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Pulsed EM Field Transfer Between a Horizontal
Electric Dipole and a Transmission Line — A
Closed-Form Model Based on the
Cagniard-DeHoop Technique

Martin Stumpf, Member, IEEE Giulio Antonini, Senior Member, IEEFand loan E. LageiSenior Member, IEEE

Abstract—The pulsed electromagnetic (EM) field transfer be- successfully validated (e.d. [10], [11]) and applied to antenna-
tween a horizontal electric dipole (HED) and a transmission line to-transmission line coupling problems (e.n.][12].1[13]) and
is described analytically with the aid of the time-domain (TD) Ep-field susceptibility studies (e.d. [14], [1§])_ :

reciprocity theorem and the Cagniard-DeHoop technique. It is . . )
demonstrated that a suitably chosen wave-slowness representa- WHile the relevant analytical models in the frequency

tion makes it possible to cast the pertaining interaction integrals domain (FD) are capable of analyzing relatively complex
into a form amenable to analytical solution. The closed-form problems including radiation and dissipation phenomenha [16],
coupling model thus obtained clearly reveals the dependence [17], the corresponding TD developments are mostly limited
of configurational parameters on the wireless signal transfer. 1, 555 free transmission lines on a (piecewise-)homogeneous
gilr%rgﬁgfoﬂageémtscoﬂeu?;ﬁ(s)ﬁgtﬁ%o?nd validated using a three- background excited by a uniform EM plane wave (e.g. [18],
) P . ' , , [14]). For describing the transfer of EM pulses radiated from
Index  Terms—time-domain  analysis, Cagniard-DeHo0p - g aiia iy |ocalized EM sources such as a CMOS integrated-
methoq, .elect.romagnetlc scattering, electromagnetic coupling, loo . .
transmission lines: p antennal[19],[[20] or a lightning return stroke [15],
however, the plane-wave coupling models are no longer prac-
l. INTRODUCTION tical. Accordingly, having the limitation in mind, Ref. [21]
) ) ) introduced closed-form expressions describing the TD voltages
_HE constant need for St"_l higher data rat_es in thEn 4 transmission line excited by a vertical electric dipole
increasingly congested radio spectrum has triggered Q‘?ED), which proved to be efficient for lightning-induced
intensive research into the pulsed EM transfer which is dee”\ﬁﬂtage calculations [22]. Moreover, such a closed-form EM
to be a promising enabler for designing inter- and intrgs, Hing model clearly indicates the relevant excitation and
chip wlreless mtercpnnects in integrated cwcwt_devu:e.s ,[ltlonfigurational parameters, thus making it possible to optimize
ZI :_;md. ultra-high data-rate, safe gnd relllable digitgl,e pertaining signal transfer (e.g. [23]) with very low com-
communl_catlon systems [4_]= [51.[6]. A Wl_re_less 'merconr?e_%utational efforts that are virtually independent of the relative
system, in general, consists of transmitting and recevig, rce field distance. In contrast to the excitation EM fields
antennas that are mutually coupled via the radiative EMgjateq from a VED source above a planar interface, the
coupling path. Whenever the pulse-time width of an excitatiqn, esnonding fields radiated from a HED source are generally
pulse is large enough such that the EM field Su”ound"?:%mposed of both TE- and TM-type wavés|[24, Sec. 2.3]. As

the conductor of a receiving antenna has the transverse 2Monsequence, the methodology applied in the previous works
structure, the transmission-line theory [7] can be employed ®1], [22] is not directly applicable to the actual problem,

capture the dominant coupling mechanism in the pulsed E\Lich calls for a new solution strategy. Introducing such a
t_ransfer. TQ that end, a number of EM'f'eId'to'transm'SS'O'afagniard-DeHoop-based methodolo@y! [25][26] that yields a
line coupling models have been proposed (see [8], [9hpyel analytical description of the pulsed EM transfer between
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correspond to{x} 5, g, 20} in the rotated coordinate system,

respectively. The length of the transmission line is denoted by
L=uab—af.

The problem is formulated with the aid of the EM
reciprocity theorem of the time-convolution type (séel[27,
Sec. 28.2] and[[28, Sec. 1.4.1]) along the lines proposed
in Ref. [29]. Through the reciprocity theorem, the (actual)

receiving (R) situation is interrelated with the (auxiliary)
Fig. 1. A transmission line excited by an impulsive horizontal electric dipoldesting (T) state in which the transmission line operates as a
transmitter. This way yields (cf.[29, Eq. (7)] and [22, Eq. (1)])

induced-voltage response that are amenable to the Cagniard- Vi (t) *, 11 (t) = Vi () *, I(1)

DeHoop method. The resulting analytical TD expressions — Val(t) *, I3 (t) + Vo () *, I (t)
for the HED-induced Thévenin’s voltages on a transmission ol
line are given in Sed_IV. The latter section heavily relies ~ —/ B, (2,4, 20, t)%, I T (2 t)da’
on the Appendix, where the corresponding Cagniard-DeHoop z'=a}
. . A . . zZ0

techn_lque is closely descr!bed on the transfprmatlon of generic _ If(t)*t ES(x1, 41, 7, 1)dz
constituents. In Sed.]V, illustrative numerical examples are 2=0

resented and validated using a three-dimensional EM com- =0
b J + Ig(t)*t Eg(‘r% Y2, %, t)dz (4)

putational tool. Finally, conclusions are drawn and potential
applications are hinted at in Séc.]VI.

z=0
where the relevant voltage and electric-current quantities at
2’ = z}, are denoted by{Vi s, I 2}, respectively, and
Il. PROBLEM DESCRIPTION superscribt (e) denotes the excitation field, that is, the total EM

We shall analyze the TD voltage response of a transmissifild radiated from the HED source located above the ground
line induced by an elementary HED (see Hig. 1). Positigflane in the absence of the transmission line. Accordingly, the
in the problem configuration is specified by the Cartesidsft-hand side of the reciprocity relationl (4) can be interpreted
coordinates{x,y,~} with respect to a Cartesian references a TD interaction of the terminal voltages and currents, while
frame with the origin® and the standard baseé.,7,,7.}. The the right-hand side represents the weighted contribution of the
time coordinate i > 0 and the time-convolution operatorexcitation-field distribution along the transmission line. If the
is denoted byx,. The Dirac-delta distribution is denotedtransmission line is at’ = x/, matched in both (R) and (T)
by 4(t) and the Heaviside-unit step function i$(t). The states and excited via the electric-current Dirac-impulse source
partial differentiation is denoted by that is supplied with at 2/ = 2/ in state (T), i.e.If(t) = §(t), Eq. [8) has the
the pertaining subscript. following form (cf. [29, Eq. (47)])

Without loss of generality, the exciting HED is oriented
along thez-direction and is located e(O,.O, h > 0) aboye the VlG(t) ~ /z2 ES 2!, yf), 20, t — (2 — o))/ co)da’
unbounded, planar and perfectly electrically conducting (PEC) ,

ground plane in a homogeneous, isotropic and loss-free half- 0

spacez > 0. The EM properties of the half-space are described - / EL (w11, 2,1)d2

by its (real-valued, scalar and positive) electric permittiviy ZZO

and magnetic permeability,. The corresponding EM wave + / ES(xa,y2,2,t — L/co)dz (5)
z=0

speed isco = (eouo)~'/? > 0 and the wave impedance is
denoted by¢y = (uo/e0)'/? > 0. The source signature iswhere V&(t) is the open-circuited (Thévenin’s) voltage ob-
described byj(t) = i(t)Az (in A-m), wherei(t) is the served ate’ = 2. A similar procedure leads to the Thévenin-
electric-current pulse andx > 0 denotes the (short) dipole’svoltage expression at the far-end of the transmission line, that
length. It is further assumed that the source starts to radiatésat

t = 0 and prior to this instant EM fields are zero throughout .zl
the problem configuration. . o VE(t) ~ / ES [y, 20, — (ah, — 2") /co)da’
The transmission line under consideration is made of PEC x'=x}
and is located alondz} < 2/ < 24,y = v,z = 20} R
with respect to a rotated Cartesian coordinate system with =0 Bz (@2, y, 2,1)dz
coordinates{z’, ¢/, 2’} defined by 20
+ / Eg(xlvylazatiL/CO)dZ (6)
2’ = x cos(¢) + ysin(e) (1) 2=0
y = —xsin(¢) + y cos(¢) (2) The right-hand sides of Eg$. (S)4(6) will next be evaluated via

S = 3) the Cagniard-DeHoop method |25], thereby vyielding the TD

impedance transfer functions describing the pulsed EM-field
where{0 < ¢ < 2} is the angle of rotation (see Fig. 1). Thesignal transfer,V,% (1) = Z12(2}, 2, y), 20, h, &, 1) *, (1),
transmission line’s end points &fr1 2, y1,2, 20} then simply respectively (see Fi@l 1).
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IIl. SLOWNESSDOMAIN REPRESENTATION OF V. TIME-DOMAIN THEVENIN’S VOLTAGE RESPONSES
EXCITATION FIELDS The wave-slowness representations derived in the previous

The time invariance of the problem configuration and th&ection are next used to construct space-time expressions for
causality of the excited EM waves are properly accountde induced Thévenin’s voltage responses (see Eqsl15)—(6) and
for via the one-sided Laplace transformation. To show thgg. [1). The contributions from the horizontal (with respect
notation, the expression is given for thecomponent of the to the ground plane) component of the excitation field, say

excitation electric-field strength, that is Vﬁ” (t) and from the vertical one denoted bff(t) will be
A oo discussed separately. The total voltage response then follows
Ex(pz9) = [ ew(s)By sl () as
hu v&® = v 0 + v 0 (16)
with {s € R;s > 0} thus relying on Lerch’s uniqueness L2\ = V1,2 1,2
theorem [[28, Appendix]. The Cagniard-DeHoop technigder all ¢ > 0.
combines the Laplace transformation] (7) with the wave-
slowness representation A. Horizontal excitation-field contributions
. o The transform-domain expression for the horizontal com-
Ei(x,y,2,8) = (s/27ri)2/ dk ponent of the excitation field (15) is used in the slowness
) r=—ico representatiod (14), where the dependence on the axial coordi-
% / exp|—s(kz + ay)]Eg(m, 0,2, 8)do (8) natexz’ manifests itself throygh the.expolnential function only.
o=—ico Consequently, the spatial integration with respectrtasee

where x and o are slowness parameters in the and y- E9S: [5)-(®)) is elementary, which yields amlomain expres-
direction, respectively. Under the slowness representation, fign that is amenable to the Cagniard-DeHoop methodology
electric-field strength radiated from a HED source above t@§ SPecified in the Appendix. In this way, we arrive at

perfect ground plane can be expressed as VlG;H (t) = —Codj(t) %, {[I(z’z, yh, Zt — Lco)
ESi(k,0,2,5) = —Cosj(s)cy ' G(k, 0, 2, 5) cos(¢) Iy, 21 1) cos(d) — [I(xh, yh, Z7,t — Leo)
+ Cosj(s)cor[k cos(¢) + o sin(¢)]G(k, 7, 2, ) 9) — I(2h, yy, Z%, 1) cos(o) + [J(zh, yh, Z',t — L/ co)
ES(k,0,2,8) = —Coj(s)cord. Gk, 0, 2, 5) (10) — J (2, y, Z1, 1)) sin(¢) — [J(2h, b, Z5,t — L/co)

in which G is the transform-domain Green’s function repre-  — J(z},y}, Z*, )] sin(qb)} (17)

senting the one-dimensional wave motion emanating from the . . . ]

point source and its image accounting for the presence of i§BereZ' = 20 — hl, Z* = zo + h and space-time functions

ground plane at = 0. Accordingly, the Green’s function reads! (¢, ¥ 2, t) with J(z,y, z, t) are given by Eqs[(34) andL(B6),
~ respectively, in the Appendix. Upon inspection of Egs. (8)—(6),

G(k,0,2,s) = exp[—syolz — R[] /2570 the corresponding contribution at = 2, follows
— exp[—s70(z + )]/2 11 ‘ , i
exp[ S’YO(Z )]/ 570 (11) VQG’H(ﬁ) _ Coatj(t) x, {[I(—m’l,y{), Zit— L/CQ)
for all z > 0, whereyy = vo(k,0) = [Q2(k) — 0?]V/? =

= T i _ P A rogp
(cg? — K2 — 0?)'/2 with Re(yp) > 0. The form of the K xf’y?’zr’ Bl cos(9) — [I( xl/’yOI’Zi’t L/eo)
source-type transform-domain representation of the horizontal — I(=x3, 0, Z., t)] cos(@) — [J (=2, 90, Z',t — L/co)
excitation-field componenf9) suggests to transform the wave — J(—x}, v, Z', t)] sin(¢) + [J (=2, yi, Z*,t — L/co)
slowness parameters according to (cf. Egk. [1)-(2)) — J(—aly, b, 75, )] sin(6) (18)
= UC_OS(QS) — psin(¢) (12) Finally, Egs. [(IV)£(18) are substituted in EQ.](16) to get the
o = vsin(¢) + pcos(¢) (13)  total voltage response.

Under this transformation® + o* = v + p, sz + oy = B. Vertical excitation-field contributions
ve' + py’ anddxde = dvdp. Subsequently, subject tb (12)— "

@3), Eq. [8) transforms to The transform-domain expression for the vertical compo-
i nent of the excitation field(10) is integrated with respect to
ES(2,y, 2, 8) = (s/2ﬂ'i)2/ dv (see Egs[{5)E(6)) and the result of integration is substituted in
v=—ioo the slowness representation of typé (8). This procedure leads

foo , e to an expression in thedomain that can be transformed back
X /77, exp[—s(va’ + py )] E; (v, p, 2z, s)dp (14) {0 the original domain as described in Set. C of the Appendix.
pme Following these lines, we end up with
VlG;J_(t) = Coat](t) *, {K(zlv Y1, Ziv t)
- K(zlaylvzrat) - K(‘r?avaZiat - L/CO)
+K(‘T25y27zrat7L/CO)} (19)

and, finally, Eq.[(P) transforms to
ES (v,p,z,8) = fgosj(s)coﬂg(v)é(v,p, z,8) cos(¢)
— Cosﬁ'(s)covp G(v,p, z, s) sin(9) (15)

where we used)y(v) = (c;? — v?)'/2 > 0.
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where space-time functiok (z, y, z, t) is given by Eq.[(3D).
Upon inspection of Eqs[{5)d(6), we find

VI (1) = 00 (t) +, { K (@2,92, 7', 1)
- K(£2;y27 Zr;t) - K(xlayh Ziat - L/CO)
+ K (w150, 27t = L/co) } (20)

Finally, Egs. [19)+£{20) are substituted in EQ.](16) to get th
total voltage response.

I
t
=~

Cotyw

V. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section, a number of illustrative problem configu-
rations are analyzed. Namely, we shall calculate the voltag
response of a transmission line of a lendth= 100 mm that
is located at a heighty = L/25 above the perfect ground
plane. The transmission line is excited by a HED of a lengffg- 2 Excitation electric-current pulse shape.
dz = L/100 that is placed above the origin at a height
h = 3L/20. The transmitting antenna is activated by a causa
electric-current pulse with finite temporal support that can be

t/ty

simply constructed by convolving a triangular pulse with a |
rectangular one. Accordingly, the input electric-current pulse
. . /
is described by xy = —L/2
PN EON
i(t)=im|2(— ) Ht)—4|(——-=) H{——= ;
w tw 2 tw 2 yo = 3L/4

S
—2(%—2)2}1(%—2)] 21)

where we také,, = 1.0 A andcyt,, = 5L (see Fig[R). Hence,
the length of the HED and the height of the transmissiot
line are relatively small with respect to the spatial support o
the current pulse, namelyx/coty, = 1/500 and zo/cotw =
1/125, thereby meeting the assumptions made for the couplin
model to apply. For the sake of validation, the problem is
also analyzed using the finite integration technique (FIT) a
implemented in CST Microwave Studio Here, the line is
represented by a circular cylinder of a radius= L/100.
The characteristic impedance matching the line then follow
as Z¢ = ((o/2m) cosh™ ' (z0/r) ~ 124 Q [A1].

The chosen configurational parameters for the first examp 3L ‘ ‘ ‘ ]
xy = —L/2, 2 = L/2, y, = 3L/4 and ¢ = 0 imply b 0 1 2 3 4
that the exciting HED is oriented in parallel with respect
to the transmission line and is equidistant from its terminals
(see Fig[Ba). From Eqd._{17)={(18) it is clearly seen that feig. 3. (a) Top view of the problem configuration; (b) HED-induced
¢ =0 andz] = —a}, we havele;H(t) = 7V2G?” (t). Since Thévenin-voltage responses.
K(z,y,z,t) as given by Eq.[(39) is an odd function of we
also havel,%* (1) = —V, 7 (t) and hence/ S (t) = —VE(t)
in total as observed in Figl 3b. The discrepancies with respectn the second example, the line is horizontally shifted with
to the voltage pulses calculated via the FIT are acceptalbéspect to the source by changifg, 24} to «f = —L/4 and
and can be largely attributed to the simplifying assumptiong = 3L/4 (see Fig[#a). In this case, the distance from the
of the analytical model and to numerical errors. Finally, gource to the transmission-line terminals is not equal anymore,
is interesting to note that the calculated voltage pulses havbich manifests itself by the time shift between the pulse
approximately the shape of a bipolar triangle, which is, in facthapes shown in Fid.] 4b. While the voltage pulse observed
the shape ob,i(t) (see Eq.[(21)). at the far-end terminal still starts with a negative lobe, its

b

(mV)

voltage response
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s |
1
Y

Ir] = —L/4
zh = 3L/4 (2

/ 1 LL‘/l = —L/2
yo = 3L/4 Y @

xh = L/2
$=0
(o yo = 3L/4
@) =m/2
a a o=/
5| —VE(t) ANALYTIC ||

. ---VS@) FIT

Z 4 ——VE(t) ANALYTIC |+ E

= ---VE@) AT Na2

3 3 3

c c

Qo o

2 2

2 E

_17 L L L L

Fig. 4. (&) Top view of the problem configuration; (b) HED-inducedsig. 5.  (a) Top view of the problem configuration; (b) HED-induced
Thévenin-voltage responses. Thévenin-voltage responses.

VI. CONCLUSIONS

shape is now more similar to the scaled copy of the (unipolar)A closed-form TD coupling model describing the pulsed
excitation electric-current pulse. The corresponding result$/-field signal transfer between an impulsive HED source
calculated via the FIT agree well with the ones predicted yd a transmission line has been constructed via the Cagniard-
the analytical model. DeHoop technique. As the influence of configurational param-

For ), = —x} and ¢ = 7/2, Egs. [1V)(I8) reveal that eters on the signal transfer clearly shows up in the analytical
vl (1) = VSl (1) in the third example (see Fif] 5a). AISOand easy-to-implement formulas, they lend themselves to
Since s — o — b = —3L/4 andyy — ! =—L/2 " their application in solving multi-objective optimization tasks
B togljetherQWith th(t)a property (z th :}((x —y, 2, 1) aiming at distortion-free or/and energy-effective EM pulse
(sgﬁe Eqs.[719)E(20) Wit (39)) We7 ‘ﬁ’a\y’e L) :’Vé/;l(’t) transfers. lllustrative numerical examples demonstrated the
which yiéldsVG(t) — VE(#) in total. Hence, the (:Qalcula"cedimricate distortion undergone by the exciting electric-current

1 _— 2 . y . . .
voltage pulses at the transmission-line terminals are identi@é\lse on its way from the HED Source to the receiving ports of

in this case (see Figl 5b). Clearly, their shape resemble éransmission line as well as the validity of the model. Since
negative scaled copy of tﬁe excita,tion pulse, which has al e computational burden of direct-discretization techniques
been confirmed with the aid of EIT ' e.g. the finite-difference TD technique) increases rapidly with

the growing solution domain, the computational resources

Finally, the transmission line has been rotatedsby 7/12 required by such numerical techniques are exceedingly high
with respect to the axis of the exciting HED. Similarly to thevhenever the transmission line is relatively far away from
second example, its position in the rotated coordinate systém exciting source. In such cases, the derived closed-form
is determined byr} = —L/4, 2, = 3L/4 andy), = 3L/4 formulas, whose computational effort is virtually independent
(see Fig[ba). Figurel 6b then demonstrates that the excitatafrthe mutual HED-to-transmission-line distance, can provide
electric-current pulse is heavily distorted upon traversing thueseful approximate results. Thanks to the problem linearity,
distance to the receiving transmission-line terminals. Thiee sum of contributions due to a collection of HEDs can

correspondence with the pulses calculated using the FITsisrve for representing the voltage response induced by a
satisfactory again. small, conducting, current-carrying thin wire in the shape
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Fig. 6. (a) Top view of the problem configuration; (b) HED-inducedd: 7- Complex slowness planes. (gjplane with the Cagniard-DeHoop
Theévenin-voltage responses. path fory > 0; (b) v-plane with the Cagniard-DeHoop path for> 0.

of a loop, thereby vyielding the pulsed EM field transfewith Re(yo) > 0. At first, the integrand with respect o is
between a vertical magnetic dipole and a transmission liagalytically continued into the complexplane away from the
[27' Sec. 2610] Moreover, the proposed Coup“ng model C};maginary axis and the integration path is in virtue of Jordan’s
be further extended to analyze the crosstalk between tiggnma and Cauchy’s theorem deformed into the hyperbolic
lines [30] and, in combination with the results presented faagniard-DeHoop path defined by

[22, Appendix], to obtain an efficient analytical model for

analyzing the induced voltages on a transmission line due to py +70(v, p)z = ud Qo (v) (23)

a tortuous lightning channel [31]. for {u € Ryu > 1} andd = (y2 + 22)'/2 > 0. Upon solving

Eq. (23) forp, we find path parametrizatiahuC* (* denotes
APPENDIX the complex conjugate), where
In this Appendix we shall derive the TD counterparts of
generic integrals from which the HED-induced voltage on a C = {P(U) = [(y/d)u+i(z/d)(u® — 1)"/?] Qo(?})} (24)
transmission line can be constructed. ) o
for all {1 < u < oo} (see Fig[a). Combining the con-
tributions of integration fromC and C* and introducing the

parameten: as the variable of integration with the Jacobian
The first generic representation to be transformed to the TD

has the following form dp _ ilv, p(u)] (25)

u (w2 —1)1/2

A. Space-time functiof(z, y, z, t)

; co [ Q5 (v)
1 s dr < = . € - 7(1 i
(,y,2,8) S2i2 /U:qoo xp( va)v+cgl v alongC, we obtain
ico dp ~ . Co > du
X /p_ioo exp{—s[py—l—'yo(v,p)z]}%(v,p) (22) I(2,y,2,5) = 4n2i /u:1 (u2 — 1)1/2
for z,y € R, {z € R;z > 0}, {s € R;s > 0} and recall x/ exp{—s[vx +ud Qo(v)]}(cg* —v)dv  (26)
that 7o = 0(v,p) = [23(v) — p]/% = (52 — v* — p?)!/2 v=—ice
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where we changed the order of the integrations. In the ensulBg Space-time functiod (x, y, z, t)

step, we proceed similarly in the complexplane. Hence,  The second generic representation to be transformed to the
the integrand with respect to is first continued analytically Tp has the following form

away from the imaginary axis and the integration contour

along Ré¢v) = 0 is replaced with the corresponding Cagniard- j(:p Y, 2,8) = ¢ /ioo exp(—svz) Y dv
DeHoop path, whose parametrization is found from A 871212 J— i v+ ¢y
v+ Qo(v)ud =7 @)« [ ep(oshy bl @)
p=—ioco ’YO(va)

where {r € R;7 > 0}. Solving Eq. [2F) forv we obtain

another hyperbolic-path parametrizatign G*, with for z,y €R, {z € R;z > 0}, {s € R; 5 > 0}. Its ransforma-

tion to the TD follows the procedure closely described in the
G = {U(T) = {27 + iud[r* - R2(u)/cg]1/2}/32(u)} (28) previous section. In this way, it can be found that

H(t — R/c
for all {R(u)/co < 7 < oo} with R(u) = (2 +u2d?)/2 > 0 J(x,y,2,t) = P(x,y,2,t) (TR/O) (36)
(see Fig.[Irb). Taking into account the symmetry of thi% which
Cagniard-DeHoop path with respect to(lsh = 0 and using
2o iu(n) Pla,y, 1) = (y/dcot) {weot — a® + 31?2
o o Rw) ] (29) — [R(GE — o) + cotd®] (R + o)} (37)
to introducer as the variable of integration, we find and recall thatl = (y2 + 22)Y/2 and R = (22 + d%)Y/2. The
0o space-time functiod (36) is used in Eds.J(1[[)3(18) to construct
A cod udu
I(z,y,2,8) = L/ the voltage response of a transmission line.
212 Joy R2(u)(u? — 1)1/
X / exp(—sT) [T/CO —207% /R*(u) + x/ch C. Space-time functiok (z,y, z,t)
T;R(“)Q/C" 21-1/2 The last generic integral to be transformed to the TD has
x 77 = R (u)/cp] ™/ 7dr (30)  the following form
where we have explicitly specified the integrand along the . co oo
Cagniard-DeHoop path. Interchanging further the order of the K(2,y,z2,5) = S2i2 / . exp(—skz)rdr
integrations, we arrive at i A q
g
) oo X exp{—s[oy + Yo(k,0)z]} ——— (38)
I(x,y,2,8) = (1/2#2)/ exp(—s7)dr /a:—ioo Yo(k,0)
) T=R/eo for z,y € R, {z € R;z > 0}, {s € R;s > 0}. Following
% / R%(u) {CoT — 227? /R*(u) + o the procedure applied in Sdc] A again, the TD counterpart of
w1 0 Eq. (38) follows
X (U2 - 1)_1/2[U2(T) - u2]_1/2udu (31) K(m Y,z t) . ZCCOf H(ﬁ — R/CO) (39)
where R = R(1) = (2 +y? + 2%)'/? andU(7) = (c§r° — o R2  AnR

22)'/2/d > 0. The integrand with respect to shows the This result is used in Eqd._(19)=(20) to construct the voltage
inverse square-root singularities at the end points of integratitg@sponse of a transmission line.
that are handled via [32, Appendix A]
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