

Delft University of Technology

Tensor networks for scalable probabilistic modeling

Menzen, C.M.

DOI
10.4233/uuid:de9e6c14-b0c5-43b9-a821-c8d231e1eee8
Publication date
2025
Document Version
Final published version
Citation (APA)
Menzen, C. M. (2025). Tensor networks for scalable probabilistic modeling. [Dissertation (TU Delft), Delft
University of Technology]. https://doi.org/10.4233/uuid:de9e6c14-b0c5-43b9-a821-c8d231e1eee8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:de9e6c14-b0c5-43b9-a821-c8d231e1eee8
https://doi.org/10.4233/uuid:de9e6c14-b0c5-43b9-a821-c8d231e1eee8

Tensor networks for scalable
probabilistic modeling

Clara Myria MENZEN

Tensor networks for scalable
probabilistic modeling

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen,

chair of the Board of Doctorates

to be defended publicly on Friday, November 28, 2025, at 12:30

by

Clara Myria MENZEN

Master of Science in Engineering Science,

Technische Universität Berlin, Germany,

born in Rheda-Wiedenbrück, Germany.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, Chairperson

prof.dr.ir. J.W. van Wingerden, Delft University of Technology, promotor

dr. M. Kok Delft University of Technology, promotor

dr.ir. K. Batselier Delft University of Technology, copromotor

Independent memebers:
prof.dr.ir. G. Jongbloed, Delft University of Technology

dr. Frans A. Oliehoek, Delft University of Technology

Prof. Dr. M. Stoll, Chemnitz University of Technology, Germany

Dr. F. Govaers, Fraunhofer FKIE, Germany

prof.dr.ir. B. De Schutter, Delft University of Technology, reserve member

Keywords: Probabilistic modeling, tensor networks, Gaussian process regression.

Cover: The cover page was generated using Gemini 2.0 Flash with the prompt:

“Generate a book cover of Mandelbrot fractals in the style of Van Gogh.”

The fractals represent an artistic metaphor for large-scale structures

repeating at smaller scales, representing the structural assumptions and

correlations underlying low-rank tensor networks. The Van Gogh style

pays homage to the Netherlands, which has been a wonderful home to

me during my research and beyond.

Style: TU Delft House Style, with modifications by Moritz Beller

https://github.com/Inventitech/
phd-thesis-template

An electronic version of this dissertation is available at

http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

I am still in progress, and I hope that I always will be.

Michelle Obama

To Mama, Papa, Luisa and Cristian

ix

Contents

Summary xi

Samenvatting xiii

Acknowledgements xvii

1 Introduction 1
1.1 Probabilistic algorithms and their scalability challenges 3

1.2 Tensor networks: A tool for scalability 6

1.2.1 From low-rank matrix decompositions to low-rank TNs 6

1.2.2 Efficient storage and computations with TNs 8

1.3 Contributions of this thesis. 11

2 Alternating linear scheme in a Bayesian framework for low-rank tensor
approximation 19
2.1 Introduction . 21

2.2 Tensor basics and notation . 23

2.3 Bayesian inference for low-rank tensor approximation 28

2.4 Orthogonalization step in Bayesian framework for a TT 32

2.5 Unscented transform in TT format . 38

2.6 Numerical experiments. 41

2.6.1 Convergence analysis of maximization problem 42

2.6.2 Analysis of covariance matrices 42

2.6.3 Comparison to conventional ALS. 43

2.6.4 Reconstruction of noisy image 45

2.6.5 Large-scale experiment. 47

2.7 Conclusions . 49

3 Tensor network square root Kalman filter for online Gaussian process
regression 55
3.1 Introduction . 57

3.2 Problem Formulation. 58

3.3 Background on tensor networks . 59

3.3.1 Tensor networks . 59

3.4 TNSRKF . 61

3.4.1 Update of weight mean. 61

3.4.2 Update of square root covariance factor 62

3.4.3 Predictions . 63

3.5 Implementation . 64

3.5.1 Updating 𝐰̂𝑡 in TN format . 64

3.5.2 Updating 𝐋𝑡 in TT format . 66

x Contents

3.6 Experiments . 70

3.6.1 Equivalence of full-rank TNSRKF and Kalman filter 70

3.6.2 Influence of the ranks on the approximation 71

3.6.3 Comparison to TNKF for cascaded tanks benchmark data set. . . . 72

3.7 Conclusion . 74

4 Large-scale magnetic field maps using structured kernel interpolation
for Gaussian process regression 79
4.1 Introduction . 81

4.2 Problem formulation . 82

4.3 SKI framework . 83

4.4 Large-scale magnetic field maps . 84

4.5 Experiments . 85

4.5.1 Accuracy analysis for growing mapping area. 85

4.5.2 Analysis of maps with divided mapping area 87

4.5.3 Large-scale map in university building 88

4.6 Conclusion . 89

5 Conclusions and future work recommendations 97
5.1 Summary of findings . 99

5.1.1 Development of Bayesian ALS algorithm 99

5.1.2 Solving the issue of loss of positive definiteness in TN Kalman

filtering . 100

5.1.3 Application of structured kernel interpolation to magnetic field

mapping . 100

5.2 Future work recommendations . 100

Curriculum Vitæ 103

List of Publications 105

xi

Summary

Probabilistic or Bayesian modeling plays a fundamental role in engineering and science,

providing a framework for integrating noisy measurements with predictive models through

probability distributions. While probabilistic methods have many benefits, such as recur-

sive estimation and uncertainty quantification, they often come with substantial memory

and compute requirements. Computational challenges are particularly pronounced in

large-scale settings, where data sets contain a high number of measurements, and for

high-dimensional problems, which require exponentially many parameters to describe

probability distributions. These scenarios can suffer from the curse of dimensionality, which

requires exponentially growing computing resources, making conventional approaches

computationally intractable.

This dissertation addresses computational challenges by leveraging tensor networks

(TNs) to develop computationally efficient probabilistic algorithms. TNs, also known as

tensor decompositions, extend matrix decomposition to higher dimensions by representing

large multidimensional arrays, i.e., tensors, in a compact, decomposed format, defined by

TN components and TN ranks. Under the assumption of low-rank structure, TNs enable

efficient storage and computation, making large-scale and high-dimensional problems

more tractable, even on resource-constrained hardware such as conventional laptops. The

focus of this work is on scalable solutions for Bayesian estimation problems involving

Gaussian distributions and exact inference, including recursive filtering and Gaussian

process (GP) regression. The three main contributions of this dissertation each address a

specific challenge in this domain, demonstrating how TNs and probabilistic modeling can

benefit from each other.

The first contribution presents an algorithm to compute a low-rank tensor approxima-

tion in terms of a low-rank TN by solving a Bayesian inference problem. By treating the TN

components as Gaussian random variables with prior distributions and dividing the overall

inference problem into subproblems, the posterior distributions of the TN components

are computed sequentially. This approach provides a probabilistic interpretation of the

iterative algorithm, called alternating linear scheme (ALS), commonly used to compute

low-rank TNs. The tensor represented by the low-rank TN can be computed from the joint

posterior of all TN components, providing a mean estimate together with a measure for

uncertainty quantification. The ALS in a Bayesian framework allows for the integration

of prior application-specific knowledge and consideration of the measurement noise. In

addition, it enables uncertainty quantification for the low-rank tensor estimate. In this

context, the conventional ALS can be seen as a special case of the ALS in a Bayesian frame-

work, where each subproblem is solved with an uninformative prior. The computational

cost is in the same range as for the conventional ALS, only the memory requirements have

xii Summary

an additional term for the covariance matrices of the TN components that need to be stored.

The second contribution addresses the loss of positive (semi-) definiteness in TN-based

Kalman filtering. While the state-of-the-art TN Kalman filter (TNKF) enables logarithmic

compression of computational and storage requirements in high-dimensional recursive

estimation problems, a required TN-specific operation, called rounding, can cause filter

divergence. This is because covariance matrices represented as TNs can lose positive (semi-)

definiteness after rounding is applied. Positive (semi-) definiteness is only guaranteed in a

special case where all TN ranks are chosen to be equal to one, which limits the accuracy of

the covariance matrix representation. To resolve this issue, this contribution implements

the square root formulation of the Kalman filter in TN format, the tensor network square-

root Kalman filter (TNSRKF). In this context, mean estimates and square root covariance

matrices are represented as low-rank TNs and updated in TN format, using the ALS for

each iteration of the filter. While this approach has similar computational complexity to

the TNKF, it does not run into problems related to positive (semi-) definiteness, because it

computes the square root covariance factors instead of the covariance matrix directly. The

TN ranks of the square root covariance factors are not restricted, such that the covariance

matrix can be represented with higher accuracy than in the TNKF without the risk of losing

positive (semi-) definiteness. The TNSRKF is applied to online GP regression, which in this

context corresponds to the measurement update of Kalman filter. While standard online

GP for high-dimensional inputs using a product kernel requires an exponential amount of

compute, the TNSRKF reduces the compute to be linear in the dimensionality of the problem.

The third contribution presents an application of large-scale probabilistic modeling

in the field of sensor fusion: constructing scalable magnetic field maps in 3D with GP

regression. Spatial variations in the ambient magnetic field, which are e.g. caused by

ferromagnetic materials present in building materials, can be used for localization algo-

rithms in indoor areas. GP regression has many benefits for modeling magnetic fields and

building magnetic field maps since it allows for the incorporation of physical knowledge

and provides a map estimate alongside an uncertainty which is necessary for probabilistic

localization algorithms. However, GP regression in its standard setting has a cubic compu-

tational complexity with respect to the number of data points, limiting its usage to small

data sets. This contribution builds on the structured kernel interpolation (SKI) framework,

a scalable GP technique that approximates the kernel function with a grid-based interpola-

tion strategy. SKI with derivatives (D-SKI) is incorporated into the scalar potential model

for magnetic field modeling, enabling the efficient computation of large-scale magnetic

field maps. This is achieved by exploiting Kronecker algebra in Krylov subspace methods to

accelerate matrix-matrix multiplications during GP training and inference. Although using

Kronecker algebra is not strictly a TN method, it is closely related, as both approaches

exploit underlying structure to improve computational efficiency. In this way, large-scale

magnetic field maps can be computed with a computational complexity that is linear in the

number of data points.

xiii

Samenvatting

Probabilistische of Bayesiaanse modellen spelen een cruciale rol in de techniek en in de

wetenschap, omdat ze de kansverdeling van ruisgevoelige metingen kunnen integreren in

voorspellende modellen. Hoewel probabilistische methoden veel voordelen bieden, zoals

recursieve schattingen en onzekerheidskwantificatie, kosten deze vaak veel geheugen en

rekenkracht. De computationele uitdagingen zijn vooral uitgesproken in toepassingen

waar veel data voor nodig is, en bij hoog-dimensionale problemen, waarvoor exponentieel

veel parameters nodig zijn om verdelingen te beschrijven. Deze scenario’s kunnen lijden

onder de zogeheten “curse of dimensionality”, wat betekent dat er een exponentieel groei-

ende rekenkracht nodig is, waardoor traditionele benaderingen computationeel onhaalbaar

worden.

Dit proefschrift pakt computationele uitdagingen aan door gebruik te maken van tensor-

netwerken (TNs) om computationeel efficiënte probabilistische algoritmen te ontwikkelen.

TNs, ook wel tensor decompositions genoemd, breiden matrix decomposities uit naar

hogere dimensies door grote multidimensionale arrays, d.w.z. tensors, op een compacte

manier weer te geven. Onder de aanname van een lage-rangstructuur maken TNs effi-

ciënte opslag en berekeningen mogelijk, waardoor grootschalige en hoog-dimensionale

problemen beter hanteerbaar worden, zelfs op hardware met beperkte middelen zoals

conventionele laptops. Dit werk focust op schaalbare oplossingen voor Bayesiaanse schat-

tingsproblemen met Gaussiaanse verdelingen en exacte inferentie, waaronder recursieve

filtering en Gaussian Process (GP) regressie. De drie belangrijkste contributies van dit

proefschrift behandelen elk een specifieke uitdaging binnen dit domein en tonen aan hoe

TNs en probabilistisch modelleren elkaar kunnen versterken.

De eerste bijdrage presenteert een algoritme om lage-rang tensorbenaderingen te

berekenen in termen van een lage-rang TN door het oplossen van een Bayesiaans infe-

rentieprobleem. Door de TN-componenten te beschouwen als willekeurige Gaussiaanse

variabelen met een prior verdeling, en het totale inferentieprobleem op te splitsen in

deelproblemen, worden de posterior verdelingen van de TN-componenten sequentieel be-

rekend. Deze benadering biedt een probabilistische interpretatie van het bekende iteratieve

algoritme “alternating linear scheme"(ALS), dat vaak wordt gebruikt voor het berekenen

van lage-rang TNs. De tensor die door de lage-rang TN wordt weergegeven kan wor-

den berekend vanuit de gezamenlijke posterior van alle TN-componenten, wat zowel een

schatting van het gemiddelde oplevert als een maat voor de onzekerheid. De ALS in een

Bayesiaans kader maakt het mogelijk om toepassingsspecifieke voorkennis te integreren

en rekening te houden met meetruis. Bovendien maakt dit onzekerheidskwantificatie

mogelijk voor de lage-rang tensorbenadering. In deze context kan de conventionele ALS

worden opgevat als een speciaal geval van de ALS in een Bayesiaans kader, waarin elk

deelprobleem wordt opgelost met een niet-informerende prior. De computationele kosten

xiv Samenvatting

zijn gelijk aan die van de conventionele ALS; alleen de geheugeneisen nemen toe door de

noodzaak om covariantiematrices van de TN-componenten op te slaan.

De tweede bijdrage behandelt het verlies van positieve (semi-) definietheid in TN

gebaseerde Kalman-filtering. Hoewel de geavanceerde TN Kalman-filter (TNKF) logarit-

mische compressie mogelijk maakt van reken- en opslagvereisten in hoog-dimensionale

recursieve schattingsproblemen, kan een vereiste TN-specifieke bewerking, genaamd af-

ronding, leiden tot divergentie van het filter. Dit komt doordat covariantiematrices die

als TNs worden weergegeven hun positieve (semi-) definietheid kunnen verliezen na het

toepassen van afronding. Positieve (semi-) definietheid is alleen gegarandeerd wanneer

alle TN-rangen gelijk aan één worden gekozen, wat de nauwkeurigheid van de covarian-

tiematrixrepresentatie beperkt. Om dit probleem op te lossen wordt in deze bijdrage de

vierkantswortelformulering van het Kalman-filter geïmplementeerd in TN-formaat: de

“Tensor Network Square-Root Kalman Filter” (TNSRKF). In dit kader worden verwachtings-

waarden en vierkantswortel-covariantiematrices voorgesteld als lage-rang TNs en bij elke

iteratie van het filter geüpdatet in TN-formaat met behulp van ALS. Hoewel deze aanpak

vergelijkbare computationele complexiteit heeft als de TNKF, treden er geen problemen op

met betrekking tot positieve (semi-) definietheid, aangezien de vierkantswortelfactoren

van de covariantie worden berekend in plaats van de matrix zelf. De TN-rangen van deze

vierkantswortelfactoren zijn niet beperkt, zodat de covariantiematrix nauwkeuriger kan

worden voorgesteld dan in de TNKF, zonder het risico op verlies van positieve (semi-)

definietheid. De TNSRKF wordt toegepast op online GP regressie, wat in deze context

overeenkomt met de meetupdate van het Kalman-filter. Terwijl standaard online GP voor

hoog-dimensionale ingangssignalen met een product kernel een exponentiële hoeveelheid

berekeningen vereist, reduceert de TNSRKF dit tot een lineaire afhankelijkheid van de

dimensionaliteit.

De derde bijdrage presenteert een toepassing van grootschalige probabilistischemodelle-

ring op het gebied van sensorfusie: het construeren van schaalbare magnetisch-veldkaarten

in 3D met behulp van GP regressie. Ruimtelijke variaties in het magnetisch veld, die

bijvoorbeeld worden veroorzaakt door ferromagnetische materialen in de constructies

van gebouwen, kunnen worden gebruikt voor lokalisatiealgoritmen in binnenomgevin-

gen. GP regressie biedt veel voordelen voor het modelleren van magnetische velden en

het opbouwen van magnetisch-veldkaarten, omdat het de integratie van fysische ken-

nis mogelijk maakt en naast een kaartschatting ook een onzekerheidsmaat levert, wat

essentieel is voor probabilistische lokalisatiealgoritmen. Standaard GP regressie heeft

echter een computationele complexiteit die kubisch schaalt met het aantal metingen, wat

het gebruik beperkt tot kleine datasets. Deze bijdrage bouwt voort op het “structured

kernel interpolation” (SKI) raamwerk, een schaalbare GP-techniek die de kernelfunctie

benadert met een raster-gebaseerde interpolatiestrategie. SKI met afgeleiden (D-SKI) wordt

geïntegreerd in het scalair potentiaalmodel voor het modelleren van magnetische vel-

den, waardoor efficiënte berekening van grootschalige magnetisch-veldkaarten mogelijk

wordt. Dit wordt bereikt door gebruik te maken van Kronecker-algebra, in combinatie met

Krylov-subruimtemethoden om matrix-matrixvermenigvuldigingen tijdens GP-training

en -inferentie te versnellen. Hoewel het gebruik van Kronecker-algebra niet strikt een

Samenvatting xv

TN methode is, is het er nauw mee verwant, aangezien beide benaderingen gebruikma-

ken van onderliggende structuur om de rekenefficiëntie te verbeteren. Op deze manier

kunnen grootschalige magnetisch-veldkaarten worden berekend met een computationele

complexiteit die lineair schaalt met het aantal metingen.

xvii

Acknowledgements

In November 2019, I embarked on a new chapter by beginning my PhD in Delft. Having

just graduated from the Technical University of Berlin, I was excited to explore a new

country and dive into a new field of research. Over the following years, I was fortunate to

receive incredible support, love, and guidance from many people in my life, for which I am

deeply grateful. Although my PhD journey began under unexpected circumstances—less

than six months in, the world went into Covid lockdown (and we all know how that story

unfolded)—when I look back, what stands out most are the great moments and, above all,

everything I learned along the way.

I would like to deeply thank my daily supervisors, Manon and Kim. You have been

a mentor, an inspiration, and an aspiration by showing me daily how great academic

research is done. Challenging me to go into detail, broaden my perspective, and push my

boundaries, every meeting with you provided an opportunity to step out of my comfort

zone and regain confidence by understanding what is going on. But you were more than

just supervisors. In challenging times, you had an ear for me, and we always had good talks

in lunch breaks or over beers after work. Manon, it was both inspiring and fun to work

with you. I was fascinated by the way you find excitement in solving difficult problems,

and that energy is truly contagious. I also really enjoyed our joint trips to Linköping,

Fusion, and IFAC. Kim, thanks for making me appreciate linear algebra and going into a

lot of detail (pun intended) in the world of tensor decompositions. Also, thanks for two

of your (very different) recommendations: Ajahn Brahm’s book to see the world through

a Buddhist eye, and Bon Geuze Mariage parfait, which is now my favorite Belgian beer.

Thank you, Jan-Willem, for being my promoter. I always really appreciated your calm

presence throughout my PhD, and I always had the feeling my thoughts were heard.

Thanks to all my wonderful colleagues, because who says we cannot have a bit of fun

while we are researching:

The sensor fusion squad: Frida - having you by my side all these years was a constant

reminder for me to push my boundaries, because you just set the bar so high. It was great

being able to learn from you, especially when it came to basis functions approximations

and magnetic field maps, but also about life. Our trips to Linköping and Fusion conference

together with Manon and Thomas were so much fun, even if a lot of unexpected things

happened, like cancelled planes. You and Thomas were so excited about the 5k run, so I

hopped on board and ended up running it for the three of us. Also, probably thanks to

multiple joint karaoke sessions and the words of Gloria Gaynor, we actually did survive.

;) Thomas - my twin from another kin. I am already missing our daily walks (giros),

dancing at Techno Spar, talking about a mixture of cat reels, uncertain inputs (which are

like questioning the story of a nontrustworthy narrator, right ;)), Ramen, and homemade

pasta. And (to be read only in a strong English or Scottish accent), I officially concur with

xviii Acknowledgements

on the conundrum of the great outdoors, as defined by Nigel Brimsley Thornberry that we

are the official royals of DCSC. Ruiyuan - even if short, thanks for the nice moments we

spent together in the EWI tower office, as well as our office at 3ME, especially for giving

me some Gen Z advice on the latest K-Pop bands (even if Frida was the one that first told

me about BlackPink ;)). Haoyu - thanks for the best Pistachio chocolate I ever ate and for

explaining cosplay to me. Mostafa - even if only for a brief time, I always appreciated your

presence and quick thinking.

The tensor squad: Eva - Even if we studied alongside many years in Berlin without

ever knowing each other, it was always great to have a ‘PhDler’ alongside who had a

similar background. I really enjoyed our research symbioses, and I am so grateful for all the

support I received from you over the years. Also, your passion and dedication to Green AI

have inspired me to feel the same spark, and collaborating with you always felt super easy

and fruitful. Frederiek - thanks discussions with innovative research perspectives. Jetze -

thanks for nice talks during your time at DCSC and your support during my job search

afterwards. Albert and Afra - even if we had only a short overlap, it was great seeing the

Detail team growing and having fresh perspectives coming in.

DCSC fellows: Livia - amicizia a prima vista. I still remember the first time I saw you

in the filtering and identification lecture. You immediately invited me to your house for

dinner, and I always felt so welcomed by you. I just loved your presence and support

during these years, I am so grateful that you were by my side in challenging times (when I

needed advice) and fun times (like when we did our dance reel). Also, I will never forget

your dreamy wedding and all the times we ran into each other on your honeymoon in

Japan. TVTB. Coen - what can I say? Pink neon lights really did guide us. Thanks for the

unforgettable experience of writing and producing a song together, and filming a music

video in Tokyo. I really enjoyed having you as my fellow PhD candidate, for good and also

fun talks about research, life, food, and melodies. And I’ll just have to ask one more time: Is

this cotton? And is this Snoop Dog? Claudia - it was great having you around in the office

to talk about PhD life or life in general, and driving in the car while singing “the greatest

love of all” at full volume. You always had great and kind advice, and it was super fun

sharing a room with you in Yokohama. Marteen - thanks for the great and fun memories

in Yokohama and throughout the entire PhD years. Suad - thanks fun times organizing the

video competition together with Athina and the Christmas quiz online. Lars - thanks for

the great talks and positive presents in the office. Sander - thanks for the fun talks in lunch

breaks and your positive energy. Also, thanks to Leonore, Daniel, Mees, Markus, Jonas,

Giulio, Emilio, Lotfi, Francesco, Tim, Rogier, David, Leila, Jean, Amr, Maarten dJ, Frederiek

M., Roger, Emanuel, for being great colleagues to share moments with throughout all these

past years. And last but not least, big thanks to Heleen, Francy, Marieke, Martha, and Erika.

Acknowledgements xix

Thanks to my family, without whom I would not be who I am.

Cris - amor. There are no words for an appropriate thank you for these past years. You

were by my side every day, you knew what I was experiencing, and you helped me grow

beyond myself. I am so happy that we got married on December 22nd 2024, and are now

living our next chapter, a new life together in California. Te amo. Y estoy segura que un

dia vamos a decir de verdad que estamos casados desde 50 años. ;) Mama, Papa - ihr seid

die besten Eltern die ich mir hätte wünschen können. Ihr habt mich immer unterstützt

und mein Selbstvertrauen habe ich durch euch aufgebaut. Danke für alles, ich hab euch

unendlich doll lieb. Luisa - Schatz, Schwesterherz. Auch wenn wir für circa 10 Jahren

auf zwei verschieden Kontinenten gelebt haben, habe ich dich jeden Tag an meiner Seite

verspürt. Die Kraft und bedingungslose Liebe die du mir immer gibts, ist das schönste

was ich mir auf dieser Welt hätte wünschen können. Wir sind eine Seele und ich bin so

glücklich, dass wir jetzt wieder im gleichen Land (auch wenn in unterschiedlichen Staaten)

wohnen. Danke, love you Schatz!! Danke auch an den Rest der Menzen Family: Bettina,

Norbert, Ronja, Jannik, Markus, Karin, Simon, Jakob, Lasse und Nick. Liliana, Anselmo,

Nira, Melina, Romina - muchísimas gracias para acampanarme en esos últimos años con

apoyo y amor. Soy tan feliz de poder llamar ustedes mi familia. Espero que vayamos a

poder hacer mas viajes juntos en Argentina, Estados Unidos, Holanda. . . Los quiero mucho!

Thansk to my friends, because they make life just 1000 times better.

Amici da 20 anni (and counting) Lau, Tina, Filo. Siete le persone con le quali voglio di-

ventare vecchia, fare aperitivi a 90 anni e parlare di cibo, la vita e l’amore. Grazie per essere

constanti nella mia vita e anche se viviamo in 4 paesi diversi, i nostri cuori sono sempre

vicini. Marengo (Merry), le nostre storie ci hanno fatto incontrare in Italia, Berlino (nella

mitica Knaackstrasse) e nel BeNe (Lux not so much). E anche se adesso chatGPT rimpiazza

le amazing cover letters che mi scrivevi, in parte, non avrei potuto scrivere questa tesi

senza di te (see cover page of Introduction). E’ state un onore ufficiare il motrimonio tuo e

di Antoine, vvb, soprattutto a Lola, jk ;). Wendy, Paula, and Lora - my dance teammates, but

also so much more. A hobby brought us together, but we found so many more reasons to

spend time together, encourage and support each other to grow beyond ourselves. I started

to feel at home in the Netherlands when we became friends. I am forever grateful for that.

Also, thanks so much to all the other Pasito Ladies and Raquel Garrido for bringing so

much joy into my life while sharing the passion for bachata, dancing, and self-expression.

Nadine und Alex - meiner Berliner. Ich bin so froh das komplette Studien-Kapitel mit euch

verbracht zu haben, und bin super glücklich dass wir weiterhin in unseren Leben sind.

Nadine, im Studium hast du mir so viel Kraft und Selbstvertrauen gegeben. Wir haben

uns gegenseitig geholfen, die Frauen zu werden, die wir heute sind – zwei Glitzer- und

Tanzen-liebende Ingenieurinnen – und dafür bin ich dir sehr dankbar. Alex, wir haben in

den letzten Jahren auf unterschiedliche Weisen ähnliches erlebt und unser Austausch ist

immer sehr bereichernd. Was kann ich anderes sagen ausser: “Die Metamorphose zum

Vollzeit-Nerd schmerzhaft aber ehrlich. . . ”. Du weist wie es ausgeht und es hat jetzt eine

komplett neue Bedeutung für uns.

My heartfelt thanks also go to all those I could not mention by name, yet who have

played a part in my journey in some way.

1
Introduction

FIGARO misurando | FIGARO measuring
Cinque... dieci... venti... trenta... trentasei... quarantatre...

| Five... ten... twenty... thirty... thirtysix... fourtythree

Le nozze di Figaro, Atto I, Mozart | The marriage of Figaro, Act I, Mozart

1.1 Probabilistic algorithms and their scalability challenges

1

3

1.1 Probabilistic algorithms and their scalability
challenges

When NASA embarked on the Apollo program in the 1960s, the mission to land astronauts

on the Moon required highly accurate, real-time onboard navigation [10]. Since space travel

has a very small tolerance for error, traditional methods were inadequate. The Kalman

filter [16], introduced by Rudolf E. Kalman in 1960, was identified by Stanley F. Schmidt at

NASA Ames Research Center as a potential solution to the Apollo program’s navigation

challenges. The Kalman filter could merge noisy sensor data with predictive models based

on probability distributions to provide real-time updates of the spacecraft’s position and

velocity. To ensure numerical stability on the limited 15-bit fixed-point Apollo Guidance

Computer, James E. Potter introduced a square-root filtering method, enabling reliable

computation of the Kalman filter’s equations during the mission [10]. The navigation

system of the Apollo program is a notable example of where probabilistic algorithms made

a crucial difference. Since then, probabilistic, also called Bayesian modeling has been used

in many fields of engineering and science, including learning systems [3, 13, 18, 27], inertial

navigation [11], motion capture [12, 19], target tracking [1], autonomous navigation [35],

and brain imaging [9].

Probabilistic modeling uses probability distributions to represent uncertainty in data

and in model predictions. This allows for merging prior information and measurements,

enabling, e.g. recursive or online estimation. The benefits of online estimation include

the following. Firstly, the ability to process data "on the go" without relying on future

data enables real-time decision-making. Secondly, retraining a model from scratch when

new data becomes available can be avoided because the information is retained in prior

estimates, which can be updated with new measurements. Thirdly, probabilistic modeling

offers uncertainty quantification, which makes algorithms more robust and reliable and is

useful, e.g. for safety-critical applications.

Figure 1.1 showcases an exemplary application of probabilistic modeling, where both

the recursive property as well as uncertainty estimation are leveraged: building spatial

maps from measurements recursively with Gaussian process (GP) regression [27]. Figure

1.1(a) shows simulated synthetic measurements of magnetic field anomalies computed at

2D coordinates along a spiral-shaped path, where the color corresponds to the magnitude

of the anomalies. A map of the magnetic field anomalies is built from the measurements by

training a GP model that maps the 2D coordinates to the measurements and computing GP

predictions over the whole 2D space, as visualized in Figure 1.1(b). The map is recursively

updated by treating the map from the previous time step as a prior and combining it with

a new measurement. GP regression computes a predictive distribution for new inputs

in terms of a mean and covariance. The GP map, therefore, consists of a magnetic field

mean estimate together with uncertainty information. Figure 1.1(b) at 𝑡 = 40 and 𝑡 = 150

shows that close to the measurements, the predictions are more certain, and the certainty

decreases with the distance to the measurement locations. Over time, when measurements

are collected over a larger area (see Figure 1.1 at t=600), the map becomes more certain

overall.

1

4 1 Introduction

Figure 1.1: Recursive map prediction from simulated synthetic measurements of magnetic field anomalies. (a)

shows the magnitude of 3D magnetic field anomaly measurements in three instances in time, where the number of

available measurements grows over time. The colors correspond to the intensity of the magnetic field anomalies.

(b) shows a map of the magnetic field anomalies computed by interpolating the 3D magnetic field measurements

over the spatial area of interest with GP regression. The magnitude of the three magnetic field components,

computed as GP predictions, is shown. The predictive mean is visualized in terms of the map’s magnetic field

magnitude. The predictive variance of the predictive distribution is visualized in terms of map transparency,

where higher transparency means higher map uncertainty.

Figure 1.2: (a) Depiction of a large-scale problem where a large number of measurements 𝑁 is collected and the

involved distributions are estimated over time. (b) Depiction of a high-dimensional problem where distributions

have exponentially many parameters caused by the dimensionality 𝐷 of the problem.

1.1 Probabilistic algorithms and their scalability challenges

1

5

Figure 1.1 is an example where the input dimension 𝐷 to the GP is 2, i.e. 𝑥− and 𝑦−

spatial coordinates, and the number of measurements is 𝑁=600. However, there are many

related problems where 𝑁 or 𝐷 are large, referred to as large-scale and high-dimensional

problems, respectively. An example of a large-scale problem is when a sensor collects data

at a high sampling rate and the distributions need to be updated accordingly (see Figure 1.2

(a)). An example of a high-dimensional problem is to consider a time series where the input

is a combination of multiple previous inputs and/or outputs, which requires the number of

parameters to describe the distributions of interest to be large (see Figure 1.2(b)).

This thesis studies probabilistic algorithms where 𝑁 and/or 𝐷 are large, resulting in

computational challenges. To illustrate them, consider a Bayesian estimation problem,

based on [27, 33], that the problems presented in this thesis can be cast into.

We are interested in modeling a nonlinear function 𝑓 (𝐱) by estimating parameters 𝐰

from a parametric model given by

𝑦 = 𝑓 (𝐱)+𝜖

= 𝝓(𝐱)
⊤
𝐰+𝜖, 𝜖 ∼ (0,𝜎

2

𝑦
), 𝐰 ∼ (𝐰0,𝐏0),

(1.1)

where 𝑦 is a measurement, 𝐱 is an input to the nonlinear function 𝑓 (𝐱), 𝝓(𝐱) is a feature

map that maps an input into a feature space of size 𝑀 , and  (⋅, ⋅) denotes a Gaussian

distribution with a specified mean and variance. The measurement noise 𝜖 is zero-mean

and has a noise variance 𝜎
2

𝑦
, and 𝐰 ∼  (𝐰0,𝐏0) denotes the prior distribution on the

parameters with prior mean 𝐰0 and prior covariance 𝐏0.

Given (1.1) with the Gaussian assumption of the noise and prior weights, and a set of 𝑁

data points 𝐗 = 𝐱1, 𝑥2,… ,𝐱𝑁 and 𝐲 = 𝑦1,𝑦2, ...,𝑦𝑁 , the posterior distribution for the weights

can be computed with

𝑝(𝐰 ∣ 𝐲) ∼ (𝐰0+𝐏0𝚽
⊤
(𝚽𝐏0𝚽

⊤
+𝜎

2

𝑦
𝐈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁×𝑁

)
−1
(𝐲−𝚽𝐰0), 𝐏0−𝐏0𝚽

⊤
(𝚽𝐏0𝚽

⊤
+𝜎

2

𝑦
𝐈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑁×𝑁

)
−1
𝚽𝐏0),

(1.2)

where 𝚽 ∈ ℝ
𝑁×𝑀

contains row-wise 𝝓(𝐱1),𝝓(𝐱2), ...,𝝓(𝐱𝑁). The main bottleneck of comput-

ing (1.2) is storing and inverting the 𝑁 ×𝑁 matrix, which has a storage and computational

complexity of (𝑁 2
) and (𝑁 3

), respectively. An alternative formulation of (1.2) after

applying a matrix inversion lemma is given by

𝑝(𝐰 ∣ 𝐲) ∼ (𝐰0+(𝚽
⊤
𝚽+𝜎

2

𝑦
𝐏
−1

0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀×𝑀

)
−1
𝚽
⊤
(𝐲−𝚽𝐰0), 𝜎

2

𝑦
(𝚽

⊤
𝚽+𝜎

2

𝑦
𝐏
−1

0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑀×𝑀

)
−1
), (1.3)

where it is necessary to store and invert a matrix of size 𝑀 ×𝑀 , such that the required

storage and computational complexity are (𝑀2
) and (𝑀3

), respectively. It is possible to

compute (1.3) recursively [28] at a computational cost of (𝑀2
) per recursion.

Depending on the size of 𝑀 or 𝑁 , either (1.2), (1.3) or both can become intractable: On the

one hand, computing (1.2) can become a computational bottleneck when the number of

measurements 𝑁 is large. On the other hand, computing (1.3) can become unfeasible when

the number of features 𝑀 is large, which is typically the case when 𝐷 is large. Problems

1

6 1 Introduction

where both 𝑁 and 𝐷 are large are the most challenging because both formulations to solve

(1.1) can become a computational bottleneck.

This thesis focuses on tensor networks as a tool to develop scalable probabilistic

algorithms for large-scale and high-dimensional problems, alleviating the computational

challenges mentioned in this section.

1.2 Tensor networks: A tool for scalability
Tensors are a generalization of scalars, vectors, and matrices to higher dimensions. While,

for example, a matrix is a two-dimensional array with two indices (rows and columns), ten-

sors are represented as multi-dimensional arrays that encode data across multiple indices.

When decomposing high-dimensional tensors into a network of smaller, interconnected

tensors, a tensor network (TN) (interchangeably used with tensor decomposition) is formed.

This can be seen as the generalization of matrix decompositions to higher dimensions.

While, for example, the singular value decomposition (SVD) identifies the most significant

features of a matrix, a TN captures the essential information of a multi-dimensional array.

Thus, tensor decompositions can be interpreted as an SVD extended to higher dimensions.

TNs provide a framework to solve large-scale and high-dimensional problems (see Figure

1.2) in an efficient way. Thus, TNs can be used to solve Bayesian estimation problems as

given by (1.1) for both large 𝑁 and 𝐷.

The following sections offer a high-level and accessible introduction to TN, showcasing

examples that highlight why TNs are a tool for scalability. More technical and mathematical

details can be found in Sections 2.2 and 3.3, and in references therein, e.g. [17] and [5].

First, the generalization of low-rank matrix decomposition to low-rank TNs is described.

Then, it is shown how efficient storage and computations are enabled by low-rank TNs.

1.2.1 From low-rank matrix decompositions to low-rank TNs
The efficient representation of TNs enables efficient storage and computation and is thus the

key characteristic that makes TNs a tool for scalability. There is, however, a key assumption

that needs to be fulfilled in order to enable the scalability of TNs: the low-rank assumption

[5, 30]. Before explaining what low-rank TNs are, consider again a matrix case. A truncated

SVD, depicted in Figure 1.3(a), is a low-rank approximation of a matrix 𝐀 ∈ ℝ
𝐼×𝐽

that consid-

ers only the dominant 𝑅 singular values, where 𝑅 is the rank of the matrix decomposition.

The aproximation of 𝐀 is then computed with 𝐔𝐒𝐕
⊤
where 𝐔 ∈ ℝ

𝐼×𝑅
,𝐕 ∈ ℝ

𝐽 ×𝑅
are the or-

thonormal matrices and 𝐒 ∈ ℝ
𝑅×𝑅

contains the dominant singular values. Generalizing the

matrix case, a low-rank approximation of a 𝐷th order tensor T ∈ ℝ
𝐼1×𝐼2×⋯×𝐼𝐷

can be repre-

sented by a low-rank tensor decomposition, which has multiple so-called TN ranks. Figure

1.3(b) shows an exemplary TN architecture called tensor train (TT) decomposition [24] for

𝐷 = 3 consisting of TN components T (1)
∈ ℝ

𝑅1×𝐼1×𝑅2
,T (2)

∈ ℝ
𝑅2×𝐼2×𝑅3

,T (3)
∈ ℝ

𝑅3×𝐼3×𝑅4
with

TN ranks 𝑅1,𝑅2, ...,𝑅𝐷+1.

A graphical notation for tensors and TNs, called Penrose graphical notation [4, 26],

allows visualizing how the ranks connect the components and how 𝐀 and T can be recon-

structed from their respective matrix and tensor decomposition. As shown in Figure 1.4,

1.2 Tensor networks: A tool for scalability

1

7

Figure 1.3: (a) Depiction of a low-rank matrix decomposition of matrix 𝐀 (gray rectangle), in terms of a truncated

singular value decomposition 𝐔𝐒𝐕
⊤
, where the yellow and red rectangles represent the orthonormal matrices

𝐔,𝐕 and the light grey square represents the matrix 𝐒 containing the singular values. (b) Depiction of a low-rank

tensor decomposition of 3rd order tensor T , in terms of a TT with TT-cores T (1)
,T (2)

,T (3)
.

Figure 1.4: Visual depiction in terms of the Penrose graphical notation of a truncated SVD and TT of a 3rd order

tensor. (a) The matrices involved in the SVD are depicted as nodes with two edges, corresponding to the row

and column indices. The connected edges represent the summation over the shared index, as defined in (1.4).

The free indices 𝐼 and 𝐽 correspond to the size of 𝐀. (b) The TT components are third-order tensors and are thus

represented as a node with three edges. Note that the first and last components have only two edges because, by

definition, 𝑅1 = 𝑅𝐷+1 = 1 and edges equal to 1 are usually not depicted. The connected edges correspond to the

summation over multiple indices as defined in (1.5), and the free edges 𝐼1, 𝐼2, 𝐼3 correspond to the size of T .

a matrix, e.g. 𝐔, is depicted as a node with two edges, representing the row and column

index, while a tensor has as many edges as its order, e.g. third order tensor T (2)
has three

edges. Connected edges represent a summation, also called contraction, over indices, and

free edges correspond to the size of the matrix or tensor that is represented by the matrix

or tensor decomposition.

Figure 1.4(a) corresponds to the matrix-matrix-multiplications computed by summing

over the shared index 𝑟 of size 𝑅 such that the (𝑖, 𝑗)th entry of 𝐀 is given by

𝐀(𝑖, 𝑗) =

𝑅

∑

𝑟=1

𝐔(𝑖, 𝑟)𝐒(𝑟, 𝑟)𝐕(𝑟, 𝑗). (1.4)

In a similar way, Figure 1.4(b) corresponds to summing over all TN ranks such that

each entry of T can be computed with

T (𝑖1,… , 𝑖𝑑 ,… , 𝑖𝐷) =

𝑅1

∑

𝑟1=1

⋯

𝑅
𝑑

∑

𝑟
𝑑
=1

⋯

𝑅𝐷+1

∑

𝑟𝐷+1=1

T (1)
(𝑟1, 𝑖1, 𝑟2)⋯T (𝑑)

(𝑟𝑑 , 𝑖𝑑 , 𝑟𝑑+1)⋯T (𝐷)
(𝑟𝐷, 𝑖𝐷, 𝑟𝐷+1),

(1.5)

where by definition 𝑅1 = 𝑅𝐷+1 = 1, such that (1.5) sums only over the TN ranks that connect

the TN components.

1

8 1 Introduction

The TN ranks, which can be considered hyperparameters, need to be computed or

chosen. Formatrices, the Eckart-Young theorem states that the best low-rank approximation

of a matrix, in terms of minimizing the Frobenius norm or spectral norm, is given by its

truncated SVD [7]. For TNs such a theorem cannot be formulated because in general, they

do not have a single best rank-𝑅 approximation [6]. The choice of ranks is an important step,

as it determines the accuracy of the representation. Furthermore, it needs to be considered

that ranks can increase, for example, when TTs are summed together or multiplied with

each other. To counteract this growth and maintain the efficiency of the TT representation,

a tensor operation called TT-rounding can be applied [24]. This SVD-based algorithm

sweeps through the TT components and reduces the ranks according to a specified target

rank.

The impact of the ranks on storage requirements and computational complexity of a

TN-based algorithm will be further discussed in the next section.

1.2.2 Efficient storage and computations with TNs
When dealing with large-scale and high-dimensional data or models, there are usually two

main bottlenecks: the required storage is so large that the system exhausts its available

memory, or the computations take an excessive amount of time. Even when computations

are feasible, they require long computation times and powerful hardware, which in turn

impact the algorithm’s energy consumption and carbon footprint [29, 32]. This section

explores how TNs tackle these issues by reducing storage and computational complexity,

thus also leading to improved energy efficiency and a smaller carbon footprint. In fact, TNs

are considered a tool for so-called Green AI [21], which is an umbrella term introduced

by [29] for AI algorithms that view accuracy and efficiency as equally important, and

spotlights the importance of sustainability in AI research.

The key characteristic of low-rank TNs lies in their ability to store multiple smaller

tensors rather than relying on a single, large tensor. This decomposed format allows

for the computation of multiple smaller, more manageable operations by distributing the

computations across the TN components, see Figure 1.5.

To illustrate how TNs reduce storage and computational requirements, in the following,

we discuss two examples in which we quantify storage and computational complexities

with and without a TN representation. We use a TT representation, as defined in (1.5).

Suppose that we have a matrix 𝐀 of size 10
𝐷
×10

𝐷
, where 𝐷 = 5, as depicted in Figure

1.6(I)(a). Since the size of 𝐀 grows exponentially with 𝐷, it is called an exponentially

large matrix with a storage complexity of (10𝐷 ⋅ 10
𝐷
). Now consider a TT matrix (TTm)

[23] representation of 𝐀, denoted by A, consisting of 5 interconnected TTm-cores, as

depicted in Figure 1.6(II)(a). Each TTm-core is a 4th order tensor, A(𝑑)
∈ ℝ

𝑅
𝑑
×10×10×𝑅

𝑑+1 ,

𝑑 = 1,…,5 and for this example it is assumed that all ranks are equal to 𝑅. The number of

TTm-cores is the dimensionality 𝐷 of the representation. The storage complexity of the

TTm is (𝐷 ⋅ 10 ⋅ 10 ⋅ 𝑅
2
), so linear in 𝐷 as opposed to the storage complexity of 𝐀, which

is exponential in 𝐷. The accuracy of the representation depends on the ranks 𝑅, and, as

1.2 Tensor networks: A tool for scalability

1

9

discussed in Section 1.2.1, efficient storage relies on the low-rank assumption.

Figure 1.5: Storage and computations with and without TNs. The key characteristic that enables the storage of

and computation with exponentially large tensors lies in storing multiple smaller tensors and performing multiple

smaller operations, respectively.

Now consider a matrix-vector multiplication between the 10
𝐷
×10

𝐷
matrix 𝐀 with a

10
𝐷
×1 vector 𝐱, as depicted in Figure 1.6(I)(b). The computational complexity of this opera-

tion is(10𝐷 ⋅ 10𝐷), so exponential in𝐷. In TT format, the matrix-vector multiplication can

be represented by the TN in Figure 1.6(II)(b), where 𝐱 is represented by a TT with TT-cores

X (1)
,X (2)

,… ,X (5)
. Instead of summing over one shared index of size 10

𝐷
like in the case

without TNs, shared indices and ranks are summed over in a sequential core-by-core

fashion. The computational complexity is given by (𝐷 ⋅ 10 ⋅ 10 ⋅ 𝑅
4
), which is linear in 𝐷.

This allows for efficient computations under the assumption that the TT representations

are low-rank. As mentioned in Section 1.2.1, after multiplying TTs with each, the ranks

can increase, such that TT-rounding needs to be applied to keep the representation efficient.

In summary, the two examples above illustrate how TNs achieve what can be described

as logarithmic compression, enabling both the storage of and computation with an exponen-

tially large matrix using only linear complexity in𝐷. This stands in contrast to the so-called

1

10 1 Introduction

Figure 1.6: (a) Storage complexity of a matrix and (b) computational complexity of a matrix-vector multiplication

(I) with and (II) without TNs for examples with 𝐷 = 5.

1.3 Contributions of this thesis

1

11

Figure 1.7: Depiction of the curse of dimensionality, where the storage (floppy disk symbol) and computational

complexity (calculator symbol) grow exponentially with the dimensionality of the problem 𝐷 (cube with arrows

symbol) versus logarithmic compression where the complexities grow linear with 𝐷.

curse of dimensionality [25], which causes an exponential demand in computational and

storage requirements as 𝐷 grows (see Figure 1.7).

1.3 Contributions of this thesis
The previous two sections have highlighted challenges within the research field of proba-

bilistic modeling, particularly concerning scalability for large-scale and high-dimensional

Bayesian estimation problems. In addition, TNs have been introduced as a tool for scala-

bility and, thus, a promising approach to address these issues. All contributions involve

large-scale and/or high-dimensional probabilistic estimation problems that are tackled

with TNs, and the overall thesis goal is summarized as follows.

Thesis goal: Develop scalable methods for probabilistic modeling in large-scale

and/or high-dimensional settings using efficient storage and computations enabled

by TNs.

To achieve the thesis goal, the different chapters of this thesis present contributions

in terms of papers that contribute to the overall goal. For each contribution, a context is

provided, followed by highlighting the novelty of the contribution. Note that the notation

in this section can be different from the notation used in the chapters for the purpose of

connecting equations between contributions.

We start by applying a Bayesian framework to a well-known TN-based algorithm, the

alternating least squares or alternating linear scheme (ALS), e.g. [14]. In a TN context,

the ALS is an established algorithm for computing a low-rank approximation of a tensor

 ∈ ℝ
𝐼×𝐼×⋯×𝐼

, solving a problem given by

min

G(1)
,⋯,G(𝑑)

,⋯,G(𝐷)

‖𝐲− 𝐲̂‖, s.t. 𝐲̂ being a low-rank TN

with TN components G(1)
,⋯ ,G(𝑑)

,⋯ ,G(𝐷)
,

(1.6)

where 𝐲 ∈ ℝ
𝐼
𝐷

and 𝐲̂ ∈ ℝ
𝐼
𝐷

are vectorized Y and
̂Y , respectively. Each TN component G(𝑑)

is first initialized and then updated sequentially by solving a least squares problem given

1

12 1 Introduction

by

min

𝐠
(𝑑)

‖𝐲−𝐔⧵𝑑𝐠
(𝑑)
‖
2

2
, (1.7)

where 𝐔⧵𝑑 is an orthogonal matrix computed from all TN components except the 𝑑th

(denoted by the subscript ⧵𝑑), 𝐠
(𝑑)

is the 𝑑th vectorized TN component.

Contrary to the conventional ALS, where all subproblems (1.7) are solved without

regularization, we solve a Bayesian inference problem for each update. We put a prior on

each TN component 𝐠
(𝑑)

∼ (𝐦
(𝑑)

0
,𝐏

(𝑑)

0
) and compute a posterior distribution for each TN

component 𝑝(𝐠
(𝑑)

∣ {𝐠
(𝑖)
}𝑖≠𝑑 ,𝐲). Solving a Bayesian inference problem leads to turning (1.7)

into a weighted least squares optimization problem given by

min

𝐠
(𝑑)

‖𝐲−𝐔⧵𝑑𝐠
(𝑑)
‖
2

𝜎
−2

𝑦
𝐈
+‖𝐠

(𝑑)
‖
2

(𝐏
(𝑑)

0
)
−1
, (1.8)

where 𝜎
2

𝑦
is the variance of the measurement noise. Thus, the first contribution of this

thesis can be summarized as follows.

newline
Development of a Bayesian ALS algorithm: We approach

the low-rank tensor approximation problem from a Bayesian

perspective by treating all TN components as Gaussian random

variables with a prior mean and covariance, and solving mul-

tiple sequential Bayesian inference problems to compute the

components of a TN in terms of a posterior distribution.

newline

A central assumption in the first contribution is that the TN components are treated as

Gaussian random variables such that also their posterior distributions 𝑝(𝐠
(𝑑)

∣ {𝐠
(𝑖)
}𝑖≠𝑑 ,𝐲)

are Gaussians. We are, however, often not interested in the posterior distributions of the

TN components themselves, but in the low-rank tensor estimate
̂Y and its uncertainty. A

limitation is that the distribution for the tensor approximation is not Gaussian because it is

reconstructed in a nonlinear way from the TN components.

One way to solve this issue is by treating only one of the TN components as stochastic

and all others as deterministic when reconstructing the tensor approximation from its TN

components. We explore this in [20, 22] in terms of an ALS in a Bayesian framework for the

computation of the posterior model weights in (1.1). When we applied this approach in an

online scenario, however, primary experiments showed that the uncertainty on the weights

is highly underestimated and causes the covariance matrices in the online algorithm to

lose positive definiteness.

The findings of the first contribution and [20, 22] inspired us to adopt a different

perspective. Instead of treating each TN component as a probability distribution, in the

second contribution, we use TNs to approximate the mean and square root covariance

factors of probability distributions. We consider the recursive version of the Bayesian

estimation problem (1.1), corresponding to solving the weighted least squares problem

given by

min
𝐰𝑡

‖𝑦𝑡 −𝝓
⊤

𝑡
𝐰𝑡 ‖

2

𝜎
−2

𝑦
𝐈
+‖𝐰𝑡 ‖

2

𝐏
−1

𝑡−1

, (1.9)

1.3 Contributions of this thesis

1

13

where 𝑦𝑡 , 𝝓𝑡
and 𝐰𝑡 are the measurement, features, and weights at time 𝑡, and 𝐏𝑡−1 is

the covariance matrix from the previous time step. Solving (1.9) leads to the standard

equation for the measurement update of the Kalman filter [28]. As mentioned in Section

1.1, updating the weight estimate and its covariance for a high-dimensional problem results

in a computational complexity that is exponential in 𝐷. In TN format, the TN Kalman filter

[2] achieves logarithmic compression of computational complexity, but introduces the

possibility of loss of positive (semi-) definiteness due to a tensor-specific operation, called

rounding. In the second contribution, we propose a square root Kalman filter formulation

in TN format that guarantees the covariance matrices to stay positive (semi-) definiteness.

We use the ALS as in (1.6) to compute an estimate for the weights 𝐰, as well as a square

root covariance factor. In this context, the tensor that is approximated corresponds to the

mean update in the Kalman filter measurement update equations. We approximate 𝐰̂𝑡 in

terms of TT-components W (1)

𝑡
,W (2)

𝑡
,… ,W (𝐷)

𝑡
by solving the optimization problem given

by

min

W(1)

𝑡
,W(2)

𝑡
,…,W(𝐷)

𝑡
,

‖𝐰𝑡 −𝐰̂𝑡 ‖,

with 𝐰̂𝑡 = 𝐰𝑡−1+𝐊𝑡(𝑦𝑡 −𝝓
⊤

𝑡
𝐰̂𝑡−1) s.t. being a low-rank TT,

(1.10)

where 𝐊𝑡 is the Kalman gain at time 𝑡. We adopt a similar strategy as in (1.10) to compute

the square root covariance factor update, which allows us to recursively update the covari-

ance matrix without running into positive definite issues like existing TN-based algorithms.

The second contribution is, therefore, summarized as follows.

newline

Solving the issue of loss of positive definiteness in tensor
network Kalman filtering: We propose a square root formu-

lation of the Kalman filter in TN format by using the ALS to

compute the mean and square root covariance in TN format

and apply it to high-dimensional online Gaussian process re-

gression.

newline

The final contribution of this thesis is an application in the field of sensor fusion that

tackles a large-scale magnetic field mapping problem, similar to Figure 1.1. As mentioned

in Section 1.1, building magnetic field maps with GP regression provides a mean estimate

of the map together with its uncertainty. Similar to [31, 34], we model the scalar potential

of a magnetic field 𝜑 at a 3D position 𝐩 with a GP given by

𝜑(𝐩) ∼  (0,𝜅(𝐩,𝐩
′
)) , (1.11)

where the GP’s mean function is set to zero and the kernel function 𝜅(𝐩,𝐩
′
) is the squared

exponential kernel to model only the magnetic field anomalies. The resulting derivative

model is then given by

𝐲 = −∇𝜑(𝐩)+𝝐, 𝝐 ∼ (𝟎,𝜎
2

𝐲
𝐈3), (1.12)

where 𝐩 is a 3D input location, 𝐲 is a 3D magnetic field measurement vector, 𝝐 is vector-

values noise with variance 𝜎
2

𝐲
.

1

14 1 Introduction

Given (1.11) and (1.12), the predictive distribution for 𝐟∗, i.e. the magnetic field vector

at a new location 𝐩∗, is given by the standard GP prediction equations [27, Chapter 3]

adapted to a derivative measurement model

𝔼[𝐟∗] = 𝜕
2
(𝐊∗,𝐟)(𝜕

2
(𝐊𝐟,𝐟)+𝜎

2

𝐲
𝐈3𝑁)

−1

vec(𝐘
⊤

) ,

𝕍[𝐟∗] = 𝜕
2
(𝐊∗,∗)−𝜕

2
(𝐊∗,𝐟)(𝜕

2
(𝐊𝐟,𝐟)+𝜎

2

𝐲
𝐈3𝑁)

−1

𝜕
2
(𝐊𝐟,∗),

(1.13)

where 𝐘 = [𝐲
⊤

1
𝐲
⊤

2
⋯𝐲

⊤

𝑁
] ∈ ℝ

𝑁×3
, and 𝜕

2
(𝐊𝐟,𝐟), 𝜕

2
(𝐊∗,𝐟) and 𝜕

2
(𝐊∗,∗) denote kernel matrices

computed as exemplified as follows. A 3 × 3 block in, e.g., 𝜕
2
(𝐊∗,𝐟) is computed with

∇𝐩∗
𝜅(𝐩∗,𝐩)∇

⊤

𝐩
, where ∇ denotes the gradient that is taken w.r.t. to the position vector

specified in the subscript.

In terms of computational complexities, (1.13) requires (3𝑁 3
). To compute (1.13) in a

more efficient way that scales linearly in 𝑁 , we use a combination of a kernel approxima-

tion technique called structured kernel interpolation with derivatives [8], and Kronecker

algebra to speed up matrix-vector multiplications, as described in Chapter 4, Section 4.2.

Note that Kronecker algebra is not directly a TN method, but it is closely related. In fact, a

TTm with all TT-ranks equal to 1 corresponds to a Kronecker product between matrices

[15]. The third contribution is summarized as follows.

newline

Application of structured kernel interpolation to mag-
netic field mapping. We compute scalable magnetic field

maps in 3D using magnetic field measurements as training data.

We incorporate structured kernel interpolation with derivatives

into the scalar potential model for magnetic field modeling, and

use Krylov subspace methods to make GP predictions with a

computational complexity that is linear in the number of data

points.

newline

References

1

15

References
[1] Yaakov Bar-Shalom and Xiao-Rong Li. Multitarget-multisensor tracking: principles

and techniques, volume 19. YBS publishing Storrs, CT, 1995.

[2] Kim Batselier, Zhongming Chen, and Ngai Wong. A tensor network Kalman filter

with an application in recursive MIMO Volterra system identification. Automatica,
84:17–25, 2017.

[3] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning, volume 4. Springer, 2006.

[4] Jacob C Bridgeman and Christopher T Chubb. Hand-waving and interpretive dance:

an introductory course on tensor networks. Journal of Physics A: Mathematical and
theoretical, 50(22):223001, 2017.

[5] Andrzej Cichocki, Namgil Lee, Ivan Oseledets, Anh-Huy Phan, Qibin Zhao, Danilo P

Mandic, et al. Tensor networks for dimensionality reduction and large-scale optimiza-

tion: Part 1 low-rank tensor decompositions. Foundations and Trends® in Machine
Learning, 9(4-5):249–429, 2016.

[6] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the best low-

rank approximation problem. SIAM Journal on Matrix Analysis and Applications,
30(3):1084–1127, 2008.

[7] Carl Eckart and Gale Young. The approximation of one matrix by another of lower

rank. Psychometrika, 1(3):211–218, 1936.

[8] David Eriksson, Kun Dong, Eric Lee, David Bindel, and Andrew G Wilson. Scal-

ing Gaussian process regression with derivatives. Advances in neural information
processing systems, 31, 2018.

[9] Karl J Friston, Lee Harrison, and Will Penny. Dynamic causal modelling. Neuroimage,
19(4):1273–1302, 2003.

[10] Mohinder S Grewal and Angus P Andrews. Applications of Kalman filtering in

aerospace 1960 to the present [historical perspectives]. IEEE Control Systems Magazine,
30(3):69–78, 2010.

[11] Mohinder S Grewal and Angus P Andrews. Kalman filtering: Theory and Practice with
MATLAB. John Wiley & Sons, 2014.

[12] Robert Harle. A survey of indoor inertial positioning systems for pedestrians. IEEE
Communications Surveys & Tutorials, 15(3):1281–1293, 2013.

[13] Simon Haykin. Kalman filtering and neural networks. John Wiley & Sons, 2004.

[14] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear

scheme for tensor optimization in the tensor train format. SIAM Journal on Scientific
Computing, 34(2):A683–A713, 2012.

1

16 1 Introduction

[15] Pavel Izmailov, Alexander Novikov, and Dmitry Kropotov. Scalable Gaussian processes

with billions of inducing inputs via tensor train decomposition. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 726–735. PMLR,

2018.

[16] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.

1960.

[17] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[18] Daphne Koller. Probabilistic graphical models: Principles and techniques, 2009.

[19] Henk J Luinge and Peter H Veltink. Measuring orientation of human body segments

using miniature gyroscopes and accelerometers. Medical and Biological Engineering
and Computing, 43:273–282, 2005.

[20] Eva Memmel, Clara Menzen, and Kim Batselier. Bayesian framework for a MIMO

Volterra tensor network. IFAC-PapersOnLine, 56(2):7294–7299, 2023.

[21] Eva Memmel, Clara Menzen, Jetze Schuurmans, Frederiek Wesel, and Kim Batselier.

Position: Tensor networks are a valuable asset for Green AI. In Proceedings of the
International Conference on Machine Learning, pages 35340–35353. PMLR, 2024.

[22] ClaraMenzen, EvaMemmel, Kim Batselier, andManon Kok. Projecting basis functions

with tensor networks for Gaussian process regression. IFAC-PapersOnLine, 56(2):7288–
7293, 2023.

[23] Ivan V Oseledets. Approximation of 2D x 2D matrices using tensor decomposition.

SIAM Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.

[24] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[25] Ivan V Oseledets and Eugene E Tyrtyshnikov. Breaking the curse of dimensionality,

or how to use SVD in many dimensions. SIAM Journal on Scientific Computing,
31(5):3744–3759, 2009.

[26] Roger Penrose. Applications of negative dimensional tensors. Combinatorial mathe-
matics and its applications, 1:221–244, 1971.

[27] Carl E Rasmussen and Christopher K I Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[28] Simo Särkkä and Lennart Svensson. Bayesian Filtering and Smoothing, volume 17.

Cambridge University Press, 2023.

[29] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green AI. Communica-
tions of the ACM, 63(12):54–63, 2020.

References

1

17

[30] Tianyi Shi and Alex Townsend. On the compressibility of tensors. SIAM Journal on
Matrix Analysis and Applications, 42(1):275–298, 2021.

[31] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B Schön, and Simo Särkkä.

Modeling and interpolation of the ambient magnetic field by Gaussian processes. IEEE
Transactions on robotics, 34(4):1112–1127, 2018.

[32] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consider-

ations for deep learning in NLP. arXiv preprint arXiv:1906.02243, 2019.

[33] Michel Verhaegen and Vincent Verdult. Filtering and system identification: a least
squares approach. Cambridge University Press, 2007.

[34] Niklas Wahlström, Manon Kok, Thomas B Schön, and Fredrik Gustafsson. Modeling

magnetic fields using Gaussian processes. In Proceedings of the 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 3522–3526. IEEE, 2013.

[35] De Jong Yeong, Gustavo Velasco-Hernandez, John Barry, and Joseph Walsh. Sensor

and sensor fusion technology in autonomous vehicles: A review. Sensors, 21(6):2140,
2021.

2
Alternating linear scheme

in a Bayesian framework for
low-rank tensor

approximation

Multiway data often naturally occurs in a tensorial format which can be approximately
represented by a low-rank tensor decomposition. This is useful because complexity can be
significantly reduced and the treatment of large-scale data sets can be facilitated. In this
contribution to the thesis, we find a low-rank representation for a given tensor by solving a
Bayesian inference problem. This is achieved by dividing the overall inference problem into
subproblems where we sequentially infer the posterior distribution of one tensor decomposition
component at a time. This leads to a probabilistic interpretation of the well-known iterative
algorithm alternating linear scheme (ALS). In this way, the consideration of measurement
noise is enabled, as well as the incorporation of application-specific prior knowledge and the
uncertainty quantification of the low-rank tensor estimate. To compute the low-rank tensor
estimate from the posterior distributions of the tensor decomposition components, we present
an algorithm that performs the unscented transform in tensor train format.

This chapter is based on� Clara Menzen, Manon Kok, Kim Batselier : Alternating linear scheme in a Bayesian

framework for low-rank tensor approximation, SIAM Journal on scientific Computing, 44(3), A1116-A1144,

2020 [24].

2.1 Introduction

2

21

2.1 Introduction
Low-rank approximations of multidimensional arrays, also called tensors, have become a

central tool in solving large-scale problems. The numerous applications include machine

learning (e.g. tensor completion [14, 37, 44], kernel methods [5, 36] and deep learning

[10, 26]), signal processing [3, 35], probabilistic modeling [21, 41], non-linear system iden-

tification [1, 13] and solving linear systems [12, 29]. An extensive overview of applications

can be found, e.g., in [9].

In many applications, an observed tensor Y ∈ ℝ
𝐼1×𝐼2×⋯×𝐼𝑁

can be represented with a

low-rank approximation Ylr, without losing the most meaningful information [8]. In the

presence of uncorrelated noise E , however, Y loses the low-rank structure. The observed

tensor can be modeled as

 = 
lr
(𝟏,2

,… ,
𝑁
)+, vec() ∼ (𝟎,𝜎

2
𝐈), (2.1)

where Ylr is a low-rank tensor decomposition (TD), which is a function of TD compo-

nentsG1,G2,… ,G𝑁 . Examples of TDs are the CANDECOMP/PARAFAC (CP) decomposition

[4, 15], the Tucker decomposition [38] and the tensor train (TT) decomposition [28]. We

model the vectorized noise vec(E) as Gaussian, where (𝟎,𝜎
2
𝐈) denotes a zero mean mul-

tivariate normal distribution with covariance matrix 𝜎
2
𝐈. The identity matrix is denoted by

𝐈 which in Equation (2.1) is of size 𝐼1𝐼2…𝐼𝑁 × 𝐼1𝐼2…𝐼𝑁 .

In this work, we solve a Bayesian inference problem to seek a low-rank TD Ylr, given

an observed noisy tensor Y . In general, TDs solve an optimization problem of the form

min

G1 ,G2 ,…,G𝑁

||Y −Ylr(G1,G2,… ,G𝑁)||, (2.2)

There exist multiple methods to find a decomposition for a given tensor. The approach

that we are looking at in this contribution to the thesis is the well-known iterative method

alternating linear scheme (ALS). The ALS has been studied extensively and has successfully

been applied to find low-rank tensor decompositions. The ALS for the CP decomposition

is described in [11, 23], the Tucker decomposition is also treated in [23] and the ALS for

the TT decomposition is studied in [20, 32]. The ALS optimizes the sought tensor on a

manifold with fixed ranks [32, p. 1136]. Imposing the low-rank rank constraint is therefore

easy to implement by choosing the ranks in advance.

The CP, Tucker and TT decomposition are all multilinear functions of all the TD

components. This means that by assuming all TD components except the 𝑛th to be known,

the tensor becomes a linear expression in the 𝑛th component [11, p. 4]. In the ALS all

TD components are updated sequentially by making use of the TD’s multilinearity. Each

update step requires to solve a linear least squares problem given by

min
𝐠𝑛

||𝐲−𝐔⧵𝑛𝐠𝑛||F, (2.3)

where 𝐲 ∈ ℝ
𝐼1𝐼2…𝐼𝑁 ×1

and 𝐠𝑛 ∈ ℝ
𝐾×1

denote the vectorization of Y and G𝑛, respectively,

𝐾 being the number of elements in the 𝑛th TD component. The matrix 𝐔⧵𝑛 ∈ ℝ
𝐽 ×𝐾

is a

2

22 ALS in a Bayesian framework for low-rank tensor approximation

function off all TD components except the 𝑛th, where 𝐽 is the number of elements in 𝐲,

and || ⋅ ||F denotes the Frobenius norm.

A drawback of the ALS is that it does not explicitly model the measurement noise E ,
which in real-life applications is usually present. In this work, we model the noise by

approaching the tensor decomposition in a Bayesian framework, treating all components as

probability distributions. In this way, finding a low-rank TD approximation can be solved

as a Bayesian inference problem: given the prior distributions of the TD components 𝑝(𝐠𝑖)

and the measurements 𝐲, the posterior distribution 𝑝({𝐠𝑖} ∣ 𝐲) can be found by applying

Bayes’ rule

𝑝 ({𝐠𝑖} ∣ 𝐲) =

likelihood

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑝(𝐲|{𝐠𝑖})

prior

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑝({𝐠𝑖})

𝑝(𝐲)

⏟⏞⏞⏟⏞⏞⏟

evidence

, (2.4)

where {𝐠𝑖} denotes the collection of all TD components 𝐠𝑖, for 𝑖 = 1,…,𝑁 . We assume that

the prior is Gaussian and, as in the ALS, we apply a block coordinate descent [25, p. 230].

This leads to a tractable inference for each substep.

Solving the low-rank tensor approximation problem in a Bayesian way has the fol-

lowing benefits. The assumptions on the measurement noise E are considered and the

uncertainty of each tensor decomposition component 𝐠𝑛 is quantified. Furthermore, prior

knowledge can be explicitly taken into account and the resulting low-rank tensor estimate

comes with ameasure of uncertainty. We illustrate the benefits with numerical experiments.

Our main contribution is to approach the low-rank tensor approximation problem from

a Bayesian perspective, treating all TD components as Gaussian random variables. This

results in a probabilistic ALS algorithm. We ensure numerical stability by incorporating the

orthogonalization step, present in the ALS algorithm for the TT decomposition, into the

probabilistic framework. In addition, we propose an algorithm to approximate the mean

and covariance of the low-rank tensor estimate’s posterior density with the unscented

transform in tensor train format. Our open-source MATLAB implementation can be found

on https://gitlab.tudelft.nl/cmmenzen/bayesian-als.

Related Work
Our work is related to inferring low-rank tensor decompositions with Bayesian methods for

noisy continuous-valued multidimensional observations. While most literature considers

either the CP or Tucker decomposition, our paper mainly focuses on the TT decomposition,

but is also applicable to CP and Tucker. Also, in contrast to our paper, the related work

mainly treats tensors with missing values. The main difference to the existing literature,

however, are the modeling choices. While the existing work proposes different methods to

perform approximate inference of the TD components, we make approximations that allow

us to have a tractable inference. This is because we take inspiration from the ALS and each

substep of the ALS has an analytical solution. Also, we assume that all TD components

https://gitlab.tudelft.nl/cmmenzen/bayesian-als

2.2 Tensor basics and notation

2

23

are Gaussian random variables and that they are all independent. Thus, our method is

preferable when these assumptions can be made for a given application.

In [30], [31] and [39] inference is performed with Gibbs sampling, using Gaussian priors

for the columns of the CP decomposition’s factor matrices. Variational Bayes is applied

in [42] and [44]. The recovery of orthogonal factor matrices, optimizing on the Stiefel

manifold with variational inference is treated by [6]. The Bayesian treatment of a low-rank

Tucker decomposition for continuous data has been studied using variational inference

[7, 43] and using Gibbs sampling [19]. Furthermore, an infinite Tucker decomposition

based on a 𝑡-process, which is a kernel-based non-parametric Bayesian generalization of

the low-rank Tucker decomposition, is proposed by [40]. The first literature about the

probabilistic treatment of the tensor train decomposition using von-Mises-Fisher priors

on the orthogonal cores and variational approximation with evidence lower bound is

introduced by [17]. Recently, [18] published the probabilistic tensor decomposition toolbox

for MATLAB, providing inference with variational Bayes and with Gibbs sampling.

2.2 Tensor basics and notation
An 𝑁 -way tensor Y ∈ ℝ

𝐼1×𝐼2×⋯×𝐼𝑁
is a generalization of a vector or a matrix to higher

dimensions, where 𝑁 is often referred to as the order of the tensor. We denote tensors by

calligraphic, boldface, capital letters (e.g. Y) and matrices, vectors and scalars by boldface

capital (e.g. 𝐘), boldface lowercase (e.g. 𝐲) and italic lower case (e.g. 𝑦) letters, respectively.

To facilitate the description and computation of tensors, we use a graphical notation as

depicted in Figure 2.1. The nodes represent a scalar, a vector, a matrix and an 𝑁 -way tensor

and edges correspond to a specific index. The number of edges is equal to how many

indices need to be specified to identify one element in the object, e.g. row and column

index for matrices. An identity matrix is generally denoted by 𝐈. Its size is either specified

in the context or as a subscript.

Often it is easier to avoid working with the tensors directly, but rather with a matricized

or vectorized version of them. Therefore, we revise some useful definitions. In this context,

a mode of a tensor refers to a dimension of the tensor.

Definition 2.2.1 (mode-𝑛-unfolding [23, p. 459-460]) The transformation of an 𝑁 -way
tensor into a matrix with respect to a specific mode is called the mode-𝑛 unfolding. It is denoted
by

𝐘
(𝑛)

∈ ℝ
𝐼𝑛×𝐼1…𝐼𝑛−1𝐼𝑛+1…𝐼𝑁

.

The vectorization is a special case of the unfolding, denoted by the operator name vec()

and defined as

vec(Y) = 𝐲 ∈ ℝ
𝐼1𝐼2…𝐼𝑁 ×1

.

Tensors can be multiplied with matrices defined as follows.

Definition 2.2.2 (𝑛-mode product [23, p. 460]) The 𝑛-mode product is defined as the
multiplication of a tensor X ∈ ℝ

𝐼1×⋯×𝐼𝑛×⋯×𝐼𝑁 with a matrix 𝐀 ∈ ℝ
𝐽 ×𝐼𝑛 in mode 𝑛, written

as
X ×𝑛𝐀 ∈ ℝ

𝐼1×⋯×𝐼𝑛−1×𝐽×𝐼𝑛+1×⋯×𝐼𝑁
.

2

24 ALS in a Bayesian framework for low-rank tensor approximation

𝑦 𝐲 𝐘 Y

... ...
𝐼𝑁

𝐼𝑛
𝐼1
𝐼2

Y ∈ ℝ
𝐼1×𝐼2×...×𝐼𝑛×...×𝐼𝑁

Figure 2.1: Visual depictions of a scalar, a vector, a matrix and an 𝑁 -way tensor, where the nodes represent the

object and the edges correspond to a specific index. The number of edges is equal to how many indices need to

be specified to identify one element in the object, e.g. row and column index for matrices.

𝐀 𝐁
𝐾

𝐁

𝐀

→ 𝐀⊗𝐁

𝐽1 𝐽2

𝐼1 𝐼2

𝐼1𝐽1 𝐼2𝐽2

=

𝐀𝐁

𝐼 𝐽

𝐼 𝐽

Figure 2.2: Left: Visual depictions of an index contraction between matrices 𝐀 and 𝐁. Right: Visual depictions of

an outer product between matrices𝐀 and 𝐁. The dotted line represents a summation over a rank-1 one connection.

The resulting matrix is computed as the Kronecker product 𝐀⊗𝐁.

Element-wise, the (𝑖1, 𝑖2, .., 𝑖𝑛−1, 𝑗 , 𝑖𝑛+1, ..., 𝑖𝑁)-th entry of the result can be computed as

𝐼𝑛

∑

𝑖𝑛=1

X (𝑖1, 𝑖2,… , 𝑖𝑁)𝐀(𝑗, 𝑖𝑛).

Definition 2.2.3 (Kronecker product [23, p. 461]) The Kronecker product of matrices
𝐀 ∈ ℝ

𝐼×𝐽 and 𝐁 ∈ ℝ
𝐾×𝐿 is denoted by 𝐀⊗𝐁. The result is a matrix of size (𝐾𝐼) × (𝐿𝐽) and is

defined by

𝐀⊗𝐁 =

⎡

⎢

⎢

⎢

⎣

𝑎11𝐁 𝑎12𝐁 ⋯ 𝑎1𝐽𝐁

𝑎21𝐁 𝑎22𝐁 ⋯ 𝑎2𝐽𝐁

⋮ ⋮ ⋱ ⋮

𝑎𝐼1𝐁 𝑎𝐼2𝐁 ⋯ 𝑎𝐼 𝐽𝐁

⎤

⎥

⎥

⎥

⎦

.

Definition 2.2.4 (Kathri-Rao product [23, p. 462]) The Khatri–Rao product of matrices
𝐀 ∈ ℝ

𝐼×𝐾 and 𝐁 ∈ ℝ
𝐽 ×𝐾 is denoted by 𝐀⊙𝐁. The result is a matrix of size (𝐽 𝐼) ×𝐾 defined by

𝐀⊙𝐁 = [𝐚1⊗𝐛1 𝐚2⊗𝐛2 ⋯ 𝐚𝐾 ⊗𝐛𝐾] .

The visual depictions of two important matrix operations are shown in Figure 2.2. On the

left, a product between matrices 𝐀 ∈ ℝ
𝐼×𝐾

and 𝐁 ∈ ℝ
𝐾×𝐽

is shown, where the summation

over the middle index 𝐾 , also called contraction, is represented as an edge that connects

both nodes. On the right, an outer product between matrices 𝐀 ∈ ℝ
𝐼1×𝐼2

and 𝐁 ∈ ℝ
𝐽1×𝐽2

is

shown, where the dotted lines represent a rank-1 connection. The resulting matrix is the

Kronecker product 𝐀⊗𝐁 ∈ ℝ
𝐼1𝐽1×𝐼2𝐽2

.

A tensor can be expressed as a function of simpler tensors that form a tensor decompo-

sition. An extensive review about TDs can be found in [23]. The most notable are the CP

decomposition, the Tucker decomposition, and the TT decomposition.

2.2 Tensor basics and notation

2

25

Definition 2.2.5 (CP decomposition [4, 15]) The CP decomposition consists of a set of
matrices𝐆𝑖 ∈ℝ

𝐼𝑖×𝑅, 𝑖 = 1, ..,𝑁 , called factormatrices and aweight vector𝝀∈ℝ
𝑅×1 that represent

a given 𝑁 -way tensor Y . Element-wise, the (𝑖1, 𝑖2, .., 𝑖𝑁)-th entry of Y can be computed as

𝑅

∑

𝑟=1

𝝀(𝑟)𝐆1(𝑖1, 𝑟)⋯𝐆𝑁 (𝑖𝑁 , 𝑟),

where 𝑅 denotes the rank of the decomposition.

Definition 2.2.6 (Tucker decomposition [38]) The Tucker decomposition consists of an
𝑁 -way tensor C ∈ ℝ

𝑅1×⋯×𝑅𝑁 , called core tensor, and a set of matrices 𝐆𝑖 ∈ ℝ
𝐼𝑖×𝑅𝑖 , 𝑖 = 1, ..,𝑁 ,

called factor matrices, that represent a given𝑁 -way tensorY . Element-wise, the (𝑖1, 𝑖2, .., 𝑖𝑁)-th
entry of Y can be computed as

𝑅1

∑

𝑟1=1

⋯

𝑅𝑁

∑

𝑟𝑁=1

C(𝑟1,… , 𝑟𝑁)𝐆1(𝑖1, 𝑟1)⋯𝐆𝑁 (𝑖𝑁 , 𝑟𝑁),

where 𝑅1,…𝑅𝑁 denote the ranks of the decomposition. The factor matrices can be orthogonal,
such that the Frobenius norm of the entire tensor is contained in the core tensor.

Definition 2.2.7 (The TT decomposition [28]) The tensor train decomposition consists
of a set of three-way tensors G𝑖 ∈ ℝ

𝑅𝑖×𝐼𝑖×𝑅𝑖+1 , 𝑖 = 1, ..,𝑁 called TT-cores, that represent a given
𝑁 -way tensor Y . Element-wise, the (𝑖1, 𝑖2, .., 𝑖𝑁)-th entry of Y can be computed as

𝑅1

∑

𝑟1=1

𝑅2

∑

𝑟2=1

⋯

𝑅𝑁+1

∑

𝑟𝑁+1=1

G1(𝑟1, 𝑖1, 𝑟2)G2(𝑟2, 𝑖2, 𝑟3)⋯G𝑁 (𝑟𝑁 , 𝑖𝑁 , 𝑟𝑁+1),

where 𝑅1,… ,𝑅𝑁+1 denote the ranks of the TT-cores and by definition 𝑅1=𝑅𝑁+1=1.

If the tensor is only approximately represented by a TD, then the ranks determine the

accuracy of the approximation.

As mentioned in Section 2.1, to formulate the linear least squares problem for one

update of the ALS, the TD’s property of multi-linearity is exploited and it is expressed as

𝐲 = 𝐔⧵𝑛𝐠𝑛, with 𝐔⧵𝑛 ∈ ℝ
𝐽 ×𝐾

and 𝐠𝑛 ∈ ℝ
𝐾×1

, where 𝐽 and 𝐾 are the number of elements of

Y and G𝑛, respectively. The following three examples describe how 𝐔⧵𝑛 is built for the CP

decomposition, the Tucker decomposition, and the TT decomposition.

Example 2.2.8 If a tensor is represented in terms of a CP decomposition, the matrix 𝐔⧵𝑛 can
be written as

𝐔⧵𝑛 = (𝐆𝑁 ⊙⋯⊙𝐆𝑛+1⊙𝐆𝑛−1⊙⋯⊙𝐆1)⊗ 𝐈𝐼𝑛
(2.5)

Note that 𝐔⧵𝑛 is of size 𝐼𝑛𝐼1…𝐼𝑛−1𝐼𝑛+1…𝐼𝑁 × 𝐼𝑛𝑅, so the first dimension needs to be permuted
in order to match 𝐲 ∈ ℝ

𝐼1𝐼2…𝐼𝑁 . The weight vector 𝝀 is absorbed into the factor matrix that is
being updated. After each update, the columns of 𝐆𝑛 are normalized and the norms are stored
in 𝝀. The CP-ALS algorithm can be found in [23, p. 471].

2

26 ALS in a Bayesian framework for low-rank tensor approximation

𝑅2

𝐼1

𝑅3

𝐼2 𝐼𝑁

𝑅𝑁...

Figure 2.3: Visual depiction of a tensor train decomposition with 𝑁 TT-cores.

G𝑛

𝑅𝑛 𝑅𝑛+1

𝐼𝑛

G𝑛

𝑅𝑛 𝑅𝑛+1

𝐼𝑛

𝐆
L

𝑛
𝐆
R

𝑛

𝑅𝑛𝐼𝑛 𝑅𝑛+1 𝑅𝑛 𝐼𝑛𝑅𝑛+1
→ →

Figure 2.4: Left: Visual depiction of a left-unfolding of a TT-core. Right: Right-unfolding of a TT-core.

Example 2.2.9 If a tensor is represented in terms of a Tucker decomposition, the matrix 𝐔⧵𝑛

can be written as

𝐔⧵𝑛 = [(𝐆𝑁 ⊗⋯⊗𝐆𝑛+1⊗𝐆𝑛−1⊗…𝐆1)𝐂
⊤

(𝑛)]
⊗ 𝐈𝐼𝑛

. (2.6)

Note that 𝐔⧵𝑛 is of size 𝐼𝑛𝐼1…𝐼𝑛−1𝐼𝑛+1…𝐼𝑁 × 𝐼𝑛𝑅𝑛, so the first dimension needs to be permuted
in order to match 𝐲 ∈ ℝ

𝐼1𝐼2…𝐼𝑁 . The core tensor is recomputed by solving

𝐲 = (𝐆𝑁 ⊗⋯⊗𝐆1)vec(C).

Example 2.2.10 If the tensor is represented in terms of a TT decomposition, the matrix 𝐔⧵𝑛

can be written as
𝐔⧵𝑛 = G𝑖>𝑛⊗𝐈𝐼𝑛

⊗G⊤

𝑖<𝑛
∈ ℝ

𝐼1𝐼2…𝐼𝑁 ×𝑅𝑛𝐼𝑛𝑅𝑛+1
, (2.7)

where G𝑖<𝑛 (G𝑖>𝑛) denotes a tensor obtained by contracting the TD components, left (right) of
the 𝑛th core.

From here on, we will focus on the tensor train decomposition. We, therefore, review

some of the main concepts. A tensor train can be represented by a diagram with nodes as

the TT-cores and the edges as the modes of the approximated tensor. Connected edges are

the summation over the ranks between two cores (Figure 2.3). To introduce a notion of

orthonormality for TT-cores, a special case of Theorem 2.2.1 is used, creating unfoldings

of the TT-cores defined as follows.

Definition 2.2.11 (Left- and right-unfolding [20, p. A689]) The left-unfolding 𝐆L

𝑛
and

right-unfolding𝐆R

𝑛
of a TT-core G𝑛 are the unfoldings of a core with respect to the first and last

mode, respectively (Figure 2.4). Please note that the definition by [20] of the right-unfolding is
the transposed version of this definition.

Definition 2.2.12 (Left-orthogonal and right-orthogonal [20, p. A689]) ATT-coreG𝑛

is called left-orthogonal, if the left-unfolding 𝐆L

𝑛
satisfies

(𝐆
L

𝑛)

⊤

𝐆
L

𝑛
= 𝐈𝑅𝑛+1

.

Analogously, a TT-core G𝑛 is called right-orthogonal, if the right-unfolding 𝐆R

𝑛
satisfies

𝐆
R

𝑛 (𝐆
R

𝑛)

⊤

= 𝐈𝑅𝑛
.

2.2 Tensor basics and notation

2

27

Figure 2.5: Visual depiction of tensor trains with three TT-cores in site-𝑛-mixed-canonical form. Left: Norm in

the first core and other cores left-orthogonal. Middle: Norm in the second core, first and last cores are left- and

right-orthogonal, respectively. Right: Norm in the last core and other cores right-orthogonal.

𝐼1

𝐽1

𝐼2

𝐽2

...

𝐼𝑁

𝐽𝑁

Figure 2.6: Visual depiction of a tensor train matrix. The row indices 𝐼1,… , 𝐼𝑁 point downwards, and the column

indices 𝐽1,… , 𝐽𝑁 point upwards.

Definition 2.2.13 (site-𝑛-mixed-canonical form [34, p. 113]) A tensor train is in site-
𝑛-mixed-canonical form if the TT-cores {G𝑖}𝑖<𝑛 are left-orthogonal and the TT-cores {G𝑖}𝑖>𝑛

are right-orthogonal. The 𝑛th TT-core is not orthogonal and it can be easily shown that

||Y ||F = ||G𝑛||F.

Figure 2.5 depicts different site-𝑛-mixed-canonical forms for an exemplary three-way tensor

train. On the left (right) figure, the Frobenius norm is contained in the first (last) core and

all other cores are right- (left-) orthogonal, represented by the diagonal in the node.

A special case of the TT decomposition format is the tensor train matrix (Figure 2.6),

which represents a large matrix in TT format. Tensor train matrices arise in the context of

the unscented transform in Section 2.5.

Definition 2.2.14 (Tensor train matrix [27]) A tensor train matrix (TTm) consists of a
set of four-way tensors G𝑖 ∈ ℝ

𝑅𝑖×𝐼𝑖×𝐽𝑖×𝑅𝑖+1 , 𝑖 = 1,…,𝑁 with 𝑅1 = 𝑅𝑁+1 = 1 that represents a
matrix𝐀 ∈ ℝ

𝐼×𝐽 . The row and column indices are split into multiple row indices 𝐼 = 𝐼1 ⋅ 𝐼2 ⋅⋯ ⋅ 𝐼𝑁

and column indices 𝐽 = 𝐽1 ⋅ 𝐽2 ⋅⋯ ⋅ 𝐽𝑁 , respectively and the matrix is transformed into a 2𝑁 -
way tensor Y𝐀 ∈ ℝ

𝐼1×𝐽1×⋯×𝐼𝑁 ×𝐽𝑁 . Element-wise, the (𝑖1, 𝑗1, 𝑖2, 𝑗2,… , 𝑖𝑁 , 𝑗𝑁)-th entry of Y𝐀 is
computed as

𝑅1

∑

𝑟1=1

𝑅2

∑

𝑟2=1

⋯

𝑅𝑁+1

∑

𝑟𝑁+1=1

G1(𝑟1, 𝑖1, 𝑗1, 𝑟2)G2(𝑟2, 𝑖2, 𝑗2, 𝑟3)⋯G𝑁 (𝑟𝑁 , 𝑖𝑁 , 𝑗𝑁 , 𝑟𝑁+1).

A TTm arises e.g. from an outer product between two vectors 𝐚 and 𝐛, which corresponds

to computing the product of one vector with the transpose of the other. If vector 𝐚 is

represented by a TT with cores A1,… ,A𝑁 , the resulting TTm is achieved by summing

over a rank-1 connection between one of the TT-cores, e.g. the first, and vector 𝐛 (Figure 2.7

top). This result is a special case of the general TTm, where only one of the TT-cores has

a double index. This means that only the row index is very large and therefore split into

2

28 ALS in a Bayesian framework for low-rank tensor approximation

=
Outer product of

TT and vector

...

𝐚 𝐛
⊤

=

Outer product

of two TTs

...

...

𝐚

𝐛

Product of

TTm and vector

=

...

𝐂

𝐛
⊤

𝐛
⊤

A1 A2 A𝑁

B1 B2 B𝑁

A1 A2 A𝑁

𝐛

C1 C2 C𝑁

Figure 2.7: Operations with matrices and vectors. Top: Outer product between a vector 𝐚, represented by a

TT with coresA1,… ,A𝑁 , and a vector 𝐛. A rank-1 connection (dotted line) is summed over between the first

TT-core and vector 𝐛
⊤
. Middle: Outer product between two vectors 𝐚 and 𝐛 represented by tensor trains with

cores A1,… ,A𝑁 and B1,… ,B𝑁 , respectively. A rank-1 connection is summed over between each core of the

TTs. Bottom: The product between a matrix 𝐂 in TTm format with cores C1,… ,C𝑁 and a vector 𝐛. The column

index of the first TTm-core is summed over with the row index of the vector 𝐛.

multiple indices, while the column index is not split. If both vectors in the outer product

are represented by tensor trains with coresA1,… ,A𝑁 and B1,… ,B𝑁 , respectively, then

each core is summed over a rank-1 connection with the core of the other TT’s transpose

(Figure 2.7 middle). All cores have then a row and column indices. The product of a matrix

𝐂 in TTm format with cores C1,… ,C𝑁 with a vector 𝐛 is computed by summing over the

column index of one TTm-core, e.g. the first, and the row index of the vector (Figure 2.7

bottom).

2.3 Bayesian inference for low-rank tensor approx-
imation

In this section, we present a method to find a low-rank tensor decomposition using a

similar strategy as in the ALS by solving a Bayesian inference problem. In this context,

the vectorization of each TD component is treated as a Gaussian random variable, ex-

pressed in terms of a mean and a covariance. Generally, we denote a Gaussian probability

distribution as  (𝐦,𝐏), where 𝐦 is the mean and 𝐏 is the covariance. This section is

organized as follows. First, we define the prior for the inference problem. Before com-

puting the joint posterior distribution, we look at a simpler inference problem, stated in

Theorem 2.3.1, where the posterior distribution of only one TD component is computed.

Then, Theorem 2.3.4 describes the computation of the joint posterior by applying a block

coordinate descent method and simplifying the inference problem to iteratively applying

Theorem 2.3.1. Finally, our resulting Algorithm 1 is applied in an example.

To initialize the Bayesian inference problem, a multi-variate Gaussian prior is assigned

2.3 Bayesian inference for low-rank tensor approximation

2

29

to every TD component

𝑝 (𝐠𝑖) = (𝐦
0

𝑖
,𝐏

0

𝑖) , 𝑖 = 1,…,𝑁 ,

where 𝐦
0

𝑖
and 𝐏

0

𝑖
are the prior mean and covariance matrix, respectively. The TD compo-

nents 𝐠𝑖 ∈ ℝ
𝑅𝑖𝐼𝑖𝑅𝑖+1×1

are assumed to be statistically independent. Therefore, the joint prior

distribution is given by

𝑝({𝐠𝑖}) =
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐦
0

1

𝐦
0

2

⋮

𝐦
0

𝑁

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

𝐏
0

1
0 … 0

0 𝐏
0

2
⋱ ⋮

⋮ ⋱ ⋱ 0

0 … 0 𝐏
0

𝑁

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

,

where {𝐠𝑖} denotes the priors of all TD components. Because of the statistical independence,

the joint prior distribution and the prior on one TD component conditioned on the other

TD components, can be written as

𝑝({𝐠𝑖}) = 𝑝(𝐠1)𝑝(𝐠2)…𝑝(𝐠𝑁) and (2.8)

𝑝(𝐠𝑛 ∣ {𝐠𝑖}𝑖≠𝑛) = 𝑝(𝐠𝑛), (2.9)

respectively, where {𝐠𝑖}𝑖≠𝑛 denotes the collection of all TD components except

the 𝑛th.

The joint posterior distribution 𝑝({𝐠𝑖} ∣ 𝐲) is found by applying Bayes’ rule. However,

before solving this inference problem and inspired by a result described in [33, p. 29], we

first look at the simpler problem to find the posterior distribution of one component, given

the measurement and the other components.

Lemma 2.3.1 Let the prior distribution 𝑝(𝐠𝑛) = (𝐦
0

𝑛
,𝐏

0

𝑛
) and the likelihood 𝑝(𝐲 ∣ {𝐠𝑖}) =

 (𝐦𝐲,𝜎
2
𝐈) be Gaussian, where 𝐦𝐲 = 𝐔⧵𝑛𝐠𝑛. Further, let all TD components be statistically

independent and let the TD be multilinear. Then, the posterior distribution 𝑝 (𝐠𝑛 ∣ {𝐠𝑖}𝑖≠𝑛,𝐲) =

 (𝐦
+

𝑛
,𝐏

+

𝑛
) of the 𝑛th component given the measurements and the other components is also

Gaussian with mean 𝐦
+

𝑛
and covariance 𝐏+

𝑛

𝐦
+

𝑛
=
[
(𝐏

0

𝑛
)
−1

+

𝐔
⊤

⧵𝑛
𝐔⧵𝑛

𝜎
2]

−1

[

𝐔
⊤

⧵𝑛
𝐲

𝜎
2

+(𝐏
0

𝑛
)
−1
𝐦

0

𝑛
]

(2.10)

𝐏
+

𝑛
=
[
(𝐏

0

𝑛
)
−1

+

𝐔
⊤

⧵𝑛
𝐔⧵𝑛

𝜎
2]

−1

. (2.11)

Proof 2.3.2 The posterior distribution of one TD component conditioned on the other TD
components and the measurements 𝑝 (𝐠𝑛 ∣ 𝐲, {𝐠𝑖}𝑖≠𝑛) can be found by applying Bayes’ rule.
Assuming that all components are statistically independent Equation (2.9) leads to

𝑝 (𝐠𝑛 ∣ 𝐲, {𝐠𝑖}𝑖≠𝑛) =

𝑝(𝐲 ∣ {𝐠𝑖})𝑝(𝐠𝑛)

𝑝(𝐲 ∣ {𝐠𝑖}𝑖≠𝑛)

. (2.12)

Since the likelihood 𝑝(𝐲 ∣ {𝐠𝑖}) and prior 𝑝(𝐠𝑛) are Gaussian, also the posterior will be Gaussian
[33, p. 28-29, 209-210] with mean Equation (2.10) and covariance Equation (2.11).

2

30 ALS in a Bayesian framework for low-rank tensor approximation

Corollary 2.3.3 For lim𝐏
0

𝑛
→∞, Equation (2.10) reduces to the normal equations of the least

squares problem and therefore the update equation of the conventional ALS

𝐦
+

𝑛
= (𝐔

⊤

⧵𝑛
𝐔⧵𝑛)

−1

𝐔
⊤

⧵𝑛
𝐲. (2.13)

Theorem 2.3.3 describes the case where there is no useful prior information available for

the 𝑛th TD component. Thus, the certainty on the prior mean is zero, and lim𝐏
0

𝑛
→∞.

Now, we can use Theorem 2.3.1 to find the joint posterior distribution of all TD compo-

nents as described in the following theorem.

Theorem 2.3.4 Let 𝑝 ({𝐠𝑖} ∣ 𝐲) be the posterior joint distribution of all TD components given
𝐲. Further, let the prior distribution 𝑝(𝐠𝑛) =  (𝐦

0

𝑛
,𝐏

0

𝑛
) of any component as well as the

likelihood 𝑝(𝐲 ∣ {𝐠𝑖}) = (𝐦𝐲,𝜎
2
𝐈) be Gaussian, where the mean 𝐦𝐲 is the tensor represented

by the TD, which is a nonlinear function of all the TD components. Further, let all TD
components be statistically independent and let the TD be multilinear. Then, by applying
block coordinate descent to find the posterior density, every step of the block coordinate descent
corresponds to applying Theorem 2.3.1.

Proof 2.3.5 Bayes’ rule and statistical independence Equation (2.8) gives

𝑝 ({𝐠𝑖} ∣ 𝐲) =

𝑝(𝐲 ∣ {𝐠𝑖})𝑝(𝐠1)𝑝(𝐠2)…𝑝(𝐠𝑁)

𝑝(𝐲)

. (2.14)

As in the conventional ALS, a block coordinate descent method is applied by conditioning the
posterior distribution of one TD component on all the others. In this way, the TD components
can be computed sequentially with Equation (2.12). In addition, due to the multilinearity
of the TD the mean of the likelihood becomes a linear function of the 𝑛th TD component,
𝐦𝐲 = 𝐔⧵𝑛𝐠𝑛. Thus, every TD update corresponds to applying Theorem 2.3.1.

With Theorem 2.3.3, Theorem 2.3.4 gives a Bayesian interpretation of the ALS by

deriving its update equation from the TD components defined as probability distributions.

The following example shows how the distributions change with every update.

Example 2.3.6 (Distribution updates for a TD with three components) Assume we
would like to apply Theorem 2.3.4 to find a TD with three components. First, the three TD
components are initialized with a prior distribution. Then, the distributions are updated
sequentially by computing the posterior with Bayes’ rule, as shown in Figure 2.8. After
updating the three TD components, the updates are repeated until a stopping criterion is met.

Algorithm 1 summarizes the steps of the ALS in a Bayesian framework. The mean and

covariance of each TD component are sequentially updated, followed by the computation

of 𝐔⧵𝑛 which is computed from {𝐠𝑖}𝑖≠𝑛. The stopping criterion is defined by the user,

e.g. as a maximum number of iterations or the convergence of the residuals between the

measurement and estimate, as used in the convectional ALS. It is also possible to consider

the convergence of the TT-core’s covariance matrices as a stopping criterion since these

are additionally computed in the ALS in the Bayesian framework. Another possibility is to

2.3 Bayesian inference for low-rank tensor approximation

2

31

Prior definition 𝑝(𝐠1) 𝑝(𝐠2) 𝑝(𝐠3)

↓ ⋮ ⋮

Update 1 𝑝(𝐠1 ∣ 𝐠2, 𝐠3,𝐲) = ⋮ ⋮

𝑝(𝐲∣𝐠1 ,𝐠2 ,𝐠3)𝑝(𝐠1)

𝑝(𝐲∣𝐠2 ,𝐠3)
⋮ ⋮

↓ ⋮

Update 2 𝑝(𝐠2 ∣ 𝐠1, 𝐠3,𝐲) = ⋮

𝑝(𝐲∣𝐠1 ,𝐠2 ,𝐠3)𝑝(𝐠2)

𝑝(𝐲∣𝐠1 ,𝐠3)
⋮

↓

Update 3 𝑝(𝐠3 ∣ 𝐠1, 𝐠2,𝐲) =

𝑝(𝐲∣𝐠1 ,𝐠2 ,𝐠3)𝑝(𝐠3)

𝑝(𝐲∣𝐠1 ,𝐠2)

Figure 2.8: Distribution updates for example with three TD components.

Table 2.1: Computational cost per update and overall storage requirements for Algorithm 1.

TD computational cost storage

CP (𝑅3
𝐼
3
)+(𝑅𝐼𝑁+1

) (𝑁𝑅𝐼 +𝑁𝑅
2
𝐼
2
)

Tucker (𝑅3𝑁
)+(𝑅𝑁

𝐼
𝑁
) (𝑁𝑅𝐼 +𝑅

𝑁
+𝑁𝑅

2
𝐼
2
+𝑅

2𝑁
)

TT (𝑅6
𝐼
3
)+(𝑅2

𝐼
𝑁
) (𝑁𝑅

2
𝐼 +𝑁𝑅

4
𝐼
2
)

look at the convergence of the numerator of Bayes’ rule.

For the complexity analysis, we use the following notation. The largest rank or the

CP-rank is denoted by 𝑅 and the largest dimension of the approximated tensor is denoted

by 𝐼 . The computational cost per update and the overall storage requirements are given

in Table 2.1. The first term in the computational cost for CP, Tucker and TT represents

the inversion that needs to be performed to compute the covariance matrix of the updated

factor matrices, core tensor and TT cores, respectively. The cost for the Tucker core could

be reduced, however, by incorporating an orthogonalization step, thus, avoiding the re-

computation of the core tensor. The second term for all TDs is the complexity to compute

𝐔
⊤

⧵𝑛
𝐲, which is dominant compared to the cost of computing 𝐔

⊤

⧵𝑛
𝐔⧵𝑛. In comparison, the

conventional ALS has the same computational cost for every TD component update, and a

total storage requirement of (𝑁𝑅𝐼) for CP, (𝑁𝑅𝐼 +𝑅
𝑁
) for Tucker, and (𝑁𝑅

2
𝐼) for

TTs. The ALS in a Bayesian framework has an additional term in the storage requirements,

because it computes the covariance matrix for every TD component.

Our method also opens up the possibility to recursively estimating the mean and

covariance of the TD components. In case a new noisy measurement 𝐲 of the same

underlying tensor becomes available, Algorithm 1 can applied repeatedly with the output

mean and covariance from the previous execution as the prior for the new execution.

2

32 ALS in a Bayesian framework for low-rank tensor approximation

Algorithm 1 ALS in a Bayesian framework

Require: Prior mean {𝐦
0

𝑖
} and covariance {𝐏

0

𝑖
}, 𝑖 = 1,…,𝑁 , measurement 𝐲 and noise

variance 𝜎
2
.

Ensure: Posterior mean {𝐦
+

𝑖
} and covariance {𝐏

+

𝑖
}, 𝑖 = 1,…𝑁 .

1: Set {𝐦𝑖} ∶= {𝐦
0

𝑖
}, {𝐏𝑖} ∶= {𝐏

0

𝑖
}, 𝑖 = 1,…𝑁 .

2: while Stopping criterion is not true do
3: for 𝑛 = 1, ...,𝑁 do
4: Compute 𝐔⧵𝑛 with Equation (2.5) for CP, Equation (2.6) for Tucker or Equa-

tion (2.7) for TT, using the mean of the TD components {𝐦𝑖}𝑖≠𝑛.

5: 𝐏
+

𝑛
←

[
(𝐏

0

𝑛
)
−1

+
𝐔
⊤

⧵𝑛
𝐔⧵𝑛

𝜎
2

]

−1

6: 𝐦
+

𝑛
← 𝐏

+

𝑛 [

𝐔
⊤

⧵𝑛
𝐲

𝜎
2
+(𝐏

0

𝑛
)
−1
𝐦

0

𝑛]

7: 𝐦𝑛 ←𝐦
+

𝑛
, 𝐏𝑛 ← 𝐏

+

𝑛

8: end for
9: end while

2.4 Orthogonalization step in Bayesian framework
for a TT

Every iteration of Algorithm 1 requires the inversion

[
(𝐏

0

𝑛
)
−1

+

𝐔
⊤

⧵𝑛
𝐔⧵𝑛

𝜎
2]

−1

, corresponding to [𝐔
⊤

⧵𝑛
𝐔⧵𝑛]

−1

(2.15)

in the conventional ALS update. To avoid the propagation of numerical errors and ensure

numerical stability, some ALS algorithms, e.g., the one for the TT decomposition, include

an orthogonalization step after every update. In this way, the condition number of each

sub-problem can not become worse than the one of the overall problem [20, p. A701]. In

this section, we present how we integrate the orthogonalization procedure into the ALS in

a Bayesian framework for a TT decomposition in site-𝑛-mixed-canonical form. The same

can also be applied to a Tucker decomposition with orthogonal factor matrices.

We first describe, how the orthogonalization step is performed in the conventional ALS

and then how we integrate it into the ALS in a Bayesian framework. Here, we differentiate

between the prior distributions of each TT-core and the initial guess for each TT-core,

which initializes the conventional ALS. In the conventional ALS with orthogonalization

step, the initial TT is transformed into the site-1-mixed-canonical form, where the Frobe-

nius norm of the first TT-core corresponds to the Frobenius norm of the entire tensor

train. The update is always performed on the core that contains the Frobenius norm. The

procedure, therefore, requires transformations that separate the Frobenius norm from the

updated TT-core and moves it to the next TT-core to be updated.

The initial TT is transformed into site-1-mixed-canonical form, by orthogonalizing the

𝑁 th up to the 2nd TT-core as illustrated in Figure 2.9 for a TT with three cores. To move the

Frobenius norm from the 𝑛th TT-core to the (𝑛−1)th, the 𝑛th TT-core is orthogonalized

2.4 Orthogonalization step in Bayesian framework for a TT

2

33

Figure 2.9: Visual depiction of a TT transformation into site-1-mixed-canonical form.

by applying the thin 𝐐𝐑-decomposition on

(𝐆
R

𝑛)

⊤

= 𝐐
R

𝑛
𝐑
R

𝑛
. (2.16)

Then, 𝐆
R

𝑛
is replaced by

𝐆
R

𝑛
← (𝐐

R

𝑛)

⊤

(2.17)

and the non-orthogonal part, illustrated by the small circle in Figure 2.9, is absorbed into

the (𝑛−1)th core with

G𝑛−1 ← G𝑛−1 ×3 𝐑
R

𝑛
. (2.18)

Equations (2.16) to (2.18) are applied to the 𝑁 th until the 2nd TT-core, leading to the TT in

site-1-mixed-canonical form. Then, the first core is updated, followed by a transformation

to move the Frobenius norm to the second core, and so on. Since the Frobenius norm moves

to the right, the orthogonalization step consists of applying the thin 𝐐𝐑-decomposition on

the left-unfolding

𝐆
L

𝑛
= 𝐐

L

𝑛
𝐑
L

𝑛
. (2.19)

The 𝑛th and (𝑛+1)th core are replaced by

𝐆
L

𝑛
←𝐐

L

𝑛
and G𝑛+1 ← G𝑛+1 ×1 𝐑

L

𝑛
, (2.20)

respectively. After the 𝑁 th core is updated, the updating scheme goes backwards, using

again Equations (2.16) to (2.18) for the orthogonalization step. When the Frobenius norm

is absorbed back into the first core, one back and forth sweep of the ALS algorithm is

concluded.

In the following, we describe how the transformation steps affect the distributions

representing the TT-cores in the ALS in a Bayesian framework. The transformation of the

random variables can be derived from Equations (2.16) to (2.20). When the Frobenius norm

is moved to the left, the mean of the 𝑛th core becomes

𝐦𝑛 ← vec
((

𝐐
R

𝑛)

⊤

)
,

where (𝐐
R

𝑛)

⊤

is computed from Equation (2.17). To obtain the transformed covariance of

the 𝑛th TT-core, Equation (2.16) is rewritten as

(𝐐
R

𝑛)

⊤

= (𝐑
R

𝑛)

−⊤

𝐆
R

𝑛
.

Now, the right-hand side, is vectorized by summing over a rank-1 connection between

(𝐑
R

𝑛)

−⊤

and an identity matrix of size 𝐼𝑛𝑅𝑛+1 × 𝐼𝑛𝑅𝑛+1 that has a connected edge with 𝐆
R

𝑛

as depicted in Figure 2.10. This leads to a transformation term

𝐈⊗(𝐑
R

𝑛)

−⊤

(2.21)

2

34 ALS in a Bayesian framework for low-rank tensor approximation

=

𝑅𝑛𝑅𝑛

(𝐑
R

𝑛)

−⊤

𝐈

𝐆
R

𝑛

𝐼𝑛
𝑅𝑛

+
1

𝐈⊗(𝐑
R

𝑛)

−⊤
𝐠𝑛

𝑅𝑛𝐼𝑛𝑅𝑛+1 𝑅𝑛𝐼𝑛𝑅𝑛+1

𝐼𝑛𝑅𝑛+1

Figure 2.10: Visual depiction of how the non-orthogonal part is separated from the TD component’s mean.

(𝐑
R

𝑛)

−⊤

𝐏𝑛 (𝐑
R

𝑛)

−1

𝐈 𝐈

𝑅𝑛

𝐼 𝑛
𝑅
𝑛
+
1

= 𝐏𝑛𝐈⊗(𝐑
R

𝑛)

−⊤

𝐈⊗(𝐑
R

𝑛)

−1

𝑅𝑛𝐼𝑛𝑅𝑛+1

Figure 2.11: Visual depiction of how the covariance matrix is transformed in the orthogonalization step.

that orthogonalizes 𝐠𝑛. The diagram in Figure 2.11 shows how this transformation is

applied to the covariance matrix. The transformation term and its transpose are multiplied

on the left and right side of 𝐏𝑛, respectively, resulting in

𝐏𝑛 ←
(
𝐈⊗(𝐑

R

𝑛)

−⊤

)
𝐏𝑛

(
𝐈⊗(𝐑

R

𝑛)

−⊤

)

⊤

=
(
𝐈⊗(𝐑

R

𝑛)

−⊤

)
𝐏𝑛

(
𝐈⊗(𝐑

R

𝑛)

−1

)
.

The transformations of the (𝑛−1)th core to absorb the Frobenius norm, can be derived

from Equation (2.18) in a similar way as explained above, resulting in a transformation

term

𝐑
R

𝑛
⊗𝐈. (2.22)

When the Frobenius norm is moved to the right during the orthogonalization step, the

transformations for the updated core and the next core to be updated become

(𝐑
L

𝑛)

−⊤

⊗𝐈 and 𝐈⊗𝐑
L

𝑛
, (2.23)

respectively. It can be easily shown that the transformations for the orthogonalization step,

do not affect the statistical independence of the joint distribution of the random variables,

since the transformations are performed on each variable individually. The following

example shows the updating for the transformation scheme of the random variables that

represent an exemplary three core TT.

Example 2.4.1 Distribution updates and orthogonalization transformations for a
TT with three cores Assume we would like to apply Theorem 2.3.4 to find a TT with three
cores and keep the TD in site-𝑛-mixed- canonical form. The three TT-cores are initialized with a
prior distribution and transformed such that the corresponding TT is in site-1-mixed-canonical

2.4 Orthogonalization step in Bayesian framework for a TT

2

35

Prior 𝑝(𝐠1) 𝑝(𝐠2) 𝑝(𝐠3)

↓ ↓ ↓

Transformed prior 𝑝(𝐱1) 𝑝(𝐪2) 𝑝(𝐪3)

↓ ⋮ ⋮

Update core 1 𝑝(𝐱1 ∣ 𝐪2, 𝐪3,𝐲) = ⋮ ⋮

𝑝(𝐲∣𝐱1 ,𝐪2 ,𝐪3)𝑝(𝐱
0

1
)

𝑝(𝐲∣𝐪2 ,𝐪3)
⋮ ⋮

↓ ↓ ⋮

Move norm to core 2 𝑝(𝐪1 ∣ 𝐱2, 𝐪3,𝐲) 𝑝(𝐱2) ⋮

↓ ⋮

Update core 2 𝑝(𝐱2 ∣ 𝐪1, 𝐪3,𝐲) = ⋮

𝑝(𝐲∣𝐪1 ,𝐱2 ,𝐪3)𝑝(𝐱
0

2
)

𝑝(𝐲∣𝐪1 ,𝐪3)
⋮

↓ ↓

Move norm to core 3 𝑝(𝐪2 ∣ 𝐪1,𝐱3,𝐲) 𝑝(𝐱3)

↓

Update core 3 𝑝(𝐱3 ∣ 𝐪1, 𝐪2,𝐲) =

𝑝(𝐲∣𝐪1 ,𝐪2 ,𝐱3)𝑝(𝐱
0

3
)

𝑝(𝐲∣𝐪1 ,𝐪2)

Figure 2.12: Distribution updates with orthogonalization step for example with three TT-cores.

form. The random variables that represent the orthogonal cores are denoted by 𝐪𝑖, 𝑖 = 1,2,3

and the random variable representing the TT-core that contains the Frobenius norm is denoted
by 𝐱𝑖, 𝑖 = 1,2,3. After the random variables are transformed into site-1-mixed-canonical form
using (2.21) and (2.22), the first core is updated followed by moving the Frobenius norm to
the second core. Then the second core is updated and the Frobenius norm is moved to the last.
When this half-sweep, as shown below, is completed using the transformations from (2.23), the
same procedure is repeated in the opposite direction, requiring again (2.21) and (2.22). The
example is depicted in Figure 2.12.

The ALS in a Bayesian framework with orthogonalization step has another difference

compared to the one without orthogonalization. The update equations for the mean and

covariance, Equation (2.10) and Equation (2.11), are affected by the TT decomposition

being in site-𝑛-mixed-canonical form: the matrix 𝐔⧵𝑛 becomes orthogonal and the update

equations simplify to

𝐦
+

𝑛
=
[
(𝐏

0

𝑛
)
−1

+

𝐈

𝜎
2]

−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐏
+

𝑛

[

𝐔
⊤

⧵𝑛
𝐲

𝜎
2

+(𝐏
0

𝑛
)
−1
𝐦

0

𝑛
]
.

2

36 ALS in a Bayesian framework for low-rank tensor approximation

In this case 𝐔
⊤

⧵𝑛
𝐲 corresponds to the update of the conventional ALS (2.13), due to the

orthogonality of 𝐔⧵𝑛.

Algorithm 2 summarizes the ALS in a Bayesian framework with orthogonalization step

for a TT decomposition. The computational cost of one update in Algorithm 2 is (𝑅6
𝐼
3
)

for the inversion and (𝑅3
𝐼) for the thin 𝐐𝐑-factorization and the storage requirement

is (𝑅2
𝐼 + 𝑅

4
𝐼
2
), where 𝑅 is the largest TT-rank and 𝐼 is the largest dimension of the

approximated tensor. The only difference compared to the conventional ALS in terms of

complexity, is the additionally required storage for the covariance matrices. Thus, the

number of elements of one TD component, depending on the ranks, will be the limiting

factor for the computational complexity.

2.4 Orthogonalization step in Bayesian framework for a TT

2

37

Algorithm 2 ALS in Bayesian framework with orthogonalization step

Require: Prior mean {𝐦
0

𝑖
} and covariance {𝐏

0

𝑖
}, 𝑖 = 1,…𝑁 , measurement 𝐲 and noise

variance 𝜎
2
.

Ensure: Posterior mean {𝐦
+

𝑖
} and covariance {𝐏

+

𝑖
}, 𝑖 = 1,…𝑁 .

1: Transform random variables such that the corresponding TT decomposition is in

site-1-mixed-canonical form.

2: Set {𝐦𝑖} ∶= {𝐦
0

𝑖
}, {𝐏𝑖} ∶= {𝐏

0

𝑖
}, 𝑖 = 1,…𝑁 .

3: while stopping criterion is not true do

4: for 𝑛 = 1,…,𝑁 ,𝑁 −1,…2 do

5: Compute 𝐔⧵𝑛 with Equation (2.7) for TT using the mean of the TD compo-

nents {𝐦𝑖}𝑖≠𝑛.

6: 𝐏
+

𝑛
← [(𝐏

0

𝑛
)
−1

+
𝐈

𝜎
2]

−1

7: 𝐦
+

𝑛
← 𝐏

+

𝑛 [

𝐔
⊤

⧵𝑛
𝐲

𝜎
2
+(𝐏

0

𝑛)

−1

𝐦
0

𝑛]

8: if next core is to the right then

9: 𝐦
+

𝑛
← vec(𝐐

L

𝑛
), with 𝐐

L

𝑛
from thin 𝐐𝐑-factorization of 𝐆

L

𝑛

10: 𝐏
+

𝑛
←

((
𝐑
L

𝑛)

−⊤

⊗𝐈
)
𝐏
+

𝑛 ((
𝐑
L

𝑛)

−1

⊗𝐈
)

11: 𝐦𝑛+1 ← (𝐈⊗𝐑
L

𝑛
)𝐦𝑛+1

12: 𝐏𝑛+1 ← (𝐈⊗𝐑
L

𝑛
) 𝐏𝑛+1 (𝐈⊗(𝐑

L

𝑛)

⊤

)

13: else if next core is on the left then

14: 𝐦
+

𝑛
← vec

((
𝐐
R

𝑛)

⊤

)
, with 𝐐

R

𝑛
from thin 𝐐𝐑-factorization of 𝐆

R

𝑛

15: 𝐏
+

𝑛
←

(
𝐈⊗(𝐑

R

𝑛)

−⊤

)
𝐏
+

𝑛 (
𝐈⊗(𝐑

R

𝑛)

−1

)

16: 𝐦𝑛−1 ← (𝐑
R

𝑛
⊗𝐈)𝐦𝑛−1

17: 𝐏𝑛−1 ← (𝐑
R

𝑛
⊗𝐈) 𝐏𝑛−1

((
𝐑
R

𝑛)

⊤

⊗𝐈
)

18: end if

19: 𝐦𝑛 ←𝐦
+

𝑛
, 𝐏𝑛 ← 𝐏

+

𝑛

20: Apply the transformations of the lines 7-10 or 12-15 to 𝐦
0

𝑛
,𝐏

0

𝑛
.

21: end for

22: end while

2

38 ALS in a Bayesian framework for low-rank tensor approximation

2.5 Unscented transform in TT format
In Algorithm 1 and Algorithm 2 we compute the posterior distributions of the TT-cores

𝑝(𝐠𝑛 ∣ {𝐠𝑖}𝑖≠𝑛,𝐲). However, we are interested in computing the distribution of the low-rank

tensor estimate G, which is computed with a non-linear function dependent on the poste-

rior distributions and is, therefore, not Gaussian. The unscented transform (UT) [22] can

approximate the mean 𝐦UT and covariance 𝐏UT of the sought distribution. In this section,

we show how we can perform the UT in TT format. In this way, the direct computation of

the potentially large covariance matrix can be avoided.

Generally, the UT approximates the mean and covariance of a distribution that is a non-

linear function of a known distribution 𝐡 ∼ (𝐦,𝐏) with mean 𝐦 ∈ ℝ
𝑀×1

and covariance

𝐏 ∈ ℝ
𝑀×𝑀

[33, p. 81-84]. Firstly, 2𝑀 +1 sigma points are formed with

𝐱
(0)

= 𝐦, (2.24)

𝐱
(𝑖)
= 𝐦+

√

𝑀 +𝜆 [

√

𝐏]
𝑖
, 𝑖 = 1,…,𝑀, (2.25)

𝐱
(𝑖+𝑀)

= 𝐦−

√

𝑀 +𝜆 [

√

𝐏]
𝑖
, 𝑖 = 1,…,𝑀, (2.26)

where the square root of the covariance matrix

√

𝐏 corresponds to the Cholesky factor, such

that

√

𝐏

√

𝐏
⊤
= 𝐏, where [

√

𝐏]
𝑖
is the 𝑖-th column of that matrix. The scaling parameter 𝜆

is defined as 𝜆 = 𝛼
2
(𝑀 +𝜅)−𝑀 , where 𝛼 and 𝜅 determine the spread of the sigma points

around the mean. Secondly, the sigma points are propagated through the non-linearity

and thirdly, the approximated mean 𝐦UT and covariance 𝐏UT are computed as

𝐦UT =

2𝑀

∑

𝑖=0

𝑤
𝐦

𝑖
S(𝑖)

, (2.27)

𝐏UT =

2𝑀

∑

𝑖=0

𝑤
𝐏

𝑖 (S(𝑖)
−𝐦UT)(S(𝑖)

−𝐦UT)

⊤

, (2.28)

where S(𝑖)
are the transformed sigma points. The scalars 𝑤

𝐦

𝑖
and 𝑤

𝐏

𝑖
denote weighting

factors, defined as

𝑤
𝐦

0
=

𝜆

𝑀 +𝜆

, 𝑤
𝐏

0
= 𝑤

𝐦

0
+(1−𝛼

2
+𝛽),

𝑤
𝐦

𝑖
= 𝑤

𝐦
= 𝑤

𝐏

𝑖
= 𝑤

𝐏
=

1

2(𝑀 +𝜆)

, 𝑖 = 1,…,2𝑀.

Literature suggests 𝛼 = 0.001, 𝜅 = 3−𝑀 [16, p. 229] and for Gaussian distributions 𝛽 = 2

[33, p. 229].

In order to use the UT in TT format, the known distribution 𝐡 ∼ (𝐦,𝐏) is computed

from the cores’ mean and covariance as

𝐡 ∼ (𝐦,𝐏) =
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝐦1

𝐦2

⋮

𝐦𝑁

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

𝐏1 0 … 0

0 𝐏2 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 … 0 𝐏𝑁

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

. (2.29)

2.5 Unscented transform in TT format

2

39

G1 G2 G𝑁
𝐱

= G
𝑓T

𝑀

𝐼1 𝐼2 𝐼𝑁

𝐼1 𝐼2 𝐼𝑁

𝑅2 𝑅𝑁𝑅3

…

...

Figure 2.13: Visual depiction of the non-linear transformation from vector 𝐱 into a TT with cores G𝑖, 𝑖 = 1,…,𝑁

that represents tensor G.

The mean, consisting of the stacked vectorized cores, is of size 𝑀 ×1 with

𝑀 =

𝑁

∑

𝑛=1

𝑅𝑛𝐼𝑛𝑅𝑛+1, 𝑅1 = 𝑅𝑁+1 = 1.

The covariance matrix of size𝑀 ×𝑀 is block diagonal, since we assume the TT-cores to

be statistically independent. The non-linear function for the UT in TT format is defined as

𝑓T ∶ ℝ
𝑀×1

→ℝ
𝐼1×𝐼2×...×𝐼𝑁

given by 𝐱 ↦ G, (2.30)

where 𝐱 is a vector of size𝑀×1. The transformation of a vector into a tensor and is depicted

in Figure 2.13.

The formation and propagation of the sigma points works as follows. The first sigma

point 𝐱
(0)

is the mean 𝐦 from Equation (2.29) and propagated through the non-linearity,

it corresponds to the TT represented by the distributions determined by Algorithm 1. To

facilitate later steps, the remaining sigma points from Equation (2.25) and Equation (2.26)

are organized into two matrices, according to

𝐀+ =

𝑀

∑

𝑖=1

𝐱
(𝑖)
𝐞
⊤

𝑖
(2.31)

𝐀− =

𝑀

∑

𝑖=1

𝐱
(𝑀+𝑖)

𝐞
⊤

𝑖
, (2.32)

where 𝐞𝑖 denotes a vector with zeros everywhere except a 1 at location 𝑖. In this way, the

propagation through the non-linearity of all sigma points then becomes a propagation of

every summand 𝐱
(𝑖)
𝐞
⊤

𝑖
and 𝐱

(𝑀+𝑖)
𝐞
⊤

𝑖
, respectively. The propagation is achieved by forming

TT-cores from 𝐱
(𝑖)

and 𝐱
(𝑀+𝑖)

and summing over a rank-1 connection between the first

core and the vector 𝐞
⊤

𝑖
as shown in Figure 2.14.

Then, all summands of 𝐀+ ∈ ℝ
𝑀×𝑀

and 𝐀− ∈ ℝ
𝑀×𝑀

, are summed together, respectively,

by stacking the cores according to [29, p. 2308], as illustrated in Figure 2.15 (left). The

summation causes the ranks of the TTm to increase and a rounding procedure [28, p. 2301-

2305] needs to be applied to reduce the ranks back to the required precision. Finally, the

vector containing the weights𝐰
𝐦
=𝑤

𝐦
𝟏𝑀 is absorbed into the first core (Figure 2.15, right).

2

40 ALS in a Bayesian framework for low-rank tensor approximation

𝑀

𝐞
⊤

𝑗

𝐱
(𝑖)
𝐞
⊤

𝑗
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0⋯0 0⋯0

⋮ ⋮

𝐱
(𝑖)

⋮ ⋮

0⋯0 0⋯0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

→

𝑖 = 1…2𝑀 +1

𝑗 = 1…𝑀

Figure 2.14: Propagation of each sigma point as column of matrix 𝐱
(𝑖)
𝐞
⊤

𝑖
through the non-linearity.

𝐼1 𝐼2 𝐼3

𝑀

𝐞
⊤

𝑗

∑
𝑀

𝑗=1

𝑀

=

𝑀

𝐼1 𝐼2 𝐼3

𝐰
𝐦

Figure 2.15: Visual depiction of Equation (2.27) as sum over sigma points (left) and absorption of the weight

vector 𝐰
𝐦
into the first core (right).

The computation of the covariance matrix from Equation (2.28) is divided into two

steps. Firstly, 𝐦UT is subtracted from the sum over the sigma points (Figure 2.15, left). This

is achieved by creating a matrix, where 𝐦UT is stacked 𝑀 times next to each other. The

visual depiction of this operation equals to the one in Figure 2.14 with the difference that

the multiplied vector is 𝟏
⊤

𝑀
. Secondly, the result from the first step absorbs the weights

into the first core, as depicted in Figure 2.16. The resulting covariance matrix 𝐏UT in the

three-core example is a TT matrix that corresponds to a matrix of size 𝐼1𝐼2𝐼3 × 𝐼1𝐼2𝐼3.

The computation of the approximate mean and covariance with the UT in TT format is

summarized in Algorithm 3. The computational cost depends on the ranks of the TD, since

𝑀 is a function of the ranks. The bottleneck of Algorithm 3 is the rounding procedure

necessary after performing summations in TT format. It has a cost of (𝑅3
𝐼
2
𝑁) for a TT

matrix.

𝐼1

𝐼2

𝐼3

𝑀

𝐼1

𝐼2

𝐼3

𝑀
𝑤

𝐏
𝐈𝑀

=

𝐼1

𝐼2

𝐼3

𝐼1

𝐼2

𝐼3

Figure 2.16: Visual depiction of Equation (2.28) with 𝑤
𝐏
𝐈𝑀 as a diagonal matrix containing the weight factors on

the diagonal.

2.6 Numerical experiments

2

41

Algorithm 3 Approximation of the low-rank tensor estimate’s mean and covariance with

the unscented transform in TT format.

Require: The mean and covariances of each TT-core {𝐦𝑖,𝐏𝑖}, 𝑖 = 1,…,𝑁 computed with

the ALS in a Bayesian framework.

Ensure: The approximated mean 𝐦UT and covariance 𝐏UT in TT format of the low-rank

tensor estimate’s distribution.

1: Compute sigma point 𝐱
(0)

with Equation (2.24).

2: Compute remaining sigma points with Equations (2.25) and (2.26) and organize them

into groups according to Equations (2.31) and (2.32).

3: Propagate sigma points through Equation (2.30), where groups from step 2 are propa-

gated as shown in Figure 2.13.

4: Estimate the mean 𝐦UT with Equation (2.27) as shown in Figure 2.15.

5: Estimate the covariance 𝐏UT with Equation (2.28) as shown in Figure 2.16.

2.6 Numerical experiments
In this section, we present the numerical examples that test the algorithms. All experi-

ments with exception of the last were performed with MATLAB R2020b on a Dell com-

puter with processor Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz and 8GB of

RAM. The last experiment is performed on a Lenovo computer with processor Intel(R)

Core(TM) i7-10700KF CPU @ 3.80GHz 3.79 GHz and 16GB of RAM. The implementation of

the experiments can be found on https://gitlab.tudelft.nl/cmmenzen/
bayesian-als.

The first three experiments are performed with a random TT, G, that represents the
ground truth and has the cores

G1,truth ∈ ℝ
1×5×3

, G2,truth ∈ ℝ
3×5×3

and G3,truth ∈ ℝ
3×5×1

.

The entries of each TT-core are drawn from a standard normal distribution. After computing

the tensor Ytruth ∈ ℝ
5×5×5

from the TT-cores and vectorizing it, a noisy sample 𝐲 is formed

with

𝐲 = 𝐲truth+𝝐 𝝐 ∼ (𝟎,𝜎
2
𝐈), (2.33)

where 𝐲truth denotes the vectorized ground truth and 𝝐 is a realization of random noise. The

noisy samples of the same underlying tensor formed with Equation (2.33) are uncorrelated.

The covariance of the measurement noise is influenced by fixing the signal-to-noise ratio

SNRdB = 10log
10

‖𝐲‖
2

‖𝝐‖
2
.

If not stated otherwise, the signal-to-noise ratio is set to zero dB. Some experiments use

multiple noisy samples 𝐲, computed from Equation (2.33). In this case, the estimate is

recursively updated. Initially, the prior TT is inputted to Algorithm 1 together with a

sample 𝐲. After the execution of Algorithm 1, the output mean and covariance is used as a

prior for the next execution together with a new sample 𝐲. This recursive updating is very

suitable for the ALS in a Bayesian framework, because it can deal with prior knowledge

https://gitlab.tudelft.nl/cmmenzen/bayesian-als
https://gitlab.tudelft.nl/cmmenzen/bayesian-als

2

42 ALS in a Bayesian framework for low-rank tensor approximation

on the TD components. For the conventional ALS, the estimate from an execution of the

algorithm that computes a TT with the ALS is used as an initial TT for the next execution.

2.6.1 Convergence analysis of maximization problem
In the ALS in a Bayesian framework, we solve the optimization problem given by Equa-

tion (2.2). In this context, we define the relative error between the low-rank estimate 𝐠 and

the ground truth 𝐲truth as

𝜀truth =

‖𝐲truth−𝐠‖

‖𝐲truth‖

and the relative error between the low-rank estimate 𝐠 and the noisy sample 𝐲 as

𝜀meas =

‖𝐲−𝐠‖

‖𝐲‖

.

In the first experiment, we look at the errors defined above in order to analyze the con-

vergence of Algorithm 1. In addition, we look at the evolution of the log likelihood times

the prior, since from Theorem 2.3.4 it follows that the numerator of the logarithm of

Equation (2.4) needs to be maximized to compute the posterior of all TD components.

In this experiment, only one noisy sample 𝐲 is used. The prior mean is initialized

randomly and the covariance for each core is set to 200
2
𝐈, meaning a low certainty on the

prior mean. The experiment is performed 100 times with the same TT, G, but with different

priors. Then, the mean of the 100 results is plotted with a region of twice the standard

deviation. Figure 2.17 (left) shows how both relative errors decrease rapidly and converge

after approximately 5 iterations in Algorithm 1. Figure 2.17 (right) shows how the product

of log likelihood and prior increases during the first approximately 6 iterations, converging

to a fixed value. Both subfigures of Figure 2.17 also show how the region of twice the

standard deviation from the 100 trials, becomes smaller with an increasing number of

iterations. Hence, it can be concluded that Algorithm 1 converges and therefore also the

optimization problem.

2.6.2 Analysis of covariance matrices
In the second experiment, we look at how the covariance matrix of each core changes

throughout the iterations in Algorithm 2. We also examine the covariance matrix of the

low-rank tensor estimate, computed with the unscented transform in TT format. The

experiment is performed 100 times with the same TT, G, but with different priors, as in

Section 2.6.1. Then, the mean of the 100 results is plotted with a region of twice the standard

deviation. Figure 2.18 shows the trace and Frobenius norm of the covariance matrix of

the core that will be updated next, after the norm is moved to this core. Both the trace

and Frobenius norm of each core’s covariance matrix decrease and converge to a fixed

value. For the first and third core, the values are smaller than for the second, because the

second core has a larger number of elements. The convergence behavior is also shown in

Figure 2.19, where the trace and Frobenius norm of the covariance matrix of the low-rank

tensor estimate converge quickly to a fixed value. The decreasing and converging values

of the trace (Figure 2.17 top) and the Frobenius norm (Figure 2.17 bottom) indicate that the

2.6 Numerical experiments

2

43

5 10 15 20

0.4

0.6

0.8

1

1.2

Iterations

R
e
l
a
t
i
v
e
e
r
r
o
r

𝜀truth

𝜀meas

5 10 15 20

−1,370

−1,365

−1,360

−1,355

Iterations

l
o
g
L
i
k
e
l
i
h
o
o
d
⋅
P
r
i
o
r

Figure 2.17: Left: Evolution of the relative errors during 20 iterations in Algorithm 1. Right: Evolution of log

likelihood times the prior during 20 iterations in Algorithm 1.

2 4 6 8 10

2,000

2,500

3,000

Iterations

t
r
(
𝐏
1
)

2 4 6 8 10

6,000

6,500

7,000

Iterations

t
r
(
𝐏
2
)

2 4 6 8 10

2,000

2,500

3,000

Iterations

t
r
(
𝐏
3
)

2 4 6 8 10

400

600

800

Iterations

||
𝐏
1
||
F

2 4 6 8 10

800

1,000

1,200

1,400

1,600

Iterations

||
𝐏
2
||
F

2 4 6 8 10

400

600

800

Iterations

||
𝐏
3
||
F

Figure 2.18: Top: Trace, bottom: Frobenius norm of covariance matrix of G1, G2 and G3.

uncertainty of the mean decreases and then remains constant with an increasing number of

iterations. In the next experiments, we will use the information of the covariance matrices

to visualize a confidence interval for our estimate.

2.6.3 Comparison to conventional ALS
The main benefits of the ALS in a Bayesian framework are the uncertainty quantification

of the low-rank tensor estimate, as well as the incorporation of prior knowledge. In the

third experiment, we show the benefits by comparing the ALS in a Bayesian framework to

the conventional ALS.

Figure 2.20 depicts the vectorized low-rank tensor estimate for the ALS and the mean of

the ALS in a Bayesian framework’s estimate with a 95% confidence interval in comparison

with the ground truth. The uncertainty measure is computed from the diagonal elements of

2

44 ALS in a Bayesian framework for low-rank tensor approximation

1 2 3 4 5
10

−2

10
2

10
6

Number of iterations

t
r
(
𝐏
U
T
)

1 2 3 4 5
10

−2

10
1

10
4

Number of iterations

||
𝐏
U
T
||
F

Figure 2.19: Left: Trace, right: Frobenius norm of covariance matrix of low-rank tensor estimate.

𝐏UT. The top figure shows the estimate using one noisy sample 𝐲 for the ALS in a Bayesian

framework and the bottom using 100 noisy samples. While the ALS does not improve when

taking into account multiple noisy samples, the ALS in a Bayesian framework improves in

two aspects. The error between the mean and the truth becomes smaller and the estimate

becomes more certain. Also, in the top figure, where the uncertainty is relatively large, the

ground truth almost always lies inside the confidence interval and therefore the ALS in a

Bayesian framework provides more information than the conventional ALS.

Now, we analyze the influence of the prior quality on the relative error. Figure 2.21

shows the relative error 𝜀truth of the ALS in a Bayesian framework for different priors. The

prior mean is computed from

𝐦
0

𝑖
= 𝐠𝑖,truth+𝑎 (𝟎, 𝐈), 𝑖 = 1,2,3 (2.34)

where 𝐠𝑖,truth denotes the vectorization of G𝑖,truth and 𝑎 is a number that is set to values

between 0 and 5. It determines how different the prior mean is from the ground truth. The

prior covariance is computed from

𝐏
0

𝑖
= 𝑏

2
𝐈, 𝑖 = 1,2,3 (2.35)

by setting 𝑏 to values between 0 and 5. A small value means a high certainty and a large

value means a low certainty on the prior mean. Figure 2.21 shows that the error is small if

the prior mean is close to the ground truth and the covariance is small. For a bad prior and

a small covariance, the error is a 100 percent or larger, since a high certainty for a bad prior

is assumed. For comparison, the isoline (dashed line) corresponding to the mean relative

error of the conventional ALS is shown in the graph, which is almost independent of the

prior information.

Figure 2.22 (left) shows the relative error of the reconstructed tensor versus the signal-

to-noise ratio for a prior mean from Equation (2.34) with 𝑎 = 10
−1

and prior covariance

from Equation (2.35) with 𝑏 = 10
−1
, meaning a good prior and a high certainty on the prior.

While the ALS performs poorly for high noise, the ALS in a Bayesian framework results in

small relative errors. For an increasing SNR, the relative error of the ALS in a Bayesian

2.6 Numerical experiments

2

45

0 10 20 30 40 50 60 70

−10

−5

0

5

10

0 10 20 30 40 50 60 70

−10

−5

0

5

Truth

ALS

Algorithm 1

Figure 2.20: Ground truth with ALS estimate and mean of estimate from the ALS in a Bayesian framework with

confidence region of 95%. Top: Estimate using one noisy sample. Bottom: Estimate using 100 noisy samples.

framework converges to the one of the ALS.

Further, Figure 2.22 (right) shows the ALS in comparison with the ALS in a Bayesian

framework for multiple noisy samples. While the relative error 𝜀truth decreases for the

ALS in a Bayesian framework, the conventional ALS does not improve when more noisy

samples become available.

As shown, the ALS in a Bayesian framework gives better results if a good prior is

available and it provides a measurement of the uncertainty and therefore additional valuable

information. Also, if multiple noisy samples are available, ALS in a Bayesian framework

significantly improves the estimate.

2.6.4 Reconstruction of noisy image
To test Algorithm 1 on an image processing problem, a cat image is reconstructed from

an image corrupted with noise. Figure 2.23 shows the steps before applying Algorithm 1.

The original image of size 256 × 256 pixel is reshaped into an 8-way tensor, where each

mode is of dimension 4. To obtain the TT-ranks, here we use the TT-SVD algorithm

[28]. It finds a TD that approximates the given tensor by setting an upper bound for

the relative error. With an upper bound of 0.1, the TT-ranks, depicted in Figure 2.23 are

obtained. Finally, the ground truth is computed as the vectorized contracted TT. Now,

ten noisy samples are formed with Equation (2.33) with a signal-to-noise ratio of SNRdB = 0.

Figure 2.24a) shows the original image and Figure 2.24b) the low-rank image, which

2

46 ALS in a Bayesian framework for low-rank tensor approximation

Figure 2.21: Relative error of the ALS in a Bayesian framework for different priors for SNRdB = 0. The 𝑦-axis

indicates the similarity of the prior mean to the ground truth and the 𝑥-axis indicates the certainty on the prior

mean. The dashed line corresponds to the isoline corresponding to the mean error of the conventional ALS.

0 10 20

10
−1

10
0

SNR [dB]

𝜀
t
r
u
t
h
[
-
]

ALS

Algorithm 1

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Number of noisy samples [-]

𝜀
t
r
u
t
h
[
-
]

ALS

Algorithm 1

Figure 2.22: Left: Relative error 𝜀truth vs. signal-to-noise ratio with prior mean from Equation (2.34) with 𝑎 = 10
−1

and prior covariance from Equation (2.35) with to 𝑏 = 10
−1
. Right: Comparison of the relative error 𝜀truth between

the ALS and the ALS in a Bayesian framework for different numbers of noisy samples.

256256

4 4 4 4 4 4 4 4

Original Image

full rank

Tensor
full rank

Tensor Train
low-rank

TT-SVD 2 5 14 32 30 13 4

4 4 4 4 4 4 4 4
4
8

= =
≈

ground

truth

Figure 2.23: Computation of ground truth from original image: The original image of size 256 × 256 pixel is

reshaped into an 8-way tensor, where each mode is of dimension 4. Then, the TT-SVD algorithm [28] with an

upper bound for the relative error of 0.1 is applied, resulting in the depicted TT-ranks. Finally, the ground truth is

obtained as the vectorized contracted TT.

2.6 Numerical experiments

2

47

a) b) c)

Figure 2.24: a) Original image, b) Image approximated with the TT-SVD algorithm [28] with an upper bound for

the relative error of 0.1, c) One noisy sample (low-rank image corrupted with random noise).

Figure 2.25: Reconstructed image with conventional ALS algorithm. Left: using one noisy sample. Right: using

ten noisy samples.

is obtained by reshaping the low-rank TT from the TT-SVD into the size of the original

image. Figure 2.24c) shows one exemplary noisy sample 𝐲 reshaped into the dimensions of

the original image. As a stopping criterion, we used the maximum number of iterations

of 3. Figure 2.25 left shows the reconstruction of the image with the conventional ALS

using one noisy sample and on the right using ten noisy samples. Figure 2.26 shows

the reconstruction of the image inputting a random prior mean and a prior covariance

on each core of 1000
2
𝐈 and using one and ten noisy samples. For the ALS in a Bayesian

framework, it is shown that the image gets clearer with a higher number of noisy samples

𝐲, confirmed by the decreasing relative error 𝜀truth from 0.3127 to 0.1478. The relative error

of the conventional ALS only decreases slightly from 0.3664 to 0.3088.

2.6.5 Large-scale experiment
In this experiment, we demonstrate that Algorithm 1 also works with larger tensors. The

cat image from Section 2.6.4 in color is up-scaled via bi-cubic interpolation to obtain a

6000×4000×3 tensor as depicted in Figure 2.27a). Next, we find a low-rank approximation

of the image by first applying the TKPSVD algorithm [2]. The TKPSVD decomposes a

2

48 ALS in a Bayesian framework for low-rank tensor approximation

Figure 2.26: Reconstructed image with ALS in a Bayesian framework (Algorithm 1). Left: using one noisy sample.

Right: using ten noisy samples.

tensor A into a sum of multiple Kronecker products of 𝑁 tensors A(𝑛)

𝑟

A =

𝑅

∑

𝑟=1

𝜆𝑟 A(𝑁)

𝑟
⊗⋯⊗A(1)

𝑟

where 𝜆𝑟 ∈ ℝ. We approximate the image by taking only the term with the largest 𝜆𝑟 and

𝑁 = 5,

A ≈ 𝜆maxA(5)

1
⊗A(4)

1
⊗A(3)

1
⊗A(2)

1
⊗A(1)

1
,

where 𝜆max = 𝜆1. The resulting Kronecker products is of dimensions

(375×250×3)⊗(2×2×1)⊗(2×2×1)⊗(2×2×1)⊗(2×2×1),

as depicted in the top part of Figure 2.28. Secondly,A(5)

1
∈ ℝ

375×250×3
is further decomposed

with the TT-SVD algorithm with an upper bound of the relative error of 0.08, where the

dimensions are factorized as shown in the lower part of Figure 2.28. The resulting low-rank

approximation of the image is shown in Figure 2.27b) and the noisy image, created with an

SNR = −22, is shown in Figure 2.27c). We use Algorithm 1 with a random prior mean and

𝐏
0

𝑖
= 10000

2
𝐈. Figure 2.27d) shows the reconstructed image after 30 iterations in Algorithm 1.

The main computational bottleneck is the inversion of the covariance matrix of the largest

TD component (line 4 of Algorithm 1). Thus, the number of elements of a TD component,

dependent on its ranks, is the limiting factor for the computational complexity. In this case,

the largest TT-core has 13 ⋅ 25 ⋅ 18 = 5850 elements, see second last TT-core in the lower

part of Figure 2.28.

2.7 Conclusions

2

49

Figure 2.27: a) Original image, b) Low-rank image, c) Noisy image (low-rank image corrupted with random noise,

with an SNR = −22), d) Reconstructed image.

a) b) c) d)

40006000

TT-SVD
1 1 1 1 2 13 18

2 2 2 2 2 5 5

≈

3

2 2 2 2 3 5 5

1 1 1 1

2 2 2 2 2 2 2 2
375

250
3

≈
TKPSVD

with last

5 35
TT-core

Figure 2.28: Determination of the TT-ranks by computing a low-rank decomposition with the TKPSVD and then

decomposing the last TT-core (gray) further with the TT-SVD.

2.7 Conclusions
We approached the computation of low-rank tensor decomposition from a Bayesian per-

spective. Assuming Gaussian priors for the TD components and Gaussian measurement

noise and by applying a block coordinate descent, we were able to perform a tractable

inference and compute the posterior joint distribution of the TD components. This leads

to a probabilistic interpretation of the ALS. The distribution of the underlying low-rank

tensor was computed with the unscented transform in tensor train format. We found that

the relative error of the resulting low-rank tensor approximation depends strongly on the

quality of the prior distribution. In addition, our method opens up for a recursive estimation

of a tensor from a sequence of noisy measurements of the same underlying tensor. If no

useful prior information is available, the method gives the same result as the conventional

ALS. Our method will perform worse than the conventional ALS, if a small covariance is

assumed for a bad prior mean. Future work could focus on incorporating the inference of

the ranks which for the ALS are fixed and therefore need to be decided beforehand. Also,

the method could be extended to a non-Gaussian prior and the UT algorithm could be

further developed, e.g. by parallelizing the code to make it computationally more efficient

for large data sets.

2

50 ALS in a Bayesian framework for low-rank tensor approximation

References
[1] Kim Batselier, Zhongming Chen, and Ngai Wong. Tensor network alternating linear

scheme for MIMO Volterra system. Automatica, 84:26–35, 2017.

[2] Kim Batselier and Ngai Wong. A constructive arbitrary-degree Kronecker product.

Numerical Linear Algebra with Applications, 24(5):1–17, 2017.

[3] Cesar F Caiafa and Andrzej Cichocki. Stable, robust, and super fast reconstruction of

tensors using multi-way projections. IEEE Transactions on Signal Processing, 63(3):780–
793, 2015.

[4] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multi-

dimensional scaling via an n-way generalization of "Eckart-Young" decomposition.

Psychometrika, 35(3):283–319, 1970.

[5] Cong Chen, Kim Batselier, Ching-Yun Ko, and Ngai Wong. A Support Tensor Train

Machine. In Proceedings of the International Joint Conference on Neural Networks,
number July, pages 1–8. IEEE, 2019.

[6] Lei Cheng, Yik-Chung Wu, and H Vincent Poor. Probabilistic Tensor Canonical

Polyadic Decomposition With Orthogonal Factors. IEEE Transactions on Signal Pro-
cessing, 65(3):663–676, 2017.

[7] Wei Chu and Zoubin Ghahramani. Probabilistic models for incomplete multi-

dimensional arrays. Journal of Machine Learning Research, 5(2006):89–96, 2009.

[8] Andrzej Cichocki, Namgil Lee, Ivan V Oseledets, Anh-Huy Phan, Qibin Zhao, and

Danilo P Mandic. Tensor networks for dimensionality reduction and large-scale

optimization Part 1 low-rank tensor decompositions. Foundations and Trends in
Machine Learning, 9(4-5):249–429, 2016.

[9] Andrzej Cichocki, Anh-Huy Phan, Qibin Zhao, Namgil Lee, Ivan V Oseledets, Masashi

Sugiyama, and Danilo P Mandic. Tensor networks for dimensionality reduction and

large-scale optimizations: Part 2 applications and future perspectives. Foundations
and Trends in Machine Learning, 9(6):431–673, 2017.

[10] Nadav Cohen, Or Sharir, and Amnon Shashua. On the expressive power of deep

learning: A tensor analysis. Journal of Machine Learning Research, 49(June):698–728,
2016.

[11] Pierre Comon, Xavier Luciani, and André de Almeida. Tensor Decompositions,

Alternating Least Squares and other Tales. Journal of Chemometrics, 23:393–405, 2009.

[12] Sergey V Dolgov and Dmitry V Savostyanov. Alternating Minimal Energy Methods

for Linear Systems in Higher Dimensions. SIAM Journal on Scientific Computing,
36(5):A2248–A2271, 2014.

[13] Gérard Favier, Alain Y Kibangou, and Thomas Bouilloc. Nonlinear system modeling

and identification using Volterra-PARAFAC models. International Journal of Adaptive
Control and Signal Processing, 26:30–53, 2012.

References

2

51

[14] Lars Grasedyck, Melanie Kluge, and Sebastian Krämer. Variants of Alternating Least

Squares Tensor Completion in the Tensor Train Format. SIAM Journal on Scientific
Computing, 37(5):A2424–A2450, 2015.

[15] Richard Harshman. Foundations of the PARAFAC procedure: Models and conditions

for an “explanatory” multimodal factor analysis. UCLA Working Papers in Phonetics,
16(10):1– 84, 1970.

[16] Simon S Haykin. Kalman Filtering and Neural Networks. John Wiley & Sons, Inc.,

2001.

[17] Jasper L Hinrich and Morten Mørup. Probabilistic tensor train decomposition. In

Proceedings of the 27th European Signal Processing Conference, 2019.

[18] Jesper L Hinrich, Kristoffer H Madsen, and Morten Mørup. The probabilistic tensor

decomposition toolbox, 2020.

[19] Peter D Hoff. Equivariant and Scale-Free Tucker Decomposition Models. International
Society for Bayesian Analysis, 11(3):627–648, 2016.

[20] Sebastian Holtz and Reinhold Rohwedder, Thorsten Schneider. The Alternating Linear

Scheme for Tensor Optimization in the Tensor Train Format. SIAM Journal on Scientific
Computing, 34(2):A683–A713, 2012.

[21] Pavel A Izmailov, Alexander V Novikov, and Dmitry A Kropotov. Scalable Gaussian

Processes with Billions of Inducing Inputs via Tensor Train Decomposition. Proceed-
ings of the International Conference on Artificial Intelligence and Statistics, 84:726–735,
2018.

[22] Simon J Julier and Jeffrey K Uhlmann. Unscented filtering and nonlinear estimation.

In Proceedings of the IEEE, volume 92, page 1958, 2004.

[23] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[24] Clara Menzen, Manon Kok, and Kim Batselier. Alternating linear scheme in a Bayesian

framework for low-rank tensor approximation. SIAM Journal on Scientific Computing,
44(3):A1116–A1144, 2022.

[25] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, New York,

NY, USA, second edition, 2006.

[26] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Ten-

sorizing neural networks. In Advances in Neural Information Processing Systems, pages
442–450, 2015.

[27] Ivan V Oseledets. Approximation of 2d x 2d Matrices using Tensor Decomposition.

SIAM Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.

[28] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

2

52 ALS in a Bayesian framework for low-rank tensor approximation

[29] Ivan V Oseledets and Sergey V Dolgov. Solution of Linear Systems and Matrix

Inversion in the TT-format. SIAM Journal on Scientific Computing, 34(5):A2718–A2739,
2012.

[30] Piyush Rai, Yingjian Wang, and Lawrence Carin. Leveraging features and networks

for probabilistic tensor decomposition. In Proceedings of the National Conference on
Artificial Intelligence, volume 4, pages 2942–2948, 2015.

[31] Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence

Carin. Scalable Bayesian low-rank decomposition of incomplete multiway tensors. In

Proceedings of the 31st International Conference on Machine Learning, volume 5, pages

3810–3820, 2014.

[32] Thorsten Rohwedder and André Uschmajew. On local convergence of alternating

schemes for optimization of convex problems in the tensor train format. SIAM Journal
on Numerical Analysis, 51(2):1134–1162, 2013.

[33] Simo Särkkä. Bayesian filtering and smoothing. Cambridge University Press, 2013.

[34] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix

product states. Annals of Physics, 326(1):96–192, 2011.

[35] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E

Papalexakis, and Christos Faloutsos. Tensor Decomposition for Signal Processing and

Machine Learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

[36] Marco Signoretto, Lieven De Lathauwer, and Johan A K Suykens. A kernel-based

framework to tensorial data analysis. Neural Networks, 24(8):861–874, 2011.

[37] Qingquan Song, Hancheng Ge, James Caverlee, and Xia Hu. Tensor completion

algorithms in big data analytics. ACM Transactions on Knowledge Discovery from Data,
13(1), 2019.

[38] Ledyard R Tucker. Some Mathematical Notes on Three-Mode Factor Analysis. Psy-
chometrika, 31(3):279–311, 1966.

[39] Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell. Tem-

poral collaborative filtering with Bayesian probabilistic tensor factorization. In Pro-
ceedings of the 10th SIAM International Conference on Data Mining, pages 211–222,
2010.

[40] Zenglin Xu, Feng Yan, and Yuan Qi. Bayesian nonparametric models for multiway data

analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(2):475–487,
2015.

[41] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. A tensor-variate Gaussian process

for classification of multidimensional structured data. Proceedings of the 27th AAAI
Conference on Artificial Intelligence, AAAI 2013, pages 1041–1047, 2013.

References

2

53

[42] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian CP factorization of

incomplete tensors with automatic rank determination. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(9):1751–1763, 2015.

[43] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian Sparse Tucker Models for

Dimension Reduction and Tensor Completion. ArXiv ID: 1505.02343, pages 1–13, 2015.

[44] Qibin Zhao, Guoxu Zhou, Liqing Zhang, Andrzej Cichocki, and Shun Ichi Amari.

Bayesian Robust Tensor Factorization for Incomplete Multiway Data. IEEE Transac-
tions on Neural Networks and Learning Systems, 27(4):736–748, 2016.

3
Tensor network sqare root

Kalman filter for online
Gaussian process regression

The state-of-the-art tensor network Kalman filter lifts the curse of dimensionality for high-
dimensional recursive estimation problems. However, the required rounding operation can
cause filter divergence due to the loss of positive definiteness of covariance matrices. We solve
this issue by developing, for the first time, a tensor network square root Kalman filter and
applying it to high-dimensional online Gaussian process regression. In our experiments, we
demonstrate that our method is equivalent to the conventional Kalman filter when choosing a
full-rank tensor network. Furthermore, we apply our method to a real-life system identifica-
tion problem where we estimate 414 parameters on a standard laptop. The estimated model
outperforms the state-of-the-art tensor network Kalman filter in terms of prediction accuracy
and uncertainty quantification.

This chapter is based on� Clara Menzen, Manon Kok, Kim Batselier : Tensor network square root Kalman filter

for online Gaussian process regression, [18], Automatica, accepted for publication, 2025.

3.1 Introduction

3

57

3.1 Introduction
In a time when data-driven AI models are trained on an exponentially growing amount of

data, it is crucial that the models can be adapted to newly observed data without retraining

from scratch. These online or recursive settings are present in many fields, including

system identification [4, 8], sensor fusion [33, 38], robotics [17, 19], and machine learning

[12, 24, 35].

While Bayesian algorithms, like widely-used Gaussian processes (GPs) [25] are well-

suited for an online setting, they are associated with potentially high computational costs.

Standard GP regression using a batch of 𝑁 observations has a cubic cost in 𝑁 , i.e., (𝑁 3
).

The number of observations is growing in an online setting, so the cost increases each time

step and can become a computational bottleneck.

There are numerous parametric approximations to address scalability in batch settings,

including sparse GPs [23] and reduced-rank GPs [34], which both have a complexity of

(𝑁𝑀
2
), 𝑀 being the number of inducing inputs and basis function for the respective

method. Structured kernel interpolation for sparse GPs [40] reduces the complexity further

to (𝑁 +𝐷𝑀
1+1/𝐷

), 𝐷 being the number of input dimensions.

Parametric approximations allow for a straightforward recursive update, where the

posterior distribution from the previous time step is used as a prior for the current time step

[28]. In this context, online GPs have been used, e.g., for GP state-space models [6, 27, 36],

rank-reduced Kalman filtering [29] and recursive sparse GPs [35].

In this contribution to the thesis, we consider the online parametric GP model given by

𝑦𝑡 = 𝝓(𝐱𝑡)
⊤
𝐰𝑡 +𝜖𝑡 , 𝜖𝑡 ∼ (0,𝜎

2

𝑦
),

𝐰𝑡−1 ∼ (𝐰̂𝑡−1,𝐏𝑡−1),

(3.1)

where 𝑦𝑡 is a scalar observation at discrete time 𝑡, 𝝓(⋅) are basis functions that map a 𝐷

dimensional input vector 𝐱𝑡 to a feature space, 𝐰𝑡 ∈ ℝ
𝑀
are the parameters at time 𝑡, and

𝜎
2

𝑦
denotes the variance of the measurement noise 𝜖𝑡 which is assumed to be i.d.d. and

zero-mean Gaussian. With (3.1), the posterior distribution 𝑝(𝐰𝑡 ∣ 𝐱1∶𝑡 ,𝐲1∶𝑡) = (𝐰̂𝑡 ,𝐏𝑡)

— i.e., the distribution of 𝐰𝑡 given all inputs and measurements up until time 𝑡, 𝐱1∶𝑡 =

[𝐱1,𝐱2,… ,𝐱𝑡], 𝐲1∶𝑡 = [𝑦1,𝑦2,… ,𝑦𝑡]— is computed at each time step using the estimate 𝐰̂𝑡−1

and covariance matrix 𝐏𝑡−1 from the previous time step as a prior.

We consider commonly used product kernels with a feature map given by

𝝓(𝐱𝑡) = 𝝓
(1)
(𝐱𝑡)⊗⋯⊗𝝓

(𝑑)
(𝐱𝑡)⊗⋯⊗𝝓

(𝐷)
(𝐱𝑡), (3.2)

where 𝝓
(𝑑)
(𝐱𝑡) ∈ ℝ

𝐼
with 𝐼 being the number of basis functions in the 𝑑th dimension, and⊗

denoting a Kronecker product. The resulting number of basis functions is𝑀 = 𝐼
𝐷
, growing

exponentially with the input dimension 𝐷. Requiring exponentially many parameters

in a high-dimensional setting is a known problem, discussed in the related literature: In

[36], separable kernels or a radial basis function expansion are proposed as an alternative

with the disclaimer of limiting the space of functions that is possible to describe. In

[35], dimensionality reduction is applied for all experiments with 𝐷 > 3. Alternatively,

several tensor network (TN)- based methods have been proposed to break this curse of

dimensionality and achieve a linear computational complexity in𝐷. In the batch setting, [3]

and [39] give solutions for the squared exponential and polynomial kernel, respectively. In

3

58 TN sqare root Kalman filter for online GP regression

the online setting, the state-of-the-art method is the tensor network Kalman filter (TNKF)

[4, 5], where the Kalman filter time and measurement update are implemented in TN

format.

While the TNKF lifts the curse of dimensionality, it has a significant drawback. The

TNKF requires a TN-specific rounding operation [22], which can result in covariance

update losing positive (semi-) definiteness [7], resulting in the divergence of the filter.

This contribution to the thesis resolves this issue by computing the square root covari-

ance factor in tensor train (TT) format instead. Our approximation represents the 𝑀 ×𝑀

square root covariance factor as a tensor train matrix (TTm). This is motivated by prior

square root covariance factors of product kernels having a Kronecker product structure,

which corresponds to a rank-1 TTm. In addition, work by [20] and [14] approximates the

covariance matrix as a rank-1 TTm. This work generalizes the rank-1 approximation to

higher ranks which results in better prediction accuracy and uncertainty quantification.

We call our method the tensor network square root Kalman filter (TNSRKF).

We show in experiments that the TNSRKF is equivalent to the standard Kalman filter

when choosing full-rank TTs. In addition, we show how different choices of TT-ranks

affect the performance of our method. Finally, we compare the TNSRKF to the TNKF in a

real-life system identification problem with 4
14
parameters and observe that, contrary to

the TNKF, our method does not diverge.

3.2 Problem Formulation
Similar to the TNKF, we build on standard equations for the measurement update of the

Kalman filter, given by

𝐒𝑡 = 𝝓
⊤

𝑡
𝐏𝑡−1𝝓𝑡

+𝜎
2

𝑦
(3.3)

𝐊𝑡 = 𝐏𝑡−1𝝓𝑡
𝐒
−1

𝑡
(3.4)

𝐰̂𝑡 = 𝐰̂𝑡−1+𝐊𝑡(𝑦𝑡 −𝝓
⊤

𝑡
𝐰̂𝑡−1) (3.5)

𝐏𝑡 = (𝐈𝑀 −𝐊𝑡𝝓
⊤

𝑡
)𝐏𝑡−1(𝐈𝑀 −𝐊𝑡𝝓

⊤

𝑡
)
⊤
+𝜎

2

𝑦
𝐊𝑡𝐊

⊤

𝑡
, (3.6)

where 𝐒𝑡 denotes the innovation covariance and 𝐊𝑡 denotes the Kalman gain. Note that

for a scalar measurement, 𝐒𝑡 is a scalar and 𝐊𝑡 a vector, whereas in the case of multiple

measurements per time step, they are matrices. Without the loss of generality, we present

the scalar case, where, beyond the scope of this contribution to the thesis, our approach

can easily be extended to vector measurements. We recursively update the posterior

distribution of the parametric weights from (3.1), i.e., 𝑝(𝐰𝑡 ∣ 𝐱1∶𝑡 ,𝐲1∶𝑡). For product kernels

with a feature map given in (3.2), it is 𝐰𝑡 ∈ ℝ
𝐼
𝐷

and 𝐏𝑡 ∈ ℝ
𝐼
𝐷
×𝐼

𝐷

. In this case, the Kalman

filter suffers from the curse of dimensionality.

The first tensor-based Kalman filter, the TNKF [4], solved the curse of dimensionality

and implements (3.3)-(3.6) in TT format, where the weights are represented as a TT and

the covariance matrix as a TTm. During the updates, the algebraic operations in TT format

increase the TT-ranks of the involved variables, according to [5, Lemma 2]. To counteract

the rank increase and keep the algorithm efficient, the TNKF requires an additional step

called TT-rounding [22]. This SVD-based operation transforms the TT or TTm to ones

with smaller TT-ranks. TT-rounding can result, however, in the loss of positive (semi-)

definiteness.

3.3 Background on tensor networks

3

59

To avoid this issue, we implement the square root formulation of the Kalman filter

(SRKF), as described e.g. in [11, Ch. 7], in TT format. The SRKF expresses (3.3)-(3.6) in

terms of a square root decomposition 𝐏𝑡 = 𝐋𝑡𝐋
⊤

𝑡
, with the square root covariance factor 𝐋𝑡

given by

𝐋𝑡 = [(𝐈𝑀 −𝐊𝑡𝝓
⊤

𝑡
)𝐋𝑡−1 𝜎𝑦𝐊𝑡] . (3.7)

In each update, (3.7) is computed by concatenating two matrices, such that the number

of columns of 𝐋𝑡 increases. For the next update, 𝐋𝑡 needs to be transformed back to its

original size. In the SRKF, this is done by computing a thin QR-decomposition [10, p. 248]

of 𝐋𝑡 given by

𝐋
⊤

𝑡

⏟⏟⏟

(𝑀+1)×𝑀

= 𝐐𝑡

⏟⏟⏟

(𝑀+1)×𝑀

𝐑𝑡

⏟⏟⏟

𝑀×𝑀

(3.8)

and replacing 𝐋𝑡 by 𝐑
⊤

𝑡
, i.e., by the transpose of 𝐑𝑡 .

The orthogonal 𝐐𝑡-factor can be discarded since

𝐏𝑡 = 𝐋𝑡𝐋
⊤

𝑡
= 𝐑

⊤

𝑡
𝐐
⊤

𝑡
𝐐𝑡

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝐈𝑀

𝐑𝑡 = 𝐑
⊤

𝑡
𝐑𝑡 . (3.9)

In TT format, performing the QR-decomposition as in (3.8) is not possible. We solve

this issue by proposing an SVD-based algorithm in TT format that truncates 𝐋𝑡 back to its

original size.

3.3 Background on tensor networks
3.3.1 Tensor networks
Tensor networks (TNs), also called tensor decompositions, are an extension of matrix

decompositions to higher dimensions. There are multiple TN architectures, including the

CANDECOMP/PARAFAC decomposition [16], the Tucker decomposition [37], and the

tensor train (TT) decomposition [22]. In this contribution to the thesis, we focus on TTs

to approximate the weight vector’s mean as discussed in Section 3.3.1, and a TT matrix

(TTm) [21] to approximate the square root covariance factor, as discussed in Section 3.3.1.

In this context, we denote TTs representing vectors as a lower-case bold letter, e.g. 𝐰𝑡 ,

and their components, called TT-cores, as capital calligraphic bold letters, e.g.W (𝑑)
. TT

matrices are denoted by upper-case bold letters, e.g. 𝐋𝑡 and their corresponding TTm-cores

as capital calligraphic bold letters, e.g. L(𝑑)
.

Tensor train vectors
As depicted in Fig. 3.1(a), a TT vector consists of interconnected three-way tensors, called

TT-cores, visualized as nodes with three edges. Each edge corresponds to an index of a

TT-core and connected edges are summations over the involved indices. Each TT-core is

connected by two edges, called TT-ranks, to its neighbouring TT-cores, except for the first

and last TT-core, whose outer TT-ranks are by definition equal to one.

For the purpose of this contribution to the thesis, consider a TT that represents the

mean of the weight vector 𝐰𝑡 ∈ ℝ
𝑀
. The TT-cores, denoted by W (1)

𝑡
,⋯ ,W (𝑑)

𝑡
,⋯ ,W (𝐷)

𝑡

with W (𝑑)

𝑡
∈ ℝ

𝑅
𝑑
×𝐼×𝑅

𝑑+1 for 𝑑 = 1,…𝐷, where 𝑅𝑑 and 𝑅𝑑+1 are the TT-ranks and 𝐼 is the

3

60 TN sqare root Kalman filter for online GP regression

TT TTm tall TTm
thin SVD in

TT format

r
o
w
i
n
d
i
c
e
s

c
o
l
u
m
n
i
n
d
i
c
e
s

𝐒 𝐕
⊤

(a) (b) (c) (d)

Figure 3.1: Visual depiction of tensor diagrams for a (a) TT, (b) TTm, (c) tall TTm and (d) thin SVD.

size of the non-connected edge such that 𝑀 = 𝐼
𝐷
. By definition 𝑅1 = 𝑅𝐷+1 = 1. Without

the loss of generality, we use TT-cores with equal TT-ranks 𝑅𝐰. The storage complexity

of 𝐰𝑡 without TNs is (𝐼𝐷) and in TT format (𝐷𝐼𝑅2

𝐰
), where lower TT-ranks 𝑅𝐰 will

result in more efficient representations.

An important characteristic of a TT for numerical stability is that it can be transformed

into the site-𝑑-mixed canonical format.

Definition 3.3.1 Site-𝑑-mixed canonical format [30] A TT𝐰𝑡 in site-𝑑-mixed canonical
format is given by

𝐰𝑡 = 𝐆𝑑,𝑡𝐰
(𝑑)

𝑡
, (3.10)

where𝐆𝑑,𝑡 ∈ ℝ
𝑀×𝑅𝐰𝐼𝑅𝐰 is an orthogonal matrix computed from all TT-cores except the 𝑑th and

𝐰
(𝑑)

𝑡
∈ ℝ

𝑅𝐰𝐼𝑅𝐰 is the vectorization of the 𝑑th TT-core. In this format, the TT representation is
linear in the 𝑑th TT-core when all other TT-cores are fixed.

TT matrices and tall TT matrices
A TTm consists of interconnected four-way tensors, as depicted in Fig. 3.1(b). Analogous to

the TT, the TTm components and connected edges are called TTm-cores and TTm-ranks,

respectively, where each TTm-core has two free edges, the row and column indices.

For the purpose of this contribution to the thesis, consider a TTm representation of the

square root covariance factor 𝐋𝑡 ∈ℝ
𝑀×𝑀

. The TTm-cores are denoted byL(1)

𝑡
,⋯ ,L(𝑑)

𝑡
,⋯ ,L(𝐷)

𝑡

withL(𝑑)

𝑡
∈ ℝ

𝑅
𝑑
×𝐼×𝐽×𝑅

𝑑+1 , where 𝐼 and 𝐽 are the number of row and column indices, indicated

in Fig. 3.1(b) as red and and blue edges respectively, such that 𝑀 = 𝐼
𝐷
and 𝑀 = 𝐽

𝐷
. By

definition, 𝑅1 = 𝑅𝐷+1 = 1, and for this contribution to the thesis, we generally assume that

all other TTm-ranks 𝑅2 = ⋯ = 𝑅𝐷 = 𝑅𝐋 are equal. The storage complexity of 𝐋𝑡 without

TNs is (𝐼𝐷 × 𝐼
𝐷
) and in TTm format (𝐷𝑅2

𝐋
𝐼 𝐽).

A TTm can also be written in terms of the site-𝑑-mixed canonical format as defined

in Definition 3.3.1, but it requires to be transformed into a TT first. This can be done

by combining the row and column indexes into one index, which represents a kind of

vectorization of the matrix represented by the TTm. Note, however, that the indices are

not ordered as in conventional vectorization. A site-𝑑-mixed canonical format of a TTm is

given by

vec(𝐋𝑡) = 𝐇𝑑,𝑡 𝐥
(𝑑)

𝑡
, (3.11)

3.4 TNSRKF

3

61

where the orthogonal matrix 𝐇𝑑,𝑡 ∈ ℝ
2𝑀×𝑅𝐋𝐼 𝐽𝑅𝐋

is computed from all the TTm-cores but

the 𝑑th, and 𝐥
(𝑑)

𝑡
∈ ℝ

𝑅𝐋𝐼 𝐽𝑅𝐋
.

To recompute 𝐋𝑡 in its original size in the QR step of the SRKF (see (3.8)), here called

the re-squaring step, we need a special case of a TTm, the tall TTm, as well as a thin SVD

in TTm format.

Definition 3.3.2 Tall TTm [3] A tall TTm, as depicted in Figure 3.1(c), has only one TTm-
core with both a row and column index, while all other TTm-cores have only row indices. Then,
the TTm represents a tall matrix with many more rows than columns.

Definition 3.3.3 Thin SVD in TTm format [2] Consider a TTm in site-𝑑-mixed canonical
format, where the 𝑑th TTm-core is the one that has the column index, L(𝑑)

∈ ℝ
𝑅𝐋×𝐼×𝐽×𝑅𝐋 . The

SVD of L(𝑑) reshaped and permuted in to a matrix of size 𝑅𝐋𝐼𝑅𝐋 × 𝐽 , is given by

𝐔
(𝑑)
𝐒
(𝑑)
(𝐕

(𝑑)
)
⊤
. (3.12)

Now replace the 𝑑th TTm-core by 𝐔(𝑑) reshaped and permuted back to the original TTm-core
dimensions.

Then the thin SVD is given by the TTm with the replaced TT-core as the orthogonal
𝐔-factor, and 𝐒(𝑑)(𝐕(𝑑)

)
⊤ as the 𝐒𝐕⊤-factors, as depicted in Fig. 3.1(d).

3.4 TNSRKF
We propose our method, combining efficient TN methods with the SRKF formulation for

online GP regression. More specifically, we recursively compute the posterior distribution

of the parametric weights in (3.1) from the measurement update of the Kalman filter. To

achieve this, we update the mean 𝐰̂𝑡 ∈ ℝ
𝑀
as a TT (Section 3.4.1), and the square root

factor 𝐋𝑡 ∈ ℝ
𝑀×𝑀

as a TTm (Section 3.4.2).

All computations are summarized in Algorithm 4, which outputs the posterior weight

distributions 𝑝(𝐰𝑡 ∣ 𝐱1∶𝑡 ,𝐲1∶𝑡) = (𝐰̂𝑡 ,𝐏𝑡), and the prediction for a test input 𝑓∗,𝑡 in terms

of a distribition 𝑝(𝑓∗,𝑡) = (𝑚∗,𝑡 ,𝜎
2

∗,𝑡
) with predictive mean 𝑚∗,𝑡 and variance 𝜎

2

∗,𝑡
. Note

that online GP regression refers to ingesting one measurement at a time and updating

the weights 𝐰𝑡 recursively. Therefore, in a truly online scenario, where measurements

are collected on the fly, the input to Algorithm 4 would not be a batch 𝐲, but a single

measurement 𝐲𝑡 .

3.4.1 Update of weight mean
The mean of the weights is updated with a new measurement 𝑦𝑡 ∈ ℝ, with (3.5). In the

original tensor-based KF [4], the two terms in equation (3.5) are summed together in TT

format, which increases the TT-ranks. To avoid this rank increase and application of

TT-rounding, we propose solving an optimization problem to compute (3.5) instead: We

apply a commonly-used optimization algorithm from the tensor community, called the

alternating linear scheme (ALS) [13, 26]. The ALS computes a TT by updating one TT-core

at a time while keeping all other TT-cores fixed. The optimization problem to be solved is

given by

min
𝐰𝑡

‖𝐰̂𝑡−1+𝐊𝑡(𝑦𝑡 −𝝓
⊤

𝑡
𝐰̂𝑡−1)−𝐰𝑡 ‖

2

s.t. 𝐰𝑡 being a low-rank TT,

(3.13)

3

62 TN sqare root Kalman filter for online GP regression

where 𝐰̂𝑡−1 is the estimate from the last time step, playing now the role of the prior for the

current time step.

Inserting (3.10) in (3.13), thus making use of 𝐆𝑑,𝑡 being an orthogonal matrix (see the

site-𝑑-mixed canonical format from Definition 3.3.1), gives the optimization problem for

the update of one TT-core

min

𝐰
(𝑑)

𝑡

‖
‖
‖
𝐆
⊤

𝑑,𝑡 (
𝐰̂𝑡−1+𝐊𝑡(𝑦𝑡 −𝝓

⊤

𝑡
𝐰̂𝑡−1))−𝐰

(𝑑)

𝑡

‖
‖
‖

2

. (3.14)

In one so-called sweep of the ALS, (3.14) is solved for each TT-core once. A stopping

criterion for the convergence of the residual in (3.14) determines the total number of

sweeps.

3.4.2 Update of sqare root covariance factor
To compute the covariance matrix with the standard covariance update in the measurement

update, see (3.6), we recursively compute the square root covariance factor 𝐋𝑡 as defined in

(3.7) such that 𝐏𝑡 = 𝐋𝑡𝐋
⊤

𝑡
. To achieve this, we use the ALS to solve (3.7) (ALS step) and then

we transform 𝐋𝑡 as in (3.8) back to its original size (re-squaring step).

ALS step In this step, we use the ALS to compute a TTm representing 𝐋𝑡 . We solve the

optimization problem given by

min

𝐋𝑡

‖
‖
‖
[(𝐈𝑀 −𝐊𝑡𝝓

⊤

𝑡
)𝐋𝑡−1 𝜎𝑦𝐊𝑡]−𝐋𝑡

‖
‖
‖

2

F

s.t. 𝐋𝑡 being a low-rank TTm,

(3.15)

where 𝐋𝑡−1 is the estimated square root covariance factor from time step 𝑡 −1 now serving

as the prior. The original ALS algorithm is defined for TTs, so we must adapt it for TT

matrices.

For this, it is necessary to use the site-𝑑-mixed canonical form for TT matrices, as

described in Section 3.3.1 above (3.11). In addition, we need to horizontally concatenate

two matrices in TTm format, which can be done by summing two matrices of size 𝑀 ×2𝑀

such that (3.15) becomes

min

𝐥
(𝑑)

𝑡

‖
‖
‖
𝐇
⊤

𝑑,𝑡
vec([1 0]⊗(𝐈𝑀 −𝐊𝑡𝝓

⊤

𝑡
)𝐋𝑡−1)

+𝐇
⊤

𝑑,𝑡
vec([0 1]⊗[1 𝟎𝑀−1]⊗𝜎𝑦𝐊𝑡)− 𝐥

(𝑑)

𝑡
)
‖
‖
‖

2

F

,

(3.16)

where vec denotes the vectorization of the involved TT matrices.

Re-squaring step The optimization problem given by (3.15) requires concatenating a

matrix with a column vector. In TT format, this results in a TTm of size 𝑀 ×2𝑀 . For

the TTm-cores of 𝐋𝑡 this means that one TTm-core, which we call the augmented core,

is of size 𝑅𝐋 × 𝐼 × 2𝐽 ×𝑅𝐋. Before serving as a prior for the next time step, a re-squaring

step implementing the QR step (see (3.8)) in TN format is required to transform 𝐋𝑡 back to

3.4 TNSRKF

3

63

𝝓(𝐱∗)
⊤
𝐰̂𝑡 𝝓(𝐱∗)

⊤
𝐋𝑡 𝐋

⊤

𝑡
𝝓(𝐱∗)

(a) (b)

Figure 3.2: Visual depiction of (a) predictive mean and (b) predictive covariance for 𝐷 = 5.

its original size. Since computing a QR decomposition of a TTm is not directly possible,

we present an SVD-based algorithm in TN format to transform 𝐋𝑡 of size 𝑀 ×2𝑀 back to

𝑀 ×𝑀 , as described in Algorithm 5.

3.4.3 Predictions
To perform GP predictions we compute the predictive distribution for a test output 𝑓∗,𝑡 =

𝝓(𝐱∗)
⊤
𝐰𝑡 with mean and variance given by

𝑚∗,𝑡 = 𝝓(𝐱∗)
⊤
𝐰̂𝑡

𝜎
2

∗,𝑡
= 𝝓(𝐱∗)

⊤
𝐋𝑡𝐋

⊤

𝑡
𝝓(𝐱∗).

(3.17)

Given 𝐰̂𝑡 as a TT and 𝐋𝑡 as a TTm, we can compute (3.17) directly in TN format without

explicitly reconstructing the mean vector and square root factor. For a test input 𝐱∗, Fig.

3.2 illustrates the computation of (a) the predictive mean 𝑚∗,𝑡 , (b) the predictive covariance

𝜎
2

∗,𝑡
. The corresponding equation to Fig. 3.2(a) is given by

𝑚∗,𝑡 =

𝑅
(2)

∑

𝑟
(2)

⋯

𝑅
(𝐷)

∑

𝑟
(𝐷)

𝐷

∏

𝑑

𝐼
(𝑑)

∑

𝑖
(𝑑)

𝝓
(𝑑)

𝑖
(𝑑)
(𝐱∗)

̂W (𝑑)

𝑟
(𝑑)

,𝑖
(𝑑)

,𝑟
(𝑑+1)

,

where the lowercase letters in the subcript, i.e. 𝑟
(𝑑)
, 𝑟

(𝑑+1)
and 𝑖

(𝑑)
, denote the indices

of size 𝑅
(𝑑)

= 𝑅
(𝑑+1)

= 𝑅 and 𝐼
(𝑑)

= 𝐼 , respectively. Fig. 3.2(b) can be written in a similar

way. Moving forward, we provide only the TN diagrams, since the equations can become

lengthy.

3

64 TN sqare root Kalman filter for online GP regression

Algorithm 4 Online GP regression in terms of SRKF in TT format (TNSRKF)

Require: Measurements 𝐲 = 𝑦1,𝑦2,… ,𝑦𝑁 ,

basis functions for inputs 𝝓(𝐱𝑡), 𝑡 = 1,…,𝑁 ,

prior 𝐰̂0 in TN format (Lemma 3.5.2),

prior 𝐋0 in TN format (Lemma 3.5.4),

noise variance 𝜎
2

𝑦
,

basis functions for prediction point 𝝓(𝐱∗).

Ensure: 𝑝(𝐰 ∣ 𝐲1∶𝑡) = (𝐰̂𝑡 ,𝐏𝑡),

1: 𝑝(𝑓∗ ∣ 𝐲1∶𝑡) = (𝑚∗,𝑡 ,𝜎
2

∗,𝑡
), for 𝑡 = 1,…,𝑁 .

2: Initialize 𝐰1 = 𝐰̂0 and 𝐋1 as a random TTm in site-𝑑-mixed canonical format.

3: for 𝑡 = 1,…,𝑁 do
4: Compute

̂W (1)

𝑡
,
̂W (2)

𝑡
,… ,

̂W (𝐷)

𝑡
with (3.14).

5: Compute L(1)

𝑡
,L(2)

𝑡
,… ,L(𝐷)

𝑡
with (3.16).

6: Save TT and TTm from step 4 and 5 as initializations for the next time step.

7: Re-square 𝐋𝑡 with Algorithm 5.

8: Compute 𝑚∗,𝑡 with (3.17) as depicted in Fig. 3.2(a).

9: Compute 𝜎
2

∗,𝑡
with (3.17) as depicted in Fig. 3.2(b).

10: end for

3.5 Implementation
In this section, we give a detailed description of the non-straightforward TN operations to

update the mean estimate 𝐰̂𝑡 and square root covariance factor 𝐋𝑡 as described in Algorithm

4. The leading complexities of the mean and square root covariance factor update are given

in Table 3.1.

3.5.1 Updating 𝐰̂𝑡 in TN format
In the following sections, we discuss the implementation of (3.14) for the mean update

(Algorithm 4, line 4), and we describe how the mean is initialized in TT format (Algorithm

4, line 2).

Table 3.1: Computational complexities for one TT-core mean and covariance update. We denote the TT-ranks of

𝐊𝑡 by 𝑅𝐊.

Term Complexity

𝐆
⊤

𝑑,𝑡
𝐰̂𝑡−1 (𝑅4

𝐰
𝐼)

𝐆
⊤

𝑑,𝑡
𝐊𝑡(𝑦𝑡 −𝝓

⊤

𝑡
𝐰̂𝑡−1) (𝑅2

𝐰
𝑅
2

𝐊
𝐼)

(3.20)-(3.22) (𝑅4

𝐋
𝐼 𝐽)

3.5 Implementation

3

65

𝐆
⊤𝑑
,𝑡

𝐰
𝑡
−
1

...

...

...

...

(1)
(𝑑 −1) (𝑑)

(𝑑 +1) (𝐷)

𝑅𝐰 𝑅𝐰

𝐼

Figure 3.3: Visual depiction of computation of 𝐆
⊤

𝑑,𝑡
𝐰̂𝑡−1, resulting in three-way tensor of size 𝑅𝐰 × 𝐼 ×𝑅𝐰 (gray

node). The indices are summed over from left to right, alternating between the vertical and horizontal ones.

Implementation of 𝐆
⊤

𝑑,𝑡
(𝐰̂𝑡−1+𝐊𝑡(𝑦𝑡 −𝝓

⊤

𝑡
𝐰̂𝑡−1))

To compute the TT representing the mean estimate 𝐰̂𝑡 , we implement the ALS to solve

(3.14) (Algorithm 4, line 4).

The following example illustrates the update of one TT-core during the ALS.

Example 3.5.1 TT-core update with ALS Take a 𝐷 = 5 dimensional weight vector in TT
format with 𝐼 = 10 basis functions in each dimension, resulting in 105 parameters and uniform
TT-ranks of 𝑅2 = 𝑅3 = 𝑅4 = 4. Say, we are currently updating the third TT-coreW (3)

𝑡
∈ ℝ

4×10×4

using

𝐰
(3)

𝑡

⏟⏞⏞⏟⏞⏞⏟

160×1

= 𝐆
⊤

3,𝑡

⏟⏞⏞⏟⏞⏞⏟

160×10
5

⎛

⎜

⎜

⎜

⎝

𝐰̂𝑡−1

⏟⏞⏞⏞⏟⏞⏞⏞⏟

10
5
×1

+ 𝐊𝑡

⏟⏟⏟

10
5
×1

(𝑦𝑡 −𝝓
⊤

𝑡
𝐰̂𝑡−1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1×1

⎞

⎟

⎟

⎟

⎠

. (3.18)

We first multiply over the large dimension of 105 in 𝐆
⊤

3,𝑡
𝐰̂𝑡−1 and 𝐆

⊤

3,𝑡
𝐊𝑡(𝑦𝑡 −𝝓

⊤

𝑡
𝐰̂𝑡−1). In

TT format, this matrix-vector multiplication is done core by core, thus avoiding the explicit
multiplication. Finally, we sum two vectors of size 160.

Figure 3.3 illustrates the multiplication of 𝐆
⊤

𝑑,𝑡
𝐰̂𝑡−1 in TT format, resulting in a tensor

W (𝑑)

𝑡
of size 𝑅𝐰 × 𝐼 ×𝑅𝐰.

The multiplication of between 𝐆
⊤

𝑑,𝑡
and 𝐊𝑡(𝑦𝑡 −𝝓

⊤

𝑡
𝐰̂𝑡−1) works in the same way as

depicted in Fig. 3.3, after firstly computing 𝝓
⊤

𝑡
𝐰̂𝑡−1 in TN format and secondly multiplying

one arbitrary TT-core of 𝐊𝑡 by the scalar (𝑦𝑡 −𝝓
⊤

𝑡
𝐰̂𝑡−1).

During the update of the 𝑑th TT-core, the TT is in site-𝑑-mixed canonical format. Before

updating the next TT-core, either the (𝑑−1)th or the (𝑑+1)th, the site-(𝑑−1)-mixed or site-

(𝑑 +1)-mixed canonical format is computed. Note that because of the recursive property,

updating every TT-core once with a new measurement is usually sufficient for the residual

of (3.13) to converge.

Initialization of 𝐰̂0 and 𝐰1

For the first time step 𝑡 = 1 of Algorithm 4, we choose a zero-mean assumption for the prior

estimate 𝐰̂0. The following Lemma explains how this can be implemented in TT format.

Lemma 3.5.2 Zero-mean prior in TT format [5] Consider a vector with all entries equal
to zero. In TT format, such a vector is given by a TT in site-𝑑-mixed canonical format, where
the 𝑑th TT-core contains only zeros.

3

66 TN sqare root Kalman filter for online GP regression

In addition, Algorithm 4 requires an initial guess for 𝐰1 to compute 𝐆𝑑,1 from all

TT-cores of 𝐰1, except the 𝑑th. For this, we set 𝐰1 = 𝐰̂0.

3.5.2 Updating 𝐋𝑡 in TT format
To compute the TTm representing 𝐋𝑡 , we implement the ALS to solve (3.16) (Algorithm 4,

line 5). The following example illustrates the update of one TTm-core during the ALS.

Example 3.5.3 TTm-core update with ALS Take a 𝐷 = 5 dimensional TTm representing
𝐋𝑡 ∈ ℝ

𝑀×𝑀 , where we are currently updating the third TTm-core. We have 𝐼 = 10 and 𝐽 = 10,
where the third TTm-core is augmented, and 𝑅𝐋 = 4. We update L(3)

𝑡
∈ ℝ

4×10×20×4 using

𝐥
(3)

𝑡

⏟⏟⏟

3200×1

= 𝐇
⊤

𝑑,𝑡

⏟⏞⏞⏟⏞⏞⏟

3200×2⋅10
10

vec

⎛

⎜

⎜

⎜

⎝

[1 0]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1×2

⊗ 𝐋𝑡−1
⏟⏞⏞⏟⏞⏞⏟

10
5
×10

5

⎞

⎟

⎟

⎟

⎠

− 𝐇
⊤

𝑑,𝑡

⏟⏞⏞⏟⏞⏞⏟

3200×2⋅10
10

vec

⎛

⎜

⎜

⎜

⎝

[1 0]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1×2

⊗𝐊𝑡𝝓
⊤

𝑡
𝐋𝑡−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

10
5
×10

5

⎞

⎟

⎟

⎟

⎠

+ 𝐇
⊤

𝑑,𝑡

⏟⏞⏞⏟⏞⏞⏟

3200×2⋅10
10

vec

⎛

⎜

⎜

⎜

⎝

[0 1]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1×2

⊗[1 𝟎𝑀−1]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1×10
5

⊗𝜎𝑦𝐊𝑡

⏟⏞⏞⏞⏟⏞⏞⏞⏟

10
5
×1

⎞

⎟

⎟

⎟

⎠

.

(3.19)

We first multiply over the large dimension of 2 ⋅ 1010 in TT format, then sum the three terms
of size 3200×1.

From Example 3.5.3, it follows that the three terms of (3.19) need to be implemented. We

discuss them separately in the following sections. We distinguish between the update of the

augmented TTm-core from all other ones, which result in TTm-cores of size 𝑅𝐋 × 𝐼 ×2𝐽 ×𝑅𝐋

and 𝑅𝐋 × 𝐼 × 𝐽 ×𝑅𝐋, respectively. In the tensor diagrams (Fig. 3.4-3.6), we depict the update

for the augmented TTm-core.

Before diving in, recall from (3.11) that 𝐇𝑑,𝑡 is computed from TTm-cores of 𝐋𝑡 , except

the 𝑑th, where row and column indices are combined. In the tensor diagrams, the indices are

depicted not as combined because, in practice, they are generally summed over separately.

However, the vectorized format is necessary for writing down the equations in matrix

form.

Implementation of first term of (3.16)

Fig. 3.4 illustrates the computation of the augmented TTm-core in the first term of (3.16),

given by

𝐇
⊤

𝑑,𝑡
vec([1 0]⊗𝐋𝑡−1) . (3.20)

The column indices of 𝐋𝑡−1 are indicated by the round edges that are connected to the

row indices of 𝐇
⊤

𝑑,𝑡
. The edge containing 𝐞1 = [1 0] is connected to the 𝑑th TTm core of

𝐋𝑡 with a rank-1 connection, which corresponds to the Kronecker product in (3.20). The

summation over the vertical and curved indices has the leading computational complexity

of (𝑅4

𝐋
𝐼 𝐽) per dimension. When updating all TTm-cores except the augmented TTm-core,

the additional index of size 2 is summed over resulting in a tensor of size 𝑅𝐋 × 𝐼 × 𝐽 ×𝑅𝐋.

3.5 Implementation

3

67

𝐇
⊤𝑑
,𝑡

𝐋
𝑡
−
1

...

...

...

...

(1)
(𝑑 −1) (𝑑)

(𝑑 +1) (𝐷)

𝑅
𝐋

2𝐽

𝑅
𝐋

𝐼

1

2

𝐽

𝐞1

Figure 3.4: Visual depiction for computing the augmented TTm-core in (3.20) resulting in a 4-way tensor of size

𝑅𝐋 × 𝐼 ×2𝐽 ×𝑅𝐋 (gray node). The combined horizontal and curved indices are summed over and alternating with

the horizontal indices.

Implementation of second term of (3.16)

Fig. 3.5 illustrates the computation of

𝐇
⊤

𝑑,𝑡
vec([1 0]⊗𝐋𝑡−1𝐋

⊤

𝑡−1
𝝓
𝑡
𝐒
−1

𝑡
𝝓
⊤

𝑡
𝐋𝑡−1) , (3.21)

which directly follows from the second term of (3.16). As shown, the row and column indices

of 𝐇
⊤

𝑑,𝑡
are connected separately to the column and row indices of two TT matrices for 𝐋𝑡−1,

respectively. Like in the previous term, the edge containing 𝐞1 = [1 0] is connected to the

augmented TTm-core of 𝐋𝑡 with a rank-1 connection, which corresponds to the Kronecker

product in (3.21). The leading computational complexity of (𝑅4

𝐋
𝐼 𝐽) per dimension comes

from the summation over the vertical indices in the red or blue box indicated in the figure.

The most efficient order of doing the computations in Fig. 3.5 was found with the visual

tensor network software by [9], assuming our use case where 𝐷 > 3 and 𝐼 , 𝐽 ,𝑅𝐿 < 10.

Implementation of third term of (3.16)

Fig. 3.6 illustrates the computation of

𝐇
⊤

𝑑,𝑡
vec([0 1]⊗[1 𝟎𝑀−1]⊗𝜎𝑦𝐋𝑡𝐋

⊤

𝑡
𝝓
𝑡
𝐒
−1

𝑡) , (3.22)

which directly follows from the third term of (3.16). The row of nodes each filled with

𝐞1 = [1 𝟎𝐽−1] corresponds to [1 𝟎𝑀−1] from (3.22) and their rank-1 connections to the

nodes above is the second Kronecker product in (3.22), which is done dimension-wise in

TT format. The node with 𝐞2 corresponds to [0 1] from (3.22) and its rank-1 connection is

the first Kronecker product in (3.22). The summation over the vertical indices is the leading

computational complexity of (𝑅4

𝐋
𝐼 𝐽) per dimension.

SVD-based re-sqaring step in TTm format
When computing (3.16), we double the number of columns of 𝐋𝑡 compared to 𝐋𝑡−1. For the

next time step, however, we need to transform 𝐋𝑡 back to its original size (Algorithm 4, line

7), otherwise its column size will grow with the iterations and slow down the algorithm.

The QR step, as in (3.8), computes a full QR decomposition of 𝐋𝑡 , which cannot be done

in TT format. Instead, we compute a thin SVD in TTm format (Definition 3.3.3) of 𝐋𝑡

3

68 TN sqare root Kalman filter for online GP regression

𝝓
⊤𝑡

𝐋
𝑡
−
1

𝐇
⊤𝑑
,𝑡

𝐋
𝑡
−
1

𝐋
⊤𝑡
−
1

𝝓
𝑡

...

...

...

...

...

...

...

...

(1) (𝑑 −1) (𝑑) (𝑑 +1) (𝐷)

𝑅
𝐋

2𝐽

𝑅
𝐋

𝐼

𝐒
−
1

𝑡

𝐽
1

2

𝐞1

Figure 3.5: Visual depiction for computing (3.21) resulting in a 4-way tensor of size 𝑅𝐋 × 𝐼 × 2𝐽 ×𝑅𝐋 (gray node).

First, the indices in the red and blue boxes are summed over, then the indices between the red, yellow, and blue

boxes, and finally, the ones between the red, green, and blue boxes.

𝐇
⊤𝑑
,𝑡

𝐋
𝑡
−
1

𝐋
⊤𝑡
−
1

𝝓
𝑡

...

...

...

...

...

...

(1)
(𝑑 −1) (𝑑)

(𝑑 +1) (𝐷)

𝑅
𝐋

2𝐽

𝑅
𝐋

𝐼

𝜎
𝑦
𝐒
−
1

𝑡

𝐞1𝐞1𝐞1𝐞1 𝐞1

11

𝐽

𝐽𝐽𝐽 𝐽

1

2

𝐞2

1 1 1 1

Figure 3.6: Visual depiction for computing (3.22), resulting in a 4-way tensor of size 𝑅𝐋 × 𝐼 × 2𝐽 ×𝑅𝐋 (gray node).

The indices are summed over from left to right by alternating between the vertical and horizontal ones.

3.5 Implementation

3

69

transformed into a tall TTm (here also denoted by 𝐋𝑡) with all row indices of size 𝐼 𝐽 , except

the 𝑑th which is of size 𝐼 , and the 𝑑th column index of size 2𝐽 . The 𝐽 -truncated SVD of 𝐋𝑡

is then given by

𝐋𝑡
⏟⏟⏟

𝑀𝐽
𝐷−1

×2𝐽

≈ 𝐔𝑡𝐒𝑡
⏟⏞⏞⏟⏞⏞⏟

𝑀𝐽
𝐷−1

×𝐽

𝐕
⊤

𝑡

⏟⏟⏟

𝐽 ×2𝐽

, (3.23)

where 𝐔𝑡𝐒𝑡 is the new 𝐋𝑡 and 𝐕
⊤

𝑡
can be discarded because of (3.9). In practice, we compute

an SVD of the augmented TTm-core and truncate it back to the size of 𝑅𝐋 × 𝐼 × 𝐽 ×𝑅𝐋.

There is a way to make (3.23) exact. This is possible if the augmented TTm-core is of

size 𝑅𝐋 × 𝐼 × 2𝐽𝑅
2

𝐋
×𝑅𝐋. In this case, the SVD computed of the augmented TTm-core results

in a square 𝐔-factor. Since the number of columns is doubled every measurement update,

the re-squaring step can be skipped 𝑝 times until 2
𝑝
= 2𝑅

2

𝐋
. Choosing smaller values for 𝑝

reduces computational complexity at the cost of accuracy.

The SVD-based re-squaring step is described in Algorithm 5. The SVD of the reshaped

and permuted augmented TTm-core is truncated for 2
𝑝
< 2𝑅

2

𝐋
and exact for 2

𝑝
≥ 2𝑅

2

𝐋
.

Algorithm 5 SVD-based re-squaring step of covariance update

Require: TTm 𝐋𝑡 in site-𝑑-mixed canonical format with L(𝑑)
∈ ℝ

𝑅𝐋×𝐼×2
𝑝
𝐽 ×𝑅𝐋

.

Ensure: TTm 𝐋𝑡 with L(𝑑)
∈ ℝ

𝑅𝐋×𝐼×2
𝑝−1

𝐽 ×𝑅𝐋 .

1: 𝐋
(𝑑)

← Reshape / permute L(𝑑)
into matrix of size 𝑅𝐋𝐼𝑅𝐋 ×2

𝑝+1
𝐽 .

2: Compute thin SVD(𝐋
(𝑑)
) = 𝐔

(𝑑)
𝐒
(𝑑)
(𝐕

(𝑑)
)
⊤
.

3: L(𝑑)
← Reshape / permute first 2

𝑝−1
𝐽 columns of 𝐔

(𝑑)
𝐒
(𝑑)

of size 𝑅𝐋𝐼𝑅𝐋 × 2
𝑝−1

𝐽 into

tensor of size 𝑅𝐋 × 𝐼 × 2
𝑝−1

𝐽 ×𝑅𝐋.

Initialization of 𝐋0 and 𝐋1

At time 𝑡 = 1, Algorithm 4 requires the prior square root covariance factor 𝐋0 in TTm

format. We are considering product kernels that have priors in Kronecker format. The

following Lemma describes how these types of priors can be transformed into a TTm for

𝐋0.

Lemma 3.5.4 (Prior covariance with Kronecker structure into TTm, follows from [10,
p.708]) Given a prior covariance 𝐏0 = 𝐏

(1)

0
⊗𝐏

(2)

0
⊗⋯⊗𝐏

(𝐷)

0
, the prior square root covariance

in TTm format is given by a TTm with all ranks equal to 1, where the cores are given by
𝐋
(1)

0
,𝐋

(2)

0
,… ,𝐋

(𝐷)

0
, each reshaped into a 4-way tensor of size 1× 𝐼 × 𝐽 × 1.

In addition, Algorithm 4 requires an initial guess in TTm format for 𝐋1 ∈ ℝ
𝑀×2𝑀

. We

cannot set 𝐋1 = 𝐋0 since the prior has TTm-ranks equal to one, and we may want higher

TTm-ranks for 𝐋𝑡 . This is because the choice of the TTm-ranks of 𝐋1 determines the

rank manifold on which the TTm-cores will be optimized. We initialize the TTm-cores

as random samples from a zero-mean Gaussian distribution and transform the TTm into

site-𝑑-mixed canonical format, where 𝑑 is the augmented TTm-core.

3

70 TN sqare root Kalman filter for online GP regression

Table 3.2: RMSE and NLL at time 𝑡 = 𝑁 for the full-rank setting and different choices of 𝑝 in comparison to the

conventional Kalman filter (KF).

Method Setting (RMSE)𝑁 (NLL)𝑁

KF - 0.07873 -106.864

TNSRKF 𝑅𝐰 𝑅𝐋 𝑝

4 16 8 0.07873 -106.864

4 16 4 0.07879 -108.338

4 16 2 0.07444 -157.716

4 16 1 0.06765 -166.178

3.6 Experiments
In this section, we show how our method works in practice by performing online GP

regression on synthetic and real-life data sets. We evaluate our predictions based on the

root mean square error (RMSE) for the accuracy of the mean and negative log-likelihood

(NLL) for the uncertainty estimation. The metrics after 𝑡 measurement updates are defined

as

(RMSE)𝑡 =

√

𝑁∗

∑

𝑖=1

(𝑚∗,𝑡,𝑖−𝑦∗,𝑖)
2

𝑁∗

and

(NLL)𝑡 = 0.5

𝑁∗

∑

𝑖=1

log(2𝜋𝜎
2

∗,𝑡,𝑖
)+

(𝑚∗,𝑡,𝑖−𝑦∗,𝑖)
2

𝜎
2

∗,𝑡,𝑖

,

(3.24)

where 𝑦∗,𝑖 is the 𝑖th measurement from the test set, 𝑚∗,𝑡,𝑖 and 𝜎∗,𝑡,𝑖 are the predictive mean

and variance for the 𝑖th test point, and 𝑁∗ is the number of test points.

First, we show the equivalence of the full-rank TNSRKF and the conventional Kalman

filter. Then we show in a synthetic experiment how the choice of 𝑅𝐰 and 𝑅𝐋 impacts

the accuracy of the approximation. Finally, we compare our method to the TNKF on a

benchmark data set for nonlinear system identification.

All experiments were performed on an 11th Gen Intel(R) Core(TM) i7 processor running

at 3.00 GHz with 16 GB RAM. For reproducibility of the method and the experiments, the

codewritten in Julia programming language is freely available athttps://github.com/clarazen/TNSRKF.

3.6.1 Eqivalence of full-rank TNSRKF and Kalman filter
In the first experiment, we show in which case our method is equivalent to the measurement

update of the conventional Kalman filter. We generate 𝐷 = 3 dimensional synthetic data

sampled from a reduced-rank GP by [34] with a squared exponential kernel (lengthscale

𝓁
2
= 0.1 and signal variance 𝜎

2

𝑓
= 1), set the noise variance to 𝜎

2

𝑦
= 0.01 and use 𝐼 = 4 basis

functions per dimension, such that 𝐏𝑡 ∈ ℝ
64×64

. The input data lies in a cuboid given by

[−1 1] × [−1 1] × [−1 1] and 𝑁 ,𝑁∗ = 100.

Table 3.2 shows the RMSE and NLL for test data at time 𝑡 = 𝑁 for different choices of

𝑝. The TNSRKF is equivalent to the Kalman filter when both 𝑅𝐰 and 𝑅𝐋 are full-rank. In

addition, 𝑝 must be chosen such that the QR step, discussed in Section 3.5.2, is exact. For

settings with lower values for 𝑝, the method trades off accuracy.

https://github.com/clarazen/TNSRKF

3.6 Experiments

3

71

Figure 3.7: RMSE and NLL over time iterations for different combinations of 𝑅𝐰 and 𝑅𝐋.

In the following sections, we look at scenarios where the Kalman filter can no longer be

computed on a conventional laptop because both storage and computational time become

unfeasible.

3.6.2 Influence of the ranks on the approximation
The choice of the TT- and TTm-ranks is not obvious and can be intricate. However,

the computational budget often determines how high the ranks can be chosen. In this

experiment, we use our method to make online GP predictions on synthetic data while

varying the TTm-ranks of 𝐋𝑡 , as well as the TT-ranks of 𝐰𝑡 .

We consider the Volterra kernel, a popular choice for nonlinear system identification. It

is known that the truncated Volterra series suffers from the curse of dimensionality, which

was lifted in a TN setting by [3]. With the notation of this contribution to the thesis, the

basis functions 𝝓 of parametric model (3.1) are a combination of monomials computed

from the input sequence of the given problem. We generate synthetic training and testing

data as described in [1], where 𝐷 = 7 and 𝐼 = 4 such that the number of parameters is

4
7
= 16384. We set the SNR to 60, corresponding to 𝜎

2

𝑦
= 6.96×10

−6
.

Fig. 3.7 shows the RMSE and NLL on the testing data for 𝑅𝐰 = 2,4 and 𝑅𝐋 = 2,4 over

time iterations of the TNSRKF. At 𝑡 = 𝑁 , the RMSE is lower for 𝑅𝐰 = 2 and 𝑅𝐋 = 4 than for

𝑅𝐰 = 4 and 𝑅𝐋 = 4. Thus, it seems that a lower value for the mean estimate represents the

data better. Note that although having larger TT-ranks increases the degrees of freedom of

the TT, it may not always improve the accuracy of the approximation, e.g. because higher

TT-ranks can result in overfitting, while lower ranks can have a regularizing effect. The

NLL is the lowest for 𝑅𝐰 = 4 and 𝑅𝐋 = 4, which is close to the NLL for 𝑅𝐰 = 4 and 𝑅𝐋 = 2.

Note that the NLL for the same 𝑅𝐋 is different for the two settings of 𝑅𝐰, because the NLL

also depends on the difference between predicted and actual measurements, thus on the

accuracy of 𝐰̂𝑡 .

This experiment showed that the choice of 𝑅𝐰 and 𝑅𝐋 influences the performance of

the TNSRKF. Since higher values for the ranks also increase the computational complexity,

3

72 TN sqare root Kalman filter for online GP regression

the computational budget will determine the higher limit for the ranks. In addition, an

assumption with lower ranks may be fitting the data better in some cases.

3.6.3 Comparison to TNKF for cascaded tanks benchmark data
set

In this experiment, we compare our method to the TNKF on a nonlinear benchmark for

system identification, the cascaded tanks data set. A detailed description can be found in

[31]. The training and testing data both consist of a data set of 1024 data points each. To

train our GP model, we choose lagged inputs and outputs as input to our GP, as described in

[15], resulting in an input of dimensionality 𝐷 = 14. We use a squared exponential kernel,

which hyperparameters we optimize with the Gaussian process toolbox by [25], and we

choose 𝐼 = 4, such that the model has 𝑀 = 4
14
= 268435456 parameters.

For the comparison to the TNKF, we choose the TT-ranks for themean to be𝑅2 =𝑅14 = 4,

𝑅3 =⋯𝑅13 = 10, and we vary 𝑅𝐋 and the TTm-ranks of the covariance matrix for the TNKF

denoted by 𝑅𝐏. Fig. 3.8 and 3.9 show the RMSE and NLL over the time iterations of the

respective filter. When 𝑅𝐋 = 1 and 𝑅𝐏 = 1, both methods perform almost the same, as

visualized by the overlapping orange and blue lines. When 𝑅
2

𝐋
= 𝑅𝐏 = 4, our method

improves both prediction accuracy and uncertainty estimation compared to the 𝑅𝐋 = 1. On

the contrary, the TNKF diverges and leaves the plotted figure area because the covariance

matrix loses positive definiteness. When 𝑅
2

𝐋
= 𝑅𝐏 = 16, the TNKF shows a similar behavior,

while the TNSRKF results in lower RMSEs but mostly higher NLL values. This setting

shows that higher values for 𝑅𝐋 are not always beneficial for the uncertainty estimation.

Finally, Fig. 3.10 shows the predictions with the TNSRKF on testing data after seeing

100, 200, and 922 data points. Aligned with the plot showing the RMSE and NLL, after 100

data points, the prediction is quite bad and uncertain. After 200 data points, the predictions

are better and more certain and further improve after seeing the entire data set.

3.6 Experiments

3

73

Figure 3.8: RMSE and NLL over iterations for TNKF and TNSRKF for 𝑅𝐋 = 𝑅𝐏 = 1 and 𝑅𝐋 = 2, 𝑅𝐏 = 𝑅𝐋 ⋅ 𝑅𝐋 = 4.

The orange and blue lines mostly overlap because both methods perform similarly for 𝑅𝐋 = 𝑅𝐏 = 1. Also, the

violet curve leaves the plot window because the TNKF diverges.

Figure 3.9: RMSE and NLL over iterations for TNKF and TNSRKF for 𝑅𝐋 = 𝑅𝐏 = 1 and 𝑅𝐋 = 4, 𝑅𝐏 = 𝑅𝐋 ⋅ 𝑅𝐋 = 16.

The orange and blue lines mostly overlap because both methods perform similarly for 𝑅𝐋 = 𝑅𝐏 = 1. Also, the

violet curve leaves the plot window because the TNKF diverges.

3

74 TN sqare root Kalman filter for online GP regression

Figure 3.10: Predictions on test data with uncertainty bounds after seeing (a) 101, (b) 201, and (3) 992 data points

for 𝑅𝐋 = 4. The measurements start at 33 because the memory goes back 32 time steps.

3.7 Conclusion
In this contribution to the thesis, we presented a TT-based solution for online GP regression

in terms of an SRKF. In our experiments, we show that our method is scalable to a high

number of input dimensions at a reasonable computational cost such that all experiments

could be run on a conventional laptop. In addition, we improve the state-of-the-art method

for TN-based Kalman filter: In settings where the TNKF loses positive (semi-)definiteness

and becomes numerically unstable, our method avoids this issue because we compute the

square root covariance factors instead of the covariance matrix. In this way, we can choose

settings for our method that achieve better accuracy than the TNKF.

A future work direction is online hyperparameter optimization. We are looking at a truly

online scenario, so future data is not available. Thus, we cannot swipe over mini-batches

of data multiple times like other methods, e.g. [32], to optimize hyperparameters.

Finally, there is still ongoing research to determine how to choose TT-ranks and TTm-

ranks. In the synthetic experiments, we showed the impact of 𝑅𝐋 and 𝑅𝐰. Generally, the

TT- and TTm-ranks need to be treated as hyperparameters.

References

3

75

References
[1] Kim Batselier. Enforcing symmetry in tensor network MIMO Volterra identification.

IFAC-PapersOnLine, 54(7):469–474, 2021.

[2] Kim Batselier. Low-rank tensor decompositions for nonlinear system identification:

A tutorial with examples. IEEE Control Systems Magazine, 42(1):54–74, 2022.

[3] Kim Batselier, Zhongming Chen, and Ngai Wong. Tensor network alternating linear

scheme for MIMO Volterra system identification. Automatica, 84:26–35, 2017.

[4] Kim Batselier, Zhongming Chen, and Ngai Wong. A tensor network Kalman filter

with an application in recursive MIMO Volterra system identification. Automatica,
84:17–25, 2017.

[5] Kim Batselier, Ching-Yun Ko, and Ngai Wong. Extended Kalman filtering with low-

rank tensor networks for MIMO Volterra system identification. In Proceedings of the
2019 IEEE 58th Conference on Decision and Control (CDC), pages 7148–7153, 2019.

[6] Karl Berntorp. Online Bayesian inference and learning of Gaussian process state–

space models. Automatica, 129:109613, 2021.

[7] Seline J S De Rooij, Kim Batselier, and Borbala Hunyadi. Enabling large-scale prob-

abilistic seizure detection with a tensor-network Kalman filter for LS-SVM. In Pro-
ceedings of the 2023 IEEE International Conference on Acoustics, Speech, and Signal
Processing Workshops (ICASSPW), pages 1–5. IEEE, 2023.

[8] Francis J Doyle, Ronald K Pearson, and Babatunde A Ogunnaike. Identification and
control using Volterra models. Springer, 2002.

[9] Glen Evenbly. TensorTrace: An application to contract tensor networks. arXiv preprint
arXiv:1911.02558, 2019.

[10] Gene H Golub and Charles F Van Loan. Matrix Computations. JHU press, 2013.

[11] Mohinder S Grewal and Angus P Andrews. Kalman filtering: Theory and Practice with
MATLAB. John Wiley & Sons, 2014.

[12] Jouni Hartikainen and Simo Särkkä. Kalman filtering and smoothing solutions to

temporal Gaussian process regression models. In 2010 IEEE International workshop on
machine learning for signal processing, pages 379–384. IEEE, 2010.

[13] Sebastian Holtz, Thorsten Rohwedder, and Reinhold Schneider. The alternating linear

scheme for tensor optimization in the tensor train format. SIAM Journal on Scientific
Computing, 34(2):A683–A713, 2012.

[14] Pavel Izmailov, Alexander Novikov, and Dmitry Kropotov. Scalable Gaussian processes

with billions of inducing inputs via tensor train decomposition. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, pages 726–735. PMLR,

2018.

3

76 TN sqare root Kalman filter for online GP regression

[15] Ridvan Karagoz and Kim Batselier. Nonlinear system identification with regularized

tensor network B-splines. Automatica, 122:109300, 2020.

[16] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455–500, 2009.

[17] Miao Liu, Girish Chowdhary, Bruno Castra da Silva, Shih-Yuan Liu, and Jonathan P

How. Gaussian processes for learning and control: A tutorial with examples. IEEE
Control Systems Magazine, 38(5):53–86, 2018.

[18] Clara Menzen, Manon Kok, and Kim Batselier. Tensor network square root kalman

filter for online gaussian process regression. Automatica, accepted for publication,
2025.

[19] Duy Nguyen-Tuong, Jan R Peters, and Matthias Seeger. Local Gaussian process regres-

sion for real time online model learning. Advances in neural information processing
systems, 21, 2008.

[20] Thomas Nickson, Tom Gunter, Chris Lloyd, Michael A Osborne, and Stephen Roberts.

Blitzkriging: Kronecker-structured stochastic Gaussian processes. arXiv preprint
arXiv:1510.07965, 2015.

[21] Ivan V Oseledets. Approximation of 2D x 2D matrices using tensor decomposition.

SIAM Journal on Matrix Analysis and Applications, 31(4):2130–2145, 2010.

[22] Ivan V Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing,
33(5):2295–2317, 2011.

[23] Joaquin Quinonero-Candela and Carl E Rasmussen. A unifying view of sparse ap-

proximate Gaussian process regression. The Journal of Machine Learning Research,
6:1939–1959, 2005.

[24] Ananth Ranganathan, Ming-Hsuan Yang, and Jeffrey Ho. Online sparse Gaussian pro-

cess regression and its applications. IEEE Transactions on Image Processing, 20(2):391–
404, 2010.

[25] Carl E Rasmussen and Christopher K I Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

[26] Thorsten Rohwedder and André Uschmajew. On local convergence of alternating

schemes for optimization of convex problems in the tensor train format. SIAM Journal
on Numerical Analysis, 51(2):1134–1162, 2013.

[27] Simo Särkkä, Arno Solin, and Jouni Hartikainen. Spatiotemporal learning via infinite-

dimensional Bayesian filtering and smoothing: A look at Gaussian process regression

through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61, 2013.

[28] Simo Särkkä and Lennart Svensson. Bayesian Filtering and Smoothing, volume 17.

Cambridge university press, 2023.

References

3

77

[29] Jonathan Schmidt, Philipp Hennig, Jörg Nick, and Filip Tronarp. The rank-reduced

Kalman filter: Approximate dynamical-low-rank filtering in high dimensions. Ad-
vances in Neural Information Processing Systems, 36:61364–61376, 2023.

[30] Ulrich Schollwöck. The density-matrix renormalization group in the age of matrix

product states. Annals of Physics, 326(1):96–192, 2011.

[31] Maarten Schoukens and Jean-Philippe Noël. Three benchmarks addressing open

challenges in nonlinear system identification. IFAC-PapersOnLine, 50(1):446–451,
2017.

[32] Manuel Schürch, Dario Azzimonti, Alessio Benavoli, and Marco Zaffalon. Recursive

estimation for sparse Gaussian process regression. Automatica, 120:109127, 2020.

[33] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B Schön, and Simo Särkkä.

Modeling and interpolation of the ambient magnetic field by Gaussian processes. IEEE
Transactions on robotics, 34(4):1112–1127, 2018.

[34] Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank Gaussian

process regression. Statistics and Computing, 30:419–446, 2020.

[35] Samuel Stanton, Wesley J Maddox, Ian Delbridge, and Andrew G Wilson. Kernel

interpolation for scalable online Gaussian processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pages 3133–3141. PMLR, 2021.

[36] Andreas Svensson and Thomas B Schön. A flexible state–space model for learning

nonlinear dynamical systems. Automatica, 80:189–199, 2017.

[37] Ledyard R Tucker. Some Mathematical Notes on Three-Mode Factor Analysis. Psy-
chometrika, 31(3):279–311, 1966.

[38] Frida Viset, Rudy Helmons, and Manon Kok. An extended Kalman filter for magnetic

field SLAM using Gaussian process regression. Sensors, 22(8):2833, 2022.

[39] Frederiek Wesel and Kim Batselier. Large-scale learning with Fourier features and

tensor decompositions. Advances in Neural Information Processing Systems, 34, 2021.

[40] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured

Gaussian processes (KISS-GP). In Proceedings of the International conference onmachine
learning, pages 1775–1784. PMLR, 2015.

4
Large-scale magnetic field

maps using structured
kernel interpolation for

Gaussian process regression

We present a mapping algorithm to compute large-scale magnetic field maps in indoor environ-
ments with approximate Gaussian process (GP) regression. Mapping the spatial variations in
the ambient magnetic field can be used for localization algorithms in indoor areas. To compute
such a map, GP regression is a suitable tool because it provides predictions of the magnetic
field at new locations along with uncertainty quantification. Because full GP regression has
a complexity that grows cubically with the number of data points, approximations for GPs
have been extensively studied. In this contribution to the thesis, we build on the structured
kernel interpolation (SKI) framework, speeding up inference by exploiting efficient Krylov
subspace methods. More specifically, we incorporate SKI with derivatives (D-SKI) into the
scalar potential model for magnetic field modeling and compute both predictive mean and
covariance with a complexity that is linear in the data points. In our simulations, we show that
our method achieves better accuracy than current state-of-the-art methods on magnetic field
maps with a growing mapping area. In our large-scale experiments, we construct magnetic
field maps from up to 𝟒𝟎𝟎𝟎𝟎 three-dimensional magnetic field measurements in less than two
minutes on a standard laptop.

This chapter is based on � Clara Menzen, Marnix Fetter, Manon Kok (2023) Large-scale magnetic field maps using

structured kernel interpolation for Gaussian process regression, Proceedings of the 26th International Conference

on Information Fusion (FUSION) (pp. 1-7), IEEE. [14].

4.1 Introduction

4

81

4.1 Introduction
Indoor positioning and navigation in indoor environments is an active and challenging

field of research, see e.g. [39, 40]. Since the global positioning system (GPS) does not work

properly indoors, existing technologies rely on e.g. WLAN [8] or ultra-wideband [2]. In

recent years, a novel and promising approach uses the spatial anomalies of the ambient

magnetic field that is present indoors, see e.g. [3, 4, 7, 10, 21, 28, 29]. Probabilistic algorithms

for indoor localization with magnetic field measurements use e.g. an extended Kalman

filter [31] or a particle filter [26] in combination with Gaussian process (GP) regression.

The motivation to use GPs [20] is the fact that they can be used to construct a magnetic

field map from measurements providing a mean and uncertainty information which are

both crucial for probabilistic localization algorithms. However, full GP regression becomes

intractable for a large number of data points 𝑁 , so existing approaches for magnetic

field mapping have downsampled the data [29], made maps only using data close to a

position of interest [16] or have approximated the GP kernel in terms of a number of basis

functions [25]. Each of these methods has downsides, which can impact the accuracy of

the map: The first two methods do not use all the data and the latter relies on a sufficient

number of basis functions 𝑀bf to achieve a good approximation of the kernel function

[25]. Inspired by the fact that the literature about approximate GPs offers numerous

other approaches for large-scale GPs that overcome the aforementioned limitations, in this

contribution to the thesis, we build on the SKI framework by [35] to construct magnetic

field maps. In the SKI framework, the measurements are observed through 𝑀ind inducing

variables, where the inducing inputs are placed on a Cartesian grid. The structure of the

inducing inputs naturally enables Kronecker structure in the corresponding kernel matrix,

as well as structured kernel interpolation (SKI), i.e. approximation of kernel matrices by

interpolation. Exploiting Kronecker algebra and the sparsity of the interpolation matrices

in Krylov subspace methods, we can compute magnetic field maps in an efficient way.

This allows us to compute large-scale magnetic field maps as illustrated in Fig. 4.1 that are

computationally unfeasible for full GP regression on a regular laptop. To construct the map,

we use magnetometer data in combination with positions and orientations that are assumed

to be known. Based on previous work by e.g. [11, 24], we model the magnetic field with the

scalar potential model that allows for incorporating physical knowledge into the GP prior.

In this framework, we use SKI with derivatives (D-SKI) [5] to compute the predictive means

with conjugate gradients. For the predictive variance, we adapt the LanczOs Variance

Estimates (LOVE) algorithm [18] to the D-SKI framework. The associated computational

complexity is((𝐽 +2𝑇)(3𝑁 +𝑀ind(𝑀
(1)

ind
+𝑀

(2)

ind
+𝑀

(3)

ind
))), where 𝐽 and 𝑇 are chosen based

on the desired accuracy of the conjugate gradient and Lanczos tridiagonalization algorithm,

respectively, and 𝑀
(𝑑)

ind
is the number of inducing inputs in the 𝑑th dimension.

4

82 Large-scale magnetic field maps using SKI for GP regression

Figure 4.1: Magnitude of the magnetic field computed by constructing a map from 21 931 measurements, where

darker regions correspond to a higher magnitude. The red line is the walking path, along which measurements

are collected.

4.2 Problem formulation
We are interested in constructing large-scale magnetic field maps with GP regression.

Similar to [24, 33], we assume the magnetic field to be curl-free and model the magnetic

field measurements as the derivatives of a scalar potential 𝜑 on which we put a GP prior.

Given 𝑛 = 1,…,𝑁 3D positions 𝐩 at which magnetic field measurements have been collected,

the GP model is given by

𝜑(𝐩) ∼  (0,𝜅(𝐩,𝐩
′
)) ,

𝐲𝑛 = −∇𝜑(𝐩𝑛)+𝝐𝑛, 𝝐𝑛 ∼ (𝟎,𝜎
2

𝐲
𝐈3),

(4.1)

where 𝐲𝑛 ∈ ℝ
3
contains the 𝑥-, 𝑦- and 𝑧- component of the magnetic field measurement,

𝜅 is the kernel function, and 𝜎
2

𝐲
is the noise variance. We choose the kernel to be the

squared exponential kernel, as in related literature, see e.g. [1, 12, 13, 29, 30]. The squared

exponential kernel is given by

𝜅(𝐩,𝐩
′
) = 𝜎

2

𝐟
exp

(
−

‖𝐩−𝐩
′
‖2

2𝓁
2)

, (4.2)

where 𝜎
2

𝐟
and 𝓁 are the hyperparameters of the kernel, the signal variance, and the length

scale.

Although we measure the Earth’s magnetic field together with anomalies, we choose

to only model the anomalies, because this model choice fits better into our approximation

scheme. When also considering the local magnetic field as e.g. in [32], the kernel includes

a linear term as well.

As the gradient operator is a linear operator given the linearity of differentiation [23],

the predictive distribution of the three components of the magnetic field in a new location

𝐩∗ can be expressed in terms of a mean and a variance of 𝐟∗ given by

𝔼[𝐟∗] = 𝜕
2
(𝐊∗,𝐟)(𝜕

2
(𝐊𝐟,𝐟)+𝜎

2

𝐲
𝐈3𝑁)

−1

vec(𝐘
⊤

) ,

𝕍[𝐟∗] = 𝜕
2
(𝐊∗,∗) −𝜕

2
(𝐊∗,𝐟)(𝜕

2
(𝐊𝐟,𝐟)+𝜎

2

𝐲
𝐈3𝑁)

−1

𝜕
2
(𝐊𝐟,∗),

(4.3)

4.3 SKI framework

4

83

where𝐘 = [𝐲
⊤

1
𝐲
⊤

2
⋯𝐲

⊤

𝑁
] ∈ ℝ

𝑁×3
are all magnetic fieldmeasurements. The entries of 𝜕

2
(𝐊𝐟,𝐟),

𝜕
2
(𝐊∗,𝐟) and 𝜕

2
(𝐊∗,∗) are computed block-wise in terms of 3×3 blocks for each pair of posi-

tions with ∇𝐩𝜅(𝐩,𝐩
′
)∇

⊤

𝐩
′ , ∇𝐩𝜅(𝐩,𝐩∗)∇

⊤

𝐩∗
and ∇𝐩∗𝜅(𝐩∗,𝐩

′

∗
)∇

⊤

𝐩
′

∗

, respectively, where ∇ denotes

the gradient that is taken w.r.t. to the vector specified in the subscript.

With (4.3) it is possible to predict the magnetic field in new locations. In practice,

however, this is only possible for a small number of data points, since full GP regression

generally scales cubically with 𝑁 . In this case it even scales cubically with 3𝑁 , because

of the 3 derivatives. In this contribution to the thesis, we build on the SKI framework,

described in the next section, to make large-scale magnetic field maps in an efficient way.

4.3 SKI framework
The SKI framework is based on sparse approximations for GP regression, using a set of𝑀ind

inducing inputs 𝐱𝐮 ∈ ℝ
𝐷
. In the context of magnetic field modeling, the inducing inputs

are positions in ℝ
3
. Based on the Nyström approximation [34] of the kernel, the simplest

formulation of the inducing input approach is the subset of regressors (SoR), which can

be implemented similarly to the predictive distribution for full GP regression using an

approximation to the kernel function [19], given by

𝜅SoR(𝐱,𝐱
′
) = 𝜅(𝐱,𝐱𝐮)𝐊

−1

𝐮,𝐮
𝜅(𝐱𝐮,𝐱

′
), (4.4)

where 𝐊𝐮,𝐮 denotes the covariance matrix of all the inducing inputs. The approximated

kernel function results in new kernel matrices, which are then given by

𝐊𝐟,𝐟 = 𝐊𝐟,𝐮𝐊
−1

𝐮,𝐮
𝐊𝐮,𝐟 , (4.5a)

𝐊∗,∗ = 𝐊∗,𝐮𝐊
−1

𝐮,𝐮
𝐊𝐮,∗, (4.5b)

𝐊∗,𝐟 = 𝐊∗,𝐮𝐊
−1

𝐮,𝐮
𝐊𝐮,𝐟 . (4.5c)

In the SKI framework [35], the inducing inputs are placed on a Cartesian grid, which is

equispaced per dimension and of size𝑀
(1)

ind
×𝑀

(2)

ind
×⋯×𝑀

(𝐷)

ind
, for a total of𝑀ind =∏

𝐷

𝑑=1
𝑀

(𝑑)

ind

inducing inputs.

Consequently, product kernels - here the squared exponential kernel is considered -

decompose over the input dimensions. Thus, 𝐊𝐮,𝐮 can be expressed as a Kronecker product

of 𝐷 matrices [22, 35], given by

𝐊𝐮,𝐮 =

𝐷

⨂

𝑑=1

𝐊
(𝑑)

𝐮,𝐮
, (4.6)

where 𝐊
(𝑑)

𝐮,𝐮 is computed with a squared exponential kernel having a scaled signal variance

𝜎
2/𝐷

𝐟
[22].

In addition, in the SKI framework, the cross-covariance matrices 𝐊𝐟,𝐮 and 𝐊∗,𝐮 are

approximated using sparse interpolation matrices, 𝐖𝐟 ∈ 𝐑
𝑁×𝑀

and 𝐖∗ ∈ 𝐑
𝑁∗×𝑀

, such that

𝐊𝐟,𝐮 ≈𝐖𝐟𝐊𝐮,𝐮 and 𝐊∗,𝐮 ≈𝐖∗𝐊𝐮,𝐮. (4.7)

Each row of the interpolation matrices contains 4
𝐷
interpolation weights for cubic interpo-

lation [9] which is suggested in [35].

4

84 Large-scale magnetic field maps using SKI for GP regression

4.4 Large-scale magnetic field maps
Our goal is to compute magnetic field maps in 3D using magnetic field measurements as

training data. In order to be able to use large data sets, we exploit mathematical formulations

in the SKI framework adapted to magnetic field modeling to compute predictive means and

variances in an efficient way. As the predictive distribution of the scalar potential model

in (4.3) is based on the derivatives of the magnetic scalar potential, we approximate the

elementwise computation 𝜕
2
(⋅) of the kernel matrices with D-SKI [5]. Using D-SKI, 𝜕

2
(⋅)

can be simplified through differentiation of the interpolation scheme, such that it is

𝜕
2
(𝐊𝐟,𝐟) ≈ (𝜕𝐖𝐟)𝐊𝐮,𝐮 (𝜕𝐖𝐟)

⊤
, (4.8a)

𝜕
2
(𝐊∗,𝐟) ≈ (𝜕𝐖∗)𝐊𝐮,𝐮 (𝜕𝐖𝐟)

⊤
, (4.8b)

where 𝜕𝐖𝐟 ∈ 𝐑
3𝑁×𝑀

ind and 𝜕𝐖∗ ∈ 𝐑
3𝑁∗×𝑀ind . Note that the first size of the interpolation

matrices is multiplied by a factor of 3 compared to (4.7) due to the three components of the

magnetic field. As mentioned in the previous section, in SKI a cubic interpolation is advised

[35], while in D-SKI a quintic interpolation scheme is used [5]. We use a cubic interpolation

scheme for D-SKI, since preliminary experiments show that the approximation is sufficient

for our application.

The predictive distribution in a new location 𝐩∗ ∈ ℝ
3
of the scalar potential model for

magnetic field modeling using D-SKI is given by

𝔼[𝐟∗] = (𝜕𝐖∗)𝐊𝐮,𝐮(𝜕𝐖𝐟)
⊤
𝐀
−1
vec(𝐘

⊤

) (4.9a)

𝕍[𝐟∗] = (𝜕𝐖∗) 𝐊𝐮,𝐮 (𝜕𝐖∗)
⊤
−(𝜕𝐖∗) 𝐂 (𝜕𝐖∗)

⊤
(4.9b)

The matrices 𝐀 and 𝐂 only depend on the training data and are defined as

𝐀 ∶= (𝜕𝐖𝐟)𝐊𝐮,𝐮 (𝜕𝐖𝐟)
⊤
+𝜎

2

𝐲
𝐈3𝑁 , (4.10a)

𝐂 ∶= 𝐊𝐮,𝐮 (𝜕𝐖𝐟)
⊤
𝐀
−1
(𝜕𝐖𝐟)𝐊𝐮,𝐮. (4.10b)

A naive computation of the predictive mean and variance with (4.9a) and (4.9b) would

require an inverse of a 3𝑁 ×3𝑁 matrix. Inducing inputs on a grid and kernel interpolation,

however, enable efficient computations via Krylov subspace methods. The key to efficient

computation is not to construct the matrices involved in (4.9a) and (4.9b) explicitly but

to keep them in terms of a factorized format of 3 smaller matrices, one for each input

dimension. Based on [5], we use preconditioned conjugate gradient to find the solution 𝜶

to the linear system given by

𝐀 𝜶 = vec(𝐘
⊤
). (4.11)

While in D-SKI fast matrix-vector-multiplications (MVMs) are computed via FFT, we

compute them like in [35] via Kronecker MVMs as described in [36]. In this way, the

predictive mean of a 3D map is computed with a computational complexity of


(

𝐽

(

3𝑁 +𝑀ind

3

∑

𝑑=1

𝑀
(𝑑)

ind
))

= ind, (4.12)

where 𝐽 is the number of iterations in the conjugate gradient. To compute the predictive

variance of the magnetic field map, we build on the LanczOs Variance Estimates approach

4.5 Experiments

4

85

by [18], which is based on the Lanczos tridiagonalization algorithm. We use the LanczOs

Variance Estimates within the D-SKI framework to find a low-rank approximation for 𝐀

given by

𝐀 ≈ 𝐐𝑇𝐓𝑇𝐐
⊤

𝑇
, (4.13)

where 𝐐𝑇 ∈ ℝ
3𝑁×𝑇

contains 𝑇 orthonormal vectors corresponding to the first 𝑇 leading

eigenvalues and 𝐓𝑇 ∈ ℝ
𝑇×𝑇

has a tridiagonal structure [6]. Once an approximation of 𝐀 is

found, 𝐂 from (4.10b) can be computed as

𝐂 = 𝐊𝐮,𝐮(𝜕𝐖𝐟)
⊤
𝐀
−1
(𝜕𝐖𝐟)𝐊𝐮,𝐮

≈ 𝐊𝐮,𝐮(𝜕𝐖𝐟)
⊤
𝐐𝑇𝐓

−1

𝑇
𝐐
⊤

𝑇
(𝜕𝐖𝐟)𝐊𝐮,𝐮.

(4.14)

As described in [18], we again exploit Kronecker algebra to compute the MVMs in (4.14)

efficiently. The computation of𝐂 has an associated computational complexity of(2𝑇 (3𝑁 +

𝑀ind(𝑀
(1)

ind
+𝑀

(2)

ind
+𝑀

(3)

ind
))) for magnetic field modeling [18]. In numerical implementations,

the complexity is higher due to the full reorthogonalization required for the Lanczos

tridiagonalization algorithm, scaling linearly with the number of training points 𝑁 and

Lanczos iterations 𝑇 .

Alternatively, the predictive variance could also be computed using conjugate gradient.

However, computing 𝐂 by solving a linear system to find 𝐀
−1
(𝜕𝐖𝐟)𝐊𝐮,𝐮 needs to be done

for each column of (𝜕𝐖𝐟)𝐊𝐮,𝐮 sequentially, which is not particularly efficient. In [37],

the variance is stochastically estimated by drawing samples from the predictive distribu-

tions [17]. While this approach can reduce the computational complexity associated with

the computation of the predictive variances, it introduces significant accuracy losses.

Once 𝜶 and 𝐂 are computed, predictions in new locations can be computed with (4.9a)

and (4.9b) again by exploiting Kronecker algebra and the structure of the interpolation

matrices.

4.5 Experiments
In our experiments, we first compare our method to existing ones in simulations with

synthetic data, then show our method’s scalability with large-scale magnetometer data

collected with a motion capture suit. All computations are done on a 2016 HP ZBook Studio

G3 laptop (Intel Core i7 @ 2.60 GHz, 8GB RAM).

4.5.1 Accuracy analysis for growing mapping area
In the first simulation, we compare the accuracy of magnetic field maps computed with

our and existing methods. For this, we create a synthetic data set of 6000 data points,

representing a magnetic field map. Each input is a random 3D vector lying in a box

confined by [−20, 20] × [−20, 20] × [0.01, 0.01] and the corresponding output is sampled

from a GP prior with a curl-free kernel with hyperparameters, length scale, signal variance,

and noise variance, [𝓁, 𝜎
2

𝐟
, 𝜎

2

𝐲
] = [2, 1, 0.01] which is equivalent to drawing samples from

model (4.1) [32].

We compute two maps with different sizes: area 1 of size 20 × 20 and area 2 of size

40 × 40. For area 1, a subset of the 6000 data points is used, laying in the white square

shown in Fig. 4.2, and for area 2, all data is used. We divide the data points in each area

4

86 Large-scale magnetic field maps using SKI for GP regression

Figure 4.2: Synthetic data with white and black squares denoting area 1 of size 20×20 (𝑁 ≈ 1526) and area 2 of

size 40 × 40 (𝑁 = 6000). The scattered dots are data points and the color corresponds to the magnitude of the

magnetic field.

into 80% training data and 20% testing data. With the testing data, we compute root mean

square errors (RMSEs) as a metric for accuracy.

We compare our method to a GP where we downsample the data, as well as to the basis

function approach by [25], showing how the area size impacts the accuracy of the map for

different 𝑀ind, 𝑁dwn and 𝑀bf in the respective methods. Since the domain on which basis

functions are computed needs to be a bit bigger than the mapping area [25], we add twice

the length scale in each dimension.

To be able to compare all methods, we compute the computational complexity of our

method ind as defined in (4.12), and impose this complexity as the computational budget

for the other methods. The complexity of the approach of downsampling the data is equal

to the cubic complexity of full GP. The complexity of the basis function approach is linear

in the number of data points and quadratic in the number of basis functions. By equating

the complexities

ind = (𝑀2

bf
3𝑁) = (𝑁 3

dwn
), (4.15)

and solving for 𝑀bf and 𝑁dwn, those numbers can be used in the corresponding methods.

For each of the two area sizes, we have six different settings, where we vary the

number of inducing inputs, i.e., 𝑀
(1)

ind
= 𝑀

(2)

ind
= [10, 20, 40, 80, 100, 200] and 𝑀

(3)

ind
= 5. The

number of iterations in the conjugate gradient, 𝐽 , is based on the tolerance for accuracy.

Table 4.1 summarizes all settings used in the simulations. The first two rows are the total

number of inducing inputs 𝑀ind and the other rows are the number of basis functions and

downsampled data points that result from the imposed computational budget ind. We

run the simulation 100 times, where each time new data is sampled. An example of the

data is illustrated in Fig. 4.2.

Fig. 4.3 shows the RMSEs on the testing data computed with the three methods for

area 1 (solid line) and area 2 (dash-dotted line). The mean and standard deviation of the

RMSE from 100 runs are plotted. The horizontal axis denotes the 6 different settings as

described in Table 4.1. The mean RMSE of the full GP is given for area 2 as a reference

(dashed black line), for area 1 the RMSE is very similar and therefore not shown. The

4.5 Experiments

4

87

figure shows that for each method, the RMSEs are larger for the 40×40 area than for the

20×20 area. This implies that a larger 𝑀ind, 𝑁dwn, and 𝑀bf are required for a larger area

to achieve low RMSE. Also, all methods converge to the RMSE of the full GP in the limit.

Comparing our methods to the other two, for both areas our method has lower RMSEs. In

addition, the difference in RMSEs between our methods and the other methods is more

significant for the larger area. The main takeaway of this simulation is that our method has

better accuracy than the other methods when the computational budget ind is imposed

for all methods. It follows that the computational cost to compute a map of a specified

accuracy is lower for our approach compared to the others. Especially when computing

large-scale maps, this becomes important: Since the number of basis functions needed to

approximate the kernel function sufficiently is known to scale with the domain size [25], a

trade-off between accuracy and computational cost needs to be made. A similar trade-off

is necessary for downsampling the data, because more data points are required for larger

areas.

1 2 3 4 5 6

0

0.05

0.1

0.15

0.2

0.25

Settings

R
M
S
E

our method

basis functions

downsampled

full GP

Figure 4.3: RMSE for area 1 (solid line) and 2 (dash-dotted line). For reference, the RMSE of full GP is given for

area 2 only, because the other value is very similar. The horizontal axis are the six different settings described in

Table 4.1. Mean and standard deviation are plotted for 100 runs of the simulation.

4.5.2 Analysis of maps with divided mapping area
As mentioned in the previous section, the basis function approach requires a large number

of basis functions for growing mapping areas. To lower the computational complexity, an

alternative approach for computing large-scale maps with basis functions is dividing the

area into smaller areas for each of which a GP approximation with basis functions is made

[11]. To train each smaller map, not only training data from the mapping area is used, but

also training data in close proximity to that area. In a second simulation, we show that this

strategy may result in inconsistencies at boundaries. We use synthetic data sampled from a

GP prior with a curl-free kernel and with hyperparameters [𝓁, 𝜎
2

𝐟
, 𝜎

2

𝐲
] = [5, 1, 0.01], divide

4

88 Large-scale magnetic field maps using SKI for GP regression

Table 4.1: 𝑀ind,𝑀bf and 𝑁dwn used in the 6 settings of the simulation. The first and second rows for basis function

approach and downsampled data are the values for the area 1 and 2, respectively. Value ranges for 100 simulations.

Setting 1 2 3 4 5 6

𝑀ind

Area 1 500 2K 8K 32K 50K 200K

Area 2 500 2K 8K 32K 50K 200K

𝑀bf

Area 1 35 - 36 97 - 98 262 - 266 726 - 738 1012 - 1027 2843 - 2887

Area 2 15 - 16 57 - 58 152 - 153 420 - 422 584 - 587 1635 - 1646

𝑁dwn

Area 1 55 - 56 107 - 108 208 - 210 411 - 415 512 - 518 1020 - 1030

Area 2 49 - 50 120 - 121 231 - 232 455 - 457 567 - 569 1126 - 1131

Figure 4.4: Magnetic field data (a). Predictions with our method for the whole area (b). Predictions with basis

functions in smaller areas separately using an overlap of 0, 0.1𝓁, and 0.3𝓁 for the training data, respectively (c)-(e).

the data into four regions and downsample the data by different factors in every region,

as shown in Fig. 4.4 (a). The reason for it is to analyze how the amount of data points

in a neighboring area influences the inconsistencies at the boundaries. For training each

map, we use data points in each area as well as data from an overlap of size 0𝓁,0.1𝓁,0.3𝓁

to the neighboring areas. The domain on which we compute basis functions is then the

size of the mapping area plus the overlap plus twice the length scale. The result of the

reconstruction is shown in Fig. 4.4 (c)-(e). The figure shows that for no overlap, there

are visible inconsistencies in the mean on the magnetic field prediction. For 0.1𝓁 and 0.3𝓁,

the inconsistencies are smaller but still present. In addition, the inconsistencies are more

visible at the boundaries of areas with fewer data. As a comparison, a map reconstructed

with our method is shown in Fig. 4.4 (b), where the mapping area is not divided.

4.5.3 Large-scale map in university building
For our experiments, we use data collected with a motion capture suit (Xsens MVN Link

[15]). The suit contains 17 inertial measurement units (IMUs) equippedwithmagnetometers

tightly attached to segments all over the body. The IMUs provide accelerometer, gyroscope,

and magnetometer data with position and orientation data in the navigation frame at a

maximum sample rate of 240Hz. The magnetometers have been calibrated using software

available with the suit, such that after calibration the norm of the undisturbed Earth’s

magnetic field is 1 [38]. In a pre-processing step, the data is first rotated to the global

frame defined by the magnetic North pole, and second, the mean is subtracted from the

𝑥-, 𝑦-, and 𝑧-component, since we only model the anomalies of the magnetic field. We

use the data collected from one IMU that is located at the pelvis. In the first large-scale

4.6 Conclusion

4

89

Figure 4.5: Magnetic field maps for a smaller region of map in Fig. 4.1, located on the left part of the hallway. In

the 𝑧-components, the lockers are strongly visible, indicating that the metal in the lockers mainly disturbs the

magnetic field in that direction. Transparency indicates the certainty of the prediction.

experiment, the magnetic field of one of the university hallway wings at the TU Delft

is computed based on 𝑁 = 21931 magnetic field measurements. The area of interest for

this experiment is a rectangle bounded by [−34m,34m] × [−5.25m,5.25m] located at a

height of approximately 1m. The magnetic field is estimated with our method using an

inducing point grid of size 400×40×4, for a total of 64000 inducing points. The number

of inducing points per dimension is chosen such that several inducing points are present

per characteristic length scale. The hyperparameters are trained on a subset of the data

by minimizing the log marginal likelihood with the curl-free kernel, resulting in 𝓁 = 0.5m,

𝜎𝐟 = 0.2 and 𝜎𝐲 = 0.01. Fig. 4.1 shows the magnitude of the magnetic field predictions,

computed from the three components. Darker regions in the figure correspond to a higher

magnitude of the magnetic field. Since there are metallic lockers located in the hallway,

we expected a strong magnetic anomaly, which is visible in the figure. Fig. 4.5 shows a

smaller section of the magnetic field map, in terms of its magnitude, as well as its 𝑥-, 𝑦-

and 𝑧-component. The magnetic disturbance caused by the lockers is mostly visible in the

𝑧-components, as shown in the upper right part of Fig. 4.5 (d). The transparency in the

figure indicates the certainty of the map.

Regarding computational time, computing the map with 21931 measurements took

approximately 1min for training and 18s for testing. In a second experiment with 41383

data points, the training took approximately 97s for training and 18s for testing. While

with full GP the map would not be feasible to compute on our laptop, our method scales

very well: The computing time approximately only doubling when doubling the data points,

thus is approximately linear in 𝑁 .

4.6 Conclusion
In this contribution to the thesis, we described an algorithm to efficiently compute large-

scale magnetic field maps using approximate Gaussian process regression. We used induc-

ing inputs on a grid and structured kernel interpolation with derivative to compute the

predictive mean and an algorithm based on Lanczos tridiagonalization to compute variance

estimates. We compared our method to existing methods in simulations and showed its

scalability in large-scale experiments. There are multiple directions for future work. The

kernel in the scalar potential model can be complemented by a linear kernel as in [24, 33]

in order to also model the underlying Earth’s magnetic field. The linear kernel, however,

is not a product kernel and can thus not be decomposed as a Kronecker product. When

4

90 Large-scale magnetic field maps using SKI for GP regression

using the equivalent curl-free model instead, the kernel consists of a constant term and a

curl-free kernel [32], where the constant term can again be decomposed as a Kronecker

product. In this way, a model considering both the Earth’s magnetic field and the spatial

anomalies can be used in the D-SKI framework. In addition, the presented method can be

extended to online mapping to enable its use in e.g. simultaneous localization and mapping

(SLAM) algorithms. The SKI framework for online GPs has been described in [27] and can

be adapted to magnetic field mapping.

Acknowledgment
We would like to thank Fabian Girrbach from Movella Technologies for post-processing

data collected with the motion capture suit.

References

4

91

References
[1] Naoki Akai and Koichi Ozaki. Gaussian processes for magnetic map-based localization

in large-scale indoor environments. In Proceedings of the 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4459–4464. IEEE, 2015.

[2] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Alnafessah,

Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa. Ultra wideband

indoor positioning technologies: Analysis and recent advances. Sensors, 16(5):707,
2016.

[3] Gennadii Berkovich, Dmitry Churikov, Jacques Georgy, and Chris Goodall. Coursa

venue: Indoor navigation platform using fusion of inertial sensors with magnetic

and radio fingerprinting. In Proceedings of the 2019 22th International Conference on
Information Fusion (FUSION), pages 1–6. IEEE, 2019.

[4] Jaewoo Chung, Matt Donahoe, Chris Schmandt, Ig-Jae Kim, Pedram Razavai, and

Micaela Wiseman. Indoor location sensing using geo-magnetism. In Proceedings of
the 9th International Conference on Mobile Systems, Applications, and Services, pages
141–154, 2011.

[5] David Eriksson, Kun Dong, Eric Lee, David Bindel, and Andrew G Wilson. Scal-

ing Gaussian process regression with derivatives. Advances in neural information
processing systems, 31, 2018.

[6] Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.

[7] Janne Haverinen and Anssi Kemppainen. Global indoor self-localization based on the

ambient magnetic field. Robotics and Autonomous Systems, 57(10):1028–1035, 2009.

[8] Suining He and Shueng-Han G Chan. Wi-Fi fingerprint-based indoor positioning: Re-

cent advances and comparisons. IEEE Communications Surveys & Tutorials, 18(1):466–
490, 2015.

[9] Robert Keys. Cubic convolution interpolation for digital image processing. IEEE
transactions on acoustics, speech, and signal processing, 29(6):1153–1160, 1981.

[10] Seong-Eun Kim, Yong Kim, Jihyun Yoon, and Eung Sun Kim. Indoor positioning

system using geomagnetic anomalies for smartphones. In Proceedings of the 2012
International Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–5.
IEEE, 2012.

[11] Manon Kok and Arno Solin. Scalable magnetic field SLAM in 3D using Gaussian

process maps. In Proceedings of the 2018 21st international conference on information
fusion (FUSION), pages 1353–1360. IEEE, 2018.

[12] Taylor N Lee and Aaron J Canciani. MagSLAM: Aerial simultaneous localization and

mapping using Earth’s magnetic anomaly field. Navigation, 67(1):95–107, 2020.

4

92 Large-scale magnetic field maps using SKI for GP regression

[13] Yuqi Li, Zhe He, John Nielsen, and Gérard Lachapelle. Using Wi-Fi/magnetometers

for indoor location and personal navigation. In Proceedings of the 2015 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pages 1–7. IEEE, 2015.

[14] Clara Menzen, Marnix Fetter, and Manon Kok. Large-scale magnetic field maps using

structured kernel interpolation for gaussian process regression. In Proceedings of the
2023 26th International Conference on Information Fusion (FUSION), pages 1–7. IEEE,
2023.

[15] Movella Inc. MVN Link. [Online; accessed March, 2023],

https://www.movella.com/products/motion-capture/xsens-mvn-link.

[16] Duy Nguyen-Tuong, Jan Peters, and Matthias Seeger. Local Gaussian process regres-

sion for real-time online model learning. Advances in neural information processing
systems, 21, 2008.

[17] George Papandreou and Alan L Yuille. Efficient variational inference in large-scale

Bayesian compressed sensing. In Proceedings of the 2011 IEEE International Conference
on Computer Vision Workshops (ICCV Workshops), pages 1332–1339. IEEE, 2011.

[18] Geoff Pleiss, Jacob Gardner, Kilian Weinberger, and Andrew GWilson. Constant-time

predictive distributions for Gaussian processes. In Proceedings of the International
Conference on Machine Learning, pages 4114–4123. PMLR, 2018.

[19] Joaquin Quinonero-Candela and Carl E Rasmussen. A unifying view of sparse ap-

proximate Gaussian process regression. The Journal of Machine Learning Research,
6:1939–1959, 2005.

[20] Carl E Rasmussen and Hannes Nickisch. Gaussian processes for machine learning

(GPML) toolbox. The Journal of Machine Learning Research, 11:3011–3015, 2010.

[21] Patrick Robertson, Martin Frassl, Michael Angermann, Marek Doniec, Brian J Julian,

Maria Garcia Puyol, Mohammed Khider, Michael Lichtenstern, and Luigi Bruno. Si-

multaneous localization and mapping for pedestrians using distortions of the local

magnetic field intensity in large indoor environments. In Proceedings of the Inter-
national Conference on Indoor Positioning and Indoor Navigation, pages 1–10. IEEE,
2013.

[22] Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis,

University of Cambridge, 2012.

[23] Simo Särkkä. Linear operators and stochastic partial differential equations in Gaussian

process regression. In Proceedings of the International Conference on Artificial Neural
Networks, pages 151–158. Springer, 2011.

[24] Arno Solin, Manon Kok, Niklas Wahlström, Thomas B Schön, and Simo Särkkä.

Modeling and interpolation of the ambient magnetic field by Gaussian processes. IEEE
Transactions on Robotics, 34(4):1112–1127, 2018.

References

4

93

[25] Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank Gaussian

process regression. Statistics and Computing, 30(2):419–446, 2020.

[26] Arno Solin, Simo Särkkä, Juho Kannala, and Esa Rahtu. Terrain navigation in the

magnetic landscape: Particle filtering for indoor positioning. In Proceedings of the
2016 European Navigation Conference (ENC), pages 1–9. IEEE, 2016.

[27] Samuel Stanton, Wesley Maddox, Ian Delbridge, and Andrew G Wilson. Kernel

interpolation for scalable online Gaussian processes. In Proceedings of the International
Conference on Artificial Intelligence and Statistics, pages 3133–3141. PMLR, 2021.

[28] Joaquín Torres-Sospedra, David Rambla, Raul Montoliu, Oscar Belmonte, and Joaquín

Huerta. Ujiindoorloc-mag: A new database for magnetic field-based localization

problems. In Proceedings of the 2015 International Conference on Indoor Positioning
and Indoor Navigation (IPIN), pages 1–10. IEEE, 2015.

[29] Ilari Vallivaara, Janne Haverinen, Anssi Kemppainen, and Juha Röning. Simultaneous

localization and mapping using ambient magnetic field. In Proceedings of the 2010
IEEE Conference on Multisensor Fusion and Integration, pages 14–19. IEEE, 2010.

[30] Ilari Vallivaara, Janne Haverinen, Anssi Kemppainen, and Juha Röning. Magnetic

field-based SLAM method for solving the localization problem in mobile robot floor-

cleaning task. In Proceedings of the 2011 15th International Conference on Advanced
Robotics (ICAR), pages 198–203. IEEE, 2011.

[31] Frida Viset, Rudy Helmons, and Manon Kok. An extended Kalman filter for magnetic

field SLAM using Gaussian process regression. Sensors, 22(8):2833, 2022.

[32] Niklas Wahlström. Modeling of magnetic fields and extended objects for localization
applications. PhD thesis, Linköping University, 2015.

[33] Niklas Wahlström, Manon Kok, Thomas B Schön, and Fredrik Gustafsson. Modeling

magnetic fields using Gaussian processes. In Proceedings of the 2013 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 3522–3526. IEEE, 2013.

[34] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up

kernel machines. Advances in neural information processing systems, 13, 2000.

[35] Andrew Wilson and Hannes Nickisch. Kernel interpolation for scalable structured

Gaussian processes (KISS-GP). In Proceedings of the International conference onmachine
learning, pages 1775–1784. PMLR, 2015.

[36] Andrew G Wilson. Covariance kernels for fast automatic pattern discovery and extrap-
olation with Gaussian processes. PhD thesis, University of Cambridge, 2014.

[37] Andrew G Wilson, Christoph Dann, and Hannes Nickisch. Thoughts on massively

scalable Gaussian processes. arXiv preprint arXiv:1511.01870, 2015.

4

94 Large-scale magnetic field maps using SKI for GP regression

[38] Xsens. Interpreting magnetic field data represented as an arbitrary unit

(a.u.). Xsens knowledge base, Aug 2022. [Online; accessed November 14,

2022], https://base.xsens.com/s/article/Interpreting-magnetic-field-data-represented-

as-an-arbitrary-unit-a-u.

[39] Ali Yassin, Youssef Nasser, Mariette Awad, Ahmed Al-Dubai, Ran Liu, Chau Yuen,

Ronald Raulefs, and Elias Aboutanios. Recent advances in indoor localization: A

survey on theoretical approaches and applications. IEEE Communications Surveys &
Tutorials, 19(2):1327–1346, 2016.

[40] Faheem Zafari, Athanasios Gkelias, and Kin K Leung. A survey of indoor localization

systems and technologies. IEEE Communications Surveys & Tutorials, 21(3):2568–2599,
2019.

5
Conclusions and future work

recommendations

Coll’astuzia, coll’arguzia | With cunning, with wit
Col giudizio, col criterio | With judgment, with criterion

Si potrebbe ... Il fatto è serio: | You could ... The fact is serious:
Ma, credete, si farà. | But, believe, it will be done.

Se tutto il codice devessi volgere. | If all the codex I must turn.
Se tutto l’indice dovessi leggere | If all the index I should read

Con un equivoco, con un sinonimo | With a misunderstanding, with a synonym
Qualche garbuglio si troverà. | Some confusion will be found.

Le nozze di Figaro, Atto I, Mozart | The marriage of Figaro, Act I, Mozart

5.1 Summary of findings

5

99

5.1 Summary of findings
This thesis studied scalable methods for probabilistic modeling with Gaussian distributions

and tractable inference, using efficient storage and computations enabled by TNs. In this

context, three contributions were presented (see Figure 5.1), each addressing challenges in

large-scale and/or high-dimensional settings. They are related to solving recursive least

squares or weighted least squares problems, providing solutions to Bayesian estimation

problems such as those outlined in Section (1.1). This chapter summarizes the contributions

of this thesis and points out in which way they have made advances compared to the state-

of-the-art.

Generally, all algorithms presented in this thesis are developed with a focus on both

accuracy and efficiency metrics such that all experiments can be conducted on conventional

laptops in a reasonable time. This approach avoids the use of external hardware or cloud

computing while also limiting energy consumption.

Figure 5.1: Visual summary of three main contributions of this thesis. (a) TT-cores as Gaussian distributions for

the development of a Bayesian ALS algorithm, (b) Representing the mean and covariance matrix of a Gaussian

distribution as TTs for solving the issue of loss of positive definiteness in TN Kalman filtering, (c) Building scalable

magnetic field maps with Gaussian process regression by applying structured kernel interpolation.

5.1.1 Development of Bayesian ALS algorithm
In the first contribution, we approach the computation of low-rank TNs from a Bayesian

perspective. We compute a posterior joint distribution of the TN components by solving

multiple Bayesian inference problems sequentially to infer the posterior distribution of

each individual TN component. Thus, we introduce a Bayesian framework for the ALS to

compute low-rank tensor approximations, extending the state-of-the-art in the following

way. The conventional ALS updates each TN component by solving an unregularized least

squares problem. This can be interpreted as solving a Bayesian inference problem with an

uninformative prior on the TN components. The ALS in a Bayesian framework overcomes

this limitation by making it possible to incorporate application-specific prior knowledge

for each TN component. In addition, the measurement noise is explicitly considered, and

the joint posterior distribution of the TN components offers uncertainty quantification for

the low-rank tensor estimate. Regarding complexity, the ALS in a Bayesian framework has

the same computational complexity as the conventional ALS, there is only an additional

storage cost for storing the covariance matrices of the TN components.

5

100 5 Conclusions and future work recommendations

5.1.2 Solving the issue of loss of positive definiteness in TN
Kalman filtering

The state-of-the-art algorithm for Kalman filtering in a TN format, the TNKF, logarithmi-

cally compresses the complexity of filtering problems that are computationally untractable

in their conventional form. However, the TNKF can become numerically unstable, because

it can suffer from loss of positive (semi-) definiteness of covariance matrices involved in

the filter. The only setting in which positive (semi-) definiteness is guaranteed is when

all ranks of the TTm that represents the covariance matrix are chosen to be one, limiting

the accuracy of the approximation. In the second contribution of this thesis, the TNSRKF,

we solve this issue by computing square root covariance factors instead of the covariance

matrix directly. While the computational cost of the TNSRKF and TNKF are in a similar

range, the TNSRKF has the advantage of being more flexible. The TNSRKF allows for

choosing higher TN ranks than one for the square-root coefficient factor without the loss

of positive (semi-) definiteness. In this way, the covariance matrix is also approximated

with higher TN ranks and can result in a better approximation.

5.1.3 Application of structured kernel interpolation to mag-
netic field mapping

The third contribution of this thesis consists of computing scalable magnetic field maps

using approximate GP regression. Computing GP predictions efficiently is achieved by

using structured kernel interpolation with derivatives, in combination with Kronecker alge-

bra used in Krylov subspace methods. State-of-the-art methods for computing large-scale

magnetic field maps are based on, e.g., downsampling the magnetic field measurements or

approximating the GP kernel with a reduced number of basis functions. The limitation

of these methods is that the efficiency gain, compared to full GP regression, can result

in a significant accuracy loss. A motivation for exploring structured kernel interpolation

for magnetic field mapping was that it is a popular approach for large-scale GP problems,

but it had not been applied in this context yet. The third contribution showed how maps

can be computed in a more efficient way compared to the state-of-the-art, such that more

accurate maps can be computed with a limited computational budget.

5.2 Future work recommendations
Based on the conclusions of the contributions of this thesis, this section summarizes

possible future work directions, inspired by the findings and future work of the individual

contributions.

1. In the context of contribution 2, one extension of the presented work is incorporating

a time update into the TNSRKF and applying it to high-dimensional state estimation,

where the state can be, e.g., a large field. This can be achieved by, e.g. using a

spatio-temporal GP model as described in [1].

2. Representing kernel matrices with TT matrices is challenging due to potential loss of

positive (semi-) definiteness, such that in contribution 2, it is proposed to represent

the square root covariance factor instead. A future work direction is to investigate if

References

5

101

there are other ways to incorporate positive (semi-) definiteness into TT matrices,

e.g. by optimizing on a manifold of positive (semi-) definite TT matrices.

3. In the context of contribution 2, another option is to approximate the covariance

matrix with a low-rank matrix computed from truncated square-root covariance

factors. These tall matrices can be represented by tall TT matrices, where only

one TTm-core has a column index larger than one. First experiments showed, that

the rank of the matrix represented by the tall TTm is limited by the choice of the

TTm-ranks. A future work direction is to investigate why this is the case and how

low-rank matrices can be represented by tall low-rank TT matrices.

4. In contribution 2, the hyperparameters of the squared exponential kernel were trained

before deploying the recursive algorithm. In contribution 3, the hyperparameters

were trained on a subset of the entire dataset. A possible future research direction is

to focus on truly online scenarios, where hyperparameters are computed without

the knowledge of future data, in large-scale and high-dimensional settings.

5. In contribution 1, TN components were represented as Gaussian distributions, and

the low-rank tensor approximation problemwas solvedwith exact inference. A future

work direction could be to consider non-Gaussian distributions and approximate

inference.

6. In contribution 3, scalable magnetic field maps were computed with SKI using a

batch of measurements. Future work could be to apply an online SKI algorithm such

that this mapping strategy can be incorporated into, e.g., a simultaneous localization

and mapping (SLAM) algorithm. In addition, other approximate GP methods could

be explored for efficient magnetic field mapping.

7. In contribution 3, one sensor of a motion capture suit was used to build a scalable

magnetic field map. Future work could be to explore how multiple sensors on the suit

can be leveraged. It can be investigated, e.g. how having multiple magnetometers

located on body segments in a flexible array kind of fashion can improve map quality

and localization accuracy, or how different sensors revisiting the same positions and

forming loop closures can be beneficial.

8. All three contributions use synthetically generated data for conducting controlled

experiments that illustrate a specific point. For high-dimensional problems, however,

it is challenging to sample data that has some realistic meaning. Synthetic data

generation in high dimensions could be another future work direction.

References
[1] Simo Särkkä, Arno Solin, and Jouni Hartikainen. Spatiotemporal learning via infinite-

dimensional Bayesian filtering and smoothing: A look at Gaussian process regression

through Kalman filtering. IEEE Signal Processing Magazine, 30(4):51–61, 2013.

103

Curriculum Vitæ

Clara Myria Menzen

18-03-1992 Born in Rheda-Wiedenbrück, Germany.

Education
2019–2024 PhD. in Control Engineering

Delft Center for Systems and Control, Delft University of Technology,

Delft, the Netherlands

Thesis: Tensor networks for scalable probabilistic modeling

Promotors: prof. dr. ir. Jan-Willem Wingerden,

dr. Manon Kok,

dr. ir. Kim Batselier.

2016–2019 M.Sc. Engineering Science

Technical University of Berlin, Germany

Erasmus exchange at Polytechnic University of Catalonia, Barcelona, Spain.

2012–2016 B.Sc. Energy and Process Engineering

Technical University of Berlin, Germany

Erasmus exchange at Swiss Federal Institute of Technology, Zurich, Switzerland.

1998–2011 German School of Milan, Italy (2003–2011)

Ratsgymnasium Wiedenbrück, Germany (2002–2003)

Parkschule Rheda, Germany (1998-2002)

105

List of Publications

� 1. Clara Menzen, Manon Kok, Kim Batselier (2020) Alternating linear scheme in a Bayesian

framework for low-rank tensor approximation, SIAM Journal on Scientific Computing, 44(3),

A1116-A1144.

� 2. Clara Menzen, Manon Kok, Kim Batselier (2025) Tensor network square root Kalman filter for

online Gaussian process regression, Automatica, accepted for publication.

� 3. Clara Menzen, Marnix Fetter, Manon Kok (2023) Large-scale magnetic field maps using struc-

tured kernel interpolation for Gaussian process regression, Proceedings of the 26th Interna-

tional Conference on Information Fusion (FUSION), Charleston, South Carolina, USA, (pp.

1-7). IEEE.

4. Eva Memmel, Clara Menzen, Jetze Schuurmans, Frederiek Wesel, Kim Batselier (2024) Position:
Tensor Networks are a Valuable Asset for Green AI, Proceedings of the 41st International

Conference on Machine Learning, Vienna, Austria. PMLR 235.

5. Clara Menzen, Eva Memmel, Kim Batselier, Manon Kok (2023) Projecting basis functions

with tensor networks for Gaussian process regression, Proceedings of the 22nd IFAC World

Congress, Yokohama, Japan, IFAC-PapersOnLine, 56(2), 7288-7293.

6. Eva Memmel, Clara Menzen, Kim Batselier (2023) Bayesian Framework for a MIMO Volterra

Tensor Network, Proceedings of the 22nd IFAC World Congress, Yokohama, Japan, IFAC-

PapersOnLine 56(2), 7294-7299.

� Included in this thesis.

