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Abstract We present the development of a background-limited kilo-pixel imaging
array of ultrawide bandwidth kinetic inductance detectors (KIDs) suitable for space-
based THz astronomy applications. The array consists of 989 KIDs, in which the
radiation is coupled to eachKID via a leaky lens antenna, covering the frequency range
between 1.4 and 2.8 THz. The single pixel performance is fully characterised using
a representative small array in terms of sensitivity, optical efficiency, beam pattern
and frequency response, matching very well its expected performance. The kilo-pixel
array is characterised electrically, finding a yield larger than 90% and an averaged
noise-equivalent power lower than 3×10−19 W/Hz1/2. The interaction between the
kilo-pixel array and cosmic rays is studied, with an expected dead time lower than
0.6% when operated in an L2 or a similar far-Earth orbit.

Keywords Kinetic inductance detectors · Kilo-pixel array · THz astronomy

1 Introduction

The next generation of space-based imaging spectrometers for sub-millimetre
(sub-mm) wave astronomy requires broad band radiation coupling between 1 and
10 THz[1,2]. These spectrometers will allow measurements of a large number of
spectroscopic bands over a wide area of the sky in a very limited time. In order to do
so, they will require a large number of pixels to cover the telescope field of view or
to sample a given frequency band with a high resolution. Kinetic inductance detec-
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tors (KIDs) are superconducting pair-breaking resonators [3] that are a very attractive
choice for these applications since thousands of detectors can be read out with a
single coaxial line [3,4], enabling simple and cost-effective systems. Since these spec-
trometers can only be used from space at these high frequencies, the requirements
on the detector sensitivity [5] are extremely demanding, typically with an noise-
equivalent power (NEP) of ∼3×10−19W/Hz1/2 for a non-dispersive spectrometer.
Such sensitivities have been achieved with antenna-coupled aluminium (Al) KIDs
over a broad band [6] around 1.5THz with poor beam quality and over a narrow band
around 850GHz[4,7]. In this paper, we extend KID technology to higher frequen-
cies and large bandwidths using a leaky lens antenna-coupled device. This device
allows high coupling efficiency over an octave of bandwidth at frequencies higher
than 1 THz.

2 Design and Fabrication

We have designed, fabricated and measured a small chip of leak-lens antenna-coupled
KIDs operating in the 1.4–2.8-THz band [8]. The KID design combines the hybrid
NbTiN/Al technology to obtain good noise performance [9] and the all-Al antenna
concept [6] to provide a very high sensitivity. A long and detailed discussion about the
requirements of the detector system, its fabrication and full characterisation (sen-
sitivity, optical efficiency, beam pattern and frequency response) is presented in
our previous work [8]. In summary, the device has a beam pattern and frequency
response close to the simulated parameters and has a limiting sensitivity given by a
NEPopt = 2.5×10−19 W/Hz1/2.

In this paper we focus on the scalability of the single pixel device into a kilo-
pixel array. All the fabrication details are discussed in our previous work [8], and
the same process flow is followed in the fabrication of the device presented in this
paper. An image of the fabricated kilo-pixel leaky lens antenna-coupled KID array is
shown in Fig. 1. The detector array consists of 989 pixel KIDs hexagonally packed,
with a pixel spacing of 1.6 mm covering an area of 48×48 mm on a 55×55 mm
chip.

The THz radiation is coupled to the leaky slot in the Al ground plane, which
launches the radiation into the two very narrow Al CPW lines. The length of the Al
lines (∼1.25 mm) is such that all THz radiation is absorbed over the whole octave
of bandwidth before the lines become wide. The length of the Al has been chosen to
absorb more than 10dB of power for the highest radiation frequency (2.8THz) before
reaching the NbTiN evaluating the attenuation constant of the line using CST. The
Al line absorbs even more at the lowest frequency (1.4THz). The narrow linewidth
(0.8 µm strip with a 1.2 µm gap) is needed to limit radiation loss. The narrow Al line
broadens at either end and connects to a wide NbTiN CPW (strip of 12 µmwith a gap
of 8 µm). The NbTiN central conductor is shorted to the NbTiN ground at the far end
of the resonator. At the other end, the NbTiN remains wide is deposited on the bare
Si substrate for most of its length. The main challenge of the fabrication is to resolve
the narrow aluminium line (1.2–0.8–1.2 µm) close to the antenna with a high yield
across the whole wafer.
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Fig. 1 Image of the kilo-pixel leaky lens antenna-coupledKID array. Left: photograph of the arraymounted
in its holder. Right: back- and front-illuminated optical image of a single pixel of the leaky lens antenna-
coupled KID. The light goes through the membrane where both the antenna and the Al section of the KID
are fabricated. The centre of the antenna is shown as an inset with an SEM image (Colour figure online)

3 Electrical Characterisation

A 3D assembly of the detector chip, spacer wafer and lens array is needed to couple
radiation efficiently to the device [8]. It is crucial to reach a vacuum gap between
the antenna and the spacer wafer of less than 6 µm, which is very challenging for a
55×55 mm chip (like the one presented in this paper). A smaller prototype with 19
pixels has been characterised under radiation-loaded conditions, showing very good
sensitivity, optical efficiency, beam pattern quality and broad frequency response [8].
In this work we limit ourselves to a dark measurement of the kilo-pixel array, which is
possible using a measurement of the detector chip only, without spacer wafer and lens
array. We take advantage of the fact that for NbTiN-Al hybrid KIDs it has been proven
that the electrical NEP is a very good approximation for the optical NEP[4,10].

To characterise the performance of the kilo-pixel detector array we mount it in
a closed sample holder in a ‘box-in-a-box’ configuration on the cold stage of an
adiabatic demagnetisation refrigerator (ADR) [11], where the temperature of the chip
is stabilised at 120 mK. We use a commercial vector network analyser to measure
the forward scattering parameter S21 of the system as a function of frequency. The
results are shown in Fig. 2. Multiple dips in the transmission appear, each of them
corresponding to an individual KID. All the resonances are placed in a frequency span
of 1.2 GHz centred at 2.9 GHz. We find 915 resonators out of 989, which corresponds
with a fabrication yield of 93%. The fit to all the resonance features shows that we
obtain an average loaded Q factor Q = 90 × 103, an average coupling Q factor
Qc = 100 × 103 and an average internal Q factor Qi = 1.8 × 106.

We measure the electrical (dark) NEP of the detectors using the method described
in Baselmans et al. [12], reading out 860 pixels of the array simultaneously using
frequency division multiplexing [13]. The response of the KIDs to a change in chip
temperature is measured. The amount of quasiparticles in the aluminium Nqp can
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Fig. 2 Top: frequency response of the kilo-pixel array of leaky lens antenna-coupled KIDs taken at a
temperature of 120 mK. The zoom shows a few resonators, the relative bandwidth of the resonators and
the scatter in frequency of the resonators. Bottom: histograms of the internal, coupling and loaded quality
factors of the array and the frequency separation between resonators (Colour figure online)

Fig. 3 Electrical characterisation of the kilo-pixel array of leaky lens antenna-coupledKIDs. Left: darkNEP
for all MKIDs of the array, obtained bymeasuring the temperature response of the chip and the noise spectra
at 120mK. Right: histogram of the data plotted. The averaged electrical (dark) NEP is 3×10−19 W/Hz1/2

(Colour figure online)

be calculated from the chip temperature, the volume of the aluminium section of
the resonator and the energy gap. The dark NEP using the phase read-out is shown
in Fig. 3. We find an average value of the electrical NEP is given by NEPdark =
2.8 ± 1 × 10−19W/Hz1/2 for the phase read-out. The scatter in the NEP between the
pixels is a result of fabrication inaccuracies resulting in a spread of the aluminium
properties over the wafer.

The electricalNEPvalues are in excellent agreementwith the opticalNEPmeasured
at 1.55 THz presented in our previous characterisation of a single pixel [8], which
confirms that the dark NEP is a good measurement of the detector sensitivity [4,8,10].
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Fig. 4 Susceptibility of kilo-pixel arrays of antenna-coupled KIDs to cosmic rays. Left: time trace of 10 s
of a kilo-pixel KIDs array on a solid substrate. All KIDs simultaneously are affected by a cosmic ray hit.
Right: time trace of 10 s of a kilo-pixel KIDs array with membranes. It is clear that less KIDs are affected
simultaneously by a cosmic ray hit (Colour figure online)

We can expect that a full-size lens array coupled to the presented chip would result in
a imaging array with a limiting sensitivity given in Fig. 3.

4 Interaction Between the Detector Array and Cosmic Rays

Space observatories operating outside low-Earth orbit are subject to interactions with
cosmic rays, which are so energetic that it is impossible to effectively shield the
detector arrays. Thus, cosmic rays will inevitably interact with the detector chip,
thereby depositing a fraction of their energy by ionisation and atomic excitation. The
typical result of a cosmic ray interaction is a glitch that results in difficult data retrieval
and loss of integration efficiency [14].We evaluate the effect of cosmic ray interactions
in the detector chip by measuring the effects of secondary cosmic rays, which are
a result from the interaction of primary cosmic rays with the Earths atmosphere.
The primary cosmic rays mainly consist of protons, whereas the main component of
secondary cosmic rays is muons. Muons easily penetrate into shields of the setup and
create glitches during experiments.

We have to remove the resulting glitches in all our experiments to obtain the results
presented in the previous section. We use an iterative de-glitching scheme to do so,
which consists of a few steps: (i) we calculate 2nd derivative of time-ordered data to
enhance the glitches as well as removing slow drifts in the data; (ii) we calculate the
rms of the 2nd derivative data and then remove points where the rms value is larger
than 6 σ . With this step, we identify large glitches that correspond to cosmic rays
with large energy deposition on the chip; (iii) we calculate the rms of data from the
previous step (i.e. 2nd derivative data from which large glitches are already removed)
and identify points where the rms value is larger than 5 σ . We identify small glitches
with this step; (iv) the identified points at (ii) and (iii) are removed from the original
data set to create de-glitched data.

In order to study the cosmic ray effects in detail, we take 30 min of data with the
read-out system in its fast, low-resolution setting with a sampling rate of 1.27 kHz and
an integration time of 787 µs while operating the chip in dark conditions. There is not
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dead time in the measurement because the data were taken with 2GHz speed with no
interruption and cosmic rays are tagged afterwards. A typical 10 s time trace for two
different kilo-pixel arrays of antenna-coupled KIDs is shown in Fig. 4, one made on
a solid substrate and the other one with membranes (for the leaky lens design). The
timeline of the KIDs is clearly affected by the glitches. In the solid substrate array all
the glitches are seen by most of the KIDs, whereas in the array with membranes the
glitches do not spread very much and only a few KIDs are affected per glitch.

We obtain a count rate for muons of 0.8 events/s/(5.5 cm)2 ×60 s/min ∼
1.6 event/cm2/min for the kilo-pixel KIDs array on a solid substrate, which is consis-
tent with the standard value of 1 event/cm2/min. We estimate the effect of cosmic ray
interactions when operating the array in L2 based on these measurements by scaling
the hit rate on the chips to the measured event rate from Planck of 5 events/s/cm2. This
simple scaling results in an estimated loss in integration time about 0.6% for the leaky
lens design that is ∼30 times smaller than the solid substrate array. It is possible to
harden KID arrays against cosmic ray events by adding a layer of a superconducting
material with a critical temperature below the one of the aluminium of the KIDs [15].
The non-thermal (high-energy) phonons created by the initial interaction and subse-
quent phonon downconversion are converted to phonons with an energy E < 2ΔAl
through electron–phonon interactions in the low-temperature superconducting layer.
This technique has been used successfully in a similar size array of KIDs resulting
in an estimated loss in integration time of 4%[4]. Although the high-energy phonon-
absorbing layer of superconducting material improves the loss in integration time,
the leaky lens-coupled KID array is still 7 times better. Further experiments to deter-
mine the mechanism that prevents the spreading of the glitch effect have been carried
out [16].

5 Conclusions

A 989 pixels of leaky lens antenna-coupled KID imaging system providing an octave
of bandwidth between 1.4 and 2.8 THz have been fabricated with a fabrication
yield of 93%. The system is read out using a single set of read-out electron-
ics and one pair of coaxial cables. This kilo-pixel array has been characterised
electrically sweeping the temperature of the array, with an average sensitivity of
NEPdark = 2.8 × 10−19 W/Hz1/2. The electrical and optical (measured in a sepa-
rate smaller array) sensitivities are identical. Additionally, the detector array is not
very sensitive to cosmic ray interaction with an expected loss of integration time of
less than 0.6% when operated in L2 orbit. This device and assembly can be scaled
and used for the higher frequency bands (up to 10 THz) of SPICA-SAFARI [1] after
implementing somemodifications: (i) the CPW section of the KID close to the antenna
needs to be made with electron beam lithography in order to make∼300-nm lines; (ii)
the gap between the lens and the antenna needs to be reduced down to 1 µm, which
can be done using a spinnable and patternable bonding adhesive; (iii) the alignment
between the lens and the antenna needs to be improved down to a few µm, which
can be done using micromachined Si springs [17]. In summary, this array fulfils many
generic requirements for future THz and sub-mm wave space-based observatories.
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