
1

An integrative versioning workflow
for 3D City Model maintenance

Konstantinos Mastorakis

Delft, November 2020

Supervisors:

Hugo Ledoux, TU Delft

Stelios Vitalis, TU Delft

Maarten Vermeij, Gemeente Rotterdam

2

• Why maintaining a 3D city model at first place?

 Improve the way they are currently “updated”

 Keep up with reality / Urban fabric changing very fast

 Maximize its value / Attract more users

Introduction

Biljecki, 2015

3

• Design a maintenance workflow for 3D City Models

 Two main components:

 Visual editing platform (Up3date: a Blender add-on)

 Perform all changes via a graphical environment

 Versioning Control System (VCS) for 3D City Models (Git-

based)

 Keeping track of history

 Concurrent Updating

Motivation

4

Research Questions

 To what extent can a Git-based versioning approach be

used for the maintenance of a 3D City Model of a typical

municipality?

 What would be a conceptual workflow that would make this

approach practical and manageable?

 How can the maintenance process be improved by

combining the versioning workflow with 3D visual editing

capabilities of the model?

5

• 3D City Model of the municipality of Rotterdam

 Initiated in 2011 as proof of concept

 Remodeled from scratch in 2016

 Contains LoD 0, 1, and 2 buildings, trees, infrastructure...

 New iterations in a biennial life-cycle

 Outsourced to third parties

Use case (1/2)

6

Use case (2/2)

7

Related work

• CityJSON: A compact and easy-to-use encoding of the

CityGML data model (Ledoux et al, 2019)

• Git: Distributed VCS for source code files

• A data structure to incorporate versioning in 3D city models

(Vitalis et al, 2019)

• CityGML v3.0. versioning module: A data model that

allows versioning in CityGML files

• Scenario ADE: An extension of the CityGML v.2.0 data

model for virtual scenario testing

8

Introducing the workflow

9

The core workflow

 Instance: A 3DCM file representing the model at a given

time point

 Versioned file: A file used as a repository that contains

multiple instances and their metadata.

 The core workflow:

10

The multi-branch structure

 4 conceptual branches: Main, Maintenance, Scenario,

Release

11

• When the VCS does not know how to integrate

information of 2 -to be merged- branches.

 Example: Two maintainers change the same information entity in

two different ways

Merging conflicts
No conflict Conflict

12

• The deepest hierarchical level (within a 3DCM file) at

which the VCS can still “distinguish” the information as of

different kind

 In software development that entity is every line of code

 With 3DCM things are not so trivial

 Nested file structure

 Multiple type of information (descriptive, geometric, semantic)

 Arbitrarily chosen upon the conceptualization of the VCS

 The lower it gets the more complicated it is to make the VCS

robust; but it makes the VCS (potentially) smarter

 The higher it gets the more conflicts will be raised; human

supervision is maximized, and information loss is limited to

human error

The smallest entity

13

• Choosing which instance should be kept

 Programming software to resolve them

 Predefined ways of resolving a conflict from the VCS (not

necessarily meaningful)

 Requires VCS to have cognitive abilities (ΑΙ) which is not the

case at the moment

 Let the user decide how to resolve

 Resolution is guaranteed to be meaningful

 Maximizes human supervision

 Can become time consuming

• In practice, manual resolution superior to “automatic”

Resolving conflicts

14

Workflow Implementation

15

• CityJSON versioning prototype (CJV)
 Software implementation of the data structure for 3DCM

versioning (Vitalis et al 2019)

 Conceptually based on Git’s architecture

 Uses a “versioned” CityJSON file (vCityJSON) as a repository

 Building (CityObject) is the smallest entity

 Command line interface

• Up3date

 Blender add-on able to visualize, edit and (lossless) export multi-

LoD 3DCMs encoded in CityJSON v.1.0

 Saves attributes, semantic information and parent-child relations

 Developed in Python using Blender’s API (v.2.80 or higher)

Implementation components

16

From concept to implementation

17

Testing

18

• Dataset: B-3_18_LoD0_LoD1_LoD2.gml (CityGML v.2.0

encoded)

 Convert to CityJSON v.1.0 with citygml-tools

 Imported into Blender with Up3date

 Export unedited for ordering the CityObjects alphabetically and

remove duplicate vertices (“normalized” dataset)

Data preparation and repository

initialization

19

 Visually adding, deleting and editing (geometries +

attributes) CityObjects via Up3date works seamlessly

 CJV performs as expected “understanding” all

changes correctly

Fundamental operations

20

Simulating the testing and

implementation of new scenarios

21

• The shape of a roof needs to be decided to maximize its

solar capacity depending also on a nearby building which

is going to be extended upwards

 For this scenario two users are considered to be working

on the model concurrently:

 1 user is responsible for re-shaping the roof

 2 user is responsible for extending the nearby building

upwards to the appropriate height

 After both are done working individually they commit the

changes to scenario where a solar capacity analysis can

be performed

Scenario explanation (1/2)

22

•

Scenario explanation (2/2)

23

Committing and merging scenario(s)

24

Simulating Conflict Scenarios

25

• Mingle order of attributes (1/2)

Conflict Scenarios

Original order After re-ordering

26

• Mingle order of faces (1/2)

Conflict Scenarios

Before re-ordering

After re-ordering

27

• Overwrite different “piece of information” within the same

object (1/2)

 Two branches (master and testing) created to simulate the

different instances

• Postal code changed and committed to master

• Street Number changed and committed to testing

Conflict Scenarios

28

Conclusions

29

• Defining the “smallest entity” wisely is crucial!

• Answering the research questions:
• Git-based VCS is a very promising solution for 3DCM versioning

 Increases the 3DCM data value with regular updates

 Τracks history automatically

 Branching is simple / Allows concurrent maintaining

 Git’s built-in operations match Rotterdam’s key points

 Distributed architecture optimal for 3DCM versioning

• Visual editing capabilities are more important than expected

 Simplifies the creation of the next instance of the 3DCM

 Maintainers don’t have to be experts with 3DCM data models

 Complex geometric editing (reshaping a roof) is next to

impossible without a GUI

Conclusions

30

• When mingling its order of attributes and/or faces…

 Can an object be considered the same?

 Open for discussion… but:

 From a developing point of view the answer should be

positive

 For a robust system the answer should be negative but smart

mechanisms should be developed (normalization /

alphabetical / lexicographical ordering might prove useful)

(A bit more philosophical) conclusions

31

 CityGML v.3.0 versioning module
• It introduces information redundancy within the data model which

is not optimal for versioning

• Both versions and transactions between versions have to be

stored alongside and be “synced”

• Creates many potential break points

 Transaction types are also predefined by the data model

which is limiting the versioning robustness without any

significant practical benefit

 Software implementations for gml-based formats are not

straightforward

Practical comparison with other

potential solutions

32

• Pilot testing the workflow for gathering real feedback and

moving the workflow from prototype to more operational

 Defining the optimal “smallest entity” with real world

feedback

 Invest into training practitioners to familiarize with the

technical aspects of the workflow

 Investigate into maintaining the model either in tiles or as a

whole

How can Rotterdam benefit from the

workflow (by investing resources)

33

• No need to outsource

 In house maintaining by visually updating the 3DCM

 Automatic history tracking (of every tile) / No need to

keep previous iterations outside the VCS

 Saves considerable financial resources (approx. 60k

euros every 2 years)

• New ideas and scenarios can now be tested

• Exporting a subset via Up3date (already possible through

their platform)

How can Rotterdam benefit from the

workflow (without investing resources)

34

• 3DCityDB (currently the platform for storing the 3DCM)

might support CityJSON since the former uses citygml4j

which already supports the CityJSON format.

 Integration of the workflow with the currently existing

platform will be significantly simplified

 Ideally the suggested workflow could be further

developed to work directly on the 3DCityDB platform if

CityJSON gets supported

What is likely to be improved anyway

35

• Integrate validity check within the workflow
 val3dity

• Merging subsets back to the repository
 Requires merging 3D geometries

• Combine the add-on with GIS capabilities
 Blender-GIS

• Investigate into updating BAG from the 3DCM

maintenance

• Create an automatic generator of “striped” instances for

the release branch

• Incorporate and handling of building textures

Future work for enhancing the workflow

36

Thank you!

37

The CityGML v.3.0 versioning module

38

CityJSON

• An alternative encoding to the

CityGML data model

• Designed with software

developers in mind

• Based on the JSON notation,

compact and flat

• Supported by all modern

programming languages

39

Git

• Solution developed to maintain

source code files for software

developers

 Distributed architecture

 Most popular VCS

 Stores snapshot of every version

instead of differences (deltas)

between two consecutive ones

 Branching made simple

Driessen, 2010

nobledesktop.com

Driessen, 2010Driessen, 2010

40

A data structure for incorporating

versioning in 3DCM (Vitalis et al, 2019)

• Wraps around the CityJSON v.1.0 data model and

encoding

• All versions of the model stored in one file (repository)

• Each version has metadata (author, date, message)

Vitalis et al, 2019

41

Maintenance iterations frequency

 Fixed number of buildings

 New iteration when a predefined building count (X) is met

 X= Total buildings that need maintenance per year / Working

days of the year

 Favors consistency with respect to workload

 Fixed time interval

 New iteration after a predefined period of time

 Favors consistency with respect to time

42

Visually edit an object’s geometry (1/2)

43

•

Visually edit an object’s geometry (2/2)

44

•

Delete whole object (1/2)

45

•

Delete whole object (2/2)

46

Exporting a subset (outside of VCS)

47

• Edit an attribute of an object

• Edit the geometry of an object

• Delete a whole object

A simple maintenance case

Each edit is independently

committed to maintenance

Maintenance is (fast-forward)

merged into main

48

Merging maintenance into main

49

Log after merging scenario_1 into for scenario Log after merging scenario into main

