

Delft University of Technology

Intelligent control systems
Learning, interpreting, verification
Lin, Qin

DOI
10.4233/uuid:7b17a968-1414-4b84-bbf3-9a0c1197e1fd
Publication date
2019
Document Version
Final published version
Citation (APA)
Lin, Q. (2019). Intelligent control systems: Learning, interpreting, verification. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:7b17a968-1414-4b84-bbf3-9a0c1197e1fd

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:7b17a968-1414-4b84-bbf3-9a0c1197e1fd
https://doi.org/10.4233/uuid:7b17a968-1414-4b84-bbf3-9a0c1197e1fd

INTELLIGENT CONTROL SYSTEMS

LEARNING, INTERPRETING, VERIFICATION

INTELLIGENT CONTROL SYSTEMS

LEARNING, INTERPRETING, VERIFICATION

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Thursday 5 September 2019 at 10:00 o’clock

by

Qin LIN

Master of Engineering in Control Theory and Control Engineering, Tongji University,
China

born in Foochow, China

This dissertation has been approved by the promotors.

Composition of the doctoral committee:
Rector Magnificus chairperson
Prof.dr.ir. J. van den Berg Delft University of Technology, promotor
Dr.ir. S.E. Verwer Delft University of Technology, copromotor

Independent members:
Prof.dr. C. Witteveen Delft University of Technology
Prof.dr. F. W. Vaandrager Radboud University Nijmegen
Prof.dr. J. M. Dolan Carnegie Mellon University, USA
Prof.dr. A. P. Mathur Singapore University of Technology and Design, Singapore

Purdue University, USA
Dr. H. H. Hansen Delft University of Technology

This thesis was partially supported by NWO.

Copyright ©2019 by Qin Lin
All rights reserved

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

SIKS Dissertation Series No. 2019-23 The research reported in this thesis has been
carried out under the auspices of SIKS, the Dutch Research School for Information and
Knowledge Systems.

Cover design by Peilin Lin

http://repository.tudelft.nl/

For my mother

ACKNOWLEDGEMENTS

Chinese academics often find themselves pursuing what is sometimes called the
“three immortalities”: moral worth, significant work, and persuasive word (三不朽: 立
德、立功、立言).1 These values act as a loadstar, guiding scholars as they strive to
achieve meaningful lives. Throughout this journey, I have relied on my faith to keep me
grounded. Buddhism, Daoism, and Confucianism have guided me through stress. I am
the person I am today thanks to their nourishing influence. The hope driving the pursuit
the work and the word is that the fruits of our labor prove to be lasting contributions
to our field and our communities, outliving us and becoming a foundation upon which
the next generation of researchers can stand. My greatest ambition is that this thesis
provides another scholar with a useful new perspective and foundation that they can
build upon in their own work. The far-reaching goal of “immortality” seems achievable
in such a small way. For me, research has been a labor of love bringing me simple joys
and self-satisfaction.

TO MR. S. T. COLERIDGE

Midway the hill of science, after steep
And rugged paths that tire the’ unpractised feet,
A grove extends; in tangled mazes wrought,
And filled with strange enchantment:—dubious shapes
Flit through dim glades, and lure the eager foot
Of youthful ardour to eternal chase.

Anna Laetitia Barbauld (1743–1825)
I would like to express my deep gratitude to my daily supervisor, Dr. Sicco Verwer.

With his patient guidance, I first made a start in the field of machine learning. It was his
encouragement that first brought me to the research field combining machine learning
and verification in which I hope to develop a new line of research. There are much more
than these two things I need to thank him in the past four years staying together with
him as colleagues and friends.

I want to express my sincere appreciation to my promotor Prof. Jan van den Berg.
Jan always has lots of experiences and stories to inspire people around him. He pushed
me to think deeper in research and taught me how to be a better person. He is the first
person to ever call me a scientist, and I will never forget the pride those words made me
feel. He encouraged us to cherish our life by telling his living and teaching experience in
Africa.

1called 3W in the essay, Immortality–My Religion, written by Hu Shih

1

0
2

I wish to acknowledge the colleagues I work with on the autonomous driving topic -
Prof. Jun Wang and Yihuan Zhang at Tongji University, China. Thanks for their trust and
interest in my research and for offering me the opportunity to apply my techniques. I am
particularly grateful for the opportunity given by Prof. John M. Dolan at Carnegie Mellon
University. Thanks for his interest in my work on verifiable learning-based models. I
am honored to have the opportunity to continue my work with you. I look forward to
exploring more exciting research in this field with you.

I would like to thank the collaborators from SUTD I worked with on the CPS security
topic: Prof. Aditya Mathur, Adepu Sridhar, and Prof. Robert Kooij. I always remember
Aditya’s encouraging words at the conference. I am very impressed and inspired by his
ambitions and diligence. It is sad that I have not found an opportunity to work with
him more closely. But I hope to continue the collaboration in the near future. Thanks
to Adepu for teaching me lots of knowledge about CPS security and the SWaT testbed.
Thanks to Robert for connecting me with SUTD and many pieces of advice he offered.

I thank all other faculty colleagues: Pieter, Stjepan, Christian, Zeki, Inald, Jan, Jos,
and Phil in Cyber Security group for introducing me to a world knowledge well beyond
the scope of this thesis. I appreciate every joyful day spent with my groupmates: Nino,
Chris, Azqa, Mark, Vincent, Harm, Oguzhan, Majid, Gamze, Chibuike, Laurens, and Zhi-
jie. Many thanks to our secretary, Sandra Wolf, for all help related to my work and my
personal life. Special thanks go to Chris, Sara, and Prof. John Dolan for many rounds of
proofreading. Sara offered great help to rephrase many Eastern philosophical sayings to
become understandable for Western people. Many thanks to Laurens, Sicco, Mrs. Ankie
Verwer, and Mr. Piet Verwer for their kind help with the Dutch translation.

I don’t know who I would be without my friends: shibei Wu, Miao Sha, Xucheng Yin,
Cong Liu, Shiwei Bao, Kaixin Ding, Yi Guo, Jun Liu, Xiaoran Liu, Jing Wang, Zijin Ren,
Yazhou Yang, Ding Ding, Lingling Lao, Yu Xin, Yingqian, Xiuxiu Zhan, Zixuan Zheng, and
Zina Wang. Special thanks go to my piano teacher Jia Qu for the joy of playing music with
her and for the interesting discussion about music and math harmony. Special thanks
go to Peilin for designing the lovely cover of this thesis. I thank Shubin for the kind help
of cover photo adjustment.

I would like to thank Prof. Frits Vaandrager, Prof. Cees Witteveen, and Dr. Helle
Hansen for their invaluable comments and kind service as committee members.

I still remember the rainy day my parents and my grandmother said goodbye to me
when I was leaving my hometown for the Netherlands. I do hope time slows down a bit
more then I will share more joyful moments with you in the future.

My last and deepest gratitude goes to my wife, Hui. She always stands by me and
remains tolerant through all my absences and impatience. She was the most worried
person when I went travelling far from home, when I got sick, and when I worked too
hard. She gave me support and help, discussed ideas and prevented me from taking
several wrong turns as my best friend and mentor. Her adventurous spirit and her flexi-
bility for starting new lives in multiple countries encouraged and inspired me. She is my
greatest love and the partner for life anyone could ask for.

Karma in Buddhism is a spiritual principle stating that good intent and good deeds
contribute to good future lives. Buddhist cosmology says there are countless Buddhas
and countless Sahasra (meaning “one thousand"; in modern parlance it is roughly a “so-

0
3

lar system") worlds. I must have good intent and good deeds in my past life to meet
all of you. I cherish the fortune to meet you in the same Sahasra among the countless
universes.

Qin Lin
呼牛斋,2 the U.S.

Aug. 2019

2The name of my reading room, adapted from the word呼牛唤马(Hu niu huan ma) in the book《庄子•天
道》(Zhuangzi, The Way of Heaven). It is a Chinese idiom meaning that it doesn’t matter you call me a cow
or a horse. It’s a metaphor representing the philosophy that we should never take others’ insults or praises
seriously.

CONTENTS

Acknowledgements 1

List of Figures 9

List of Tables 13

1 Introduction 15
1.1 Motivation for hybrid system learning 16

1.1.1 Complexity bottleneck of conventional controller design 16
1.1.2 Intelligent control system: opportunities and challenges 18
1.1.3 Related work . 21

1.2 Conceptual approaches . 22
1.3 Contributions . 23
1.4 Outline . 24

2 Background 27
2.1 Introduction . 27
2.2 Time-driven and event-driven systems 27

2.2.1 Discrete event systems . 27
2.2.2 Non-timed automata . 29
2.2.3 Probabilistic automata . 32
2.2.4 Timed automata . 32

2.3 Hybrid dynamical systems . 33
2.3.1 Hybrid automata. 34

2.4 Automata learning . 36
2.4.1 Learning from positive and negative data 36
2.4.2 Learning from positive example 46
2.4.3 Hybrid automata learning . 47

2.5 Hybrid system verification . 49
2.5.1 Reachability for hybrid dynamics 49

2.6 Summary . 55

3 Learning hybrid automata for imitation control 57
3.1 Introduction . 58
3.2 Car-following model identification . 60
3.3 State machine learning . 61

3.3.1 Probabilistic deterministic real timed automaton 61
3.3.2 Data description . 62
3.3.3 Data pre-processing . 63
3.3.4 Learning PDRTAs . 64

5

0
6 CONTENTS

3.4 State sequence clustering . 67
3.4.1 Common strings . 68
3.4.2 Hierarchical string clustering . 68
3.4.3 On-line inference . 70

3.5 Experimental results . 70
3.5.1 Model interpretation. 71
3.5.2 Competing methods . 73

3.6 A human-like cruise controller . 77
3.7 Conclusion . 78

4 Learning auto-regressive dynamical models using regression automata 81
4.1 Introduction . 82
4.2 Data preprocessing . 83

4.2.1 Discretization . 83
4.2.2 Stationarity and drift model . 84
4.2.3 Regression automata. 85
4.2.4 Evidence-driven state-merging 86
4.2.5 Model smoothing . 89
4.2.6 Sliding window length . 90

4.3 Experiments . 91
4.3.1 Typical methods for comparison 91
4.3.2 Evaluation metrics . 91
4.3.3 Experiment results . 92
4.3.4 Learning and model complexity 95

4.4 Conclusion . 96

5 Learning automata for perception and control 97
5.1 Introduction . 98
5.2 Related work . 99

5.2.1 Driving behavior classification . 100
5.2.2 Car-following control . 101

5.3 Proposed method . 102
5.3.1 Scenario definition and extraction 102
5.3.2 Behavior model . 103
5.3.3 Model predictive control . 106

5.4 Experimental results . 108
5.4.1 Classification evaluation . 109
5.4.2 Lane change prediction . 110
5.4.3 Car-following testing results . 112

5.5 Conclusions. 114

6 Learning automaton for diagnosing a control system 117
6.1 Introduction . 118
6.2 Related work . 120
6.3 Introduction to SWaT and the dataset. 121

6.3.1 Attack scenarios . 123

CONTENTS
0

7

6.4 Signal processing . 124
6.4.1 Denoising . 125
6.4.2 Segmentation . 125
6.4.3 Alignment . 125

6.5 TABOR Learning . 127
6.5.1 Probabilistic deterministic real timed automaton 127
6.5.2 Learning PDRTA . 128
6.5.3 Learning bayesian network . 130

6.6 Experiments . 132
6.6.1 Evaluation . 132
6.6.2 Discussion . 136

6.7 Conclusion and future work. 137

7 Verification of learning-based hybrid control system 139
7.1 Introduction . 140
7.2 Related work . 141
7.3 MOHA: An hybrid automaton model . 142
7.4 Hybrid model checker . 143

7.4.1 SpaceEx . 143
7.4.2 Translator . 144

7.5 Modeling and experiments . 146
7.6 Conclusion . 151

8 Conclusion, reflection, and future work 153
8.1 Conclusion . 153
8.2 Reflection . 155
8.3 Future work . 157

Bibliography 159

Summary 177

Samenvatting 179

Curriculum Vitæ 181

SIKS dissertation series 185

LIST OF FIGURES

1.1 Closed-loop system in conventional control theory 17
1.2 The system hierarchy of the intelligent controller studied in this dissertation 22

2.1 Discretization from a speed record . 28
2.2 A deterministic finite state automaton models a simplified cruise controller 30
2.3 A non-deterministic finite state automaton models a simplified cruise con-

troller . 31
2.4 A probabilistic finite state automaton models a simplified cruise controller 33
2.5 A timed deterministic finite state automaton models a simplified cruise

controller . 34
2.6 A hybrid automaton models a simplified cruise controller 35
2.7 intermediate model of construction . 38
2.8 final model of construction . 39
2.9 APTA of the input data . 40
2.10 Resulting DFA after merging the states 0 and 1 40
2.11 Resulting DFA after merging the states 2−3, 4−6, and 5−7 42
2.12 Resulting DFA after merging the states {4,6} and {0,1} 43
2.13 Resulting DFA after merging the states {2,3}−8 and {5,7}−11 43
2.14 Resulting DFA after merging the states {5,7,11}−9 and {5,7,9,11}-10 . . . 43
2.15 APTA in Blue-Fringe . 45
2.16 Probabilistic APTA of the positive input data 47
2.17 Trajectories of simulations and the reachable set 50
2.18 Reachable set in two states . 52
2.19 Reachable set without over-approximation 53
2.20 A bloating operation . 53
2.21 A further over-approximation by using a orthogonal polyhedron 53
2.22 Bloating operation for input control . 54
2.23 Face-lifting to keep same number of vertices 54

3.1 The flowchart of the proposed approach . 59
3.2 A simple example of the timed automaton computation 63
3.3 The duration distribution of car-following sequences in each dataset . . . 63
3.4 The WSS difference versus the number of clusters in I80-1 64
3.5 Discretization of time series data in I80-1 . 65
3.6 A TAPTA for the timed input sample . 65
3.7 A split of a part of the TAPTA from Figure 3.6 66
3.8 A merge operation of TAPTA after the split from Figure 3.7 66
3.9 Hierarchical clustering of frequent sub-strings 69

9

0
10 LIST OF FIGURES

3.10 Real-timed automaton learned from the whole I80-1 dataset 71
3.11 An example from one car-following sequence 72
3.12 An example of complete car-following period switching among clusters in

the I80-1 dataset . 73

4.1 SAX labeling of time series data . 84
4.2 WSS difference versus number of clusters in training data 85
4.3 Our labeling of time series data consisting of symbols and difference values 86
4.4 APTA for regression automata . 87
4.5 Red-Blue Framework . 88
4.6 PT Fitting Error vs Window Length . 91
4.7 The merged RA for the one-hour-ahead wind-speed prediction 94

5.1 Multi-lane car-following scenarios . 98
5.2 Framework of proposed method . 99
5.3 Prediction time and true positive rate of lane-change behavior in both

dataset . 111
5.4 Prediction time and false positive rate of lane-change behavior in both

dataset . 111
5.5 An example of the proposed behavior estimation method 112
5.6 An example of the car-following simulation in the I-80 dataset 114
5.7 An example of the car-following simulation in the US-101 dataset 115

6.1 Flowchart of TABOR . 119
6.2 SWaT system diagram . 122
6.3 An example of sensor attack on SWaT . 123
6.4 Denoising by an averaging processing . 125
6.5 Segmentation . 126
6.6 Alignment of the sensors and the actuators 127
6.7 TAPTA constructed from the timed input sample 128
6.8 A split of a part of the TAPTA . 129
6.9 A merge operation of TAPTA after the split from Figure 6.8 129
6.10 Timed automaton learned from LIT101 . 131
6.11 Bayesian network learned from P1 . 131
6.12 Defining true positive and false positive . 133
6.13 An example of fused results . 134
6.14 An example of the detection result from the chemical measurement sensor

AIT202 . 135
6.15 An example of detection results from the press measurement sensor PIT501 135
6.16 An example of detection results from PIT501 138

7.1 Flowchart illustrating MOHA learning . 144
7.2 Translator MO2SX . 145
7.3 Polyhedra obtained by Voronoi diagram linearization 146
7.4 An illustrative example of completing outgoing transitions in S1 of the

MOHA . 146

LIST OF FIGURES
0

11

7.5 Modelling overview of the experiments . 148
7.6 Reachable states of single mode HIT-MOHA in the highway scenario . . . 149

LIST OF TABLES

2.1 HA-DFA notation comparison . 34
2.2 Initial state characterization matrix . 37
2.3 2nd state characterization matrix . 38
2.4 3rd state characterization matrix . 38

3.1 Code book of the k-means centroids for numeric data in the I80-1 dataset 64
3.2 Mapping between timed strings and state sequences 67
3.3 Training and testing dataset . 71
3.4 Interpretation of Clusters in the I80-1 Dataset 71
3.5 Testing data error in NGSIM datasets: Helly Model 76
3.6 Testing data error in NGSIM datasets: IDM Model 76
3.7 Summary of improvement in each dataset: Helly model 77
3.8 Summary of improvement in each dataset: IDM model 77
3.9 Comparison of runtime . 77
3.10 Comparison of Simulated Trajectory . 78

4.1 Global SAX guards for the wind speed prediction task 84
4.2 k-means centroids for the wind speed prediction task 84
4.3 Comparisons of Different Preprocessing Strategies 92
4.4 One-hour-ahead Speed Prediction Performance Comparisons 93
4.5 3-hour-ahead Speed Prediction Performance Comparisons 93
4.6 6-hour-ahead Speed Prediction Performance Comparisons 93
4.7 Power Prediction Performance Comparisons 95
4.8 Improvement due to state-merging over the prefix tree in the RSME mea-

sure at different sliding window length . 96
4.9 Runtime Comparisons . 96

5.1 Scenario segmentations . 103
5.2 Features of scenario segmentation . 103
5.3 Comparison of AUCs . 109
5.4 Performance index comparison at FPR = 5% 109
5.5 Lane change prediction time τt in second . 110
5.6 Parameters in MPC . 113
5.7 Performance index comparison of MPCs . 113

6.1 Sub-model Split . 124
6.2 Comparison only using TA or BN . 134
6.3 Results of each model . 135

13

0
14 LIST OF TABLES

6.4 Points evaluation in each scenario . 136
6.5 Points based evaluation . 137
6.6 Runtime comparison . 137

7.1 Parameter settings in highway scenarios (top) and urban scenarios (bottom)147
7.2 Safety summary of all models . 149
7.3 Human likeness score comparison-multi steps 150
7.4 Human likeness score comparison-one step 150

1
INTRODUCTION

15

1

16 1. INTRODUCTION

1.1. MOTIVATION FOR HYBRID SYSTEM LEARNING
Autonomous vehicles (AVs) are on the way to take over our daily driving tasks. Peo-

ple are endowing the machine with human-level driving intelligence to perceive the sur-
rounding traffic environment, make reasonable decisions, and control the vehicle. Hu-
man driving behaviors are, however, highly complex, making them difficult to under-
stand. Obtaining accurate first-principle dynamical models needed to describe them is
often difficult. Alternatively, we can use an intelligent controller capable of learning and
mimicking a human driver that generates this behavior. A human driver can serve as a
teacher to “teach" such a controller how to drive, by providing a large amount of driving
data as input and control actions as output.

The essential task in such a system is to establish a “mapping" (actually a stimulus-
response relation) from observations of the traffic environment measured from sensors,
to control actions executed by human drivers. In order to achieve this goal, an obvious
and trivial solution would be to pre-program rules by enumerating all possible traffic
situations and applying the corresponding reactions. However, it is impractical to realize
a complete rule-based system from a highly complex traffic environment. An intelligent
controller automatically learns the underlying driving rules and continuously improves
its performance, e.g., by minimizing the difference between its own and human driving
behaviors.

A key characteristic of human driving behaviors or more general human control be-
haviors is their hierarchical or hybrid property (Buntins et al., 2013). Imagine that a
driver is attempting to merge into an adjacent lane. The complete maneuver consists
of three stages: first, the driver is following the leading vehicle in his own lane; second,
he is shifting the vehicle to the target lane; finally, he continues to follow the leading ve-
hicle in the new lane. It is evident to observe the high-level switching behaviors such as
car-following and lane change. In addition, in each stage, the continuous dynamics in
terms of longitudinal and lateral movement are observed in the low-level control. The
first goal of this thesis is learning-related: designing a proper intelligent controller to cap-
ture such heterogeneous and hybrid behaviors, which will be discussed in Chapters 3 and
4.

Safety is an important concern for promoting a wide adoption of autonomous vehi-
cles. The intelligent controller normally serves as a “black-box" impeding us from having
insightful ideas about whether and how it reacts in different situations. A strong demand
for the intelligent controller is the full exposure of its model, which should be under-
standable and verifiable for human beings. The second goal of this thesis is safety-related:
the intelligent controller should be both explainable and safe, which will be discussed in
Chapters 5, 6, and 7.

1.1.1. COMPLEXITY BOTTLENECK OF CONVENTIONAL CONTROLLER DESIGN
A controller is a device that adjusts output control signals sent to an actuator based

on the sensor signal to change the condition of a plant. Figure 1.1 shows a diagram of a
typical closed-loop system in classical control theory. Take a car’s cruise controller (CC)
for example (Nice, 2001). The controller (C) is a device designed to maintain vehicle
speed at a constant desired or reference speed (r) provided by the driver. The plant (P)
is the car, and the whole system consists of the car and the cruise controller. The system

1.1. MOTIVATION FOR HYBRID SYSTEM LEARNING

1

17

output (y) is the car’s speed, and the control command denoted by the variable (u) is the
engine’s throttle position. The block Measurement usually serves as a transducer, i.e., it
transforms the kinetic signal (car’s speed) into a digital signal for a further calculation.
The key concept of feedback control is that the input of the controller is actually the
difference (e) between the system’s output (the current speed) and the reference (the
desired speed), i.e., e = y− r. An intuitive control law of the controller is: if the output
speed is larger than we desire, the controller tries to decrease it accordingly. In practice,
we need a mathematical formula as an analytical tool to precisely describe such a control
law.

Controller Plant

Measurement

er u+

-

y

Figure 1.1: Closed-loop system in conventional control theory (Franklin et al., 1994)

The main idea of the conventional controller design is building rigorous mathemat-
ical models to describe the dynamics of the controller, the plant, and the measurement,
respectively. A differential equation, a transfer function, or a state space equation are the
three most commonly used mathematical models (Polderman and Willems, 1998). Ac-
curate physical descriptions are vital to design such models. For example, Newton’s laws
and Kirchhoff’s laws are applied to obtain differential models in mechanical systems and
electrical systems, respectively. An example state space model of a system can be defined
in the following set of equations:

ẋ(t) = f(x(t), u(t), t), x(t0) = x0 (1.1)

y(t) = g(x(t), u(t), t) (1.2)

where x is a set of state variables of the system, u the input control variable, x0 the initial
state, y the output variable. Note that, in the simple cruise control example, y and x are
both equal to the car’s speed. Many differential equations of interest in continuous-time
models do not have a closed-form solution. Computers can aid to solve these equations
numerically. Therefore, an alternative form known as difference equations replaces dif-
ferential equations in discrete sampling time as follows:

ẋ(t +1) = f(x(t), u(t), t), x(t0) = x0 (1.3)

y(t) = g(x(t), u(t), t) (1.4)

The control laws (algorithms and/or mathematical models) are realized via software
or hardware design. The first work of mathematical modeling-based controller design

1

18 1. INTRODUCTION

is dated to 1867 (Clerk, 1867; Antsaklis et al., 1993). In this work, the differential equa-
tions were used to model the dynamics and to analyze the stability of a flyball governor,
controlling the speed of an engine by regulating the amount of fuel admitted, so as to
maintain a near-constant speed, irrespective of the load or fuel-supply conditions.

To make a solid and intuitive example for a vehicle system, let us consider a dynam-
ical control law in an adaptive car-following scenario.

v̇ f =C1 · (vl − v f)+C2 ·
(
(xl −x f)−D

)
(1.5)

and

D(t) =α+β · v f (1.6)

where x f and v f are state variables of the host vehicle, and xl and vl are observations
from the environment (namely the lead vehicle in this case). These can be considered
as uncontrolled input, and D is the desired relative distance. The control output is quite
straightforward as a linear combination of relative speed, relative distance, and the host
vehicle’s speed. Intuitively speaking, acceleration as a large control action is needed,
when the relative speed and the difference between relative distance and desired relative
distance are positive and large. Conversely, the controller conducts deceleration when
the aforementioned two difference values are negative. The desired distance is linearly
dependent on the current speed of the ego vehicle (i.e., our car). For example, we need a
relatively large desired relative distance when we are driving fast to enhance the safety.

Note that, in this case, the form of the equations that map the observations xl , vl , x f ,
v f to the control output v̇ f is assumed to be known a priori; only the parameters of the
equations are unknown.

Mathematically modelling, as a first-principle design, has been a bottleneck of the
conventional controller design due to increasing complexities of control systems. A
more flexible approach is needed to model the control behaviors by approximating the
input and output mapping without understanding the detailed physical processes.

1.1.2. INTELLIGENT CONTROL SYSTEM: OPPORTUNITIES AND CHALLENGES
The notion of intelligent control systems (ICS) was developed in the work of K.S. Fu in

the 70’s (Fu, 1970; Antsaklis, 2001), where actually the author used another term, “learn-
ing control systems". We use the definition of intelligent control systems in (Antsaklis,
2001):

Intelligent controllers can be seen as machines that emulate target faculties
via learning from large amounts of data, and safely conduct tasks in a highly
uncertain environment.

At a minimum, intelligence requires the ability to sense the environment, to make
decisions and to take control actions. Note that in conventional control, the input of
reference and feedback can be seen as simplified environmental inputs in the ICS. The
higher levels of intelligence may include the ability to recognize objects and events, to
represent knowledge in a world model, and to reason and plan for the future. Conven-
tional control usually serves as a low-level task in the intelligent control system.

1.1. MOTIVATION FOR HYBRID SYSTEM LEARNING

1

19

The definition of ICS is variegated in the literature. A general consensus is that learn-
ing plays a fundamental role in each level of the intelligent controller. Learning was
viewed as the estimation or successive approximation of the unknown quantities of a
function. There are many areas in a control system where learning can be used (Antsak-
lis, 2001): 1. Learning about the plant and even dealing with the plant’s changes and
then deriving new plant models. 2. Learning about the environment; this can be done
using methods ranging from passive observation to active experimentation. 3. Learning
about the controller; in the context of supervised learning, this is about how to behave
in a dynamical environment from the “demonstration" of the teacher. This dissertation
mainly deals with learning of the environment and the controller.

Depending on whether a teacher exists to guide the learning, the learning can be
classified as supervised and unsupervised. Supervised learning supposes that a teacher
is available to give an answer about the desired output of the system or optimal control
action. For unsupervised learning, also called learning from experience, the learning is
directed by some performance measure through trial and error.

The teacher in a supervised learning setting does not have to be a human. Both ani-
mated systems such as human beings and unanimated systems such as industrial control
systems can serve as supervisors in different application scenarios.

Developing an ICS is an interdisciplinary research work involving knowledge from
artificial intelligence, control theory, and computer science. It is challenging due to
many open problems when developing a system with a high degree of autonomy and
intelligence. Indeed, it is not possible to address all of these questions using techniques
introduced in this dissertation. Motivated by the following key concerns about the fun-
damental requirement of designing an ICS, we propose techniques that offer solutions
of practical avail.

• Learning-related (about the first goal mentioned in Section 1.1)

1. Intelligent control systems should have a proper learning ability: (discussed in
Chapters 3, 4) Machine learning is becoming a powerful technique in artificial in-
telligence to devise complex models and algorithms that lend themselves to pre-
diction. In this dissertation, we focus on supervised learning. The computer or
agent is fed example inputs and their desired outputs, given by a "teacher", and
the goal is to learn a generalized rule that maps inputs to outputs. The standard
supervised learning approach usually makes an independent and identical distri-
bution (i.i.d.) assumption, e.g., the mapping pairs of states and control actions
are independent. However, in many application cases, the demonstration of the
teacher is essentially a sequential decision making process, where the i.i.d. as-
sumption does not hold any more. Therefore, the first question is how to learn a
proper sequential model from a demonstration.

2. Intelligent control systems should have hierarchical functionality: (discussed in
Chapters 3, 4) In this dissertation, the hierarchical functionality refers to hybrid
behavior involving discrete and continuous dynamics. The motivation is twofold:

(a) Transparent and precise modelling: Recall the example of the merge lane
driving scenario. The driver shows heterogeneous behaviors in different

1

20 1. INTRODUCTION

states of lane keeping and lane changing. For the existing intelligent control
systems such as neural networks, such a composition of discrete and con-
tinuous dynamics is unfortunately vague. Instead, modelling in a piece-wise
manner based on similarities of conditions helps us obtain a more precise
and more insightful description for heterogeneous behaviors.

(b) Hierarchical tasks: The three levels of a hierarchical ICS architecture based
on a “divide-and-conquer" spirit are the Execution Level (EL), the Coordi-
nation Level (CL), and the Management Level (ML) (Antsaklis, 2001). EL in-
volves conventional control algorithms, while the highest ML involves only
higher- level, intelligent, decision-making methods. The CL is the level pro-
viding the interface between the actions of the other two levels. It uses a com-
bination of conventional and intelligent decision-making methods. A simpli-
fied lane change example is presented here to clarify the responsibilities of
each level in an autonomous driving car. The car abstracts and understands
the traffic environment using classification. The reasoning and planning can
be done in a high level and make an optimal decision such as lane change.
The task is then sent to the middle level to make an optimal plan for the lane
change. The lowest level conducts the real-time control of the vehicle to con-
tinuously adapt the (lateral and longitudinal) position to the target lane on
the basis of conventional vehicle dynamic control.

• Safety-related (about the second goal mentioned in Section 1.1)

3. Intelligent control systems should behave socially: (discussed in Chapter 5) An ICS
usually interacts with other agents involved. An example is the interaction of au-
tonomous vehicles with other human-controlled vehicles. The maneuver of lane
changes from human drivers is sometimes conducted without signaling. Predict-
ing the intention of a lane change reduces the risk of collisions in these cases. The
control action of the ego vehicle is performed in a more “conservative way" to han-
dle the possible cut-in behavior.

4. Intelligent control systems should be self-diagnosable: (discussed in Chapter 6)
Fault diagnosis and alarm functionality need to be accomplished in an ICS be-
cause the system needs to conduct adaptive control reconfiguration and mainte-
nance scheduling in a highly uncertain environment. A new perspective on this
problem comes from the growing threats of cyber attacks to safety-critical indus-
trial control systems. A concrete example concerns the physical cyber attacks in
supervisory control and data acquisition (SCADA) systems, which are commonly
used in industrial control systems.

The physical cyber attacks often refer to an attacker who tries to falsify the reading
of sensors or actuators and to disrupt the state of the system. Such attacks would
cause catastrophic consequences in critical infrastructure such as power plants
(Falliere et al., 2011; Case, 2016) and water treatment systems (Slay and Miller,
2007). A “good" model that approximates the original control system is essential
to profiling all legitimate behaviors and detecting significant deviations from this
model caused by an intrusion.

1.1. MOTIVATION FOR HYBRID SYSTEM LEARNING

1

21

5. Intelligent control system should be verifiable: (discussed in Chapter 7) A general
ICS only captures a mapping from environment to control actions in a simpli-
fied “black-box" fashion without any insightful understanding of the system it-
self (Mühlegg et al., 2015). The computation and learning procedure should be
traceable in an explainable ICS model. As a result, it helps people to discover
how an intelligent controller makes its decisions and to do troubleshooting when
faults occur. Moreover, learning-based controllers have much fewer theoretical
performance guarantees than rigid mathematical modeling of conventional con-
trol. Such guarantees are crucially needed in safety-critical infrastructures such as
water, power grid, and nuclear systems.

1.1.3. RELATED WORK

Learning for intelligent control has attracted many researchers in the past decades.
However, few works focus on learning hybrid control systems. Reinforcement learning
(RL) uses a trial-and-error principle of learning in environments without supervisors.
The control policy in RL maximizes the numerical reward from the environment. The
main drawback of RL is its inefficiency of learning (Schaal, 1999).

Another drawback of RL is that the reward function is not trivial to design in prac-
tice. A potential solution is inverse reinforcement learning (IRL). The idea is that the
demonstrator is assumed to perform optimal control actions. The first step of learn-
ing is obtaining an approximation of the reward function from the demonstrator using
base functions such as polynomial, Fourier, etc. Then the learner seeks to maximize
the reward like the task in RL. The representative works include apprenticeship learning
(Abbeel and Ng, 2004), maximum margin planning (Ratliff et al., 2006), and structured
classification (Klein et al., 2012). IRL is a kind of indirect supervised learning sitting be-
tween standard direct supervised learning and unsupervised learning.

There are two classes of approaches on inferring hybrid automata. The first class is
language learning (Niggemann et al., 2012; Medhat et al., 2015). First, the continuous
signal is segmented using signal processing; then the symbolic strings are used for infer-
ring a finite state machine; last, differential equations in the modes, namely the states in
the FSM are identified from the continuous signal. The second class is numerical model
learning. State space equations are common tools for learning a Markov jump system. In
order to optimize using expectation maximum (EM) or maximum likelihood estimation
(MLE), some assumptions about the underlying formula are made. For example, (Sum-
merville et al., 2017) assumes linear dynamics in the modes, and (Ly and Lipson, 2012;
Santana et al., 2015) assume the number of modes is known in advance.

Owing to its logical and graphical features, a finite state automaton is highly insight-
ful for human beings to read and understand the internal mechanism of the studied
systems’ behaviors, which has gained great success in many application domains (Ham-
merschmidt et al., 2016; Pellegrino et al., 2017b; Liu et al., 2017b). One reason is its versa-
tility, e.g., it can be deterministic, nondeterministic, probabilistic and hybrid. The states
can be observable or hidden. It is able to play key roles in multiple sequential tasks
such as an acceptor in a sequential classification problem, a transducer in sequence-to
-sequence problems, and a generator as a generative model of sequences (Castro and
Gavalda, 2016). Another advantage is that many algorithmic problems are computa-

1

22 1. INTRODUCTION

tionally feasible for an automaton. The determinization, minimization and equivalence
solidify the foundation of automata learning. The set-theoretic and linear-algebraic op-
erations make the verification of hybrid automata possible. Learning an automaton from
a supervisor for a control task has been suggested in the literature (Martins et al., 2001,
2002). However, it is rare to see a systematic work discussing learning and verification of
an intelligent controller using a hybrid automaton.

1.2. CONCEPTUAL APPROACHES
A diagram of an intelligent controller is shown in Figure 1.2: The supervisor provides

demonstrations of actions output in its environment. The intelligent controller is ca-
pable of mimicking the supervisor’s behavior by learning a sequential model. Besides
that it can also learn the model for the environment and other agent. The intention pre-
diction of other agents is realized in the perception part. The self-diagnose part checks
whether the state of the system is disrupted by attacks. The self-verification component
automatically checks the safety specification in each state.

Supervisor

Signal processing and
perception (Chapter 5)

Learning

!"##$%&

'((&)$*+

,-(%-"./-01%$23

Environment

!"##$%&

'((&)$*+

,-(%-"./-01%$23

Selft-
Verification

,!4$56(./73

Self-
Diagnose

(Chapter 6)

Controller
(Chapter 3)

Environment
or other
agents

(Chapter 4,5)

Figure 1.2: The system hierarchy of the intelligent controller studied in this dissertation. The corresponding
research content of each chapter is also annotated in each component. The arrow depicts that the intelligent
controller is able to function like its supervisor.

To achieve the functionalities of an intelligent controller mentioned above, the tech-
nology roadmap is briefly summarized as:

1. Chapter 3: The teacher’s sequential demonstration is considered as a linguistic
source of control actions. We focus on learning an automaton to represent an un-
derlying language model in this dissertation. To deal with the hybrid characteris-
tics in the control actions, we first investigate a composed type of learning hybrid
automata. The discrete events are first abstracted from similar environmental in-
puts. Second, they are used for learning the structure of a hybrid automaton. The

1.3. CONTRIBUTIONS

1

23

numeric data are used for identification of the parameters in the differential equa-
tions defining the numerical input and output mapping in each mode. State clus-
tering is introduced to abstract the automaton model and reduce the number of
modes. This makes a trade-off between prediction accuracy and model complex-
ity.

2. Chapter 4 Another novel inline type of learning hybrid automaton is proposed
that simultaneously considers discrete (abstraction from raw numerical data) and
continuous data (first-order differential information in the raw numerical data).
During the state machine learning procedure, the similarity of the first-order dif-
ference (described in the state) and the symbolic event are checked. The model is
used for learning an auto-regressive model.

3. Chapter 5 To deal with the interaction with other participating agents, a non-
deterministic automaton is learned as a probabilistic classifier for behavior recog-
nition. The classification results are integrated as the stochastic input to the opti-
mization task of model predictive control (MPC) in the ego agent.

4. Chapter 6 In the self-diagnose task level (cf. Figure 1.2), another way to deal with
the mapping of multiple inputs and outputs in a high-level behavior learning pro-
cess is proposed. A novel combination of automata learning and Bayesian network
learning is investigated to deal with this problem, where an automaton is used to
represent the dynamics in the output of a system, and the dependency among
sensors and actuators is learned by Bayesian network inference.

5. Chapter 7 Reachability analysis is leveraged to verify the safety specification of a
system. The bad state is identified where collision happens. An imitation learning-
based controller is learned from data generated by a human. A hybrid model
checking tool is used for the safety verification of the data-driven controller.

1.3. CONTRIBUTIONS
This thesis makes four major contributions to the field of machine learning and its

applications in autonomous driving and the security of industrial control systems. The
details of each contribution are also summarized correspondingly.

1. It proposes two novel approaches of learning hybrid automata: composed and in-
line algorithms.

The existing composed approach learns a distinct continuous model in
each mode of a hybrid automaton, which introduces high complexities.
Our MOHA model is a novel composed approach achieving a trade-off
between accuracy and complexity by clustering similar modes (Zhang
et al., 2017a,b; Lin et al., 2018b). The model achieves great success in
learning car-following behaviors from human driving data, which is
potentially used as a data-driven cruise control system.

1

24 1. INTRODUCTION

A novel model called a regression automaton is proposed for extending
the semantics of conventional deterministic finite automata (DFA) (Lin
et al., 2016). This makes DFAs applicable to general numerical tasks
such as time series modeling and prediction. The inline approach is a
novel algorithm developed based upon a new heuristic state-merging
technique. The new model and the new algorithm together partially
inspire the development of an advanced passive automaton learning
tool called flexfringe (Verwer and Hammerschmidt, 2017). This work
makes a contribution to advanced automaton learning algorithms.

2. It develops a safe cut-in-awareness car-following controller in autonomous driv-
ing systems.

We apply a probabilistic automaton learning approach for profiling cut-
in (lane change) behaviors of human drivers (Zhang et al., 2018). The
lane change intention is computable and predictable from this model.
A model predictive control then uses such a stochastic input to achieve
a collision-avoidance cruise control. This research will stimulate the
further development of advanced driver-assistance systems (ADAS).

3. It proposes the first explainable intrusion detection and localization system.

We apply timed automata learning for discovering behaviors of sensors
in an industrial control system. Bayesian network learning is leveraged
to discover the causalities between sensors and actuators. They are
combined ino a model called TABOR for detecting anomalies caused by
data manipulation of cyber attacks (Lin et al., 2018a). TABOR success-
fully achieves high detection accuracy and explainability for localizing
the faulty components. This research will stimulate the development of
methords for protecting safety-critical infrastructure.

4. It presents the first safety-verifiable adaptive cruise control model using a hybrid
automaton learned from human driving data.

We develop a translator called MO2SX filling the gap between MOHA
and the state-of-the-art hybrid model checker SpaceEx. A complete
framework is therefore available for automatically learning and verify-
ing the safety properties of a cruise controller from human driving data.
This framework is generic and extendable to more complex driving be-
haviors.

1.4. OUTLINE
This thesis is divided into the following chapters:

Chapter 2. This thesis begins with an explanation of variate automata models such as
deterministic automata, probabilistic automata, timed automata, and hybrid automata.

1.4. OUTLINE

1

25

Then an extensive survey of related work on hybrid automaton learning is presented. In
addition, a gentle introduction about safety verification for hybrid automata is provided.
Chapter 3. In this chapter, the model called multi-mode hybrid automaton (MOHA) is
proposed as well as its composed learning algorithm ,including time automaton learn-
ing, parameters identification in continuous models, and mode identification by state
clustering. MOHA is applied to learning car-following behavior from human drivers.
Chapter 4. A novel hybrid model called regression automaton and its inline type of learn-
ing are described in this chapter. It is applied to learn an auto-regression model for time
series modeling and prediction.
Chapter 5. This chapter first shows how to use non-deterministic automata learning to
address the lane change intention prediction problem in autonomous driving vehicles.
The intention is used as a stochastic input to an ego vehicle’s adaptive cruise controller.
The efficiency of this framework is demonstrated in the application of a lane-change-
awareness cruise controller design.
Chapter 6. In this chapter, the TABOR model is introduced to combine automata learn-
ing and causality inference using a Bayesian network. TABOR is applied to detecting
anomalies in a water treatment testbed.
Chapter 7. The translator called MO2SX is first introduced. Extensive experiments in
both highway and urban traffic are carried out to verify a data-driven cruise controller
based on the MOHA model.
Chapter 8. Concluding remarks are made in this chapter to summarize the contributions
made by this thesis. The possible societal impact of this thesis is discussed. Future work
and suggestions on both theory and application are provided as well.

2
BACKGROUND

2.1. INTRODUCTION
This chapter contains an explanatory survey of automata models (Sections 2.2, 2.3),

automata learning (Section 2.4), and verification of hybrid systems (Section 2.5). In ad-
dition, an overview of the state of the art in each of these fields is provided. The survey
can be read without substantial prior knowledge of these fields.

The remainder of this chapter is split into three sections, one for each topic. The
sections on these topics can be read independently and skipped if necessary. In the
main text of this thesis, we refer to the relevant background knowledge from this chapter
whenever required.

2.2. TIME-DRIVEN AND EVENT-DRIVEN SYSTEMS
In continuous-state systems the state generally changes as time changes, as shown

in Equation 1.1 and Equation 1.2. Similarly, in discrete-time models, which are shown in
Equation 1.3 and Equation 1.4, with every “clock tick” the state is expected to change. We
refer to such systems as time-driven systems. In such a system, the state transitions are
synchronized by a clock. The clock alone is responsible for any possible state transition.
For event-driven systems, at various time instants (not necessarily known in advance),
some event e “announces” that it occurs. The state evolution depends entirely on the
occurrence of asynchronous discrete events.

2.2.1. DISCRETE EVENT SYSTEMS
An event is defined as a specific action taken, e.g., pushing the cruise control button

on a car. Note that an event may also be the result of several conditions that are suddenly
met, e.g., vehicles’ relative distance reaches a given value. A discrete event set E contains
all events as its elements.

Definition 2.1. (Discrete Event System) A discrete event system (DES) is a discrete state,
event-driven system, that is, its state evolution depends entirely on the occurrence of

27

2

28 2. BACKGROUND

asynchronous discrete events over time (Cassandras and Lafortune, 2009).

A DES satisfies the following two properties:

1. The state space is a discrete set.

2. The state transition mechanism is event-driven.

In contrast to DES, a Continuous-Variable Dynamic System (CVDS) refers to the behav-
iors in Equations 1.1, 1.2, 1.3, and 1.4. A CVDS has the following two properties:

1. The state space is continuous.

2. The state transition is time-driven.

Figure 2.1 shows an example distinguishing the behaviors of a CVDS and a DES from a
piece of speed record from a car. The dynamics of the DES can be seen as a piecewise
constant function, where the state jumps from one discrete value to another whenever
an event takes place. In this case, the event is associated with the state change, e.g., at
t = 46, the state changes from c to b, where we can say the event c → b happens. Note
that in the definition of a DES, the event can be from any reasonable set predefined for
us, e.g., arbitrary input actions, and is not necessarily to be the state change as in this
example.

0 50 100 150 200 250

Time

0

2

4

6

8

10

S
p
e
e
d
 m

/s

a

b

c

(c, 0) (b, 46) (a, 17) (b, 124)(c, 29)

Figure 2.1: A speed record from a vehicle. The value of speed’s state space is partitioned into three zones named
as a,b,c. In this case the partition is based on Voronoi cells, where in each zone, all its values are closest to its
own cluster’s centroid. Any clustering or discretization methods can serve as plug-and-play approaches to
partition the continuous values here. The time information besides the event is the time difference between
successive events.

For a better understanding of the discrete events’ behaviors in terms of ordering and
timing information of each event, we need a proper representation of the data. A conve-
nient way to describe the timed and logical behaviors of the events in the DES in Figure
2.1 is:

(e1, t1), (e2, t2), (e3, t3), (e4, t4), (e5, t5) = (c,0), (b,46), (a,63), (b,187), (c,416)

2.2. TIME-DRIVEN AND EVENT-DRIVEN SYSTEMS

2

29

The first event e1 occurs at t1, second event e2 occurs at t2 and so forth. The sequence
is called a timed string. The string without time information is called an untimed string,
and just represents the logical ordering of the events. The set of all possible timed (un-
timed) strings executed by a DES is called a timed language (untimed language or lan-
guage). This is because the event set E = {e1,e2, · · · ,en} can be seen as an alphabet, and
the sequences can be seen as words. Additional timed information is sometimes repre-
sented as the “lifetime" indicating the elapsed time between successive occurences of
each event, as shown in Figure 2.1. The dynamics can be further refined if some sta-
tistical information is available. Probability distribution functions can be used in either
modelling the lifetime of each event or modelling the state transitions. This results in a
probabilistic timed language. Language, timed language, and stochastic timed language
comprise three levels of abstraction of a DES. The choice of the appropriate level of ab-
straction depends on the application tasks.

The language-based approach itself is not sufficient to address DES tasks such as
simulation, verification, controller synthesis, etc. If a language (e.g., timed language or
stochastic timed language) is finite, we could always list all its elements, that is, all the
possible strings that the system can execute. Unfortunately, this is unrealistic in the real
world. Preferably, we would like to use models that would allow us to represent lan-
guages in a manner that highlights the structural information about the system behav-
ior and that is convenient to manipulate when addressing analysis issues. Discrete event
modeling formalisms can be untimed, timed, or stochastic, according to the level of ab-
straction of interest. In this thesis, we will focus on a popular discrete event modeling
formalism: the automaton model. In the following subchapters, non-timed automata,
timed automata, and stochastic automata are introduced as per the three levels of ab-
straction of DESs.

2.2.2. NON-TIMED AUTOMATA
As a computation model, an automaton can accept/reject strings, generate strings,

or both. Thus, generally we have three types of automata:

1. Generator: the computation machine generates all possible output strings.

2. Acceptor: the computation machine accepts or rejects some input strings.

3. Transducer: the computation machine generates output strings from input
strings.

In practice, the generator model can act as a simulation model to generate all valid be-
haviors of a DES. The acceptor model can be a binary classifier for accepting or rejecting
new arriving strings. These two models are normally suitable for autonomous dynami-
cal systems without input. The transducer can deal with the input and output mapping
in a DES.

DETERMINISTIC AUTOMATA

We start with the basic model-deterministic finite automaton (DFA). Other much
more complex models are built on a DFA. A DFA has a formal definition as follows:

2

30 2. BACKGROUND

Definition 2.2. (Deterministic finite state automaton, DFA) A DFA is a quintuple A =
〈Q,δ,Σ, q0,F 〉 where Q is a finite set of states, δ : Σ×Q → Q are labeled transitions with
labels coming from an alphabet Σ, q0 ∈Q is the start state, F ⊆Q is a set of final states.

Note that the transition function of the automaton δ, is also called z partial mapping.
The language represented by A is only the subset of all possible strings Σ∗.

Definition 2.3. A run of a DFA over a string a1, a2, a3, · · · , an is:

q0
a1−→ q1

a2−→ q2 · · ·qn−1
an−−→ qn

where δ(ai , qi−1) = qi for i ∈N+, qi ∈Q, and ai ∈Σ. The run is valid when qn ∈ F .

Example 2.1. A simplified cruise controller is illustrated in Figure 2.2 as an example of
a DFA. The initial state is the state off. The state transition is governed by pressing one
of the five buttons on the cruise control interface: on, off, set, resume, and cancel. The
bottom of on drives the system to the ready state Standby. Then by pressing set, the
vehicle starts with the cruise control mode to follow the leading vehicle. The continuous
control can be governed by a trajectory following control algorithm. Note that any brake
behavior conducted by the driver will pause the cruise control mode. Then we can either
cancel, turn off, or resume the cruise mode. From any non-initial state, it is possible to
go back to the initial state by turning off the cruise control.

Offstart Standby

Cruise

Hold

on

off

set

cancel

off

brake

cancel

resume

off

Figure 2.2: A deterministic finite state automaton models a simplified cruise controller. This example is
adopted and revised from (Aström and Murray, 2010) by adding the transition from Hold to Standby.

NON-DETERMINISTIC AUTOMATA

A DFA can be extended to a non-deterministic one-NFA by considering the non-
deterministic transitions in the model. In a DFA, all valid events are included in the
alphabet Σ. In addition, for any state q and a transition a of the DFA, there exists a
unique next state q ′ = δ(q, a). These are not required for a NFA. A NFA has the following
formal definition:

2.2. TIME-DRIVEN AND EVENT-DRIVEN SYSTEMS

2

31

Definition 2.4. (Non-deterministic finite state automaton, NFA) A NFA is a quintuple
A = 〈Q,δ,Σ∪{ε},Q0,F 〉 where Q is a finite set of states, Q0 ⊆Q is a set of all possible start
states, F ⊆Q is a set of final states, δ :Σ∪ {ε}×Q → 2Q are labeled transitions with labels
coming from an alphabet Σ.

Note that, in each transition function δ, the next state is from the power set of Q
(i.e., all possible subsets of Q, of which the size is 2|Q|). In addition, the state transition
is a feasible event for an empty event ε. The non-determinism occurs normally in two
situations: first, a non-empty event drives the system in a given state to multiple states;
second, the state transition is triggered by an ε. In a control system, for example, this
situation refers to the occurring an unmodeled or unobservable event.

Definition 2.5. A run of a NFA over a string a1, a2, a3, · · · , an is:

q0
a1−→ q1

a2−→ q2 · · ·qn−1
an−−→ qn

where q0 ∈ Q0, qi ∈ δ(ε∗ai , qi−1) = qi for i ∈ N+, qi ∈ Q, and ai ∈ Σ∪ {ε}. The run of an
NFA is valid when qn ∈ F . Note that an NFA is a more compact computation than a DFA:
an n-state NFA can be converted to an equivalent DFA with at most 2n states (Sipser,
2006).

Example 2.2. A simplified cruise controller with non-deterministic transitions is illus-
trated in Figure 2.3. Compared with the model shown in Figure 2.2, two unobservable
ε-transitions are included in this model. The first one happens when a sudden cut-in ve-
hicle from the adjacent lane is not detected due to some error in the sensor. We assume
that the standby and hold states are under control of the driver and the cut-in vehicle
is detectable and avoidable. The other unobservable ε-transition is a breakdown event
due to, for instance, a collision.

Offstart Standby

Cruise

Hold

Collision

on

off

set
cancel

off

brake

ε

cancel

resume

ε

Figure 2.3: A non-deterministic finite state automaton models a simplified cruise controller.

2

32 2. BACKGROUND

2.2.3. PROBABILISTIC AUTOMATA
Definition 2.6. (Probabilistic automaton, PA) A PA is a quintuple A = 〈Q,δ,Σ, q0,F 〉
where Q is a finite set of states, δ : Q ×Σ→ p(Q) are labeled transitions with labels com-
ing from an alphabet Σ and probability, q0 ∈ Q is the start state, F ⊆ Q is a set of final
states.

Definition 2.7. A run of a PA over a string a1, a2, a3, · · · , an is a sequence of states and
transitions

q0
a1−→ q1

a2−→ q2 · · ·qn−1
an−−→ qn

and its probability value p =∏n
i=1δ(qi , qi+1, ai), qi ∈Q and ai ∈Σ for all i ∈N+. The run

of a PA is valid when qn ∈ F and p > 0.

Note that it is possible to assign the probability over multiple start states (initial
probability) and the probability of ending a sequence in a given state (final probabil-
ity). A PA can be both deterministic and non-deterministic depending on the determin-
ism/nondeterminism of the state transition. Given a generated string and a start state,
there is only one possible computation path for DPA (deterministic PA) and multiple
paths for NPA (nondeterministic PA), respectively.

One of the most common ways of using probability in a PA is: in each state the proba-
bilities of all outgoing transitions and the final probability (sequence ending in this state)
sum up to one, i.e., pq +∑

qn∈Q
∑

e∈E δ(qp , qn ,e) = 1, for all qp ∈ Q, pq is the final prob-
ability of state q . The PA models the probability distribution over all possible strings,∑

w∈Σ∗ p(w) = 1.

Example 2.3. A simplified cruise controller with probabilistic transitions is illustrated in
Figure 2.4 as an example of a PA. In each state, the outgoing events probabilities sum up
to 1. Note that, in this example, we do not model the final probability pq in each state
for simplicity’s sake. For example, in the cruise state, the probabilities of brake event and
turning off event are both 0.33, and the probability of undetected cut-in due to some
errors is 0.01.

2.2.4. TIMED AUTOMATA
The automata described above are already powerful models for describing the logical

behaviors in DES. However, the main drawback of such a representation is that the time
information of events is missing. A more generic representation of sequential events in
practice is using timed strings: τ= (a1, t1)(a2, t2) · · · (an)(tn), where ai ∈Σ is an event, ti ∈
R+ is a value, n ∈N. The time can be recorded into a relative form or an absolute form.
The relative form of time ti refers to denoting the time delay between two consecutive
occurring events ai and ai−1. The absolute form of time ti refers to denoting the exact
time of ai . A timed language is a set of timed strings over an alphabet. The corresponding
computation model is called a timed automaton (TA) accepting or generating the timed
language (Alur and Dill, 1994).

Note that the key additional component in a TA compared with a DFA is the clock.
Generally, there are three basic operations in a clock: first, there is a function that maps
a clock to a real positive value v(x) ∈ R+, where x ∈ X is the clock; second, the clock
increases or decreases over time; third, it can be reset to 0 on some conditions.

2.3. HYBRID DYNAMICAL SYSTEMS

2

33

Offstart Standby

Cruise

Hold

Collision

on, 1.0

off, 0.5

set, 0.5

cancel, 0.33

off, 0.33

brake, 0.33

undetected cut-in, 0.01

cancel, 0.5

resume, 0.5

stop, 1.0

Figure 2.4: A probabilistic finite state automaton models a simplified cruise controller. The probability of the
sequence: Off-Standby-Cruise-Hold-Cancel-Off is 1.0×0.5×0.33×0.5×0.5 ≈ 0.04.

Definition 2.8. A timed automaton is a 6-tuple A = 〈Q,C ,Σ,∆, q0,F 〉 where Q is a finite
set of states, C is a finite set of clocks,Σ is the finite set of symbols,∆ : Q×Σ×B(C)×2C ×Q
is a set of transitions. B(C) is the set of boolean clock constraints involving clocks from
C . A transition δ ∈ ∆ is a tuple 〈q, q ′, a, g ,R〉, where q, q ′ ⊆ Q are the source and target
states, a ∈ Σ is a symbol, g is a clock guard, and R ⊆C is the set of clock resets. q0 ∈Q is
the start state, F ⊆Q is a set of final states.

Definition 2.9. A run of a TA over a timed string τ= (a1, t1)(a2, t2) · · · (an , tn) is:

q0
a1,t1−−−→ q1

a2,t2−−−→ q2 · · ·qn−1
an ,tn−−−→ qn

where the transition 〈qi−1, qi , ai , g ,Ri 〉 ∈ Σ is valid for any i ∈ n, namely g is satisfied by
the valuation vi for all i ∈ n, qi ∈Q, and ai ∈Σ. The valuation vi is defined as: vi (x) = 0 if
x ∈ Ri (clock is reset), or vi (x) = vi−1(x)+ ti (clock increases), and v0(x) = 0, for all x ∈ X .
A finite computation of a TA is called valid when qn ∈ F .

Example 2.4. A simplified cruise controller is illustrated in Figure 2.5 as an example of a
TA. In this model, there is one clock x. The goal is to control the system to recover to the
Standby state at least 3 seconds after the brake action.

2.3. HYBRID DYNAMICAL SYSTEMS
Note that the (untimed and timed) automata models described above are used for

representing the discrete behaviors of a dynamical system. To deal with both continuous
and discrete dynamic behavior, a hybrid system is used to model a system that can both
flow (described by a differential equation) and jump (described by a state machine or
automaton).

2

34 2. BACKGROUND

Offstart Standby

Cruise

Hold

on

off

set

cancel

off

brake,
reset x

cancel,x ≥ 3s

resume

off

Figure 2.5: A timed deterministic finite state automaton models a simplified cruise controller. The transition
from Hold to Standby relies on the additional time guard checking. The controller will stay at Hold when Cancel
is executed but for no more than 3 seconds.

2.3.1. HYBRID AUTOMATA
In the following, we introduce the definition of hybrid automata (HA) using com-

monly used notation in the literature. To avoid possible confusions about different
mathematical symbols essentially denoting the same variables, Table 2.1 shows a com-
parison list from HA to DFA.

Table 2.1: HA-DFA notation comparison. Note that for the initial state, HA has an extra initialization of contin-
uous variables.

HA DFA Notation

Loc Q State
Edge δ State

Init(l) q0 Initial state

Definition 2.10. A hybrid automaton H is a tuple <
Loc,Edge,Σ,X,Init,Inv,Flow,Jump > where:

• Loc is a finite set {l1, l2, · · · , lm} of (control) locations that represent control modes of
the hybrid system (similar to discrete states in a DFA).

• Σ is a finite set of events.

• Edge ⊆ Loc×Σ×Loc is a finite set of labeled edges that represent discrete changes of
control modes in the hybrid system. Those changes are labeled by events from Σ.

• X is a finite set {x1, x2, · · · , xn} of n-dimension real-valued variables. Ẋ is for the first-
oder differential of variables {ẋ1, ẋ2, · · · , ẋm} inside a location. The primed variables
{x ′

1, x ′
2, · · · , x ′

n} are used to represent updates of variables from one control mode to
another. This is called an assignment.

2.3. HYBRID DYNAMICAL SYSTEMS

2

35

• Init(l) is a predicate for the valuation of free variables from X when the hybrid system
starts from location l .

• Inv(l) is a predicate whose free variables are from X and which constrains the possible
valuations for those variables when the hybrid system is in location l .

• Flow(l) is a predicate whose free variables are from X ∪ Ẋ stating a continuous evolu-
tion, which is a differential equation (usually ordinary differential equation, ODE),
when the control mode is in location l .

• Jump is a function that assigns to each labeled edge a predicate whose free variables
are from X ∪ Ẋ . Jump(e) states when the discrete change modeled by the event
e is possible and what the possible updates of the variables are when the hybrid
system makes the discrete change.

Note that a TA can be represented by a HA by defining the clock’s increasing or de-
creasing in the (flow(l)), and the reset of clock in the assignment. However, in this thesis,
we would like to still consider a TA as a different model instead of a special case of a HA.

Example 2.5. A simplified hybrid cruise controller is illustrated in Figure 2.6 as an ex-
ample of a HA. In this model, the location of Cruise comprises a continuous feedback
control and an invariant, which is the valid working condition (detectable range for the
equipped radar) of cruise. In case there is no outgoing transition and the invariant is
satisfied, the system “stays" in cruise. The goal is to control the system to recover to the
Standby state at least 3 seconds after the brake action.

Offstart Standby

Cruise
v̇ = kp e +kd ė
0 ≤∆x ≤ 150

Hold

on

off

set

cancel

off

brake

cancel

resume

off

Figure 2.6: A hybrid automaton models a simplified cruise controller. The cruise location is governed by a
proportional differential (PD) control law, where e =∆x−ddes , ddes = dsa f e +v . v is the speed of the following
vehicle, dsa f e is the parameterized safety distance, ∆x is the relative distance between the following vehicle
and the leading vehicle. To simplify the illustration, the trivial kinetic dynamic such as ẋ = v is not shown in
the mode.

2

36 2. BACKGROUND

2.4. AUTOMATA LEARNING
The inference of regular language represented by means of finite automata is widely

studied in the field of machine learning (de La Higuera, 2005). The motivation of study-
ing this problem is because of its position in the Chomsky hierarchy. The regular lan-
guage family is the simplest and best known. It can be used as the starting point to study
larger families. At the same time the learning techniques developed for this problem can
be extended to other domains. On the other hand, some tasks studying the dynamical
systems can be dealt with on the basis of automata models. In Kin Sun Fu’s work (Fu,
1977), the philosophy is that the basic organizing principle of the world is grammati-
cal, namely composing a relatively much smaller set of words using grammar rules. The
goal is to find a hierarchical or structural explanation, which is different from the flat
representation used in statistical pattern recognition. Another advantage of automata
learning is its unified framework integrating representation (formal language), learning
(grammatical inference), and computation (on the basis of the automaton as a compu-
tation model) (Zhu et al., 2007; Fu, 1977).

As a pioneering work to theoretically study how difficult this problem is, Gold proved
that given a finite alphabetΣ, two finite subsets of accepted and rejected strings S,T ⊆Σ∗
and an integer k, determining if there exists a k−state DFA recognizes L (S ⊂ L, and
T ⊂ Σ∗−L), is NP-complete (Gold, 1978b). In practice, the goal of automata learning is
normally to find an automaton with the minimal size (e.g., in terms of number of states)
among all hypotheses that best explains the input data. This is based on the Occam’s
razor principle (Rasmussen and Ghahramani, 2001), which is a common philosophy or
heuristic in learning theory. Similar ideas can be found in minimum description length
(MDL) (Grünwald, 2007) and bias-variance dilemma (Friedman et al., 2001). The first
algorithm for grammatical inference dates back to 1967 (Gold, 1967), where the mini-
mal deterministic automaton can be obtained in polynomial time when a representa-
tive enough set of data is available. As a follow-up work, Angluin proved that for a given
incomplete set of data, finding the minimal DFA is NP-hard even for a target machine
having only two states. The problem is that the absence of positive or negative samples
(even for an arbitrarily small fixed fraction) poses the difficulty of providing enough ev-
idence of distinguishing two states (Angluin, 1978). Although automata learning is hard
in theory due to these “negative results", many techniques have emerged to make prac-
tical problems more tractable. The main techniques of learning DFA from positive and
negative examples can be classified into four representative categories: non-merging,
merging, heuristic merging, and merging with search algorithms.

2.4.1. LEARNING FROM POSITIVE AND NEGATIVE DATA

NON-MERGING ALGORITHMS

Trakhtenbrot and Barzdin proposed an inference algorithm considering all the
strings of the language whose length is bounded by a given integer (Trakhtenbrot and
Barzdin, 1973). Is has been shown that their work and Gold’s work (Gold, 1967) are es-
sentially similar but developed independently (Garcia et al., 2000). In the following, we
call these two works the TB/Gold algorithm. The key difference lies in the representation
of data. The main drawbacks are: 1) the algorithm is not incremental; 2) it doesn’t have
good generalization. Empirical experiments have shown its low recognition on testing

2.4. AUTOMATA LEARNING

2

37

data. This is because the algorithm generally works better in a sample having a char-
acteristic set. The characteristic set consists of representative examples. The learning
algorithm always returns the correct hypothesis with the characteristic set. The hypoth-
esis does not change even if extra examples are added in the characteristic set. TB/Gold
algorithm can be considered a Nerode-type learning approach (Hopcroft et al., 2006).

Theorem 1. Myhill–Nerode theorem: Given a language L, and a pair of strings x and y ,
define a distinguishing extension to be a string z such that exactly one of the two strings
xz and y z belongs to L. Define a relation RL on strings by the rule that x RL y if there
is no distinguishing extension for x and y . RL is essentially an equivalence relation on
strings, and thus it divides the set of all strings into equivalence classes.

The Myhill–Nerode theorem states that L is regular if and only if RL has a finite num-
ber of equivalence classes, and moreover that the number of states in the smallest DFA
recognizing L is equal to the number of equivalence classes in RL . In particular, this
implies that there is a unique minimal DFA with minimum number of states (Hopcroft
et al., 2006).

An intuitive example is provided in the following to explain how Gold’s algorithm
works. The original example is adopted from (Garcia et al., 2000). We complete its learn-
ing steps in more detail.

Example 2.6. D+ = {abb,bb,bba,bbb,babb} and D− = {λ, a,ba, aba,bab} are positive
and negative examples, respectively. The so-called state characterization matrix is in
Table 2.2, where E is a suffix-complete set from the examples. For example, the suffixes
of babb are {b,bb, abb}. S = S1,S2, · · · ,Sn is the state set, SΣ−S is the one-letter extension
from the state set. The labels 1 and 0 are associated with accept state and reject states,
respectively. The label of undefined state is considered empty.

Table 2.2: Initial state characterization matrix. The obviously different rows λ and b are highlighted.

E abb bb b λ ba a ab
S λ 1 1 0 0 0

SΣ−S a 1 0 0
b 1 1 1 1 0 0

Two rows are said to be obviously different if they have obviously different labels {0,1}
in some columns. Note that the undefined label, i.e., empty cell in the table, is not used
as evidence of distinguishing two states. A state characterization matrix is called closed
if no row belonging to SΣ−S is obviously different from all rows in S. The matrix is not
closed in Table 2.2 because the row of b is obviously different from the row of λ. The row
of b is added to the state set as a “promoted" state, and its one-letter extension is added
to SΣ−S correspondingly. All elements in the matrix are filled out according to the input
examples. As shown in Table 2.3, now bb is obviously differently from both λ and b.

Again, the state bb and its one-letter extensions are added to the matrix, see Table
2.4. The matrix is closed and ready for constructing a DFA because we can not find any
row in SΣ−S that is obviously different from all rows in S.

2

38 2. BACKGROUND

Table 2.3: 2nd state characterization matrix. b is promoted into S.

E abb bb b λ ba a ab
S λ 1 1 0 0 0

b 1 1 1 1 0 0
SΣ−S a 1 0 0

ba 1 0 0
bb 1 1 1

Table 2.4: 3rd state characterization matrix. Three different clusters of rows are highlighted with three different
colors.

E abb bb b λ ba a ab
S λ 1 1 0 0 0

b 1 1 1 1 0 0
bb 1 1 1

SΣ−S a 1 0 0
ba 1 0 0

bba 1
bbb 1

First, from S we already know the number of states. Three distinct states of a DFA
are constructed as shown in Figure 2.7. Second, we assign SΣ−S into S according to the
rows’ similarities. Here we get three clusters: {λ, a,ba}, {b,bba,bbb}, and {bb}, which
gives us the information about the reachable state. For example, λ is state 0. a and ba
will also go to state 0. The three states are displayed with three different colors in Table
2.4. The finite number of equivalence also explains why the learning algorithm is called
Myhill-Nerode type approach. Last, the resulting DFA is shown in Figure 2.8.

start

b b

Figure 2.7: A deterministic finite state automaton learned using TB/Gold algorithm-intermediate model of
construction.

Note that a non-deterministic behavior is possible in two places: 1, there could be
multiple rows from SΣ− S that are possible to add to S; 2, some transitions are possi-
bly assigned into different states, e.g., the row of bba are compatible with rows b and
bb, thus the ambiguous reachable state of bba would be state b or state bb. These two
problems can be avoided by assigning the equivalence to the state with the lowest lexi-
cographic order, i.e., in our example, bba and bbb are equivalent with b instead of bb.
Unfortunately, the algorithm does not guarantee consistency with the input data. For
example, bba and bbb should be accepted, while bab should be rejected, which is not

2.4. AUTOMATA LEARNING

2

39

start

a

b

a

b

a,b

Figure 2.8: A deterministic finite state automaton learned using TB/Gold algorithm-final model of construc-
tion.

the case by looking at the DFA in Figure 2.8.

MERGING ALGORITHMS

To deal with the several drawbacks of the TB/Gold algorithm, RPNI (Oncina and Gar-
cia, 1992) and Traxbar (Lang, 1992) were proposed in the 1990s. The main development
with respect to TB/Gold was on the state-merging of indistinguishable states. Once one
of these merges has been carried out, the algorithm keeps this current hypothesis and
discards the previous one before merging. In contrast, the TB/G algorithm does not up-
date the states during the learning procedure.

The idea of a state-merging algorithm is to first construct a tree-shaped DFA A called
augmented prefix tree acceptor (APTA) from the training data, and then to merge the
compatible states of A . An APTA is a precise encoding of the input data without any
generalization. It is called augmented because it contains the states that are neither ac-
cepting nor rejecting, i.e., the undefined states in the TB/Gold algorithm example. Merg-
ing the states of this APTA is essentially a learning or generalization approach that aims
to find a DFA that is as small as possible. The underlying philosophy is the Occam’s
Razor principle (Blumer et al., 1987), i.e., a simpler hypothesis is more likely to be cor-
rect than complex ones. The APTA of the example D+ = {abb,bb,bba,bbb,babb} and
D− = {λ, a,ba, aba,bab} used before is shown in Figure 2.9. Note that normally in APTA
the states are ordered lexicographically.

A merge (see Algorithm 1) of two states q and q ′ combines the states into one: it
creates a new state q ′′ that inherits the incoming and outgoing transitions of both q
and q ′. Such a merge is only allowed if these two states are consistent, i.e., it is not the
case that q is accepting while q ′ is rejecting or vice versa. When a merge introduces
a non-deterministic choice, i.e., q ′′ is the source of two outgoing transitions with the
same symbol, the target states of these transitions are merged as well. This is called the
determinization process, and the merge in Algorithm 1 is called detmerge. The process
continues until there are no non-deterministic choices left.

The merge order depends on the state number in RPNI. For example, because state 0
does not have his father state, we start the merge from state 1 with state 0. The resulting
automaton is shown in Figure 2.10. The new merged state is q ′′ = {0,1}.

In Figure 2.10, the state {0,1} has a non-deterministic outgoing transition because
the identical symbol b leads to two different target states 2 and 3. The algorithm then
merges states 2 and 3. The process continues to merge state pairs 4−6 and 5−7 for the
same purpose of determinization. The result of a merge is a new DFA that is smaller

2

40 2. BACKGROUND

start

0

1

2

3

4

5

6

7

8

9

10

11

a

b

b

a

b

a

b

b

a

b

b

Figure 2.9: APTA of the input data. The order number of each state is highlighted with blue color.

start

{0,1} 2

3

4

5

6

7

8

9

10

11

a

b

b a

b

a

b

b

a

b

b

Figure 2.10: Resulting DFA after merging the states 0 and 1. We use a curly brace to represent a block merging
multiple states.

2.4. AUTOMATA LEARNING

2

41

Algorithm 1 Deterministic merge of states detmerge (A , q, q ′)
Require: an DFA A = 〈Q,T,Σ, q0,F 〉, two states q, q ′ ∈Q
Ensure: if q and q ′ are inconsistent, return FALSE; else return A with q and q ′ merged.

if p is accepting state and q is rejecting state or vice versa then
return FALSE

else
create a new state q ′′, and set Q :=Q ∪q ′′ . for consistent two states, add a new

state q ′′ to A

if q or q ′ is an accepting (or rejecting) state then
set q ′′ as an accepting (or rejecting) state

end if
for all symbols l ∈Σ do

set T (q ′′, l) := T (q, l), set T (q ′′, l) := T (q ′, l) . copy outgoing transitions from q
and q ′

end for
for all states qs ∈Q and symbols l ∈Σ such that T (qs , l) ∈ {q, q ′} do . for all source

states of transitions to q or q ′
set T (qs , l) := q ′′ . copy incoming transitions to q or q ′

end for
for all non-deterministic choice of transition with target states qn and q ′

n do
b=merge(A ,qn ,q ′

n)
if b = FALSE then

return FALSE and undo the merge . when the targets are inconsistent
end if

end for
return A

end if

2

42 2. BACKGROUND

than before, and still consistent with the input sample S. The resulting DFA in this step
is shown in Figure 2.11.

start

{0,1} {2,3}

{4,6}

{5,7}

8

9

10

11

a

b

a

b

b

a

b

b

Figure 2.11: Resulting DFA after merging the states 2−3, 4−6, and 5−7.

A state-merging algorithm continually applies the state-merging process until no
more consistent merges are possible. Till now, we have an automaton (see Figure 2.11)
having the states {0,1}, {2,3}, {4,6}, {5,7},8,9,10,11, because we have conducted a state
merge for the state 1. Now it is the turn for the state 2 in the original APTA ({2,3} in the
current model) according to the lexicographical order. Any block containing multiple
merged states is numbered and called by the state with the smallest number within it-
self. For example, {0,1}, {2,3},and {4,6} are sorted by states 0, 2, and 4. Any block of state
is merged with its precedent blocks. If multiple blocks are possible, we again consider
the precedent block with the lowest lexicographical order. Unfortunately, the states {2,3}
and {0,1} are not mergible because the resulting automaton will try to merge the non-
deterministic states {0,1,2,3} and {5,7} due to the two outgoing transitions b from an
identical source state, but {0,1,2,3} and {5,7} are inconsistent because they have differ-
ent labels as rejecting and accepting. We continue to consider the state {4,6} with its
precedent state {0,1} with the lowest lexicographical order. The resulting automaton is
shown in Figure 2.12.

A detmerge is conducted for merging the state pairs {2,3}−8 and {5,7}−11 for deter-
minization. Note that the newly merged state {2,3,8} has a new rejecting label because
we are trying to merge a rejecting state and an undefined state. The resulting DFA in this
step is in Figure 2.13.

Because the state {5,7,11} is incompatible with its precedent states, we merge
the states 9 − {5,7,11} and then 10 − {5,7,9,11}. The final automaton is in Fig-
ure 2.14. We can see that the DFA accepts all strings in the positive example
D+ = {abb,bb,bba,bbb,babb} and rejects all strings in the negative example D− =
{λ, a,ba, aba,bab}.

HEURISTIC MERGING ALGORITHMS

Conventional state merge algorithms such as RPNI and Traxbar work well when the
training set is sufficiently representative of the language. However, some merges with

2.4. AUTOMATA LEARNING

2

43

start

{0,1,4,6} {2,3}

{5,7}

8

9

10

11

a
b

b

ba a

b

b

Figure 2.12: Resulting DFA after merging the states {4,6} and {0,1}.

start

{0,1,4,6} {2,3,8} {5,7,11}

9

10

a
b

b

a

a

b

Figure 2.13: Resulting DFA after merging the states {2,3}−8 and {5,7}−11.

start

{0,1,4,6} {2,3,8} {5,7,9,10,11}

a
b

b

a

a,b

Figure 2.14: Resulting DFA after merging the states {5,7,11}−9 and {5,7,9,11}−10.

2

44 2. BACKGROUND

low evidence could be performed because of the absence of positive and negative ex-
amples in the training data. This has a negative effect on automata learning and leads
to poor generalization. In the mid-1990s de la Higuera et al. firstly proposed a heuristic
guided state merge algorithm to avoid the aforementioned inconvenient merging prob-
lem (De La Higuera et al., 1996). The state merge in this algorithm is not restricted by the
lexicographical order of states anymore, which is the basic merge ordering logic of RPNI.
Pairs of states of high evidence of equivalence are merged.

The approach was further developed by Price in the late 1990s and formally named
as the EDSM (Evidence-Driven State Merging) algorithm (Lang et al., 1998). This algo-
rithm achieved great success in the Abbadingo contest. The EDSM strategy is briefly
summarized as follows: As in RPNI, two states p and q are compatible, where states p
and q are compatible if and only if their labels are consistent. Every pair of mergible
states p and q is evaluated by taking into account the number of coincidences of states
with the defined output. For example, for a merge and its potential deterministic merge
process, we can compute how many states with the same labels (identically accepting
or rejecting) are merged. A higher score implies a better quality of merge. Once all the
mergible pairs of states are evaluated, the algorithm greedily merges the pair of states
with the highest score. Recalling the example of RPNI, the algorithm considers one pos-
sible merge only based on the predefined lexicographical order without evaluating mul-
tiple possible merges ordered by the score. The algorithm ends when all mergible states
have been considered. The drawback of the EDSM strategy is the cost of evaluating all
possible merges. The first potential improvement was also proposed in the same work
(Lang et al., 1998) only considering those pairs of states at a given distance (depth) W
from the initial state, which is called W-EDSM.

A further improved strategy for selecting the pairs of states to merge is the Blue-
Fringe method (Lang et al., 1998) which is described in Algorithm 5. This algorithm
is considered to be state-of-the-art with respect to the inference of DFA by merging of
states. First, the algorithm initializes the red set using the initial state of the machine.
The blue set is obtained by taking into account the red set, which contains those non-
red states of the hypothesis that are reachable from any state in the red set. As shown in
Figure 2.15, there are two possibly mergible red-blue states 0-1 and 0-2.

The algorithm ends when the blue set is empty. In each iteration, the algorithm
searches for a blue state that is non-mergible with any red state. The first of such states
detected is promoted to the red set and the blue set is recalculated. Any state in the
blue set that is not mergible should be promoted in the hypothesis and colored as red
in order to maintain consistency with the training data. If there exist blue states mergi-
ble with red states, the algorithm merges the pair of states with the greatest evidence of
compatibility. It is worth noting here that the RPNI algorithm can be considered to be a
Blue-Fringe method. In fact, note that if lexicographical order is considered (which is the
usual order considered in the Blue-Fringe implementations) and the score computation
is not carried out in the algorithm, then the algorithms do not differ from each other.
Intuitively, the guided merging leads to more efficient use of the available data.

STATE MERGING WITH SEARCH ALGORITHMS

The standard EDSM algorithm is essentially a greedy program, i.e., in each iteration,
only one merge with the highest score is performed. An alternative approach is to con-

2.4. AUTOMATA LEARNING

2

45

Algorithm 2 State merge in the Blue-Fringe

Require: an input sample S,
Ensure: A is the smallest DFA that is consistent with S

A = APTA(S) . construct the prefix tree
R = {q0} . color the start state red
B = {q ∈Q \ R | ∃l ∈Σ : T (q0, l) = q} . color all its children blue
while B 6= ; do . while A contains blue states

if ∃b ∈ B s.t. ∀r ∈ R holds mer g e(A ,r,b, td) = FALSE then . if a blue state is
inconsistent with all red states

R := R ∪ {b} . color b red
B := B ∪ {q ∈Q \ R | ∃l ∈Σ : T (q, l) = q} . color all its children blue

else
if for b ∈ B and r ∈ R merge(A ,r,b) == Tr ue then

call the merge(A ,r,b) . perform the merge
else Change the color of a blue state in to red state
end if
Change the color of all uncolored children of red states to blue

end if
end while
return A

start

0

1

2

3

4

5

6

7

8

9

10

11

a

b

b

a

b

a

b

b

a

b

b

Figure 2.15: APTA in Blue-Fringe. Red nodes, blue nodes, and white nodes represent identified states, candi-
date mergible states, and pending states, respectively. The blue states are essentially the children nodes of the
red states.

2

46 2. BACKGROUND

sider state merging as a sequential decision-making process of search for a smallest (or
as small as possible) automaton. There are two categories of search-based state merging
algorithms:
Exact algorithms: (find the smallest consistent DFA) HMM (Oliveira and Edwards,
1996), BICA (Oliveira and Silva, 2001), EXBAR (Lang, 1999).
Approximate algorithms: (find a small but not necessarily minimum-size consistent
DFA, find an approximation by wrapping backtrack search around EDSM) ED-BTS
(Bugalho and Oliveira, 2005), SAGE (Juillé and Pollack, 1998), ED-BEAM (Lang, 1999),
ED-SS (Bugalho and Oliveira, 2005).

2.4.2. LEARNING FROM POSITIVE EXAMPLE
It has been proven that identification in the limit from only positive examples is un-

decidable (Gold, 1967). In a lot of cases in practice, we only have positive examples from
the normal behaviors of a system. The negative examples are expensive or even impos-
sible to obtain. The problem is formalized as learning a probabilistic automaton (PA)
representing the distribution over strings.

The main difference between DFA and PA state-merging algorithms is the check for
compatibility. In DFA state-merging they are compatible if there is no inconsistency. In
PA state-merging they are compatible if some statistical criterion is satisfied. The most
representative algorithm ALERGIA uses a compatibility measure derived from the Ho-
effing bound (Carrasco and Oncina, 1994). Using this criterion two states q and q ′ are
α-compatible if the following two conditions hold for all e ∈Σ:

1.
∣∣∣ fq

nq
− fq′

nq′

∣∣∣<√
1
2 ln 2

α

(
1p
nq

+ 1p
nq′

)
2. δ(q,e) and δ(q ′,e) are µ-compatible

The first condition defines the compatibility using a precision parameter α. nq and nq ′
are the number of strings arriving (including passing and ending) in the states. fq and fq ′
are the number of strings ending or following a transition in the states q and q′. In other
words, this condition first checks two states’ compatibility by looking at their ending
frequencies; then checks the compatibility for each pair of outgoing transitions. The
second condition requires that the compatibility is satisfied in every pair of children of q
and q ′. Another difference is in the stopping condition of the merging algorithms. A DFA
state-merging algorithm stops when all possible merges are inconsistent. A PA merging
algorithm can have a statistical stopping criterion. The ALERGIA algorithm stops when
all possible merges are not α-compatible. It can be shown that the ALERGIA algorithm
identifies PAs in the limit with probability one (De La Higuera and Thollard, 2000).

We use the positive data as an example: D+ = {10abb,20bb,30bba,40bbb,50babb}.
The number associated with every string is the frequency. We first build a probabilis-
tic APTA as shown in Figure 2.16. The frequencies of arriving and ending are displayed
beside the states. The transition and its frequency are beside every arc. For example,
now we are trying to merge the states 1-2, and the threshold α is arbitrarily set to 0.8.

First, we check these two states’ compatibility: |0 − 0| <
√

1
2 ln 2

0.8

(
1p
10

+ 1p
140

)
≈ 0.27.

Then, we continue to check their outgoing transition a: |0 − 50
140 | = 0.36 > 0.27; b:

2.4. AUTOMATA LEARNING

2

47

| 10
10 − 90

140 | = 0.36 > 0.27. These two transitions are both not compatible. Therefore, we
conclude that the states 1-2 are not mergible. The algorithm continues to search for
other mergible states, which is skipped here for compactness.

start

0

[150/0]

1

[10/0]

2

[140/0]

3

[10/0]

4

[50/0]

5

[90/20]

6

[10/10]

7

[50/0]

8

[30/30]

9

[40/40]

10

[50/50]

a [10]

b [140]

b [10]

a [50]

b [90]

b [10]

b [50]

a [30]

b [40]

b [50]

Figure 2.16: Probabilistic APTA of the positive input data. The negative example is no longer available for the
construction.

2.4.3. HYBRID AUTOMATA LEARNING

The problem of hybrid dynamical systems learning is studied by both the control
and the machine learning communities. The most fruitful outcome in the control do-
main (particularly the sub-domain as system identification) is the study of switched,
piece-wise affine (PWA) models using Algebraic, Clustering, Bayesian, Bounded-Error
optimization techniques (Paoletti et al., 2007). The general idea is to identify a model
minimizing the within-domain error. The domains are based on the space partition of
the variables, and they are normally mutually exclusive, i.e., there is no overlap among
different domains. These approaches only deal with a piece-wise linear model where
the current state is a linear combination of previous states and input. The identification
algorithms either assume the order (how many steps the historical data rely on) or the
number of states a priori.

A similar problem is formulated in the machine learning domain as multi-modal
learning. Here we only review multi-modal input-output models to deal with a control
problem. The main idea about a multi-modal model is that a complex process is formed

2

48 2. BACKGROUND

by different modalities, which are characterized by different statistical properties. A hy-
brid model is essentially a multi-modal model, where each modality is governed by for
instance a continuous dynamical model. Several works on multi-modal learning are
dedicated to obtaining a model insightfully represented by a finite state automaton (Om-
lin and Giles, 1996; Hou and Zhou, 2018). These works are a type of compromise at the
abstraction level instead of direct learning. We summarize two categories as Stochastic
model and Hybrid automaton.

• Stochastic model:

The input-output HMM (IOHMM) is essentially a probabilistic finite state automa-
ton and closer to a continuous Hidden Markov Model (Bengio and Frasconi, 1995).
IOHMM allows for input and output vectors, and it retains the probabilistic feature
like HMM. In IOMHMM, the hidden states are assumed to follow a multinomial
distribution that depends on the input sequence, which also means the dynamic
of state transition is governed by the transition probability and the input control
signal. The observation, i.e., the output signal vector relies on a Gaussian density
with parameters depending on the current hidden state. An expectation maxi-
mization (EM) algorithm can be used for finding the optimal parameters of the
model. EM iteratively rotates between an expectation (E) step and a maximization
(M) step, The E step creates an expectation function of the likelihood using the
current estimated parameters. The M step computes parameters maximizing the
expected likelihood found in the E step.

• Hybrid Automaton:

Instead of modeling the dynamics in a stochastic manner, the hybrid automaton
aims to describe the continuous dynamic in each modality using a continuous
formula, according to the linear and non-linear feature in each modality (namely
a location in a hybrid automaton).

Multi-modal symbolic regression (MMSR) is proposed to learn a non-linear for-
mula in the locations and the transitions. MMSR consists of two sub-algorithms:
the cluster symbolic regress (CSR) and transition modeling (TM). CSR is based on
a combination of symbolic regression (SR) and expectation-maximization (EM).
SR is built on a genetic algorithm searching for a suitable mathematical formula
“best" explaining the training data both in terms of accuracy and simplicity. SR
does not assume any shape of formula as a prior; the initial and new expressions
are formed by combining mathematical building blocks like mathematical oper-
ators such as +,−,×,÷,etc. Simultaneously, the EM algorithm serves as an opti-
mization component to identify the modal data membership. TM is an algorithm
to infer symbolic inequalities for binary classification boundaries for the transition
conditions. Again, TM is built on the basis of SR by searching classification expres-
sions. The benefit of MMSR is that complex non-linear formulas can be built up in
each location.

A common drawback of the aforementioned hybrid systems learning is the need for
fixing the number of states in advance. Automata learning can help with this problem

2.5. HYBRID SYSTEM VERIFICATION

2

49

because the number of states is identified by the learning algorithm. A composed type of
learning for hybrid automata is proposed in (Niggemann et al., 2012). The original time
series data can be represented as sequences of tuples consisting of discrete and numeric
events:

(e1,v1), (e2,v2), (e3,v3), · · · , (en,vn) (2.1)

The idea of the composed type of learning is quite straightforward. First, the discrete
data are used for learning the conventional DFA. Note again the hybrid automaton we
discussed here is only from the positive examples. Second, we aggregate the numeric
data in each state. To achieve this, we need to keep track of the original training data
in tuples, the discrete data entering into specified states implies the corresponding nu-
meric data should also be put into such states. Third, the regression model purely for the
time-driven dynamic is able to be identified from the numeric data in each state. The
representative work in this category is HyBUTLA (Niggemann et al., 2012). In this work,
the discrete events are obtained based on actuators’ state change. They use ALERGIA-
like statistical testing for the state merging in a bottom-up way. The authors claim that
the bottom-up strategy merging from leaf nodes is more efficient than the conventional
top-down strategy like the Blue fringe framework. The continuous behaviors in modes
are identified by linear regression or a feedback neural network. The main drawback of
doing so is the high complexity of the model. The number of distinct regression models
is equivalent to the number of states in the finite automaton.

2.5. HYBRID SYSTEM VERIFICATION
The verification problem in control is that of considering a controller that has al-

ready been designed and connected to its plant and the environment, which is subject
to some disturbances, we need to verify that all the behaviors of the system stay within
a desired range of operation and do not reach a forbidden state. Note that in this thesis,
the controller is not designed but learned from data. But the problem is similar to verify-
ing that the learned behavior of the system is desired. The question can be answered by
first computing the reachable set of the system subject to uncontrolled interaction with
the external environment, then checking if all reachable states satisfy the property, e.g.,
safety studied in this thesis.

2.5.1. REACHABILITY FOR HYBRID DYNAMICS
We refer the readers to a detailed introduction of verifying continuous and hybrid

systems (Maler, 2014). The history of this topic can be found in (Alur, 2011). Here we only
go through the fundamental definitions and basic algorithms of reachability analysis.

Consider a continuous dynamical system ẋ = f (x, v), where x ∈ X is the state vari-
able and v ∈V is the admissible input variable. That is to say, such a system is subject to
external disturbances modeled by v . Computing the reachable set (given the initial state
set X0 ∈ X , all possible trajectories of states visited) allows one to verify that all the behav-
iors of the system stay within a desired range of operation and do not reach a forbidden
region of the state space. Proving such properties for systems subject to uncontrolled
interaction with the external environment is the main issue in verification. Note that the
external disturbances are modeled by a set of admissible inputs, which is not the case for

2

50 2. BACKGROUND

a general control problem where the disturbances are modeled by some specified prob-
abilistic distributions. Normally, for the verification problem, we only know the ranges
or bounds of the input signals.

Indeed, numerical simulation also deals with such a validation problem by repeat-
edly picking one distinct initial condition and one input stimulus producing the corre-
sponding trajectory and observing whether this trajectory behaves properly. The obvi-
ous drawback is that all possible trajectories are unenumerable. Reachability analysis
achieves the same goal by exhaustively exploring the state space in a search manner,
e.g., breadth-first. We compute at each time step all the states reachable by all possible
one-step inputs from states reachable in the previous step. Though its computation is
much more costly than the simulation of an individual trajectory, it provides more con-
fidence and guarantees about the correctness of the system than the limited number of
numerical simulations.

A trajectory is a measurable sequence (signal) defined by a partial function ξ : T → X
over all T (an infinite trajectory) or over an interval [0, t] ⊂ T (a finite trajectory), wherein
T = R+ is a time domain and X ⊆ Rn is a state space. We use the notation T (X) for all
such trajectories and |ξ| = t to denote the signals’ duration. We use T (V) to denote input
signals ζ : T → V , where V ⊆ Rm is the input space. A continuous dynamical system
S = (X ,V , f) can also be defined as ẋ = f (x, v).

ξ is the response of f to ζ from x if ξ is the solution of the differential equation for

initial condition x, i.e., ξ= fx (ζ) or x
ζ/ξ−−→ x ′. x ′ is said to be reachable from x by ζ within

t :

R(x,ζ, t) = {x ′} (2.2)

For all initial states represented by X0, all time instants in an interval I = [0, t], and all
admissible input signals in T (V), the reachable set is defined as:

RI (X0) = ⋃
x∈X0

⋃
t∈I

⋃
ζ∈T (V)

R(x,ζ, t) (2.3)

Figure 2.17 is a sketch illustrating the trajectories from many runs of simulation and
the reachable set from the initial state set X0 with all possible inputs. The reachable set
consists of all possible trajectories within the time interval I .

x
0x

0

Figure 2.17: Trajectories of simulation and reachable set.

2.5. HYBRID SYSTEM VERIFICATION

2

51

The reachability of the discrete or continuous dynamics can be computed incremen-
tally as:

R[0,t1+t2](X0) = R[0,t2](R[0,t1](X0)) (2.4)

The reachable states for every R[0,ti] are explored by a reachability algorithm shown
in Algorithm 3. Note that the total time length is L, which is chunked equally as L/r in-
tervals. In every interval r , we compute the newly explored set P . The termination con-
dition in Algorithm 3 is a bounded horizon by L/r times of execution. For an unbounded
horizon reachability exploration, the termination condition is replaced by P ⊂Q, namely
the newly computed reachable state has already been explored. This condition usually
leads to undecidability.

Algorithm 3 Reachability algorithm:

Require: Initial set X0 ⊂ X
Ensure: Q = R[0,L](X0) P :=Q := X0

for all i = 1,2, · · · ,L/r do
P := R[0,r](P)
Q :=Q ∪P

end for

Equation 2.5 shows the trajectories from a simple hybrid automaton with two states,
each with its own dynamics. In this example, we simply assume the dynamic is
piecewise-linear or piecewise-affine. An (extended) state of a hybrid system is a pair
(l , x) ∈ Loc× X where l is the discrete location. A transition from state li to state l j may
occur when the condition Gi j (the transition guard) is satisfied by the current value of
x. Such conditions are typically comparisons of state variables with thresholds or more
generally linear inequalities. Moreover, while staying at the discrete state s, the value of
x should satisfy additional constraints, known as state invariants.

(l1, x[0])
t1−→ (l1, x[t1]) −→ (l2, x[t1])

t2−→ (l2, x[t1 + t2]) −→ ·· · , (2.5)

The basic idea of exploring the state space in this model is shown in the sketch of
Figure 2.18. To illustrate in a simplified way, the dimension is only two and every newly
explored state is represented using a rectangle. First, continuous reachability is applied
using the dynamics A1 of l1, while respecting the state invariant I1. The initial state in
l1 is in blue. Then the set of reachable states is intersected with the transition guard
G12. The outcome serves as an initial set of states in l2. Note that the intersection set
is actually a polygon. Because we simply represent every state using a rectangle, we get
the over-approximated rectangle as the intersection set and use it as the initial state in
location l2. The continuous linear reachability with A2 and I2 is applied and so on.

The key challenge is how to conduct efficient implementation of the reachability al-
gorithm, which is one of the main research lines in the hybrid verification domain. The
researchers seek for a suitable representation for the set of states supporting the oper-
ations used by the reachability algorithm. HyTech was the first model checker to im-
plement symbolic reachability analysis for hybrid systems (Henzinger et al., 1997b). The

2

52 2. BACKGROUND

l
1

l
2

G
12

Figure 2.18: Reachable set in two states. The green box is the guard G12 as the transition condition from l1 to
l2

reachable set is represented by a union of n-dimensional polyhedra, where n is the num-
ber of variables. A polyhedron is essentially a conjunction of linear inequalities over vari-
ables. However, the model is only restricted to the class of linear hybrid automata (LHA),
i.e., the guards, assignments, and invariants are all linear expressions over constant con-
straints and some order derivatives. For example, a LHA-admissible flow is x ′ = y ′ in a
location and c1 ≤ x ′ ≤ c2 is a constraint in a location or an invariant, where x and y are
the LHA’s two variables, and c1 and c2 are the constants as a lower bound and an up-
per bound. For LHA, the polyhedral representation is closed for both discrete transitions
and continuous evolution in Equation 2.5. However, unfortunately, LHA can only handle
simple dynamic systems. For a more complex system, to use HyTech as a model checker,
it should be over-simplified into LHA.

HyTech does not even support the most commonly used linear dynamical systems
under the linear differential equation form: x′ = Ax+Bu, where x represents the vector
of state variables, u represents the vector of input variables, A is the system matrix, relat-
ing how the current state affects the state change x′, B is the control matrix, determin-
ing how the system input affects the state change. The class of hybrid automata where
guards, assignments, and invariants are linear expressions and the dynamics are linear
differential equations, is called Linear Hybrid Systems (LHS). Even for an autonomous
linear system without input, the “exact" representation is: x = x0eAt . This representation
is not useful in practice due to its high complexity: checking the membership of a point
x in this set is just solving the reachability problem itself. Here we will introduce an im-
portant concept called flowpipe approximation using a representative technique used in
the tool d/dt. Briefly speaking, a flowpipe is a bundle of trajectories in the state space.
To deal with the reachable states in a linear affine dynamical system without input, d/dt
proposes to conduct the following steps. First, the states at step k −1 are represented by
a convex hull F k−1 = conv(Vk−1), where Vk−1 = {x1

k−1, . . . ,xm
k−1}, m is the number of

vertices. Second, due to the convexity-preserving property, we compute the reachable
convex hull by only using vertices V in a finite step δ, i.e., Gk = conv(Vk−1 ∪Vk). Figure

2.5. HYBRID SYSTEM VERIFICATION

2

53

2.19 shows an example of computing the reachable state from X0 within time δ, the blue
convex hull is Gk .

Figure 2.19: Reachable set without over-approximation. We can see that some reachable states are not included
in the blue convex hull.

Note that Gk is not an over-approximation of δ[0,r](conv(Vk−1)), because the reach-
able states in the intermediate time between [0,r] are not guaranteed to be included.
Third, as shown in Figure 2.20, such a guarantee is achieved by an approximation us-
ing a “bloating" operation pushing Gk outward to get an over-approximated convex hull
(polyhedron) G ′k .

(a) (b) (c)

Figure 2.20: A bloating operation to guarantee that all reachable states are included.

Fourth, G ′k is further over-approximated by a “griddy" polyhedron G ′′k as shown in
Figure 2.21 to achieve a much less expensive representation when we check way more
easily the termination condition Pk = Pk−1, where P k = P k−1 ∪G ′′k .

Figure 2.21: A further over-approximation by using a orthogonal polyhedron.

For the linear dynamical system with input, the state is represented as F k−1 = conv
(Vk−1 ⊕

U). Intuitively, the input or disturbance represented by a polytope is added up

2

54 2. BACKGROUND

to the vertices again to form a new convex hull, as shown in Figure 2.22.

Figure 2.22: Bloating operation for input control.

We can observe that by a bloating operation in both Figure 2.20 and Figure 2.22, the
resulting convex polytope will have more vertices than the original rectangle, which in-
evitably increases the complexity of the representation. The similar “face-lifting" tech-
nique applied as the bloating operation can be used again to guarantee the resulting
polytope has the same number of vertices with the price of over-approximation error,
which is shown in Figure 2.23. Such a way of keeping representation size small will ac-
cumulate errors, which is called the “wrapping effect" (Kühn, 1998).

Figure 2.23: Face-lifting to keep same number of vertices

The solution is using a lazy representation (Girard et al., 2006). The basic idea is
that the reachable state Pk can be computed from P0, and an approximated polytope
is obtained with any desired precision. In the next step, Pk+1 is also computed from
P0 instead of from Pk to avoid accumulating errors. This technique, and more efficient
representation using zonotope (Girard, 2005) and support functions, is the foundation
for the state-of-the-art tool SpaceEx (Frehse et al., 2011). SpaceEx is able to handle the
reachable set after 1000 steps for a 200-state variable linear system within 2 minutes.

Once the reachable set is available, we can easily check some properties of the sys-
tem. The property is usually written as some logical expressions such as inequality for-
mulae. For example, in a cruise control system, we can do the safety verification by
checking if the relative distance of two cars ∆x > 0 always holds in all reachable states.
Or we can define a “bad state", where ∆x <= 0, and check if this state is reachable us-

2.6. SUMMARY

2

55

ing the reachability analysis, e.g., computing the intersection of the system’s reachable
states and the bad state.

2.6. SUMMARY
In this chapter, we first introduce several automata models using examples of cruise

control systems. Some computation models such as probabilistic automata and hybrid
automata will be used as the modeling tools in the coming chapters.

Second, we provide a gentle tutorial about automata learning algorithms starting
with the TB/Gold algorithm, a Myhill-Nerode like approach to the state-of-the-art state
merge algorithms. In the coming chapters, we will continue to introduce a more ad-
vanced regression automaton model and its learning algorithm, which is built upon con-
ventional state merge algorithms. For one of the main research lines in this thesis, related
work on hybrid model learning is presented. Our work is mostly in the category of hybrid
automata learning. Our first algorithm to infer hybrid automata presented in Chapter 3
is closely related to HyBUTLA (Niggemann et al., 2012), using a type of composed learn-
ing. To overcome the high complexity problem in HyBUTLA, we propose to further ab-
stract the states to form more high-level modes based on their sub-sequence similarity.
The second algorithm presented in Chapter 4 is called inline learning, which considers
the numerical features of the raw continuous data during the state merge procedure. We
argue that this novel algorithm is more compact than composed learning.

Last, we briefly go through many fundamental concepts in the verification of hybrid
systems such as simulation, reachable set, reachability algorithm, state representation,
etc. We believe that the reachability analysis can be leveraged as a powerful tool for ver-
ifying the hybrid models we learn using our algorithms. Chapter 7 indeed showcases
how to use this tool to verify a data-driven adaptive cruise controller learned from hu-
man driving data. Unfortunately, the hybrid model checkers in existence do not support
the models we learn. In Chapter 7, we make a contribution by proposing a format trans-
forming tool to fill and close this gap.

3
LEARNING HYBRID AUTOMATA FOR

IMITATION CONTROL

In this chapter, a novel algorithm based on a composed learning strategy for a mul-
tiple mode hybrid automaton model (MOHA) is discussed. A discrete timed automaton
model is first learned as a “skeleton" representing the logical evolution of discrete dynam-
ics. To deal with multiple modes of dynamical behaviors consisting of multiple states, the
states are abstracted into modes on the basis of their behavioral similarities. A continuous
dynamical function is then used for describing continuous dynamics in each mode.

MOHA is applied to learn the car-following behavior of human drivers. The discrete
timed automaton is used for modeling traffic environment evolution. The modes rep-
resent short, medium, and long distance car-following, free driving are abstracted. The
continuous car-following equation in each model is used for continuous control of longi-
tudinal acceleration/deceleration. The model is then used for the traffic simulation and
the human-like car-following controller design.

The material in this chapter has appeared in

• Qin Lin, Yihuan Zhang, Sicco Verwer, and Jun Wang. Moha: a multi-mode hybrid automaton model for
learning car-following behaviors. IEEE Transactions on Intelligent Transportation Systems, (99):1–8,
2018

• Yihuan Zhang, Qin Lin, Jun Wang,and Sicco Verwer. Car-following behavior model learning using
timed automata. IFAC-PapersOnLine, 50(1):2353–2358, 2017

• Yihuan Zhang, Jun Wang, Qin Lin, Sicco Verwer, and John Dolan. A data-driven behavior generation
algorithm in car-following scenarios. In Dynamics of Vehicles on Roads and Tracks Vol 1: Proceedings
of the 25th International Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD 2017), page
227. CRC Press, 2017

57

3

58 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

3.1. INTRODUCTION

Car-following is the most common behavior in daily driving. Learning car-following
is of great importance for a subject vehicle to monitor, estimate or even predict the states
of nearby vehicles for interaction and decision-making. A car-following model essen-
tially reflects how a driver responds to his or her existing driving states by implement-
ing a certain action. A more formal definition is that this model tries to bridge input
stimuli or explanatory variables, like subject vehicle speed, relative distance and relative
speed to a leading vehicle, and output actions or response variables, like acceleration or
deceleration. The first work on car-following can be dated back to the 1950s, in which
models were developed to evaluate traffic capacity and congestion. A linear follow-the-
leader model was proposed in Ref. (Pipes, 1953) that bridged the driver’s desired acceler-
ation and the speed difference between the following and the leading vehicles. Another
widely used linear model was proposed in Ref. (Helly, 1959a). Alternatively, non-linear
models in Ref. (Gazis et al., 1961) introduced power operators of range and speed. An
intelligent driver model (IDM) was developed in Ref. (Treiber et al., 2000), which was
a time-continuous car-following model for the simulation of freeway and urban traffic.
Genetic algorithms are the most widely used techniques to identify parameters in the
aforementioned models. A gross fitting strategy is usually used for identification, i.e.,
fitting a car-following model on all the collected data. The gross fitting inevitably has
large fitting errors, and is more suitable for overall traffic flow simulation. Most of the
existing car-following models using gross fitting do not fully capture driver behavior in
different driving scenarios (Hamdar et al., 2008). Driving behavior actually includes het-
erogeneity of inter-driver difference and intra-driver difference (Van Hinsbergen et al.,
2015). The inter-driver difference, discovering that different car-following models may
apply to different drivers, is useful for driving behavior modeling and skills evaluation of
individual drivers (Hoogendoorn et al., 2006), which is not the focus of this work. The
intra-driver modeling basically deals with the problem that individual drivers change
their behaviors over the data collection period. This chapter aims at learning a model
averaging driving behaviors from thousands of human drivers from a data-driven per-
spective, where cognitive parameters are identified from real driving data. The basic
idea is discretizing the environmental variables, i.e., speed, relative distance, and relative
speed on a coarse-grained level and obtaining a stateful model. Distinct driving patterns
or modes are obtained by partitioning such a model into groups of states based on states’
sequential similarity. Corresponding groups of car-following models are identified on a
fine-grained level from the real-value time series data. Using such a divide-and-conquer
learning, the approximation error of this switching car-following model is expected to be
lower. Meanwhile, the underlying dynamic of driving behavior is discovered.

This work is motivated by Ref. (Higgs and Abbas, 2015), which dealt with the similar
tasks of patterns mining and divide-and-conquer learning in the car-following model. In
their paper, they first segmented the time series driving data by means of change point
detection, and afterwards mean values representing the segmented piece-wise data were
clustered using the k-means algorithm. The noticeable disadvantage of this approach,
formally called feature vector clustering (Smyth, 1997), is that it loses sight of dynamic
and time information. In addition, the obtained clusters are not interpretable, and the
switching mechanism among clusters is missing. These problems will be solved by the

3.1. INTRODUCTION

3

59

Car-following model calibration

NGSIM dataset
Symbolization By k-means

Symbolic strings
Time difference computation

Timed strings
RTI+ learning algorithm

State frames
Hierarchical clustering

Mapping

Observable

Latent

Cluster 1 Cluster 2 Cluster 3 Cluster n

Cluster 1 Cluster 2 Cluster 3 Cluster n

Clustered timed series

Clustered state

frames

Parameters in model 1 Parameters in model 2 Parameters in model 3 Parameters in model n...

......

......

Figure 3.1: The flowchart of the proposed approach. The clustering is deployed on the state sequences (the
latent variables under the dotted line in the module). The original numerical time series data are also clustered
correspondingly with the help of the mapping. Different car-following models are trained from the clustered
time series data, one for every cluster.

timed automaton model in this chapter. Another related work is Ref. (Verwer et al., 2011),
which recognized truck driving behaviors, like accelerating too fast or normal accelera-
tion, from labeled sequences. In this chapter, a sequence clustering is deployed based
on the input data. It essentially clusters similar driving processes shared in multiple
complete car-following periods. This work also focuses on obtaining interpretable mod-
els from unlabeled sequences. Instead of learning semi-supervised classifiers separately
from the sensors of speed and fuel engine, as was done in Ref. (Verwer et al., 2011), the
framework in this chapter is a unique generative model with distinguishable behaviors in
different model regimes. Due to their insightful and interpretable properties, automata
have been widely used for modeling more complex driving behaviors like lane change,
intersection access, and turning, to name a few (Schwarze et al., 2013; Bouhoute et al.,
2014; Gadepally et al., 2014).

The original multivariate time series data are discretized from a widely used public
dataset into symbolic strings. A symbolic representation of time series data has the fol-
lowing benefits: it provides a high-level overview of behavioral dynamics; it significantly
reduces the dimensionality of multi-variate time series data; it is robust to noise; it has
inexpensive similarity computation for discovering driving patterns. Such a symbolic
representation is sufficient for conventional discrete event system modeling. However,
in many application settings, time information is crucial for behavior modeling. For ex-
ample, moderate and harsh decelerations are obviously not the same driving behavior.
The time difference between two consecutive distinct events is therefore computed to
obtain timed strings. The learning process benefits from such timed sequential data
since they help explicitly discover the underlying varying-duration behaviors. Then a
state-of-the-art automata learning algorithm named RTI+ (real-time identification from
positive data) is deployed to learn a direct and cyclic graphical model that “best” de-
scribes the observed data. With the help of this structural model, frequent common
state sequences as patterns are extracted and clustered. A complete car-following pe-
riod consists of distinguishable temporary behaviors represented by the aforementioned
clusters. The corresponding original time series data are also clustered by mapping their
indices. Car-following models are trained in the obtained individual clusters of time se-
ries data. Figure 3.1 shows a flowchart of the proposed approach.

This chapter makes the following contributions:

1. Multivariate time series data are represented with symbolic timed strings, and a
highly interpretable model is learned with state-of-the-art automata learning al-

3

60 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

gorithms.

2. Properties of temporal processes, i.e., sequential features, are used for clustering
the input data. The results show that the fitting accuracy is significantly improved.

3. To the best of our knowledge, this is the first work to use state sequence clustering
to label different behaviors in an automaton by partitioning the model.

4. The usage of the proposed model is promising. People in the traffic simulation
area can get a valid and accurate car-following model. This model can also be used
as a classifier for recognizing driving behaviors of surrounding drivers for human
or autonomous drivers by determining their current state and its semantic cluster.
In addition, due to its insightful nature, an intelligent car-following controller’s
design can also benefit from this model. Experiments demonstrate that such a
controller can mimic a human’s car-following behavior.

This chapter is organized as follows. Section 3.2 introduces car-following model
identification. Section 3.3 discusses timed automata learning. Section 3.4 explains the
methodology about state sequence clustering. In Section 3.5, experiments and com-
parisons with baselines are conducted. Another potential application of the proposed
model is discussed in Section 3.6. The concluding remarks are made in Section 3.7.

3.2. CAR-FOLLOWING MODEL IDENTIFICATION
In this chapter, two commonly used models are introduced: the Helly and the IDM,

which are representations of a linear car-following model and a non-linear one.
The acceleration in Helly’s car-following model is a linear function combining the

relative speed and the relative distance between the headway and the desired headway,
which is defined by (Helly, 1959a):

v̇(t) =C1 ·∆v(t −τ)+C2 · (∆x(t −τ)−D(t)) (3.1)

and
D(t) =α+β · v(t −τ)+γ · v̇(t −τ) (3.2)

where C1, C2, α, β, γ and τ are the constant parameters that need to be calibrated. The
desired headway is a function of the speed and the acceleration of the following vehicle,
where α, β and γ are the corresponding weightings for those variables, and τ represents
the reaction time of the following vehicle.

The acceleration in the IDM is a continuous function associated with the speed v ,
relative distance ∆x, and relative speed ∆v , which is defined by (Treiber et al., 2000):

v̇ = a0 ·
(

1−
(

v

v0

)δ
−

(
s∗(v,∆v)

∆x

)2
)

(3.3)

and

s∗(v,∆v) = s0 + v ·T0 + v ·∆v

2
√

a0 b0

(3.4)

3.3. STATE MACHINE LEARNING

3

61

where a0, b0, v0, δ, s0 and T0 are constant parameters that need to be calibrated. The
exponential constant δ is usually set to 4. In Equation 3.3, the acceleration function
is divided into two parts. The first part a0 ·

(
1− (v/v0)δ

)
represents an acceleration rate

toward a desired speed v0, while a0 denotes the maximum acceleration. The second part
−a0 ·(s∗(v,∆v)/∆x)2 indicates a braking action according to the relative distance∆x and
a desired minimum gap s∗, which is defined by Equation 3.4. b0 and s0 are the desired
deceleration and the minimum safe distance, respectively. T0 indicates the desired safety
time gap.

In this chapter, the differential evolution algorithm (DEA) (Storn and Price, 1997) is
applied to identify the parameters of the Helly and the IDM car-following models.

3.3. STATE MACHINE LEARNING
State machine learning, also known as grammatical inference (GI), aims at identify-

ing a “correct” grammar for an unknown target language, given a finite number of exam-
ples of the language (Sakakibara, 1997). The main goal of grammatical inference is learn-
ing regular grammars or deterministic finite automata (DFA), typically minimum-state
DFA (de La Higuera, 2005). The first convincing model for grammatical inference dates
back to 1967 (Gold, 1967). It has been proven that finding the minimum-state DFA from
incomplete examples is NP-complete (Gold, 1978a). Readers are referred to the survey
paper (Stevenson and Cordy, 2014) for more formal definitions and a history of gram-
matical inference. Although GI is hard in theory, new techniques, e.g., heuristic-based
state merging, have emerged to make practical problems more tractable (de La Higuera,
2005). These algorithms require discrete-event strings as input. In this chapter, the orig-
inal real-valued time series data are abstracted using a symbolic representation associ-
ated with time information. The resulting timed strings are then fed to a state machine
inference algorithm that learns a structural model, uncovering the underlying behaviors.

3.3.1. PROBABILISTIC DETERMINISTIC REAL TIMED AUTOMATON
A probabilistic deterministic finite automaton (PDFA), defined in Definition 1, is a

generic model for discrete events (similar to a Hidden Markov Model).

Definition 1. A PDFA is a 5-tuple 〈Q,Σ,δ,π, q0〉, where Q is a finite set of states, Σ is a
finite alphabet of observable symbols (events), δ : Q ×Σ→ Q is the transition function
from a state-symbol pair to the next state, π : Q ×Σ→ [0,1] is the probability of the emit-
ted symbol given a state, and q0 is the initial state.

Sequences of symbols translate to paths over states starting from the initial state q0.
The probability of such a sequence is obtained by multiplying all the state-symbol prob-
abilities along such a path. Time information is also relevant in many real-world appli-
cations of automata. The actions’ timing or lifetime is important for characterizing be-
haviors. Sharp and slow deceleration actions are conspicuously distinct for instance. An
algorithm for efficient learning of timed automata was proposed in Ref. (Verwer et al.,
2006, 2010a). This algorithm uses an explicit representation of such time constraints.
Discrete events are represented by timed strings (a1, t1)(a2, t2) · · · (an , tn), where ai is a
discrete event occurring with ti time delay since the (i −1)th event. A probabilistic de-
terministic real timed automaton (PDRTA) model defines a probability distribution over

3

62 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

such timed strings, having a Markov property in the distribution over events, and a semi-
Markov property in the time guards. A PDRTA is formally defined in Definition 2.

Definition 2. A PDRTA is a 4-tuple 〈A ,E ,T ,H 〉, where A = 〈Q,Σ,∆, q0〉 is a 4-tuple
defining the machine structure: Q is a finite set of states, Σ is a finite alphabet, ∆ is a
finite set of transitions, and q0 ∈ Q is the initial state. E and T are the event and time
probability distributions, respectively. E : Q ×Σ→ [0,1] returns the probability of gener-
ating/observing a given event in a given state. T : Q ×H → [0,1] returns the same but
for a given time range [m,m′] ∈H , where H is a finite set of non-overlapping intervals
in R+. A transition δ ∈ ∆ in a PDRTA is a tuple 〈q, q ′, a, [m,m′]〉, where q, q ′ ∈ Q are the
source and target states, a ∈Σ is a symbol and [m,m′] is a temporal guard.

In a PDFA and a PDRTA, the states are latent variables that cannot be directly ob-
served in strings, but have to be estimated by using a learning method. The state tran-
sition in a PDFA is triggered only by an event. However, in a PDRTA, it is triggered when
both an event and its timing are validated (inside a time range/guard). Therefore, a
PDRTA is essentially a timed variant of a PDFA.

Example 2. Figure 3.2 illustrates an automaton modeling a simple driving scenario. Let
us imagine that in the initial state S0, the subject vehicle keeps a large relative distance
to the leading vehicle, which is speeding up. If the subject vehicle slows down, the rel-
ative distance will be greater and it will end the car-following period, i.e., ending in the
state S1 (assume that S1 is a stable final state). For the state sequence S0−S2−S1, the
subject vehicle keeps constant speed for a long time, with time constraints of 30-60 sec-
onds, and afterwards slows down. It needs to be clarified again that the time in a TA is
the time elapsed since the last event. As a consequence, it ends in state S1. The state
sequence S2 − S3 − S4 and a more complete loop S2 − S3 − S4 − S2 show typical car-
following behaviors. The subject vehicle in these cases keeps a small relative distance
and a small relative speed to the leading vehicle. The transition from S2 to S3, i.e., speed
up [0,10], denotes that after within 10 seconds of keeping a constant speed, the subject
driver quickly speeds up and catches the leading vehicle. The probabilities next to tran-
sition arcs are the joint distribution of symbols and time constraint. The probability of
a state sequence is therefore easy to compute, say the probability of S0−S2−S3−S4 is
0.8×0.9×1.0 = 0.72.

3.3.2. DATA DESCRIPTION
This chapter uses the public dataset on individual vehicle trajectories from the Next

Generation SIMulation (NGSIM) (NGSIM, 2007), a program funded by the U.S. Federal
Highway Administration. The trajectory data provide a great and valuable basis for val-
idation and calibration of microscopic traffic models (Thiemann et al., 2008). The I80
and the US101 are two datasets from Highways I80 and the US101, respectively.

The I80 dataset consists of three 15-minute periods: 4:00 p.m. to 4:15 p.m., 5:00 p.m.
to 5:15 p.m., and 5:15 p.m. to 5:30 p.m. These periods represent the buildup of conges-
tion, or the transition between uncongested and congested conditions, and full conges-
tion during the peak period (NGSIM, 2007). A total of 45 minutes of data are available
in the US101 dataset, which are segmented into three 15 minute periods: 7:50 a.m. to
8:05 a.m., 8:05 a.m. to 8:20 a.m., and 8:20 a.m. to 8:35 a.m. (NGSIM, 2007). Both the I80

3.3. STATE MACHINE LEARNING

3

63

S0

S1

slow down, 0.2 S2

constant, 0.8

slow down [30, 60], 0.1

S3

speed up [0,10], 0.9

S4

constant, 1.0

slow down, 1.0

Figure 3.2: A simple example of the timed automaton computation. Note that it is only used for illustrating a
timed automaton and some following techniques based on an already learned model. It is not a model learned
from the dataset in the experiment using our algorithm.

and the US101 datasets provide precise trajectory information for each vehicle within
the study area at a sampling frequency 10 Hz. The distribution of the time duration of
car-following sequences in each dataset is illustrated in Figure 3.3.

10 20 30 40 50 60 70 80 90 100 110 120

Time (1 s)

0

200

400

600

800

1000

1200

1400

F
re

q
u

e
n

c
y

I80-1
I80-2
I80-3
US101-1
US101-2
US101-3

Figure 3.3: The duration distribution of car-following sequences in each dataset. The frequency on the y-axis
is the number of sequences in each time bin.

Based on the trajectory data, the following and leading vehicle pairs are extracted
for the purpose of studying car-following behavior. Note that vehicle speed, relative dis-
tance, and relative speed are explanatory variables as inputs. Longitudinal acceleration
is a response variable as an output.

3.3.3. DATA PRE-PROCESSING
The k-means clustering algorithm is used as a discretization approach to symbolize

the car-following data. The centroids of the I80-1 dataset are listed in Table 3.1. The

3

64 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

Table 3.1: Code book of the k-means centroids for numeric data in the I80-1 dataset.

Symbols a b c d e f g h i j

v centroid (m/s) 0.79 3.02 −2.88 4.82 −3.12 −0.98 −9.67 2.52 −7.02 0.12
∆x centroid (m) 57.87 36.13 15.63 15.55 204.18 96.09 39.74 24.00 24.47 10.13
v centroid (m/s) 13.69 10.54 7.74 5.94 19.41 17.25 12.99 8.38 10.10 4.12

“ELBOW” method is used to determine the “optimal” number of clusters (Goutte et al.,
1999). The idea is to find the number of clusters that stops sharp dropping of the WSS
(within the cluster sum of squares), which is illustrated in Figure 3.4. Symbolic strings are
then converted to timed strings. Figure 3.5 shows a simplified example with the speed
feature to illustrate how the conversion works. In the experimental setup, all 3 input
features are clustered at once.

0 5 10 15 20

Number of Clusters

0

0.5

1

1.5

2

2.5

D
if
fe

re
n
c
e
 o

f
W

S
S

×10
6

Figure 3.4: The WSS difference versus the number of clusters in I80-1. It is suggested that there is often a
range of reasonable number of clusters to return, e.g., 9 to 12 in this case, rather than a single correct number
(Salvador and Chan, 2005a). 10 is selected as a reasonable number of clusters.

3.3.4. LEARNING PDRTAS
A state-of-the-art machine learning algorithm named RTI+ is used to learn car-

following behaviors from unlabeled data. For more details about this algorithm, readers
are referred to the Ref. (Verwer, 2010a). Traditional state machine learning algorithms
start by building a large tree-shaped automaton called an augmented prefix tree accep-
tor (APTA) from a sample of input strings. Every state of this tree can be reached by
exactly one untimed string and therefore encodes exactly the input sample. For timed
automaton learning, the initial values of the lower and upper bounds of all time guards
are set to be the minimum tmi n and maximum tmax time values from the input samples
S. Figure 3.6 illustrates a timed APTA (TAPTA) from timed strings (a modified example
from Ref. (Verwer, 2010a)).

State merges and transition splits are two main operations of structure and tem-
poral guards learning in RTI+. A split of a transition (see an example shown in Fig-
ure 3.7) δ = 〈q, q ′, a, [m,m′]〉 at time t creates two new transitions 〈q, q1, a, [m, t]〉 and

3.3. STATE MACHINE LEARNING

3

65

0 50 100 150 200 250

Time

0

2

4

6

8

10

S
p
e
e
d
 m

/s

a

b

c

(c, 0) (b, 46) (a, 17) (b, 124)(c, 29)

Figure 3.5: Discretization of time series data in I80-1. Instead of using complete symbolic strings with total
length 275, the timed string has 5 tuples as input: (c,0)(b,46)(a,17)(b,124)(c,29). The number next to the
symbol in each tuple denotes the time difference since the last event.

a
[1,2]

b
[1,2]

b
[1,2]

b
[1,2]

a
[1,2]

b
[1,2]

Figure 3.6: A TAPTA for the timed input sample: S=(a,1), (a,1)(b,2)(b,1), (b,2)(b,1), (a,1)(b,1)(a,1), (b,2),(b,1)(b,1)

3

66 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

〈q, q2, a, [t +1,m′]〉. The target states q1 and q2 are the roots of two new prefix trees that
are reconstructed based on the input sample.

b
[1,1]

b
[2,2]

b
[1,2]

b
[1,2]

b
[1,2]

b
[1,2]

Figure 3.7: A split of a part of the TAPTA from Figure 3.6

The algorithm also greedily merges pairs of states (q, q ′) in this tree, forming a smaller
and smaller machine that generalizes over samples, as shown in Figure 3.8. Because
PDRTAs are deterministic, for every event e ∈Σ the states that are reached from q and q ′
have to be merged as well (the determinization process).

a
[1,2]

b
[2,2]

b
[1,2]

b
[1,2]

a
[1,2]

b
[1,2]

a
[1,2]

b
[2,2]

b
[1,2]

a
[1,2]

b
[1,2]

b
[1,1]

b
[1,2]

b
[1,1]

Figure 3.8: A merge operation of TAPTA after the split from Figure 3.7

Note that these examples are only one possible split and merge, illustrating how to
conduct these operations. The algorithm uses a likelihood-ratio statistical test to decide
whether to split/merge or not (Verwer et al., 2010a). A hypothesis H is called nested
within another hypothesis H ′ if the possible distributions under H form a strict subset
of the possible distributions under H ′. By definition, H ′ has more unconstrained pa-
rameters (or degrees of freedom) than H (r ′ > r). In our case, H is the model after merge
(resp. before a split) and H ′ is the model before a merge (resp. after a split). Given two
hypotheses H and H ′ such that H is nested in H ′, and a data set S, the likelihood ratio
test statistic is computed by:

LR = LK (S, H)

LK (S, H ′)
(3.5)

where the likelihood LK estimates how likely S is to be generated by the corresponding
hypothesis. The random variable y = −2ln(LR) is asymptotically χ2(r ′− r) distributed
(Wilks, 1938). The p-value is computed. If it is smaller than 0.05, H and H ′ are signif-
icantly different with 95% confidence so that a split operation is accepted. In addition,
a merge is accepted whenever the model after the merge is not significantly different
from the model before the merge since they are supposed to have similar or compatible
stochastic and timed behaviors. Note that the current version of RTI+ tries to model time
and events distributions independently. An overview of RTI+ is in Algorithm 4.

3.4. STATE SEQUENCE CLUSTERING

3

67

Algorithm 4 Data identification with RTI+:

Require: A (multi-)set of timed strings S+
Ensure: A small PDRTA A for S+

Construct a timed prefix A tree from S+, let Q ′ =;
for all all transitions δ= 〈q, q ′, a, [m,m′]〉 from A , do

Evaluate all possible merges of q ′ with states from Q ′
Evaluate all possible splits of δ
if the lowest split p-value< 0.05 then

perform this split
else if the highest merge p-value> 0.05 then

perform this merge
else

add q to Q ′
end if

end for

3.4. STATE SEQUENCE CLUSTERING
Latent states are usually used for learning sequential patterns. They reduce the di-

mensionality of data. A large number of observable variables can be aggregated in a
model to represent an underlying concept/behavior, making it easier to understand the
data. With the help of the learned timed automaton, a mapping is built between the
observable variables (time series data/symbolic data) and the latent variables (state se-
quences).

Table 3.2: Mapping between timed strings and state sequences.

Timed strings State sequences

Frame 1 (slow down, 0) S0, S1
Frame 2 (slow down, 0) S0, S1
Frame 3 (constant speed, 0), (slow down, 50) S0, S2, S1
Frame 4 (constant speed, 0), (speed up, 10),

(constant speed, 5)
S0, S2, S3, S4

Frame 5 (constant speed, 0), (speed up,
6), (constant, 15), (slow down, 5),
(speed up, 4), (constant speed, 15)

S0, S2, S3, S4, S2, S3, S4

· · · · · · · · ·

Table 3.2 shows the frames mapping between the input timed strings and the out-
put state sequences of the RTI+ for the case in Figure 3.2. The subsequence clustering
is performed on each state sequence. The cluster IDs are used to look up the associated
symbolic transition, and look up the origin domain corresponding to the symbol, and
obtain the associated raw values. A sequence of cluster IDs is assigned to the symbolic
string and the raw time series data. Because it is only needed to follow the mappings
backwards, this is called a (reverse) indices mapping. The piece-wise fitting model pa-

3

68 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

rameters are obtained in each individual cluster of time series data, as shown in Figure
3.1. The advantages of state sequence clustering over direct symbolic clustering are as
follows:

1. States are latent variables determining the distribution of symbols. However, the
mapping from symbols to states is not unique. As a result, behaviors are more
identifiable with a state sequence. For the example in Figure 3.2, a symbolic pat-
tern “constant speed-slow down" can be interpreted ambiguously as a quitting
car-following behavior (the state sequence S0−S2−S1) or an adapting speed car-
following behavior (the state sequence S3−S4−S2). The identification by using
states avoids this problem.

2. Symbolic clustering without time information is not able to distinguish behaviors
with short or long duration. This information is encoded with time guards of states
in a timed automaton.

The final fitting error of the car-following models using a direct symbolic clustering is
compared with the novel state clustering in the experiments.

3.4.1. COMMON STRINGS

The state frames dataset DS contains N state sequences, i.e., DS = {S1, · · · ,SN }, where
Si = (si

1, · · · , si
Li

) is a single sequence of length Li containing states from Q. A substring,

also called a factor of a string Si , is a string Ŝi = (si
1+ j · · · si

m+ j), where j ≥ 0 and m+ j ≤ Li .

Given a DS, a frequent common substring problem is to find strings (not necessary
the longest in this chapter) that occur as substrings of at least ε state sequences, where
2 ≤ ε≤ N is a user-defined threshold (Hirschberg, 1977). Intuitively, it is aimed at finding
patterns that are shared among drivers as common frequent behaviors, which poten-
tially characterize car-following behaviors.

3.4.2. HIERARCHICAL STRING CLUSTERING

The Jaro-score is used to measure the similarity between two strings (Cohen et al.,
2003).

JS =
{

0 if Nmatch = 0
1
3

(
Nmatch

Li
+ Nmatch

L j
+ Nmatch−NT

Nmatch

)
otherwise

(3.6)

where Li and L j are the respective lengths of these two strings. Nmatch is the number of

matching characters that are not farther than a window length bmax
(
Li ,L j

)
2 c−1. NT is half

the transpositions number. The higher the Jaro score is, i.e., closer to 1, the more similar
two strings are. We use d = 1− JS as the metric measuring string distance. For the two
state sequences 1,6,2 and 1,6,2,1, for instance, d = 1− 1

3

(3
3 + 3

4 + 3−0
3

)
. The 4th letter “1"

in the second sequence does not match the 1st letter “1" in the first sequence, since its
index distance is larger than the length of the matching window, i.e., 1 in this case.

A hierarchical clustering is deployed for frequent common strings using the Jaro-
score as distance (Ushioda, 1996). At the beginning, every string represents a unique

3.4. STATE SEQUENCE CLUSTERING

3

69

cluster, then a hierarchical clustering essentially conducts pairwise distance computa-
tion between two clusters. For clusters containing multiple strings, we compute the av-
erage distance. The complete iteration illustrated in Figure 3.9 is a dendrogram. In each
iteration, only one pair of clusters is merged. The cut-off threshold, the black dashed line
in Figure 3.9, is a user-defined parameter for determining the number of clusters. Sim-
ilar to determining the alphabet size, an ELBOW analysis can be also applied to select a
good threshold.

0.0

0.2

0.4

0.6

0.8

1.0

Di
st

an
ce

Figure 3.9: Hierarchical clustering of frequent sub-strings

The sequences in Table 3.2 are used to briefly explain how the subsequence cluster-
ing works step by step.

1. Extracting frequent common substrings:
S0,S1;
S0,S2;
S2,S3;
S3,S4;
S2,S3,S4;
S0,S2,S3.
The support parameter of common strings ε is set to 2 in this case, and thus the
substring S2,S1 will not be extracted as a frequent common substring because it
only occurs in one state sequence.

2. Clustering substrings: for instance, we have 2 clusters after a hierarchical cluster-
ing:

3

70 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

Substring cluster 1: S0,S1;
Substring cluster 2: S0,S2; S0,S2,S3; S2,S3; S3,S4; S2,S3,S4.

3. Clustering states: States cluster 1: S1;
States cluster 2: S2, S3, S4;

S0 does not have to be classified as an initial state. Note that due to a different thresh-
old setting or different ways of computing substring similarity, some states will be in
multiple substring clusters (e.g., how to assign S2’s state cluster ID if S0,S2 is in sub-
string cluster 1 instead of substring cluster 2). To avoid the ambiguity of states interpre-
tation, ambiguous states are classified by an additional majority voting. For the afore-
mentioned case of S0,S2 in substring cluster 1, S2 will be classified into state cluster 2
because the majority of S2 exists in the substring cluster 2. A new example arriving string
S0,S2,S3,S4,S2,S1 is assigned state cluster IDs 2,2,2,2,1 based on the aforementioned
clusters obtained (again, the initial state is skipped).

3.4.3. ON-LINE INFERENCE

The states estimation is achieved online over arriving stream data. Starting with
the initial state, observed numeric data will be first converted to symbols according to
the numeric k-means codebook, say, the observation “constant” by the closest centroid
computation. The state is transited from S0 to S2. The following transition is triggered
until a new observation, like “speed up” or “speed down”, occurs. The time difference
is also computed between two consecutively distinct events. The state cluster ID and its
corresponding car-following model is obtained as well because the state clusters have al-
ready been obtained in the states clustering step. Then the output (i.e., acceleration) of
such a car-following model is computed from the input data (i.e., speed, relative speed,
and relative distance). The generation of car-following traces includes one-step and
multi-step approaches (Nippold and Wagner, 2012). The one-step approach evaluates
the difference between the commutated output with the ground truth at each time point.
The real status of the subject vehicle is updated from the dataset in the next time point,
thus the error will not be accumulated in such a setting. The results of one-step test-
ing are analyzed in Section 3.5. The multi-step generation only sets the initial state of
the subject vehicle. During the generation procedure, real values of the subject vehi-
cle in the dataset are not used to update its real-time information. The movement of
the subject vehicle is updated completely using the computation model. The details of
multi-step testing are discussed in Section 3.6. Note that in both settings, the trajectories
of the leading vehicles are directly from the dataset.

3.5. EXPERIMENTAL RESULTS
The training and testing dataset split is listed in Table 3.3. In the following experi-

ments, the k-means discretization and the state sequence clustering are both deployed
only in the training dataset. To avoid over-fitting and obtain a less biased evaluation, the
testing data are not included during clustering. Their symbolic and sequential labels are
assigned by computing the closest distance to the clusters obtained from the training

3.5. EXPERIMENTAL RESULTS

3

71

dataset. To make a complete overview of driving behaviors, the whole dataset is used
for model interpretation. As a consequence, some settings in the training dataset, e.g.,
the thresholds and the number of clusters, are not necessarily the same as those in the
whole dataset.

Table 3.3: Training and testing dataset

Dataset name Proportion Usage

Training set 80% Symbols and state sequences clustering
Testing set 20% Testing fitting error
Whole set 100% Model interpretation

3.5.1. MODEL INTERPRETATION
One of the main advantages of the proposed method is that both the model and the

clusters are interpretable. In this subsection, it will be shown how they can explain car-
following behavior. The learned model from the whole I80-1 dataset is illustrated in Fig-
ure 3.10. All clusters are distinguished with different colors. There are loops with signifi-

cluster5

cluster2

cluster3

cluster6

cluster4

S0

S1

[0, 542] j, #619

S3

[0, 542] d, #590

S2

[0, 542] c, #596

S4

[0, 542] i, #558

S5

[0, 542] h, #556

S7

[0, 542] g, #463S8

[0, 542] b, #416

S16

[0, 542] c, #670

S6

[0, 542] d, #3086

 [0, 542] c, #298 S15

[0, 542] h, #231

[0, 542] j, #1527

S12

[0, 542] d, #2570

S9

[0, 542] c, #798

S10

[0, 542] h, #502

[0, 542] i, #398

S17

[0, 542] b, #272

S13

[0, 542] i, #424

[0, 542] g, #298

[0, 542] j, #1237 [0, 542] c, #1524

[0, 542] h, #535

S11

[0, 542] j, #1275

[0, 542] c,#2162

[0, 37] i, #357

[0, 542] b,#306

S14

[38, 542] i, #388

S19

[3, 542] c, #759

[0, 542] j,#462

[0, 542] i,#1152

[0, 542] c, #726

[0, 542] d,#584

S21

[0, 542] g, #386[23, 542] h, #126

S20

[0, 542] c, #222

[12, 542] c, #531

[0, 542] h, #996

[0, 542] h, #288

[0, 542] b, #290

Figure 3.10: Real-timed automaton learned from the whole I80-1 dataset. Note that the original solution gotten
from RTI+ has 34 states in total. The states with low frequencies are removed to simplify the model interpreta-
tion. For instance, states with event “e” occurring rarely are not shown in this figure. The arcs represent transi-
tions between states. The information of timed guards, events, and number of occurrences is also printed next
to the arcs.

Table 3.4: Interpretation of Clusters in the I80-1 Dataset

Cluster ID Dominating states Dominating symbolic loops Description

1 Remaining states - Intermediate process and infrequent states
2 17, 21 b-g Steady long distance car-following
3 7,13,20 - Intermediate process
4 4, 9, 10, 14 h-i Steady medium distance car-following
5 15, 19 - Intermediate process
6 1, 2, 6, 11, 12, 16 c-d-j Steady short distance car-following

3

72 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

cantly large occurrences in cluster 6, e.g., state sequence: 1−6−11−16−1 with symbolic
transitions loop: d-j-c-j. The relative distances of “c" and “d" are close (centroid values:
15.63 and 15.55, cf. Table 3.1), but having negative and positive relative speed, respec-
tively. They are associated with “j”, which has a small speed difference. This sequence
can be interpreted as steady car-following behavior at short distances, i.e., adapting
the speed difference with the lead vehicle around 0. An example is shown in Figure 3.11.
Similarly interesting and significant loops can also be seen in Clusters 2 and 4, which are

50 100 150 200 250 300

1
2
3
4
5

v
 m

/s

j d

j c

j

50 100 150 200 250 300
-4

-2

0

2

4

d
v
 m

/s

j d

j c

j

50 100 150 200 250 300

Time (0.1 s)

12

14

d
x
 m

j d

j c

j

Figure 3.11: An example from one car-following sequence. The full timed string is j 0, d 175, j 2, c 8, j 6, d 53, j
12, d 34, j 5, c 2. Only the first 5 symbols are shown with j-d-j-c-j for simplification. You will see in the subplot
of d v , the relative speed changes from positive (d) to small vale (j), negative (c), then j.

steady long distance and steady medium distance car-following behaviors respectively.
An intermediate state S15 in Cluster 5 indicates how to transfer from Cluster 6 to other
ones. For example, S6−S15−S4 with transitions “h, i", i.e., slowing down and speeding
up to catch up, from the short distance following in Cluster 6 to the medium distance
following in Cluster 4. The time split can also be seen in two branches of [0,37], i and
[38,542], i from S15. They share the same symbolic transition condition but have dis-
tinct time guards. This means the “i” speed-up action followed by short or long duration
of “h”, i.e., after how much time the subject vehicle driver notices that his or her relative
distance has been expanded by the leading vehicle and begins to catch up.

A complete car-following example in the I80-1 dataset is illustrated in Figure 3.12. It
starts from the bottom (colored orange), passes through Clusters 6, 5, and 3, then fin-
ishes in Cluster 4. In the beginning, the subject vehicle is following the leading vehicle at
short distances. Then the leading vehicle speeds up, see the positive relative speed and
the increasing relative distance in Cluster 5. The subject vehicle then also speeds up to

3.5. EXPERIMENTAL RESULTS

3

73

approach the leading vehicle, see the negative relative speed and the decreasing relative
distance in Cluster 3. Finally, it follows the leading vehicle at medium distances in Clus-
ter 4.1 It can be seen that in Clusters 6 and 4, the subject vehicle enters an unconscious
reaction region, also called a steady car-following episode, i.e., the relative distance and
the relative speed are both bounded in a small area. Clusters 3 and 5 can both be treated
as intermediate transition processes. Tracking the observed traces of a vehicle in the pro-
posed model helps to understand its current status by looking at its state and semantic
cluster.

Figure 3.12: An example of complete car-following period switching among clusters in the I80-1 dataset.

3.5.2. COMPETING METHODS
Some baselines are implemented for comparisons with the proposed model. It will

be explained how to implement them and why it is necessary to compare with them.

1. The first one is the gross fitting that uses a single car-following model. By com-
paring with it, it can be investigated how much improvement we can get using the
clustering and the fitting with multiple models.

2. The second one is the symbolic clustering . This comparison shows the value of
clustering state sequences (latent variables) instead of clustering symbolic ones
(observable variables) in identifying behaviors. The main idea is that the cluster-
ing is deployed with the same setting as the state sequence clustering, directly on
the symbolic data without the time information. Note that the symbolic strings are

1An animated video can be found in our code repository: https://bitbucket.org/anjutalq/carfollowingrti/video

3

74 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

essentially timed strings without time information. This approach is applied be-
cause the original symbolic data sampled every 0.1s have too much redundancy,
leading to large errors.

3. The third one is a competing state-of-the-art method proposed by Higgs et al.
(Higgs and Abbas, 2015). The first step of their method is segmenting multi-variate
time series data by minimizing their variance. The objective function in a normal
Z -scale is defined as:

min Z =
l∑

i=1

n∑
j=1

o∑
k=1

xi j k − x̄i j

Si j
(3.7)

subject to ti = [0,T]∀i and
∑

ti = T , where

xi j k , the kth observation of variable j in segment i ;

x̄i j , centroid of segment i for variable j ;

S̄i j , standard deviation of segment i for variable j ;

l , number of segments in a car-following period;

n, number of variables;

o, number of observations in segment i ;

ti , length in time of segment i ;

T , total length in time of a car-following period.

A bottom-up strategy is deployed to minimize the objective function. Initial seg-
ments are set with equal length (the same setting of 3 seconds is used from Ref.
(Higgs and Abbas, 2015)). In each iteration, a pair of adjacent segments with the
lowest merge cost (the largest reduction of Z value) is merged. The iterative pro-
cess is terminated when the criterion is met, e.g., setting 10 as the maximum num-
ber of segments (Higgs and Abbas, 2015). Then, mean values representing seg-
mented piece-wise data are clustered using k-means. To make a fair comparison,
the number of clusters is set to be the same as the proposed approach.

4. The last baseline is called the state model, which is also based on the learned timed
automaton. Without partitioning the model into state clusters, individual models
are trained in each state. This inevitably introduces a large number of models and
their parameters but helps us to investigate the benefit of clustering states.

The root-mean-square error (RMSE) is a widely used indicator for evaluating the ac-
celeration error of car-following models. In addition, to overcome overestimation in high
and low values, some papers (Kesting and Treiber, 2008; Chen et al., 2010) use speed’s rel-
ative error (RE) Fr el (vel), absolute error (AE) Fabs (vel), and mix error (ME) Fmi x (vel) as
additional indicators, which are defined as follows:

Fr el =
√√√√〈(

ssi m − sr eal

sr eal

)2
〉

(3.8)

3.5. EXPERIMENTAL RESULTS

3

75

Fabs =

√√√√√
〈(

ssi m − sr eal
)2

〉
〈

sr eal
〉2 (3.9)

Fmi x =
√√√√ 1〈∣∣sr eal

∣∣〉
〈(

ssi m − sr eal
)2∣∣sr eal

∣∣
〉

(3.10)

where ssi m and sr eal are the computed and the real values respectively. 〈s〉 is the average
value defined as 〈s〉 = 1

N

∑N
i=1 s (i).

Table 3.5 and Table 3.6 show the comparison using the aforementioned indicators
and their standard deviations. The best model is highlighted with the smallest mean
error using a bold font. The variance is compared additionally when two models have
the same mean error values. The average improvement of the proposed method over
the gross fitting is summarized in Table 3.7 and Table 3.8. Note that here a single-step
approach is deployed for both training and testing. A multi-step approach will be also
tested for a trajectory simulation in Section 3.6. The single-step approach focuses on
the deviation at each step in the time series data and represents the local calibration,
while the multi-step approach focuses on the deviation of whole traces and represents
a trajectory calibration. The difference lies in the fact that the input/output of the train-
ing system can be data point pairs (single values) or vector pairs (trajectories). Readers
are referred to Ref. (Nippold and Wagner, 2012) for a more detailed explanation. The
runtime of different approaches is also compared in Table 3.9. The training using the
DEA costs most time on the Intel 3.1GHz i7 processors. The remarks and analyses are as
follows.

• The proposed model and the state model are the best two in the results. In every
dataset, they outperform gross fitting and the other two clustering models. Both
of them are based on the learned timed automata. The only difference lies in the
presence or absence of state clustering. The state model uses much more car-
following models, e.g., 34 models in a 34-state automaton. The training of a state
model, however, does not take too long since the data are split over many more
models, and fewer data lead to a fast convergence. The overfitting problem of a
car-following model calibration has been reported recently (Van Hinsbergen et al.,
2015). Such overfitting is due to too few data during the training phase. To balance
the bias (fitting error) and the variance (model complexity), it is suggested to use
the proposed model with high accuracy, low complexity, and sufficient data per
model.

• The symbolic method is the third best model, with competing performance to the
proposed model. However, such a model-free pattern mining method can only
serve as a clustering tool rather than a control model generating the following ve-
hicle’s trajectories.

• The RMSE of acceleration is a more sensitive indicator of the larger magnitude.
Due to an integral relation from acceleration to speed, the speed’s error has been

3

76 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

smoothed and thus has a smaller magnitude. In addition, the testing is essentially
a one-step prediction evaluation, i.e., the error will not be accumulated. Therefore,
the improvement is less obvious than the multiple-step prediction.

• The symbolic labeling, the timed automata learning, and the sequence clustering
are quite efficient in computation cost. They are promising in car-following model
calibration on large-scale data.

• Among all the clustering methods, the Higgs model takes the longest time on clus-
tering since the segmentation is time-consuming.

Table 3.5: Testing data error in NGSIM datasets: Helly Model

Mean ± Std.
Helly

I80-1 I80-2 I80-3 US101-1 US101-2 US101-3

RMSE (acc) m/s2

Gross 0.9981±0.3343 1.4641±0.3971 1.6424±0.3754 1.6429±0.2859 1.5413±0.3051 1.3454±0.3402
Symbolic 0.9319±0.3218 1.3774±0.3623 1.5648±0.3836 1.6005±0.2916 1.3656±0.2170 1.3012±0.2812

Higgs 1.0999±0.5240 1.4207±0.3743 1.6216±0.3693 1.6273±0.2999 1.4753±0.3402 1.3220±0.2971
Proposed 0.9225±0.3156 1.3659±0.3653 1.5552±0.3714 1.5962±0.2875 1.3452±0.2054 1.2984±0.2767

State Model 0.9122±0.3231 1.3648±0.3629 1.5541±0.3778 1.5899±0.2781 1.3405±0.2064 1.2962±0.2775

Fr el (vel) m/s

Gross 0.0943±0.2848 0.0278±0.0103 0.0339±0.0194 0.0450±0.0949 0.0315±0.0682 0.0451±0.0780
Symbolic 0.0145±0.0080 0.0267±0.0103 0.0269±0.0100 0.0186±0.0081 0.0178±0.0068 0.0245±0.0107

Higgs 0.0507±0.0304 0.0266±0.0506 0.0274±0.0555 0.0355±0.0689 0.0250±0.0399 0.0443±0.0511
Proposed 0.0146±0.0082 0.0265±0.0102 0.0269±0.0100 0.0188±0.0085 0.0178±0.0068 0.0244±0.0106

State Model 0.0144±0.0081 0.0266±0.0104 0.0269±0.0101 0.0185±0.0081 0.0177±0.0068 0.0244±0.0107

Fabs (vel) m/s

Gross 0.0148±0.0095 0.0257±0.0092 0.0412±0.0244 0.0278±0.0097 0.0199±0.0049 0.0329±0.0115
Symbolic 0.0127±0.0059 0.0245±0.0092 0.0256±0.0097 0.0165±0.0060 0.0164±0.0048 0.0207±0.0079

Higgs 0.0159±0.0092 0.0346±0.0179 0.0360±0.0258 0.0206±0.0106 0.0180±0.0055 0.0290±0.0143
Proposed 0.0128±0.0059 0.0243±0.0091 0.0256±0.0095 0.0166±0.0061 0.0156±0.0047 0.0201±0.0075

State Model 0.0126±0.0060 0.0243±0.0092 0.0256±0.0096 0.0164±0.0059 0.0177±0.0068 0.0200±0.0075

Fmi x (vel) m/s

Gross 0.0184±0.0194 0.0261±0.0092 0.0422±0.0168 0.0291±0.0109 0.0219±0.0064 0.0348±0.0128
Symbolic 0.0132±0.0063 0.0250±0.0092 0.0258±0.0093 0.0170±0.0062 0.0172±0.0052 0.0219±0.0081

Higgs 0.0166±0.0099 0.0367±0.0211 0.0372±0.0221 0.0216±0.0114 0.0188±0.0063 0.0314±0.0161
Proposed 0.0133±0.0063 0.0248±0.0091 0.0258±0.0092 0.0171±0.0064 0.0162±0.0051 0.0211±0.0078

State Model 0.0131±0.0064 0.0249±0.0092 0.0257±0.0093 0.0169±0.0061 0.0161±0.0051 0.0211±0.0078

Table 3.6: Testing data error in NGSIM datasets: IDM Model

Mean ± Std.
IDM

I80-1 I80-2 I80-3 US101-1 US101-2 US101-3

RMSE (acc) m/s2

Gross 1.0917±0.8706 1.4327±0.3938 1.6060±0.4151 1.6334±0.4064 1.4801±0.2717 1.3180±0.2793
Symbolic 0.9857±0.4282 1.3610±0.4298 1.5341±0.3654 1.5563±0.2550 1.3875±0.1992 1.2964±0.2524

Higgs 1.0679±0.7976 1.3871±0.3972 1.5860±0.4262 1.5862±0.2578 1.4594±0.2041 1.3025±0.3390
Proposed 0.9798±0.4340 1.3280±0.3908 1.5289±0.3659 1.5555±0.2567 1.3634±0.1992 1.2944±0.2497

State Model 1.0174±0.4718 1.3254±0.3810 1.5332±0.3842 1.5583±0.2510 1.3966±0.2693 1.2971±0.2690

Fr el (vel) m/s

Gross 0.0799±0.2204 0.0360±0.0108 0.0338±0.0191 0.0419±0.0936 0.0514±0.0916 0.0572±0.1030
Symbolic 0.0159±0.0083 0.0262±0.0107 0.0265±0.0102 0.0180±0.0080 0.0185±0.0071 0.0293±0.0104

Higgs 0.0468±0.0335 0.0302±0.0734 0.0265±0.0507 0.0355±0.0689 0.0210±0.0117 0.0481±0.0713
Proposed 0.0152±0.0086 0.0261±0.0109 0.0264±0.0102 0.0180±0.0080 0.0179±0.0070 0.0239±0.0104

State Model 0.0153±0.0082 0.0261±0.0109 0.0264±0.0101 0.0181±0.0081 0.0182±0.0071 0.0241±0.0106

Fabs (vel) m/s

Gross 0.0263±0.0119 0.0297±0.0093 0.0410±0.0238 0.0174±0.0094 0.0171±0.0072 0.0285±0.0122
Symbolic 0.0137±0.0065 0.0240±0.0095 0.0253±0.0098 0.0160±0.0057 0.0162±0.0049 0.0210±0.0077

Higgs 0.0234±0.0137 0.0308±0.0184 0.0385±0.0295 0.0175±0.0089 0.0170±0.0059 0.0267±0.0135
Proposed 0.0135±0.0067 0.0237±0.0094 0.0251±0.0098 0.0159±0.0057 0.0157±0.0049 0.0200±0.0077

State Model 0.0139±0.0068 0.0237±0.0094 0.0251±0.0098 0.0160±0.0057 0.0160±0.0052 0.0201±0.0077

Fmi x (vel) m/s

Gross 0.0289±0.0173 0.0343±0.0094 0.0431±0.0166 0.0187±0.0106 0.0192±0.0112 0.0346±0.0130
Symbolic 0.0142±0.0067 0.0245±0.0094 0.0254±0.0093 0.0165±0.0060 0.0173±0.0053 0.0216±0.0079

Higgs 0.0233±0.0131 0.0328±0.0201 0.0385±0.0210 0.0190±0.0102 0.0172±0.0061 0.0360±0.0150
Proposed 0.0139±0.0069 0.0243±0.0095 0.0252±0.0093 0.0165±0.0060 0.0163±0.0053 0.0210±0.0079

State Model 0.0141±0.0067 0.0243±0.0095 0.0252±0.0093 0.0165±0.0060 0.0166±0.0055 0.0210±0.0079

3.6. A HUMAN-LIKE CRUISE CONTROLLER

3

77

Table 3.7: Summary of improvement in each dataset: Helly model

Percentage of improvement (%) I80-1 80-2 80-3 US101-1 US101-2 US101-3

RMSE (acc) 7.57 6.71 5.31 2.84 12.7 3.50
Fr el (vel) 84.52 4.68 20.65 58.22 43.49 45.90
Fabs (vel) 13.51 5.45 37.86 40.29 21.61 38.91
Fmi x (vel) 27.72 9.96 20.85 41.24 26.03 39.37

Table 3.8: Summary of improvement in each dataset: IDM model

Percentage of improvement (%) I80-1 80-2 80-3 US101-1 US101-2 US101-3

RMSE (acc) 10.25 7.31 4.80 4.77 7.88 1.79
Fr el (vel) 80.98 27.50 21.89 57.04 65.18 58.22
Fabs (vel) 48.67 20.20 38.78 8.62 8.19 29.82
Fmi x (vel) 51.90 29.15 41.53 11.76 15.10 39.31

3.6. A HUMAN-LIKE CRUISE CONTROLLER
A valid car-following model is of great importance for traffic simulation. Besides that,

the proposed model is promising in many other application scenarios. A human-like
automatic cruise control system design will be discussed in this section. Other potential
applications will be mentioned briefly in the future work.

The drawbacks of an automatic cruise control (ACC) system lie on an inconsistency
between systems and human drivers (Hiraoka et al., 2005), because the control algorithm
of an ACC focuses more on mathematical optimization of safety or comfort rather than
driving behaviors. A valid car-following itself can be used as a controller which mimics
real drivers’ behaviors to avoid the inconsistency problem in a conventional ACC system.

The main idea of a human-like ACC system or a behavior simulator is learning a
timed automaton from a real car-following training dataset and generating trajectories
in a testing dataset. The position error of simulated traces and the real ones is evaluated
in the testing dataset. The generation steps are as follows:

1. The subject vehicle starts from the initial state.

2. The speed, relative speed, and relative distance are computed on the fly. Note
that we only control the following vehicle, i.e., the trajectory of the lead vehicle is
directly from the dataset.

Table 3.9: Comparison of runtime

Models Symbolic labeling (s) Automata learning (s) Clustering (s) Training (s) Testing (s) Total (s)

Gross - - - 488.24 3.84 492.08
Symbolic 69.72 - 53.75 2653.35 53.98 2830.80

Higgs - - 832.89 1534.62 33.95 2401.46
Proposed 69.72 16.09 24.56 2054.52 14.41 2179.30

State model 69.72 16.09 - 1690.41 22.36 1798.58

3

78 3. LEARNING HYBRID AUTOMATA FOR IMITATION CONTROL

3. The current cluster of the subject vehicle is determined by its current state using
the online inference discussed in Section 3.4.3, and then the parameter of the car-
following model is selected to generate the desired acceleration.

4. The status of the subject vehicle, including speed, relative speed, and relative dis-
tance is continuously updated online using the acceleration computed in the last
time step as well as the information of the lead vehicle from the dataset.

This approach is compared with a standard PID controller. The results of comparing
position error in Table 3.10 show that the proposed model outperforms others.

Table 3.10: Comparison of Simulated Trajectory

Indicators Proposed Gross PID controller

Fr el (vel) m/s 0.1157±0.0807 0.1332±0.0796 0.2466±0.2852
Fabs (vel) m/s 0.0764±0.0643 0.1091±0.0850 0.1105±0.0875
Fmi x (vel) m/s 0.0766±0.0615 0.1034±0.0781 0.1360±0.0973

In this chapter, the simulated behaviors are learned from a large population of
drivers’ car-following data. However, it is possible to learn such a controller from a single
driver if his/her data are sufficient. This is a promising approach for designing a speci-
fied car-following controller for an individual driver. Another advantage of our model is
an active control strategy, e.g., forcing a state switching from short-distance following to
a medium distance in the automaton.

3.7. CONCLUSION
In this chapter, a timed automaton model is learned from multivariate time series

car-following data using a timed and symbolic representation. The model is easily visu-
alizable and interpretable for the study of car-following behaviors. Sequential feature-
based clustering of state sequences is used for partitioning the model to represent dis-
tinguishable behaviors. The original time series data are also clustered correspond-
ingly. Different models are trained from individual clustered data to obtain a divide-
and-conquer learning. Experiments demonstrate that the proposed method achieves
high model fitting accuracy. Besides the general usage in traffic simulation, the proposed
model can be used for subject drivers’ decision-making by recognizing or predicting sur-
rounding vehicles’ car-following states and designing a more human-like car-following
controller.

The imperfections of the proposed method include two aspects. First, compared
with classic methods, the proposed model has higher complexity, though all processing
steps can be automated. To some extent, it is not suitable for a fast traffic simulation
with a relatively low precision. Second, from safety perspective, a data-driven design
of an ACC system lacks theoretical guarantees, because it might be learned from poorly
skilled drivers, though the proposed model is indeed an averaging model learned from
thousands of human drivers. This problem will be overcome by a model checking tech-

3.7. CONCLUSION

3

79

nique (Henzinger et al., 1997b) or a supervisory control (Brandin and Wonham, 1994)
with safety specifications.

In the near future, we will investigate more application cases by applying an au-
tomata learning lens. First, we can provide a visualizable model learned from traffic
data of roads under observation. This helps insightful analysis of traffic flow situations.
For instance, a congested traffic scenario should intuitively have many symbols indicat-
ing low speed in our model. Some intermediate process states in the proposed model
somewhat reflect properties of traffic flow which deserve further investigation. Second,
by observing the driving status of nearby vehicles, behaviors like steady car-following or
approaching another vehicle can be recognized in our model. This is helpful for better
perception of the subject vehicle.

4
LEARNING AUTO-REGRESSIVE

DYNAMICAL MODELS USING

REGRESSION AUTOMATA

In the last chapter we discussed the composed learning strategy for hybrid automata,
where the discrete model learning and numeric model learning are actually separated.
In this chapter, we will discuss another strategy called incline learning by using numeric
data in addition to symbolic values for state machine learning. This novel type of syntactic
model called regression automata and its learning algorithm are used for univariate time
series modeling and forecasting.

The material in this chapter has appeared in
Qin Lin, Christian Hammerschmidt, Gaetano Pellegrino, and Sicco Verwer. Short-term time series forecast-
ing with regression automata. In ACM SIGKDD 2016 Workshop on Mining and Learning from Time Series
(MiLeTS), 2016

81

4

82 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

4.1. INTRODUCTION
Forecasting is one of the most significant challenges in time series analysis (Cryer

and Kung-sik Chan, 2008; De Gooijer and Hyndman, 2006). In this chapter, we propose
a novel model for learning syntactic patterns and forecasting time series. We apply our
algorithm to wind energy prediction problems (Lin and Wang, 2014; Gu et al., 2015; Lin
et al., 2013).

During the past 30 years, many methods for time series prediction have been pro-
posed. Generally those techniques can be classified into two categories. The first one is
the conventional statistical model. Autoregressive Moving Average (ARMA) is the most
representative (Torres et al., 2005). Another conventional model is Kalman filter algo-
rithm (Bossanyi, 1985). The techniques of second category are from the area of artificial
intelligence and machine learning. The typical models that have been successfully ap-
plied in time series forecasting are neural networks (Guo et al., 2012), support vector ma-
chines (Mohandes et al., 2004), and fuzzy logic models (Damousis et al., 2004) to name a
few.

Syntactic models are alternatives to the conventional systems, because the learned
models allow one to inspect, interpret, and understand complex system dynamics (Albus
et al., 2012; Hammerschmidt et al., 2016). Examples of such models are hidden Markov
models (HMMs) and finite automata (FA) (MacDonald and Zucchini, 1997). Syntactic
methods are based on symbols that have typically been abstracted from numeric data
in a pre-processing step. This gives three main advantages: firstly, categorical prediction
reduces the computation cost. Secondly, raw time series data in practice tend to be noisy.
Symbolic representations are more robust to noise. Lastly, the category bounds can be
modified to reflect prediction uncertainty, which is now becoming a trend in regression.
To the best of our knowledge, the only syntactic models applied in wind speed prediction
are Markov chains (Sahin and Sen, 2001) and semi-Markovian variants (D’Amico et al.,
2014). An interesting indirect approach to syntactic modeling of daily foreign exchange
rates was proposed by Lee Giles et al. (Giles et al., 2001). They first abstracted the raw
financial data into symbols using a SOM (self-organizing map), and then applied RNNs
(recurrent neural networks) to the sequences for training. Finally, DFA (deterministic fi-
nite state automata) were extracted from RNNs for model interpretation. Unfortunately,
this novel model was only able to be used to predict directionality, i.e., whether the ex-
change rate is positive or negative in the future. Another related work is SAX (Symbolic
Aggregate approXimation), which provided high-level representation for time series data
(Lin et al., 2007). However the main goals of SAX were dimensionality reductions and
similarity measurements rather than forecasting.

Syntactic models are useful because they provide a concise overview of numeric time
series’ behavior. A problem, however, is that they predict symbols instead of numeric
values. Consequently, both their learning and prediction processes are less exact than
those used by numeric models and therefore more difficult to evaluate and harder to use
in practice. In this chapter, we overcome this problem of syntactic models by incorpo-
rating the numeric data values in the learning and prediction processes. Intuitively, the
inputs of our model are the tuples of real numerical values and symbolical values ab-
stracted from the raw data. The symbols are used for building the syntactic models un-
derlying a time series’ behavior at a high level with state transitions, while the numeric

4.2. DATA PREPROCESSING

4

83

values are used to accurately reflect the evolution of time series.
We preprocess the raw time series data sequentially and discretize the numeric val-

ues into abstract symbols. We then learn an RA using the DFASAT algorithm (Heule
and Verwer, 2013), but with a novel heuristic and a novel consistency criterion. Finally,
we compare the resulting numeric predictions with baseline methods such as persis-
tence, autoregressive integrated moving average (ARIMA), neural networks, and regres-
sion trees. The results demonstrate that our new method is competitive with these com-
monly used methods. Furthermore, they show that the numeric and syntactic prefix tree
model used as input for DFASAT is already competitive with the state of the art, albeit
worse than the model obtained after learning. This result demonstrates the power of our
method used to combine numeric and syntactic data for time series prediction.

Our contributions are the following:

• We develop a new method for learning DFA from time series data using both nu-
meric and symbolic inputs. To the best of our knowledge, this is the first work that
proposes to learn automata for numeric regression tasks.

• We propose a novel heuristic and consistency test for guiding the automaton
learning process.

• We show that the learned models make predictions in real unseen data with high
accuracy, outperforming the competition in an application problem of short-term
wind power prediction.

This chapter is organized as follows. Section 4.2 introduces data preprocessing, the
model building, and the learning algorithm. The experimental results are presented in
Section 4.3. Section 4.4 discusses the results and concludes the chapter.

4.2. DATA PREPROCESSING

4.2.1. DISCRETIZATION
The numeric signal needs to be abstracted as symbols for state machine (automaton)

learning. In this chapter, we use SAX to discretize numeric data. Figure 4.1 illustrates an
example of SAX. It firstly normalizes the raw data, then compresses by aggregating into
piecewise aggregate approximations (PAAs). Lastly PAAs are assigned to symbols with
quantiles of standard normal distribution. In this example, the raw data have length 48,
the PAAs, i.e., colored bars have the same size of 12. We will finally get a frame with 4
letters “ccac”. If we SAX the whole training data set in the beginning and then slice them
into frames, we will call this strategy as “global SAX” in this chapter. Table 4.1 shows the
symbols and their corresponding numeric guards in the experimental case study one
(see Section 4.3.3). All numeric values are abstracted to the symbol according to the
bins they fall in. Note that we transform the bins of quantiles from standard normal
distribution to un-normalized value for better explanation. We use an idea similar to
that of “ELBOW" method (Goutte et al., 1999) to determine the “optimal” number of
clusters, i.e., the alphabet size of SAX. The idea is finding the number of clusters that
stops sharp dropping of the WSS (within cluster sum of squares), which is illustrated in
Figure 4.2.

4

84 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

0 10 20 30 40 50

Time

-3

-2

-1

0

1

2

3

Q
u

a
n

ti
le

a

b

c

d

a

b

c

d

Figure 4.1: SAX labeling of time series data. The dashed lines indicate discretization boundaries.

Table 4.1: Global SAX guards for the wind speed prediction task, values are in m/s.

Symbol a b c d e f g h

Guard (-∞, 0.59) [0.59, 1.16) [1.16, 1.58) [1.58, 1.96) [1.96, 2.34) [2.34, 2.76) [2.76, 3.33) [3.33, +∞)

4.2.2. STATIONARITY AND DRIFT MODEL
Many time series in practice, such as the economic process and the wind speed, are

difficult to predict since they are not stationary. Intuitively, the statistical properties of
these processes, such as mean and variance, vary over time (Cryer and Kung-sik Chan,
2008). Logarithm and differencing are two widely used preprocessing methods for non-
stationary time series (Cryer and Kung-sik Chan, 2008). The logarithm is useful to sta-
bilize the variance of a time series of which larger values tend to have larger variance;
meanwhile it helps to expand the difference of small values around zero. Differencing (1-
st order derivative), i.e., computing the differences between consecutive observations, is
useful to stabilize the mean of a time series by removing changes in the level of a time
series, and so eliminating trend and seasonality. Assume that the original data of length
N is X = [x0, x1, · · · , xN−1], and our goal is to get a drift model,

xt −xt−1 = ĉ +et (4.1)

where ĉ is our estimated mean value of the drift, and et is assumed as white noise. Un-
like the conventional time series models that directly take all the historic difference val-
ues into account to estimate ĉ, our syntactic model discovers patterns sharing similar
behaviors to individually get the estimations of ĉ. Once ĉ is learned from training data,
Equation 4.1 is also used for forecasting with a known previous value.

Table 4.2: k-means centroids for the wind speed prediction task, values are in m/s.

Symbol a b c d e f g h

Centroid 0.76 1.22 1.68 2.20 2.82 3.63 4.81 7.46

4.2. DATA PREPROCESSING

4

85

2 4 6 8 10 12 14 16 18 20

Number of Clusters

-14000

-12000

-10000

-8000

-6000

-4000

-2000

0

D
if
fe

re
n

c
e

 o
f

W
S

S

Figure 4.2: WSS difference versus number of clusters in training data. We select 8 as a good number of clusters.

Apart from global SAX and differencing, we also investigate the following strategies
of preprocessing, and compare the results in the experiment (see Section 4.3.3).

• local SAX aggregates, discretizes, and normalizes data in each sliding window, see
(Lin et al., 2007) for details.

• k-means with the same alphabet size as SAX is listed in Table 4.2, which shows
the centroids of the symbols obtained in experimental case study one (see Sec-
tion 4.3.3). All numeric values are abstracted to the symbol with the closest asso-
ciated centroid.

• logarithm differencing compute the logarithm difference between consecutive
observations, which actually reflects the ratio relations.

4.2.3. REGRESSION AUTOMATA
We provide a concise description of DFAs; the reader is referred to (Sudkamp, 2006)

for a more elaborate overview. A deterministic finite automaton (DFA) is a quadruple
A = 〈Q,T,Σ, q0〉 where Q is a finite set of states, T : (Q,Σ) →Q are labeled transitions with
labels coming from an alphabet Σ, and q0 ∈Q is the start state. A DFA computation starts
in the start state q0 and traverses transitions according to a given input string (sequence)
s1 . . . sn ∈Σ∗. At every index 1 ≤ i ≤ n, the current state of the DFA is changed from source
state qi−1 to target state T (qi−1, si). This computation is called deterministic because
there exists exactly one target for every source-symbol pair. In contrast to the commonly
used HMMs (Rabiner, 1989b), the computation path of a given DFA is thus completely
determined for a given input string. This property makes them easier to learn. Learning
DFAs is, however, much harder than learning Markov chains because (like HMMs) the
traversed states are unknown (hidden) when given only input data.

A regression automaton (RA) is a quintuple A = 〈Q,T,Σ, q0,P〉 where 〈Q,T,Σ, q0〉 is a
DFA, and P is a prediction function P : Q →R. The prediction function assigns a predic-
tion value to every state q ∈ Q. The computation of an RA is identical to that of a DFA,

4

86 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

0 1 2 3 4 5 6 7 8 9

Time /h

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

W
in

d
 S

p
e

e
d

 m
/s

(a,0)

(b,0.55)

(c,0.55)

(b,-0.6)

(c,0.57)

(b,-0.52)

(c,0.6) (d,0.07)

(c,-0.32)

Figure 4.3: Our labeling of time series data, consisting of symbols and difference values. The dashed lines
indicate discretization boundaries (using the code book in Table 4.1). To avoid redundancy of data, the values
in this plot have been aggregated by SAX.

any numeric input data are ignored. Whenever a computation is in a state q , the value
P (q) is only used as a prediction for the next numeric data value. In our case, we use
the preprocessing described above to obtain discretized symbols based on a time series
signal, and numeric values based on the difference of the series, see Figure 4.3. The state
of an RA is thus fully determined by the syntactic data, and the predicted drift value only
depends on the current state. RAs can be seen as mappings from symbolic sequences to
drift values.

4.2.4. EVIDENCE-DRIVEN STATE-MERGING
The current state of the art in DFA learning is evidence-driven state-merging in the

red-blue framework (EDSM) (Lang et al., 1998), possibly with some search procedure
(see, e.g., (Heule and Verwer, 2013)) in order to continue searching once a possible local
optimum has been reached. In the following, we briefly explain the main steps of this
algorithm together with our adaptations needed to handle numeric data.

PREFIX TREE CONSTRUCTION

The first step in EDSM is to build a Prefix Tree (PT) from the training data. For each
input sample w from the training data, a chain is created by introducing a state between
each letter wi (1 ≤ i ≤ |w |). This chain is inserted into the PT by traversing its labeled
transitions until the word is fully inserted, or a leaf is reached. Upon reaching the leaf,
the remaining sequence is appended at this position. For every state q in a PT, there
exists exactly one computation that reaches q . A PT therefore encodes exactly the infor-
mation in the (syntactic) training data, without any generalization. The set of states Q is
extended to contain a null state q⊥, to represent transitions for which no input data exist
in the training sample, i.e., T (q, l) = q⊥ means it is currently unknown what the target
state is from state q with label l .

For RAs, the PT structure is constructed in the standard way using only the syntactic
data, see Figure 4.4 for an example. The transitions are labeled with the symbol corre-

4.2. DATA PREPROCESSING

4

87

sponding to the chosen discretization. In addition to the prefix tree structure, we ag-
gregate the numeric values of all outgoing transitions in each node; the numeric values
above states q1, q3, q5 and q8 are the average values of the differences of all outgoing
transitions. If we want to predict the next value following 1.3, i.e., the original value of
the last datum in Figure 4.3. we follow the transitions with the corresponding symbolic
label, e.g., c, from the starting state q0. In our example, it will transition to state q5. By ap-
plying the reverse translation from Equation 4.1, the predicted value is 1.3−0.35 = 0.95.

q0

q1

0.55

q2

q3

0.57

q4

q5

-0.35 q6

q7

q8

-0.32

q9

a

b

c

d

b

c

b

d

c

Figure 4.4: APTA for regression automata

MERGING STATES IN EDSM
The PT, encoding all the training data without generalization, usually leads to high-

variance models sensitive to noise, and has an increased risk of overfitting. The goal
of DFA learning is to find a smallest DFA A that is consistent with the training data set
(Angluin, 1980). Seeking this DFA is an active research topic in grammatical inference,
see (Verwer et al., 2014). The PT is iteratively made smaller by heuristically merging pairs
of states (q, q ′), and re-estimating the transition function (matrix) T . Every such merge
creates a new state q ′′ that has the incoming and outgoing transitions of both q and q ′.
The merged states q and q ′ are removed from the model. When a merge introduces a
non-deterministic choice, i.e., T (q, a) = q1 and T (q ′, a) = q2 both exist for some label a,
states q1 and q2 are merged as well. This is called the determinization process. Which
merge to perform is determined using a heuristic (typically an evidence measure). Stan-
dard EDSM, for instance, maximizes the total number of merged states with matching
outputs (Lang et al., 1998). Probabilistic DFAs can be learned using statistical distances
such as KL-divergence (Thollard et al., 2000) or outcomes of, for instance, likelihood ra-
tio tests (Verwer et al., 2010b).

In DFASAT and in this chapter, the widely used red-blue framework (Lang et al., 1998)
is applied for guiding the merge process. As shown in Figure 4.5, the red-blue framework
only merges red r ∈ R ⊆ Q and blue b ∈ B ⊆ Q states. The red states and the transitions
between them form the currently constructed DFA, the blue states are still to be identi-

4

88 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

R

R

R

R

B

B

B

Figure 4.5: Red-Blue Framework: Starting at the root, the algorithm tries to find the smallest consistent state
machine. Already identified parts of the target are marked red, and direct neighbors of those states as blue.
The heuristic focuses on the fringe of the marked states, instead of having to check all possible combinations
of states.

fied transitions, potentially to new states of the DFA. The new state q ′′ resulting from a
red-blue merge is colored red, i.e., R := R ∪ {q ′′}. In addition, every non-red target state
q ∈Q \ R that is the target of a transition T (r, l) = q , for any l ∈Σ, with a red source state
r ∈ R, is colored blue, i.e., B := B ∪{q}. In this way, the framework maintains a core of red
states with a fringe of blue states (see Figure 4.5). Initially, the start state of the APTA is
colored red, and its children (targets for every symbol) are colored blue.

Merges are only allowed if the resulting DFA is still consistent, e.g., states with differ-
ent outputs cannot be merged (Lang et al., 1998), states with significantly different out-
going transition labels cannot be merged (Heule and Verwer, 2013), or states with signif-
icantly different outgoing transition label distributions cannot be merged (Carrasco and
Oncina, 1994). Overall, the run-time complexity of red-blue algorithms is bounded by
|S| ·n, where S is the input set and n the size of the final model (Lang et al., 1998). For the
RA learning problem, new heuristics and consistency tests are needed because the goal
is to produce accurate numeric predictions instead of accurate predictions of syntactic
input/output values.

MERGING FOR REGRESSION AUTOMATA

Instead of the statistical or input/output consistency checks in traditional state
merging approaches described before, we allow merges between states q and q ′ where
the mean value of difference is smaller than a given threshold. Taking the data series
in Figure 4.3 for example, patterns “ab" and “bc" share a similar trend, i.e., similar dif-
ference values stored in q1 and q3 in Figure 4.4. We only consider merges in which all
states that are merged due to determinization have sufficiently similar difference values.
In addition to these difference values, we also store the number of occurrences in every
state.

To evaluate possible merges and choose the best merge, we use the variant Akaike
information criterion (AIC) for regression models (Burnham and Anderson, 2002) as a
merge heuristic:

∆AIC = 2
(
κbe f or e −κa f ter

)+n lg
RSSbe f or e

RSSa f ter
(4.2)

4.2. DATA PREPROCESSING

4

89

Algorithm 5 State-merging for Regression Automata

Require: an input sample S, an occurrence threshold t , and a difference threshold td

A = PT(S) . construct the prefix tree
R = {q0} . color the start state red
B = {q ∈Q \ R | ∃l ∈Σ : T (q0, l) = q} . color all its children blue
while B 6= ; do . while A contains blue states

if ∃b ∈ B s.t. ∀r ∈ R holds mer g e(A,r,b, td) = FALSE then . if a blue state is
inconsistent with all red states

R := R ∪ {b} . color b red
B := B ∪ {q ∈Q \ R | ∃l ∈Σ : T (q, l) = q and #occ(q) ≥ t } . color all its children

with at least t occurrences blue
else

for all b ∈ B and r ∈ R do . forall red-blue pair of states
compute the ∆AIC of merge(A,r,b) . find the best performing merge

end for
call the merge(A,r,b, td) with highest ∆AIC . perform the best merge
let q ′′ be resulting state
R := R ∪ {q ′′} . color the resulting state red
R := R \ {r } . uncolor the merged red state
Q :=Q \ {r,b} . remove the merged states
B := {q ∈Q \ R | ∃r ∈ R, l ∈Σ : T (q, l) = q and #occ(q) ≥ t } . recompute the set

of blue states
end if

end while
return A

where κbe f or e and κa f ter are the number of parameters in the model, i.e., the number
of states before and after the merge respectively, n is the number of data points in the
training set for fitting the model, RSSbe f or e , and RSSa f ter are the residual errors, i.e.,
the total square error in states before and after merge models. We compute AIC differ-
ence in each iteration of merge; there could exist more than one pair of red-blue states,
i.e. candidates for merge, however, only the highest AIC difference of candidate pairs is
selected for merge to improve model performance most significantly. An overview of our
new state merging algorithm is given in Algorithm 5, where #occ(q) denotes the number
of occurrences in state q .

4.2.5. MODEL SMOOTHING

Another source of difficulty in applying syntactic models to regression tasks is model
smoothing. Taking the model in Figure 4.4 for instance, it can happen that new data
contain a symbol “e". For this case, no matching transition exists, and it is impossible to
obtain a prediction from the model. In this chapter, we solve this problem using a rela-
tively simple strategy: we follow the transition with the symbol closest to the input “e"
according to the discretization scheme. In this example, state q8 is reached by following
the transition for symbol “d". In this way it is possible to make a numeric prediction even

4

90 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

Algorithm 6 Merging two regression states: merge (A, q , q ′, td)

Require: an RA A = 〈Q,T,Σ, q0,P〉, two states q, q ′ ∈Q, and a threshold td

Ensure: if q and q ′ are inconsistent, return FALSE; else return A with q and q ′ merged.
if |P (q)−P (q ′)| ≥ td , then return FALSE . return FALSE if q is inconsistent with q ′
create a new state q ′′, and set Q :=Q ∪q ′′ . add a new state q ′′ to A

set #occ(q ′′) :=#occ(q)+#occ(q ′) and P (q ′′) := #occ(q)P (q)+#occ(q ′)P (q ′)
#occ(q ′′) . (update

#occ and P)
for all symbols l ∈Σ do . for all transitions from q and q ′

if T (q, l)¬= q⊥ then set T (q ′′, l) := T (q, l) . copy outgoing transitions from q
if T (q, l)¬= q⊥ then set T (q ′′, l) := T (q ′, l) . copy outgoing transitions from q ′

end for
for all states qs ∈Q and symbols l ∈Σ such that T (qs , l) ∈ {q, q ′} do . for all source
states of transitions to q or q ′

set T (qs , l) := q ′′ . copy incoming transitions to q or q ′
end for
for all symbols l ∈Σ do . for all old transitions from q and q ′

if T (q, l)¬= q⊥ and T (q ′, l)¬= q⊥, then res := merge(A′,T (q, l),T (q ′, l), td) .

determinize the targets
if res equals FALSE, then return FALSE and undo the merge . return FALSE if the

targets are inconsistent
end for
return true

for sequences that were neither seen in training data nor generalized to during learning.
In our case studies, this only happens less than 0.1% of the time.

4.2.6. SLIDING WINDOW LENGTH

One of the key problems in our learning task is to determine the length of the sliding
window, i.e., how many historical data points the prediction would rely on. Figure 4.6 il-
lustrates the relationship between fitting error and model complexity for the wind speed
training data used in the experiments. Larger length of sliding window results in more
layers in PT and hence more states. Ei n and Eout are the fitting mean square error in
training data and testing data respectively. We can see that by increasing the model com-
plexity (sliding window length), Ei n decreases sharply, while Eout becomes increasingly
worse, which is typically the result of overfitting. In practice, we favor simpler models in
order to reduce the risk of overfitting. The models for which window length is less than
5, have relatively small Eout . We fix the length as 4 for the main experiments, and also try
length 8 in order to discover whether state merging can overcome the drop in Eout , see
Section 4.3.4.

4.3. EXPERIMENTS

4

91

2 4 6 8 10 12

Sliding Window Length

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

E
in

E
out

Figure 4.6: PT Fitting Error vs Window Length: Errors Ei n , Eout on training data and testing data calculated on
the PT, the starting data structure for the learning algorithm.

4.3. EXPERIMENTS

4.3.1. TYPICAL METHODS FOR COMPARISON
In this chapter, regression automata are compared with other widely used prediction

models.

• Persistent Model is the most widely used baseline in time series forecasting tasks,
which just let the predicted value equal its preceding known one.

• Autoregressive Integrated Moving Average
(ARIMA) To ensure fairness when comparing prediction results, we use integrated
ARMA (ARIMA) in this chapter, since we apply 1-st order derivatives in the prepro-
cessing procedure. The maximum order of AR and MA is fixed to 3, since we have a
sliding window of length 4. We select the “best fitting model” with lowest AIC and
highest log-likelihood.

• Recurrent Neural Network (RNN) using long-term short-term nodes (Gers et al.,
2001) was successful. We train a model on normalized differences input and out-
put. We select 3 layers and 15 hidden neurons. The output function is ReLU.

• Regression Tree (RT) is a IF-THEN rules-based model, which has been applied
successfully in time series forecasting (Troncoso et al., 2015). In this chapter,
the regression tree is built using scikit-learn DecisionTreeRegressor tool,1 which is
based on the CART algorithm (Breiman et al., 1984).

4.3.2. EVALUATION METRICS
For notational convenience, we collect all the predicted data and form a new vector

v̂ = [v̂1, v̂2, · · · , v̂k , · · · , v̂N]. The corresponding vector of actual values is defined as v =
[v1, v2, · · · , vk , · · · , vN]. In this chapter, the following types of indices are calculated for
fair comparisons:

1http://scikit-learn.org/stable/modules/generated/sklearn. tree.DecisionTreeRegressor.html

4

92 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

• Root mean square error:

RMSE =
√√√√ 1

N

N∑
k=1

(v̂k − vk)2 (4.3)

• Mean absolute percentage error:

M APE = 1

N

N∑
k=1

∣∣∣∣ v̂k − vk

vk

∣∣∣∣×100% (4.4)

• Mean absolute error:

M AE = 1

N

N∑
k=1

|v̂k − vk | (4.5)

4.3.3. EXPERIMENT RESULTS

CASE STUDY ONE: WIND SPEED PREDICTION

The data used in this case are from the online weather database of Delft University
of Technology.2 There are data from 16 weather stations in total. We selected station
“Rijnhaven" among the stations with the longest observation period, from 2013-04-23 to
2015-10-12. We calculate hourly averages of the wind speed, and predict one hour ahead.
Using a sliding window of 4 hours, the data were split into a training set containing 17537
windows with 70148 data points, and a test set containing 4113 windows with 16452 data
points.

To begin with, we compare different preprocessing strategies in the prefix tree. SAX
generally outperforms k-means, which provides the insights that in the wind data, the
symbolization based on equal space of probability better discovers the patterns for the
drift estimation. Logarithm differencing generally helps to get lower MAPE, because it
reflects ratio relationship, which is consistent with the definition of MAPE. Though local
SAX is powerful in anomaly pattern discovery, see (Lin et al., 2007), global SAX makes
more sense in the experiment. The global SAX and differencing strategies are chosen in
the following case studies. To make a fair comparison, all other baselines are fed with
difference inputs.

Table 4.3: Comparisons of Different Preprocessing Strategies

Methods Gloabl-SAX-diff k-means-diff Local-SAX-diff Global-SAX-logdiff k-means-logdiff Local-SAX-logdiff

RMSE (m/s) 0.5031 0.6501 0.5115 0.5072 0.6211 0.5124
MAPE (%) 18.7711 25.3068 18.9490 18.3330 20.6989 18.7300
MAE (m/s) 0.3660 0.4850 0.3725 0.3666 0.4347 0.3722

The evaluation results of different models are summarized in Table 4.4, where the
best for each index is in bold. Our model outperforms all other baselines in MAPE while
ARIMA shows slightly better results in RMSE and MAE.

2http://weather.tudelft.nl/csv/

4.3. EXPERIMENTS

4

93

The final merged state machine is illustrated in Figure 4.7. The model’s size is drasti-
cally reduced from 350 states to 20 states (except the start state and the leaf states, since
they are useless for the regression). The top-most state is the start state. Starting from
this state, the model moves along transitions by first discretizing the next time series
value and then following the transition with that discretized label. The first value in ev-
ery state (a circle) is the mean value of difference values from the training data reaching
that state. These are used to make predictions. The second value shows the number of
occurrences of every state.

The automaton has 11 loops, i.e., transitions where origin and target state are the
same, which are introduced by state merge. Given the historic data that are already ab-
stracted into the pattern abc (continuously increasing wind speed) for instance, it starts
from root state and reaches the state 0.054, which means it is expected to drift up 0.054
m/s. And for the pattern hgf, it reaches the state -0.107, which predicts a 0.107 m/s drift
down. The pattern hhh staying high speed for 3 hours, reaches -0.145 and is predicted to
slope down.

Table 4.4: One-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 0.4996 0.5031 0.4956 0.6060 0.6884 0.5077
MAPE (%) 18.5797 18.7711 18.7355 24.483 27.1475 18.6090
MAE (m/s) 0.3629 0.3660 0.3615 0.4707 0.5116 0.3685

Table 4.5: 3-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 0.8722 0.8753 0.8821 1.0015 0.9892 0.8930
MAPE (%) 32.5249 32.6794 33.1649 37.2406 38.8493 33.2933
MAE (m/s) 0.6321 0.6347 0.6432 0.7637 0.7404 0.6489

Table 4.6: 6-hour-ahead Speed Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

RMSE (m/s) 1.2048 1.2083 1.2286 1.2617 1.3038 1.2344
MAPE (%) 46.8085 47.0155 48.0161 47.02642 51.9327 48.1143
MAE (m/s) 0.8974 0.9013 0.9192 0.9444 0.9855 0.9226

CASE STUDY TWO: MULTI-STEP PREDICTION

In this case study, we evaluate the regression models for multi-steps, i.e., more than
one-hour-ahead forecasting, still using the data sets with one data point per hour. Our
input data again consist of windows, pre-processed as in the previous case studies, ex-
cept for the last element of the window being the value for multiple steps ahead. For

4

94 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

�����

�����
�����

������

�����
�����

������

������
����

��� ������
����

���

������
����

���

������
����

���������

���

�����
����

���

�����
����

���

�����
����

���

������
��

���

������
���

���

���

���

���

���

���

������
���

��� ������
���

���

�����
�

���

���

���

���

������

���

������
���

������

������

���������

���

���

������
���

���

������

���

������

���

���

���

���

������

���

���

���

���

���

���

���

���

���

�����
�

���

������
�

���

���

���

������

���

���

���

����

���

������

���

�������������

���

����

���

������

���������

���

���

�����
��

���

���

������

���

���

������

�����
�

���

���������

���

���

���

���

���

������

���

���

����

���

����

���

���

���

����

���

���

������ ����

���

����

���

Figure 4.7: The merged RA for the one-hour-ahead wind-speed prediction.

example, to predict a value three hours into the future, at time T +3, our training data
contain windows of the form (xT−2, xT−1, xT , xT+3). The evaluation results of 3-hour-
ahead and 6-hour-ahead predictions are listed in Table 4.5 and Table 4.6. With the in-
creasing of prediction interval, the persistent model doesn’t work as well as in Case One.
Our model improves significantly compared to other approaches.

CASE STUDY THREE: WIND POWER PREDICTION

In this case study, we investigate wind power prediction using the data set from the
National Renewable Energy Laboratory (NREL) of U.S. Department of Energy.3The train-

3http://www.nrel.gov/electricity/transmission/eastern_wind _dataset.html

4.3. EXPERIMENTS

4

95

ing data start from 2004-01-02 00:00:00 to 2006-05-31 23:50:00, while the testing data
start from 2006-06-01 00:00:00 to 2007-01-01 23:50:00.

Similar to the wind speed forecasting case study, we apply our model to wind power
prediction, i.e., using the historical wind power data as input and the one, three, and
six hour ahead power as output. Wind power forecasting is challenging due to the non-
linearity resulting from the dead zone and the saturation characteristics. More specif-
ically, power output has zero value when the wind speed value is lower than the wind
turbines’ cut-in threshold; meanwhile, the output reaches constant rated power if the
wind speed is greater than the cut-off upper-bound. Table 4.7 gives a comparison of the
power prediction for different models. Note that due to the dead zone characteristic of
wind power system, many zero value exists in the real data making the MAPE metric ill-
defined. Only RMSE and MAE are reported for comparison. From the results we can see
that the ARIMA performance is better in the 1-hour-ahead data set. ARIMA is power-
ful in one step ahead because the on-line updating of both input autoregressive values
and residual errors is efficient in short-term forecasting. However, in relatively longer
prediction intervals, our model gains improvement over baselines.

Table 4.7: Power Prediction Performance Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

1-hour-ahead
RMSE (MW) 1.8952 1.8979 1.8673 1.9859 2.6541 1.9830
MAE (MW) 1.2610 1.2613 1.2312 1.2814 1.8066 1.2793

3-hour-ahead
RMSE (MW) 3.7427 3.7435 3.7738 4.6883 4.4193 3.8796
MAE (MW) 2.6438 2.6458 2.6196 3.6595 3.1597 2.6832

6-hour-ahead
RMSE (MW) 5.0053 5.0088 5.0434 5.1567 5.4872 5.1486
MAE (MW) 3.6529 3.6546 3.6540 3.7355 4.0661 3.6529

4.3.4. LEARNING AND MODEL COMPLEXITY
Learning finite state automata exactly with incomplete samples is NP-hard (Angluin,

1978). State-merging algorithms use heuristics, and generally have a worst-case com-
plexity on the order of a cubic term in the input data size. Evaluating a regression au-
tomaton is a linear sequence of looking up the transitions to the last node, and adding
the predicted speed difference to the previous speed value. Our automata only have
about 20 states, requiring storing 20 float values and at most 20 × |Σ| triples of state-
symbol-state for the transition matrix. In practice, the runtime of RAs, including training
and testing, on our Intel 2.6 GHz i5 processors using a single core doesn’t need more than
a minute. The comparisons with all baselines are listed in Table 4.9. We also compare the
performance of the prefix tree with the performance our merged regression automata.
The prefix tree is a compact representation of the input data and is generated in linear
time. While it is generated much faster, it does not generalize, and is large in size. Fig-
ure 4.6 shows the training and testing error in prefix trees with different depths. The
longer the window size, i.e. the higher the order of auto-regression, the deeper the prefix
tree will get. We try to investigate how state merging influences the model performance
and how it relates to varying size measured in states. Table 4.8 shows the benefit of the

4

96 4. LEARNING AUTO-REGRESSIVE DYNAMICAL MODELS USING REGRESSION AUTOMATA

learning process. i mpr (%) is the automaton’s improvement in RMSE over prefix trees.
For longer sliding windows, state merging clearly improves the RA’s performance more.
The RMSE of the model with length-8 has accuracy very close to the length-4 model after
learning. It surprisingly provides evidence for the generalization efficiency of our learn-
ing algorithm.

Table 4.8: Improvement due to state-merging over the prefix tree in the RSME measure at different sliding
window length.

1-hour-ahead 3-hour-ahead 6-hour-ahead

RA Prefix Tree impr (%) RA Prefix Tree impr (%) RA Prefix Tree impr (%)

length-4 0.4996 0.5031 0.70 0.8722 0.8753 0.35 1.2048 1.2083 0.29
length-8 0.4994 0.5959 16.19 0.8737 0.9333 6.39 1.2089 1.2495 3.25

Table 4.9: Runtime Comparisons.

Model RA Prefix Tree ARIMA RNN RT Persistence

Runtime 19.086s 1.806s 1m48.796s 19m54.580s 2.035s 1.081s

4.4. CONCLUSION
The main contribution of this work is the extension of automata for time series re-

gression. A novel state merging approach for learning small automata from numeric
data is proposed using the DFASAT framework. To the best of our knowledge, we pro-
vide the first automaton model together with a learning algorithm that can be directly
applied to time series regression problems. Several case studies are performed, which
demonstrate that our approach allows for powerful generalization from training to test-
ing data. In addition to good performance in practice, our algorithm provides succinct
and interpretable models, which can be essential for deployment in real wind power
parks. In the near future, we will make even more use of the numeric wind speed/power
data during merging. This way, we can exploit spatial information, either by modifying
our preprocessing to create a multivariate regression problem, or considering additional
information such as location, directionality, correlation, and standard deviations during
consistency checks and merging. Additionally, different discretization strategies could
be further investigated for better abstraction of numerical data. An interesting approach
would be to discretize these data on-the-fly during the learning process, as has been
done before with temporal data in timed automata (Verwer et al., 2010b). In addition to
mean forecasting, probabilistic prediction is also important for decision purposes (Pin-
son et al., 2013). RAs can generate a probabilistic forecasting, which will be done in the
future. We will also try the rolling evaluation for concept drift problems (Giles et al.,
2001).

5
LEARNING AUTOMATA FOR

PERCEPTION AND CONTROL

From this chapter, we start the discussion about the safety problem in an intelligent
control system. We applied stochastic automata learning for profiling the lane change
behaviors of human drivers. The lane change intention is modeled as a stochastic input to
a car-following controller of an ego-vehicle. The experiments demonstrate the enhanced
safety by predicting such intentions.

The material in this chapter has appeared in
Yihuan Zhang, Qin Lin, Jun Wang, Sicco Verwer, and John Dolan. Lane-change intention estimation for car-
following control in autonomous driving. IEEE Transactions on Intelligent Vehicles, 3(3): 276–286, 2018

97

5

98 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

5.1. INTRODUCTION
Recently, many research institutes and vehicle manufacturers have focused on the

commercialization of autonomous driving systems. Safety and reliability are fundamen-
tal for self-driving cars on roads. Most car crashes are caused by human mistakes, and
many of these occur during lane changes (Lum and Reagan, 1995; Peden et al., 2004).
Furthermore, fewer than 50% of drivers use turn signals when they change lanes (Dang
et al., 2013). In order to guarantee the safety of driving, it is important for self-driving
cars to estimate the driving behavior of surrounding vehicles and predict their intention
of lane change before they cross lane lines.

Veh-h

Veh-t

Veh-p

Veh-ftVeh-rt

Veh-h

Veh-t

Veh-p

Veh-ftVeh-rt

Lane Change:

Cut-in

Veh-h

Veh-t

Veh-p

Veh-ftVeh-rt

Lane Keeping:

No cut-in

Figure 5.1: Multi-lane car-following scenarios.

Figure 5.1 illustrates the scenarios in highway driving. The self-driving car is noted
as the host vehicle in blue (Veh-h), the target vehicle is in red (Veh-t), the proceeding
vehicle (Veh-p) is in front of the host vehicle, Veh-ft and Veh-rt represent the front and
rear vehicles in the target lane. Assume that the red vehicle is following the leading ve-
hicle and intends to merge. In this case, if the host vehicle cannot estimate the merge
intention of the red vehicle, a sudden change of acceleration may occur, which leads to
an uncomfortable or even dangerous situation. Human drivers predict the behavior of
surrounding vehicles (merging into their lane or not) based on their observations and
driving experiences. A self-driving car uses a computational model to mimic human
beings and estimate the states of its own and surrounding vehicles.

The cut-in intention of the target vehicle should be estimated to ensure a safe and
comfortable car-following for the host vehicle. The contextual information of the four
surrounding vehicles is used to model the driving behavior of the target vehicle. In this
chapter, we need to recognize/classify the observations (vehicle positions, lateral accel-
erations, etc.) into lane change or lane keeping. It is a standard multivariate-time-series
classification based on the observations, i.e., to assign a label to a complete sequence of
lane change or lane keeping. This work aims at an even more challenging task of pre-
dicting such a label (i.e., intention) in advance for the intervention of control.

Although Adaptive Cruise Control (ACC) systems have been on the market since
1995 (Rajamani, 2015), their performance in terms of smoothness is frequently inter-
rupted by cut-in vehicles from adjacent lanes. More attention should be paid to the in-

5.2. RELATED WORK

5

99

tention of other vehicles for a more reliable ACC. In this chapter, an intention-based car-
following control method is proposed by integrating the cut-in intention of surrounding
vehicles.

S S
m
S

O O
m
O

S S
n
S

O O
n
O

p c
N N

p i c i

i i

J x u

C C C

Figure 5.2: Framework of proposed method.

The framework of the proposed method is shown in Figure 5.2. First, a scenario ex-
traction method is used to obtain two classes of driving sequences: lane change and
lane keeping. Then, the continuous Hidden Markov Models (HMMs) integrated with the
Gaussian Mixture Models (GMMs) are used to model the behavior of lane change and
lane keeping, respectively. A likelihood function is employed to estimate the behavior
in an online manner. Finally, a framework of model predictive control is proposed to
consider the predicted cut-in intention.

The major contributions of this chapter are as follows:

• To the best of our knowledge, this is the first work to fuse traffic contextual infor-
mation into the driving behavior estimation of target vehicles by using continuous
HMMs.

• A threshold-based method is used to estimate driving behavior of a target vehicle
in a streaming fashion, which is able to predict the behavior of lane change before
the target vehicle crosses the lane line.

• A novel car-following control method integrating the cut-in intention estimation
is proposed and achieves superior performance in terms of comfort and safety.

The remainder of this chapter is organized as follows. Related work is introduced in
Section 5.2. The proposed method is detailed in Section 5.3. The experiments are carried
out in Section 5.4. Conclusions and future work are presented in Section 5.5.

5.2. RELATED WORK
The related work is divided into two parts: one is on the estimation and prediction

of driving behavior by using various kinds of information, the other is on car-following
control including mathematical models, control methods and ACC systems.

5

100 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

5.2.1. DRIVING BEHAVIOR CLASSIFICATION

Many researches focused on the classification and prediction of driving behavior.
In (Meyer-Delius et al., 2009), the behavior of following and passing a vehicle was mod-
eled and recognized using HMMs and Gaussian mixture model. In (Schreier et al., 2016),
a maneuver-based method was proposed to estimate the driving state of a driver and to
predict the future trajectory considering the information of its leading vehicle. In car-
following scenarios, it is important to monitor the situation in the adjacent lanes to deal
with the behavior of lane change.

The behavior estimation or intention recognition of lane change can be classified
into two categories based on its input signals. The first one uses internal information of
a target vehicle such as throttle pedal pressure, brake pedal pressure and steering wheel
angles to identify driving behavior. It is mainly used in advanced driver assistance sys-
tems. In (Pentland and Liu, 1999), an accuracy of 93.3% over the 47 recorded lane-change
scenarios was achieved based on the data of vehicle accelerations, brakings and steer-
ings. In (Hou et al., 2011), lateral accelerations, steering wheel angles and steering an-
gles were used to classify the maneuvers of lane keeping and lane change by continuous
HMMs and the average recognition rate of lane change was over 90%. In (Li et al., 2015),
lane change maneuvers were recognized by using the features extracted from vehicle
states and driver operation signals. The dataset was recorded from different drivers un-
der varying driving conditions and the recognition rate was 88.2%. In (Doshi and Trivedi,
2009), some additional features like eye movements and head dynamics were added to
the behavior recognition for improved accuracy. In (Wang et al., 2016), the signals of
heart electrocardiogram, galvanic skin responses and respiration were utilized to train a
multi-layer neural-network model. The prediction of lane change was achieved about 2
seconds before the target vehicle actually crossed lane lines.

The other category uses external information of a target vehicle, for example, vehicle
speeds, lateral offsets, distances, etc. It is possible for self-driving cars to estimate the
behavior of surrounding vehicles because all parameters are measurable by sensors on
board. In (Kumar et al., 2013), lateral positions and relative heading angles were used
as features to train a support vector machine (SVM) and a Bayesian filter was used to
obtain the probability of driving behaviors. However, the effect of surrounding vehicles
on the behavior of the target vehicle should not be ignored. More and more researchers
have considered the surrounding traffic when studying driving behaviors. In (Morris
et al., 2011), the lane change intention was estimated based on the driver’s head motions,
internal signals and the information of the surrounding vehicles. The classifier was able
to provide the intention of the driver more accurately.

The dataset of Next Generation SIMulation (NGSIM) has been adopted to explore the
characteristics of the vigilant lane-change process. In (Balal et al., 2016), a fuzzy infer-
ence system was used to make a decision of lane change based on distances and rela-
tive speeds. In (Bi et al., 2016), a neural-network based learning method was applied to
model the behavior of lane change. The SVM-based classification as a classical machine
learning method can deal with high-dimensional input features. In (Nie et al., 2016; Woo
et al., 2016), SVMs were used to classify different situations of lane-change behavior, and
different input features of surrounding vehicles were used to train the SVMs. In addition,
a probabilistic classification method based on a Bayesian network was applied in (Yan

5.2. RELATED WORK

5

101

et al., 2016; Rehder et al., 2016). The time-to-collision between a target vehicle and sur-
rounding vehicles was used as an input feature to obtain the probability of lane-change
behavior. An exponential probability model of lane-change was proposed in (Lee et al.,
2016) by using NGSIM data. Various factors were claimed to affect the decision of lane
change, including the relative speeds between the target and original lanes and the dis-
tances between the target vehicle and the surrounding ones.

5.2.2. CAR-FOLLOWING CONTROL

The first work on car-following can be dated back to the 1950s. In (Pipes, 1953), a lin-
ear follow-the-leader model was proposed to calculate the desired acceleration by using
the relative speeds between the following and the leading vehicles. Another widely-used
linear model, knows as the Helly model, was proposed in (Helly, 1959b). Alternatively, a
non-linear Gazis-Herman-Rothery model introduced the power operators of ranges and
speeds (Gazis et al., 1961). An intelligent driver model was introduced in (Treiber et al.,
2000) to simulate freeway and urban traffic. In our recent work (Zhang et al., 2017a),
a human-like car-following controller was designed to mimic human driving behavior.
These works are essentially feed-forward models that are more suitable for simulating
car-following behavior than real-time control.

The ACC system as an upgrade of cruise control improves the convenience and safety
of driving. Many control methods have been applied to ACC systems, e.g., proportional-
integral (PI) control (Rajamani, 2011), fuzzy control (Sathiyan et al., 2015), and model
predictive control (MPC) (Schmied et al., 2015; Kamal et al., 2015). The MPC method
can be used to deal with multiple objective optimizations of driving safety, fuel efficiency
and ride comfort. In (Schmied et al., 2016), a scenario MPC method was proposed that
enabled predictive and anticipatory driving in multi-lane and multi-vehicle scenarios.
By using a stochastic modeling approach, the lane-change probability of surrounding
traffic participants was determined and integrated into the optimization. Simulations il-
lustrated the much smoother control of speeds and accelerations than PI control. In (Liu
et al., 2017a), a car-following gap model was generated from the data of highway natu-
ralistic driving, and the cut-in probability was incorporated into the algorithm of MPC
control. Simulated scenarios demonstrated the smoothness of vehicle driving. Although
these methods have considered the behavior of vehicles in adjacent lanes, the methods
of intention estimation were only tested by simulated data rather than real traffic data.
In this work, the models of driving behavior are learned from the real data, and all the
tests are conducted in real driving scenarios.

In summary, the smooth and reliable performance of ACC systems tends to be inter-
rupted by cut-in vehicles from adjacent lanes. A model of behavior estimation is crucial
for improving the performance of ACC systems. This chapter focuses on predicting the
cut-in intention at “any time" (i.e., an online fashion) from the external information of
surrounding vehicles. The inferred cut-in probability is integrated into the framework of
MPC control to efficiently deal with the sudden behavior change of target vehicles.

5

102 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

5.3. PROPOSED METHOD
In the NGSIM dataset, separated scenarios for each vehicle are extracted where sur-

rounding vehicles remain the same. Two types of behavior models, i.e., lane keeping and
lane change, are learned using GMM-HMMs. In the testing phase, the likelihood of se-
quences is computed using a forward algorithm and is compared with a threshold for
the final recognition. The probability of lane-change is calculated and integrated into
the MPC framework to control the car-following behavior of the host vehicle.

5.3.1. SCENARIO DEFINITION AND EXTRACTION
In the folowing, the NGSIM dataset is described in detail and the scenarios used in

this chapter are defined.

DATA DESCRIPTION

This chapter uses the public dataset NGSIM (NGSIM, 2007), a program funded by
the U.S. Federal Highway Administration. These trajectory data are thus far unique in
the history of traffic research and provide a valuable basis for the research of driving
behavior on structured roads. All the experiments are performed on the datasets of I-80
and US-101. The labeled scenario data are open-sourced.1

The I-80 dataset consists of three 15-minute periods: 4:00 pm to 4:15 pm, 5:00 pm
to 5:15 pm, and 5:15 pm to 5:30 pm. These periods represent respectively a buildup of
congestion, a transition between uncongested and congested conditions, and full con-
gestion. A total of 45 minutes of data are available in the US-101 dataset, which are seg-
mented into three 15-minute periods: 7:50 am to 8:05 am, 8:05 am to 8:20 am, and 8:20
am to 8:35 am. The vehicle trajectories in both datasets data include the precise location
of each vehicle within the study area and the data were sampled at a rate of 10 Hz.

SCENARIO SEGMENTATION

The segmented scenarios in Figure 5.1 have the following properties:

• In each scenario, the surrounding vehicles (Veh-h, Veh-p, Veh-ft, Veh-rt) of a target
vehicle (Veh-t) remain the same.

• We set the relative distance to 150 m and the relative speed to 0 for any missing
surrounding vehicles.

• A scenario ends when a target vehicle crosses a lane line (merge), passes Veh-p, or
yields to Veh-h.

• A new scenario restarts immediately once the preceding scenario is finished to
ensure continuity between driving scenarios.

• The segmented scenarios last at least two seconds to ensure complete lane-change
or lane-keeping behavior.

1All the labeled scenario data can be found in our online repository: https://bitbucket.org/stzyhian/beta-
ngsim.

5.3. PROPOSED METHOD

5

103

Table 5.1: Scenario segmentations.

Dataset Lane change Lane keeping
I-80-1 212 (avg. dur. 6.12s) 16997 (avg. dur. 6.01s)
I-80-2 159 (avg. dur. 6.13s) 16972 (avg. dur. 6.16s)
I-80-3 167 (avg. dur. 6.30s) 16536 (avg. dur. 6.26s)

US-101-1 242 (avg. dur. 8.07s) 15683 (avg. dur. 7.99s)
US-101-2 156 (avg. dur. 8.56s) 17254 (avg. dur. 8.07s)
US-101-3 154 (avg. dur. 7.44s) 17796 (avg. dur. 7.71s)

The summary of the segmented sequences in both datasets is shown in Table 5.1.
The average duration of each scenario segmentation is about 6 to 8 seconds. The highly
imbalanced data, i.e., much higher proportion of lane keeping than lane change, pose
another significant challenge to behavior recognition. However, the proportion of data
is consistent with daily driving. According to References (Balal et al., 2016; Bi et al., 2016),
the features listed in Table 5.2 are deemed relevant and are extracted.

Table 5.2: Features of scenario segmentation.

Symbols Descriptions
vx Longitudinal speed of Veh-t
do Lateral speed of Veh-t
do Lateral offset from target lane line to Veh-t
∆vt,p Longitudinal speed difference between Veh-t and Veh-p
∆vt,h Longitudinal speed difference between Veh-t and Veh-h
∆vt,ft Longitudinal speed difference between Veh-t and Veh-ft
∆vt,rt Longitudinal speed difference between Veh-t and Veh-rt
∆xt,p Longitudinal distance between Veh-t and Veh-p
∆xt,h Longitudinal distance between Veh-t and Veh-h
∆xt,ft Longitudinal distance between Veh-t and Veh-ft
∆xt,rt Longitudinal distance between Veh-t and Veh-rt

5.3.2. BEHAVIOR MODEL
HMMs have been widely used to model driving behavior due to their powerful ability

to describe dynamic processes and infer unobserved (hidden) states (Tang et al., 2016;
Meyer-Delius et al., 2009). GMMs are used to model the probabilities of the continuous
observations such as speeds.

GMM
The variables in Table 5.2 can be classified into three categories as follows:

ξt =
[[

vx(t), vy(t),do(t)
]

,[
∆vt,p(t),∆vt,h(t),∆xt,p(t),∆xt,h(t)

]
,[

∆vt,ft(t),∆vt,rt(t),∆xt,ft(t),∆xt,rt(t)
]]T

5

104 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

ξt is used to model the behaviors, and the first group
[
vx(t), vy(t),do(t)

]T is used to
build the model which only considers the information of target vehicles. In this chapter,
we assume that the distribution of the observation ξ is a weighted sum of multivariate
Gaussian distribution functions:

p(ξt ;θ) =
K∑

k=1
ωkN (ξt ;µk ,Σk)

=
K∑

k=1

ωk ·exp
(− 1

2 (ξt −µk)TΣ−1
k (ξt −µk)

)√
(2π)11 det(Σk)

(5.1)

where θ = {θk }K
k=1 = {ωk ,µk ,Σk }K

k=1 are the parameters of the GMMs, N (ξt ;µk ,Σk) is

the multivariate Gaussian distribution with the mean center µk ∈R11×1 and covariance
matrixΣk ∈R11×11, and K is the number of GMM components which can be determined
using the Bayesian information criterion (BIC) (Findley, 1991). Asωk ∈ (0,1] is the weight
of the k th Gaussian component, we have

∑K
k=1ωk = 1.

Given a data sequence ξ1:n , the maximum-likelihood estimation method is used to
find a θ that maximizes the likelihood of the GMM function:

L (θ) =
n∑

t=1
ln(p(ξt ;θ)) (5.2)

The expectation-maximization algorithm is utilized in this chapter to search for the
optimal parameter

θ∗ = argmax
θ

L (θ)

The estimation of θ at Step j is denoted by θ̂ j . The iteration from θ̂ j to θ̂ j+1 is
achieved by the following E-step and M-step (Bilmes et al., 1998).

• E-step: For each iteration, the posterior probability for each component k is cal-
culated by using the previous estimation θ̂ j :

P j+1
k (ξt) =

ω̂
j
k ·N (ξt ; µ̂ j

k , Σ̂ j
k)∑K

l=1 ω̂
j
l ·N (ξt ; µ̂ j

l , Σ̂ j
l)

(5.3)

• M-step: The model parameters are then updated by

ω̂
j+1
k = 1

n

n∑
t=1

P j+1
k (ξt)

µ̂
j+1
k =

∑n
t=1(ξt ·P j+1

k (ξt))∑n
t=1 P j+1

k (ξt)

Σ̂
j+1
k =

∑n
t=1

(
P j+1

k (ξt)(ξt − µ̂ j+1
k)(ξt − µ̂ j+1

k)T
)

∑n
t=1 P j+1

k (ξt)

5.3. PROPOSED METHOD

5

105

At the end of each iteration, the log-likelihood L (θ̂ j+1) is calculated by

L (θ̂ j+1) =
n∑

t=1
L (θ̂ j) (5.4)

The iteration will continue until the likelihood difference between two consecutive
estimated models is less than a threshold, which is set to 10−10 here.

HMM

Two separate HMMs are built to represent the behavior of lane change and lane keep-
ing. In this chapter, the structure of the HMM is left-to-right, as shown in Figure 6.1
(behavior model training block). The HMM is represented by

λ= {S ,Z ,A ,B,π}

where

• S = {s1, · · · , sN } represents a finite set of N hidden states.

• Z = {ξt } is the set of all observed states ξ at time t and each ξ consists of the eleven
elements included in the GMM.

• A = [ai j] is the state transition matrix and ai j is defined as the probability of a
transition from state si to state s j .

• B = {bi (ξ)} is the observation model and bi (ξ) represents the probability of ob-
serving ξ while being in state si .

• π = {πi } is the initial state distribution where πi represents the probability of the
state si being the initial state.

Readers can refer to (Rabiner, 1989a) for a more detailed formulation and applica-
tions of HMM. HMM is a dual stochastic model: one is a Markov model for stochastic
state transition, the other is the stochastic observation in each state. Three hidden states
are chosen to represent the underlying dynamic processes of the lane-change and lane-
keeping behavior. The continuous observation model B is defined by

bi (ξ) =
K∑

k=1
ωkN (ξ;µk ,Σk) (5.5)

The Baum-Welch algorithm (Dempster et al., 1977) is used to estimate λ of the two
HMMs. It is an approximate iterative optimization technique for maximizing the likeli-
hood of the observations. A random set of initial parameters is chosen and improved by
gradient updating.

5

106 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

BEHAVIOR RECOGNITION

In the testing phase, a binary recognition, i.e., lane change or lane keeping, is
achieved in a receding horizon manner. Assume that the sequence ξ1:n is a complete
period of lane change/keeping, where n is the length of the sequence. The shortest se-
quence with a size s implies the least information to distinguish two kinds of behavior.
A prediction can be achieved if s < n. The streaming data ξ1:t where t ≥ s are fed as the
real-time input to λlk and λlc separately for likelihood computation. λlk and λlc respec-
tively represent the HMM of lane keeping and lane change. P (ξ1:t |λi) is obtained by a
forward algorithm (Rabiner, 1989a):

P (ξ1:t |λi) =
N∑

i=1
αt (i) (5.6)

where

αt+1(j) =
(

N∑
i=1

αt (i) ·ai j

)
b j (ξt+1)

α1(j) =π j b j (ξ1)

(5.7)

As there is no prior knowledge of the driving behavior of a specific driver, we assume
the prior probabilities of each model are identical. After the calculation of P (ξ1:t |λlk) and
P (ξ1:t |λlc), we are able to set a threshold to estimate the current behavior of the target
vehicle:

R = P (ξ1:t |λlc)

P (ξ1:t |λlk)
(5.8)

where R indicates whether the classification is more likely to be lane change or lane
keeping.

5.3.3. MODEL PREDICTIVE CONTROL

Once the behavior model is built, a probability of lane change is calculated and inte-
grated into the framework of model predictive control.

INTENTION ESTIMATION

The probability of the lane change intention is calculated as follows:

Pc =
 tanh

(
ωc · R−RT

Rm −RT

)
, R >RT

0, R ≤RT

(5.9)

where RT is the threshold of the classification, Rm is the maximum ratio obtained from
the training data and ωc is a span parameter indicating the range of the ratio. The like-
lihood is thus normalized as a probability ranging from 0 to 1. The function “tanh" is
selected because the values of random variable R−RT

Rm−RT
in the training dataset follow

such a distribution with the smallest fitting error.

5.3. PROPOSED METHOD

5

107

PREDICTION MODEL

In this chapter, the longitudinal motion of the vehicle is expressed by

x(t +1) = x(t)+ v(t)∆t +0.5a(t)∆t 2

v(t +1) = v(t)+a(t)∆t
(5.10)

where x, v , a are respectively the positions, speeds and accelerations of the host vehicle,
and ∆t is the sampling time. Then the following variables are defined:

• Distances: ∆x = xf − xh where xf is the longitudinal position of the virtual leading
vehicle, and xf = Pcxt+(1−Pc)xp. Note that, if the probability Pc is 1, then the host
vehicle will assume the target vehicle to be the leading vehicle.

• Relative speeds: ∆v = vf −vh where vf is the longitudinal speed of the virtual lead-
ing vehicle, and vf = Pcvt + (1−Pc)vp.

• Accelerations: ah = jh∆t where jh is the jerk of the host vehicle.

Due to the uncertainty of the vehicle motions, we assume that the accelerations of
the surrounding vehicles remain the same in the prediction step as in Reference (Liu
et al., 2017a). Such an assumption is reasonable because the prediction window of the
MPC is continuously receding to the next time point when the real status of the leading
vehicles is updated.

RECEDING HORIZON OPTIMIZATION

The cost function of the MPC is designed to meet the following objectives:

• Tracking errors: The objective of car-following control is to follow the speed of the
leading vehicle while keeping a safe distance. The distance is defined as a constant
time headway policy (Schmied et al., 2016):

ddes = d0 +τh1vh +τh2∆v

where d0 denotes the desired distance at standstill, and τh1, τh2 are constant-time
headway parameters.

JT =ωd (ddes −∆x)2 +ωv∆v2 (5.11)

• Comfort and smoothness: The host vehicle should realize a comfortable and eco-
nomic driving style by minimizing its accelerations and jerks.

JC =ωaa2
h +ωj j 2

h (5.12)

where ωd, ωv, ωa and ωu are the weight values of the cost function.

Considering the nonholonomic constraints of the vehicle and the car-following sce-
nario, the following constraints should also be considered in the MPC design:

• The speed of the host vehicle is bounded by

0 ≤ vh ≤ vmax

5

108 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

• The minimum gap from the leading vehicle is constrained by

dsafe ≤∆x

where dsafe = τ0vh is the minimum time headway.

• The acceleration constraint of the host vehicle is

amin ≤ ah ≤ amax

• The jerk constraint of the host vehicle is

jmin ≤ jh ≤ jmax

The optimization problem can now be written as:

min
jh(k),k=1,··· ,Np

J = JT + JC (5.13)

where Np is the prediction step. The optimization problem is subject to the above con-
straints. Note that the optimal solution is a vector of control values with the length Np.
The MPC method only takes the first value and then moves to the next time point and
re-starts the optimization.

5.4. EXPERIMENTAL RESULTS
The effectiveness of the proposed method is demonstrated by a 5-fold cross-

validation experiment. In order to balance the data proportion of lane change and keep-
ing, an equal number of data, i.e., 538 sequences, are randomly chosen. First, the BICs
are calculated to determine the number of GMM components, where nt is the length of
training data and L̂ is the maximum log-likelihood. When fitting GMMs, it is possible to
increase the likelihood by increasing K , which may result in over-fitting. Moreover, the
log-likelihood may have a large negative value and the two parts in this equation may
not be of the same order of magnitude. A normalization step is taken to make a trade-off
between number of parameters and log-likelihood:

B̂IC = ln(nt) · K −Kmin

Kmax −Kmin
−2 · ln(L̂)− ln(L̂)min

ln(L̂)max − ln(L̂)min

In this step, all the sequences in each dataset are used to calculate the BICs with K
varying from 1 to 20. There is usually a reasonable range for the elbow-like parameter
selection (Salvador and Chan, 2005b). The final parameter K is chosen based on the
minimal normalized BIC. Then K = 3 is selected for both lane change and lane keeping
in the I-80 dataset; K = 4 is selected for lane change and K = 3 for lane keeping in the
US-101 dataset.

5.4. EXPERIMENTAL RESULTS

5

109

5.4.1. CLASSIFICATION EVALUATION

In order to highlight the effects of surrounding vehicles, the model only considering
the information of target vehicles is also studied in the following experiments, which is
designated “tgt" for only considering the target vehicle. The proposed method is desig-
nated “srd" for considering surrounding vehicles.

A receiver-operating-characteristic curve is a standard analysis tool to score the per-
formance of a binary classifier system with a varying threshold, i.e. RT here. The area
under the curve (AUC) is equal to the probability that a classifier will rank a randomly
chosen positive instance higher than a negative one (assuming positives rank higher
than negatives) (Fawcett, 2006). In this chapter, the AUC means the classification perfor-
mance of the behavior estimation. The accuracy of behavior estimation is higher when
AUC (ranging from 0 to 1) is larger. As shown in Table. 5.3, the AUCs of the “srd" method
are higher than the “tgt" method, i.e., the classification results considering surrounding
vehicles are more accurate than the results only considering the information of target
vehicles.

Table 5.3: Comparison of AUCs.

Cases I II III IV V
srd-I-80 0.9603 0.9475 0.9418 0.9575 0.9356
tgt-I-80 0.9282 0.9064 0.9325 0.9046 0.9182

srd-US-101 0.9173 0.9295 0.9270 0.9358 0.9163
tgt-US-101 0.9065 0.9167 0.9058 0.8980 0.9007

Table 5.4: Performance index comparison at FPR = 5%.

Dataset I-80 US-101
Cases I II III IV V Average I II III IV V Average

TPR
srd 0.9158 0.8055 0.8056 0.8425 0.8037 0.8346 0.8091 0.7478 0.8108 0.8091 0.7727 0.7898
tgt 0.7757 0.7407 0.8241 0.5278 0.6168 0.6971 0.6546 0.8378 0.8738 0.5909 0.7636 0.7441

FPR
srd 0.0654 0.0648 0.0740 0.0740 0.0654 0.0688 0.0636 0.0811 0.0811 0.0909 0.0727 0.0778
tgt 0.0841 0.0741 0.0648 0.0648 0.0654 0.0706 0.0909 0.0991 0.0901 0.1000 0.0909 0.0942

ACC
srd 0.9252 0.8703 0.8657 0.8842 0.8691 0.8829 0.8727 0.8333 0.8648 0.8591 0.8501 0.8561
tgt 0.8458 0.8333 0.8796 0.7315 0.7757 0.8132 0.7818 0.8694 0.8919 0.7455 0.8364 0.8249

PRE
srd 0.9333 0.9255 0.9157 0.9191 0.9247 0.9237 0.9271 0.9022 0.9091 0.8989 0.9139 0.9103
tgt 0.9022 0.9091 0.9271 0.8906 0.9041 0.9066 0.8781 0.8942 0.9066 0.8553 0.8936 0.8855

F1
srd 0.9245 0.8614 0.8571 0.8792 0.8600 0.8765 0.8641 0.8177 0.8571 0.8516 0.8374 0.8456
tgt 0.8342 0.8163 0.8725 0.6627 0.7333 0.7838 0.7501 0.8651 0.8899 0.6989 0.8235 0.8055

Besides the AUC evaluation, the following quantitative metrics are also introduced
for a comprehensive evaluation:

• True Positive Rate (TPR), also named Recall, is the fraction of events classified cor-
rectly out of all true events, i.e.,

TPR = TP

TP+FN

where TP means true positive and FN means false negative (missed detection).

5

110 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

• False Positive Rate (FPR) is the fraction of events classified wrongly out of all false
events, i.e.,

FPR = FP

FP+TN

where FP means false positive (false alarm) and TN means true negative.

• Accuracy (ACC) is the fraction of correctly classified events out of all testing events.
It is defined by

ACC = TP+TN

TP+TN+FP+FN

• Precision (PRE) is the fraction of events classified correctly out of all events pre-
dicted to be positive, i.e.,

PRE = TP

TP+FP

• F1 Score is the harmonic mean of the precision and the recall, i.e.,

F1 = 2× PRE×TPR

PRE+TPR

Note that the thresholds are determined by choosing FPR = 5% in the training data.
The thresholds are then used for the final evaluation in the testing set (see the results re-
ported in Table 5.4). The evaluation results show that the proposed method considering
the information of surrounding vehicles achieves better performance than the method
only considering the target vehicle.

5.4.2. LANE CHANGE PREDICTION
A further challenge is to predict lane change before the target vehicle crosses lane

lines. We define the prediction time as

τt = te − tp

where te represents the ending time of a scenario and tp is the first instant when a label
of lane change is reached. In the testing dataset, te is the time when the target vehicle
crosses the lane lines and tp is the time when the behavior of lane change is estimated.
When the ratio R changes across the threshold, the final driving behavior is estimated
as lane change. In addition, if the final output behavior remains lane change until the
end of the scenario, the prediction time is obtained as the period between tp and te.

Table 5.5: Lane change prediction time τt in seconds.

Cases I II III IV V Average
srd-I-80 5.16 5.21 4.97 3.11 3.49 4.39
tgt-I-80 4.12 3.42 2.99 2.58 2.49 3.12

srd-US-101 4.67 4.96 5.38 4.24 4.43 4.73
tgt-US-101 2.67 2.81 3.12 2.23 2.41 2.65

5.4. EXPERIMENTAL RESULTS

5

111

Table 5.5 compares the average prediction time between “srd" and “tgt", which
demonstrates that the proposed method is able to predict the intention of target vehicles
earlier. Moreover, a comparison with lane change prediction using SVM (Kumar et al.,
2013) is conducted. The results of the proposed method using GMM-HMM are better be-
cause the driving behavior is a time series and previous states are related to current and
future states. SVM is a classifier that can only input constant dimensions of variables
and is thus unable to model the effects of time series effects. The comparison results
are shown in Figure 5.3 and Figure 5.4. The proposed method has an approximately 80%
true positive rate of predicting the behavior of lane change 0.5s in advance and retains a
60% true positive rate up to 4s before the lane change occurs. Furthermore, the proposed
method also has the lowest false positive rate while the SVM method produces over 20%
false positive rate.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Prediction time (s)

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

T
ru

e
p

o
si

ti
v

e
ra

te

srd-I80

tgt-I80

SVM-I80

srd-US101

tgt-US101

SVM-US101

Figure 5.3: Prediction time and true positive rate of lane-change behavior in both dataset.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Prediction time (s)

0

0.05

0.1

0.15

0.2

0.25

0.3

F
al

se
 p

o
si

ti
v

e
ra

te

srd-I80

tgt-I80

SVM-I80

srd-US101

tgt-US101

SVM-US101

Figure 5.4: Prediction time and false positive rate of lane-change behavior in both dataset.

A detailed example in Figure 5.5 shows that the driving behavior cannot be correctly
estimated by only considering the information of the target vehicle. Note that lane keep-
ing is 0 and lane change is 1. In the first second of this scenario, the target vehicle is

5

112 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

20 40 60 80 100 120 140 160 180

0

10

20

(a) t = 1

20 40 60 80 100 120 140 160 180

0

10

20

(b) t = 9

0 2 4 6 8

0

0.5

1

T
ar

g
et

 V
eh

ic
le

(c) Lateral speed and lateral offset of the tar-
get vehicle

2 4 6 8

0

0.5

1

B
eh

av
io

r

srd

tgt

SVM

(d) Driving behavior output, 0 means lane
keeping, 1 means lane change

Figure 5.5: An example of the proposed behavior estimation method. The red vehicle is the target vehicle. d0 is
the lateral distance of the target vehicle. The time point of a “partial" lane change of the target vehicle at t = 9s
is actually considered as the ending of its lane change intention. We assume the true lane change will happen
after this moment and this work is trying to do a prediction as early as possible before this moment.

shifting to the right, but it is not lane-change behavior because there is a vehicle in the
lane to its right. If only the information of the target vehicle is considered, the algorithm
may estimate that the target vehicle is changing lanes even though the target vehicle
cannot do so. Therefore, accurate behavior estimation requires considering the traffic
situation around the target vehicle. Moreover, due to the lack of modeling of the time-
series sequences, the SVM is not stable and cannot make any estimation or prediction
without filtering.

5.4.3. CAR-FOLLOWING TESTING RESULTS

The scenarios containing the host and target vehicles in the NGSIM dataset are ex-
tracted for the car-following control test. The information about the surrounding vehi-
cles is used as the observation of the host vehicle. The parameters of the MPC are listed
in Table 5.6.

As shown in Table 5.7, five metrics are selected to evaluate the proposed method
and three methods are compared to demonstrate the influence of the cut-in situations.
The proposed method is denoted by “srd-MPC", which means the intention of the tar-
get vehicle is estimated by considering the information of all the surrounding vehicles.
The method “tgt-MPC" represents the MPC controller with the intention estimated only
using the information of the target vehicle. The method “Only-MPC" is the pure MPC
method without considering the cut-in intentions of target vehicles. The speeds, accel-
erations and jerks listed in Table 5.7 are the average value in each test. The hazard index
is defined as

HI = exp
(
−(∆x/h1)h2

)

5.4. EXPERIMENTAL RESULTS

5

113

Table 5.6: Parameters in MPC.

Variables Values Units
∆t 0.1 s
Np 20 −
ωc 10 −
d0 6 m

vmax 30 m/s
τ0, τh1, τh2 0.5, 1, 3 s
ωd, ωv, ωa, ωj 0.01, 0.02, 0.01, 0.05 −

amin, amax −4, 6 m/s2

jmin, jmax −0.3, 0.3 m/s3

Table 5.7: Performance index comparison of MPCs.

Dataset I-80 US-101
Cases I II III IV V Average I II III IV V Average

vh

(m/s)

srd-MPC 6.3667 7.5950 6.2163 6.0926 6.1791 6.4899 10.1505 10.4960 10.2020 10.9406 9.7350 10.3048
tgt-MPC 6.3292 7.5994 6.1411 5.8433 5.9667 6.3759 10.3989 10.7071 10.5165 11.0393 9.8605 10.5045

Only-MPC 6.9295 7.5845 6.2827 6.0988 6.2823 6.6356 10.6237 10.9072 10.6093 11.2079 9.8176 10.6331

ah

(m/s2)

srd-MPC 1.1624 1.0795 1.1589 1.1845 1.2646 1.1700 1.1609 1.3325 1.0661 1.7717 1.4109 1.3484
tgt-MPC 1.1974 1.5522 1.3786 1.2096 1.4739 1.3623 1.1632 1.6061 1.4135 1.8874 1.4795 1.5099

Only-MPC 1.4067 1.5785 1.4746 1.3482 1.4555 1.4527 1.4798 1.6183 1.4058 1.9159 1.7556 1.6351

∆ah

(m/s3)

srd-MPC 0.1253 0.1399 0.1378 0.1409 0.1548 0.1397 0.1245 0.1526 0.1145 0.1787 0.1550 0.1451
tgt-MPC 0.1263 0.1836 0.1569 0.1498 0.1783 0.1590 0.1320 0.1710 0.1511 0.1841 0.1619 0.1600

Only-MPC 0.1625 0.1892 0.1732 0.1606 0.1734 0.1718 0.1698 0.1730 0.1515 0.1827 0.1850 0.1724

HI
srd-MPC 0.0310 0.0214 0.2641 0.3888 0.4185 0.2248 0.2664 0.3675 0.1517 1.0301 0.4928 0.4617
tgt-MPC 0.1245 0.4692 0.2650 0.4297 0.8305 0.4238 0.2865 0.8062 0.7836 1.2306 0.7578 0.7729

Only-MPC 0.6393 0.4705 0.2821 0.6097 0.9959 0.5995 0.6062 0.8269 1.1758 1.3458 1.0394 0.9988

CR
srd-MPC 0/29 0/22 1/25 2/25 2/21 0.0430 2/35 2/28 1/40 6/31 2/36 0.0805
tgt-MPC 1/29 3/22 1/25 3/25 3/21 0.0947 2/35 6/28 5/40 8/31 4/36 0.1531

Only-MPC 4/29 3/22 1/25 4/25 4/21 0.1330 4/35 6/28 8/40 8/31 6/36 0.1907

which represents the degree of a rear end collision (Dou et al., 2016). The values of h1 and
h2 are fitted by the highway naturalistic driving data in (Liu et al., 2017a). The collision
rate (CR) represents the collision numbers in the simulation of the host vehicle. The
results show that the average speed of the proposed method is close to the traditional
MPC. With the intention estimation of the target vehicle, the effect of a sudden change
of the leading vehicle is smoothed. Meanwhile, the hazard index and the collision rate
of the proposed method are much lower than those of the other methods. Note that
the trajectories of cut-in vehicles are used as real stochastic inputs, though fixed in the
dataset, to experimentally demonstrate the collision avoidance control of the proposed
method. The on-line interaction between host vehicles and cut-in vehicles are omitted
as a fundamental assumption.

Two detailed examples from the testing data are illustrated to explain the advantage
of the proposed method in Figure 5.6 and Figure 5.7, where the real data are from human
drivers in the dataset. The first example is a cut-in scenario in the I-80 dataset as shown
in Figure 5.6. In this scenario, the cut-in behavior happens when the target vehicle is
slow and wants to give way to a faster following vehicle. As shown in Figure 5.7d, the
lane change intention of the target vehicle is detected at 1.8 s by the proposed method,
and the target vehicle crosses the lane lines at 7.3 s, where the sudden change of relative
distance is shown in Figure 5.7b. Such an intention is detected at 6.6 s using the target

5

114 5. LEARNING AUTOMATA FOR PERCEPTION AND CONTROL

vehicle information only. By using the proposed method, the host vehicle is able to take
an earlier intervention control of slowing down before the cut-in, and therefore obtains
smooth accelerations and avoids a hard brake.

0 2 4 6 8 10
0

2

4

6

8

10

srd-MPC

tgt-MPC

Only-MPC

Real data

(a) Speed

0 2 4 6 8 10

0

5

10

15

20

(b) Relative distance

0 2 4 6 8 10

-6

-4

-2

0

2

4

(c) Acceleration

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

C
u
t-

in
 P

ro
b
ab

il
it

y srd

tgt

(d) Cut-in Probability

Figure 5.6: An example of the car-following simulation in the I-80 dataset.

Another example from the US-101 dataset is shown in Figure 5.7. The target vehicle
in this scenario is trying to merge into the lane of the host vehicle to speed up. The
proposed method estimates the cut-in behavior at 1.1 s, while the target vehicle crosses
the lane lines at 8.2 s. Similarly to the last scenario, an earlier and smoother control can
be seen in the Jerk subplot. Without the intention estimation, the host vehicle controlled
by the pure MPC fails to avoid the collision due to the sudden cut-in.

5.5. CONCLUSIONS
This chapter develops a car-following control method with the estimation of the

lane-change behavior of other traffic participants. Multivariate time series data from
the target vehicle and its surrounding vehicles are used to build two continuous HMMs
representing the behavior of lane change and lane keeping. A threshold-based classifi-
cation method is used to estimate the target vehicle’s behavior. In the meantime, a cut-in
probability is calculated based on the behavior estimation and the MPC method is then
applied to optimize the car-following behavior of the host vehicle. The behavior model
of the target vehicle is able to achieve over 85% of the true positive rate and the lane
change behavior is predicted about 4 seconds before the target vehicle crosses the lane
lines. The proposed intention-based MPC achieves superior performance of safety and
ride comfort.

In future, we will investigate the strategies based on intention prediction in more
complicated scenarios like at intersections. The interpretation of the complicated model
is also a research line. An insightful model such as timed automaton would act as a

5.5. CONCLUSIONS

5

115

0 2 4 6 8 10
-5

0

5

10

15

20

srd-MPC

tgt-MPC

Only-MPC

Real data

(a) Speed

0 2 4 6 8 10

-20

0

20

40

60

(b) Relative distance

0 2 4 6 8 10

-15

-10

-5

0

5

(c) Acceleration

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

C
u
t-

in
 P

ro
b
ab

il
it

y srd

tgt

(d) Cut-in Probability

Figure 5.7: An example of the car-following simulation in the US-101 dataset.

promising alternative solution.

6
LEARNING AUTOMATON FOR

DIAGNOSING A CONTROL SYSTEM

In the last chapter, we discuss the application of combining stochastic environment
learning and model predictive control to enhance the safety of autonomous driving cars.

In this chapter, we continue the discussion about the safety problem of intelligent con-
trol systems. The context is under the intrusion detection for safety-critical cyber-physical
systems. We propose a novel model called TABOR combining timed automata with a
Bayesian network. Timed automata are used for modeling the regularity of signals, while
the Bayesian network is used for modeling the causality between multiple sensors and ac-
tuators. TABOR is highly explainable and capable of localizing faulty components.

The material in this chapter has appeared in
Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. Tabor: Agraphical model-based approach for
anomaly detection in industrial control systems. In Proceedings of the 2018 on Asia Conference on Computer
and Communications Security, pages 525–536. ACM, 2018

117

6

118 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

6.1. INTRODUCTION
The protection of industrial control systems (ICS) (Stouffer et al., 2011; icsCERTAd-

visory) for public infrastructure such as power, water treatment, and transportation sys-
tems is of utmost importance due to the significant damage a potential attack may cause.
Often these systems are vulnerable to attacks due to the presence of cyber components
such as Supervisory Control and Data Acquisition (SCADA) workstations, Human Ma-
chine Interface (HMI), Programmable Logic Controllers (PLCs) and the underlying com-
munications network. Attacks are a result of exploitation of one or more vulnerabili-
ties (Wilhoit and Hara, 2015) in an ICS. Such vulnerabilities might be due to lack of ac-
cess control in the system (Adepu et al., 2017). Software vulnerabilities could be in the
PLCs, SCADA software systems, and weaknesses in the communication channels. The
compromise or destruction of an ICS would impact society in far- reaching ways. For
instance, a blackout (Lipovsky, 2016) caused by an attack targeted at a power system ICS
would cause monetary losses to all the people served and businesses. Moreover, such
an attack could cause cascading failures (Koç et al., 2014), harming large communities
such as entire cities. Attacks on ICS can have a significant impact depending on the type
of attack and its location. The increase in successful cyber attacks on ICS (Cobb, 2015;
Lipovsky, 2016; Weinberger, 2011), and many unsuccessful attempts (ics-cert), points to
the importance of research in the security of ICS with the goal of making it resilient to
cyber attacks. Attacks on ICS are increasing each year and perhaps leading towards cy-
ber warfare with critical infrastructure as key targets. In this chapter, we aim at detecting
intrusions by only observing the physical process under the control of an ICS.

Existing approaches dealing with cyber attack detection in cyber physical systems
(CPS)1 include signature-based detection (Oman and Phillips, 2007; Gao and Morris,
2014), verification (Zheng and Julien, 2015; Clarke and Zuliani, 2011), behavior speci-
fication (Adepu and Mathur, 2016b), and machine learning (Junejo and Goh, 2016; Goh
et al., 2017). Signature-based methods require an up-to-date signature dictionary of all
known attacks, which is becoming increasingly infeasible due to the growing number of
unknown threats. Verification methods basically use a formal model to test on a source
code level whether certain signals show large deviations from the values specified in the
system’s design. Although powerful, full verification based on the source code is often
infeasible due to the state-explosion problem, in which the resulting model becomes
too large to analyze. Behavior specification-based methods require a precise under-
standing of how the CPS behaves. Such knowledge can be expensive to obtain. Once
obtained, however, it can detect many attacks because it uses detailed models of the
underlying physical processes. This approach is sensitive to noise caused by dynamic
operating environments, aging or other evolvements of the facility in question, and in-
accuracies/incompleteness of source documents such as operation manuals (Junejo and
Goh, 2016). Most existing machine learning approaches focus on detecting anomalies in
feature space, i.e., looking at data points with large deviation from normal space. These
require little system knowledge and can detect a large range of attacks. A significant
shortcoming of the currently applied machine learning methods is that they provide lit-
tle insight into the system and no explanation of detection results.

1ICS,CPS used interchangeably in all over the chapter

6.1. INTRODUCTION

6

119

SWaT dataset Stage 1-6!"#$%&$'()*+,$

Water level sensors

differential press

sensors & actuators

Chemical sensors &

press sensors

Signal with regular dynamics

Signal with large noise and without obvious trends

Sensors

signal

Actuators

signal

Segments

-%,(+.+,$

/

.%$0%,"#"+(,

Timed

strings

!102(3+4&/&5)'#"+(,

'%*'%.%,"#"+(,
Timed

automata
6%#',+,$

Segments

73+$,0%,"

Concurrent

events

Bayesian
network 6%#',+,$

Fused
results

Segments

-%,(+.+,$

/

.%$0%,"#"+(,

!102(3+4&'%*'%.%,"#"+(,

/

5%8+#"+(,&49%4:+,$

Figure 6.1: Flowchart of TABOR. The sensors and actuators in SWaT are divided into sub-models due to dif-
ferent stages and functionalities. The behaviors of water level and differential press signal show more regular
patterns in the dataset, thus they are learned using timed automata. The smallest unit for anomaly detection is
one segment, which is considered as an event. The general system alarms an instruction when any sub-model
detects anomalies.

In this chapter, we attempt to respond to two key challenges in applying machine
learning techniques in the context of a CPS. First: Can we explain the outcome of at-
tack detection, i.e., why is this an anomaly? Second: Can we localize the anomaly, i.e.,
which sensors and actuators are potentially under attack? These two questions are of im-
portance for operators who need to diagnose the abnormal behavior and to undertake
one of possibly many follow-up safety actions. To deal with the aforementioned prob-
lems, an insightful graphical model (Timed Automata and Bayesian netwORk–TABOR) is
learned from the normal operational observation of an ICS. The method used in TABOR
is illustrated in Figure 6.1 using a flowchart.

Subprocesses of the entire ICS are modeled. Sets of sensors and actuators in the ICS
are partitioned into groups based on their functionalities in order to deal with high di-
mension and complexity of the problem. Signals from the sensors are symbolically rep-
resented and learned using timed automata (TA) to discover the underlying dynamical
fluctuating behavior of the water level and other sensors. The states in the TA are associ-
ated with other actuator’s states by dependency/causality inference using the Bayesian
network. Irregular patterns and dependencies that do not adhere to the learned model
from normal behavior, are considered anomalies. The contributions of this chapter are
listed as follows:

1. The proposed model provides a solution for the interpretation and localization of
anomalies. The detected anomalous patterns can be located precisely to process,
sensors, or actuators. The model is visualizable and interpretable, thus enabling a
better understanding of the system and verification of the model itself.

2. More attack scenarios are successfully detected compared to those detected using
methods based on deep neural network (DNN) and the support vector machine
(SVM) available in the literature.

3. To the best of our knowledge, this is the first work to combine timed automata
learning and Bayesian network inference for anomaly detection in a CPS. Tech-
niques used here are not limited to a water plant but also applicable to other CPSs

6

120 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

The remainder of this chapter is organized as follows. Related work is discussed in
Section 6.2. The dataset and the attack scenarios are briefly explained in Section 6.3.
The proposed method is discussed in Sections 6.4 and 6.5. Analysis of data from the
experiments is in Section 6.6. Concluding remarks and future work are in Section 6.7.

6.2. RELATED WORK
The study reported here focuses on cyber attacks on CPS that result in deliberate sen-

sor and actuator data manipulation. There exist several techniques for detecting process
anomalies in CPS. These anomalies might happen due to sensor and actuator manip-
ulation in communication channels. Researchers have presented challenges in safety
and security against cyber attacks that need to be addressed while designing a CPS. In
(Cardenas et al., 2008) the authors have presented evolution of Industrial Control Sys-
tems (ICS) to emerging CPS with the use of ICT technologies, and potential vulnerabili-
ties and design challenges. Lee (Lee, 2008) presents problems in computing and network
technologies for full-fledged design of emerging CPS.

CPAC (Etigowni et al., 2016) presents a stateful detection mechanism to detect at-
tacks against control systems. The Weaselboard (Mulder et al., 2013) uses a PLC back-
plane to get the sensor data and and actuator commands, and analyses them to prevent
zero day vulnerabilities. WeaselBoard (Mulder et al., 2013) has a dedicated device, and
detects changes in control settings, sensor values, configuration information, firmware,
logic, etc. In (Stankovic, 2016), it is shown how safety-critical systems are interconnected
and their complexity. Model-based attack detection schemes in water distribution sys-
tems is presented in (Ahmed et al., 2017). It uses a Matlab identification tool to get a
model from the data generated in a water distribution system. The data-driven model
is helpful in detecting process anomalies. Cardenas et al. (Urbina et al., 2016) have ex-
perimented with the use of CUSUM in detecting stealthy attacks. The research on attack
detection in ICS is increasing and monitoring the physics of the ICS to detect attacks is
also a growing research area. A water control system is modeled using an autoregressive
model and a detector (Hadžiosmanović et al., 2014) which track the process variables.
Liu et al. presents false data attacks in a power grid (Liu et al., 2009, 2011), state esti-
mation and intelligent attacks against a state estimation. Response and detection are
investigated on attacks against chemical plants (Cárdenas et al., 2011).

The RNN is one of the machine learning approaches used for anomaly detection in
the SWaT system (Goh et al., 2017). However, due to the expensive training time (one
week), they only consider the first out of the six stages of the system. In addition, only
10 attack scenarios are used for the evaluation. Recently, as a follow-up work, the DNN
and the one-class SVM models have been applied for anomaly detection in the SWaT
system (Inoue et al., 2017). All stages and attack scenarios are considered in this work.
Due to the comprehensiveness of this work and the similarity between RNN and DNN,
this work is used for comparison with the proposed model.

Formal methods are also powerful tools for specification mining in the CPS. They
usually cover signal level and code level verifications. The code level verification is not re-
lated to the research problem in this work. while the signal level verification aims at dis-
covering signal rules, e.g., Signal Temporal Logic (STL) formulas (Jones et al., 2014) from
the normal behaviors of the CPS. However, due to the high complexity of the approach,

6.3. INTRODUCTION TO SWAT AND THE DATASET

6

121

only some simulation cases are considered in their work, which is thus not suitable to
deal with the high-dimensional data in the SWaT system. Another main difference lies
in the fact that the proposed model is actually a passive grammar learning approach and
treats signals using a symbolic representation in the pre-processing step.

Both of the proposed grammar-based and rule-based methods are possible candi-
dates to enrich the invariants (Adepu and Mathur, 2016b) in the CPS. They both are es-
sentially “specification mining" techniques offering an interesting research line of com-
bining statistical machine learning and verification.

Timed automata have been used in the discrete event system domain for model-
based diagnosis (Tripakis, 2002; Bouyer et al., 2005). However, it is usually assumed that
the plant and the specification model are already obtained. Our work combines model
identification and anomaly detection in an integrated framework. In (Maier et al., 2011;
Vodenčarević et al., 2011; Niggemann et al., 2012), a (hybrid) timed automaton is learned
and used for anomaly detection in production systems. The authors use a bottom-up
strategy for timed automaton learning, which is one key difference with our approach.
Moreover, signals from sensor and actuator are mixed up and represented as events in
their approach, which leads to a states blow-up problem and difficulty in localizing the
abnormal sensor/actuator. We have shown the possibility of learning timed automata
for anomaly detection in a Digital Video Broadcasting System (Liu et al., 2017b). In the
proposed work, a Bayesian network is additionally learned to discover the dependencies
between the sensors and the actuators in SWaT.

6.3. INTRODUCTION TO SWAT AND THE DATASET
SWaT is a scaled-down water treatment plant with a small footprint that produces

5 gallons/minute of doubly filtered water. This testbed replicates large modern plants
for water treatment such as those found in cities. SWaT has six sub-processes, referred
to as stages, controlled by six PLCs, as shown in Figure 6.2 (Adepu and Mathur, 2016c).

The architecture of SWaT is well introduced in the literature (Adepu and Mathur,
2016c). Here we recapitulate the functions of the six sub-processes. Stage P1 controls the
inflow of raw water to be treated by opening or closing a motorized valve. The raw water
tank is treated in the chemical dosing station (stage P2), then flows to another UF (Ultra
Filtration) feed water tank in stage P3. A UF feed pump in P3 sends water via UF unit to
the RO (Reverse Osmosis) feed water tank in stage P4. Here an RO feed pump sends wa-
ter through an ultraviolet dechlorination unit controlled by a PLC in stage P4. This step
is necessary to remove any free chlorine from the water prior to passing it through the
reverse osmosis unit in stage P5. Sodium bi-sulphate (NaHSO3) can be added in stage
P4 to control the ORP (Oxidation Reduction Potential). In stage P5, the dechlorinated
water is passed through a 2-stage RO filtration unit. The filtered water from the RO unit
is stored in the permeate tank and the reject in the UF backwash tank. Stage P6 con-
trols the cleaning of the membranes in the UF unit by turning on or off the UF backwash
pump. The backwash cycle is initiated automatically once every 30 minutes and takes
less than a minute to complete. A backwash cycle is also initiated if the pressure drop ex-
ceeds 0.4 bar, which indicates that the membranes in the UF unit are clogged and need
to be cleaned. A differential pressure sensor at stage P3 is used by PLC-3 to obtain the
pressure drop across the UF unit.

6

122 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

Figure 6.2: SWaT system diagram. The functionality of each stage is as follows: P1: Raw water supply and
storage. P2: Pre-treatment via chemical dosing. P3: Ultrafiltration (UF) and backwash. P4: De-Chlorination
system. P5: Reverse osmosis (RO). P6: RO permeate transfer, UF backwash and cleaning.

6.3. INTRODUCTION TO SWAT AND THE DATASET

6

123

The SWaT dataset (J. et al., 2016) was collected over 11 days of continuous operation.
The first 7 days of data were collected under normal operation (without any attacks)
while the remaining 4 days of data were collected with 36 designed attack scenarios. All
network traffic, physical (sensor and actuator) data were collected. In this chapter, we
focus on the detection of the physical process; network traffic data are ignored. The du-
ration of physical recording is from 22/12/2015 4:00:00 PM to 2/1/2016 2:59:59 PM. The
dataset contains a total of 53 columns: 1 for timestamp, 1 for label (‘Attack’ and ‘Nor-
mal’), and the remaining 51 for numeric recordings of 51 sensors and actuators. Note
that physical data are equally sampled every second. The description of all 36 attack
scenarios can be found on the website.2

(a) (b)

Figure 6.3: An example of sensor attack on SWaT. Water from the RO tank is sent via an ultraviolet (UV) and
a cartridge filter to the next stage (P5). Flow meter FIT401 indicates the flow rate of water from the RO tank
to through the UV. An attack (the starting and ending time are indicated via timestamp of two red bars in
Figure 6.3b) manipulates the real value (around 2 m3/h) to 0.7 m3/h then 0 m3/h. Actuator UV and Pump 501
are turned off to lead the PLC into believing that there is no water transmitted from the RO feed tank. This
subsequently leads to overflow in the RO tank.

6.3.1. ATTACK SCENARIOS
Attacks in the attack dataset were generated based on scenarios reported ear-

lier (Adepu and Mathur, 2016b,c). The attack model is a generalized model (Adepu and
Mathur, 2016a) for cyber physical systems with an intent space of an attacker. The attack
duration depends on the kind of attack and attacker intent. The duration of each attack
varies from 101 seconds to 10 hours. Some attacks are consecutively within a 10-minute
gap, while others are performed by leaving time for the system to stabilize. 36 attacks
were launched during the data collection process. Based on attack points in each stage,
the attacks are divided into: 26 Single Stage Single Point (SSSP) attacks performed on ex-
actly one point in a CPS; 4 Single Stage Multi Point (SSMP) attacks on two or more points
but on only one stage; 2 Multi Stage Single Point (MSSP) attacks and 4 Multi Stage Multi
Point (MSMP) attacks performed on two or more stages.

All attacks are performed by injecting the process variable values into a Pro-
grammable Logic Controller (PLC) leading each PLC to believe that the sensor informa-

2https://itrust.sutd.edu.sg/dataset/

6

124 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

tion received is genuine and is not a spoofed value. Some attacks are stealthy (J. et al.,
2016) where an attacker changes the sensor values slowly with respect to the process
behaviour; other attacks are random in which sensor values shift randomly. A detailed
description of the threat model is in (Kang et al., 2016). Figure 6.3 shows an example of
an attack in the De-Chlorination stage (P4).

6.4. SIGNAL PROCESSING

This section discusses the pre-processing procedure dealing with the high-
dimension and noisy signal in the SWaT system. In Table 6.1, groups of sensors and
actuators are split locally in six stages of the system. For sensors labeled LITxxx that
measure water levels and those labeled DPIT that measure differential pressure, the se-
quential behavior, as well as their dependencies on the actuators in the same stage, are
learned because of the relatively obvious regular patterns. The signals from the sensors
AIT and PIT with large noise and subtle trends are checked only using a model-free ap-
proach, i.e., by examining their values and the thresholds. The data imply that the differ-
encing effect of DPIT makes the time series of the PIT signal stationary. Note that several
sensors and actuators in P6 are not used in the work reported here because they are not
completely used for data collection in SWaT yet. Only the first five stages are considered
in this work. In addition the dataset used does not contain any attacks on stage 6.

Table 6.1: Sub-model Split. FIT is simply treated as actuator with two states: closed and open.

Model
Number

Stage
Number

Sensor Actuator

1 1 LIT101 MV101, FIT101, P101, P102
2 2 AIT201 FIT201, MV201, P201
3 2 AIT202 FIT201, MV201, P201, P203, P205
4 2 AIT203 FIT201, MV201, P201, P203, P205
5 3 DPIT301 FIT301, MV301, MV302, MV303, MV304, P302
6 3 LIT301 FIT301, MV301, MV302, MV303, MV304, P302
7 4 AIT401 FIT401,P-402,P-403,UV-401
8 4 AIT402 FIT401,P-402,P-403,UV-401
9 4 LIT401 FIT401,P-402,P-403,UV-401
10 5 AIT501 FIT501,FIT502,FIT503,FIT504,P501
11 5 AIT502 FIT501,FIT502,FIT503,FIT504,P501
12 5 AIT503 FIT501,FIT502,FIT503,FIT504,P501
13 5 AIT504 FIT501,FIT502,FIT503,FIT504,P501
14 5 PIT501 FIT501,FIT502,FIT503,FIT504,P501
15 5 PIT502 FIT501,FIT502,FIT503,FIT504,P501
16 5 PIT503 FIT501,FIT502,FIT503,FIT504,P501

6.4. SIGNAL PROCESSING

6

125

6.4.1. DENOISING
The sensor signal has already been denoised by a hard filter in each stage. However,

spikes are still observed and thus pose a challenge to the following learning procedure.
The one-dimensional time series of a sensor signal is defined as:

x[n] = [x1, x2, · · · , xn] (6.1)

A naive averaging filter is applied here for denoising. The denoised time series is defined
as

x̄[w] = [x̄1, x̄2, · · · , x̄w] (6.2)

The i th element of x̄ is calculated by:

x̄i = w

n

n
w i∑

j= n
w (i−1)+1

x j (6.3)

For simplicity and clarity, it is assumed that n is divisible by w . If not, it can be simply
modified by appending an additional chunk to x̄ averaging the remainders in x. The
original and the denoised signal are shown in Figure 6.4.

0 1000 2000 3000 4000 5000 6000
Time /s

1

0

1

2

Nor
mal

ized
 Val

ue

Original signal

0 25 50 75 100 125 150 175 200
Time /n

ws

1

0

1

2

Nor
mal

ized
 Val

ue

Denoised signal n
w = 30

Figure 6.4: Denoising by an averaging processing.

6.4.2. SEGMENTATION
Representation is key to efficient and effective solutions to time series data mining.

As one of the most commonly used preprocessing methods, piecewise-linear represen-
tation (PLR) has been used by various researchers to support clustering, classification,
indexing, and association rule mining of time series data (Keogh et al., 2001). In this
chapter, a Sliding WIndow based on Differential sEgmentation (SWIDE) algorithm is
used for the piecewise-linear approximation of the sensor signal. Pseudo code of SWIDE
is shown in Algorithm 7. A segmented sensor signal is shown in Figure 6.5.

6.4.3. ALIGNMENT
A quantile clustering algorithm is used for the discretization and the symbolic rep-

resentation of the sensor signal, i.e., letting each bin have equal frequency. The inputs

6

126 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

0 2000 4000 6000 8000 10000
Time /s

500

550

600

650

700

750

800

LIT1
01 m

m

Figure 6.5: Segmentation: The original noisy signal is shown; the denoised signal is used as input to SWIDE for
obtaining more robust segmentation results.

Algorithm 7 SWIDE algorithm:

Require: Denoised time series data x̄, max_error ε
Ensure: PLR with K segments Seg

anchor = 1
di f f _seg _mean = 0
while not finished segmenting time series do

i = 2
while abs(x̄i − x̄i−1)−diff_seg_mean) ≤ ε do

i = i +1
di f f _seg _mean = upd ate_di f f _mean(x̄[anchor : anchor + (i −1)]) .

recalculate the mean differential value
end while
Seg = concat (Seg ,cr eate_seg ment (x̄[anchor : anchor + (i −1)]) . add this

segment
anchor = anchor + i

end while

to the clustering algorithm are the differential values of the segments di f f _seg _mean
obtained in the segmentation step. The subplot of LIT101 in Figure 6.6 shows the dis-
cretized signal represented as four letters. The number of clusters is set by looking at the
trends in the training data. The trends of slow up (SU), quick up (QU), staying constant
(SC), and quick down (QD) are obviously visible and interpreted. They are interpreted
by human beings once the number of clusters and the average value in each cluster are
determined. Such a representation in natural language is straightforward to boost the
interpretation of the model. Meanwhile the corresponding status of the actuators is ob-
tained using the timestamps from the sensor signal’s segments. Figure 6.6 shows the
alignment of the sensors and the actuators in P1. The durations of events are implicitly
represented along with events into timed strings, which are fed to the timed automata
learning algorithm. The concurrent events from the aligned sensor and actuator values
are input to Bayesian network learning.

6.5. TABOR LEARNING

6

127

SU
QU

SC QD
SU

QU

SC QD
SU

Figure 6.6: Alignment of the sensors and the actuators in P1 based on segmentation and clustering results.
The timed string of the sensor is: (SU,2520) (QU,540) (SC,540) (QD,660) (SU,2460) (QU,540) (SC,480) (QD,660)
(SU,2460). The possible misplacement of segments is due to the noise in the original signal.

6.5. TABOR LEARNING
Timed automaton, Bayesian network, and their learning algorithms are explained in

this section. The input to the timed automata learning procedure consists of sentences
of timed strings. One sentence consists of two full cycles to better capture any looping
behavior in the state machine. Two consecutive sentences have one cycle as overlapping.
The input to the Bayesian network learning procedure consists of just the data points of
concurrent events from the alignment of the sensors and actuators.

6.5.1. PROBABILISTIC DETERMINISTIC REAL TIMED AUTOMATON

Here we introduce the probabilistic deterministic finite automaton (PDFA), which is
more commonly used in practice, and then move to the probabilistic deterministic real
timed automaton (PDRTA), which is the model used in this work. The PDFA defined in
Definition 3 is a generic model for discrete events (similar to a Hidden Markov Model).

Definition 3. A PDFA is a 5-tuple 〈Q,Σ,δ,π, q0〉, where Q is a finite set of states, Σ is a
finite alphabet of observable symbols (events), δ : Q ×Σ→ Q is the transition function
from a state-symbol pair to the next state, π : Q ×Σ→ [0,1] is the probability of the emit-
ted symbol given a state, and q0 is the initial state.

Sequences of symbols translate to paths over states starting from the initial state q0.
The probability of such a sequence is obtained by multiplying all the state-symbol prob-
abilities along such a path. Time information is also relevant in many real-world appli-
cations of automata. The timing of actions, or lifetime, is important for characterizing
behaviors, and is also considered as a feature for anomaly analysis in this chapter. An al-
gorithm for efficient learning of timed automata is proposed in Ref. (Verwer et al., 2006,
2010a). This algorithm uses an explicit representation of such time constraints. Discrete
events are represented by timed strings (a1, t1)(a2, t2) · · · (an , tn), where ai is a discrete

6

128 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

event occurring with ti time delay since the (i −1)th event. In this chapter, ti is the du-
ration of each event ai . A PDRTA is formally defined as follows.

Definition 4. A PDRTA is a 4-tuple 〈A ,E ,T ,H 〉, where A = 〈Q,Σ,∆, q0〉 is a 4-tuple
defining the machine structure: Q is a finite set of states, Σ is a finite alphabet, ∆ is a
finite set of transitions, and q0 ∈ Q is the initial state. E and T are the event and time
probability distributions, respectively. E : Q ×Σ→ [0,1] returns the probability of gener-
ating/observing a given event in a given state. T : Q ×H → [0,1] returns the same but
for a given time range [m,m′] ∈H , where H is a finite set of non-overlapping intervals
in R+. A transition δ ∈ ∆ in a PDRTA is a tuple 〈q, q ′, a, [m,m′]〉, where q, q ′ ∈ Q are the
source and target states, a ∈Σ is a symbol and [m,m′] is a temporal guard.

In a PDFA and a PDRTA, the states are latent variables that cannot be directly ob-
served in strings, but have to be estimated by using a learning method. The state tran-
sition in a PDFA is triggered only by an event. However, in a PDRTA, it is triggered when
both an event and its timing are validated (inside a time range/guard). Therefore, a
PDRTA is essentially a timed variant of a PDFA.

6.5.2. LEARNING PDRTA
A state-of-the-art machine learning algorithm named RTI+ is used to learn human

behaviors from unlabeled data (Verwer, 2010a; Lin et al., 2018b). The traditional state
machine learning algorithm starts by building a large tree-shaped automaton called an
augmented prefix tree acceptor (APTA) from a sample of input strings. Every state of
this tree can be reached by exactly one untimed string and therefore encodes exactly the
input sample. For timed automaton learning, the initial values of the lower and upper
bounds of all time guards are set to be the minimum tmi n and maximum tmax time val-
ues from the input samples S. Figure 6.7 illustrates a timed APTA (TAPTA) from timed
strings (a modified example from Ref. (Verwer, 2010a)).

a
[1,2]

b
[1,2]

b
[1,2]

b
[1,2]

a
[1,2]

b
[1,2]

Figure 6.7: TAPTA constructed from the timed input sample: S =
(a,1), (a,1)(b,2)(b,1), (b,2)(b,1), (a,1)(b,1)(a,1), (b,2), (b,1)(b,1). It basically continually adds nodes for
new symbols in each node.

State merges and transition splits are two main operations of structure and tem-
poral guards learning in RTI+. A split of a transition (see an example in Fig-
ure 6.8) δ = 〈q, q ′, a, [m,m′]〉 at time t creates two new transitions 〈q, q1, a, [m, t]〉 and
〈q, q2, a, [t +1,m′]〉. The target states q1 and q2 are the roots of two new prefix trees that
are reconstructed based on the input sample.

The algorithm also greedily merges pairs of states (q, q ′) in this tree, forming an in-
creasingly smaller machine that generalizes over samples, as shown in Figure 6.9. Be-

6.5. TABOR LEARNING

6

129

b
[1,1]

b
[2,2]

b
[1,2]

b
[1,2]

b
[1,2]

b
[1,2]

Figure 6.8: A split of a part of the TAPTA from Figure 6.7.

cause PDRTAs are deterministic, for every event e ∈Σ the states that are reached from q
and q ′ have to be merged as well– also known as the determinization process.

a
[1,2]

b
[2,2]

b
[1,2]

b
[1,2]

a
[1,2]

b
[1,2]

a
[1,2]

b
[2,2]

b
[1,2]

a
[1,2]

b
[1,2]

b
[1,1]

b
[1,2]

b
[1,1]

Figure 6.9: A merge operation of TAPTA after the split from Figure 6.8

Note that these examples are only a possible split and merge illustrating how to con-
duct these operations. The algorithm uses a likelihood-ratio statistical test to decide
whether to split/merge or not (Verwer et al., 2010a). A hypothesis H is called nested
within another hypothesis H ′ if the possible distributions under H form a strict subset
of the possible distributions under H ′. By definition, H ′ has more unconstrained pa-
rameters (or degrees of freedom) than H (r ′ > r). In our case, H is the model after merge
(resp. before a split) and H ′ is the model before a merge (resp. after a split). Given two
hypotheses H and H ′ such that H is nested in H ′, and a data set S, the likelihood ratio
test statistic is computed by:

LR = LK (S, H)

LK (S, H ′)
(6.4)

where the likelihood LK estimates how likely it is that S is generated by the correspond-
ing hypothesis. The random variable y = −2ln(LR) is asymptotically χ2(r ′ − r) dis-
tributed (Wilks, 1938). The p-value is the probability that a random value in χ2(r ′ − r)
would be greater than or equal to the observed value y by chance. If it is smaller than
0.05, H and H ′ are significantly different with 95% confidence so that a split operation
is accepted. In addition, a merge is accepted whenever the model after the merge is not
significantly different from the model before the merge, since they are supposed to have
similar or compatible stochastic and timed behaviors. Note that the current version of
RTI+ tries to model time and events distributions independently. An overview of RTI+ is
in Algorithm 8. The model learned of the LIT101 sensor signal is shown in Figure 6.10.
Any testing sequence that is not fired by the learned TA is alarmed as an anomaly, i.e.,
the abnormal event lasts until the end of the sequence. There are two typical types of
alarms in TA: “event error” (symbol that can not be fired for transition in the given state)
and “timing error” (symbol’s timing is outside the valid time guard).

6

130 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

Algorithm 8 Data identification with RTI+:

Require: A (multi-)set of timed strings S+
Ensure: A small PDRTA A for S+

Construct a timed prefix A tree from S+, let Q ′ =;
for all all transitions δ= 〈q, q ′, a, [m,m′]〉 from A , do

Evaluate all possible merges of q ′ with states from Q ′
Evaluate all possible splits of δ
if the lowest split p-value< 0.05 then

perform this split
else if the highest merge p-value> 0.05 then

perform this merge
else

add q to Q ′
end if

end for

6.5.3. LEARNING BAYESIAN NETWORK

A Bayesian network (BN) is a probabilistic graphical model that represents a set of
random variables and their conditional dependencies via a directed acyclic graph (DAG).
In this chapter, the BN is learned to model the dependencies among random variables
from the sensors and the actuators in the local process; an example is illustrated in Fig-
ure 6.11, which is the BN learned from P1. A BN consists of the graph structure (rep-
resenting the dependencies) and the parameters. The parameters are represented by
conditional probability distribution, summarizing the probability distribution of a node
given its parents. In this chapter, variables from sensor and actuator are discretized,
thus the probability distribution of each node is actually a conditional probability distri-
bution (CPD) table, also see the CPD in Figure 6.11.

Bayesian network learning includes structure learning and parameter learning. In
this chapter, a greedy search algorithm K2 (Cooper and Herskovits, 1992) is used for the
structure learning. The general idea is as follows. Initially each node has no parents. It
then adds incrementally that parent whose addition results in the largest increase in the
score of the resulting structure. When the addition of no single parent can increase the
score, it stops adding parents to the node. The pseudo code is shown in Algorithm 9. The
random variable of the sensor is fixed as the last entry by assuming it is not the parent
node of any other variables, while the order of parents is random. Parameter learning is
relatively simple: when the structure is learned, a maximum likelihood estimation, i.e.,
counting the probability of each node from the data, is used to obtain the CPD tables.
The evaluation of testing using BN is just to check the probability in the CPD table. An
alarm is raised if the corresponding entry in the table is equal to zero, i.e., such a concur-
rent event does not exist in the training data.

6.5. TABOR LEARNING

6

131

S0

S

[0, 600] 3, 0.06, #5

S1

[2461, 2640] 3, 0.51, #45 S3

[601, 2460] 3, 0.44, #39

[0, 2640] 3, 0.05, #4

S2

[0, 2640] 4, 0.95, #82

[0, 2640] 3, 0.07, #5

S5

[0, 2640] 4, 0.93, #66

S9

[0, 2640] 1, 0.12, #10

S4

[0, 2640] 2, 0.88, #72

S10

[0, 2640] 4, 1.0, #10 [0, 2640] 2, 0.07, #5

S7

[0, 2640] 1, 0.93, #67

S6

[0, 2640] 2, 1.0, #66

[0, 2640] 3, 1.0, #77 [0, 2640] 2, 0.03, #2S8

[0, 2640] 1, 0.97, #64

[0, 2640] 2, 0.08, #5

[0, 2640] 3, 0.92, #59

[0, 2640] 1, 1.0, #10

Figure 6.10: Timed automaton learned from LIT101. 1, 2, 3, 4 are symbols for QD, SC, SU, QU. S1 is the sink
state, which is introduced due to the fact that some sequences in the training data have low frequencies of
occurrence. The sink states are left without split or merge with other states due to lack of evidence for statistical
testing.

0 0.0444 0.95562 2 0

P!"#$%

0

0

 0.9479

 0.9479

P!"#&% P!"#'%

11 1

2 1

P!"#(%

0

 0.0521

MV101 P01

01 2

 0.05210

0

0

0.4890 0.5110

P!"#'%P(v=1)

P!"#'%

0

102

1 1

P!"#&%MV101

0.4890 0.5110

P!"#'%P(v=1)

P(v=1)

1

Figure 6.11: Bayesian network learned from P1. The unit of the LIT101 node in the table from the first column
and the first row indicates that both MV101 and P101 are closed, so the probability that water level quickly
decreases (QD) is 0. Note that the actuators’ status, open and closed, are denoted as 2 and 1, respectively.

6

132 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

Algorithm 9 K2

Require: A set of n nodes, and ordering on the nodes, an upper bound u on the number
of parents a node may have, and a dataset D containing m cases.

Ensure: Parent of each node
for all i := 1 to n do, do

πi :=;
Pol d := f (i ,πi);
OKToProceed := true;
while OKToProceed and |πi | < u do

let z be the node in Pred(xi)−πi that maximized f (i ,πi ∪ {z})
Pnew := f (i ,πi ∪ {z})
if Pnew > Pol d then

Pol d := Pnew

πi :=πi ∪ {z}
else

OKToProceed := false
end if

end while
write parents node in each node

end for

6.6. EXPERIMENTS
This section presents the evaluation of TABOR and discussion based on the learning

experience.

6.6.1. EVALUATION
The traditional way of evaluating anomaly detection is essentially a point-based ap-

proach. It considers multivariate time series data at each time point as an isolated in-
stance. However, most practical attacks in real life happen in a continuous period of
time, such as the attack scenarios in the SWaT dataset that last continuously from min-
utes to hours. For the method we need to determine how many attack scenarios can
be detected and the coverage in each detected scenario. The traditional scoring meth-
ods, such as precision and recall, do not suffice because they only look at data points
instead of windows (Lavin and Ahmad, 2015). In this chapter, a novel way of evaluating
anomaly detection in a CPS system is proposed by borrowing the concept of time series
discord from the data mining community. The mining task of time series discord is actu-
ally finding abnormal subsequences in time series data (Keogh et al., 2007; Sivaraks and
Ratanamahatana, 2015), which is similar to the scenario-based or window-based detec-
tion goal in this chapter. As illustrated in Figure 6.12, a false positive is a detected subse-
quence without an overlap between any ground-truth scenario. For the case of true pos-
itive, the coverage percentage (CP, proportion of overlap length and total ground-truth
scenarios length) evaluates the quality of detection coverage, while the penalty score (PS,
with time as unit) evaluates the length of detection outside the overlap. A good detection
result should have a high coverage percentage (close to 1) and a small number of penalty

6.6. EXPERIMENTS

6

133

scores.

Ground truth

False Positive
Detected

start end

start end

Time

overlap
True Positive

penalty score

coverage percentage

Figure 6.12: Defining true positive and false positive.

All types of alarms are listed as follows:

1. Timed automaton

(a) Event error: an invalid event in a given state;

(b) Timing error: an event duration outside valid timing guard;

(c) State error: reaching a sink state, where the computation halts.

2. Bayesian network: a zero probability entry in the CPD

3. Out of alphabet (OOA): the sensor value exceeds the threshold (i.e., mi n − cσ and
mi n − cσ), and the actuator value did not occur in the training data.

In Section 6.4 it is mentioned that the sensors in SWaT are grouped based on their dif-
ferent properties. For the LIT and DPIT sensors, the signal shows regular patterns. The
TA and the BN models are learned as shown in models 1, 5, 6, and 9 (see Table 6.1). One
key question is how to fuse the results from the TA and the BN model. Considering the
high cost of false positive in a large water plant, a conservative and strategy is used to
fuse the results, i.e., only adopting alarms raised from both the TA and the BN model.
However, the OOA errors are directly adopted into the final result because they tend to
show obviously abnormal patterns with a high priority. Table 6.2 shows the results of us-
ing the fused results and the single result from each model. It is imaginable that using an
or strategy will get more true positives but much more false positives. Table 6.3 presents
detailed results from each model. Figure 6.13 shows an example of the result fused from
different types of alarms.

For the chemical sensors AIT and pressure sensor PIT, only the deviation of the dif-
ferential is checked, i.e., an OOA type. Because the resulting timed strings do not show
stationary behaviors, a single symbol checking is thus deployed for anomaly detection.
Examples from AIT202 and PIT501 are shown in Figure 6.14 and Figure 6.15.

To make a comprehensive comparison with existing literature, the point-based re-
call evaluation in each attack scenario is also conducted in this chapter, as shown in Ta-
ble 6.4. Our proposed model successfully detects 24 out of 36 scenarios, while the DNN

6

134 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

Table 6.2: Comparison only using TA or BN

Model number Method PF TP CP (%) PS (s)
1 TABOR 0 9 7.85 1889
1 TA 7 26 87.48 189516
1 BN 0 5 1.95 629
1 OOA 0 5 5.90 1260

5 TABOR 0 3 63.36 70
5 TA 16 13 73.95 47645
5 BN 0 4 64.03 70
5 OOA 0 0 0 0

6 TABOR 0 5 65.12 145
6 TA 3 24 81.32 188996
6 BN 0 3 63.32 33
6 OOA 0 2 1.80 112

9 TABOR 0 4 61.67 233
9 TA 0 3 60.23 856
9 BN 0 2 59.40 73
9 OOA 0 4 61.67 233

!"#$%&'()

*'&%+#$%&'() *'&%+#$%&'()

,-#$%&'()

.')#/0#1(2314%)

Figure 6.13: An example of fused results. The timed string of this example is (3,420)(2,960)(1,720)(3,1260),
which is not fired by the TA as a whole sequence. The probability of the aligned event P (LI T = 3)|(MV =
1,P101 = 1) = 0. The actuator P102 is never seen to be open in the training data.

6.6. EXPERIMENTS

6

135

0 2000 4000 6000 8000 10000

6.0

6.5

7.0

7.5

8.0

8.5

Orignal
Ground Truth Scenario 4, 5
Detected

Figure 6.14: An example of the detection result from the chemical measurement sensor AIT202.

0 2500 5000 7500 10000 12500 15000 17500 20000
160

180

200

220

240

Orignal
Ground Truth Scenario 8, 9
Detected

Figure 6.15: An example of detection results from the press measurement sensor PIT501.

Table 6.3: Results of each model

Model
Num-
ber

FP TP Detected Scenarios CP (%) PS (s)

1 0 9 1, 2, 16, 21, 25, 28, 29, 30, 31 7.85 1889
2 0 0 0 0 0
3 0 2 4, 5 0.60 637
4 0 0 0 0 0
5 0 3 7, 22, 23 63.50 117
6 0 5 7, 13, 22, 23, 30 65.12 145
7 0 0 0 0 0
8 0 7 8, 9, 17, 23, 33, 34, 35 11.99 2363
9 0 4 9, 17, 23, 35 61.67 233
10 0 6 8, 9, 17, 23, 34, 35 3.22 1867
11 0 6 8, 9, 17, 23, 33, 35 5.50 1360
12 0 1 23 0.38 513
13 0 9 8, 9, 14, 15, 17, 23, 32, 34, 35 4.17 1354
14 0 6 8, 9, 17, 23, 32, 35 3.11 965
15 0 7 8, 9, 17, 23, 32, 34, 35 2.36 1127
16 0 7 8, 9, 17, 23, 32, 34, 35 4.50 877

6

136 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

and the SVM detect 13 and 20, respectively. The further overall comparison is shown in
Table 6.5. The proposed model has slightly more false positives but a much better re-
call, thus the overall performance in F-measure is superior over the DNN and the SVM
models with 2-3% relative improvement. Moreover, the runtime comparison in Table 6.6
shows that the computation is highly efficient in the proposed model. The key advan-
tage is that the original multivariate signal is partitioned into groups and segmented to
dramatically reduce the dimension and the size of training data. The learning of RTI+
and K2 are both polynomial time. The computation complexity of testing each event is
just O(1) in both the TA and BN model.

Table 6.4: Points evaluation in each scenario. The second column of scenario number is consistent with the
original attacks description. However, some of them do not have any actual impact in SWaT. Basically only 36
scenarios are counted in this chapter and the literature.

NO. NO. Scenario Description of attack DNN SVM TABOR

1 1 Open MV-101 0 0 0.049
2 2 Turn on P-102 0 0 0.930
3 3 Increase LIT-101 by 1mm every second 0 0 0
4 4 Open MV-504 0 0.035 0.328
5 6 Set value of AIT-202 as 6 0.717 0.720 0.995
6 7 Water level LIT-301 increased above HH 0 0.888 0
7 8 Set value of DPIT as >40kpa 0.927 0.919 0.612
8 10 Set value of FIT-401 as <0.7 1 0.433 0.994
9 11 Set value of FIT-401 as 0 0.978 1 0.998

10 13 Close MV-304 0 0 0
11 14 Do not let MV-303 open 0 0 0
12 16 Decrease water level LIT-301 by 1mm each second 0 0 0
13 17 Do not let MV-303 open 0 0 0.597
14 19 Set value of AIT-504 to 16 uS/cm 0.123 0.13 0.004
15 20 Set value of AIT-504 to 255 uS/cm 0.845 0.848 0.997
16 21 Keep MV-101 on continuously; Value of LIT-101 set as 700mm 0 0.0167 0.083
17 22 Stop UV-401; Value of AIT502 set as 150; Force P-501 to remain on 0.998 1 0.998
18 23 Value of DPIT-301 set to >0.4 bar; Keep MV-302 open; Keep P-602 closed 0.867 0.875 0
19 24 Turn off P-203 and P-205 0 0 0
20 25 Set value of LIT-401 as 1000; P402 is kept on 0 0.009 0
21 26 P-101 is turned on continuously; Set value of LIT-301 as 801mm 0 0 0.999
22 27 Keep P-302 on continuously; Value of LIT401 set as 600mm till 1:26:01 0 0 0.196
23 28 Close P-302 0.936 0.936 1.000
24 29 Turn on P-201; Turn on P-203; Turn on P-205 0 0 0

25 30
Turn P-101 on continuously; Turn MV-101 on continuously;

Set value of LIT-101 as 700mm; P-102 started itself because LIT301 level became low
0 0.003 0.999

26 31 Set LIT-401 to less than L 0 0 0
27 32 Set LIT-301 to above HH 0 0.905 0
28 33 Set LIT-101 to above H 0 0 0.890
29 34 Turn P-101 off 0 0 0.990
30 35 Turn P-101 off; Keep P-102 off 0 0 0.258
31 36 Set LIT-101 to less than LL 0 0.119 0.889
32 37 Close P-501; Set value of FIT-502 to 1.29 at 11:18:36 1 1 0.998
33 38 Set value of AIT402 as 260; Set value of AIT502 to 260 0.923 0.927 0.996
34 39 Set value of FIT-401 as 0.5; Set value of AIT-502 as 140 mV 0.940 0 0.369
35 40 Set value of FIT-401 as 0 0.933 0.927 0.997
36 41 Decrease LIT-301 value by 0.5mm per second 0 0.357 0

6.6.2. DISCUSSION

Precise segmentation on the basis of sensor data is difficult due to the noise. Also,
the classification of segments with close differential values, e.g., SU and SC in the signals
from LIT101, poses a challenge to robust detection. Another more important question

6.7. CONCLUSION AND FUTURE WORK

6

137

Table 6.5: Points based evaluation

Method Precision Recall F measure

DNN 0.98295 0.67847 0.80281
SVM 0.92500 0.69901 0.79628

TABOR 0.86171 0.78803 0.82322

Table 6.6: Runtime comparison

Model Number Training Testing

DNN 2 weeks 8 hours
SVM 30 min 10 min

TABOR 214 s 33 s

is the ending time of an attack scenario. The researchers who designed the attacks in
SWaT claim that the time interval between two consecutive attacks is large enough for
the stabilization of the SWaT system. However, just for the LIT sensors, one cycle of water
fluctuation takes more than one hour (Figure 6.6), while the shortest time difference of
two consecutive attacks in the SWaT system is less than 10 minutes. An example false
positive result in Model 6 detected by TA is shown in Figure 6.16. An obvious abnormal
pattern is seen in the sensor signal. However, no attack actually took place. The irregular
signal is caused by the stabilization following the attack scenarios 8 and 9. A better, and
more fair, way of evaluation is an open question in the anomaly detection of CPS, e.g.,
the ending time of an attack should be on the basis of no more impact on the system
rather than the end point of an attack behavior. The main reason for a false negative is
the conservative result fusion strategy from the TA and the BN model. How to combine
the results of different models and make a tradeoff between sensitivity and robustness
are challenging problems. Dealing with concurrent attacks on a same node of TABOR is
also a challenging problem. Our system is only able to separate them if different types of
alarms are raised.

6.7. CONCLUSION AND FUTURE WORK
In this chapter, a novel graphical model-based approach is proposed to learn the lo-

cal behavior of a complex water treatment plant. The model profiles the normal behavior
of the SWaT system, which is further used for anomaly detection. This technique can be
considered as a combination of machine learning and specification-based detection. On
one hand, it provides an inexpensive and automated learning approach for specification
mining from an industrial control system without the need of expert knowledge. On the
other hand, the resulting specification-like model is highly interpretable and useful for
the validation and the localization of abnormal sensors or actuators in the system.

We have already started working on a state-based version of TABOR, i.e., modeling

6

138 6. LEARNING AUTOMATON FOR DIAGNOSING A CONTROL SYSTEM

0 2000 4000 6000 8000 10000 12000
02

FI
T3

01

0 2000 4000 6000 8000 10000 12000
02

M
V3

01

0 2000 4000 6000 8000 10000 12000
02

M
V3

02

0 2000 4000 6000 8000 10000 12000
02

M
V3

03

0 2000 4000 6000 8000 10000 12000
02

M
V3

04

0 2000 4000 6000 8000 10000 12000
02P3

02

0 2000 4000 6000 8000 10000 12000
Time /s

8001000

LI
T3

01
 m

m Orignal data Detected

Figure 6.16: An example of detection results from PIT501. The false alarm is caused by the stabilization proce-
dure after an attack.

sequential control behavior of actuators in SWaT instead of relying on the segmentation
and alignment of sensor signal. This extension also aims at discovering complex concur-
rent events of CPS in state space without independent event assumption in the Bayesian
network. In the near future, a construction-and-correct idea can be implemented in the
learning procedure, e.g., any false positive and false negative examples are considered
as counter examples to improve the learning result. The behavior modeling of network
traffic and network attack detection are also important in the future work, because cur-
rently in the SWaT dataset, the attacker is assumed to be sitting inside the network. Last
but not least, the learned model can actually be used as a simulation controller, which
can be used for attack-response platforms in further research.

7
VERIFICATION OF

LEARNING-BASED HYBRID

CONTROL SYSTEM

The last chapter discusses the safety protection of cyber-physical systems via intrusion
detection techniques. This chapter aims to formally verify the safety of intelligent control
systems.

We use a hybrid model checker to explore the reachable states of a human-like cruise
controller based on the MOHA model. We conclude that the pure data-driven model
learned from human driving data is not guaranteed to be safe. We formally prove that
the collision-avoidance can be guaranteed by adding a headway-conditioned auto-brake
state.

The material in this chapter is from a draft under submission: Qin Lin and Sicco Verwer. Learning a Provably
Safe Adaptive Cruise Controller from Human Driving Data (submitted)

139

7

140 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

7.1. INTRODUCTION
Adaptive cruise control (ACC) systems assist drivers to maintain safety spacing from

leading vehicles and ease the workload of frequent acceleration and deceleration opera-
tions. A key drawback of existing ACCs is the inconsistency between systems and human
driving habits, since the control algorithm of an ACC is based on mathematical optimiza-
tion of safety and comfort rather than mimicking actual driving behaviors (Hiraoka et al.,
2005).

An alternative approach is imitation learning, which mimics human control strate-
gies in order to obtain behavior that is similar to the driving trajectories of human
drivers. As a representative work, convolutional neural networks (CNNs) have been suc-
cessfully applied to map raw pixels from a single front-facing camera directly to steering
commands (Bojarski et al., 2016).

For such a safety-critical system, however, it is important to know whether an imita-
tion learning cruise controller is safe to use, i.e., whether it can cause collisions or not.
In (Tian et al., 2018) such a study is performed. They use simulations to test the safety
properties of controllers based on deep neural networks. We argue, however, that since
unexpected situations will at some point occur in practice, testing these properties in
simulations is insufficient.

In Chapter 3, an imitation-learning-based model named multi-mode hybrid
automaton (MOHA) has been proposed to mimic car-following behaviors of human
drivers (Lin et al., 2018b). This model includes both discrete observations and contin-
uous output actions. The observations are obtained by discretizing signal values such as
speed and distance to the leading vehicle. The output controls the acceleration pedal of
the following vehicle.

In this chapter, we demonstrate that the logical nature of the MOHA controller al-
lows it to be formally verified using the SpaceEx hybrid system model checker (Frehse
et al., 2011). This was recently achieved for a simplified traditional (not learned) ACC in
(Mishra and Roy, 2016). To the best of our knowledge, we provide the first demonstration
of formal verification for automatically learned ACCs.

The main idea of our work is to use SpaceEx to verify whether collisions are avoided
by MOHA when given a non-deterministic leading vehicle. The leading vehicle is only
constrained by vehicle dynamics, e.g., it can produce any trajectory falling within phys-
ically possible speed and acceleration ranges. To achieve this, we develop a transforma-
tion MO2SX from the discrete observations that trigger state transitions in the MOHA
model to a set of linear inequalities that can be used by SpaceEx. In addition, we enhance
the MOHA model to include actions for any possible future action, including those that
never occurred in the training data but might be tested by the model checker.

We perform experiments in a variety of traffic for both highway and urban driving
scenarios. The experiments demonstrate that purely learning a MOHA controller from
data is unsafe, e.g., that it can collide in extreme cases. We then add a safety state to the
MOHA model (a common addition to ACC systems). Essentially, the controller is forced
to push the brake if the time needed to reach the current position of the leading vehicle
drops below, for instance, the two seconds suggested in the highway driving scenarios.
We show that:

• The MOHA controller with safety state is guaranteed to be collision-free.

7.2. RELATED WORK

7

141

• The MOHA is more safe, more accurate, and more human-like than existing con-
trollers and neural networks.

These results demonstrate clear advantages of using explainable models based on logic
(such as the MOHA) over black-box models (such as neural nets) for imitation learning.
Most importantly, to the best of our knowledge, we provide the first formally verified
ACC controller learned from data. Instead of trusting an AI-based system based on sim-
ulations, our work demonstrates the possibility of verifying with certainty whether an
AI-based system is safe. We believe this constitutes an important step in the direction of
trustworthy AI.

7.2. RELATED WORK
Verifying the safety of hybrid models is known to be undecidable except for severely

restricted models such as timed automata and initialized rectangular automata (Alur
et al., 1995). There exist three categories of techniques/tools that address relaxed ver-
sions of this problem.

The first category is deductive verification, which combines user interaction with
an automated theorem prover in a proof search utilizing differential logics (Loos et al.,
2013). KeYmaera is the dominating tool in this category, which has been used for safety
verification of vehicle-to-vehicle (V2V) communication in ACCs (Loos et al., 2013).

The second category is symbolic reachability analysis, which includes tools such as
HyTech (Henzinger et al., 1997a) for linear hybrid automata, d/dt (Asarin et al., 2002),
PHAVER (Frehse, 2005), SpaceEx (Frehse et al., 2011) for piecewise linear affine dynam-
ics, and Flow* (Chen et al., 2013) for non-linear dynamics. In these techniques, sym-
bolic reachability algorithms iteratively explore reachable states starting from the initial
states. There is no termination guarantee because the algorithm may reach more and
more states without being able to conclude that the system is safe. In practice, setting a
maximum number of states, a fix-point reaching criterion, or a maximum running time
are used to force termination. In related work, a highly simplified ACC with constant
acceleration and deceleration in an open-loop control system is verified using symbolic
reachability analysis in SpaceEx (Mishra and Roy, 2016).

The third category is called abstraction. The main idea is obtaining an abstraction of
coarse dynamics over the original model. Proving the safety of the abstract model then
is a sufficient condition for proving the corresponding properties in the original model
(Henzinger et al., 1998). The drawback is that it can be difficult to avoid an oversimplifi-
cation.

In this work, we use symbolic reachability analysis using SpaceEx, similar to the work
of (Mishra and Roy, 2016) but using a complex model that has been learned from data.

Related is also recent works on generation of test cases for neural networks. Deep
neural networks are a popular method for learning dynamics such as those in ACCs.
DeepXplore (Pei et al., 2017) and DeepTest (Tian et al., 2018) propose white-box and
gray-box methods for automated generation of test cases and discovering the corner
cases from a deep neural network (DNN). However, they focus more on software logic
testing using a coverage criterion. This type of testing is incomplete and does not per-
form a full reachability analysis.

7

142 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

7.3. MOHA: AN HYBRID AUTOMATON MODEL
Definition 7.1. Hybrid automaton: A hybrid automaton H is a tuple
< Loc,Edge,Σ,X,Init,Inv,Flow,Jump > where:

• Loc is a finite set {l1, l2, · · · , lm} of (control) locations that represent control modes of
the hybrid system, which are essentially discrete states in a finite state automaton.

• Σ is a finite set of events.

• Edge ⊆ Loc×Σ×Loc is a finite set of labeled edges representing discrete changes of
control modes in the hybrid system. Those changes are labeled by events from Σ.

• X is a finite set {x1, x2, · · · , xn} of n-dimension real-valued variables. For example, in
a standard ACC system, the variables at least include the position of the leading
and following vehicles xl and x f , and their speeds vl and v f . Ẋ is for the first-
order differential of variables {ẋ1, ẋ2, · · · , ẋm} inside a location. The primed vari-
ables {x ′

1, x ′
2, · · · , x ′

n} are used to represent updates of variables from one control
mode to another, called an assignment.

• Init(l) is a predicate for the valuation of free variables from X when the hybrid system
starts from location l .

• Inv(l) is a predicate whose free variables are from X. It constraints the possible valu-
ations for those variables when the control of the hybrid system is at location l .
A commonly used convex predicate is a finite conjunction of linear inequalities,
e.g. x1 ≥ 3∧ 3x2 ≤ x3 + 5/2, which represents a polytope consisting of multiple
half-spaces.

• Flow(l) is a predicate whose free variables are from X ∪ Ẋ . It states the continuous
system evolution for when the control mode is in location l using a differential
equation (usually ordinary differential equation, ODE).

• Jump is a function that assigns to each labeled edge a predicate whose free variables
are from X ∪ Ẋ . Jump(e) states when the discrete change modeled by the event e
is possible and what the variable updates are when the hybrid system makes this
discrete change.

Chapter 3 introduces MOHA, a novel model for learning car-following behaviors us-
ing a hybrid automaton (Lin et al., 2018b). The main idea of learning MOHA for contin-
uous time series data is illustrated in the flowchart shown in Figure 7.1.

First, continuous variables from time series are discretized into sequences of sym-
bolic events. Each sequence is a complete car-following trajectory from a pair consist-
ing of a leading vehicle and a following vehicle. The time gap between two consecutive
events is encoded in order to represent time-varying behaviors, e.g., moderate/harsh
braking. In this way, we obtain timed strings {(e i

1, t i
1), · · · (e i

j , t i
j), · · · , (e i

n , t i
n)} from the i -th

trajectory, where t i
j is the time difference between discrete events e i

j and e i
j−1.

Second, as a model for the discrete dynamics, a timed automaton is learned using the
RTI+ real-time identification algorithm (Verwer, 2010b). The original continuous values

7.4. HYBRID MODEL CHECKER

7

143

used to obtain the corresponding discretized values in the timed string are stored in ev-
ery state.

Third, states are partitioned based on a state subsequence clustering, i.e., several
states in a subsequence cluster are grouped into one block in the automaton. These
blocks form the different control modes of the ACC system.

Last, numeric data reached in distinct modes are used to identify the parameters of
differential equations in these modes using differential evolution algorithms (DEA).

The environmental input in the MOHA is 3-dimensional, i.e., the relative speed, the
relative distance, and the following vehicle’s speed. Changes to these variables may trig-
ger discrete state and control mode transitions. After entering a new mode, the con-
troller uses the corresponding differential equation to generate continuous accelera-
tion/deceleration output.

These equations are linear Helly models (Helly, 1959a). The acceleration in Helly’s
model is a linear function combining the relative speed (∆v = vl − v f) and the relative
distance between the headway (∆x = xl −x f) and the desired headway, which is defined
by :

v̇ f (t) =C1 ·∆v(t)+C2 · (∆x(t)−D(t)) (7.1)

and
D(t) =α+β · v f (t) (7.2)

where C1, C2, α, β, are constant parameters that need to be calibrated. The desired
headway is a function of the speed of the following vehicle and a safety distance, where
α, β are the corresponding weightings for those variables. Note that, compared with the
original Helly model, we neglect time delays because the SpaceEx model checker does
not support tracking long historical variables i.e., all computations are on-the-fly.

7.4. HYBRID MODEL CHECKER
Hybrid model verification based on reachability computation is similar in spirit to

numerical simulation, which produces all possible trajectories one by one to check
whether the system behaves properly. The obvious drawback is the fact that all possible
trajectories are non-enumerable, though it has been a popular “verification” approach in
several ACC design works (Eyisi et al., 2013). The reachability algorithm explores the state
space in a breadth-first manner, that is, each time step all the states reachable by all pos-
sible one-step inputs from states reachable in the previous step are found. Though the
computation is costly, it provides more confidence in the correctness of the system than
a small number of individual simulated trajectories. In the hybrid verification problem,
an over-approximation is used for the set of reachable states, and a conventional sym-
bolic state reachability algorithm is used. By checking whether forbidden states such as
collisions are reachable, the model can be guaranteed to be safe.

7.4.1. SPACEEX
SpaceEx is a powerful and popular tool for safety verification of hybrid systems. It

supports hybrid systems with linear piecewise affine and non-deterministic dynamics,
i.e., Ẋ = AX+b, where b is non-deterministic turbulence. SpaceEx consists of three main

7

144 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

Continuous Signal from Human driving data

Discretization &

Timed Representation Sequential data

Tree shape data construction

(using discrete timed events)

Prefix tree acceptor (PTA)

State merge

State clustering

Short-distance following

!""#$%&'()*

+#,,-.#(/()*

Figure 7.1: Flowchart illustrating MOHA learning. The discretization on the one-dimension signal is just for
a simple demonstration. The original signal is multidimensional. Also, MOHA shows more than 3 modes in
car-following behaviors (Lin et al., 2018b).

components: Model editor is a graphical editor for creating models of complex hybrid
systems. Analysis core is a command line program that takes a model file in .xml format,
and a configuration file .cfg that specifies the initial states. Web interface is a graphical
user interface with which one can specify initial states and other analysis parameters,
run the analysis core, and visualize the output.

7.4.2. TRANSLATOR

Though SpaceEx is becoming a user-friendly tool, the modeling is still manual. If the
model under verification is complex, an automated modelling tool is needed to bypass
the tedious modeling process. In our case, we intend to verify a MOHA model, con-
sisting of a timed automaton model, parameters of continuous models in modes, and a
discretization of continuous signals into discrete symbols. MO2SX, the translator devel-
oped in this chapter, fills the gap between MOHA and SpaceEX. Users only need to work
on learning and tuning parameters of MOHA, and the output model is automatically
translated to SpaceEX for safety verification. The input and output files of MO2SX are
illustrated in Figure 7.2. MO2SX automatically obtains a SpaceEx model file with 1500
lines of code. which is burdensome for a manual modeling.

Guard linearization and model completing are two critical problems we need to ad-
dress in the translating procedure, which are elaborated as follows.

GUARD LINEARIZATION

In the MOHA model, the numeric environmental input is discretized into discrete
event symbols according the closest centroids in the 2-norm, i.e., Si = {xp : ||xp −mi ||2 ≤
||xp −m j ||2,∀ j ,1 ≤ j ≤ k}, where Si is the assigned index of the centroid (symbol), xp

the numeric data, mi ,m j centroids, and k the number of centroids. The centroids are

7.4. HYBRID MODEL CHECKER

7

145

cluster3cluster5

cluster1

cluster2cluster4

cluster6

S0

S1

[0, 542] j,#619

S3

[0, 542] d,#590

S2

[0, 542] c,#596

S4

[0, 542] i,#558

S5

[0, 542] h,#556

S7

[0, 542] g,#463S8

[0, 542] b,#416

S16

[0, 542] c,#670

S6

[0, 542] d,#3086

 [0, 542] c,#298 S15

[0, 542] h,#231

[0, 542] j,#1527

S12

[0, 542] d,#2570

S9

[0, 542] c,#798

S10

[0, 542] h,#502

[0, 542] i,#398

S17

[0, 542] b,#272

S13

[0, 542] i,#424

[0, 542] g,#298

[0, 542] j,#1237 [0, 542] c,#1524

[0, 542] h,#535

S11

[0, 542] j,#1275

[0, 542] c,#2162

[0, 37] i,#357

[0, 542] b,#306

S14

[38, 542] i,#388

S19

[3, 542] c,#759

[0, 542] j,#462

[0, 542] i,#1152

[0, 542] c,#726

[0, 542] d,#584

S21

[0, 542] g,#386[23, 542] h,#126

S20

[0, 542] c,#222

[12, 542] c,#531

[0, 542] h,#996

[0, 542] h,#288

[0, 542] b,#290

RTI+ output (Timed automaton)

Continuous function parameters

k-means code book
a: 0.79 57.87 13.69

b: 3.02 36.13 10.54

c: -2.88 15.63 7.74

…

x_l == 30

v_l = 0

…

Initial setting

SpaceEx Model file (.xml format)

SpaceEx Configuration file (.cfg format)

Example: linear inequality for event j

Voronoi diagram

Model translator

Configuration translator

Model generalization

Figure 7.2: Translator MO2SX. The files on the left side are from MOHA and the initial setting. The files on the
right side are supported for model checking in SpaceEx.

learned using the k-means clustering algorithm and used to trigger state transitions.
This representation is non-linear and not supported by existing hybrid model checkers.
To circumvent this issue, we translate the clusters into a bounded three-dimensional
Voronoi Diagram (Aurenhammer, 1991). The main idea is to partition a bounded 3-d
space into regions (polyhedra, the number of which is equal to the number of centroids),
that are represented by linear inequalities. In each solid polyhedron, all points are clos-
est to its own centroid.

Each polyhedron consists of several hyperplanes, i.e., a conjunction of linear in-
equalities, as illustrated in Figure 7.3. Note that the MOHA model shown in (Lin et al.,
2018b) has 10 discrete events from “a" to “j", which are essentially symbolic representa-
tions from k-means clustering on continuous data. Therefore, 10 polyhedra are obtained
by the Voronoi diagram.

MODEL GENERALIZATION

Due to the limited traffic scenarios in the training data, the learned automaton model
is incomplete and does not contain a transition for every possible situation. We complete
the model by adding transitions for unseen events and directing them to the initial state.

Taking S1 for an example as shown in Figure 7.4, the added symbols are the neigh-
boring polyhedra of existing events “d" and “c". We obtain these by searching for ad-
jacent polyhedra, as illustrated in Figure 7.3. We only require neighboring polyhedra
because we assume that trajectories cannot jump between nonadjacent polyhedra (es-
sentially skipping an event). We redirect new transitions to the initial state because this
implements a type of recovering behavior: when the controller has no idea about what
to do next (something unexpected occurs), it makes no assumptions about the past (by
returning to the initial state), and assumes any future is possible.

7

146 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

Figure 7.3: Polyhedra obtained by Voronoi diagram linearization. Discrete events are illustrated by different
colors.

S1

S6 S16

S0

!

" #

$%&%'%(%)%*%+

Figure 7.4: An illustrative example of completing outgoing transitions in S1 of the MOHA.

7.5. MODELING AND EXPERIMENTS
Our experimental framework (shown in Figure 7.5) consists of two components run-

ning in parallel: a nondeterministic leading vehicle with constraints about speed and
acceleration and a following vehicle equipped with a cruise controller. The autobrake
state is used for handling automatic brake scenarios when the relative distance is small.
We will compare the safety performances with and without this state. In this chapter, the
leading vehicles running in highway and urban traffic are studied:

• Highway: We adopt the general legitimate range on the highway: 80-120 km/h (see
all settings shown in Table 7.1). The leading vehicle operates nondeterministically.
Such a speed range is the working condition of a standard ACC system (NISSAN).

• Urban: We adopt the general legitimate range in the urban environment: 10-80
km/h (see all settings shown in Table 7.1). The leading vehicle conducts a nonde-

7.5. MODELING AND EXPERIMENTS

7

147

Table 7.1: Parameter settings in highway scenarios (top) and urban scenarios (bottom)

Parameters values Parameters values

vl _mi n (m/s) 22 vl_max (m/s) 33
v f _mi n (m/s) 0 vl_max (m/s) 33
xl0 (m) 150 vl0 (m/s) [22,33]
a f _max (m/s2) 6 a f _mi n , al_mi n (m/s2) -4
al_max (m/s2) 0 v f 0 (m/s) [22,33]

vl _mi n (m/s) 3 vl_max (m/s) 22
v f _mi n (m/s) 0 v f _max (m/s) 22
xl0 (m) 150 vl0 (m/s) [3,22]
a f _max (m/s2) 6 a f _mi n (m/s2) -4

al_max , alm i n (m/s2) 0 v f 0 (m/s) [3,22]

terministic running. Such a new scenarios is for testing the generalization of the
model, because the training data of the MOHA are from highway traffic.

We evaluate three different control strategies:

• Pure MOHA (P-MOHA): A MOHA purely controls the following vehicle without an
additional emergency brake state. We will investigate if the Pure-MOHA learned
from human car-following behaviors is already safe for cruise control. The MOHA
models with single mode and multiple modes are called S-MOHA and M-MOHA
for short, respectively.

• Autobrake state on basis of braking distance+MOHA (BD-MOHA): In existing
ACCs, a warning notifies the driver to take over or (semi-)automatically switches to
a braking state when the relative distance is too short. In this work, a safety state is
added to the data-driven P-MOHA to deal with emergency and automatic braking
scenarios. The trigger condition of the braking state is that the relative distance
∆x is smaller than the braking distance v ·vmax

2∗ami n
. Note that theoretically the braking

distance is
v2

f

2∗ami n
. Due to the limited support functionality of linear equations of

SpaceEx, the simplified condition is used alternatively.

• Autobrake state on basis of headway-in-time+MOHA (HIT-MOHA): The headway-
in-time (HIT) is usually suggested in daily highway driving scenarios. The fol-
lower’s desired distance is set to v f ×thead w ay for a given thead w ay ., i.e., the relative
distance should be greater than the distance the follower would travel in thead w ay

without reducing speed.

Another motivation for setting an autobrake state is from the theoretical analysis of
the minimum deceleration in the Helly model. Taking the single mode identified from
the natural data with C 1 = 0.0425, C 2 = 0.0051, α == 22.37, and β = 0.1 for example, in
the worse case, we get∆v =−33, v f = 33. The full deceleration derived from Equation 7.1
and Equation 7.2 is −1.68, which is significantly less powerful than the full deceleration
−4 used in this chapter.

7

148 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

Controller Follower Leader

FreeRun

vl ∈ [vmin, vmax]

al ∈ [amin, amax]

v̇l = al

ẋl = vl
Autobrake

vf ∈ [vmin, vmax]

v̇f = amin

ẋf = vf

∆x ≤ Ssafe

∆x ≥ Ssafe∆x ≤ Ssafe

vf ∈ [vmin, vmax]

af ∈ [amin, amax]

v̇f = af

ẋf = vf

∆x ≥ Ssafe

Figure 7.5: Modelling overview of the experiments.

MOHA is compared with two baseline models in this chapter. The first one is
a random follower. A random follower with nondeterministic dynamics is an over-
approximation over any controller. The proportional–integral–derivative (PID) con-
troller is commonly used in existing ACC systems (Magdici and Althoff, 2017). Due to
the limited functionalities of SpaceEx, the model checker does not allow access to long-
term historical variables which are needed for the derivative part of PID. Instead, we use
an auxiliary automaton as a one-step-past memory storage, the PD controller is imple-
mented and serves as the second baseline with the form:

ddes (i) = dsa f e + v f (i)
er r = d x(i)−ddes (i)
api d (i) = kp ∗er r (i)+kd ∗ (er r (i)−er r (i −1))

(7.3)

The parameters are well-tuned on the NGSIM dataset as Kp = 0.8, Kd = 0.03, dsa f e = 20m
(Zhang et al., 2018).

The parameters of vehicle dynamics are also presented in Table 7.1. These settings
are used in the literature (Zhang et al., 2018). In both cases, the following vehicle starts
tracking at the maximum relative distance detectable by the ACC radar system, i.e., 150
m. The following vehicle is allowed for a standstill for testing the braking functionalities.
The initial states in both cases are uncertain bounded by reasonable intervals.

An example of the reachability results in the highway scenarios of the single mode
HIT-MOHA is shown in Figure 7.6. Table 7.2 summarizes the safety for all models and
control strategies. It can be observed that the safety state boosts the safety of the con-
trollers. The pure MOHA model is not guaranteed to be safe, unfortunately.

However, introducing the extra safety state potentially sacrifices the similarity to hu-
man car-following behavior. The imitation accuracy, or less formally human likeness,
is evaluated using a test set from the NGSIM dataset. The main idea is that for each
car-following episode, the trajectory of the leading vehicle and the initial status of the
following vehicle are provided. The complete trajectory of the following vehicle is gener-

7.5. MODELING AND EXPERIMENTS

7

149

(a) Reachable states of xl (m) v.s.
t (s)

(b) Reachable states of x f (m)
v.s. t (s)

(c) Reachable states xl (m) vs.
x f (m)

Figure 7.6: Reachable states of single mode HIT-MOHA in the highway scenario. xl and x f are position vari-
ables for the leading vehicle and the following vehicle. It can be observed that at around 5 seconds, the auto-
brake state is triggered (see the linear deceleration in subfig (b). After 7 seconds, the relative speed vl −v f > 0,
collision is not possible. The model checker verifies that at any state xl > x f (cf. subfig (c)).

Table 7.2: Safety summary of all models.

Scenarios Model Condition Safe?

Highway

P-MOHA - ×
S-MOHA HIT

p
M-MOHA HIT

p
Random HIT

p
PD HIT

p
All above BD

p

Urban

P-MOHA - ×
S-MOHA HIT

p
M-MOHA HIT

p
Random HIT

p
PD HIT

p
All above BD

p

ated using controllers and compared with the human drivers’ trajectories present in the
testing data. A small trajectory difference indicates a better human-likeness score. The
results are presented in Table 7.3. The score is the mean square error between simulated
trajectories and those of human drivers. A feed-forward neural network (FNN) is ad-
ditionally compared as a baseline of imitation learning with default settings (Simonelli
et al., 2009; Wang et al., 2018). Note that generating whole trajectories is essentially an
iterative procedure, i.e., the trajectory at t +1 relies on the result at t . An additional one-
step prediction is shown in Table 7.4 to demonstrate the actual predictive performance
of the learned models. The difference between the results in Table 7.3 and Table 7.4 can
be seen as the difference between multi-step prediction and one-step prediction.

From the results, we make the following observations:

1. Safety is not guaranteed when learning a Pure-MOHA controller. This makes sense

7

150 7. VERIFICATION OF LEARNING-BASED HYBRID CONTROL SYSTEM

Table 7.3: Human likeness score comparison-multi steps

Model Error (m/s) Jerk (m/s3)

Without safety state
M-MOHA 0.1083 0.0037
S-MOHA 0.1124 0.0029

PD 0.1387 0.0438
FNN 0.3451 0.0047

Human - 0.0574

With safety state
M-MOHA 0.1037 0.0373
S-MOHA 0.1089 0.0323

PD 0.1391 0.0380
FNN 0.2411 0.0359

Human - 0.0574

Table 7.4: Human likeness score comparison-one step

Model Error (m/s) jerk (m/s3)

Without safety state
M-MOHA 0.0316 0.0033
S-MOHA 0.0317 0.0025

PD 0.0543 0.0336
FNN 0.0408 0.0048

With safety state
M-MOHA 0.0329 0.0199
S-MOHA 0.0329 0.0195

PD 0.0488 0.0395
FNN 0.0423 0.0469

because the training data do not contain (near) collisions. There is no way of learn-
ing this type of behavior from the available data.

2. Switching to an autobrake state boosts the safety of ACC systems such as the
MOHA. Among all control strategies, the headway control (HIT) is sufficient and
is suggested by us for normal driving scenarios owing to its superior balance be-
tween safety and human likeness.

3. The BD is the most conservative control strategy. Even though it guarantees a full-
speed-range scenario. It is not recommended because the significant large desired
relative distance leads to poor car-following performance and traffic jams.

4. Though introducing the safety state slightly deteriorates the car-following perfor-
mance in one-step prediction, the general performance in whole trajectory control
is not jeopardized.

5. MOHA outperforms both the PD and the FNN baselines on human likeness, also
when it includes a safety state. There is a significant jump in terms of jerk (sudden
braking) when the safety state is triggered.

7.6. CONCLUSION

7

151

7.6. CONCLUSION
In this chapter, a framework to automatically learn and verify a hybrid automaton-

based adaptive cruise controller is proposed. The framework consists of a learning-
component MOHA and a translator MO2SX. The MOHA shows a superior performance
to human-like car-following, while MO2SX automatically translates a MOHA model for
verification by the SpaceEx hybrid model checker. We demonstrate that a MOHA model
learned purely from human driving data is not guaranteed to be safe (collision-free) due
to the lack of emergency brake scenarios in training data. Introducing an additional
safety state guarantees this safety while maintaining good human likeness scores. To the
best of our knowledge, we present the first formally verified cruise control system that is
learned form data.

In the near future, we will investigate more driving behaviors learning and verifica-
tion, e.g., steering control. Another interesting research line is using the model checker
as an oracle providing unsafe counterexamples to improve the model learning part.

8
CONCLUSION, REFLECTION, AND

FUTURE WORK

In this chapter, the main contributions of this thesis and lessons learned are first
wrapped up. Then several reflections about the social impact of this thesis are made.
Last, several promising directions worth researching are pointed out as future work.

8.1. CONCLUSION
This thesis addresses some problems oriented from the motivation of solving con-

trol problems in real life. The marriage of automatic control and automata learning has
a two-fold meaning: first, the rejuvenation of automata learning benefits from impact-
ful control applications in autonomous driving and security of cyber-physical systems.
Second, the manual design and modeling of control systems is becoming more and more
impractical.

The identification and verification of hybrid systems are still not fully reclaimed land
and are attracting researchers from computer science and automatic control. As a pow-
erful technique to uncover the underlying logical behaviors, automata learning is in-
deed welcome to help us obtain insightful sequential models. The limitation of logical
model is that it focuses more on low-dimensional dynamics. The identification of high-
dimensional dynamics can borrow ideas of continuous dynamics’ identification from
the control domain. This intersection is also happening in verification: a computer-
aided technique such as computational geometry is leveraged as a powerful automated
tool for analyzing the complex dynamics of hybrid systems, where theoretically proving
properties such as safety from control theory is difficult.

The work in this dissertation is "retro and innovative". The traditional framework
used by control scientists and engineers is "first-principle design & verification", which
requires lots of effort in understanding the physical properties of a system. This frame-
work can be innovatively replaced by "automated learning & automated verification".
We claim the advantage of using explainable and verifiable models such as hybrid au-

153

8

154 8. CONCLUSION, REFLECTION, AND FUTURE WORK

tomata without dropping the retro on understanding the system.

HYBRID SYSTEMS LEARNING

Chapters 3 & 4 advocate the metrics of learning hybrid automata. Two approaches
named composed learning and incline learning are proposed. The composed learning is
a three-step approach (abstraction-abstraction-refinement): first (abstraction), learning
the discrete dynamics described by a conventional finite state machine; second (abstrac-
tion), further abstracting the model by grouping the states as multiple modes via similar
state sub-sequences; third (refinement) learning the detailed continuous dynamics in
each mode. Incline learning treats continuous values as well as symbolic values simulta-
neously in the automata learning procedure. The continuous values are transferred into
first-order differences and used for evaluating the similarity between states. The differ-
ence between the two aforementioned approaches is how to use the continuous data.
Incline learning is more compact in learning hybrid automata but it can deal with much
less complex continuous dynamics than the composed learning.

The composed learning approach is applied in car-following behaviors learning. The
simulation results demonstrate that this approach achieves higher accuracy on trajec-
tory prediction compared with state-of-the-art approaches. This model is further used
as a human-like cruise controller learned from human driving data. The incline model
addresses general uni-variate time series prediction problems (not just work for power
forecasting as discussed in Chapter 4). The prediction results are comparable with state-
of-the-art approaches. The resulting models from both approaches are insightful to dis-
cover the underlying dynamics.

LEARNING AND CONTROL FOR INTERACTION WITH OTHER AGENTS

Chapter 5 integrates model predictive control with stochastic automata learning,
which is leveraged to model stochastic dynamics of the uncontrolled environment. This
research addresses an ego system (the system under control) control problem consid-
ering its interaction with other involved participants (OIPs). The behaviors of the OIPs
are learned using probabilistic automata inference. Instead of predicting the complete
maneuvers of OIPs, the probabilities of high-level future behavioral patterns (intentions)
are estimated. These intentions are used as the uncontrolled input for the ego system’s
control. By doing so, the optimization of control considers the influences caused by
OIPs.

This framework is applied in the car-following control for autonomous driving vehi-
cles by considering the predicted lane change intention of other participating vehicles in
the traffic environment. The autonomous vehicle is an ego system, while the surround-
ing vehicles are OIPs, of which the lane change intentions are predicted by stochastic
automata. The input of car-following control is the averaging weights from the dynam-
ics from the leading vehicle of the ego vehicle and the cut-in vehicles. The experimental
results demonstrate that this framework can improve the safety of cruise control in au-
tonomous driving.

LEARNING AND DIAGNOSING FOR CYBER ATTACKS

Chapter 6 deals with model learning from a control system. The challenging problem
is the lack of knowledge about the input and output variables. To solve this problem, the

8.2. REFLECTION

8

155

output is assumed to be sensors’ behaviors, while the input is actuators’ behaviors, of
which the learning is on the basis of timed automata. The dependency of input and out-
put is obtained by learning the causality among them, of which the learning is realized
by Bayesian network inference.

The application of this work is in intrusion detection for safety-critical industrial
control systems owing to the growing threats of cyber attacks. The physical cyber at-
tacks falsify the reading of sensors or actuators and disrupt the state of the system. The
framework proposed in called TABOR, which is an anomaly detector combining timed
automata and Bayesian network learning. TABOR learns the legitimate behaviors from
a water treatment system and detects deviations from this model caused by an intru-
sion. The experimental results show two significant advantages of TABOR: 1) This tech-
nique can be considered as a combination of machine learning and specification-based
detection. On one hand, it provides an inexpensive and automated learning approach
for specification mining from an industrial control system without the need for expert
knowledge. On the other hand, the resulting specification-like model is highly inter-
pretable due to its graphical-model property and useful for the validation and the local-
ization of abnormal sensors or actuators in the system. 2) The model has superior perfor-
mance on both precision and run-time over state-of-the-art models including support
vector machine and deep neural networks.

SAFETY VERIFICATION OF HYBRID SYSTEMS

Chapter 7 answers the question: once a hybrid automaton model is learned from
the demonstration of a teacher, how does one rigorously prove the safety property of the
model in an uncertain environment? Reachability analysis is leveraged as a tool to verify
the safety of the learning-based model. The intersection of an unsafe set and reachable
states of the model is computed. The safety is rigorously guaranteed because the reach-
able states actually over-approximate the dynamics of the original model.

A state-of-the-art hybrid systems verification tool named SpaceEx is used for verify-
ing the human-like cruise controller studied in Chapter 3 as a case study. The experi-
mental results show that the original model directly learned from human drivers is not
guaranteed to be collision-free. Adding an auto-braking state, of which the reachable
condition depends on the headway, has enhanced the controller’s safety.

8.2. REFLECTION
Nowadays, intelligent systems are liberating people from tedious and even danger-

ous work in various domains such as robotics, transportation, and power systems to
name a few. This thesis aims at making these technologies more intelligent and more
safe at least in the autonomous driving and public infrastructure domains. In the follow-
ing, we will discuss the social impact we could bring from this thesis.

• Autonomous driving

Some unicorns are announcing that they will introduce the massive production of
AVs with high-level autonomy. We maintain a cautious attitude towards that. Deep
driving intelligence and verifiable safety are the main concerns without evidence
being properly solved already.

8

156 8. CONCLUSION, REFLECTION, AND FUTURE WORK

1. Intelligent driving assistance system

Human beings are delicate driving controllers that can teach AVs how to
drive. In this thesis, we showcase that the existing ACC systems are encoun-
tering some problems of mismatching the human being’s driving habits. Our
models and learning algorithms provide a solution towards a data-driven
ACC mimicking car-following behaviors from massive driving data. A much
more intelligent driving assistance system including complex behaviors like
lane change, turning can be developed using our techniques.

2. Safe autonomous vehicles in uncertain traffic

A pure data-driven AV controller could be problematic due to its depen-
dence on high-quality training data and generalization of the model. In this
thesis, we showcase the safety verification of a data-driven ACC. This work
provides a method for about automatically obtaining a truthfully safe ACC
learned from human driving data. Another work is about the interactions
between autonomous cars and human-driving cars, which is a well-known
safety challenge in the coming years. We develop a data-driven ACC system
dealing with unexpected cut-in vehicles. This system will also be formally
verified in the near future. We believe that these two works will enhance the
safety of AVs and at some points build up public confidence in AVs.

• Public infrastructure

The importance of public infrastructure like power and water systems controlled
by industrial control systems (ICS) is self-evident. The presence of cyber compo-
nents like SCADA makes ICS vulnerable to attacks. Several attacks targeting these
critical infrastructures have already happened and been reported. Our technique
provides a solution for protecting these infrastructures as an intrusion detection
component.

1. Efficient and safe intrusion detection The problems of intrusion detection can
be solved in a design-oriented approach by deriving rules (also called invari-
ants in the literature (Umer et al., 2017)) governing the physical process. For
instance, the design of water treatment is normally either in the form of pip-
ing and Instrumentation (P&ID) diagrams, or the control algorithms. How-
ever, tremendous legacy plants without available design diagrams exist and
make the problem significantly challenging. This thesis showcase a frame-
work for discovering the physical process from a water treatment plant with-
out expert knowledge and designs. In the future, we expect to develop an
intelligent device monitoring the operational conditions of ICS. The device
automatically and efficiently learns the behavioral models of ICS. They are
used as computation models for detecting any abnormal behaviors caused
by attacks or system flaws. The device is able to raise alarms to notify op-
erators or other intelligent components to take responding actions to avoid
further damages.

8.3. FUTURE WORK 157

8.3. FUTURE WORK
HYBRID SYSTEMS LEARNING

Both composed learning and incline learning rely on the discretization of continu-
ous signals. Because the discretization is highly application-oriented, in practice, it is
more reasonable to design this part as a plug-and-play component. However, it is still
worthwhile to investigate a “tighter" way of discretizing the continuous space during the
automata learning procedure instead of obtaining the symbolic representation in ad-
vance. The literature (Pellegrino et al., 2017a) has shown some preliminary results in
this direction. The main idea is learning the guards for the continuous signal as a state
split operation for significantly distinct future continuous signal. Another improvement
lies in the fact that regression automata learning in this thesis still deals with univariate
signals. A possible future work would be extending into the multivariate signal. A possi-
ble solution is replacing first-order difference with high-dimensional regression models
in states. The state merge can be done by investigating the similarity of parameters in
the regression models.

LEARNING AND CONTROL FOR INTERACTION WITH OTHER AGENTS

The interaction studied is unfortunately unidirectional, i.e., the impact of OIPs on
the ego system. It would be better to also consider the impact in the other direction. A
game-theoretical approach would be a solution to learn the interacting behaviors (Yan
et al., 2018). In addition, as the lane change is modeled by stochastic input, it would be
possible to conduct probabilistic model checking on the safety property of the controller.

LEARNING AND DIAGNOSING FOR CYBER ATTACKS

There are two ongoing researches as the follow-up to the TABOR work: 1) The eval-
uation of TABOR is conducted in an off-line way on the batch of the dataset. An online
version of TABOR is under development aimed at raising alarms on stream signals. The
new version will be embedded as a real-time detector into the SWaT system and will be
tested on more scenarios of physical attacks. 2) A more neat and unified model learning
on the basis of process mining is being developed. The new model learns the sequential
orders from sensors and actuators in a unified Petri net model instead of relying on two
models of a timed automaton and a Bayesian network in TABOR.

SAFETY VERIFICATION OF HYBRID SYSTEMS

A complete loop for learning a safety-reliable model relies on the guidance of a
correcting model using counterexamples from the verification step. The safety-sound
model in this thesis is still not found in a fully automated way. In future work, one pos-
sible improvement is developing a CEGAR-like (Counter Example-Guided Abstraction
Refinement) system for hybrid automata learning.

BIBLIOGRAPHY

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the twenty-first international conference on Machine learn-
ing, page 1. ACM, 2004.

S. Adepu and A. Mathur. Generalized attacker and attack models for cyber physical
systems. In 2016 IEEE 40th Annual Computer Software and Applications Conference
(COMPSAC), pages 283–292, 2016a.

S. Adepu, G. Mishra, and A. Mathur. Access control in water distribution networks: A
case study. In 2017 IEEE International Conference on Software Quality, Reliability and
Security (QRS), pages 184–191, 2017.

Sridhar Adepu and Aditya Mathur. Using process invariants to detect cyber attacks on a
water treatment system. In IFIP International Information Security and Privacy Con-
ference, pages 91–104. Springer, 2016b.

Sridhar Adepu and Aditya Mathur. An investigation into the response of a water treat-
ment system to cyber attacks. In High Assurance Systems Engineering (HASE), 2016
IEEE 17th International Symposium on, pages 141–148. IEEE Computer Society, 2016c.

Chuadhry Mujeeb Ahmed, Carlos Murguia, and Justin Ruths. Model-based attack detec-
tion scheme for smart water distribution networks. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pages 101–113. ACM,
2017.

John E Albus, RH Anderson, JM Brayer, R DeMori, H-YF Feng, SL Horowitz, B Moayer,
T Pavlidis, WW Stallings, PH Swain, et al. Syntactic pattern recognition, applications,
volume 14. Springer Science & Business Media, 2012.

Rajeev Alur. Formal verification of hybrid systems. In Embedded Software (EMSOFT),
2011 Proceedings of the International Conference on, pages 273–278. IEEE, 2011.

Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,
126(2):183–235, 1994.

Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A Henzinger, P-H Ho,
Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and Sergio Yovine. The algorithmic
analysis of hybrid systems. Theoretical computer science, 138(1):3–34, 1995.

Dana Angluin. On the complexity of minimum inference of regular sets. Information
and Control, 39(3):337–350, 1978.

159

160 BIBLIOGRAPHY

Dana Angluin. Inductive inference of formal languages from positive data. Information
and control, 45(2):117–135, 1980.

Panos J Antsaklis. Intelligent control. Wiley Encyclopedia of Electrical and Electronics
Engineering, 2001.

Panos J Antsaklis, MD Lemmon, and James A Stiver. Learning to be autonomous: Intelli-
gent supervisory control. Intelligent Control Systems: Theory and Applications, pages
28–62, 1993.

Eugene Asarin, Thao Dang, and Oded Maler. The d/dt tool for verification of hybrid
systems. In International Conference on Computer Aided Verification, pages 365–370.
Springer, 2002.

Karl Johan Aström and Richard M Murray. Feedback systems: an introduction for scien-
tists and engineers. Princeton university press, 2010.

Franz Aurenhammer. Voronoi diagramsâa survey of a fundamental geometric data struc-
ture. ACM Computing Surveys (CSUR), 23(3):345–405, 1991.

Esmaeil Balal, Ruey Long Cheu, and Thompson Sarkodie-Gyan. A binary decision model
for discretionary lane changing move based on fuzzy inference system. Transportation
Research Part C: Emerging Technologies, 67:47–61, 2016.

Yoshua Bengio and Paolo Frasconi. An input output hmm architecture. In Advances in
neural information processing systems, pages 427–434, 1995.

Huikun Bi, Tianlu Mao, Zhaoqi Wang, and Zhigang Deng. A data-driven model for lane-
changing in traffic simulation. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 149–158. Eurographics Association, 2016.

Jeff A Bilmes et al. A gentle tutorial of the em algorithm and its application to parameter
estimation for gaussian mixture and hidden markov models. International Computer
Science Institute, 4(510):126, 1998.

Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K Warmuth. Oc-
cam’s razor. Information processing letters, 24(6):377–380, 1987.

Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

EA Bossanyi. Short-term wind prediction using Kalman filters. Wind Engineering, 9(1):
1–8, 1985.

Afaf Bouhoute, Ismail Berrada, and Mohamed El Kamili. A formal driving behavior
model for intelligent transportation systems. In Networked Systems, pages 298–312.
Springer, 2014.

BIBLIOGRAPHY 161

Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using timed
automata. In International Conference on Foundations of Software Science and Com-
putation Structures, pages 219–233. Springer, 2005.

Bertil A Brandin and W Murray Wonham. Supervisory control of timed discrete-event
systems. IEEE Transactions on Automatic Control, 39(2):329–342, 1994.

L Breiman, JH Friedman, R Olshen, and CJ Stone. Classification and regression trees.
1984.

Miguel Bugalho and Arlindo L Oliveira. Inference of regular languages using state merg-
ing algorithms with search. Pattern Recognition, 38(9):1457–1467, 2005.

Matthias Buntins, Jens-W Schicke, Frank Eggert, and Ursula Goltz. Hybrid automata
as a modelling approach in the behavioural sciences. Electronic Notes in Theoretical
Computer Science, 297:47–59, 2013.

Kenneth P Burnham and David R Anderson. Model selection and multimodel inference:
a practical information-theoretic approach. Springer Science & Business Media, 2002.

A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry. Attacks against
process control systems: Risk assessment, detection, and response. In ACM Symp. Inf.
Comput. Commun. Security, 2011.

A.A. Cardenas, S. Amin, and S. Sastry. Secure control: Towards survivable Cyber-Physical
Systems. In Distributed Computing Systems Workshops, 2008. ICDCS ’08. 28th Interna-
tional Conference on, pages 495 –500, june 2008.

Rafael C Carrasco and José Oncina. Learning stochastic regular grammars by means of a
state merging method. In International Colloquium on Grammatical Inference, pages
139–152. Springer, 1994.

Defense Use Case. Analysis of the cyber attack on the ukrainian power grid. Electricity
Information Sharing and Analysis Center (E-ISAC), 2016.

Christos G Cassandras and Stephane Lafortune. Introduction to discrete event systems.
Springer Science & Business Media, 2009.

Jorge Castro and Ricard Gavalda. Learning probability distributions generated by finite-
state machines. In Topics in Grammatical Inference, pages 113–142. Springer, 2016.

Chenyi Chen, Li Li, Jianming Hu, and Chenyao Geng. Calibration of mitsim and idm
car-following model based on ngsim trajectory datasets. In Vehicular Electronics and
Safety (ICVES), 2010 IEEE International Conference on, pages 48–53. IEEE, 2010.

Xin Chen, Erika Ábrahám, and Sriram Sankaranarayanan. Flow*: An analyzer for non-
linear hybrid systems. In International Conference on Computer Aided Verification,
pages 258–263. Springer, 2013.

Edmund M Clarke and Paolo Zuliani. Statistical model checking for cyber-physical sys-
tems. In ATVA, volume 11, pages 1–12. Springer, 2011.

162 BIBLIOGRAPHY

Maxwell Clerk. On governors. Proceedings of the Royal Society of London, 16:270–283,
1867.

Pamel Cobb. German steel mill meltdown: Rising stakes in the in-
ternet of things, 2015. URL https://securityintelligence.com/
german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/.

William Cohen, Pradeep Ravikumar, and Stephen Fienberg. A comparison of string met-
rics for matching names and records. In KDD workshop on data cleaning and object
consolidation, volume 3, pages 73–78, 2003.

Gregory F Cooper and Edward Herskovits. A bayesian method for the induction of prob-
abilistic networks from data. Machine learning, 9(4):309–347, 1992.

Jonathan Cryer and 2008 Kung-sik Chan. Time Series Analysis with Applications in R.
Springer, 2008.

Guglielmo D’Amico, Filippo Petroni, and Flavio Prattico. Wind speed and energy fore-
casting at different time scales: A nonparametric approach. Physica A: Statistical Me-
chanics and its Applications, 406:59–66, 2014.

Ioannis G Damousis, Minas C Alexiadis, John B Theocharis, and Petros S Dokopoulos.
A fuzzy model for wind speed prediction and power generation in wind parks using
spatial correlation. Energy Conversion, IEEE Transactions on, 19(2):352–361, 2004.

Ruina Dang, Fang Zhang, Jianqiang Wang, Shichun Yi, and Keqiang Li. Analysis of Chi-
nese driver’s lane change characteristic based on real vehicle tests in highway. In The
16th International IEEE Conference on Intelligent Transportation Systems (ITSC), pages
1917–1922, 2013. doi: 10.1109/ITSC.2013.6728509.

Jan G De Gooijer and Rob J Hyndman. 25 years of time series forecasting. International
journal of forecasting, 22(3):443–473, 2006.

Colin de La Higuera. A bibliographical study of grammatical inference. Pattern Recogni-
tion, 38(9):1332–1348, 2005.

Colin De La Higuera and Franck Thollard. Identification in the limit with probability one
of stochastic deterministic finite automata. In International Colloquium on Gram-
matical Inference, pages 141–156. Springer, 2000.

Colin De La Higuera, José Oncina, and Enrique Vidal. Identification of dfa: Data-
dependent versus data-independent algorithms. In International Colloquium on
Grammatical Inference, pages 313–325. Springer, 1996.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(methodological), pages 1–38, 1977.

Anup Doshi and Mohan Manubhai Trivedi. On the roles of eye gaze and head dynamics
in predicting driver’s intent to change lanes. IEEE Transactions on Intelligent Trans-
portation Systems, 10(3):453–462, 2009.

https://securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/
https://securityintelligence.com/german-steel-mill-meltdown-rising-stakes-in-the-internet-of-things/

BIBLIOGRAPHY 163

Yangliu Dou, Daiheng Ni, Zhao Wang, Jianqiang Wang, and Fengjun Yan. Strategic car-
following gap model considering the effect of cut-ins from adjacent lanes. IET Intelli-
gent Transport Systems, 10(10):658–665, 2016.

Sriharsha Etigowni, Dave Jing Tian, Grant Hernandez, Saman Zonouz, and Kevin Butler.
Cpac: securing critical infrastructure with cyber-physical access control. In Proceed-
ings of the 32nd Annual Conference on Computer Security Applications, pages 139–152.
ACM, 2016.

Emeka Eyisi, Zhenkai Zhang, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai, and
Janos Sztipanovits. Model-based control design and integration of cyberphysical sys-
tems: an adaptive cruise control case study. Journal of Control Science and Engineer-
ing, 2013:1, 2013.

Nicolas Falliere, Liam O Murchu, and Eric Chien. W32. stuxnet dossier. White paper,
Symantec Corp., Security Response, 5(6):29, 2011.

Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874,
2006.

David F Findley. Counterexamples to parsimony and bic. Annals of the Institute of Sta-
tistical Mathematics, 43(3):505–514, 1991.

Gene F Franklin, J David Powell, Abbas Emami-Naeini, and J David Powell. Feedback
control of dynamic systems, volume 3. Addison-Wesley Reading, MA, 1994.

Goran Frehse. Phaver: Algorithmic verification of hybrid systems past hytech. In In-
ternational workshop on hybrid systems: computation and control, pages 258–273.
Springer, 2005.

Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scal-
able verification of hybrid systems. In International Conference on Computer Aided
Verification, pages 379–395. Springer, 2011.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learn-
ing, volume 1. Springer series in statistics New York, NY, USA:, 2001.

King-Sun Fu. Learning control systems review and outlook. IEEE transactions on Auto-
matic Control, 15(2):210–221, 1970.

King Sun Fu. Introduction to syntactic pattern recognition. In Syntactic pattern recogni-
tion, applications, pages 1–30. Springer, 1977.

Vijay Gadepally, Ashok Krishnamurthy, and Umit Ozguner. A framework for estimating
driver decisions near intersections. IEEE Transactions on Intelligent Transportation
Systems, 15(2):637–646, 2014.

Wei Gao and Thomas H Morris. On cyber attacks and signature based intrusion detection
for modbus based industrial control systems. The Journal of Digital Forensics, Security
and Law: JDFSL, 9(1):37, 2014.

164 BIBLIOGRAPHY

Pedro Garcia, Antonio Cano, and José Ruiz. A comparative study of two algorithms
for automata identification. In International Colloquium on Grammatical Inference,
pages 115–126. Springer, 2000.

Denos C Gazis, Robert Herman, and Richard W Rothery. Nonlinear follow-the-leader
models of traffic flow. Operations Research, 9(4):545–567, 1961.

Felix A Gers, Douglas Eck, and Jürgen Schmidhuber. Applying lstm to time series pre-
dictable through time-window approaches. In Artificial Neural NetworksâICANN
2001, pages 669–676. Springer, 2001.

C Lee Giles, Steve Lawrence, and Ah Chung Tsoi. Noisy time series prediction using
recurrent neural networks and grammatical inference. Machine learning, 44(1-2):161–
183, 2001.

Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Inter-
national Workshop on Hybrid Systems: Computation and Control, pages 291–305.
Springer, 2005.

Antoine Girard, Colas Le Guernic, and Oded Maler. Efficient computation of reachable
sets of linear time-invariant systems with inputs. In International Workshop on Hybrid
Systems: Computation and Control, pages 257–271. Springer, 2006.

Jonathan Goh, Sridhar Adepu, Marcus Tan, and Zi Shan Lee. Anomaly detection in cyber
physical systems using recurrent neural networks. In High Assurance Systems Engi-
neering (HASE), 2017 IEEE 18th International Symposium on, pages 140–145. IEEE,
2017.

E Mark Gold. Language identification in the limit. Information and Control, 10(5):447–
474, 1967.

E Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978a.

E Mark Gold. Complexity of automaton identification from given data. Information and
control, 37(3):302–320, 1978b.

Cyril Goutte, Peter Toft, Egill Rostrup, Finn Å Nielsen, and Lars Kai Hansen. On clustering
fMRI time series. NeuroImage, 9(3):298–310, 1999.

Peter D Grünwald. The minimum description length principle. MIT press, 2007.

Huajie Gu, Jun Wang, Qin Lin, and Qi Gong. Automatic contour-based road network
design for optimized wind farm micrositing. IEEE Transactions on Sustainable Energy,
6(1):281–289, 2015.

Zhenhai Guo, Weigang Zhao, Haiyan Lu, and Jianzhou Wang. Multi-step forecasting for
wind speed using a modified EMD-based artificial neural network model. Renewable
Energy, 37(1):241–249, 2012.

BIBLIOGRAPHY 165

D. Hadžiosmanović, R. Sommer, E. Zambon, and Pieter H. Hartel. Through the eye of
the PLC: Semantic security monitoring for industrial processes. In Proceedings of the
30th Annual Computer Security Applications Conference, pages 126–135, New York,
NY, USA, 2014. ACM.

Samer Hamdar, Martin Treiber, Hani Mahmassani, and Arne Kesting. Modeling driver
behavior as sequential risk-taking task. Transportation Research Record: Journal of the
Transportation Research Board, (2088):208–217, 2008.

Christian Albert Hammerschmidt, Sicco Verwer, Qin Lin, and Radu State. Interpreting
finite automata for sequential data. In Interpretable ML for Complex Systems NIPS
2016 Workshop, 2016.

Walter Helly. Simulation of bottlenecks in single-lane traffic flow. In Proceedings of the
Symposium on Theory of Traffic Flow, pages 207–238. New York: Elsevier, 1959a.

Walter Helly. Simulation of bottlenecks in single-lane traffic flow. In Proceedings of the
Symposium on Theory of Traffic Flow, pages 207–238. New York: Elsevier, 1959b.

Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker
for hybrid systems. International Journal on Software Tools for Technology Transfer, 1
(1-2):110–122, 1997a.

Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Hytech: A model checker for
hybrid systems. In International Conference on Computer Aided Verification, pages
460–463. Springer, 1997b.

Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. Algorithmic analysis of non-
linear hybrid systems. IEEE transactions on automatic control, 43(4):540–554, 1998.

Marijn JH Heule and Sicco Verwer. Software model synthesis using satisfiability solvers.
Empirical Software Engineering, 18(4):825–856, 2013.

Bryan Higgs and Montasir Abbas. Segmentation and clustering of car-following behav-
ior: recognition of driving patterns. IEEE Transactions on Intelligent Transportation
Systems, 16(1):81–90, 2015.

Toshihiro Hiraoka, Taketoshi Kunimatsu, Osamu Nishihara, and Hiromitsu Kumamoto.
Modeling of driver following behavior based on minimum-jerk theory. In Proc. 12th
World Congress ITS, 2005.

Daniel S Hirschberg. Algorithms for the longest common subsequence problem. Journal
of the ACM (JACM), 24(4):664–675, 1977.

Serge Hoogendoorn, Saskia Ossen, and Marco Schreuder. Empirics of multianticipative
car-following behavior. Transportation Research Record: Journal of the Transportation
Research Board, (1965):112–120, 2006.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006. ISBN 0321455363.

166 BIBLIOGRAPHY

Bo-Jian Hou and Zhi-Hua Zhou. Learning with interpretable structure from rnn. arXiv
preprint arXiv:1810.10708, 2018.

Haijing Hou, Lisheng Jin, Qingning Niu, Yuqin Sun, and Meng Lu. Driver intention recog-
nition method using continuous hidden markov model. International Journal of Com-
putational Intelligence Systems, 4(3):386–393, 2011.

ics-cert. https://ics-cert.us-cert.gov/.

icsCERTAdvisory. ICS-CERT Advisories https://ics-cert.us-cert.gov/
advisories.

Jun Inoue, Yoriyuki Yamagata, Yuqi Chen, Christopher M Poskitt, and Jun Sun. Anomaly
detection for a water treatment system using unsupervised machine learning. arXiv
preprint arXiv:1709.05342, 2017.

Goh J., Adepu S., Junejo K. N, and Mathur A. A Dataset to Support Research in the Design
of Secure Water Treatment Systems. In The 11th International Conference on Criti-
cal Information Infrastructures Security (CRITIS), pages 1–13, New York, USA, October
2016. Springer.

Austin Jones, Zhaodan Kong, and Calin Belta. Anomaly detection in cyber-physical sys-
tems: A formal methods approach. In Decision and Control (CDC), 2014 IEEE 53rd
Annual Conference on, pages 848–853. IEEE, IEEE Computer Society, 2014.

Hugues Juillé and Jordan B Pollack. A stochastic search approach to grammar induction.
In International Colloquium on Grammatical Inference, pages 126–137. Springer, 1998.

Khurum Nazir Junejo and Jonathan Goh. Behaviour-based attack detection and classi-
fication in cyber physical systems using machine learning. In Proceedings of the 2nd
ACM International Workshop on Cyber-Physical System Security, pages 34–43. ACM,
2016.

Md Abdus Samad Kamal, Shun Taguchi, and Takayoshi Yoshimura. Efficient vehicle driv-
ing on multi-lane roads using model predictive control under a connected vehicle en-
vironment. In Intelligent Vehicles Symposium (IV), pages 736–741. IEEE, 2015.

Eunsuk Kang, Sridhar Adepu, Daniel Jackson, and Aditya P Mathur. Model-based secu-
rity analysis of a water treatment system. In Proceedings of the 2nd International Work-
shop on Software Engineering for Smart Cyber-Physical Systems, pages 22–28. ACM,
2016.

Eamonn Keogh, Selina Chu, David Hart, and Michael Pazzani. An online algorithm for
segmenting time series. In Data Mining, 2001. ICDM 2001, Proceedings IEEE Interna-
tional Conference on, pages 289–296. IEEE, 2001.

Eamonn Keogh, Jessica Lin, Sang-Hee Lee, and Helga Van Herle. Finding the most un-
usual time series subsequence: algorithms and applications. Knowledge and Informa-
tion Systems, 11(1):1–27, 2007.

https://ics-cert.us-cert.gov/
https://ics-cert.us-cert.gov/advisories
https://ics-cert.us-cert.gov/advisories

BIBLIOGRAPHY 167

Arne Kesting and Martin Treiber. Calibrating car-following models by using trajectory
data: Methodological study. Transportation Research Record: Journal of the Trans-
portation Research Board, (2088):148–156, 2008.

Edouard Klein, Matthieu Geist, Bilal Piot, and Olivier Pietquin. Inverse reinforcement
learning through structured classification. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25,
pages 1007–1015. 2012.

Yakup Koç, Martijn Warnier, Piet Van Mieghem, Robert E Kooij, and Frances MT Brazier.
The impact of the topology on cascading failures in a power grid model. Physica A:
Statistical Mechanics and its Applications, 402:169–179, 2014.

Wolfgang Kühn. Rigorously computed orbits of dynamical systems without the wrapping
effect. Computing, 61(1):47–67, 1998.

Puneet Kumar, Mathias Perrollaz, Stéphanie Lefevre, and Christian Laugier. Learning-
based approach for online lane change intention prediction. In Intelligent Vehicles
Symposium (IV), pages 797–802. IEEE, 2013.

Kevin J Lang. Random dfa’s can be approximately learned from sparse uniform exam-
ples. In Proceedings of the fifth annual workshop on Computational learning theory,
pages 45–52. ACM, 1992.

Kevin J Lang. Faster algorithms for finding minimal consistent dfas. Technical report,
Technical report, NEC Research Institute, 4 Independence Way Princeton, NJ 08540,
1999.

Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. Results of the abbadingo one
DFA learning competition and a new evidence-driven state merging algorithm. In
Grammatical Inference, pages 1–12. Springer, 1998.

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection
algorithms–the numenta anomaly benchmark. In Machine Learning and Applications
(ICMLA), 2015 IEEE 14th International Conference on, pages 38–44. IEEE, 2015.

Edward A. Lee. Cyber physical systems: Design challenges, http://www.eecs.
berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html. Technical Report
UCB/EECS-2008-8, EECS Department, University of California, Berkeley, Jan 2008.
URL http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.
html.

Jinwoo Lee, Minju Park, and Hwasoo Yeo. A probability model for discretionary lane
changes in highways. KSCE Journal of Civil Engineering, 20(7):2938–2946, 2016.

Guofa Li, Shengbo Eben Li, Yuan Liao, Wenjun Wang, Bo Cheng, and Fang Chen. Lane
change maneuver recognition via vehicle state and driver operation signalsâresults
from naturalistic driving data. In Intelligent Vehicles Symposium (IV), pages 865–870.
IEEE, 2015.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-8.html

168 BIBLIOGRAPHY

Jessica Lin, Eamonn Keogh, Li Wei, and Stefano Lonardi. Experiencing SAX: a novel sym-
bolic representation of time series. Data Mining and knowledge discovery, 15(2):107–
144, 2007.

Qin Lin and Jun Wang. Vertically correlated echelon model for the interpolation of miss-
ing wind speed data. IEEE Transactions on Sustainable Energy, 5(3):804–812, 2014.

Qin Lin, Jun Wang, and Weiting Qiao. Denoising of wind speed data by wavelet thresh-
olding. In Chinese Automation Congress (CAC), 2013, pages 518–521. IEEE, 2013.

Qin Lin, Christian Hammerschmidt, Gaetano Pellegrino, and Sicco Verwer. Short-term
time series forecasting with regression automata. In ACM SIGKDD 2016 Workshop on
Mining and Learning from Time Series (MiLeTS), 2016.

Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. Tabor: A graphical model-
based approach for anomaly detection in industrial control systems. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security, pages 525–
536. ACM, 2018a.

Qin Lin, Yihuan Zhang, Sicco Verwer, and Jun Wang. Moha: a multi-mode hybrid au-
tomaton model for learning car-following behaviors. IEEE Transactions on Intelligent
Transportation Systems, (99):1–8, 2018b.

Robert Lipovsky. New wave of cyberattacks against Ukrainian power industry, January
2016. http://www.welivesecurity.com/2016/01/11.

Kai Liu, Jianwei Gong, Arda Kurt, Huiyan Chen, and Umit Ozguner. A model predictive-
based approach for longitudinal control in autonomous driving with lateral interrup-
tions. In Intelligent Vehicles Symposium (IV), pages 359–364. IEEE, 2017a.

Xiaoran Liu, Qin Lin, Sicco Verwer, and Dmitri Jarnikov. Anomaly detection in a digital
video broadcasting system using timed automata. In Thirty-Second Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS) Workshop on Learning and Automata
(LearnAut), 2017b.

Y. Liu, P. Ning, and M. Reiter. False data injection attacks against state estimation in
electric power grids. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 21–32, 2009.

Yao Liu, Peng Ning, and Michael K Reiter. False data injection attacks against state esti-
mation in electric power grids. ACM Transactions on Information and System Security
(TISSEC), 14(1):13, 2011.

Sarah M Loos, David Witmer, Peter Steenkiste, and André Platzer. Efficiency analysis
of formally verified adaptive cruise controllers. In Intelligent Transportation Systems-
(ITSC), 2013 16th International IEEE Conference on, pages 1565–1570. IEEE, 2013.

Harry Lum and Jerry A Reagan. Interactive highway safety design model: accident pre-
dictive module. Public Roads, 58(3), 1995.

http://www.welivesecurity.com/2016/01/11

BIBLIOGRAPHY 169

Daniel L Ly and Hod Lipson. Learning symbolic representations of hybrid dynamical
systems. Journal of Machine Learning Research, 13(Dec):3585–3618, 2012.

Iain L MacDonald and Walter Zucchini. Hidden Markov and other models for discrete-
valued time series, volume 110. CRC Press, 1997.

Silvia Magdici and Matthias Althoff. Adaptive cruise control with safety guarantees for
autonomous vehicles. IFAC-PapersOnLine, 50(1):5774–5781, 2017.

Alexander Maier, Asmir Vodencarevic, Oliver Niggemann, Roman Just, and Michael
Jaeger. Anomaly detection in production plants using timed automata. In 8th In-
ternational Conference on Informatics in Control, Automation and Robotics (ICINCO),
pages 363–369, 2011.

Oded Maler. Algorithmic verification of continuous and hybrid systems. arXiv preprint
arXiv:1403.0952, 2014.

João Martins, Armando Pires, A Dente, and R Vilela Mendes. Formal language control of
induction motor drives. In IEEE 2002 28th Annual Conference of the Industrial Elec-
tronics Society. IECON 02, volume 3, pages 1903–1908. IEEE, 2002.

João F Martins, JA Dente, AJ Pires, and R Vilela Mendes. Language identification of con-
trolled systems: Modeling, control, and anomaly detection. IEEE Transactions on Sys-
tems, Man, and Cybernetics, Part C (Applications and Reviews), 31(2):234–242, 2001.

Ramy Medhat, S Ramesh, Borzoo Bonakdarpour, and Sebastian Fischmeister. A frame-
work for mining hybrid automata from input/output traces. In Proceedings of the 12th
International Conference on Embedded Software, pages 177–186. IEEE Press, 2015.

Daniel Meyer-Delius, Christian Plagemann, and Wolfram Burgard. Probabilistic situa-
tion recognition for vehicular traffic scenarios. In IEEE International Conference on
Robotics and Automation (ICRA), pages 459–464. IEEE, 2009.

Ambuj Mishra and Subir K Roy. Towards formal verification of adaptive cruise controller
using spaceex. In VLSI Systems, Architectures, Technology and Applications (VLSI-
SATA), 2016 International Conference on, pages 1–6. IEEE, 2016.

MA Mohandes, TO Halawani, S Rehman, and Ahmed A Hussain. Support vector ma-
chines for wind speed prediction. Renewable Energy, 29(6):939–947, 2004.

Brendan Morris, Anup Doshi, and Mohan Trivedi. Lane change intent prediction for
driver assistance: On-road design and evaluation. In Intelligent Vehicles Symposium
(IV), pages 895–901. IEEE, 2011.

Maximilian Mühlegg, Florian Holzapfel, and Girish Chowdhary. Trusting learning based
adaptive flight control algorithms. In 2015 AAAI Fall Symposium Series, 2015.

John Mulder, Moses Schwartz, Michael Berg, Jonathan Roger Van Houten, Jorge Mario,
Michael Aaron King Urrea, Abraham Anthony Clements, and Joshua Jacob. Weasel-
board: Zero-day exploit detection for Programmable Logic Controllers. Technical re-
port, tech. report SAND2013-8274, Sandia National Laboratories, 2013.

170 BIBLIOGRAPHY

NGSIM. U.S. Department of Transportation, NGSIM - Next generation simulation.
http://www.ngsim.fhwa.dot.gov, 2007.

Karim Nice. How cruise control systems work. <https://auto.howstuffworks.com/
cruise-control.htm, 2001.

Jianqiang Nie, Jian Zhang, Xia Wan, Wanting Ding, and Bin Ran. Modeling of decision-
making behavior for discretionary lane-changing execution. In The 19th International
Conference on Intelligent Transportation Systems (ITSC), pages 707–712. IEEE, 2016.

Oliver Niggemann, Benno Stein, Asmir Vodencarevic, Alexander Maier, and Hans Kleine
Büning. Learning behavior models for hybrid timed systems. In AAAI, volume 2, pages
1083–1090, 2012.

Ronald Nippold and Peter Wagner. Calibration of car-following models with single-and
multi-step approaches. In Proceedings of the Winter Simulation Conference, page 410.
Winter Simulation Conference, 2012.

NISSAN. Nissan intelligent cruise control (with low-speed following capability).
https://www.nissan-global.com/EN/DOCUMENT/PDF/TECHNOLOGY/TECHNICAL/
intelligent_en.pdf.

Arlindo L Oliveira and Stephen Edwards. Limits of exact algorithms for inference of min-
imum size finite state machines. In International Workshop on Algorithmic Learning
Theory, pages 59–66. Springer, 1996.

Arlindo L Oliveira and João PM Silva. Efficient algorithms for the inference of minimum
size dfas. Machine Learning, 44(1-2):93–119, 2001.

Paul Oman and Matthew Phillips. Intrusion detection and event monitoring in scada
networks. Critical Infrastructure Protection, pages 161–173, 2007.

Christian W Omlin and C Lee Giles. Constructing deterministic finite-state automata in
recurrent neural networks. Journal of the ACM (JACM), 43(6):937–972, 1996.

José Oncina and Pedro Garcia. Inferring regular languages in polynomial updated time.
In Pattern recognition and image analysis: selected papers from the IVth Spanish Sym-
posium, pages 49–61. World Scientific, 1992.

Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and René Vidal. Iden-
tification of hybrid systems a tutorial. European journal of control, 13(2-3):242–260,
2007.

Margie Peden, Richard Scurfield, David Sleet, Dinesh Mohan, Adnan A Hyder, Eva
Jarawan, Colin D Mathers, et al. World report on road traffic injury prevention, 2004.

Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated whitebox
testing of deep learning systems. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 1–18. ACM, 2017.

http://www.ngsim.fhwa.dot.gov
<https://auto.howstuffworks.com/cruise-control.htm
<https://auto.howstuffworks.com/cruise-control.htm
https://www.nissan-global.com/EN/DOCUMENT/PDF/TECHNOLOGY/TECHNICAL/intelligent_en.pdf
https://www.nissan-global.com/EN/DOCUMENT/PDF/TECHNOLOGY/TECHNICAL/intelligent_en.pdf

BIBLIOGRAPHY 171

Gaetano Pellegrino, Christian Hammerschmidt, Qin Lin, and Sicco Verwer. Learning
deterministic finite automata from infinite alphabets. In International Conference on
Grammatical Inference, pages 120–131, 2017a.

Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer. Learning
behavioral fingerprints from netflows using timed automata. In Integrated Network
and Service Management (IM), 2017 IFIP/IEEE Symposium on, pages 308–316. IEEE,
2017b.

Alex Pentland and Andrew Liu. Modeling and prediction of human behavior. Neural
Computation, 11(1):229–242, 1999.

Pierre Pinson et al. Wind energy: Forecasting challenges for its operational management.
Statistical Science, 28(4):564–585, 2013.

Louis A Pipes. An operational analysis of traffic dynamics. Journal of Applied Physics, 24
(3):274–281, 1953.

Jan Willem Polderman and Jan C Willems. Introduction to the mathematical theory of
systems and control. New York, 434, 1998.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989a.

Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989b.

Rajesh Rajamani. Vehicle dynamics and control. Springer Science & Business Media,
2011.

Rajesh Rajamani. Adaptive cruise control. Encyclopedia of Systems and Control, pages
13–19, 2015.

Carl Edward Rasmussen and Zoubin Ghahramani. Occam’s razor. In Advances in neural
information processing systems, pages 294–300, 2001.

Nathan D Ratliff, J Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning.
In Proceedings of the 23rd international conference on Machine learning, pages 729–
736. ACM, 2006.

Tobias Rehder, Wolfgang Muenst, Lawrence Louis, and Dieter Schramm. Learning lane
change intentions through lane contentedness estimation from demonstrated driv-
ing. In The 19th International Conference on Intelligent Transportation Systems (ITSC),
pages 893–898. IEEE, 2016.

Ahmet D Sahin and Zekai Sen. First-order markov chain approach to wind speed mod-
elling. Journal of Wind Engineering and Industrial Aerodynamics, 89(3):263–269, 2001.

Yasubumi Sakakibara. Recent advances of grammatical inference. Theoretical Computer
Science, 185(1):15–45, 1997.

172 BIBLIOGRAPHY

Stan Salvador and Philip Chan. Learning states and rules for detecting anomalies in time
series. Applied Intelligence, 23(3):241–255, 2005a.

Stan Salvador and Philip Chan. Learning states and rules for detecting anomalies in time
series. Applied Intelligence, 23(3):241–255, 2005b.

Pedro Santana, Spencer Lane, Eric Timmons, Brian Williams, and Carlos Forster. Learn-
ing hybrid models with guarded transitions. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, pages 1847–1853. AAAI Press, 2015.

S Paul Sathiyan, S Suresh Kumar, and A Immanuel Selvakumar. Optimised fuzzy con-
troller for improved comfort level during transitions in cruise and adaptive cruise con-
trol vehicles. In The 2015 International Conference on Signal Processing And Commu-
nication Engineering Systems (SPACES), pages 86–91. IEEE, 2015.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in cognitive
sciences, 3(6):233–242, 1999.

Roman Schmied, Harald Waschl, and Luigi del Re. Extension and experimental valida-
tion of fuel efficient predictive adaptive cruise control. In American Control Confer-
ence (ACC), pages 4753–4758. IEEE, 2015.

Roman Schmied, Dominik Moser, Harald Waschl, and Luigi del Re. Scenario model pre-
dictive control for robust adaptive cruise control in multi-vehicle traffic situations. In
Intelligent Vehicles Symposium (IV), pages 802–807. IEEE, 2016.

Matthias Schreier, Volker Willert, and Jürgen Adamy. An integrated approach to
maneuver-based trajectory prediction and criticality assessment in arbitrary road en-
vironments. IEEE Transactions on Intelligent Transportation Systems, 17(10):2751–
2766, 2016.

Anke Schwarze, Matthias Buntins, Jens Schicke-Uffmann, Ursula Goltz, and Frank Eg-
gert. Modelling driving behaviour using hybrid automata. IET Intelligent Transport
Systems, 7(2):251–256, 2013.

Fulvio Simonelli, Gennaro Nicola Bifulco, Valerio De Martinis, and Vincenzo Punzo.
Human-like adaptive cruise control systems through a learning machine approach.
In Applications of Soft Computing, pages 240–249. Springer, 2009.

Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course
Technology Boston, 2006.

Haemwaan Sivaraks and Chotirat Ann Ratanamahatana. Robust and accurate anomaly
detection in ecg artifacts using time series motif discovery. Computational and math-
ematical methods in medicine, 2015, 2015.

Jill Slay and Michael Miller. Lessons learned from the maroochy water breach. In Inter-
national Conference on Critical Infrastructure Protection, pages 73–82. Springer, 2007.

BIBLIOGRAPHY 173

Padhraic Smyth. Clustering sequences with hidden markov models. In Advances in Neu-
ral Information Processing Systems, pages 648–654. MIT Press, 1997.

John A. Stankovic. Research directions for cyber physical systems in wireless and mobile
healthcare. ACM Trans. Cyber-Phys. Syst., pages 1:1–1:12, November 2016.

Andrew Stevenson and James R Cordy. A survey of grammatical inference in software
engineering. Science of Computer Programming, 96:444–459, 2014.

Rainer Storn and Kenneth Price. Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization, 11(4):
341–359, 1997.

Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control systems (ICS)
security. Technical Report 11, NIST special publication, 2011. URL http://csrc.
nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf.

Thomas A. Sudkamp. Languages and Machines: an introduction to the theory of com-
puter science. Addison-Wesley, third edition, 2006.

Adam Summerville, Joseph Osborn, and Michael Mateas. Charda: causal hybrid au-
tomata recovery via dynamic analysis. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pages 2800–2806. AAAI Press, 2017.

Keshuang Tang, Shengfa Zhu, Yanqing Xu, and Fen Wang. Modeling drivers’ dynamic
decision-making behavior during the phase transition period: An analytical approach
based on hidden markov model theory. IEEE Transactions on Intelligent Transporta-
tion Systems, 17(1):206–214, 2016.

Christian Thiemann, Martin Treiber, and Arne Kesting. Estimating acceleration and
lane-changing dynamics from next generation simulation trajectory data. Transporta-
tion Research Record: Journal of the Transportation Research Board, (2088):90–101,
2008.

Franck Thollard, Pierre Dupont, Colin de la Higuera, et al. Probabilistic DFA inference
using Kullback-Leibler divergence and minimality. In ICML, pages 975–982, 2000.

Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated testing
of deep-neural-network-driven autonomous cars. In Proceedings of the 40th Interna-
tional Conference on Software Engineering, pages 303–314. ACM, 2018.

Jose Luis Torres, Almudena Garcia, Marian De Blas, and Adolfo De Francisco. Forecast
of hourly average wind speed with ARMA models in Navarre (Spain). Solar Energy, 79
(1):65–77, 2005.

B Trakhtenbrot and YM Barzdin. Finite automate: behaviour and synthesis. 1973.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. Congested traffic states in empirical
observations and microscopic simulations. Physical Review E, 62(2):1805, 2000.

http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf
http://csrc.nist.gov/publications/nistpubs/800-82/SP800-82-final.pdf

174 BIBLIOGRAPHY

Stavros Tripakis. Fault diagnosis for timed automata. In FTRTFT, volume 2469, pages
205–224. Springer, 2002.

A Troncoso, S Salcedo-Sanz, C Casanova-Mateo, JC Riquelme, and L Prieto. Local
models-based regression trees for very short-term wind speed prediction. Renewable
Energy, 81:589–598, 2015.

Muhammad Azmi Umer, Aditya Mathur, Khurum Nazir Junejo, and Sridhar Adepu. In-
tegrating design and data centric approaches to generate invariants for distributed
attack detection. In Proceedings of the 2017 Workshop on Cyber-Physical Systems Secu-
rity and PrivaCy, pages 131–136. ACM, 2017.

David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole Tippenhauer, Junia Va-
lente, Mustafa Faisal, Justin Ruths, Richard Candell, and Henrik Sandberg. Limiting
the impact of stealthy attacks on industrial control systems. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS ’16, pages
1092–1105, 2016. ISBN 978-1-4503-4139-4.

Akira Ushioda. Hierarchical clustering of words. In Proceedings of the 16th conference on
Computational linguistics-Volume 2, pages 1159–1162. Association for Computational
Linguistics, 1996.

CPIJ Van Hinsbergen, WJ Schakel, VL Knoop, JWC van Lint, and SP Hoogendoorn. A gen-
eral framework for calibrating and comparing car-following models. Transportmetrica
A: Transport Science, 11(5):420–440, 2015.

Sicco Verwer and Christian A Hammerschmidt. flexfringe: a passive automaton learning
package. In Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on, pages 638–642. IEEE, 2017.

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test for iden-
tifying probabilistic deterministic real-time automata from positive data. In Interna-
tional Colloquium on Grammatical Inference, pages 203–216. Springer Berlin Heidel-
berg, 2010a.

Sicco Verwer, Mathijs de Weerdt, and Cees Witteveen. A likelihood-ratio test for identify-
ing probabilistic deterministic real-time automata from positive data. In Grammatical
Inference: Theoretical Results and Applications, pages 203–216. Springer, 2010b.

Sicco Verwer, Mathijs De Weerdt, and Cees Witteveen. Learning driving behavior by
timed syntactic pattern recognition. In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pages 1529–1534. IJCAI/AAAI, 2011.

Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. Pautomac: a probabilistic au-
tomata and hidden markov models learning competition. Machine learning, 96(1-2):
129–154, 2014.

Sicco E Verwer, Mathijs M De Weerdt, and Cees Witteveen. Identifying an automaton
model for timed data. In Benelearn 2006: Proceedings of the 15th Annual Machine

BIBLIOGRAPHY 175

Learning Conference of Belgium and the Netherlands, Ghent, Belgium, 11-12 May 2006,
2006.

Sicco Ewout Verwer. Efficient identification of timed automata: theory and practice. PhD
thesis, Delft University of Technology, 2010a.

Sicco Ewout Verwer. Efficient identification of timed automata: Theory and practice. PhD
thesis, TU Delft, Delft University of Technology, 2010b.

Asmir Vodenčarević, Hans Kleine Büning, Oliver Niggemann, and Alexander Maier. Us-
ing behavior models for anomaly detection in hybrid systems. In Information, Com-
munication and Automation Technologies (ICAT), 2011 XXIII International Symposium
on, pages 1–8. IEEE, 2011.

Xiao Wang, Rui Jiang, Li Li, Yilun Lin, Xinhu Zheng, and Fei-Yue Wang. Capturing car-
following behaviors by deep learning. IEEE Transactions on Intelligent Transportation
Systems, 19(3):910–920, 2018.

Xipeng Wang, Yi Lu Murphey, and Dev S Kochhar. Mts-deepnet for lane change predic-
tion. In The International Joint Conference on Neural Networks (IJCNN), pages 4571–
4578. IEEE, 2016.

Sharon Weinberger. Computer security: Is this the start of cyberwarfare? Nature, 174,
June 2011.

K. Wilhoit and S. Hara. The real world evaluation of cyber-attacks against ICS system. In
Society of Instrument and Control Engineers of Japan (SICE), 2015 54th Annual Confer-
ence of the, pages 977–979, July 2015.

Samuel S Wilks. The large-sample distribution of the likelihood ratio for testing compos-
ite hypotheses. The Annals of Mathematical Statistics, 9(1):60–62, 1938.

Hanwool Woo, Yonghoon Ji, Hitoshi Kono, Yusuke Tamura, Yasuhide Kuroda, Takashi
Sugano, Yasunori Yamamoto, Atsushi Yamashita, and Hajime Asama. Dynamic
potential-model-based feature for lane change prediction. In The Proceedings of the
2016 IEEE International Conference on Systems, Man, and Cybernetics, 2016.

Fei Yan, Mark Eilers, Andreas Lüdtke, and Martin Baumann. Developing a model of
driver’s uncertainty in lane change situations for trustworthy lane change decision aid
systems. In Intelligent Vehicles Symposium (IV), pages 406–411. IEEE, 2016.

Zhihai Yan, Jun Wang, and Yihuan Zhang. A game-theoretical approach to driving deci-
sion making in highway scenarios. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1221–1226. IEEE, 2018.

Y. Zhang, Qin Lin, Jun Wang, Sicco Verwer, and John Dolan. Lane-change intention esti-
mation for car-following control in autonomous driving. IEEE Transactions on Intelli-
gent Vehicles, 3(3):276–286, 2018.

176 BIBLIOGRAPHY

Yihuan Zhang, Qin Lin, Jun Wang, and Sicco Verwer. Car-following behavior model
learning using timed automata. IFAC-PapersOnLine, 50(1):2353–2358, 2017a.

Yihuan Zhang, Jun Wang, Qin Lin, Sicco Verwer, and John M Dolan. A data-driven behav-
ior generation algorithm in car-following scenarios. In Dynamics of Vehicles on Roads
and Tracks Vol 1: Proceedings of the 25th International Symposium on Dynamics of
Vehicles on Roads and Tracks (IAVSD 2017), page 227. CRC Press, 2017b.

Xi Zheng and Christine Julien. Verification and validation in cyber physical systems:
research challenges and a way forward. In Proceedings of the First International Work-
shop on Software Engineering for Smart Cyber-Physical Systems, pages 15–18. IEEE
Press, 2015.

Song-Chun Zhu, David Mumford, et al. A stochastic grammar of images. Foundations
and Trends® in Computer Graphics and Vision, 2(4):259–362, 2007.

SUMMARY

Automatic control is a technique about designing control devices for controlling ma-
chinery processes without human intervention. However, devising controllers using
conventional control theory requires first principle design on the basis of the full under-
standing of the environment and the plant, which is infeasible for complex control tasks
such as driving in highly uncertain traffic environment. Intelligent control offers new op-
portunities about deriving the control policy of human beings by mimicking our control
behaviors from demonstrations. In this thesis, we focus on intelligent control techniques
from two aspects: (1) how to learn control policy from supervisors with the available
demonstration data; (2) how to verify the controller learned from data will safely control
the process

To summarize, this thesis contains the following main contributions:

1. Proposed a novel hybrid model called MOHA and a composed learning strategy
for learning a hybrid automaton from continuous data.

2. Proposed a novel hybrid model called regression automaton and its inclined learn-
ing strategy for learning a hybrid automaton from continuous data.

3. Applied a probabilistic automaton learning approach for predicting an external
agent’s intention. A model predictive controller then uses such an intention to
achieve a safe interactive control.

4. Developed a novel framework using timed automata for learning individual pro-
cesses and Bayesian network for learning their dependencies. The model can be
used as a diagnoser for anomaly detection.

5. Developed a translator called MO2SX filling the gap between MOHA and the state-
of-the-art hybrid model checker SpaceEx for verifying the safety property of the
data-driven MOHA model.

The above techniques deal with fundamental problems about learning, diagnosing,
and verification of intelligent control systems. They have been implemented, evalu-
ated, and applied to several case studies to demonstrate effectiveness and applicability
in practice.

177

SAMENVATTING

Automatische regeltechniek is een techniek om regelaars te ontwerpen voor het besturen
van machinale processen zonder menselijke tussenkomst. Het ontwerpen van regelaars
met behulp van conventionele regeltechniek vereist echter een ontwerp op basis van
eerste beginselen die volgen uit een volledig begrip van de omgeving en het systeem, wat
onhaalbaar is voor complexe regeltaken zoals het rijden in een zeer onzekere verkeerssit-
uatie. Intelligente regeltechniek biedt nieuwe mogelijkheden om de regelaarsstrategieën
van mensen af te leiden door ons regelgedrag na te bootsen door middel van menselijke
voorbeelden. In dit proefschrift richten we ons op intelligente regeltechnieken vanuit
twee aspecten: (1) hoe men de regelaarsstrategieën kan leren van begeleiders door ge-
bruik te maken van de beschikbare voorbeelddata; (2) hoe men kan verifiëren of de van
data geleerde regelaar het proces veilig zal regelen.

Samenvattend bevat dit proefschrift de volgende hoofdbijdragen:

1. Een nieuw hybride model genaamd MOHA en een samengestelde leerstrategie
voor het leren van een hybride automaat van continue data zijn voorgesteld.

2. Een nieuw hybride model genaamd “regression automaton" (regressie-automaat)
en de geneigde leerstrategie voor het leren van een hybride automaat van continue
data zijn voorgesteld.

3. Een benadering is toegepast voor het leren van probabilistische automaten om de
intentie van een externe agent te voorspellen. Een modelvoorspellende regelaar
gebruikt vervolgens een dergelijke intentie om een veilige interactieve regeling te
bereiken.

4. Een nieuw raamwerk is ontwikkeld met behulp van getimede automaten voor het
leren van individuele processen en Bayesiaanse netwerken voor het leren van hun
afhankelijkheden. Het model kan worden gebruikt als een diagnose voor anoma-
liedetectie.

5. Een omzetter genaamd MO2SC is ontwikkeld. Deze vult het gat op tussen MOHA
en de nieuwe hybride modelcontroleur SpaceEx voor het verifiëren van de vei-
ligheidseigenschappen van het datagestuurde MOHA-model.

Bovenstaande technieken gaan om met fundamentele problemen over het leren, diag-
nosticeren en verifiëren van intelligente regelsystemen. Ze zijn geïmplementeerd, geë-
valueerd en toegepast op verschillende gevallen uit de praktijk om de effectiviteit en
toepasbaarheid in de praktijk aan te tonen.

179

CURRICULUM VITÆ

Qin was born on 4th December 1988 in Foochow, China. He graduated from Lianjiang
No. 1 Middle School in 2007, where his interests in Chinese literature, mathematics, and
physics grew quickly.

He obtained his bachelor’s and master’s degree both in automatic control. His aca-
demic research started in 2011 when he joined Prof. Jun Wang’s lab at Tongji Univer-
sity, Shanghai. He found the joy of doing research, writing and reading papers at Tongji,
where he also got fruitful research outcomes in signal processing and data mining with
his professor. This experience gently opened a door for him to explore a much wider
world. More importantly, it has planted the seed in his mind to devote himself to science
and engineering and become a scholar.

It was by chance that he got a Ph.D. researcher position offered by Dr. Sicco Ver-
wer at TU Delft. Sicco is a young researcher with rich experience in machine learning,
especially in automata learning. Qin finally joined the exciting tide of machine learn-
ing. Because of his previous background in automatic control and signal processing, he
is enthusiastic in applying automata learning in control and time series mining prob-
lems. He self-studied other related topics such as model checking. All of these dramat-
ically broaden his horizon. He connected a link with his old colleagues at Tongji and
several international collaborators who are also interested in automata-related theory.
He was encouraged by them to apply his knowledge into application domains such as
autonomous driving and cyber-physical systems’ security. He also assisted his professor
with several graduate-level courses and writing research proposals.

Qin is going to continue his research on safety verification for machine learning-
enabled components of autonomous vehicles under the supervision of Prof. John M.
Dolan at Carnegie Mellon University.

PUBLICATION LIST
• Journal articles (during Ph.D. study)

1. Qin Lin, Yihuan Zhang, Sicco Verwer, and Jun Wang. MOHA: a Multi-mode
Hybrid Automaton Model for Learning Car-following Behaviors. IEEE Trans-
actions on Intelligent Transportation Systems, 20(2): 790–796, 2019

2. Yihuan Zhang, Qin Lin, Jun Wang, Sicco Verwer, and John Dolan. Lane-
change Intention Estimation for Car-following Control in Autonomous Driv-
ing. IEEE Transactions on Intelligent Vehicles, 3(3): 276–286, 2018

• Refereed workshop and conference papers (during Ph.D. study)

3. Qin Lin, Christian Hammerschmidt, Gaetano Pellegrino, and Sicco Verwer.
Short-term Time Series Forecasting with Regression Automata. In ACM

181

182 CURRICULUM VITÆ

SIGKDD 2016 Workshop on Mining and Learning from Time Series (MiLeTS),
2016

4. Gaetano Pellegrino, Qin Lin, Christian Hammerschmidt, and Sicco Verwer.
Learning Behavioral Fingerprints from Netflows Using Timed Automata. In
Integrated Network and Service Management (IM), 2017 IFIP/IEEE Sympo-
sium on, pages 308–316. IEEE, 2017

5. Christian Hammerschmidt, Sicco Verwer, Qin, Lin, and Radu State. Inter-
preting Finite Automata for Sequential data. In Interpretable ML for Complex
Systems NIPS 2016 Workshop, 2016

6. Gaetano Pellegrino, Christian Hammerschmidt, Qin Lin, and Sicco Verwer.
Learning Deterministic Finite Automata from Infinite Alphabets. In Interna-
tional Conference on Grammatical Inference, pages 120–131, 2017

7. Xiaoran Liu, Qin Lin, Sicco Verwer, and Dmitri Jarnikov. Anomaly Detection
in a Digital Video Broadcasting System Using Timed Automata. In Thirty-
Second Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)
Workshop on Learning and Automata (LearnAut), 2017

8. Yihuan Zhang, Qin Lin, Jun Wang, and Sicco Verwer. Car-following Be-
havior Model Learning Using Timed Automata. IFAC-PapersOnLine, 50(1):
2353–2358, 2017

9. Yihuan Zhang, Jun Wang, Qin Lin, Sicco Verwer, and John Dolan. A Data-
driven Behavior Generation Algorithm in Car-following Scenarios. In Dy-
namics of Vehicles on Roads and Tracks Vol 1: Proceedings of the 25th Inter-
national Symposium on Dynamics of Vehicles on Roads and Tracks (IAVSD
2017), page 227-232. CRC Press, 2017

10. Qin Lin, Sridha Adepu, Sicco Verwer, and Aditya Mathur. TABOR: Agraphical
Model-based Approach for Anomaly Detection in Industrial Control Systems.
In Proceedings of the 2018 on Asia Conference on Computer and Communi-
cations Security, pages 525–536. ACM, 2018

11. Qin Lin and Sicco Verwer. Learning a Provably Safe Adaptive Cruise Con-
troller from Human Driving Data (submitted)

12. Qin Lin, Sicco Verwer, Robert Kooij and Aditya Mathur. Using Data Sets from
Industrial Control Systems for Cyber Security Education, 14th International
Conference on Critical Information Infrastructures Security, CRITIS 2019,
Linköping, Sweden, 2019

13. Qin Lin and Sicco Verwer. Probabilistic Model Learning from Noisy Data. In
International Conference on Grammatical Inference, pages, 2017 (extended
abstract)

• Publications before Ph.D. study

14. Qin Lin and Jun Wang. Vertically Correlated Echelon Model for the Interpo-
lation of Missing Wind Speed Data. IEEE Transactions on Sustainable Energy,
5(3): 804–812, 2014

CURRICULUM VITÆ 183

15. Huajie Gu, Jun Wang, Qin Lin, and Qi Gong. Automatic Contour-based Road
Network Design for Optimized Wind Farm Micrositing. IEEE Transactions on
Sustainable Energy, 6(1): 281–289, 2015

16. Qin Lin, Jun Wang, and Weiting Qiao. Denoising of Wind Speed Data by
Wavelet Thresholding. In Chinese Automation Congress (CAC), 2013, pages
518–521. IEEE, 2013

SIKS DISSERTATION SERIES

2011 01 Botond Cseke (RUN), Variational Algorithms for Bayesian Inference in Latent
Gaussian Models

02 Nick Tinnemeier (UU), Organizing Agent Organizations. Syntax and Opera-
tional Semantics of an Organization-Oriented Programming Language

03 Jan Martijn van der Werf (TUE), Compositional Design and Verification of
Component-Based Information Systems

04 Hado van Hasselt (UU), Insights in Reinforcement Learning; Formal analysis
and empirical evaluation of temporal-difference

05 Bas van der Raadt (VU), Enterprise Architecture Coming of Age - Increasing
the Performance of an Emerging Discipline.

06 Yiwen Wang (TUE), Semantically-Enhanced Recommendations in Cultural
Heritage

07 Yujia Cao (UT), Multimodal Information Presentation for High Load Human
Computer Interaction

08 Nieske Vergunst (UU), BDI-based Generation of Robust Task-Oriented Dia-
logues

09 Tim de Jong (OU), Contextualised Mobile Media for Learning
10 Bart Bogaert (UvT), Cloud Content Contention
11 Dhaval Vyas (UT), Designing for Awareness: An Experience-focused HCI Per-

spective
12 Carmen Bratosin (TUE), Grid Architecture for Distributed Process Mining
13 Xiaoyu Mao (UvT), Airport under Control. Multiagent Scheduling for Airport

Ground Handling
14 Milan Lovric (EUR), Behavioral Finance and Agent-Based Artificial Markets
15 Marijn Koolen (UvA), The Meaning of Structure: the Value of Link Evidence

for Information Retrieval
16 Maarten Schadd (UM), Selective Search in Games of Different Complexity
17 Jiyin He (UVA), Exploring Topic Structure: Coherence, Diversity and Related-

ness
18 Mark Ponsen (UM), Strategic Decision-Making in complex games
19 Ellen Rusman (OU), The Mind’s Eye on Personal Profiles
20 Qing Gu (VU), Guiding service-oriented software engineering - A view-based

approach
21 Linda Terlouw (TUD), Modularization and Specification of Service-Oriented

Systems
22 Junte Zhang (UVA), System Evaluation of Archival Description and Access
23 Wouter Weerkamp (UVA), Finding People and their Utterances in Social Me-

dia
24 Herwin van Welbergen (UT), Behavior Generation for Interpersonal Coordi-

nation with Virtual Humans On Specifying, Scheduling and Realizing Multi-
modal Virtual Human Behavior

185

186 SIKS DISSERTATION SERIES

25 Syed Waqar ul Qounain Jaffry (VU), Analysis and Validation of Models for
Trust Dynamics

26 Matthijs Aart Pontier (VU), Virtual Agents for Human Communication - Emo-
tion Regulation and Involvement-Distance Trade-Offs in Embodied Conver-
sational Agents and Robots

27 Aniel Bhulai (VU), Dynamic website optimization through autonomous
management of design patterns

28 Rianne Kaptein (UVA), Effective Focused Retrieval by Exploiting Query Con-
text and Document Structure

29 Faisal Kamiran (TUE), Discrimination-aware Classification
30 Egon van den Broek (UT), Affective Signal Processing (ASP): Unraveling the

mystery of emotions
31 Ludo Waltman (EUR), Computational and Game-Theoretic Approaches for

Modeling Bounded Rationality
32 Nees-Jan van Eck (EUR), Methodological Advances in Bibliometric Mapping

of Science
33 Tom van der Weide (UU), Arguing to Motivate Decisions
34 Paolo Turrini (UU), Strategic Reasoning in Interdependence: Logical and

Game-theoretical Investigations
35 Maaike Harbers (UU), Explaining Agent Behavior in Virtual Training
36 Erik van der Spek (UU), Experiments in serious game design: a cognitive ap-

proach
37 Adriana Burlutiu (RUN), Machine Learning for Pairwise Data, Applications

for Preference Learning and Supervised Network Inference
38 Nyree Lemmens (UM), Bee-inspired Distributed Optimization
39 Joost Westra (UU), Organizing Adaptation using Agents in Serious Games
40 Viktor Clerc (VU), Architectural Knowledge Management in Global Software

Development
41 Luan Ibraimi (UT), Cryptographically Enforced Distributed Data Access Con-

trol
42 Michal Sindlar (UU), Explaining Behavior through Mental State Attribution
43 Henk van der Schuur (UU), Process Improvement through Software Opera-

tion Knowledge
44 Boris Reuderink (UT), Robust Brain-Computer Interfaces
45 Herman Stehouwer (UvT), Statistical Language Models for Alternative Se-

quence Selection
46 Beibei Hu (TUD), Towards Contextualized Information Delivery: A Rule-

based Architecture for the Domain of Mobile Police Work
47 Azizi Bin Ab Aziz (VU), Exploring Computational Models for Intelligent Sup-

port of Persons with Depression
48 Mark Ter Maat (UT), Response Selection and Turn-taking for a Sensitive Arti-

ficial Listening Agent
49 Andreea Niculescu (UT), Conversational interfaces for task-oriented spoken

dialogues: design aspects influencing interaction quality

2012 01 Terry Kakeeto (UvT), Relationship Marketing for SMEs in Uganda
02 Muhammad Umair (VU), Adaptivity, emotion, and Rationality in Human and

Ambient Agent Models

SIKS DISSERTATION SERIES 187

03 Adam Vanya (VU), Supporting Architecture Evolution by Mining Software
Repositories

04 Jurriaan Souer (UU), Development of Content Management System-based
Web Applications

05 Marijn Plomp (UU), Maturing Interorganisational Information Systems
06 Wolfgang Reinhardt (OU), Awareness Support for Knowledge Workers in Re-

search Networks
07 Rianne van Lambalgen (VU), When the Going Gets Tough: Exploring Agent-

based Models of Human Performance under Demanding Conditions
08 Gerben de Vries (UVA), Kernel Methods for Vessel Trajectories
09 Ricardo Neisse (UT), Trust and Privacy Management Support for Context-

Aware Service Platforms
10 David Smits (TUE), Towards a Generic Distributed Adaptive Hypermedia En-

vironment
11 J.C.B. Rantham Prabhakara (TUE), Process Mining in the Large: Preprocess-

ing, Discovery, and Diagnostics
12 Kees van der Sluijs (TUE), Model Driven Design and Data Integration in Se-

mantic Web Information Systems
13 Suleman Shahid (UvT), Fun and Face: Exploring non-verbal expressions of

emotion during playful interactions
14 Evgeny Knutov (TUE), Generic Adaptation Framework for Unifying Adaptive

Web-based Systems
15 Natalie van der Wal (VU), Social Agents. Agent-Based Modelling of Integrated

Internal and Social Dynamics of Cognitive and Affective Processes.
16 Fiemke Both (VU), Helping people by understanding them - Ambient Agents

supporting task execution and depression treatment
17 Amal Elgammal (UvT), Towards a Comprehensive Framework for Business

Process Compliance
18 Eltjo Poort (VU), Improving Solution Architecting Practices
19 Helen Schonenberg (TUE), What’s Next? Operational Support for Business

Process Execution
20 Ali Bahramisharif (RUN), Covert Visual Spatial Attention, a Robust Paradigm

for Brain-Computer Interfacing
21 Roberto Cornacchia (TUD), Querying Sparse Matrices for Information Re-

trieval
22 Thijs Vis (UvT), Intelligence, politie en veiligheidsdienst: verenigbare

grootheden?
23 Christian Muehl (UT), Toward Affective Brain-Computer Interfaces: Explor-

ing the Neurophysiology of Affect during Human Media Interaction
24 Laurens van der Werff (UT), Evaluation of Noisy Transcripts for Spoken Doc-

ument Retrieval
25 Silja Eckartz (UT), Managing the Business Case Development in Inter-

Organizational IT Projects: A Methodology and its Application
26 Emile de Maat (UVA), Making Sense of Legal Text
27 Hayrettin Gurkok (UT), Mind the Sheep! User Experience Evaluation & Brain-

Computer Interface Games
28 Nancy Pascall (UvT), Engendering Technology Empowering Women
29 Almer Tigelaar (UT), Peer-to-Peer Information Retrieval

188 SIKS DISSERTATION SERIES

30 Alina Pommeranz (TUD), Designing Human-Centered Systems for Reflective
Decision Making

31 Emily Bagarukayo (RUN), A Learning by Construction Approach for Higher
Order Cognitive Skills Improvement, Building Capacity and Infrastructure

32 Wietske Visser (TUD), Qualitative multi-criteria preference representation
and reasoning

33 Rory Sie (OUN), Coalitions in Cooperation Networks (COCOON)
34 Pavol Jancura (RUN), Evolutionary analysis in PPI networks and applications
35 Evert Haasdijk (VU), Never Too Old To Learn – On-line Evolution of Con-

trollers in Swarm- and Modular Robotics
36 Denis Ssebugwawo (RUN), Analysis and Evaluation of Collaborative Model-

ing Processes
37 Agnes Nakakawa (RUN), A Collaboration Process for Enterprise Architecture

Creation
38 Selmar Smit (VU), Parameter Tuning and Scientific Testing in Evolutionary

Algorithms
39 Hassan Fatemi (UT), Risk-aware design of value and coordination networks
40 Agus Gunawan (UvT), Information Access for SMEs in Indonesia
41 Sebastian Kelle (OU), Game Design Patterns for Learning
42 Dominique Verpoorten (OU), Reflection Amplifiers in self-regulated Learn-

ing
43 Withdrawn
44 Anna Tordai (VU), On Combining Alignment Techniques
45 Benedikt Kratz (UvT), A Model and Language for Business-aware Transac-

tions
46 Simon Carter (UVA), Exploration and Exploitation of Multilingual Data for

Statistical Machine Translation
47 Manos Tsagkias (UVA), Mining Social Media: Tracking Content and Predict-

ing Behavior
48 Jorn Bakker (TUE), Handling Abrupt Changes in Evolving Time-series Data
49 Michael Kaisers (UM), Learning against Learning - Evolutionary dynamics of

reinforcement learning algorithms in strategic interactions
50 Steven van Kervel (TUD), Ontologogy driven Enterprise Information Systems

Engineering
51 Jeroen de Jong (TUD), Heuristics in Dynamic Sceduling; a practical frame-

work with a case study in elevator dispatching

2013 01 Viorel Milea (EUR), News Analytics for Financial Decision Support
02 Erietta Liarou (CWI), MonetDB/DataCell: Leveraging the Column-store

Database Technology for Efficient and Scalable Stream Processing
03 Szymon Klarman (VU), Reasoning with Contexts in Description Logics
04 Chetan Yadati (TUD), Coordinating autonomous planning and scheduling
05 Dulce Pumareja (UT), Groupware Requirements Evolutions Patterns
06 Romulo Goncalves (CWI), The Data Cyclotron: Juggling Data and Queries for

a Data Warehouse Audience
07 Giel van Lankveld (UvT), Quantifying Individual Player Differences
08 Robbert-Jan Merk (VU), Making enemies: cognitive modeling for opponent

agents in fighter pilot simulators

SIKS DISSERTATION SERIES 189

09 Fabio Gori (RUN), Metagenomic Data Analysis: Computational Methods and
Applications

10 Jeewanie Jayasinghe Arachchige (UvT), A Unified Modeling Framework for
Service Design.

11 Evangelos Pournaras (TUD), Multi-level Reconfigurable Self-organization in
Overlay Services

12 Marian Razavian (VU), Knowledge-driven Migration to Services
13 Mohammad Safiri (UT), Service Tailoring: User-centric creation of integrated

IT-based homecare services to support independent living of elderly
14 Jafar Tanha (UVA), Ensemble Approaches to Semi-Supervised Learning

Learning
15 Daniel Hennes (UM), Multiagent Learning - Dynamic Games and Applica-

tions
16 Eric Kok (UU), Exploring the practical benefits of argumentation in multi-

agent deliberation
17 Koen Kok (VU), The PowerMatcher: Smart Coordination for the Smart Elec-

tricity Grid
18 Jeroen Janssens (UvT), Outlier Selection and One-Class Classification
19 Renze Steenhuizen (TUD), Coordinated Multi-Agent Planning and Schedul-

ing
20 Katja Hofmann (UvA), Fast and Reliable Online Learning to Rank for Infor-

mation Retrieval
21 Sander Wubben (UvT), Text-to-text generation by monolingual machine

translation
22 Tom Claassen (RUN), Causal Discovery and Logic
23 Patricio de Alencar Silva (UvT), Value Activity Monitoring
24 Haitham Bou Ammar (UM), Automated Transfer in Reinforcement Learning
25 Agnieszka Anna Latoszek-Berendsen (UM), Intention-based Decision Sup-

port. A new way of representing and implementing clinical guidelines in a
Decision Support System

26 Alireza Zarghami (UT), Architectural Support for Dynamic Homecare Service
Provisioning

27 Mohammad Huq (UT), Inference-based Framework Managing Data Prove-
nance

28 Frans van der Sluis (UT), When Complexity becomes Interesting: An Inquiry
into the Information eXperience

29 Iwan de Kok (UT), Listening Heads
30 Joyce Nakatumba (TUE), Resource-Aware Business Process Management:

Analysis and Support
31 Dinh Khoa Nguyen (UvT), Blueprint Model and Language for Engineering

Cloud Applications
32 Kamakshi Rajagopal (OUN), Networking For Learning; The role of Network-

ing in a Lifelong Learner’s Professional Development
33 Qi Gao (TUD), User Modeling and Personalization in the Microblogging

Sphere
34 Kien Tjin-Kam-Jet (UT), Distributed Deep Web Search
35 Abdallah El Ali (UvA), Minimal Mobile Human Computer Interaction
36 Than Lam Hoang (TUe), Pattern Mining in Data Streams

190 SIKS DISSERTATION SERIES

37 Dirk Börner (OUN), Ambient Learning Displays
38 Eelco den Heijer (VU), Autonomous Evolutionary Art
39 Joop de Jong (TUD), A Method for Enterprise Ontology based Design of En-

terprise Information Systems
40 Pim Nijssen (UM), Monte-Carlo Tree Search for Multi-Player Games
41 Jochem Liem (UVA), Supporting the Conceptual Modelling of Dynamic Sys-

tems: A Knowledge Engineering Perspective on Qualitative Reasoning
42 Léon Planken (TUD), Algorithms for Simple Temporal Reasoning
43 Marc Bron (UVA), Exploration and Contextualization through Interaction and

Concepts

2014 01 Nicola Barile (UU), Studies in Learning Monotone Models from Data
02 Fiona Tuliyano (RUN), Combining System Dynamics with a Domain Model-

ing Method
03 Sergio Raul Duarte Torres (UT), Information Retrieval for Children: Search

Behavior and Solutions
04 Hanna Jochmann-Mannak (UT), Websites for children: search strategies and

interface design - Three studies on children’s search performance and evalu-
ation

05 Jurriaan van Reijsen (UU), Knowledge Perspectives on Advancing Dynamic
Capability

06 Damian Tamburri (VU), Supporting Networked Software Development
07 Arya Adriansyah (TUE), Aligning Observed and Modeled Behavior
08 Samur Araujo (TUD), Data Integration over Distributed and Heterogeneous

Data Endpoints
09 Philip Jackson (UvT), Toward Human-Level Artificial Intelligence: Represen-

tation and Computation of Meaning in Natural Language
10 Ivan Salvador Razo Zapata (VU), Service Value Networks
11 Janneke van der Zwaan (TUD), An Empathic Virtual Buddy for Social Support
12 Willem van Willigen (VU), Look Ma, No Hands: Aspects of Autonomous Ve-

hicle Control
13 Arlette van Wissen (VU), Agent-Based Support for Behavior Change: Models

and Applications in Health and Safety Domains
14 Yangyang Shi (TUD), Language Models With Meta-information
15 Natalya Mogles (VU), Agent-Based Analysis and Support of Human Function-

ing in Complex Socio-Technical Systems: Applications in Safety and Health-
care

16 Krystyna Milian (VU), Supporting trial recruitment and design by automati-
cally interpreting eligibility criteria

17 Kathrin Dentler (VU), Computing healthcare quality indicators automati-
cally: Secondary Use of Patient Data and Semantic Interoperability

18 Mattijs Ghijsen (UVA), Methods and Models for the Design and Study of Dy-
namic Agent Organizations

19 Vinicius Ramos (TUE), Adaptive Hypermedia Courses: Qualitative and Quan-
titative Evaluation and Tool Support

20 Mena Habib (UT), Named Entity Extraction and Disambiguation for Informal
Text: The Missing Link

21 Kassidy Clark (TUD), Negotiation and Monitoring in Open Environments

SIKS DISSERTATION SERIES 191

22 Marieke Peeters (UU), Personalized Educational Games - Developing agent-
supported scenario-based training

23 Eleftherios Sidirourgos (UvA/CWI), Space Efficient Indexes for the Big Data
Era

24 Davide Ceolin (VU), Trusting Semi-structured Web Data
25 Martijn Lappenschaar (RUN), New network models for the analysis of disease

interaction
26 Tim Baarslag (TUD), What to Bid and When to Stop
27 Rui Jorge Almeida (EUR), Conditional Density Models Integrating Fuzzy and

Probabilistic Representations of Uncertainty
28 Anna Chmielowiec (VU), Decentralized k-Clique Matching
29 Jaap Kabbedijk (UU), Variability in Multi-Tenant Enterprise Software
30 Peter de Cock (UvT), Anticipating Criminal Behaviour
31 Leo van Moergestel (UU), Agent Technology in Agile Multiparallel Manufac-

turing and Product Support
32 Naser Ayat (UvA), On Entity Resolution in Probabilistic Data
33 Tesfa Tegegne (RUN), Service Discovery in eHealth
34 Christina Manteli (VU), The Effect of Governance in Global Software Devel-

opment: Analyzing Transactive Memory Systems.
35 Joost van Ooijen (UU), Cognitive Agents in Virtual Worlds: A Middleware De-

sign Approach
36 Joos Buijs (TUE), Flexible Evolutionary Algorithms for Mining Structured Pro-

cess Models
37 Maral Dadvar (UT), Experts and Machines United Against Cyberbullying
38 Danny Plass-Oude Bos (UT), Making brain-computer interfaces better: im-

proving usability through post-processing.
39 Jasmina Maric (UvT), Web Communities, Immigration, and Social Capital
40 Walter Omona (RUN), A Framework for Knowledge Management Using ICT

in Higher Education
41 Frederic Hogenboom (EUR), Automated Detection of Financial Events in

News Text
42 Carsten Eijckhof (CWI/TUD), Contextual Multidimensional Relevance Mod-

els
43 Kevin Vlaanderen (UU), Supporting Process Improvement using Method In-

crements
44 Paulien Meesters (UvT), Intelligent Blauw. Met als ondertitel: Intelligence-

gestuurde politiezorg in gebiedsgebonden eenheden.
45 Birgit Schmitz (OUN), Mobile Games for Learning: A Pattern-Based Approach
46 Ke Tao (TUD), Social Web Data Analytics: Relevance, Redundancy, Diversity
47 Shangsong Liang (UVA), Fusion and Diversification in Information Retrieval

2015 01 Niels Netten (UvA), Machine Learning for Relevance of Information in Crisis
Response

02 Faiza Bukhsh (UvT), Smart auditing: Innovative Compliance Checking in
Customs Controls

03 Twan van Laarhoven (RUN), Machine learning for network data
04 Howard Spoelstra (OUN), Collaborations in Open Learning Environments
05 Christoph Bösch (UT), Cryptographically Enforced Search Pattern Hiding

192 SIKS DISSERTATION SERIES

06 Farideh Heidari (TUD), Business Process Quality Computation - Computing
Non-Functional Requirements to Improve Business Processes

07 Maria-Hendrike Peetz (UvA), Time-Aware Online Reputation Analysis
08 Jie Jiang (TUD), Organizational Compliance: An agent-based model for de-

signing and evaluating organizational interactions
09 Randy Klaassen (UT), HCI Perspectives on Behavior Change Support Systems
10 Henry Hermans (OUN), OpenU: design of an integrated system to support

lifelong learning
11 Yongming Luo (TUE), Designing algorithms for big graph datasets: A study of

computing bisimulation and joins
12 Julie M. Birkholz (VU), Modi Operandi of Social Network Dynamics: The Ef-

fect of Context on Scientific Collaboration Networks
13 Giuseppe Procaccianti (VU), Energy-Efficient Software
14 Bart van Straalen (UT), A cognitive approach to modeling bad news conver-

sations
15 Klaas Andries de Graaf (VU), Ontology-based Software Architecture Docu-

mentation
16 Changyun Wei (UT), Cognitive Coordination for Cooperative Multi-Robot

Teamwork
17 André van Cleeff (UT), Physical and Digital Security Mechanisms: Properties,

Combinations and Trade-offs
18 Holger Pirk (CWI), Waste Not, Want Not! - Managing Relational Data in Asym-

metric Memories
19 Bernardo Tabuenca (OUN), Ubiquitous Technology for Lifelong Learners
20 Lois Vanhée (UU), Using Culture and Values to Support Flexible Coordination
21 Sibren Fetter (OUN), Using Peer-Support to Expand and Stabilize Online

Learning
22 Zhemin Zhu (UT), Co-occurrence Rate Networks
23 Luit Gazendam (VU), Cataloguer Support in Cultural Heritage
24 Richard Berendsen (UVA), Finding People, Papers, and Posts: Vertical Search

Algorithms and Evaluation
25 Steven Woudenberg (UU), Bayesian Tools for Early Disease Detection
26 Alexander Hogenboom (EUR), Sentiment Analysis of Text Guided by Seman-

tics and Structure
27 Sándor Héman (CWI), Updating compressed colomn stores
28 Janet Bagorogoza (TiU), Knowledge Management and High Performance;

The Uganda Financial Institutions Model for HPO
29 Hendrik Baier (UM), Monte-Carlo Tree Search Enhancements for One-Player

and Two-Player Domains
30 Kiavash Bahreini (OU), Real-time Multimodal Emotion Recognition in E-

Learning
31 Yakup Koç (TUD), On the robustness of Power Grids
32 Jerome Gard (UL), Corporate Venture Management in SMEs
33 Frederik Schadd (TUD), Ontology Mapping with Auxiliary Resources
34 Victor de Graaf (UT), Gesocial Recommender Systems
35 Jungxao Xu (TUD), Affective Body Language of Humanoid Robots: Percep-

tion and Effects in Human Robot Interaction

2016 01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines

SIKS DISSERTATION SERIES 193

02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through
decision support: prescribing a better pill to swallow

03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge
Worker Support

04 Laurens Rietveld (VU), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UVA), Expanded Acyclic Queries: Containment and an

Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VU), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data
09 Archana Nottamkandath (VU), Trusting Crowdsourced Information on Cul-

tural Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UVA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-

Agent Systems
13 Nana Baah Gyan (VU), The Web, Speech Technologies and Rural Develop-

ment in West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects, Al-

gorithms and Experiments
16 Guangliang Li (UVA), Socially Intelligent Autonomous Agents that Learn from

Human Reward
17 Berend Weel (VU), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VU), Refining Statistical Data on the Web
19 Julia Efremova (Tu/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UVA), Context & Semantics in News & Web Search
21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:

Automatic Analysis of Player Behavior in the Interactive Tag Playground
22 Grace Lewis (VU), Software Architecture Strategies for Cyber-Foraging Sys-

tems
23 Fei Cai (UVA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An

Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching

and Browsing Behavior
26 Dilhan Thilakarathne (VU), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural
Choices, with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study

on epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -

Markets and prices for flexible planning
30 Ruud Mattheij (UvT), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring

194 SIKS DISSERTATION SERIES

32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability
Risks for Crisis Organisations

33 Peter Bloem (UVA), Single Sample Statistics, exercises in learning from just
one example

34 Dennis Schunselaar (TUE), Configurable Process Trees: Elicitation, Analysis,
and Enactment

35 Zhaochun Ren (UVA), Monitoring Social Media: Summarization, Classifica-
tion and Recommendation

36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction
behavior optimized for robot-specific morphologies

37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and compu-
tational inquiry

38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art & In-
teraction Design

39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal
Style Selection for an Artificial Suspect

40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for

Analysing Institutional Design and Enactment Governance
42 Spyros Martzoukos (UVA), Combinatorial and Compositional Aspects of

Bilingual Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management:

From Theory to Practice
44 Thibault Sellam (UVA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic inno-

vation networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-

Theoretic Analysis
50 Yan Wang (UVT), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017 01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Net-

works using Argumentation
03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach

with Autonomous Products and Reconfigurable Manufacturing Machines
04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UVA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VU) , Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational Per-

spective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior

SIKS DISSERTATION SERIES 195

11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter
#anticipointment

12 Sander Leemans (TUE), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social

touch through haptic technology
14 Shoshannah Tekofsky (UvT), You Are Who You Play You Are: Modelling Player

Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UVA), Understanding and Modeling Users of Modern

Search Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UVA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in In-

formation Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge

Sharing: The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious

Gaming (A Play on Worlds)
22 Sara Magliacane (VU), Logics for causal inference under uncertainty
23 David Graus (UVA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VU), Knowledge Representation for Clinical Guidelines,

with applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to

human touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VU), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (UvT), From IT-BusinessStrategic Alignment to Performance:

A Moderated Mediation Model of Social Innovation, and Enterprise Gover-
nance of IT"

30 Wilma Latuny (UvT), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documen-

tation: A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VU), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TUE), WiBAF: A Within Browser Adaptation Frame-

work that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and

compressive sensing methods to increase noise robustness in ASR
40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of

Human Control in Relation to Emotions, Desires and Social Support For ap-
plications in human-aware support systems

196 SIKS DISSERTATION SERIES

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Men-
tal Processes and a Smart Environment to Provide Support for a Healthy
Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguis-

tics in Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018 01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TUE), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior
Prediction

04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in
Data-Centric Engineering Tasks

05 Hugo Huurdeman (UVA), Supporting the Complex Dynamics of the Informa-
tion Seeking Process

06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of
Socio-Technical Systems

07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behav-

ior change through intelligent technology
11 Mahdi Sargolzaei (UVA), Enabling Framework for Service-oriented Collabo-

rative Networks
12 Xixi Lu (TUE), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (UVT), Detecting Social Signals with Spatiotemporal Gabor Fil-

ters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a

group of children
17 Jianpeng Zhang (TUE), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OUN), EMERGO: a generic platform for authoring and play-

ing scenario-based serious games
22 Eric Fernandes de Mello Araujo (VUA), Contagious: Modeling the Spread of

Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis

SIKS DISSERTATION SERIES 197

24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-
Autonomous Telepresence Robots

25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational

Messages for Behavior Change Technology
27 Maikel Leemans (TUE), Hierarchical Process Mining for Scalable Software

Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how

they make you feel
29 Yu Gu (UVT), Emotion Recognition from Mandarin Speech
30 Wouter Beek, The "K" in "semantic web" stands for "knowledge": scaling se-

mantics to the web

2019 01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A
graph-based approach to RTB system classification

02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for As-
sessing Class Size Uncertainty

03 Eduardo Gonzalez Lopez de Murillas (TUE), Process Mining on Databases:
Extracting Event Data from Real Life Data Sources

04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TUE), Process Mining with Streaming Data
06 Chris Dijkshoorn (VU), Nichesourcing for Improving Access to Linked Cul-

tural Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Pro-

cesses
09 Fahimeh Alizadeh Moghaddam (UVA), Self-adaptation for energy efficiency

in software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation

and Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Be-

havioral Engagement in MOOCs
12 Jacqueline Heinerman (VU), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Be-

havior & Improving Learning Outcomes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Par-

tially Observable Environments
16 Guangming Li (TUE), Process Mining based on Object-Centric Behavioral

Constraint (OCBC) Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective

intelligence
21 Cong Liu (TUE), Software Data Analytics: Architectural Model Discovery and

Design Pattern Detection

198 SIKS DISSERTATION SERIES

22 Martin van den Berg (VU),Improving IT Decisions with Enterprise Architec-
ture

23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verifica-
tion

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation for hybrid system learning
	Complexity bottleneck of conventional controller design
	Intelligent control system: opportunities and challenges
	Related work

	Conceptual approaches
	Contributions
	Outline

	Background
	Introduction
	Time-driven and event-driven systems
	Discrete event systems
	Non-timed automata
	Probabilistic automata
	Timed automata

	Hybrid dynamical systems
	Hybrid automata

	Automata learning
	Learning from positive and negative data
	Learning from positive example
	Hybrid automata learning

	Hybrid system verification
	Reachability for hybrid dynamics

	Summary

	Learning hybrid automata for imitation control
	Introduction
	Car-following model identification
	State machine learning
	Probabilistic deterministic real timed automaton
	Data description
	Data pre-processing
	Learning PDRTAs

	State sequence clustering
	Common strings
	Hierarchical string clustering
	On-line inference

	Experimental results
	Model interpretation
	Competing methods

	A human-like cruise controller
	Conclusion

	Learning auto-regressive dynamical models using regression automata
	Introduction
	Data preprocessing
	Discretization
	Stationarity and drift model
	Regression automata
	Evidence-driven state-merging
	Model smoothing
	Sliding window length

	Experiments
	Typical methods for comparison
	Evaluation metrics
	Experiment results
	Learning and model complexity

	Conclusion

	Learning automata for perception and control
	Introduction
	Related work
	Driving behavior classification
	Car-following control

	Proposed method
	Scenario definition and extraction
	Behavior model
	Model predictive control

	Experimental results
	Classification evaluation
	Lane change prediction
	Car-following testing results

	Conclusions

	Learning automaton for diagnosing a control system
	Introduction
	Related work
	Introduction to SWaT and the dataset
	Attack scenarios

	Signal processing
	Denoising
	Segmentation
	Alignment

	TABOR Learning
	Probabilistic deterministic real timed automaton
	Learning PDRTA
	Learning bayesian network

	Experiments
	Evaluation
	Discussion

	Conclusion and future work

	Verification of learning-based hybrid control system
	Introduction
	Related work
	MOHA: An hybrid automaton model
	Hybrid model checker
	SpaceEx
	Translator

	Modeling and experiments
	Conclusion

	Conclusion, reflection, and future work
	Conclusion
	Reflection
	Future work

	Bibliography
	Summary
	Samenvatting
	Curriculum Vitæ
	SIKS dissertation series

