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Abstract

Sample selection bias occurs when the selected
samples in a subset of the original data set follow
a different distribution than the samples from the
original data set. This type of bias in the train-
ing set could result in a classifier being unable to
predict samples from a testing data set optimally.
Domain adaptation techniques try to adapt classi-
fiers to a possible bias in the training or testing
set. Subspace mapping techniques specifically do
this by trying to find common subspaces between
the source and target domain, where the source do-
main is the domain with all samples used for train-
ing, and the target domain is the domain with sam-
ples that must be predicted. This project aims to
evaluate the effectiveness of two subspace map-
ping techniques in mitigating sample selection bias.
This research assumes that no data samples from
a target domain are available, but only unlabelled
samples coming from an underlying global domain.
The two subspace mapping techniques that will be
tested in this paper are subspace alignment (SA)
and transfer component analysis (TCA). This pa-
per will show that the subspace alignment method
is more effective on data sets with fewer features
and where the source and target domains are fur-
ther away from each other. The transfer component
analysis method is more effective when more train-
ing samples are available on data sets with fewer
features and where the distance between the source
and target domain is not too big. The effectiveness
of both methods also depends on the type and form
of the data sets they are used on.

1 Introduction

In machine learning, we speak of sample selection bias when
some samples with specific feature values appear more in the
selected samples from the original data set than when they
are selected completely randomly. When training or testing
data has this specific bias, the source and target domain can
differ, where the source domain is the domain with all sam-
ples used for training, and the farget domain is the domain
with samples that must be predicted. A difference between
the source and target domain could lead to worse predictions
of the samples in the target domain, as most classifiers do not
consider this difference. Mitigating sample selection bias can
help machine learning models become more accurate and re-
liable. Therefore, it is worth researching techniques that take
biased data into account.

Some studies have already been done on sample selection
bias. One idea already studied is the effect of sample selec-
tion bias on the results of some well-known classifiers [9].
Some papers also discuss different methods to mitigate the
problem of selection bias [9] [7]. These methods are called
domain adaptation methods. Domain adaptation methods try
to mitigate the negative effects of bias in the data by adapting
the source domain to the target domain. Wouter M. Kouw and

Marco Loog [4] divide domain adaption methods into sample,
feature, and inference-based methods. First of all, sample-
based strategies focus on the process of selecting samples in
a given data set. Secondly, feature-based techniques will use
transformations in the feature space of the data sets to gener-
alize the data. Lastly, inference-based methods use adaptation
in the parameter estimation procedure in classification tech-
niques. One specific category of feature-based approaches
is subspace mapping. Subspace mapping techniques aim to
decrease the shift between the source and target domains by
finding common subspaces between the two domains. Us-
ing these subspaces, the source data will be aligned with the
target data [4].

Most papers on domain adaptation techniques test the ef-
fectiveness of their methods by using the target domain to
adapt their models. No data from the target domain is some-
times available, but unlabeled data from an underlying global
domain is. In these cases, it is possible to use unlabeled data
from the underlying global domain to generalize classifiers
instead of using samples from a target domain, where the
global domain is the domain that contains all possible data
samples for a specific problem. Samples from the source and
target domain always lie in this global domain. There is still
a lack of research on the effectiveness of using unlabeled data
from a global domain to adapt the source domain to the target
domain. This also applies to subspace mapping techniques.

In this paper, we investigate the effectiveness of subspace
mapping techniques in mitigating sample selection bias in
classification problems, assuming that no samples from the
target domain are available and samples from an underlying
global domain are. These subspace mapping techniques are
examined with four different factors that could influence their
effectiveness. Firstly, we explore the impact of training sam-
ple size on their effectiveness. Secondly, we look at how the
number of features influences their performance. Thirdly, we
investigate the influence of the distance between the source
and target domains on their effectiveness. Lastly, we examine
the effect of different data sets on their performance. By in-
vestigating these four factors, we aim to provide insights into
the overall effectiveness of subspace mapping techniques in
mitigating sample selection bias. The two specific subspace
mapping techniques that will be researched in this paper are
subspace alignment (SA) [2] and transfer component analy-
sis (TCA) [5]. The reasons for choosing these two methods
are that different papers support and discuss the implementa-
tion of both methods [2] [5], both methods are already imple-
mented in a library, and both methods differ in their approach
to mapping the source to the target domain.

In Section 2, the methods used in this research will be ex-
plained. Section 3 will give and discuss the results for all
experiments. The research’s ethical aspects and reproducibil-
ity will be explained in Section 4. Lastly, Section 5 will give
the conclusion and suggest topics for future research.

2 Methodology

This section outlines the methods used to answer the research
question. Section 2.1 describes the setup of the data sets used
in the research. After that, Section 2.2 describes the tech-



niques used to bias data sets. The implementation of all clas-
sifiers is described in Section 2.3. Section 2.5 will explain
the proxy A-distance used as a distance metric for one of the
experiments. Lastly, the evaluation criterion is described in
Section 2.4.

2.1 Setup of the data sets

The scikit-learn data set library [6] was used to generate data
samples. This library contains both real-world data sets and
can create synthetic data sets. We chose to use synthetic data
sets in our research, as synthetic data sets are easy to toy
around with. Most data set generation methods in the scikit-
learn library have a lot of parameters that can be changed,
such as the number of features and the number of samples in
the generated data sets, making it easy to set up different data
sets to research on.

The data generation functions that were used in our re-
search were the make classification, make blobs, and make
gaussian quantiles functions. These functions are all part
of the scikit-learn library. The make classification function
creates a random data set that can be used for classifica-
tion problems. The function has a lot of parameters that
determine what the output data set looks like. These pa-
rameters are the number of samples, n_samples, the num-
ber of features, n_features, the number of classes, n_classes,
the number of informative features, n_informative, the num-
ber of redundant features, n_redundant, the number of re-
peated features, n_repeated, the number of clusters per class,
n_cluster_per_class, and the random state, random_state.
There are even more parameters for this function, but since
they will always be set to their default values in our experi-
ments, they won’t be mentioned.

The make blobs function generates a data set containing
isotropic Gaussian blobs. The parameters for this function
include the number of samples, n_samples, the number of
features, n_features, the number of centers, centers, and the
random state, random_state. There are some more parame-
ters for the make blob function, but these will always be set
to their default value. The number of classes that the data
set generated by make blobs equals the value of centers. We
want to work with data sets containing only two classes in our
experiments. Therefore, we modified the data sets generated
by make blobs to ensure only two classes will be present in
the modified data set. To do this, we changed all class labels
with an even value to 0 and all class labels with an odd value
to 1. Like this, two classes remain with labels 0 and 1 when
centers is set to a value higher than 2.

The make gaussian quantiles function generates an
isotropic Gaussian and labels samples by quantile. The
parameters for the function are the number of samples,
n_samples, the number of features, n_features, the number
of classes, n_classes, and the random state, random_state.
Again, this function contains more parameters, but these will
always be set to their default values.

A training, testing, and global data set must be obtained
from a data set generated with one of the above functions to
train and evaluate the classifiers. The training data set con-
tains samples from the source domain, the testing data set
contains samples from the target domain, and the global data

set contains samples from the underlying global domain. The
training, testing, and global data sets may not have duplicate
samples. In the research, the testing and global data sets are
both not biased. Therefore, both these data sets will contain
random samples from the original data set. On the other hand,
the training set should be biased in most of the test cases.
Firstly, random samples will be selected from the original
data set. Afterward, biased samples will be selected from
these samples using the method described in Section 2.2. The
reason for selecting random samples first is that directly se-
lecting the biased samples from the original data set would
make the remaining data samples biased. This would result
in a biased testing and global data set, as these will be se-
lected from the remaining samples. The ratio between the
training, testing, and global data set was set to 5:2:3 for all
experiments.

2.2 Biasing technique

As described in the previous Section, a biasing technique was
applied to the training set to bias the training data. There are
different ways to introduce sample selection bias into a data
set [7]1 [9]. The biasing technique chosen for this research is
based on a technique described in the Adapt Python library
[1]. This technique randomly selects samples from a data
set, with every sample having a probability of being chosen.
However, how this probability gets calculated differs from the
original technique in our research. In our method, a random
data point gets generated that lies within the boundaries of the
sample space. This generated data point has the same dimen-
sions as the sample space. The next step is calculating the
Euclidean distances between every sample and the generated
data point. The Euclidean distance d is computed using Eq.1.
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Where s is the sample, p is the generated data point, n is the
number of features, x; 5 is the value of feature i for sample
s, and x; , is the value of feature ¢ for the generated data
point p. The calculated distances are then used to calculate a
selection weight for every sample. This selection weight w is
calculated using Eq. 2.

(ds,p—9)
W, = e Viims 2)
Where s is the sample, ds ; is the Euclidean distance be-
tween the sample s and the generated data point p, f is the
biasing factor, which is either 0 or a positive integer, and
dimg is the number of dimensions of sample s. The weight
of a sample decreases exponentially with a higher distance.
This makes sure that samples close to the data point will have
a higher weight than samples far away from the data point.
The distance is multiplied by the negative value of the bias-
ing factor to influence the weight increase when the distance
changes. A higher biasing factor will result in a bigger weight
difference between samples when distances remain the same.
Using the negative value of the biasing factor will ensure that



samples with lower distances get a higher weight, given a pos-
itive value for the biasing factor. To get the final probability
for a sample to get selected p, Eq. 3 is used.
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Where s is the sample, wy is the selection weight for sam-
ple s, n is the number of samples, and w; the selection weight
of sample ¢. The number of biased samples that will be se-

lected from the unbiased data set x can be calculated using
Eq. 4.
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Where r is the ratio between selected samples and the total
number of samples, and n is the total number of samples in
the original, unbiased data set. Finally, The samples are se-
lected using a random choice function from NumPy [3]. The
random choice function has as parameters an input array, A,
the number of items to select from the array, x, and an array of
probabilities, P. The function outputs an array of size x con-
taining samples of A that were selected with the probabilities
belonging to P. In our case, the inputs are the original, un-
biased data set containing all samples, the number of biased
samples that are selected from the original data set (Eq. 4),
and an array containing all calculated probabilities for sam-
ples (Eq. 3). The output is a biased subset of the unbiased
input data set.

2.3 Domain adaptations methods

In our research, we used two different adaptation methods
to experiment. The two adaptation methods were subspace
alignment (SA) and transfer component analysis (TCA). the
following two paragraphs will explain the two methods in a
little more detail.

The idea behind the subspace alignment [2] is that a lower
discrepancy between the source and target domain results in
better predictions on the target domain by a classifier. The
goal of the technique is to decrease the discrepancy between
the source and target domain by finding shared subspaces be-
tween them and then aligning the source subspace with the
target subspace. The first parameter of SA is the number of
dimensions in the subspaces, d. The subspaces for the source
and the target domains are obtained by applying principal
component analysis (PCA). Using PCA will result in a sub-
space containing the d most important eigenvectors of the ini-
tial domain. After using PCA, the subspace of the source will
be transformed using a matrix M. This matrix is constructed
so that the result of multiplying M with the source subspace
is as close as possible to the target subspace. This resulting
target-aligned source subspace is then used to train an estima-
tor. This estimator, estimator, is the second parameter of SA
and can be any other classifier.

Transfer component analysis [5] is similar in some ways
to subspace alignment. TCA also tries to bring the source
and target domains closer through subspaces. However, the
way that TCA does this differs from that of SA. TCA uses a
kernel matrix K to calculate the distance between the source
and target domains. Minimizing this distance will result in

the kernel that represents the subspace for the target-aligned
source domain. This subspace is then used to train an estima-
tor. The parameters of TCA are the estimator used to train on
the subspace, estimator, and the number of dimensions of the
subspace, d. !

In our research, we used logistic regression (LR) and k-
nearest neighbors (KNN) as estimator for SA and TCA. We
chose these two classifiers as LR is a linear classifier, and
KNN is a non-linear classifier. Researching both types of
classifiers will give us more insight into the accuracies of the
domain adaptation methods. 2

Since parameters influence the performance of SA, TCA,
and KNN, parameter optimization was performed for every
evaluation of the classifiers. To get the best parameters possi-
ble for every data set, k-fold cross-validation was performed
with the training data before fitting the models. K-fold cross-
validation is an effective way to retrieve good values for
the hyperparameters of classifiers. For SA and TCA, cross-
validation was used to tune the dimensionality parameter, d.
We chose not to fine-tune the other parameters of SA and
TCA as that would exponentially increase the time to find the
best parameters, and the experiment was already really time-
consuming. For KNN, cross-validation was used to tune pa-
rameter k. This parameter represents the number of neighbors
to consider when estimating a sample.

2.4 Evaluation criterion

All models were evaluated with a well-known accuracy score
in machine learning. This accuracy score counts the number
of samples evaluated correctly and divides that number by the
total number of samples the model estimated. This accuracy
score a has the following equation:

L TP+ TN
 TP+TN+FP+FN

Where TP = true positives, TN = true negatives, FP = false
positives, and FN = false negatives. This accuracy score
doesn’t consider class imbalances. However, in the research,
we ensured that each class in every data set contained equally
many samples in the training, testing, and global data set. In
this way, the class imbalance should not be corrected when
calculating the accuracy. Equation 5 also does not consider
class weights. This does not matter either since the research
was done on synthetic rather than real-world data, and every
incorrect class prediction should have the same effect on the
model’s effectiveness.

To decrease the influence of randomness on the results, we
trained and evaluated every classifier 10 times for every data
point, with the training, testing, global data set samples, and
the biasing data point used in the biasing technique being dif-
ferent every time due to randomness. We displayed the mean
accuracy, the minimum, and the maximum values in the re-
sults.

(&)

'The Python Adapt library [1] was used to implement SA and
TCA.

*The scikit-learn library [6] was used to implement LR and
KNN.



2.5 Proxy A-distance

For one of the experiments, subspace mapping techniques are
evaluated against the distance between the source and the tar-
get domain. The distance metric that we chose for this exper-
iment is the proxy A-distance. The method we used to calcu-
late the proxy A-distance is based on two papers [8] [4]. The
main idea behind the method is that for two similar source
and target domains, it is harder to predict from which domain
a random sample comes, given that the domain is unknown
for the sample. Thus a classifier trained to predict whether
a sample belongs to the source or target domain should give
a bigger error when the two domains are more similar. To
calculate the proxy A-distance, all samples from the source
data set will be labeled 0, and all samples from the target
data set will be labeled 1. The original labels for all the sam-
ples should be neglected and overwritten. The second step
is mixing all samples from the source and target domains.
After that, a classifier will be used to perform k-fold cross-
validation on the mixed data set to get the cross-validation
error. This error will be the mean of all errors for each fold.
The error itself get calculated using Eq.6:

e=1—a (6)

Where a is the accuracy in Eq.5. The classifier we used
in our research was logistic regression, and we applied 5-fold
cross-validation. The cross-validation error was then used in
the following equation to calculate the proxy A-distance D:

Dsr=2(1-2-Egsr) @)

Where S is the data set in the source domain, 7" is the data
set in the target domain, and Eg 7 is the cross-validation error
obtained of a classifier trained to discriminate source samples
in s from target samples in T’ like explained above.

3 Results and Discussion

This section will discuss the setup and results of all exper-
iments. In all results, SA and TCA are compared to either
KNN or LR depending on which classifier is used for estima-
tor. Furthermore, every plot has an ’optimal’ line represent-
ing the results of LR or KNN trained on an unbiased training
set.

In the first experiment, the accuracy of all classifiers was
tested on different numbers of training set samples. In the
second experiment, accuracy was measured on different num-
bers of features. Accuracy was measured for different proxy-
A distances between the source and target domain in the third
experiment. Lastly, the fourth experiment measured the ac-
curacy of different types of data sets.

3.1 Experiment 1: Training sample size

For the first set of experiments, the mean accuracies of SA
and TCA were measured for different training sample sizes.
The data set was generated using the make classification
function (Section 2.1). We set the parameters to n_samples
= 9000, n_features = 2, n_classes = 2, n_informative = 2,
n_redundant = 0, n_repeated = 0, n_clusters_per_class = 2,
and random _state = 0.
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Figure 1: Data set generated by the make classification func-
tion. Parameters are set to n_samples = 500, n_features = 2,
n_classes = 2, n_informative = 2, n_redundant = 0, n_repeated = 0,
n_clusters_per_class = 2, and random _state = 0. The rest of the pa-
rameters were set to their default values

To generate data sets with different numbers of samples, a
subset of samples was selected and drawn from the original
data for each measurement. Figure 1 shows an example of the
generated data set, where n_samples is set to 500. This data
set was then split into training, testing, and global data sets.
After that, the biasing technique explained in Section 2.2 was
used to biasing the training set. The biasing factor f used in
this experiment was set at 50, and the ratio between selected
samples and the total number of samples r was set at 0.1.

Figure 2 shows the results of the experiments using LR
and KNN. In the experiment with Logistic Regression (Fig-
ure 2a), the mean accuracy of SA is better than LR and TCA
for every training set sample size. However, for less than 60
training samples, the range for SA is bigger than the range of
LR, where the range is the difference between the highest and
lowest accuracy measured. The reason for this could be due
to the complexity of the alignment process and the potential
instability of the learned mappings when the sample size is
small. TCA has a lower mean accuracy than LR at low train-
ing sample sizes. From 400 samples onwards, TCA and LR
have around the same mean accuracies. In the KNN experi-
ment (Figure 2b), SA also has better mean accuracy for every
data point than KNN and TCA. For smaller training sample
sizes, TCA performs similarly to KNN. From 300 samples,
TCA’s mean accuracies get better than those of KNN. TCA
makes use of a kernel function in its method. The kernel bet-
ter represents the source and global domains with more data
samples. This should give a more accurate result when try-
ing to maximize the discrepancy and thus adapts the source
domain better towards the global domain. This can be why
TCA is more effective at higher training sample sizes.

In both experiments, more training data leads to more con-
sistent and predictable results with smaller ranges on average.
This is probably because, with more training samples, classi-
fiers better represent the underlying domains. Furthermore,
the sample size of the training set hardly influences the mean



accuracies of all classifiers in the experiments. Every clas-
sifier’s mean accuracy at higher sample sizes stays within a
margin of 0.05 or less. SA mitigates the effects of sample se-
lection bias better than TCA. For TCA, it seems that a higher
training sample size decreases the effects of biased data on
accuracy. However, this improvement is minimal.
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Figure 2: Mean, lowest and highest accuracies on different training
sample sizes. The grey dotted line represents the mean accuracies of
KNN or LR when trained on an unbiased training set

3.2 Experiment 2: Number of features

In the second set of experiments, the mean accuracies of
SA and TCA were measured for different numbers of fea-
tures. For this set of experiments, all data sets were gener-
ated using the make classification function described in Sec-
tion 2.1. We set the parameters of this function to n_samples
= 5000, n_classes = 2, n_redundant = 0, n_repeated = 0,
n_clusters_per_class = 2, and random_state = None. Further-
more, n_informative was set to the same value as the number
of features. To create a variable number of features to investi-
gate, for every data point, a data set was generated with differ-

ent numbers of features by adjusting the n_features parameter
of the make classification function. An example of the form
of the data set can be found in Figure 1, where n_features is
set to 2 and n_samples to 500. For the biasing function, f was
set to 50, and r was set to 0.1.
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Figure 3: Mean, lowest and highest accuracies on different numbers
of features. The Grey dotted line represents the mean accuracies of
KNN or LR when trained on an unbiased training set

The results for the experiments are displayed in Figure 3.
Both experiments (Figures 3a, 3b) show that SA has higher
mean accuracy than TCA and LR for feature sizes 2 and 5.
However, from a feature size of 8 onwards, SA performs only
about as well as LR and KNN and doesn’t mitigate the bias.
The range for SA is also bigger than that of LR but roughly
the same as KNN. From a feature size of 16 onward, TCA
performs worse than LR on mean accuracy. The mean accu-
racy of TCA drops for larger feature sizes up until around 30
features, where it stagnates. It might be harder for the TCA
method to find the accurate discrepancy between the source
and global domain at larger feature sizes as the data gets more
complex. This could lead to diminishing effectiveness.



3.3 Experiment 3: Distance between source and
target domain

In the third set of experiments, the mean accuracies of SA
and TCA were measured against an increasing distance be-
tween the source and target domain. The distance metric
used for this experiment was the proxy A-distance (Section
2.5). Our experiment used data sets generated by the make
classification method. The parameters were set to n_samples
= 10000, n_features = 2, n_classes = 2, n_informative = 2,
n_redundant = 0, n_repeated = 0, n_clusters_per_class = 2,
and random_state = 0. The data set in Figure 1 looks like
the data set generated, but with n_samples set to 500. As the
proxy A-distance gets calculated from the training (source)
and test (target) data sets, we didn’t have predefined proxy
A-distances to use as parameters for this experiment. To sim-
ulate an increasing proxy A-distance, we increased the bias-
ing factor f in the biasing method. The values for f we used
were all integers from O up until 15. The biasing method’s
parameter r was set to 0.1.

The results for the experiment can be found in Figure 4. In
both experiments, the classifier trained on an unbiased train-
ing set is similar for every data point. This is because the
only variable, the biasing factor, doesn’t influence the un-
biased training set. For LR as estimator (Figure 3a), SA
performs better than TCA and LR. The mean accuracy of
SA hardly changes for higher proxy A-distances, while the
mean accuracies of LR do decrease slowly. This means that
SA is slightly more effective in mitigating sample selection
bias with higher proxy A-distances. Only a slight decrease
in mean accuracy while the training data gets more biased
suggests that SA is robust in finding the common subspace
between the source and global domain. Furthermore, TCA
has lower mean accuracies than LR, and this difference only
increases for higher proxy A-distances. The range of TCA
is also a lot higher than that of LR. This indicates that TCA
struggles to adapt to the source and global domains. With
KNN as estimator (Figure 3b), SA score better on mean ac-
curacy than KNN at lower proxy A-distances. SA gets better
mean accuracies from a proxy A-distance of 1.2 than KNN.
This is mainly because the mean accuracy of SA does not
change much, but the mean accuracies of KNN decrease. The
range of SA, however, is bigger than that of KNN. TCA has
lower mean accuracies than KNN. This difference decreases
at higher proxy A-distances. The last trend in both experi-
ments is that a higher proxy A-distance results in lower mean
accuracy for all classifiers training on biased data. However,
the rate at which SA’s mean accuracy decreases is smaller
than other classifiers and therefore gets more effective in mit-
igating sample selection bias with a bigger distance between
the source and target domains.

3.4 Experiment 4: Different data sets

In the last experiment, the mean accuracies of SA and TCA
were measured against 3 different data sets. The meth-
ods to create all of these data sets are discussed in Sec-
tion 2.1. The first data set was created using the make
classification method. The parameters for this method
were set to n_samples = 10000, n_features = 2, n_classes
= 2, n_informative = 2, n_redundant = 0, n_repeated = 0,
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Figure 4: Mean, lowest and highest accuracies on different proxy
A-distances. The grey dotted line represents the mean accuracies of
KNN or LR when trained on an unbiased training set

n_clusters_per_class = 2, and random_state = 0. Figure 1
show the form that the data set takes but with n_samples set
to 500. The second data set was generated using the make
blobs method. The parameters for this method were set to
n_samples = 10000, n_features = 2, centers = 12, and ran-
dom_state = 0. An example of what the data set looks like
can be found in Figure 5, but with only 500 samples. For
the creation of the last data set, the make gaussian quantiles
method was used. The parameters were set to n_samples =
10000, n_features = 2, and random _state = 0. Figure 6 shows
what the data set looks like only with n_samples set at 500.
For the bias technique, the bias factor f was set at 50, and the
ratio of selected samples r was set at 0.1.

Table 1 displays the experiment results using LR as an es-
timator for SA and TCA on different data sets. SA obtained
a better mean accuracy than SA than LR for the make classi-
fication data set, while TCA got a lower mean accuracy than
LR. The results for the make blobs and make gaussian quan-
tiles data sets show that LR trained on biased data scores on



Data set generation method LR (unbiased data) | LR SA TCA
Mean 0.825 0.634 | 0.781 | 0.484
make classification Highest 0.854 0.717 | 0.854 | 0.582
Lowest 0.799 0.544 | 0.635 | 0.360
Mean 0.501 0.596 | 0.529 | 0.580
make blobs Highest 0.574 0.637 | 0.593 | 0.648
Lowest 0.464 0.544 | 0.448 | 0.503
Mean 0.482 0.594 | 0.465 | 0.748
make gaussian quantiles Highest 0.679 0.684 | 0.495 | 0.786
Lowest 0.360 0.541 | 0.434 | 0.712

Table 1: Mean, lowest and highest accuracies of LR trained on unbiased data, LR trained on biased data, SA, and TCA on different data sets

Data set generation method KNN (unbiased data) | KNN SA TCA
Mean 0.898 0.595 | 0.688 | 0.606
make classification Highest 0.909 0.662 | 0.852 | 0.684
Lowest 0.885 0.541 | 0.500 | 0.516
Mean 0.938 0.588 | 0.545 | 0.587
make blobs Highest 0.964 0.654 | 0.635 | 0.643
Lowest 0.912 0.503 | 0.489 | 0.522
Mean 0.974 0.603 | 0.485 | 0.769
make gaussian quantiles Highest 0.981 0.714 | 0.679 | 0.794
Lowest 0.964 0.524 | 0.429 | 0.720

Table 2: Mean, lowest and highest accuracies of KNN trained on unbiased data, KNN trained on biased data, SA, and TCA on different data

sets
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Figure 5: Data set generated by the make blobs function. Param-
eters are set to n_samples = 500, n_features = 2, center = 12, and
random_state = 0. The rest of the parameters were set to their de-
fault values

average higher than LR trained on unbiased data. The reason
for this could be because LR is a linear classifier, while the
two data sets cannot be solved linearly. This might cause
unpredictable and bad results. It is also hard to conclude
whether SA and TCA mitigate the bias for these data sets,
as the bias does not hurt the accuracy. Table 2 shows the
results for the experiment on different data sets using KNN
for the estimator parameter of SA and TCA. SA has better
mean accuracy than KNN by almost 0.1 and does mitigate
the bias induced for the make classification data set. How-

X1 feature

Figure 6: Data set generated by the make gaussian quantiles func-
tion. Parameters are set to n_samples = 500, n_features = 2, and
random_state = 0. The rest of the parameters were set to their de-
fault values

ever, the difference between the lowest and highest scores for
SA is far bigger than that of KNN, and the lowest score is
also lower than that of KNN. TCA also performs better than
KNN, but only by 0.01 on average. On the make blobs data
set, TCA only performs as well as KNN, while SA performs
even worse. Therefore, both algorithms do not give better re-
sults on biased data. For the make gaussian quantiles data set,
the mean accuracy of SA is much worse than that of KNN.
TCA, on the other hand, has a better mean accuracy of about
0.17. So for this data set, TCA effectively reduces the bias.



Overall, the kind of data set seems to make a big difference
in the effectiveness of SA and TCA. SA seems to work better
for the make classification data set, while TCA performs bet-
ter on the make classification data set. Both methods do not
reduce the bias for the make blobs data set. The range of the
results is also affected by the type of data set. This confirms
that there is not a single solution for every data set.

4 Responsible Research

This chapter will reflect on the ethical aspects of our research
and discuss how we ensured our method’s reproducibility.
The chapter will analyze the ethical aspects in Section 4.1.
In Section 4.2, the reproducibility of the methods will be dis-
cussed.

4.1 Ethical aspects

This paper researches methods that should mitigate sample
selection bias and should therefore give an objective view of
the effectiveness of the methods. Failing to do so can lead to
an untrue belief that the methods could reduce bias in classi-
fication problems when they might not. This could result in
equally or more biased results for people who use these meth-
ods to reduce the bias in the results. Therefore, it’s important
that all results are correct, that conclusions drawn from the
results are objective, and that left-out results should be men-
tioned. In this paper, we made sure all of the above apply.

4.2 Reproducibility of the methods

It is important for the research in a paper to be reproducible.
An expert can validate reproducible research and is, for that
reason, more trustworthy. Every implementation part should
be provided or well described to ensure that all experiments
are reproducible. Furthermore, all parameters used in the re-
search should be introduced, and their configurations should
be given. In our paper, we tried to add as much detail about
the implementation as possible in the methodology (chapter
2). We described the data generation process, the splitting
process of the data, the biasing method, the implementation
of all classifiers used, the distance metric used for one of the
experiments, and the evaluation criteria. All of these sub-
methods describe a full implementation of our experiments.
We also introduced every parameter used in the research in
the methodology chapter. The configurations of those param-
eters are completely described for every experiment in chap-
ter 3. In our implementation, there is still some randomness
when generating a biased data point for our biasing technique.
This results in a different data point every time the biasing
technique is applied, which can lead to slightly different re-
sults with the same configuration of all parameters. To ensure
this randomness doesn’t impact the results too severely, we
calculated each data point in every experiment as the mean of
10 iterations using the same parameters.

5 Conclusions and Future Work

This paper presents experiments done with the subspace map-
ping techniques SA and TCA. The classifiers map the source
domain towards an underlying global domain, assuming no

samples from the target domain are available. The main ques-
tion in this paper was whether subspace mapping techniques
adapted to the global domain effectively mitigate sample se-
lection bias. Four sets of experiments were performed to an-
swer this question. First of all, the influence of the train-
ing sample size on the accuracy of SA and TCA was mea-
sured. Our results indicated that a higher training sample
size resulted in more consistent accuracies with lower ranges
for both SA and TCA. Furthermore, the number of training
samples hardly influenced the effectiveness of the classifiers.
TCA was a bit more effective with more training samples.
In the second set of experiments, we tested the influence of
the number of features in the data sets on the accuracy of
SA and TCA. For SA, more features did not improve the
method’s effectiveness. TCA performed worse on higher di-
mensional data. In the third set of experiments, the mean
accuracy of SA and TCA was measured against the proxy A-
distance between the source and target domains. For SA, a
higher proxy A-distance improved the effectiveness of miti-
gating the bias by a small margin. TCA, on the other hand,
performed worse at higher proxy A-distances. The last set of
experiments tested all classifiers on different data sets. The
main conclusion drawn from the results of this experiment is
that the type of the data set impacts the effectiveness of sub-
space mapping techniques. From this experiment, we could
also conclude that KNN as estimator for SA and TCA works
better on data sets that are not linearly solvable. With LR as
estimator, the mean accuracy was lower than with KNN and
had a higher range on those data sets.

Overall, SA effectively mitigates sample selection bias on
data sets with low features and with a high distance between
the source and target domain. SA is not effective at larger
feature sizes and for some specific data sets like the make
blobs and make gaussian quantiles data sets. TCA is more
effective with more training samples and on data sets with
only a few features where the distance between the source and
target domain is not too big. Since that most real-world data
sets used for solving classification problems do have more
than just a few features and bias should also be mitigated for
domains that are further apart, TCA is not an effective method
to mitigate sample selection bias.

The data sets, the estimator parameter, and the subspace
mapping methods limit the extensiveness of all experiments
in this paper. This also means that the conclusions drawn
from the experiments are definite to the data sets, estimators,
and subspace mapping techniques used.

To extend this paper, the effect of other subspace mapping
techniques other than SA and TCA could be researched in fu-
ture works. Furthermore, the methods could be implemented
on different types of data sets. There are lots of other data set
types that are not tested in this paper. Lastly, this paper uses
only LR and KNN as estimator parameters of the subspace
mapping techniques. In future research, the methods could
be implemented using other classifiers for estimator.
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