r1·C (t ))

1−cosα ·e
−T R·( 1

T10
+r1·C (t ))

, (5.8)

in which C (t ) is, as above, the local GBCA concentration.

We assert that the DCE signal in the presence of leakage, is a weighted average
of the DCE signal from the capillaries Sc and the extravascular space SE :

SDC E ,r eg i on(t ) = vc ·SDC E ,c (t ,Cc (t ))+ (1− vc ) ·SDC E ,E (t ,CE (t )), (5.9)

in which vc represents the volume fraction of the blood vessels, relative to the total
space of the region.

A close approximation of the GBCA concentration in the capillaries is given by
the arterial input function (AIF): Cc (t ) ≈Ca(t ). The AIF generally represents the
GBCA concentration inside the vasculature that is flowing into the tissue, which
can be measured in a nearby artery. Furthermore, the extravascular concentration
can be derived from the ETM [15]:

CE (K tr ans , ve , t ) = K tr ans · Ca(t )

1−Hct
�e−

K tr ans
ve

·t , (5.10)

in which K tr ans represents the GBCA exchange rate from the plasma to the EES,
and ve is the fractional volume of the EES.

By normalizing the regional signal intensity-time curve (SDC E ,r eg i on(t )) with
the baseline signal, e.g. at t=0, a detailed DCE ratio signal model D(K tr ans , vc , ve , t )
results:

DDC E (K tr ans , vc , ve , t ) = SDC E ,r eg i on(t )

SDC E ,r eg i on(0)

= vc ·SDC E ,c (t ,Ca(t ))+ (1− vc ) ·SE (t ,CDC E ,E (K tr ans , ve , t ))

vc ·SDC E ,c (0,0)+ (1− vc ) ·SDC E ,E (0,0)

(5.11)

K tr ans , vc , and ve can be estimated by fitting this model to a measured DCE signal
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ratio curve from a region of interest. Subsequently, CE is obtained via Equation
5.10 which can then be used for leakage correction through Equation 5.7.

5.2.4. ESTIMATION OF r ∗
2

It is usually asserted that the longitudinal relaxivity (r1) is relatively constant across
different tissue types [17]. Instead, the transverse relaxivity r∗

2 is presumed higher
in tissue than in arteries, while there is no established consensus on its exact
value [18–20]. To determine the particular r∗

2 in a region, a model comparable
to Equation 5.11 is applied to fit the measured signal ratio curves in the DSC
data. Distinguishing separate signal contributions for the capillaries and the
extravascular space and normalizing it with the baseline signal yields the next
signal ratio expression for the DSC signal:

DDSC (T1,t i ssue ,r∗
2,t i ssue , t ) =

(
vc · 1−e

−T R·( 1
T10,c

+r1·Cc (t ))

1−cosα ·e
−T R·( 1

T10,c
+r1·Cc (t ))

·e
−T E ·( 1

T∗
20,c

+r∗2 ·Cc (t ))

+ (1− vc ) · 1−e
−T R·( 1

T10,E
+r1·CE (t ))

1−cosα ·e
−T R·( 1

T10,E
+r1·CE (t ))

·e
−T E ·( 1

T∗
20,E

+r∗2 ·(CE (t )+vc ·Cc (t ))
)

/(vc ·SDSC ,c (0,0)+ (1− vc ) ·SDSC ,E (0,0)).

(5.12)

In this equation we set Cc (t ) =Ca(t )+L (as above), in which L is the concentration
of the AIF in the last image acquired during the prebolus injection. Note that t = 0
now refers to the baseline (first images) of the DSC scan. Furthermore, injection
time and protocol are assumed to be the same as for the DCE-scan. Also, observe
that vc ,CE (t ) were determined in the previous step via Equations 5.10 and 5.11.
Here we assume that the concentration of the GBCA in the capillaries and in tissue
is in equilibrium at the start of the DSC injection. Finally, T10,c , T ∗

20,c and T ∗
20,E are

assumed to be known constants (see below for their settings). As such r∗
2 and T10,E

(due to the prebolus injection) are unknown parameters. These are determined by
fitting the equation to the measured DSC ratio curve after which the two estimated
parameters can be applied in the correction equation (Equation 5.7).

5.3. MATERIALS AND METHODS

5.3.1. SIMULATIONS

Several simulations were performed to assess the accuracy and precision of the
parameter estimation and the leakage correction under controlled circumstances.
All simulations were performed using custom Matlab scripts (version R2020b;
MathWorks, Natick, MA, USA).
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GENERATING THE SIGNALS

We simulated a clinical scenario with two consecutive GBCA injections, each with
a standard dosage of 0.1 mmol/kg. The (DCE) signal from preload injection was
simulated for a duration of 200 seconds, after which the (DSC) signal from the
second contrast bolus was simulated for an additional 200 seconds. Both injections
were modeled using Orton’s AIF model with population-averaged parameters [21],
applying a bolus arrival time set at 20 seconds. To simulate physiological
conditions, however, the second AIF was superimposed onto the first one, taking
residual contrast agent from the preloading into account. As such a composited
input function was constructed. The extravasation of GBCA into the EES was
subsequently modeled based on the ETM through Equation 5.10.

Tumour DDC E curves were simulated by combining contributions from both
the capillaries and the extravascular compartment via Equation 5.11. The signal
components of this equation were generated by converting the GBCA concentrations
into MRI signal intensity using Equations 5.1 through 5.3. Furthermore, DDSC

curves were simulated via Equation 5.12. The input concentrations for simulating
the DSC signal corresponded to the composited input function for the capillary
compartment.

All simulations applied the following physiological parameters: Hct = 0.45, T10

= 1.8 s for blood [22], T ∗
20 = 0.02 s for blood and tissue [23], r1 = 4.5 (mM · s)−1 for

gadobutrol [24], and a r∗
2 = 6 (mM · s)−1 for gadobutrol in blood [25, 26]. Other

parameters were varied as indicated in next section.

The DCE signal during the first bolus passage was simulated using parameters
that were compatible with our clinical protocol: T R = 2.7 ms, T E = 0.9 ms, and
F A = 25◦. Subsequently, the DSC signals during the second bolus signal were
generated with T R = 2 s, T E = 45 ms, and F A = 90◦. Both signals were sampled
at 2-second intervals, producing 100 samples per sequence. Gaussian white noise
was added to the signal intensity curves to achieve a signal-to-noise ratio (SNR)
of 40 decibels. The resulting signal intensity curves were normalized using the
average baseline signal (first 5 samples) to produce signal ratio curves. The DSC
signal ratio curve was also converted into a ΔR∗

2 curve using Equation 5.5.

ASSESSMENT OF THE ESTIMATION PERFORMANCE

We first investigated the feasibility of the proposed leakage correction method. The
signal ratio curves were generated as explained in Section 5.3.1 while applying
K tr ans = 0.001, vc = 0.03, ve = 0.3, T1,t i ssue = 1.2, and r∗

2,t i ssue = 30. The DCE
signal ratio model, as described in Equation 5.11, was fit to the simulated DCE
signal ratio curves to estimate parameters K tr ans , vc , and ve , which then served to
compute CE (t ). Subsequently, the outcomes were applied in the DSC signal ratio
model (Equation 5.12), which was fit to the DSC signal ratio curves to estimate
T1,t i ssue and r∗

2,t i ssue . The parameter estimates were constrained to be positive
and were obtained using a nonlinear least squares regression approach. Thereafter
the estimated parameters were used to derive the correction terms in Equation
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5.7 to compute the "uncontaminated" ΔR∗
2 curve. To assess the accuracy of the

correction, a simulated ΔR∗
2 curve with K tr ans = 0 was used as the ground truth

and compared with the corrected ΔR∗
2 curve.

Additionally, a range of parameter values was applied to evaluate the robustness
of the model fitting.: 0 < K tr ans (1/s) < 0.01 (stepsize: 0.0005), 0 < vc < 0.1
(stepsize: 0.005), 0 < ve < 1 (stepsize: 0.05), tissue T1 (s) ranging from 1 s to 2 s
with a step size of 0.02, and tissue r∗

2 ((mM · s)−1) ranging from 5 to 100 using a
stepsize of 5. The estimation of the first three parameters was evaluated by fitting
to the simulated DCE signal ratio curves, while the estimation of last two was
evaluated by fitting to the simulated DSC signal ratio curves. Each parameter was
varied while fixating the values for the other parameters in the signal simulation to
the values defined in the first paragraph of this section. For each such test, 1000
simulations with different noise realizations were performed. Box plots were used
to visualize the performance of the estimation.

5.3.2. APPLICATION WITH CLINICAL DATA

PATIENT COHORT

Patient recruitment for this study was approved by the Medical Ethics Committee
at Erasmus MC in the Netherlands (NCT05798273). Patients with radiologically
presumed and/or histologically confirmed grade 2–4 glioma showing enhancement
on post-contrast MRI, or brain metastasis, and with complete relevant imaging
data available were included. As such, ten patients were enrolled, in which
the following brain tumors were histologically confirmed: glioblastoma (n = 4),
oligodendroglioma (n = 1), and brain metastasis from lung cancer (n = 4) and
breast cancer (n = 1). Written informed consent was obtained from all patients.

IMAGING PROTOCOL

Image acquisition was performed on a 3T whole-body hybrid PET-MRI system
(Signa PET-MR, GE Healthcare, Chicago, IL, USA) with a 24-channel head coil at
Erasmus MC in the Netherlands.

Prior to contrast-enhanced imaging, the Magnetic Resonance Image Com-
pilation (MAGiC) sequence was applied with field of view (FOV): 240 × 240
mm2, acquisition matrix size: 320 × 256, reconstructed matrix size: 512 × 512,
reconstructed resolution: 0.47 × 0.47 mm2, and slice thickness: 4 mm, acquiring a
total of 40 slices. Phase-sensitive inversion recovery (PSIR) images were generated
from the MAGiC sequence with 12 inversion times (TIs) ranging from 25 to 3000
ms. In addition, T2-weighted images were acquired via the Periodically Rotated
Overlapping ParallEL Lines with Enhanced Reconstruction (PROPELLER) sequence
in axial view with TR/TE: 9182/149 ms, voxel size: 0.5 × 0.5 × 3 mm3, FOV: 400 x
400 mm2, obtaining 59 slices. Furthermore, a fluid attenuated inversion recovery
(FLAIR) imaging was performed with TR/TE: 7602/136 ms, voxel sizes: 0.5 × 0.5 ×
1.6 mm3, FOV: 224 x 224 mm2, acquiring 208 slices.
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In each patient, 7.5 mL of gadobutrol (Gadovist®, Bayer, Ger-
many)—corresponding to a standard dose for a 75 kg patient—followed by
a 15 mL saline flush, was automatically injected via the antecubital vein at 5 mL/s
using a power injector during DCE imaging. Immediately after the DCE acquisition,
a second bolus of contrast agent with the same dose was injected in the same way
during DSC imaging. The contrast agent injections were initiated 20 seconds after
the commencement of the DCE and DSC acquisitions, respectively.

DCE images were acquired using the differential subsampling with Cartesian
ordering sequence [27] with TR/TE: 2.7/0.9 ms, flip angle (FA): 25◦, FOV: 240 × 240
× 144 mm3, acquisition matrix size: 160 × 128, reconstructed matrix size: 256 × 256
resulting a reconstructed resolution of 0.9 × 0.9 mm2, slice thickness: 3 mm, 48
slices, and temporal resolution of 2 s, acquiring a total of 100 image volumes. DSC
images were obtained through a T ∗

2 -weighted gradient-echo echo-planar imaging
sequence with TR/TE: 2000/45 ms, FA: 90◦, FOV: 256 × 256 × 100 mm3, matrix size:
128 × 128, 20 slices, in-plane resolution: 2 × 2 mm2, slice thickness: 5 mm, and
temporal resolution: 2 s, acquiring a total of 50 dynamics.

Finally, 3D fat-suppressed fast spoiled gradient echo (FSPGR) T1 images were
obtained immediately both before and after the dynamic contrast enhanced series
using TR/TE: 7.7/3.1 ms, voxel size: 0.9 × 0.9 × 1.6 mm3, FOV: 256 × 256 mm2, to
acquire two sets of 228 slices.

PRE-PROCESSING

Preprocesing comprised the registration of all the imaging data, segmenting the
the tumor from the data and computing a T1 map.

Initially, the pre-contrast T1-weighted image and the T2-weighted and FLAIR
scans were rigidly, in a groupwise fashion registered to the post-contrast
T1-weighted images. This registration was followed by an affine registration to the
ICBM 152 2009a nonlinear symmetric atlas using Elastix (version 5.0.1) [28–30].
Automatic segmentation was then performed using multiple algorithms: HD-GLIO
[31, 32], nnU-Net tasks 1 and 82, and an extended version of nnU-Net [32,
33]. The segmentation outputs from these algorithms were combined using the
multi-label Simultaneous Truth and Performance Level Estimation algorithm [34].
The segmented contrast-enhancing tumor regions were then visually inspected
and manually corrected if necessary using ITK-SNAP version 3.6.0 (University of
Pennsylvania and Utah, USA) [35] to yield a final tumor mask. During this process,
areas corresponding to blood vessels, necrosis, and post-operative resection cavities
were excluded from the segmentation.

A two-parameter exponential recovery function was fitted to the MAGiC PSIR
volumes to derive a whole-brain initial T1 map [36].

The post-contrast T1 image was coregistered to both the first DCE and DSC
volumes, and the resulting transformations were also used to transfer the tumor
mask onto the DCE and DSC images, respectively. Thereafter, the 3D T1 map
derived from the MAGiC sequence was also registered to the first DCE volume
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to facilitate the subsequent analysis. These registrations were performed using
a 3D affine transformation optimizing the normalized mutual information, as
implemented in Statistical Parametric Mapping (SPM) version 12 [37].

The DCE and DSC series were corrected for potential motion during scanning
by rigidly registering the entire series to the first volume of the DCE and the
DSC series, respectively. This was achieved using a least squares approach and a
six-parameter rigid body spatial transformation, as implemented in SPM12 [38].

APPLICATION

Average signal intensity-time curves from the DCE and DSC series were computed
over the tumor mask. Both curves were normalized by dividing each time point
with the baseline signal to generate signal ratio curves for DCE and DSC imaging.

DCE IMAGE PROCESSING

A small group of voxels in an artery were manually selected in the hemisphere
containing the tumor to determine the AIF. These voxels were selected as closely as
possible to the tumor in the last acquired volume of the DCE series. Subsequently,
the mean of the signal values over this group was computed for each time point,
which was then divided by the baseline signal to yield the AIF’s signal ratio curve.
Here, the baseline signal was determined by averaging the time points before the
bolus arrived. The bolus arrival time was visually identified. Finally, inflow and
partial voluming were corrected as described in [39, 40] to generate the AIF. Next,
the DCE signal ratio model (Equation 5.11) was fit to the DCE signal ratio curve
from the tumor using the estimated AIF. To this end, T10 in the capillaries was
assumed to be 1.8 s, while T10 in tissue was set to the average value over the
tumor mask in the PSIR T1 map. As such, the vascular coefficients K tr ans , vc , and
ve for each patient were obtained. Finally, the leaked GBCA concentration was
derived using Equation 5.10.

DSC IMAGE PROCESSING

The DCE-derived AIF as described in the previous paragraph was also used in
the DSC analysis. This was done since we have found that the DCE-AIF is
more reliable than a DSC-based AIF [41]. The AIF and estimated leaked GBCA
concentration were manually shifted to align with the measured DSC signal ratio
curve, specifically to match the bolus arrival time. The DSC signal ratio model
(Equation 5.12) was then fitted to the measured DSC signal ratio curve to estimate
T10,E and the tissue r∗

2 .

LEAKAGE CORRECTION

The measured signal ratio curve over the tumor mask from the DSC imaging was
used as the argument of the natural logarithm, on the left handside of Equation
5.7. Subsequently, the estimated leaked concentration CE (t ) and T10,E were applied
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to compute the second term on the right hand side of this equation and CE (t )
combined with the tissue’s r∗

2 were used to compute the third term of the equation.
Finally, bringing these terms to left hand side yielded the uncontaminated ΔR∗

2
curve from the equation.

EVALUATION

The mean and standard deviation of each estimated parameters in the DCE and
DSC analyses were assessed. The goodness-of-fit of the models was evaluated
using the root mean square error (RMSE) and the adjusted R-square value of both
the DCE and DSC parameters.

The RMSE was calculated through:

RMSE =
√

1

n −k

n∑
i=1

(yi − ŷi )2 =
√

SSE

n −k
, (5.13)

in which yi is the observed value, ŷi is the model-predicted value, n is the number
of observations, and k is the number of independent variables in the model. Thus,
an RMSE value close to 0 indicates a better fit between the model and the data,
signifying smaller discrepancies between observed and predicted values.

To account for the number of fitted parameters, c.q. adjust for the number of
terms, the adjusted R-square (R2

adj) was computed:

R2
adj = 1−

(
SSE/(n −k)

SST/(n −1)

)
, (5.14)

with SSE =∑n
i=1(yi − ŷi )2 is the sum of squared residuals, SST =∑

i = 1n(yi − ȳ)2 is
the total sum of squares, and ȳ is the mean of the observed data. An R2

adj value

closer to one indicates a better fit while accounting for the complexity of the
model. Specifically, a R2

adj value greater than 0.85 was considered indicative of a

very good fit; values between 0.75 and 0.85 were taken to indicate a good fit; and
values below 0.75 were assumed to correspond to a moderate to poor fit.

To further assess the efficacy of our leakage correction approach, the BSW
method was applied to each patient for comparison. Graphs were created of the
uncorrected ΔR̂∗

2 curve, the curve corrected using the proposed method and the
curve resulting from the BSW method. These graphs were visually compared.

5.4. RESULTS

5.4.1. SIMULATION RESULTS

The feasibility of the proposed leakage correction method is illustrated in Figure 5.1.
Specifically, Figure 5.1a) shows the simulated DCE signal ratio curve corresponding
to injection of a first bolus and the fitted model c.f. Equation 5.11. Likewise,
Figure 5.1b shows the simulated DSC ratio curve related to injection of the
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second bolusand the fitted model as represented in Equation 5.12. The estimated
parameters of these fits and their simulated reference values are presented in the
inset. The indicated reference T1 value takes the T1 shortening induced by the
preload into account, yielding a markedly lower value than prior to both contrast
injections (i.e. 0.5 s versus 1.2 s). Finally, Figure 5.1c) shows the uncorrected
ΔR̂∗

2 curve, computed from the simulated DSC signal ratio curve through Equation
5.5, the corrected curve, based on the estimated parameters, and the reference
curve, assuming no leakage. It can be observed that our models fit well with the
simulated signal ratio curves, leading to a corrected ΔR∗

2 curve that closely follows
the reference curve.
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Figure 5.1: (a),(b) Simulated DCE and DSC signal ratio curves and corresponding
model fits; (c) uncorrected, corrected and reference ΔR∗

2 curves. The
inset shows the associated estimated and reference parameter values.

Figure 5.2 shows boxplots reflecting the variability in parameter estimation
from noisy simulated DCE ratio curves, as a function of varying input parameter
values. Notice that per plot one parameter is varied while the other (two)
parameters were kept constant as indicated in the headings. The deviation of the
boxes from the dashed lines reflects a small bias in the estimation. Furthermore,
increasingly larger variation in estimated ve is noticeable as the simulated ve value
increased, reflecting increasingly larger EES.
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Figure 5.2: Boxplots representing estimated parameter distributions and reference
values, while varying (a) K tr ans , (b) vc , and (c) ve . Parameters kept
constant are indicated above each graph. Whiskers reflect 1.5 times the
interquartile range. The dashed lines reflect the reference values.

Similarly, boxplots representing the variability in parameter estimation from
noisy simulated DSC ratio curves are shown in Figure 5.3. While the r∗

2 plots
signify high accuracy and precision of the parameter estimations, a slight bias
can be observed in the predicted T1 values. The whiskers reflect a variation in
T1 parameter estimates of approximately 10%. Notice that the reference tissue
T1 value represents the simulated T1 value modulated by the last observed GBCA
concentration from the preload, as described by Equation 5.2.
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Figure 5.3: Boxplots showing estimated versus simulated DSC parameter values
while varying (a) tissue r∗

2 and (b) tissue T1, just as in Figure 5.2. Again,
the dashed lines reflect the reference values.
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5.4.2. CLINICAL APPLICATION RESULTS

Table 5.1 collates the mean and standard deviation of the estimated parameters
and the goodness-of-fit measures for both the DCE and the DSC fits across all
patients. The RMSE values are small and close to zero, reflecting small discrepancy
between the applied models and the measured signal ratio curves. Furthermore,
the R2

adj values reflect that the signal ratio models provided good fits given the

number of parameters. The DSC analysis gave slightly lower average R2
adj value, as

three patients yielded moderate to good R2
adj values.

DCE Analysis DSC Analysis

K tr ans (×10−4) 9.31±7.56 –

vc 0.05±0.03 –

ve 0.17±0.06 –

T1,t i ssue – 1.64±1.07

r∗
2,t i ssue – 71.9±49.2

RMSE 0.05±0.02 0.04±0.03

R2
adj 0.98±0.01 0.87±0.08

Table 5.1: Mean and standard deviation of estimated parameters and goodness-of-
fit measures. Data are reported as mean ± standard deviation.

Figure 5.4 shows original data, model fits and leakage correction outcomes for
a representative patient. Panels (a) and (b) display the measured DCE and DSC
signal ratio curves as well as the associated model fits, respectively. All other DCE
and DSC data and fitting results are presented in Supplementary Figures S5.1 and
S5.2. The T1 and T ∗

2 leakage terms c.f. in Equation 5.7, calculated using the
estimated coefficients, as well as the uncorrected (contaminated) ΔR̂∗

2 (t ) term are
plotted in Figure 5.4c. Finally, Figure 5.4d shows the uncorrected ΔR̂∗

2 (t ) curve and
the corrected curve resulting from our method and the one from the BSW method.

The leakage correction results for all other 9 patients are presented in Figure
5.5. Effectively, our method markedly suppresses the leakage effect, i.e. the tail of
the ΔR̂∗

2 (t ) curve. In contrast, it can be observed that the BSW method consistently
reduces the tail of the curve to baseline level. This was observed also in a case with
balanced T1 and T ∗

2 corrections (Figure 5.5e) and in two cases with dominating T1

correction (Figures 5.5d and i).

5.5. DISCUSSION
In this paper, we introduced a novel correction method for DSC MRI that leveraged
DCE MRI for estimating and reducing leakage effects. Corrected ΔR∗

2 curves
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Figure 5.4: Example curves from a representative patient. (a) DCE and (b) DSC
signal ratio curves with model fits; (c) T1 and T ∗

2 leakage terms
from Equation 5.7 as well as the contaminated (uncorrected) ΔR̂∗

2 (t )
curve; (d) uncorrected ΔR̂∗

2 (t ) curve and curves corrected through the
proposed approach and the BSW method.

accurately followed the ground truth in simulations, while realistic corrections
resulted with practical data.

By combining DCE and DSC imaging analyses performed sequentially, our
approach capitalizes on the strengths of both techniques: DCE MRI provides
accurate estimation of vascular permeability and leaked contrast concentration,
while DSC MRI offers high sensitivity to cerebral blood volume. This integration
allows for precise correction of leakage artifacts in DSC data, overcoming limitations
of conventional methods approach. Specifically, our method does not rely on the
assumption to the leakage component and incorporates gauging of the T1 and r∗

2
constants prior to the (second) bolus injection. This can enhance the reliability of
CBV measurements in brain tumors and may lead to better tumor characterization,
treatment planning, and monitoring of therapeutic response.

The simulation experiments showed that our approach theoretically facilitates
accurate estimation of underlying parameters and appropriate modeling of signal
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a. b.

d. f.

c.

h.g.

e.

i.

Figure 5.5: Leakage correction outcomes for each patient (a)-(i). Each graph

shows the uncorrected ΔR̂∗
2 (t ) curve and curves corrected through the

proposed approach and the BSW method as in Figure 5.4d.

ratio curves both for DCE and DSC imaging (Figure 5.1). In particular, the
simulations demonstrated that wide ranges of vascular parameters underlying the
DCE and DSC data were determined with only marginal bias and high precision
(Figure 5.2 and 5.3), except for the T1,t i ssue parameter. The graph for the
latter parameter reflected systematic underestimation and rather large variation
compared with the other parameters. We attribute this to small errors in the
estimated leaked GBCA concentrations between the first and second (simulated)
injections. This was checked by simulating the DSC imaging without the prebolus
injection, see Figure S5.3. In that case, no bias is observable while whiskers are
markedly smaller. In all cases, the final effect of these errors is small (see e.g.
Figure 5.1c). We attribute this to the preload injection, of which the extravasation
beforehand shortens the tissue’s T1-time. Subsequently, the second injection has a
smaller effect on the T1 value, leading to dominating T ∗

2 effect on the signal. This
is also corroborated by Figure 5.4c.

Upon fitting our DCE signal ratio model to the measured signal ratio curves,
the estimated parameters consistently fell within realistic physiological ranges [42],
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see Supplementary Figure S5.1. Additionally, the RMSE values were low, and
the R2

adj values indicated excellent fits. Regarding the DSC fitting, although the

goodness-of-fit metrics indeed pointed at reliable fitting outcomes, the measured
DSC signal ratio curves exhibited slightly wider dips than the fitted models. This
discrepancy might arise from small errors propagating from the estimated DCE
parameters or from the proposed model not perfectly representing the DSC signal.
In spite of this misalignment, it should be noticed that the estimated tissue r∗

2 is
primarily determined by the depth of the dip in the signal ratio curve, while the
estimated tissue T1 parameter is more influenced by the tail level of the curve.
Since these aspects were fitted accurately, we believe that the estimated parameters
are sufficiently reliable for the eventual leakage correction.

An particular strength of our method is in the included estimate of the tissue’s
transverse relaxivity, r∗

2 , directly from the DSC data. This is important because r∗
2

is dependent on the microvascular architecture and geometry of the tissue, which
can vary considerably between healthy tissue and tumors due to differences in
vessel density, size, and permeability. By estimating r∗

2 , our method inherently
accounts for these variations in vascular structure, which can lead to more accurate
leakage correction and CBV estimation. In our study, the estimated r∗

2 values were
mostly within the reported range of 32 to 85 mM−1 · s−1 [43, 44], which aligns with
known physiological values. Notably, in one case we observed exceptionally large
estimated r∗

2 value (Figure S5.2d). This patient also exhibited a higher estimated
tissue T1 value compared to other cases. The simultaneously large r∗

2 and T1

values eventually led to a corrected curve that is slightly higher than the original,
non-corrected r∗

2 curve (Figure 5.5d). In general this can be the case when the
T1 term exceeds the T ∗

2 term in Equation 5.7 (also observable in Figure 5.5i).
Apparently, the large parameter values associated with S5.2d) compensated each
other to some extent and did not lead to a very large deviation in the corrected
curve.

One may observe that the corrected ΔR∗
2 curves from our method generally

did not go back to the 0-level in the tails. Instead, the corrected ΔR∗
2 curves

resulting from the BSW method did tend to return to this baseline level (Figures
5.4d and 5.5). This difference arises because the BSW approach assumes that the
uncontaminated ΔR∗

2 curve in leaked tissue is proportional to the average ΔR∗
2

curve in normal-appearing tissue. Specifically, these voxels are usually identified as
not exhibiting signal enhancement exceeding the baseline in the final time points
after the first bolus [4]. As a result, the BSW correction may misinterpret regions
that merely contain residual GBCA concentration in the vasculature as ones that
harbor leaky vessels. This could be particularly problematic in richly vascularized
areas, and might lead to an underestimation of the CBV. Instead, in our approach
the leaked tissue concentration is computed from the DCE datasets and only this
component is subtracted from the measured ΔR∗

2 curve. In effect, any GBCA
concentration that remains circulating in the vascular system is preserved in the
tails of the ΔR∗

2 curve by our method. What is more, the Boxerman approach
assumes that the leakage-induced T1 enhancement is less than 30% (see Equations
A5 and A6 in [4]). However, this assumption may not hold true in tissues with
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severe leakage as observed in our cases (e.g. Figure 5.5).

Leu et al. enhanced the BSW model by incorporating bidirectional contrast
agent exchange, that accounts for the reflux of GBCA from the EES back to
the plasma [7, 45]. Their approach resembles the model used in our DCE
analysis, in which we defined the leaked GBCA concentration based on the ETM
two-compartment, mutual exchange model. We still compared our approach to
the BSW method, as it remains the most widely used leakage correction method
in commercial tools [8]. Moreover, accounting for the reflux rate did not eliminate
the assumptions inherent in the BSW method. Indeed, Arzanforoosh et al. [46]
investigated both unidirectional and bidirectional models for leakage correction
and found that the bidirectional approach often resulted in a lower relative CBV
than the unidirectional method in both enhancing and non-enhancing areas. This
could also reflect that the bidirectional model still forces the ΔR∗

2 curves to return
to baseline, even with an improved contrast exchange model.

Several other studies, with some variations, have also utilized the DSC signal
in healthy tissue as a reference [5, 7, 45]. An extended two-step technique was
introduced [12, 47], in which reference curves generated from the tissue residue
function were used for leakage estimation. Applying a fundamentally different
approach, Bjørnerud et al. [6] and Emblem et al. [48] determined the leakage
component of the signal with a more complex model. These efforts in our opinion
signify the complexity of recovering the uncontaminated tissue curve merely from
the DSC series. Importantly, they served as an inspiration for us to combine DCE
with DSC MRI, and using DCE to facilitate estimation of the leaked contrast agent
concentration.

Recently, Sankaralayam et al. [49] utilized K tr ans for leakage correction in
deriving CBV and CBF from DCE MRI for glioma grading. Notably, the use of
K tr ans for correcting leakage contamination conceptually parallels our approach.
However, their study involved only a mere DCE acquisition, unlike the back-to-back
DCE and DSC imaging applied by us. Surprisingly, their findings suggested that
leakage correction might negatively impact the accuracy of glioma grading via the
DCE-driven perfusion parameters. This unexpected result could be due to the
sensitivity of the applied model to noise.

Our study has several limitations. First, the clinical validation sample size was
relatively small, consisting of ten patients with various types of brain tumors. We
consider our work as a proof of concept, and concede that a larger cohort will
surely be needed to further validate our method. Second, the assumption that the
difference in the amount of leaking contrast agent between the first and second
injections is minimal may not hold in all cases. Variations in vascular permeability
and patient-specific factors could affect leakage dynamics, potentially postponing
the equilibrium state. This concern could be addressed by extending the DCE scan,
assuring that the equilibrium state is truly achieved. Finally, our image acquisition
protocol could be further optimized. Specifically, the DCE sequence was acquired
with a relatively large flip angle, resulting in a low SNR. To compensate for this, we
applied a region-based analysis rather than performing a voxel-wise analysis.
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5.6. CONCLUSION
We have developed a novel leakage correction method for DSC MRI that exploits
DCE-derived vascular parameters to accurately estimate and correct for GBCA
leakage effects. Our approach preserves residual contrast levels, which is often
suppressed by conventional correction techniques. Our findings suggest that
integrating DCE and DSC imaging analyses can enhance the reliability of perfusion
measurements in patients with brain tumors. Further studies with larger cohorts
are warranted to confirm the results and facilitate true practical adoption.
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Figure S5.1: Individual DCE fitting results for all patients. Each plot shows the
measured DCE signal ratio curve (blue curve) and the model fit (red
line) for a single patient, illustrating the accuracy of the model across
the cohort.
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Figure S5.2: Individual DSC fitting results for all patients. Each plot displays the
measured DSC signal ratio curve (blue curve) and the model fit (red
line) for a single patient, demonstrating the effectiveness of the model
in capturing the DSC dynamics across different patients.



56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng56888-bw-Tseng
Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025Processed on: 3-3-2025 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

5.7. SUPPLEMENTARY MATERIAL

5

111

           

Simulated T1,tissue (1/s)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Es
tim

at
ed

 T
1,

tis
su

e (
1/

s)

Estimating T1,tissue in rst bolus DSC sequence

Figure S5.3: Boxplots showing estimated versus simulated DSC parameter values
while varying tissue T1 in first injection. The dashed lines reflect the
reference values.
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118 6. DISCUSSION AND CONCLUSION

6.1. RESEARCH OVERVIEW

This dissertation aimed to enhance the accuracy of quantitative parameter
estimation from contrast-agent enhanced perfusion MRI and to further increase

its value for clinical applications. Particularly, I combined dynamic contrast
enhanced (DCE) MRI with dynamic susceptibility contrast (DSC) MRI to (1)
establish an optimal strategy for measurement of the arterial input function (AIF),
(2) limit inflow and partial volume effects (PVEs) on AIF estimation from DCE MRI,
and (3) reduce the errors emanating from contrast agent leakage in DSC MRI.

In Chapter 2 I reviewed the current state-of-the-art in DCE and DSC MRI
for imaging of glioma. A substantial amount of pre-clinical and clinical research
conclude that parameters from DCE and DSC imaging hold promise as potential
biomarkers for evaluation of glioma. However, widespread integration of these
perfusion techniques into clinical practice has yet to be realized. Further practical
adoption could be facilitated by establishing consensus recommendations for data
acquisition on systems from different vendors and in cross-center studies, and
by standardizing the analysis methods. This would enhance the reliability and
comparability of perfusion measurements in a clinical setting.

In Chapter 3 I studied the use of an AIF obtained from DCE MRI prior to DSC
imaging, for use in the analysis of the DSC data. I established that DCE-derived
AIFs exhibit superior similarity across different vessels compared to those derived
from DSC MRI, which in effect enhanced the reproducibility of perfusion parameter
estimation. Alternatively, a semi-automatic algorithm eased the identification of
the AIFs, which showed relative consistency. However, these AIFs had unrealistic
shape: they exhibited unnaturally high peaks and small widths. Importantly, the
quantitative attributes of a DCE-derived AIF may inherently promise more accurate
quantification of perfusion parameters from DSC MRI.

In Chapter 4 I proposed a novel approach to simultaneously compensate for
inflow effect and PVE on the AIF measurement from DCE MRI. I demonstrated
that an increase in PVE closely correlates with an increased inflow effect. Through
a mathematical derivation and numerical simulation, I validated the similarity of
the two effects. In clinical datasets, the proposed method enabled reconstruction
of realistic AIFs in the presence of variable inflow effect and PVE. Furthermore,
while the superior sagittal sinus (SSS) is generally less affected by these issues, it
proved unsuitable for obtaining a substitute AIF due to increased contrast agent
dispersion. This dispersion leads to an overestimation of vascular permeability
coefficients compared to using AIFs. Thus, our findings suggest that a more
effective strategy for DCE MRI analysis is to derive the AIF directly from an artery,
with meticulous correction for inflow and PVE, ensuring accurate and reliable
assessments of vascular parameters.

In Chapter 5 I developed a general model to fit the signals obtained from
DCE and DSC images, respectively. This model enables the estimation of contrast
agent concentration in tissue from DCE imaging, which is subsequently used to
eliminate the leakage contamination on DSC signals. Simulation demonstrated
that the model successfully fit the signals and provided unbiased estimates of the
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estimators. Moreover, the leakage effect was effectively removed from the ΔR∗
2

curves, which are used to derive the clinically valuable coefficient, cerebral blood
volume (CBV). While applying the leakage correction methods on clinical datasets,
the widely applied Boxerman–Schmainda–Weisskoff (BSW) correction method [1]
enforces a return of the ΔR∗

2 curves to the baseline level. Instead, my method
conserved the level in the tail of the tissue concentration curve, reflecting residual
contrast concentration in the vasculature after the main bolus, which is much
more expected due to remain Gadolinium-based contrast agents (GBCAs) in the
vascular system.

6.2. LIMITATIONS

While this dissertation has made several contributions to the field of contrast
enhanced perfusion MRI, several limitations must be acknowledged.

In Chapter 3 we showed that the AIFs derived from DCE data had improved
reproducibility and reliability compared to traditional AIF estimation in DSC MRI.
However, a major limitation was the lack of a ’true’ AIF for comparison. Ideally,
a true AIF could have been obtained directly from blood sampling, but this is
generally not feasible. Furthermore, it was assumed that the change in R∗

2 (ΔR∗
2 )

in tissue is linearly proportional to the contrast agent concentration. Also, the
relaxivity of the GBCA (r∗

2 ) was presumed to be constant and independent of tissue
type. This assumption is a common simplification in DSC studies but may not
be universally true. Relaxivity could vary among different tissue types and might
be influenced by factors such as the local microvascular architecture, permeability,
and proton exchange rates between tissue and blood.

Chapter 4 explored a correction method for compensation of flow and PVEs on
the AIF measurement in DCE data. However, the impact of AIF on the estimation
of key pharmacokinetic model parameters, such as K tr ans , was not investigated
due to the absence of observable contrast leakage in the T1-weighted images of the
patients in this part of our study. Our data was acquired post-tumor resection and
several months after proton radiation therapy. It could be that the effect induced
by this type of radiotherapy is subtle or barely detectable within this short period
after treatment. Clearly, further research is required to establish this.

In Chapter 5 introduced an innovative leakage correction method for DSC
MRI analysis. As above a limitation of this work was that ground truth data (e.g.
for CBV measurement) was not available. In general, establishing a reference for
parameters like CBV is challenging, as it can only be measured in very indirect
ways and is highly dependent on physiological condition of the subject.

An additional limitation that holds for my entire dissertation is that all analyses
concerned only a limited number of subjects. Particularly, normal control subjects
and subjects with specific types of glioma were not included. At same time,
however, the results reveal the potential that combined analysis of DCE and DSC
data may offer.
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While these limitations restrict the interpretation of our findings, they also
underscore the need for further research to refine the methodology and expand
the applicability in clinical practice.

6.3. RELATION TO RECENT DEVELOPMENTS

During the course of my research project there were several developments that
are relevant to my work.

In Chapter 3, we concluded that AIF derivation from DCE MRI outperforms
AIF determination from DSC MRI regarding the reproducibility. However, a
recent study by Kang et al. presents a contrasting viewpoint [2]. The latter
study concluded that DCE-derived pharmacokinetic parameters using the DSC
AIF showed improved reliability and yielded enhanced diagnostic accuracy for
differentiating glioblastoma with low relative CBV (rCBV) from primary central
nervous system lymphoma. Possibly, this discrepancy could be due to the lower
temporal resolution of the DCE imaging (2.8 seconds) compared to the DSC series
(1.6 seconds). Furthermore, a recent paper by Knutsson et al. [3] provided a
comprehensive overview of the role of AIFs in various perfusion MRI techniques.
The study highlighted the challenges associated with accurately measuring AIFs in
DSC MRI, which aligns with the issues discussed in Chapter 3 of this dissertation.
The integration of DCE-derived AIFs into DSC analysis in Chapter 3 was shown to
yield accurate assessment of perfusion-related parameters.

Also, Gwilliam et al. [4] recently reported that quantitative T1 measurement
in flowing blood using spoiled gradient echo sequences is subject to large
measurement errors which are non-linear in relation to flow velocity. This can
undermine the value of using AIFs since an erroneous T1 value is used for
concentration mapping. Therefore, it is suggested that a larger effort should
be put in developing tissue-level AIF estimation methods. In my opinion this
also underscores the relevance of the approach presented in Chapter 4 of my
dissertation, which effectively compensates for mixed contamination from inflow
effect and PVEs. Additionally, the AIFs corrected as such exhibited more reasonable
and reliable patterns compared to the venous output function (VOF) measured
from the SSS. On the other hand, we did not optimize the VOF measurement,
as the approach we took is more compatible with clinical applications. Lately,
Bourassa-Moreau et al. [5] proposed a novel, complex-signal based method for
determining the VOF from the SSS, which accounts for blood inflow and vessel
curvature. This approach was shown to be robust against biases such as errors in
the asserted blood T1 value and blood fraction. This development suggests that
reconsidering the use of VOF measured from the SSS as a surrogate vascular input
function in DCE analysis could be valuable.

Recently, Hedderich et al. [6] investigated whether appropriate leakage
correction could obviate the need for a preload contrast injection. Specifically,
DSC-based rCBV measurements from two consecutive contrast injections were
compared. Their study demonstrated that the BSW correction method resulted in
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the highest agreement between rCBV values obtained with and without prebolus
contrast agent administration, highlighting the potential of excluding the prebolus
injection in DSC acquisition. However, in this paper only the one-directional model
was investigated. Arzanforoosh et al. [7] evaluated the impact of leakage correction
on rCBV estimates, noting that a bidirectional model for leakage correction had
a stronger effect than unidirectional correction, particularly in enhancing tumors.
Our approach in Chapter 5, utilizes an estimated leakage term from a bidirectional
model in DCE analysis, which is in line with the suggested approach in the
Arzanforoosh paper. Finally, Sankaralayam et al [8] focused on evaluating the
impact of leakage correction on hemodynamic parameters derived from DCE-MRI
for glioma grading. In this study, the vascular permeability coefficient (K tr ans )
was employed to compensate for the leakage effect on DCE-derived CBV and
CBF. Although the findings suggested that leakage correction might negatively
impact the accuracy of glioma grading, the use of K tr ans for correcting leakage
contamination is conceptually consistent with the approach discussed in Chapter
5 of my dissertation. The unexpected results may be attributed to the sensitivity
of the applied model to noise, which underscores the advantages of our approach
using the DSC sequence, which is specifically designed for accurate hemodynamic
parameter measurement.

6.4. FUTURE DIRECTIONS

In my perspective, any developed technology should not only deliver additional
scientific insight, but also fit with clinical practice. Therefore, the acquisition

protocols applied in this dissertation need to be optimized. Specifically, we
utilized two separate full doses of GBCA: one for DCE imaging that also serves
as a preload for DSC imaging, the other especially for the DSC acquisition.
The protocol ensured comprehensive coverage and good contrast in both series.
However, the administration of two full doses of GBCA is currently less preferred
in clinical practice. Recent research has explored the possibility of reducing the
preload dosage in DSC acquisitions and has even suggested that a preload may be
unnecessary when a low flip angle DSC-MRI is employed [9]. In spite of these
findings, we proved that it may still be useful not to eliminate the preload as it
facilitates deriving an accurate AIF and vascular parameters while DCE imaging is
applied. At the same time, it is important to investigate what (minimal) dosage
and sequence duration should be applied in order to obtain the most reliable and
relevant information on the vascularization.

In Chapter 3 we evaluated different sources and methods for AIF extraction.
However, numerous automatic AIF searching approaches implemented in other
studies were not included in our analysis. More than that, artificial intelligence
(AI), particularly convolutional neural networks (CNNs), are increasingly applied to
automate AIF assessment in MRI studies. For instance, Fan et al. [10] developed
a multi-stream 3D CNN to determine the AIF voxels. This method was shown
to outperform traditional manual and automatic methods. Similarly, Winder et
al. [11] applied a CNN framework to automatically identify AIFs from Computed
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Tomography perfusion data as well as from DSC MRI datasets. The CNN-derived
AIFs showed higher cross-correlation values and were comparable to manual AIFs
in terms of shape features. Both studies demonstrated the potential of deep
learning in automating the estimation of the AIF from perfusion images. It is
clearly of interest to study the effectiveness of such approaches with combined
DCE-DSC imaging (specifically when the total GBCA dose is minimized at the same
time) and compare them with our methods.

The methodologies proposed in this dissertation enhanced the accuracy and
reliability of perfusion measurements. Our methods are potentially applicable
in a broad range of clinical applications, such as in monitoring post-treatment
effects in glioma patients. Utilizing the refined AIF extraction from Chapter 4
for enhanced DCE-derived vascular coefficients, or the corrected rCBV using the
approach from Chapter 5, might improve the differentiation between recurrent
tumors and post-treatment effects. Moreover, the methodologies have the potential
to aid in tumor grading, classification, and predicting treatment efficacy, which are
all pivotal aspects in the workup of oncology patients. Future research should also
focus on validating our methods across different clinical datasets, including distinct
patient cohorts, scan protocols and scanners, to further substantiate the benefits
and pave the way for routine clinical use.

Alternatively, arterial spin labeling (ASL) is an MRI perfusion technique that
does not require administration of a contrast agent. Instead, inflowing spins
are exploited as an intrinsic tracer, allowing for (absolute) CBF measurement,
which makes it a valuable tool in various clinical settings [12]. While ASL
precludes a GBCA, it is traditionally associated with a low signal-to-noise ratio
and a lack of familiarity among clinicians. Addressing these shortcomings through
continued research and further technological improvements could enhance the
clinical viability of ASL. Comparing the outcomes of the novel DCE and DSC
approaches developed in this dissertation with those obtained via ASL could be
another topic of further research. This comparison may be crucial for establishing
the value of ASL and broadening its clinical acceptance and application.

6.5. CONCLUSION
This dissertation has advanced the field of perfusion MRI through innovative
methodologies that improve the accuracy and reliability of perfusion parameter
estimation. I have renewed the image analysis procedures for DCE and DSC MRI,
specifically by creating novel techniques for AIF measurement from DCE MRI and
by introducing a new combined approach for leakage correction in DSC imaging.
It is my sincerest hope that these developed methods will not only improve the
clinical utility of perfusion MRI but also inspire further innovations and broader
applications of contrast-agent based perfusion MRI.
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