

Delft University of Technology

Document Version

Final published version

Citation (APA)

Hoogendoorn, S. P. (2025). Introduction. In W. Daamen, & D. Duives (Eds.), *Walking and Pedestrians* (pp. 1-7). (Advances in Transport Policy and Planning; Vol. 15). Elsevier. <https://doi.org/10.1016/bs.atpp.2025.04.007>

Important note

To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright

In case the licence states "Dutch Copyright Act (Article 25fa)", this publication was made available Green Open Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne amendment). This provision does not affect copyright ownership.

Unless copyright is transferred by contract or statute, it remains with the copyright holder.

Sharing and reuse

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

**Green Open Access added to [TU Delft Institutional Repository](#)
as part of the Taverne amendment.**

More information about this copyright law amendment
can be found at <https://www.openaccess.nl>.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the
author uses the Dutch legislation to make this work public.

Introduction

Serge P. Hoogendoorn*

Department of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

*Corresponding author. e-mail address: S.P.Hoogendoorn@tudelft.nl

Contents

1. Background and motivation	1
1.1 Why study pedestrian behavior and walking dynamics?	2
1.2 Scope and objectives of this book	3
1.3 Who should read this book?	3
2. Structure of the book	4
2.1 Part I: Pedestrian fundamentals	4
2.2 Part II: Applications of pedestrian fundamentals	5
3. The role of walkability in pedestrian research	6

Abstract

Walking is the most fundamental form of human transportation. It is also the most sustainable mode, and very frequently used in a variety of situations. As such, pedestrian behavior influences the design of our infrastructure, the efficiency of transit systems, and even the safety of large crowds. Despite its ubiquity and importance, the study of pedestrian and crowd dynamics remains an evolving field within transport science. This book aims to give readers a comprehensive overview of pedestrian dynamics, covering fundamental theories, modeling approaches, empirical findings, and applications. All in relation to pedestrian planning.

This book is divided into two parts. The first part lays the foundations of pedestrian movement dynamics and behavior, while the second part explores applications of the foundational knowledge presented in the first part.

By integrating pedestrian flow analysis, human behavior insights, modeling techniques, and applications, this book contributes to a deeper understanding of how to create walkable, resilient, and human-centered urban environments.

1. Background and motivation

Walking is the most fundamental form of human transportation. As the **oldest and most sustainable mode of travel**, pedestrian movement plays a vital role in urban life, public health, transportation systems, and public safety. From **daily commuting** in cities to **crowd gatherings at events**,

pedestrian behavior influences the design of our infrastructure, the efficiency of transit systems, and even the safety of large crowds. Despite its **ubiquity and importance**, the study of **pedestrian and crowd dynamics** remains a relatively young and evolving field within transport science.

1.1 Why study pedestrian behavior and walking dynamics?

With increasing urbanization, cities worldwide are shifting toward pedestrian-friendly urban design. Encouraging walking as a primary mode of transport not only improves sustainability but also reduces congestion, pollution, and dependence on motorized vehicles. The concept of walkability has gained prominence in urban planning, emphasizing the need for reliable methods to assess pedestrian accessibility, safety, and comfort in different environments.

At the same time, ensuring pedestrian safety has become an urgent challenge, particularly in crowded settings such as concerts, sporting events, festivals, and religious gatherings. Large-scale pedestrian movements in confined spaces can result in dangerous conditions, including stampedes, bottlenecks, and crowd crush incidents. Scientific approaches to crowd management have become essential for mitigating these risks, with researchers and planners striving to understand how pedestrian behavior changes under normal and emergency conditions. The ability to model and anticipate these behaviors is crucial in designing spaces that accommodate large crowds safely.

The role of pedestrian dynamics extends beyond public spaces into the realm of transportation systems. High-capacity transit hubs, including train stations, airports, and metro networks, experience significant pedestrian flows and crowding, particularly during peak hours or during special events. Efficient pedestrian movement in these environments is essential for minimizing delays, increasing system capacity, and enhancing the overall passenger experience. Accurately modeling pedestrian flows allows planners to design better wayfinding systems, optimize platform layouts, and ensure smooth entry and exit strategies.

Technological advancements have also revolutionized pedestrian research. The proliferation of real-time tracking, surveillance systems, sensors, and AI-driven analytics has enabled more precise analyses of pedestrian flows. Machine learning, computer vision, and agent-based simulations have improved the accuracy of pedestrian behavior predictions, offering new possibilities for designing pedestrian-friendly spaces. By integrating data-driven insights, researchers and policymakers can make informed decisions that improve urban mobility and safety.

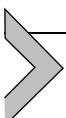
Beyond everyday pedestrian movement, evacuation planning and emergency response rely heavily on understanding crowd behavior. Fires, natural disasters, and security threats demand quick and effective responses, and pedestrian models play a critical role in designing evacuation strategies. Insights into route choice, decision-making under stress, and the influence of crowd density can significantly enhance evacuation planning, helping authorities develop more robust and effective emergency protocols.

Together, these considerations highlight the growing importance of pedestrian and crowd dynamics across multiple domains. Whether for **urban design, public safety, transport planning, or emergency response**, the ability to understand, model, analyze, and optimize pedestrian movement is becoming increasingly indispensable.

1.2 Scope and objectives of this book

This book provides a **comprehensive overview** of pedestrian dynamics, covering **fundamental theories, modeling approaches, empirical findings, and applications**. Unlike general transportation textbooks, this volume **specifically focuses on pedestrians and crowds**, bridging gaps between **engineering, data science, psychology, and urban planning**. Through this book, we aim to:

1. Present fundamental theories explaining pedestrian movement dynamics and behavior at different scales.
2. Provide empirical insights into real-world pedestrian movement dynamics, including fundamental diagrams, experimental findings and choice behavior.
3. Discuss data collection methodologies, including video analysis, sensor tracking, and surveys, and their role in pedestrian studies.
4. Introduce mathematical models for simulating pedestrian dynamics, ranging from microscopic agent-based models to macroscopic flow-based models.
5. Present a toolbox to design effective crowd management interventions.


1.3 Who should read this book?

This book is designed for a **wide audience**, including:

- Researchers in transportation science, urban planning, and human behavior, looking for an in-depth overview of pedestrian modeling and empirical findings.

- Engineers and planners designing pedestrian-friendly environments and optimizing crowd flow in transport hubs.
- Practitioners in crowd management, security, and event planning, seeking insights into safe and efficient crowd control measures.
- Graduate students in transportation, engineering, and behavioral sciences, looking for foundational knowledge in pedestrian dynamics.

By bringing together **theoretical foundations, empirical studies, and simulation techniques**, this book serves as both a **reference guide for experts** and an **introductory text for those new to the field**.

2. Structure of the book

This book is divided into two parts. The first part, covering Chapters 2 to 8, lays the foundations of pedestrian movement dynamics and behavior, focusing on key traffic flow variables, concepts, empirical findings, and modeling methodologies. The second part, Chapters 9 to 12, explores applications of the foundational knowledge presented in the first part, addressing topics such as model calibration, model validation, and crowd management.

2.1 Part I: Pedestrian fundamentals

Chapter 2 focuses on pedestrian flow and crowd operations variables, introducing the key measures used to describe pedestrian movement. It distinguishes between microscopic, macroscopic, and mesoscopic perspectives and explains essential flow metrics such as trajectories, density, velocity, and time headways. Special attention is given to how pedestrian flows differ from vehicular traffic, particularly in the way pedestrians interact with their environment and with one another.

Empirical findings on pedestrian movement are presented in Chapter 3, which introduces fundamental relationships between speed, density, and flow. This chapter explains how pedestrian movement transitions between free-flow, congested, and stop-and-go conditions, illustrating observed spatial structures such as lane formation and turbulence effects in high-density crowds. The empirical results serve as a foundation for developing predictive pedestrian models.

A key challenge in studying pedestrian movement is obtaining reliable data, which is addressed in Chapter 4. This chapter reviews methods for collecting pedestrian movement data, from field observations and video-based

tracking to controlled experiments and surveys. It discusses the role of emerging technologies such as mobile tracking, Bluetooth sensors, and virtual reality, providing insight into the strengths and limitations of different data collection approaches.

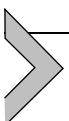
Human behavior plays a critical role in pedestrian movement and is the focus of Chapter 5. This chapter explores psychological and cognitive influences on pedestrian decision-making, including attention, perception, and social interactions. It examines the differences between physical and psychological crowds, as well as the impact of stress, group dynamics, and environmental cues on movement patterns. By considering human factors at different scales, the chapter provides insight into the variability of pedestrian behavior.

The decision-making processes behind pedestrian movement are explored in Chapter 6. This chapter categorizes different levels of choice behavior, from strategic decisions such as route and mode selection to real-time adjustments made while walking. It examines the key factors influencing pedestrian choices, including trip purpose, environmental attributes, and social interactions, providing a synthesis of pedestrian decision-making models.

The representation of individual pedestrian movement through modeling and simulation is covered in Chapter 7. This chapter introduces different modeling paradigms, including physics-based models, artificial intelligence-driven approaches, and hybrid methods. It discusses how these models capture pedestrian interactions and adaptive behavior and lays the groundwork for developing and applying pedestrian simulations in both research and practice.

At a broader scale, pedestrian movement can also be analyzed using macroscopic modeling approaches, as discussed in Chapter 8. These models treat pedestrian flow as a continuous system rather than as individual agents, using mathematical frameworks based on conservation laws. The chapter examines how macroscopic models relate to microscopic and mesoscopic representations and discusses numerical techniques for simulating large-scale pedestrian flows.

2.2 Part II: Applications of pedestrian fundamentals


With the theoretical and methodological foundations established, the second part of the book shifts towards applications. Chapter 9 discusses model calibration and validation, addressing the methods used to adjust pedestrian models to match observed data and evaluate their predictive accuracy. It highlights best practices for ensuring that pedestrian simulations are reliable and applicable to different contexts.

Guidelines for using pedestrian models in planning and operations are presented in Chapter 10. This chapter provides practical insights into selecting appropriate modeling approaches, interpreting results, and using simulations to inform urban design, transport planning, and event management. By outlining common challenges and methodological considerations, it helps bridge the gap between theory and practice.

Chapters 11 and 12 focus on crowd management, reviewing methodologies for studying crowd behavior under both normal and emergency conditions. It examines how pedestrian models can be used to optimize crowd flow, prevent congestion, and improve public safety, highlighting research gaps and future directions in the field.

The book concludes with Chapter 13, which synthesizes key insights from previous chapters and reflects on the current state of pedestrian research. It discusses emerging trends, open challenges, and opportunities for future studies, providing a comprehensive perspective on the future of pedestrian and crowd dynamics.

By integrating theoretical foundations with empirical findings and applications, this book serves as a valuable resource for researchers, engineers, planners, and decision-makers. Whether the goal is to improve urban walkability, optimize pedestrian infrastructure, enhance crowd safety, or develop advanced pedestrian models, the insights presented here provide the necessary knowledge to advance the study and application of pedestrian movement science.

3. The role of walkability in pedestrian research

Walkability receives more and more attention in the field of pedestrian research. However, the authors have decided not to include a chapter on walkability as the book's aim is to cover pedestrian behavior and movement dynamics. Walkability refers to how well an environment accommodates pedestrian movement in terms of safety, accessibility, comfort, and connectivity. It is shaped by factors such as urban design, infrastructure quality, traffic conditions, and environmental characteristics. Many of the chapters in this book contribute to understanding and improving walkability from different perspectives.

A crucial element of walkability is pedestrian flow efficiency, which is examined in Chapter 2. The ability to describe and quantify pedestrian movement – through measures such as density, velocity, and flow rates – is

essential for evaluating how well an environment supports walking. Walkable cities often strive to balance high pedestrian volumes with smooth, conflict-free movement, making insights from pedestrian flow models directly relevant to urban planning.

Another dimension of walkability is how people experience the pedestrian environment, which depends on factors such as crowding, accessibility, and personal comfort. The empirical studies presented in Chapter 3 provide essential knowledge about how pedestrians respond to different spatial configurations, helping planners identify design strategies that support seamless and stress-free pedestrian movement. Similarly, Chapter 5 highlights the importance of human factors, showing how cognitive processes, group behavior, and decision-making influence pedestrian interactions with the built environment.

Walkability is also deeply connected to pedestrian choice behavior, as explored in Chapter 6. The decision to walk, and the routes people take, are influenced by factors such as trip purpose, environmental conditions, infrastructure quality, and perceived safety. Understanding these factors helps cities design environments that encourage walking as a preferred mode of transport, reducing dependence on motorized travel and promoting sustainability.

Modeling and simulation techniques also play a key role in improving walkability. The discussions in Chapters 6, 7, 9 and 10 on data-driven and macroscopic models offer tools for assessing pedestrian infrastructure, optimizing the design of public spaces, and predicting the effects of new developments. These models allow planners to test different street layouts, pedestrian crossings, and traffic calming measures to enhance pedestrian-friendly urban environments.

Finally, walkability extends beyond normal pedestrian activity to include crowd management and emergency planning, covered in Chapters 11 through 12. In high-density environments, such as train stations, stadiums, and festival grounds, maintaining safe and efficient pedestrian movement is essential. Well-designed infrastructure and proactive crowd management strategies help ensure that pedestrian spaces remain functional and safe even under extreme conditions, reinforcing the broader principles of walkability.

By integrating pedestrian flow analysis, human behavior insights, modeling techniques, and applications, this book contributes to a deeper understanding of how to create walkable, resilient, and human-centered urban environments. While the chapters focus on different aspects of pedestrian dynamics, they collectively provide the tools and knowledge necessary to enhance walkability in cities worldwide.