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Abstract 

 

Diesel engines will remain a fundamental component of propulsion systems due to their maturity, 

reliability, and power density. Building Digital Twins of the propulsion system is one feasible solution 

to pursue the optimal propulsions system operation, estimating system states and efficiency. This work 

will investigate a modelling approach that combines high accuracy while satisfying real-time prediction 

capabilities by coupling a physics-based model with a data-driven modelling approach. We will 

demonstrate that the proposed hybridisation framework can provide state-of-the-art prediction 

capabilities in real-time, utilising operational data from a turbocharged, four-stroke medium-speed 

diesel engine. 

 

1. Introduction 

 

In recent years the maritime industry is confronted by several challenges, including volatile bunker 

prices, García-Martos et al. (2013) that affect cargo transportation costs and the shipowners’ 

competitiveness and viability of their operations, and strict regulations to limit emissions and their 

environmental impact to reduce CO2 emissions from shipping by 40-50%, European Commission 

(2013a). As a result of this combination, the issue of energy efficiency and environmental sustainability 

of maritime operations is currently prioritised in the maritime industry, with shipowners and operators 

adopting measures to lower fuel consumption and associated emissions, and researchers studying 

innovative technologies and methods that can increase the environmental efficiency and cost-

effectiveness of ship operations. 

 

Propulsion system design is facing the challenge of continuously rising complexity to satisfy these 

demands. However, energy efficiency should not only be a design issue but also be preserved in 

operation. In pursuing the optimal propulsion system operation, estimating system states and efficiency 

is of great importance. In this respect, building a Digital Twin (DT) of the propulsion system that 

coexists during operation, providing predictions and offering insight into the operation, is one feasible 

solution. A critical requirement for the DT is the need for a modelling approach that can precisely reflect 

the characteristics intrinsic to the propulsion plant and precisely predict the state of its physical 

counterpart under all operating conditions in real-time, as reported in Bondarenko and Fukuda (2020). 

Main engines are the main factors of energy loss and emission production on-board and will remain an 

unavoidable part of propulsion systems due to their maturity, reliability, and power density, Baldi et al. 

(2014, 2015). Diesel engine (DE) modelling has evolved over the years, and various types of models 

can be found in the literature, with varying degrees of computational complexity and prediction quality. 

Most widely employed are Mean Value Engine Models (MVEMs), Guan et al. (2014), Grimmelius et 

al. (2010); Geertsma et al. (2017), which provide adequate accuracy in the prediction of most engine 

parameters while being computationally cheap, and zero-dimensional (0D) models that operate on per 

per-crank basis, allowing the calculation of parameters of the gas within the engine cylinders as reported 

in Sapra et al. (2020), Catania et al. (2011), Asad et al. (2014). 

 

Suppose the requirements for a modelling approach include real-time prediction of the main engine 

performance parameters with a high degree of accuracy. In that case, neither MVEM nor 0D models 

are applicable due to moderate prediction capabilities (MVEMs) and computational time requirements 

(0D models). More sophisticated approaches, with respect to MVEMs and 0D, are one-dimensional 

(1D) and three-dimensional (3D) models that operate on a per-crank basis, Merker et al. (2005). These 

approaches are more computationally demanding compared to MVEMs. However, they can predict the 
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detailed gas processes inside the cylinders with higher accuracy, Mohammadkhani et al. (2019). Several 

attempts to combine MVEM and 0D, 1D, or 3D models have been proposed, enhancing the predictive 

abilities of MVEMs with lower computational requirements than their 0D, 1D, or 3D counterparts, as 

suggested by Livanos et al. (2007) and Ding et al. (2010). For instance, Baldi et al. (2015) combined 

MVEM and 0D models to investigate the propulsion behaviour of a Handymax-size product carrier 

under constant and variable engine speed operations. PMs can adequately capture most process 

parameters of a DE under a broad range of operating conditions. However, there is a clear trade-off 

between accuracy and computational requirements. The most accurate 3D models cannot run in real-

time, whereas MVEMs lack accuracy, especially during transient operations. 

 

DDMs have been successfully applied in a variety of maritime applications, provided that the necessary 

quality and quantity of historical data is available, as reported in Coraddu et al. (2017,2019a,2019b, 

2020,2021a,2021b) and Cipollini et al. (2018a, 2018b). For instance, Nikzadfar and Shamekhi (2014) 

developed an Artificial Neural Network (ANN) to study the relative contribution of several operating 

parameters to the performance of a DE. The ability of ANNs to predict performance parameters of a 

DE was also demonstrated in Özener et al. (2013) to predict a variety of performance parameters and 

emissions. A hydrogen dual-engine for automotive applications was the case study of Syed et al. (2017): 

ANNs proved to be highly efficient to predict specific fuel consumption and a variety of emissions. 

 

HMs are a pretty recent modelling approach, especially in the maritime field, and just very few works 

showed the advantages of a hybrid approach regarding pure PMs and DDMs, as reported in Coraddu et 

al. (2018, 2021a) and Miglianti et al. (2019, 2020). For instance, Coraddu et al. (2017) show that it is 

possible to predict fuel consumption with HMs effectively. Moreover, Coraddu et al.(2018, 2021a) 

attempted to model the engine exhaust gas temperature with HMs under steady-state and transient 

conditions. Mishra and Subbarao (2021) compared the performance of a PM, a DDM, and an HM to 

predict dynamic combustion control parameters of a Reactivity Controlled Compression Ignition engine 

across five engine loads. The parameters included the start of combustion, the 50% mass fraction burnt 

crank angle, and combustion peak pressure. The authors compared the model predictions with measured 

data from experiments, concluding that the prediction capability of the HM was far superior to the DDM 

and PM across all parameters. Bidarvatan et al. (2014) developed an HM to predict several performance 

parameters of Homogeneous Charge Compression Ignition (HCCI) engines. Namely, the 50% mass 

fraction burnt crank angle, the indicated mean effective pressure, exhaust temperature, and 

concentration of CO, total unburned hydrocarbons and NOx. The proposed HM combined a PM and 3 

ANNs, designed to minimise computational time requirements. The authors compared the predictions 

of the proposed HM with experimental data at 309 steady-state and transient conditions for two HCCI 

engines concluding that the HM offered approximately 80% better accuracy compared to the PM, or 

60% compared to the DDM. 

 

The amount of literature available on the HMs is limited, as this is a relatively new research field. 

Moreover, focusing on the marine DE applications, a consistent and clear description of a modelling 

framework for marine DEs able to hybridise PMs and DDMs is not yet readily available. 

 

This work will investigate a modelling approach that combines high accuracy whilst satisfying real-

time prediction capabilities by coupling a physics-based, low-computational MVEM with a Data-

Driven model. We will demonstrate that combining these two approaches in a hybrid modelling 

framework can provide state-of-the-art prediction capabilities in real-time, utilising several months of 

operational data from a turbocharged, four-stroke medium-speed DE. With this in mind, first, a 0D DE 

model, already available in Kalikatzarakis et al. (2021), is briefly described. Subsequently, different 

DDMs will be developed, tested, and compared. These models will leverage the information 

encapsulated in historical data to produce accurate predictions on a set of performance parameters of 

the DE. Finally, we will present the hybridisation framework where HM will be proposed, leveraging 

on both the DDM and the PM previously developed. The authors will showcase the performance in 

terms of accuracy, reliability, and computational requirements of the HM, demonstrating the superiority 

of the proposed hybridisation framework on a comprehensive dataset containing operational data from 

a marine DE for a time of approximately three years.  
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2. Physical Models 

 

In this section, we report an overview of the DE modelling approach for the sake of completeness. A 

more detailed explanation and the validation results are available in Kalikatzarakis et al. (2021). The 

vessel’s DEs have been modelled utilising a modular approach. Inputs include the geometric data of the 

engine, the intake and exhaust valves profiles, the compressor and turbine performance maps, the waste 

gate geometric and control details, the constants of engine sub-models (combustion, heat transfer and 

friction), the engine operating point (load/speed), and the ambient conditions. Initial conditions are 

required for the temperature, pressure and composition of the working medium contained in the engine 

cylinders, pipes, and receivers. The engine scavenging air and exhaust gas receivers are modelled as 

flow receiver elements (control volumes), whereas flow elements represent the compressor, air cooler, 

cylinders, and turbine. The engine boundaries are modelled using fixed fluid elements of constant 

pressure and temperature, and shaft elements are utilised to compute the rotational speed of the 

turbocharger and crankshaft. The governor of the engine is responsible for adjusting the fuel rack 

position and incorporates the appropriate fuel rack limiters. Finally, air and exhaust gas properties are 

dependent on temperature, fuel-air equivalence ratio and composition. For the calculation of the exhaust 

gas composition, oxygen, nitrogen, carbon dioxide and steam were considered. All flow elements are 

modelled using the open thermodynamic system concept of Watson and Janota (1982) and Heywood 

(1988), and use as inputs the pressure (𝑝), temperature (𝑇), and the properties of the working medium 

contained in the adjacent elements. Subsequently, mass (𝑚̇) and energy flow rates entering and exiting 

each element are computed by applying the mass and energy conservation laws. These flow rates are 

further provided as inputs in the adjacent flow receiver elements, whereas torque outputs are utilised as 

inputs in the shaft elements. The latter, through the angular momentum conservation, compute the 

rotational speeds of the turbocharger (𝜔𝑡𝑐) and propulsion plant shafts. The compressor is modelled 

using its steady-state performance map, estimated utilising the method proposed by Casey and Robinson 

(2013), whereas the turbine is modelled using its swallowing capacity and efficiency map. Moreover, 

the pressures losses occurring in the air cooler and air filter are dependent on the air mass flow rate, as 

is the air cooler effectiveness. No heat transfer is considered in the model of the scavenging air receiver, 

whereas the transferred heat to the ambient from the gas in the exhaust gas receiver is calculated from 

the overall heat transfer coefficient, using a Nusselt-Reynolds number correlation for gas flowing in the 

pipes according to Rohsenow and Hartnett (1988). Moreover, pressure losses in the exhaust gas receiver 

are dependent on the exhaust gas mass flow rate. The in-cylinder process is described by a two-zone 

zero-dimensional model as in Merker et al. (2005). This type of model operates on per crank-angle 

basis, using the mass and energy conservation equations, along with the gas state equation, which are 

solved in their differential form, so that the parameters of the gas within the engine cylinders and 

manifolds, such as pressure, temperature and gas composition can be calculated. Combustion is 

modelled through a two-zone model, considering a zone containing the combustion products and an 

unburned mixture zone according to Merker et al. (2005). The Woschni heat transfer model, originating 

from Woschni (1967), and employed extensively in various studies, is utilised to compute the in-

cylinder gas to wall heat transfer coefficient, Merker et al. (2005). According to the Vibe model, the 

heat release rate is simulated, as described in Merker et al. (2005). The combustion products are 

evaluated utilising the method of Rakopoulos et al. (1994), due to its minimal computational time 

requirements and reasonable agreement with experiments: for the burning zone, given its volume, 

temperature, mass of fuel burnt and mass of air entrained, the concentration of each gas composition 

species discussed in Kalikatzarakis et al. (2021), can be evaluated by solving an 11 × 11 non-linear 

system obtained from 7 non-linear equilibrium equations and 4 linear atom balance equations. Thermal 

NO has been evaluated according to the extended Zeldovich mechanism, for which the reaction rates 

were selected according to Hanson and Salimian (1984). 

 
3. Hybrid Models 

 

This section will introduce our hybridisation framework, starting from a formal description of the 

DDMs. 
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3.1. Data-Driven Models 

 

To develop a fast yet accurate dynamic model of a four-stroke marine DE, a general modelisation 

framework is here defined, characterised by an input space 𝓧 ⊆ ℝ𝑑, an output space 𝓨 ⊆ ℝ𝑏and an 

unknown relation 𝜇: 𝓧 → 𝓨 to be learned, Shalev-Shwartz and Ben-David (2014), Hamilton (2020). In 

this work, 𝓧 is composed by the measurements available from the engine monitoring system (see 

Section 4), while the output space 𝓨 refers to the target features accounting for the engine fuel 

consumption 𝑚̇𝑓, turbocharger rotational speed 𝑁𝑡𝑐, turbine outlet temperature 𝑇t,out and exhaust 

manifold temperature 𝑇er. We define the model ℎ: 𝓧 → 𝓨 as an artificial simplification of 𝜇. The model 

ℎ, as described in Section 1, can be obtained with different kinds of techniques, for example, requiring 

some physical knowledge of the problem, as in PMs (see Section 2), or the acquisition of large amounts 

of data, as in DDMs or using both information (see Section 3). Between the DDMs, it is possible to 

identify two families of approaches, Shalev-Shwartz and Ben-David (2014). The first one, comprising 

traditional Machine Learning (ML) methods, needs an initial phase where the features must be defined 

a-priori from the data via feature engineering or implicit or explicit feature mapping, Shawe-Taylor and 

Cristianini (2004). The second family, which includes Deep Learning (DL) methods, automatically 

learns both the features and models from the data, Goodfellow et al. (2016). For small cardinality 

datasets and outside particular applications (e.g., computer vision and natural language processing), DL 

does not perform well since they require a large amount of data to be reliable and to outperform 

traditional ML models, Wainberg et al. (2016). In the ML, the above-mentioned can be easily mapped 

in a typical regression problem, Vapnik (1998). In fact, ML techniques aim at estimating the unknown 

relationship 𝜇 between input and output through a learning algorithm 𝒜ℋ which exploits some 

historical data to learn ℎ and where ℋ is a set of hyperparameters that characterises the generalisation 

performance of 𝒜, Oneto (2020). The historical data consists of a series of 𝑛 examples of the 

input/output relation 𝜇 and are defined as 𝒟𝑛 = {(𝒙1, 𝑦1), ⋯ , (𝒙𝑛, 𝑦𝑛)} where 𝑥 ∈ 𝓧 and 𝑦 ∈ 𝓨. 

 

This paper will leverage ML models from the Kernel Methods family called Kernel Regularised Least 

Squares (KRLS), Vovk (2013). The idea behind KRLS can be summarised as follows. During the 

training phase, the quality of the learned function ℎ(𝑥) is measured according to a loss function 

ℓ(ℎ(𝒙), 𝑦), as reported in Rosasco et al. (2004), with the empirical error 

𝐿̂𝑛(ℎ) =
1

𝑛
∑  

𝑛

𝑖=1

ℓ(ℎ(𝒙𝑖), 𝑦𝑖). (1) 

A simple criterion for selecting the final model during the training phase could then consist of simply 

choosing the approximating function that minimises the empirical error 𝐿̂𝑛(ℎ). This approach is known 

as Empirical Risk Minimisation (ERM), Vapnik (1998). However, ERM is usually avoided in ML as it 

leads to severe overfitting of the model on the training dataset. As a matter of fact, in this case, the 

training process could choose a model complicated enough to perfectly describe all training samples 

(including the noise, which afflicts them). In other words, ERM implies memorisation of data rather 

than learning from them. A more effective approach is to minimise a cost function where the trade-of 

between accuracy on the training data and a measure of the complexity of the selected model is 

achieved, Tikhonov and Arsenin (1979), implementing the Occam’s razor principle 

ℎ∗: 𝑚𝑖𝑛
ℎ

  𝐿̂𝑛(ℎ) + λ C(ℎ). (2) 

The best-approximating function ℎ∗ is chosen as the one that is complicated enough to learn from data 

without overfitting them, where C(·) is a complexity measure: depending on the exploited ML approach, 

different measures are realised. λ ∈ [0, ∞) is a hyperparameter, that must be set a-priori and is not 

obtained as an output of the optimisation procedure: it regulates the trade-off between the overfitting 

tendency, related to the minimisation of the empirical error, and the underfitting tendency, related to 

the minimisation of C(·). The optimal value for 𝜆 is problem-dependent, and tuning this hyperparameter 

is a non-trivial task, as will be discussed later in this section. In KRLS, models are defined as 

ℎ(𝒙) = 𝒘𝑇𝝋(𝒙), (3) 
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where 𝝋 is an a-priori defined Feature Mapping (FM) as reported in Shalev-Shwartz and Ben-David 

(2014), allowing to keep the structure of ℎ(𝒙) linear. 

 

The complexity of the models in KRLS is measured as 

C(ℎ) =∥ 𝒘 ∥2, (4) 

i.e., the Euclidean norm of the set of weights describing the regressor, which is a standard complexity 

measure in ML, Vovk (2013). Regarding the loss function, the square loss is typically adopted because 

of its convexity, smoothness, and statistical properties, as shown in Rosasco et al. (2004) 

𝐿̂𝑛(ℎ) =
1

𝑛
∑  

𝑛

𝑖=1

ℓ(ℎ(𝒙𝑖), 𝑦𝑖) =
1

𝑛
∑  

𝑛

𝑖=1

[ℎ(𝒙𝑖) − 𝑦𝑖]2 (5) 

Consequently, problem (2) can be reformulated as 

𝒘∗: 𝑚𝑖𝑛
𝒘

 ∑  

𝑛

𝑖=1

[𝒘𝑇𝝋(𝒙) − 𝑦𝑖]2 + λ ∥ 𝒘 ∥2. (6) 

By exploiting the Representer Theorem, Schölkopf et al. (2001), the solution ℎ∗ of the problem (6) can 

be expressed as a linear combination of the samples projected in the space defined by 𝝋 

ℎ∗(𝒙) = ∑  

𝑛

𝑖=1

𝜄𝑖𝝋(𝒙𝑖)𝑇𝝋(𝒙). (7) 

It is worth underlining that, according to the kernel trick, it is possible to reformulate ℎ∗(𝒙) without 

explicit knowledge of 𝝋, and consequently avoiding the curse of dimensionality of computing 𝝋, by 

using a proper kernel function 𝐾(𝒙𝑖 , 𝒙) = 𝝋(𝒙𝑖)𝑇𝝋(𝒙) 

ℎ∗(𝒙) = ∑  

𝑛

𝑖=1

𝜄𝑖𝐾(𝒙𝑖, 𝒙). (8) 

Several kernel functions can be retrieved in literature, such as those reported in Schölkopf (2001) and 

Cristianini and Shawe-Taylor (2000), each with a particular property that can be exploited the problem 

under exam. Usually, the Gaussian kernel is chosen 

𝐾(𝒙𝑖, 𝒙) = 𝑒−γ∥∥𝒙𝑖−𝒙∥∥
2
, (9) 

because of the theoretical reasons described in Keerthi and Lin (2003) and Oneto et al. (2015), and 

because of its effectiveness as reported in Fernández-Delgado et al. (2014) and Wainberg et al. (2016). 

γ is another hyperparameter that regulates the solution’s nonlinearity that must be tuned, as explained 

later. The Gaussian kernel can implicitly create an infinite dimensional 𝝋 and thanks to this, the KRLS 

can learn any possible function, Keerthi and Lin (2003). The KRLS problem of Eq. (6) can be 

reformulated by exploiting kernels as 

𝜾∗: 𝑚𝑖𝑛
𝜾

  ∥ 𝑄𝜾 − 𝑦 ∥2+ λ𝜾𝑇𝑄𝜾, (10) 

where 𝑦 = [𝑦1, … , 𝑦𝑛]𝑇 , 𝜾 = [𝜄1, … , 𝜄𝑛]𝑇, the matrix 𝑄 such that 𝑄𝑖,𝑗 = 𝐾(𝒙𝑗, 𝒙𝑖), and the identity matrix 

𝐼 ∈ ℝ𝑛×𝑛. By setting the gradient equal to zero w.r.t. 𝜾 it is possible to state that 

(𝑄 + λ𝐼)𝜾∗ = 𝑦, (11) 

which is a linear system for which effective solvers have been developed over the years, 

allowing it to cope with even very large sets of training data, Young (2003). 

 
3.2. Model Selection and Error Estimation 

 

The problems that still must be faced are how to tune the hyperparameters (λ and γ) and estimate the 

performance of the final model. Model Selection (MS) and Error Estimation (EE) deal precisely with 

these problems, Oneto (2020). Researchers and practitioners commonly use resampling techniques 

since they work well in most situations, and therefore we will exploit them in this work. Other 

alternatives exist based on the Statistical Learning Theory, but they tend to underperform resampling 

techniques in practice, as demonstrated by Oneto (2020). Resampling techniques are based on a simple 
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idea: the original dataset 𝒟𝑛 is resampled once or many (𝑛𝑟) times, with or without replacement, to 

build three independent datasets called learning, validation and test sets, respectively ℒ𝑙
𝑟, 𝒱𝑣

𝑟, and 𝒯𝑟
𝑟, 

with 𝑟 ∈ {1, ⋯ , 𝑛𝑟} such that 

ℒ𝑙
𝑟 ∩ 𝒱𝑣

𝑟 =⊘, ℒ𝑙
𝑟 ∩ 𝒯𝑡

𝑟 =⊘, 𝒱𝑣
𝑟 ∩ 𝒯𝑡

𝑟 =⊘, ℒ𝑙
𝑟 ∪ 𝒱𝑣

𝑟 ∪ 𝒯𝑡
𝑟 = 𝒟𝑛. (12) 

Subsequently, to select the best hyperparameters’ combination ℋ = {λ, γ} considering a set of possible 

ones 𝓴 = {ℋ1, ℋ2, ⋯ } for the algorithm 𝒜ℋ or, in other words, to perform the MS phase, the following 

procedure must be applied: 

ℋ∗: arg 𝑚𝑖𝑛
ℋ∈𝓴

 ∑  

𝑛𝑟

𝑟=1

M(𝒜ℋ(ℒ𝑙
𝑟), 𝒱𝑣

𝑟), 

 

(13) 

where ℎ = 𝒜ℋ(ℒ𝑙
𝑟) is a model built with the algorithm 𝒜 with its set of hyperparameters ℋ and with 

the data ℒ𝑙
𝑟, and where 𝑀(ℎ, 𝒱𝑣

𝑟) is a desired metric. Since the data in ℒ𝑙
𝑟 is independent of the data in 

𝒱𝑣
𝑟, ℋ∗ should be the set of hyperparameters that allows achieving a small error on a data set that is 

independent of the training set. Then, to evaluate the performance of the optimal model, which is ℎ𝒜
∗  = 

𝒜ℋ∗(𝒟𝑛) or, in other words, to perform the EE phase, the following procedure must be applied: 

M(ℎ𝒜
∗ ) =

1

𝑛𝑟
∑  

𝑛𝑟

𝑟=1

M(𝒜ℋ∗(ℒ𝑙
𝑟 ∪ 𝒱𝑣

𝑟), 𝒯𝑡
𝑟) (14) 

Since the data in ℒ𝑙
𝑟 ∩ 𝒱𝑣

𝑟 are independent from the ones in 𝒯𝑡
𝑟, M(ℎ𝒜

∗ ) is an unbiased estimator of the 

true performance, measured with the metric M, of the final model, Oneto (2020). In this work, we will 

rely on Complete k-fold cross validation, which means setting 

𝑛𝑟 ≤ (
𝑛
𝑘

) (
𝑛 −

𝑛

𝑘
𝑘

) , 𝑙 = (𝑘 − 2)
𝑛

𝑘
, 𝑣 = 𝑡 =

𝑛

𝑘
, (14) 

and resampling without replacement. Note that, in our application, we have a further constraint in terms 

of dependence in time between the samples. For this reason, when resampling the data form 𝒟𝑛we keep 

data of different periods in ℒ𝑙
𝑟, 𝒱𝑣

𝑟, and 𝒯𝑡
𝑟As reported in Hamilton (2020). For what concerns the 

applied metric M, we will rely on the Mean Absolute Error (MAE), the Mean Absolute Percentage of 

Error (MAPE), and the Pearson Product-Moment Correlation Coefficient PPMCC according to Willmott 

and Matsuura (2005). Since in regression, it is pretty hard to synthesise the quality of a predictor in a 

single metric, we will also rely on visualisation techniques like the scatter plot and histograms, Shao et 

al. (2017). 

 

3.2. Hybrid Models 

 

In this section, we depict a framework able to consider both the physical knowledge about the problem 

encapsulated in the PMs of Section 2 and the information hidden in the available data as the DDMs of 

Section 3.1. For this purpose, we will start from a simple observation: an HM, based on the previous 

observation, should learn from the data without being too different or too far away from the PM. From 

the Data Science and ML point of view, this requirement can be straightforwardly mapped to a typical 

ML Multi Task Learning (MTL) problem, Baxter (2000), Caruana (1997), Evgeniou and Pontil (2004), 

Bakker and Heskes (2003), Argyriou et al. (2008). MTL aims at simultaneously learning two concepts, 

in this case the PM and the available data, through a learning algorithm 𝒜ℋ  which exploits the data in 

𝒟𝑛 to learn a function h which is both close to the observation, the data 𝒟𝑛 and the PM, namely its 

forecasts. Consequently, in this case, a slightly different scenario is presented where the dataset is 

composed of a triple of points 𝒟𝑛= {(𝒙1, 𝑦1, 𝑝1), ⋯ , (𝒙𝑛, 𝑦𝑛 , 𝑝𝑛)} where 𝑝𝑖 is the output of the PM in 

the point 𝒙𝑛with 𝑖 ∈ {1, ⋯ , N}. The target is to learn a function able to approximate both 𝜇, namely the 

relation between the input 𝒙 ∈ 𝓧 and the output 𝑦 ∈ 𝓨, and the PM, namely, the relation between the 

input and the output of the PM. Two tasks must be learned, and for this purpose, there are two main 

approaches: the first approach is called Shared Task Learning (STL) and the second Independent Task 

Learning (ITL). While the latter independently learn a different model for each task, the former aims to 

learn a model that is common between all tasks. A well-known weakness of these methods is that they 

tend to generalise poorly on one of the two tasks, Baxter (2000). In this work, we show that an appealing 
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approach to overcome such limitations is provided by MTL as suggested by Baxter (2000) and Argyriou 

et al. (2008). This methodology leverages the information between the tasks to learn more accurate 

models. To apply the MTL approach to this case, it is possible to modify the KRLS problem of Eq. (6) 

to simultaneously learn a shared model and a task specific model which should be close to the shared 

model. In this way, we obtain a model which can simultaneously learn the two tasks. The model we are 

interested in is the shared model, while the task specific models are just used as a tool. A shared model 

is defined as ℎ(𝒙) = 𝒘𝑇𝝋(𝒙), and two task specific models as 
 

ℎ𝑖(𝒙) = 𝒘𝑖
𝑇𝝋(𝒙),      𝑖 ∈ {𝑦, 𝑝}. (15) 

Then, it is possible to state the MTL version of Eq. (6), as follows 

𝒘∗, 𝒘𝑦
∗ , 𝒘𝑝

∗ : 𝑚𝑖𝑛
𝒘,𝒘𝑦,𝒘𝑝

∑  

𝑛

𝑖=1

[𝒘𝑇𝝋(𝒙) − 𝑦𝑖]2 + [𝒘𝑇𝝋(𝒙) − 𝑝𝑖]
2

+ ∑  

𝑛

𝑖=1

[𝒘𝑦
𝑇𝝋(𝒙) − 𝑦𝑖]

2
+ [𝒘𝑝

𝑇𝝋(𝒙) − 𝑝𝑖]
2

+λ ∥ 𝒘 ∥2+ 𝝒(∥∥𝒘 − 𝒘𝑦∥∥
2

+ ∥∥𝒘 − 𝒘𝑝∥∥
2

)

 (16) 

where λ is the usual regularisation of KRLS and 𝝒 ∈ [0, ∞), instead, is another hyperparameter that 

forces the shared model to be close to the task specific models. Basically, the MTL problem of Eq. (16) 

is a concatenation of three learning problems solved with KRLS plus a term that tries to keep a relation 

between all the three different problems. By exploiting the kernel trick as in KRLS, it is possible to 

reformulate the problem (16), as follows 
 

𝜾∗: 𝑚𝑖𝑛
𝜄

 

∥
∥
∥
∥
∥
∥

[

𝑄 𝑄 0 0
𝑄 𝑄 0 0
0 0 𝑄 0
0 0 0 𝑄

] 𝜾 − [

𝒚
𝒑
𝒚
𝒑

]

∥
∥
∥
∥
∥
∥

2

+ 𝜾𝑇 [

(λ + 2𝜘)𝑄 (λ + 2𝜘)𝑄 −𝜘𝑄 −𝜘𝑄
(λ + 2𝜘)𝑄 (λ + 2𝜘)𝑄 −𝜘𝑄 −𝜘𝑄

−𝜘𝑄 −𝜘𝑄 𝜘𝑄 0
−𝜘𝑄 −𝜘𝑄 0 𝜘𝑄

] 𝜾 (17) 

where 𝒑 = [𝑝1, … , 𝑦𝑝𝑛]𝑇. 

 

The solution of this problem is again equivalent to solving a linear system 

[

𝑄 + (λ + 2𝜘)𝐼 𝑄 + (λ + 2𝜘)𝐼 −𝑥𝐼 −𝜘𝐼
𝑄 + (λ + 2𝜘)𝐼 𝑄 + (λ + 2𝜘)𝐼 −𝑥𝐼 −𝜘𝐼

−𝜘𝐼 −𝜘𝐼 𝑄 + 𝜘𝐼 0
−𝜘𝐼 −𝜘𝐼 0 𝑄 + 𝜘𝐼

] 𝜾∗ = [

𝒚
𝒑
𝒚
𝒑

] (18) 

The function that the authors are interested in, the shared one, can be expressed as follows 

ℎ(𝒙) = 𝒘𝑇𝝋(𝒙) = ∑  

𝑛

𝑖=1

(𝜄𝑖 + 𝜄𝑖+𝑛)𝐾(𝒙𝑖, 𝒙). (19) 

4. Data Description 

 

Data from a naval vessel equipped with a MAN B&W V28-33D medium speed four-stroke DE, Table 

I,  has been exploited in this work.  

 

Table I: Main characteristics of the MAN 12 V28-33D engine 

Feature Value Unit Feature Value Unit 

Cylinders V12, 16, 20 [-] Brake power at 60% MCR 3240 [kW] 

Bore diameter 280 [mm] Brake power at 80% MCR 4320 [kW] 

Stroke length 330 [mm] Brake power at MCR  5400 [kW] 

Number of cylinders 12 [-] Mean Effective Pressure 26.9 [bar] 

Revolutions per cycle 2 [-] Mean Piston Speed 11 [m/s] 

Engine speed at MCR 1000 [rpm] Specific Fuel consumption 191 [g/kWh] 
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The DE is installed on board one of the Holland Class Oceangoing Patrol Vessels. The propulsion 

system of the vessel consists of two shafts with Controllable Pitch Propellers (CPP), a gearbox, and one 

DE per shaft. The vessel is equipped with a data logging system used both for on board monitoring and 

control and for land-based performance analysis. The dataset utilised consists of two different data 

sources, Table II: standard measurements (steady-state) performed during Shop Trials (ST) that were 

used to calibrate the PM model (see Section 2), Kalikatzarakis et al. (2021), and operational data 

originating from the vessel’s data logging system, used by the ship operator for performance monitoring 

purposes, which has been exploited to evaluate the performance of the PM model in dynamic conditions 

(see Section 2), and training, validate, and test the DDMs and HMs (see Sections 3.1 and 3).  

 

Table II: Table captions above table 

Variable Name Symbol Unit 

Timestamp 𝑡 [hh:mm:ss] 

Governor Position 𝐺𝑝 [-] 

Engine Rotational Speed 𝑛𝑒 [rpm] 

Engine Torque 𝑀𝑒 [kNm] 

Charge Air Temperature at Scavenging Receiver 𝑇𝑠𝑐 [℃] 

Charge Air Temperature at Compressor Inlet 𝑇c,in [℃] 

Charge Air Temperature at Compressor Outlet 𝑇c,out [℃] 

Exhaust Gas Temperature at Turbine Outlet 𝑇𝑡,out [℃] 

Main Bearing Temperature 𝑇b,1 [℃] 

Main Bearing Temperature 𝑇b,2 [℃] 

Main Bearing Temperature 𝑇b,3 [℃] 

Main Bearing Temperature 𝑇b,4 [℃] 

Main Bearing Temperature 𝑇b,5 [℃] 

Main Bearing Temperature 𝑇b,6 [℃] 

Main Bearing Temperature 𝑇b,7 [℃] 

Lube Oil Compartment No. 1 Temperature 𝑇l,1 [℃] 

Lube Oil Compartment No. 2 Temperature 𝑇l,2 [℃] 

Lube Oil Compartment No. 3 Temperature 𝑇𝑙,3 [℃] 

Lube Oil Compartment No. 4 Lube Oil 𝑇l,4 [℃] 

Lube Oil Compartment No. 5 Lube Oil 𝑇𝑙,5 [℃] 

Lube Oil Engine Inlet Temperature 𝑇le,in [℃] 

Lube Oil Engine Outlet Temperature 𝑇le,out [℃] 

High-Temperature Sea Cooling Water - Inlet 𝑇ht,in [℃] 

High-Temperature Sea Cooling Water - Outlet 𝑇ht,out [℃] 

Low-Temperature Sea Cooling Water - Inlet 𝑇lt,in [℃] 

Low-Temperature Sea Cooling Water - Outlet 𝑇lt,out [℃] 

Fuel Oil Supply Temperature 𝑇𝑓 [℃] 

Charge Air Temperature at Compressor Outlet – Bank A 𝑇c,out
A  [℃] 

Charge Air Temperature at Compressor Outlet – Bank B 𝑇c,out
B  [℃] 

Charge Air Temperature at Compressor Inlet – Bank A 𝑇c,in
A  [℃] 

Charge Air Temperature at Compressor Outlet – Bank B 𝑇c,out
B  [℃] 

Charge Air Engine Inlet Pressure 𝑝ca,in [Pa] 

Charge Air Engine Inlet Temperature 𝑇ca,in [℃] 

Fuel Consumption 𝑚̇𝑓 [kg/h] 

TC rotational speed 𝑁tc [rpm] 

Turbine Outlet Temperature 𝑇t,out [℃] 

Exhaust Receiver Temperature 𝑇er [℃] 
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5. Experimental Results 

 

In this section, we test the models developed in Sections 2 and Sections 3 on the data described in 

Section 4, comparing the performance of PMs, DDMs, and HMs in dynamic operational conditions. 

First, we report the hyperparameters ranges for the DDM and HM. 

 

For the DDM, the set of hyperparameters tuned during the MS phase are ℋ = {λ, γ} chosen in 𝓴 = 

{10−4.0, 10−3.8,⋯, 10+4.0} × {10−4.0, 10−3.8,⋯, 10+4.0}. For the HM, the set of hyperparameters tuned during 

the MS phase are ℋ = {λ, γ, 𝜘} chosen in 𝓴 = {10−4.0, 10−3.8,⋯, 10+4.0} × {10−4.0, 10−3.8,⋯, 10+4.0} × 

{10−4.0, 10−3.8,⋯, 10+4.0}. 

 

All the tests have been repeated 30 times, and the average results are reported together with their t-

student 95% confidence interval to ensure the statistical validity of the results. Table III reports the 

performance (MAE, MAPE, and PPMCC) of the different models (PM, DDM, and HM) for the different 

targets using to predict. 

Table III: Table captions above table 

Model MAE [℃] MAPE [%] PPMCC MAE [℃] MAPE [%] PPMCC 

Fuel Consumption 𝑚̇𝑓 [kg/h] Turbine Outlet Temperature 𝑇t,out  [℃] 

PM 76.62 ± 4.37 26.93 ± 1.54 0.98 ± 0.01 9.66 ± 0.57 2.53 ± 0.13 0.92 ± 0.01 

DDM 24.11 ± 1.39 6.30 ± 0.38 0.99 ± 0.01 3.80 ± 0.20 0.97 ± 0.05 0.99 ± 0.01 

HM 18.64 ± 0.98 4.89 ± 0.17 1.00 ± 0.01 3.18 ± 0.22 0.81 ± 0.05 0.99 ± 0.01 

TC Rotational speed 𝑁tc [rpm] Exhaust Manifold Temperature 𝑇er (℃) 

PM 2090 ± 78.43 15.39 ± 0.75 0.97 ± 0.01 19.92 ±1.06 4.81 ± 0.15 0.96 ± 0.01 

DDM 302.6 ± 21.42 2.18 ± 0.15 1.00 ± 0.01 5.02 ± 0.19 1.13 ± 0.04 0.99 ± 0.01 

HM 214.44 ± 9.54 1.53 ± 0.08 1.00 ± 0.01 3.94 ± 0.24 0.88 ± 0.05 0.99 ± 0.01 

 

A substantial decrease in the errors can be observed from Table III across all the targets. Considering 

𝑚̇𝑓, we can observe a MAPE decrease from 26.93% (PM) to 6.30% (DDM), to 4.89% (HM). The same 

general trend can be reported for 𝑁tc, 𝑇t,out, and 𝑇er. 

 

Figs.2-5 report the scatter plot and examples of the trend in time for the different targets using PM, 

DDMs, and HMs. Compared to the PM, the proposed DDMs are more accurate in predicting the four 

targets. In addition, it is possible to observe that DDMs are capable of fully capturing the transient 

behaviour of the fuel consumption, Fig.2d, the turbocharger rotational speed mechanical transient,  

Fig.3d, and the thermodynamic transients of both the turbine outlet gases, Fig.4d, and exhaust manifold, 

Fig.5d. Also, Figs.2-5 show that the DDMs are characterised by both lower bias and lower variance 

compared to the PM. 

 

Although DDMs are computationally demanding in the training phase, they are characterised by lower 

computational complexity in the feed-forward phase as they just require matrix manipulation methods. 

The combination of both accurate and fast predictions makes DDMs an ideal candidate for real-time 

performance and condition estimation. However, the necessary data to reach this level of performance 

is rather high, as reported in Cipollini et al. (2018a, 2018b), making this type of model applicable only 

after extensive measurement campaigns have been undertaken. In addition, another disadvantage of 

DDMs is the lack of interpretability as it is not supported by any physical interpretation. To overcome 

those limitations, we proposed the use of HMs. These allow the exploitation of both the mechanistic 

knowledge of the underlying physical principles from the PM and any available measurements taken 

during the operation of the vessel. An advantage of the HMs is their ability to exploit the coarse but 

physically supported predictions of the PM. Therefore, HMs have much smaller requirements regarding 

the use of actual measurements for the learning phase. While they will still require a measurement 

campaign to be deployed, they can be reliably used already after a few months worth of measurements, 

in contrast with pure DDMs that would require at least half a year of available data. 
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(a) Scatter Plot - PM (b) Trend in time - PM 

 
(c) Scatter Plot - DDM (d) Trend in time - DDM 

 
(e) Scatter Plot - HM (f) Trend in time - HM 

Fig.2: Scatter plot and trend in time for the 𝑚̇𝑓 (kg/h) output feature - PMs, DDMs, and HMs. 

 

The novelty introduced by the HMs led to more accurate predictions of the four targets compared to 

the rest of the models (PM and DDMs), as can be seen from Table III. 
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(a) Scatter Plot - PM (b) Trend in time - PM 

 
(c) Scatter Plot - DDM (d) Trend in time - DDM 

 
(e) Scatter Plot - HM (f) Trend in time - HM 

Fig.3: Scatter plot and trend in time for the 𝑁tc (rpm) output feature - PMs, DDMs, and HMs. 
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(a) Scatter Plot - PM (b) Trend in time - PM 

 
(c) Scatter Plot - DDM (d) Trend in time - DDM 

 
(e) Scatter Plot - HM (f) Trend in time - HM 

Fig.4: Scatter plot and trend in time for the 𝑇t,out  (℃) output feature - PMs, DDMs, and HMs. 
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(a) Scatter Plot - PM (b) Trend in time - PM 

 
(c) Scatter Plot - DDM (d) Trend in time - DDM 

 
(e) Scatter Plot - HM (f) Trend in time - HM 

Fig.5: Scatter plot and trend in time for the 𝑇er (℃) output feature - PMs, DDMs, and HMs. 

 
6. Conclusions 

 

In this work, the authors focused their attention on demonstrating a novel modelling framework 

for the hybridisation of physical and data driven models. The proposed framework can deliver 

accurate, reliable, and computationally inexpensive models suitable for real-time performance 

assessment and condition monitoring applications. State-of-the-art data-driven methods have 

been presented, able to exploit the information provided by on-board measurements from one 

Holland Class Oceangoing Patrol Vessel, provided by the Royal Netherlands Navy and Damen 

Schelde Naval Shipbuilding. First, a 0D physical model of a medium speed two-stroke diesel 
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engine (MAN 12 V28-33D) was described. Data-driven models have been discussed and 

proposed in Section 3.1 to predict the engine’s behaviour, with a focus on four different targets: 

fuel consumption, turbocharger rotational speed, turbine outlet temperature, and exhaust 

receiver temperature. The models proved to be very accurate, with the enhanced capability of 

exploiting time-series information from the past, achieving relative errors below 1% on the 

validation data for the turbine outlet temperature and exhaust receiver temperature. However, 

due to their nature, these data-driven models are hard to interpret. To overcome the limitations 

of both the physical and the data-driven models, we proposed a hybrid approach that can 

consider past information, capable of improving accuracy, easily interpreted, and have low 

computational time requirements. The hybridisation of physical and data driven models proved 

to be highly accurate, achieving even lower errors when compared to the simple data-driven 

approach. These hybrid models can potentially also be used to improve the accuracy of 

predictions for operation in other conditions than the measured ones, as purely data-driven 

models cannot be used for extrapolation, but the physical model contribution will improve 

hybrid model performance during extrapolation. 
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