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Abstract

Graph signal processing (GSP) extends classical signal processing to signals on graphs,
enabling the analysis of complex data structures through graph theory. A core challenge
in GSP is graph topology identification, which aims to deduce the graph structure that
best explains observed signal dependencies.

This project addresses graph topology identification for applications where the under-
lying structure of systems like brain and social networks is not directly observable.
Traditional approaches based on signal matching and spectral templates have limita-
tions, particularly in handling scale issues and sparsity assumptions. We introduce a
novel covariance matching methodology that efficiently reconstructs the graph topology
using observable data. For the structural equation model (SEM) using an undirected
graph, we demonstrate that our method can converge to the correct result under rela-
tively soft conditions. Furthermore, we extend our methodology to polynomial models,
sparse directed graphs, and any known Gaussian distribution of latent variables, broad-
ening its applicability and utility in diverse graph-based systems. Experimental results
demonstrate that our method outperforms existing techniques, offering new directions
for future research in graph topology identification.
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Nomenclature

The next list describes several symbols that will be later used within the body of the
thesis

Graph

S Graph shift operator

y One sample

Y Multiple samples

T Sample length

Cy Sample covariance of y, calculated as YY⊤

T

Σy Ensemble covariance of y, E{yy⊤}

my Sample mean of y, calculated as Y1
T

µy Ensemble mean of y, E{y}

h(·) A polynomial function

H For SEM: H = (I− S)−1, for polynomial model: H = h(S)

Linear algebra

(·)n Matrix power for matrices, element-wise power for vectors

(·)−1 Inverse of matrix (·)

(·)−⊤ First inverse then transpose of matrix (·)

(·)−n First inverse then power of (·)

U diag(λ)U⊤ Eigenvalue decomposition (EVD) of symmetric matrices

U diag(λ)U−1 Eigenvalue decomposition (EVD) for any square matrix if it exists

U diag(λ)V⊤ Singular value decomposition (SVD)

Optimization problem

(·) True value of variables

(̂·) Estimated variable

(·)∗ Optimal value of optimization variable
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Introduction 1
1.1 Motivation and Contributions

Graph signal processing (GSP) extends classical signal processing concepts to signals
defined on graphs, allowing the exploration of complex data structures through the
lens of graph theory. A fundamental challenge in GSP is the identification of the
graph topology from observed signals. This involves determining the underlying graph
structure that most effectively explains the signal correlations or dependencies. This
process is illustrated in Fig. 1.1.

Figure 1.1: Illustration of uncovering hidden graph structures from observed data.[1]

Graph topology identification remains a critical issue in GSP, where systems are mod-
eled as networks, yet their actual underlying structure is often invisible. Examples of
such systems include brain functional connectivity networks and social networks. In
these applications, while the direct graph structure is not observable, nodal data is
typically available. For instance, in academic networks [3], the advisor-advisee links
may not be visible, yet we can analyze collaborative patterns to uncover these con-
nections. Similarly, in brain networks [4], neural signals provide indirect clues about
the connectivity. Therefore, the primary challenge in graph topology identification lies
in deducing the hidden graph structure from these nodal observations, a task that is
fundamental for analyzing and understanding the interactions within these networks.

The structural equation model (SEM) is a popular tool to link nodal data with the
graph, and it has been frequently used in graph topology identification [5, 6, 7, 8]. A
remarkable result was provided by [8], where it was demonstrated that for sparse di-
rected acyclic graphs (DAGs), the graph can be uniquely determined when the unknown
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latent variable is Gaussian with equal variance.

This foundational work spurred further developments, leading to more efficient algo-
rithms as evidenced by [9] and [10]. However, for undirected graphs, methods using
signal matching have performed poorly without the presence of exogenous variables,
even with the introduction of sparsity constraints [11, 12]. On the other hand, spectral
template-based approaches, such as the polynomial graphical lasso (PGL) algorithm,
have shown potential in handling certain graphs [2], but the results typically differ from
the true structure by a scale factor and require extensive restrictions (sparsity and sign)
on the graph for the method to be effective.

To the best of our knowledge, no existing work has exhaustively addressed topology
identification for undirected graphs using a SEM. This paper fills this gap by proposing
a novel covariance matching-based method. We will prove that, under relatively soft
conditions, our proposed method consistently converges to the correct result without
encountering the scale issue often associated with other approaches. Additionally, our
method is robust and does not require any assumptions about sparsity.

Even if we overlook the various issues with existing methods, once we consider non-
white Gaussian latent variables, all current approaches fail. However, non-white latent
variables often more closely reflect real-world situations. Current research, such as that
in [13], suggests using multiple systems to estimate S, which is highly impractical. In
this paper, we also address this issue. In fact, when considering non-white Gaussian
latent variables, our covariance matching approach maintains the same structure.

Regarding directed graphs, as we have mentioned before, all research to date has focused
only on DAGs without considering cycles. In this paper, we aim to tackle this exciting
and challenging problem. Our experiments have been very successful, and similar to the
undirected case, we also extend our approach to non-white Gaussian latent variables.

Furthermore, if we consider more complex models, such as the polynomial model, ex-
isting methods either assume no known polynomial information, like in [2, 14], or can
only handle very trivial polynomial information, as seen in [15]. However, in reality,
we often encounter situations where we have some knowledge of the polynomial and it
is not a trivial polynomial model. This brings us to the final part of our thesis, where
we extend our method to handle polynomial models and non-white Gaussian latent
variables.

Table 1.1: Overview of Our Method’s Applicability

Model Type Directed Sparse Latent Variable Distribution Applicability
SEM No – N (0,Σ) Applicable
SEM Yes No N (0,Σ) Unsolvable
SEM Yes Yes N (0,Σ) Applicable
PM No – N (µ,Σ),µ ̸= 0 Applicable
PM No – N (0, I) Applicable
PM Yes – – Unknown

In Table 1.1, we summarize the applicability of our covariance matching technique. The
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“Sparse” column indicates whether the graph is sparse, whereas “Directed” denotes
whether the graph is directed; ‘–’ signifies that the condition does not need to be met
for our method. For the SEM, we have nearly addressed most scenarios. For the
polynomial model (PM), we have managed to handle the undirected configurations.

Our final experimental results demonstrate that our approach outperforms many ex-
isting methods and shows substantial potential for addressing more complex issues in
future extensions. Overall, the covariance matching approach introduces new possibil-
ities and directions within the field of graph topology identification.

1.2 Thesis Structure

The foundational approach of this study begins with the SEM, a framework that models
influences among nodes using linear relations. In Chapter 2, we review existing liter-
ature to unify and reinterpret previous findings, setting the stage for our subsequent
investigations.

Starting from the signal matching method, in Chapter 3, we try to apply this method-
ology to undirected graphs. We adopt the assumption of a zero mean white Gaussian
distribution for the latent variables from prior work but demonstrate its limitations
in achieving accurate results through theoretical proofs. Subsequently, we revisit the
problem from a novel point of view and introduce our covariance matching approach.
We further provide evidence that our method is effective for a substantial portion of
graphs. At last, we drop the whiteness assumption and extend our method to any zero
mean Gaussian distribution.

In Chapter 4, we address the challenges associated with directed graphs. The chapter
begins by outlining the complexities of the problem and then explores strategies to
exploit sparsity. We formulate the problem based on covariance matching and achieve
an optimization problem over unitary matrices. To tackle this, we present a convex
relaxation method for unitary matrices.

Chapter 5 starts from the unitary optimization framework discussed in Chapter 4 and
introduces a more generalized approach. It builds on the methodologies developed in
Chapter 4 by implementing an iterative method that encourages the solution variables
to closely resemble unitary matrices.

In Chapter 6, we explore polynomial models, specifically focusing on undirected graphs.
We start with the assumption that the latent variables follow a zero mean white Gaus-
sian distribution. We extend the semidefinite relaxation method traditionally used for
binary quadratic problems (BQPs) to solve optimization problems associated with poly-
nomial models, i.e., discrete quadratic problems (DQPs). Eventually, we generalize our
approach to accommodate any non-zero mean Gaussian distributed latent variables.

In Chapter 7, we summarize our findings and discuss potential directions for future
research, providing a roadmap for extending our methodologies to new and emerging
challenges.

3



Background 2
2.1 Graph Signal Processing

Graph signal processing (GSP) is the study of how to analyze and process data associ-
ated with graphs. Graphs are mathematical structures used to model pairwise relations
between objects. In the context of GSP, a graph consists of nodes (or vertices) and
edges (or links) connecting them. Nodes can be considered as abstract representations
of real-world entities, while edges represent the relationships between these entities. In
GSP, the term signal refers to any set of data values that are assigned to the nodes
of the graph. These signals might represent measurements, observations, or attributes
associated with each node, depending on the specific application and context.

2.1.1 Mathematical Representations of Graphs and Graph Signals

We often describe a graph with the following notation:

G = {V , E ,S},

where V = {1, . . . , N} represents the set of vertices, E ⊆ V × V denotes the set of
edges, and S is referred to as the graph shift operator (GSO). It can be considered as
an N × N matrix that captures the graph topology and will be explained next. Each
node i ∈ V is associated with a scalar value xi. By stacking these values into a vector

x = [x1, . . . , xN ]
⊤ ∈ RN ,

we obtain what is known as a graph signal.

Similar to traditional signal processing, in GSP, we define the process generating graph
signals as independent and identically distributed (i.i.d.). This assumption means
that each signal observation is statistically independent from others and all share the
same probability distribution. After capturing observations at T different instances
x1,x2, . . . ,xT , we stack these signals into a matrix given by

X = [x1,x2, . . . ,xT ],

to represent the i.i.d. graph signals across these T samples.

2.2 Graph Shift Operator

In this section, we discuss some common forms of the matrix S that are essential for
graph topology analysis. These representations facilitate various computational and
analytical tasks related to graphs.

4



2.2.1 Adjacency Matrix

The adjacency matrix is a fundamental representation in graph theory, typically de-
noted by A for binary graphs and W for weighted graphs. In the binary adjacency
matrix A, the element Aij is either 0 or 1; it is 1 if there is an edge from node j to
node i, implying that (j, i) ∈ E , and 0 otherwise. This indicates the mere existence
of a connection between nodes. Conversely, in the weighted adjacency matrix W, the
element Wij can take any real value, which represents the strength or capacity of the
connection from node j to i.

Additionally, whether an adjacency matrix is symmetric or non-symmetric informs
about the nature of the graph it represents. A symmetric adjacency matrix, where Aij =
Aji (or Wij = Wji), indicates an undirected graph where edges have no orientation. In
contrast, a non-symmetric adjacency matrix represents a directed graph, where the
presence of an edge from node i to node j does not necessarily imply the presence of
an edge from node j to node i.

Remark 1. In GSP, it is important to note that the element Aij actually represents
a connection from node j to node i. This is opposite to the typical representation in
graph theory, where Aij denotes a link from node i to node j.

The main reason for this difference arises from how we model signal diffusion on graphs.
If a signal x diffuses 1 hop on the graph to produce y, and we wish to describe this
relationship using y = Ax, then, due to matrix-vector multiplication, the i-th column
of A must be associated with the elements of the i-th row of x. This results in the i-th
column of A actually representing outgoing connections from node i. To maintain the
commonly used relation y = Ax in signal processing, such adjustments are made in
the definition of A in GSP.

2.2.2 Laplacian Matrix

Next, we consider the Laplacian matrix, typically denoted by L. The Laplacian matrix
is generally defined for undirected graphs and it is written as:

L = D−W, (2.1)

where D is the degree matrix, a diagonal matrix where each diagonal element Dii is
the sum of the weights of all edges connected to vertex i. This formulation reflects that
D = Diag(W1), simplifying the understanding that D essentially captures the degree
of each node. The Laplacian matrix plays a pivotal role in modeling diffusion processes
on graphs and is intimately related to the smoothness of graph signals.

An important property of the Laplacian matrix is that all its eigenvalues are non-
negative, and there is one eigenvalue equal to zero. This can be demonstrated through
a simple proof.

Consider the quadratic form of the Laplacian:

x⊤Lx = x⊤(D−W)x = x⊤Dx− x⊤Wx. (2.2)

5



The term x⊤Dx can be expanded to:

x⊤Dx =
N∑
i=1

Diix
2
i , (2.3)

where Dii is the degree of node i, and xi is the i-th component of x. The term x⊤Wx
sums the products of the adjacent entries, reflecting the connection strengths:

x⊤Wx =
∑
i ̸=j

Wijxixj. (2.4)

Rearranging terms gives:

x⊤Lx =
1

2

∑
i ̸=j

Wij(xi − xj)
2. (2.5)

This sum is clearly non-negative since each term (xi − xj)
2 is non-negative. Thus, all

eigenvalues of L are non-negative. Furthermore, L1 = 0 demonstrates that the vector
of all ones, 1, is an eigenvector corresponding to the zero eigenvalue, proving that there
is one eigenvalue equal to zero.

In fact, the expression x⊤Lx also quantifies the total variation of the signal x across
the graph. Specifically, it measures the degree to which x varies along the edges of the
graph, making it a measure of the signal’s smoothness. In GSP, a smaller value of x⊤Lx
implies that the signal varies minimally between connected nodes, thus indicating a
smoother signal across the graph. Several papers consider this property of the Laplacian
and optimize x⊤Lx to find a graph over which the data is smooth [16, 17].

2.2.3 Normalized Laplacian Matrix

Finally, the normalized Laplacian matrix, denoted by L̃, is defined as:

L̃ = D−1/2LD−1/2, (2.6)

where D is the diagonal degree matrix as previously defined. This normalization scales
the Laplacian matrix by the degrees of the nodes, facilitating an invariant analysis
relative to the graph’s scale or the distribution of node degrees. The normalized Lapla-
cian is especially beneficial in machine learning applications, such as spectral clustering
and semi-supervised learning on graphs, where the characteristics of eigenvalues and
eigenvectors of L̃ play a crucial role.

The eigenvalues of the normalized Laplacian matrix, L̃, are bounded between 0 and 2.
We prove this next. Let x represent a normalized vector such that xTx = 1, where each
component xi denotes the i-th element of x. Let di represent Dii. And let us rewrite
the normalized Laplacian matrix L̃ as

L̃ = D−1/2LD−1/2 = D−1/2(D−A)D−1/2

= I−D−1/2AD−1/2.
(2.7)
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Then we can express xT L̃x as

xT L̃x = xT (I−D−1/2AD−1/2)x

=
∑
i∈V

x2
i −

∑
(i,j)∈E

2xixj√
didj

=
∑

(i,j)∈E

(
xi√
di

− xj√
dj

)2

≥ 0.

(2.8)

To show that xT L̃x ≤ 2 we can derive:

xT L̃x = xT (I−D−1/2AD−1/2)x

= 2
∑
i∈V

x2
i −

∑
i∈V

x2
i −

∑
(i,j)∈E

2xixj√
didj

= 2
∑
i∈V

x2
i −

∑
(i,j)∈E

(
xi√
di

+
xj√
dj

)2

≤ 2.

(2.9)

Since the largest eigenvalue of L̃, denoted as λmax(L̃), and the smallest eigenvalue of

L̃, denoted as λmin(L̃), satisfy the following properties [18]:

max
xTx=1

xT L̃x = λmax(L̃) (2.10)

min
xTx=1

xT L̃x = λmin(L̃) (2.11)

we can conclude our proof.

2.3 Graph Topology Identification

Graph topology identification (GTI), also known as graph learning or learning graphs
from data, refers to the task of inferring the relationships between nodes based on
observations of nodal data. Specifically, given T observations across N nodes organized
in a data matrix X ∈ RN×T , and equipped with prior knowledge such as distribution
assumptions or data models, the objective is to construct a graph G = {V , E ,S}. This
graph depicts the relationships among the variables. Each column of the matrix X is
interpreted as a signal on the graph, based on the node configuration of graph G.

2.3.1 Challenges in Graph Topology Identification

In GTI, the fundamental assumption is that x ∼ F (S), where F is a distribution and
the relationship between F and S is known.
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For example F is a normal distribution, specifically F = N (µ(S),Σ(S)). Here, µ(S)
and Σ(S) are the mean vector and covariance matrix, respectively, determined by the
structured matrix S. Further, µ(S) and Σ(S) are determined once S is known.

The main challenge here is how to estimate S from X and the prior knowledge of F .
This actually encompasses two underlying questions:

1. Identifiability: Whether there exists another S′, which could generate X with
the same or higher probability than S? This question addresses whether S can be
uniquely determined from X.

2. Algorithmic Feasibility: Is there an algorithm capable of efficiently estimating
S from X? This focuses on the practical aspects of finding a solution.

2.4 Structural Equation Model

We select the structural equation model (SEM) [5] as the starting point for our studies.
It excellently supports linear modeling of graph phenomena and is backed by numerous
existing studies such as those in [19] and [20].

The SEM provides a versatile statistical modeling framework employed to analyze mul-
tivariate datasets across various disciplines, including brain science [4] and genetics
[21]. The utility of the SEM lies in its capacity to model complex relationships between
observed variables, accounting for both direct and indirect influences, as well as the
effects of latent variables.

2.4.1 Mathematical Representation

Given an observation vector y ∈ RN , the SEM establishes a model where each variable
yi in the vector is expressed as a linear combination of other variables in the dataset.
This relationship can be formalized as follows:

yi =
∑
j ̸=i

Sijyj + Fiiui + ei, (2.12)

where:

• Sij represents the weight of the influence exerted by node j on node i;

• Fii denotes the impact of the exogenous variable ui on node i;

• ei captures the residual errors or unmodeled dynamics.

It is important to note that in the SEM, we have replaced the previous notations x and
X with y and Y, respectively. This change is primarily to conform to the conventional
notation typically used in a SEM.

We can simplify this to a matrix-vector form as follows

y = Sy + Fu+ e. (2.13)
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In case we consider multiple independent realizations of e, which can be stacked in
E = [e1, e2, . . . , eT ], and multiple independent realizations of control inputs u, stacked
in U = [u1,u2, . . . ,uT ], we obtain multiple independent realizations of y, grouped in
Y = [y1,y2, . . . ,yT ], as

Y = SY + FU+ E. (2.14)

The research then bifurcates into two directions, primarily differentiated by whether
the exogenous variables are considered.

Case 1. Assuming exogenous variables, we obtain

y = Sy + Fu+ e, (2.15)

where S is the matrix whose (i, j)th entry is Sij if i ̸= j and 0 otherwise (assuming no
self-influence) and F is the matrix whose ith diagonal entry is Fii and 0 otherwise.

Case 2. If we consider scenarios where the impact of exogenous variables can be ig-
nored, this can be reduced to

y = Sy + e, (2.16)

In the field of GTI, when focusing on (2.15), researchers are interested in estimating
matrices F and S through known y and u. In the study of (2.16), the aim is to estimate
S using y.

Undoubtedly, Case 2 can be considered a special case of Case 1 (when u = 0). This
makes Case 1 appear to be a more challenging problem. However, it is not really true
because in Case 1, it is usually assumed that endogenous factors are predominant and
known, meaning that e is very small relative to Fu and u is known. In contrast, in the
study of Case 2, e is considered the main factor, in which case, e can indeed be seen
as representing some unmodeled dynamics.

Despite extensive research on the SEM prior to its application in graph theory, and
the apparent simplicity of the SEM as a linear model, its implementation is not as
straightforward as expected. As shown in [22] and [11], approaches to tackle Case 1,
require observations of exogenous variables and assumptions about sparsity.

In the context of Case 2, a remarkable result was provided by [8], where it was demon-
strated that for sparse directed acyclic graphs (DAGs), the graph can be uniquely
determined when the unknown external inputs are Gaussian with equal variance. This
foundational work spurred further developments, leading to more efficient algorithms
as evidenced by [9] and [10]. However, for undirected graphs, methods using signal
matching have performed poorly without the presence of exogenous variables, even
with the introduction of sparsity constraints [11, 12]. On the other hand, spectral
template-based approaches, such as the polynomial graphical lasso (PGL) algorithm,
have shown potential in handling certain graphs [2], but the results typically differ from
the true structure by a scale factor and require extensive restrictions (sparsity and sign)
on the graph for the method to be effective.

In this thesis, we primarily investigate the scenario described in Case 2, proposing solu-
tions for both undirected and directed graphs (sparse but potentially containing cycles).
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The detailed discussions of these solutions will be presented in the subsequent two chap-
ters. But first, we will review existing literature on Case 1 and Case 2 separately, which
will provide a solid foundation and a clear starting point for our problem.

2.4.2 Identifiability of Case 1

We begin our discussion from a relatively simple perspective, where both the process
and the conclusions are elegant, and there is even a closed-form solution available.

In [7] we can find an interesting theorem for Case 1.

Theorem 1. Suppose that data U and Y abide to the SEM Y = SY + FU, for a
matrix S with diagonal entries Sii = 0 and diagonal matrix F with diagonal entries
Fii ̸= 0. If U has full row rank, then S and F are uniquely expressible in terms of

U and Y as F = Diag−1((YU†)−1) and S = I − F
(
YU†)−1

with Diag(·) setting the

off-diagonal elements to zero and (·)† taking the pseudo-inverse.

This theorem can be viewed as a result for the ideal case where e = 0 strictly holds.
Then, provided that U is sufficiently exciting, S∗ can be uniquely determined. While
the original paper’s derivation is algebraic, here, to integrate it with the other sections,
we want to achieve the same results through an optimization approach. In other words,

we will demonstrate that F∗ = Diag−1((YU†)−1) and S∗ = I − F∗ (YU†)−1
are the

unique solutions to the following optimization problem (under the assumptions of the
theorem):

F̂∗, Ŝ∗ = argmin
F̂,Ŝ

∥Y − ŜY − F̂U∥2F

subject to Ŝii = 0,

F̂ij = 0, i ̸= j.

(2.17)

Let
f(Ŝ, F̂) = ∥Y − ŜY − F̂U∥2F (2.18)

which can be expressed in trace form as:

f(Ŝ, F̂) = tr((Y − ŜY − F̂U)⊤(Y − ŜY − F̂U)) (2.19)

The derivative of f with respect to F̂ is given by:

∂f

∂F̂
= 2UU⊤F̂− 2(I− Ŝ)YU⊤ (2.20)

We now prove setting this derivative to zero yields a unique solution F∗, as U has full
row rank. This solution can be expressed as:

F∗ = (I− S∗)YU⊤(UU⊤)−1 = (I− S∗)YU† (2.21)
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Here, the matrix UU⊤ is invertible because U has full row rank. From the assumption,
it is known that (I − S∗)Y = F∗U and that F∗U is full row rank. Consequently,
(I − S∗)Y is full row rank and thus I − S∗ is invertible. Since F∗ is invertible, and
considering that I− S∗ is invertible, it follows that YU† must also be invertible.

By inverting F∗, we then obtain:

(F∗)−1 = (YU†)−1(I− S∗)−1 (2.22)

and thus
(F∗)−1(I− S∗) = (YU†)−1 (2.23)

Since F∗ is a diagonal matrix, (F∗)−1 is also a diagonal matrix, and therefore we have

diag((F∗)−1(I− S∗)) = diag((F∗)−1) = diag((YU†)−1) (2.24)

This leads to:
(F∗)−1 = diag((YU†)−1) (2.25)

Hence, we have demonstrated that F∗ is defined as:

F∗ = diag((YU†)−1)−1 (2.26)

Once F∗ has been determined, solving for S∗ becomes straightforward. We omit the
proof here for brevity.

It is meaningful to formulate the original problem as (2.17) because this allows us
to incorporate additional sparsity constraints, such as L1 regularization ∥S∥1. This
enables us to obtain a more sparse structure, which can yield better results compared

to merely calculating F∗ = Diag−1((YU†)−1) and S∗ = I − F∗ (YU†)−1
, especially

when e ̸= 0.

2.4.3 Identifiability of Case 2

In the context of Case 2, we first present a theorem that proves identifiability under
certain conditions. Subsequently, we aim to explore this theorem to illustrate its con-
nection with problem (2.17). We aim to use the connection between the two theorems
as a promising starting point to explain where our work begins.

Theorem 2. In [8] it is proven that the matrix S is identifiable if it represents a directed
acyclic graph (DAG) and the error term e follows a normal distribution N (0, σ2I).

Although this theorem appears straightforward, the proof is quite complex, requiring
numerous lemmas.

This theorem indeed addresses the first issue, indicating that different DAGs G and G ′

will lead to different results for S. Here, I merely wish to present an outline of what their
optimization problem establishes. This actually represents another viewpoint of their
theorem, namely that the optimization problem they propose is capable of converging
to the correct result.

11



Using (2.16), we know that y = (I − S)−1e, so y is distributed as N (0, (I − S)−1(I −
S)−⊤). Then, the probability density function p(y) for y is given by:

p(y) =
1

(2π)N/2|Σy|1/2
exp

(
−1

2
y⊤Σ−1

y y

)
(2.27)

where Σy = (I− S)−1(I− S)−⊤ is the covariance matrix.

Let f = − log p(Y), then

f =
NT

2
log
(
2πσ2

)
+

1

2σ2
tr
{
Y⊤(I− S)⊤(I− S)Y

}
(2.28)

Applying the trace property, it can also be written as

f =
NT

2
log
(
2πσ2

)
+

T

2σ2
tr
{
(I− S)⊤(I− S)Cy

}
(2.29)

where Cy = 1
T
YY⊤.

Define the set of all adjacency matrices of directed acyclic graphs as S . Then it can
be proven that the solution to

σ2∗,S∗ = argmin
σ̂2>0,Ŝ∈S

f(σ̂2, Ŝ) + λ∥Ŝ∥0 (2.30)

converges to the true values of σ2 and S as T approaches infinity, where λ is a scale
value only related to the sample number.

Although the theorem is powerful, the inclusion of the L0 norm often leads to optimiza-
tion difficulties. Consequently, several studies [9, 10] have transformed this problem by
approximating the L0 norm with the L1 norm. This approximation yields very effective
results.

2.4.4 Connecting the Methods

Now, we would like to discuss some connections between (2.28) and (2.17). In (2.28), if
we assume that σ is known and we ignore the sparsity, then the problem is solely related
to minimizing the expression tr

{
Y⊤(I− S)⊤(I− S)Y

}
. From (2.19), it is evident that

when U = 0, then also (2.17) reduces to minimizing tr
{
Y⊤(I− S)⊤(I− S)Y

}
.

Therefore, the method of [7] can be viewed as minimizing the difference between Y and
SY+FU. Similarly, the approach of [8] can be considered as minimizing the difference
between Y and SY + FU under known σ2.

Based on this foundational understanding, we will propose a signal matching method
in the following chapter, which is detailed in Section 3.1.
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2.5 Binary Quadratic Programming

The motivation for introducing binary quadratic programming (BQP) stems from its
relevance in the subsequent derivations concerning estimating an undirected SEM. In
the next chapter, we will transform this GTI problem into a BQP format.

BQP involves minimizing a quadratic function subject to binary constraints on the
variables. It is widely recognized for its computational challenges, especially due to
its NP-hard nature. In this context, we utilize an approximation technique called
semi-definite relaxation (SDR) [23]. This method approaches the solution by relaxing
the original optimization problem into a convex form. Although this relaxation is
an approximation, it is powerful and effective for handling NP-hard problems. For a
detailed discussion on the efficacy and theoretical underpinnings of SDR, see [24].

2.5.1 Problem Formulation

Let us first describe the basic form of BQP [25]. Suppose C is a positive semi-definite
matrix, the variables x ∈ {−1, 1}N , and the objective is to minimize x⊤Cx. The
problem can then be stated as:

min
x∈{−1,1}N

x⊤Cx (2.31)

2.5.2 Semi-Definite Relaxation

A powerful relaxation technique for this problem is described in [25], known as SDR.
By defining X = xx⊤, the objective function can be reformulated in terms of the trace
function, transforming the quadratic form into a linear form over the matrix variable
X we obtain:

x⊤Cx = tr(Cxx⊤) = tr(CX) (2.32)

To maintain X = xx⊤ and x ∈ {−1, 1}N , it is equivalent to having rank(X) = 1,
diag(X) = 1, and X ⪰ 0. It is straightforward to derive that if X = xx⊤ and
x ∈ {−1, 1}N , then rank(X) = 1, diag(X) = 1, and X ⪰ 0. To prove the converse,
assume rank(X) = 1, diag(X) = 1, and X ⪰ 0. Since rank(X) = 1 and X ⪰ 0, X can
be written as X = xx⊤. The condition diag(X) = 1 ensures x2

i = 1 for all i, and thus
x ∈ {−1, 1}N .

Thus, solving the BQP problem is equivalent to solving the following problem:

min
X

tr(CX)

subject to X ⪰ 0,

diag(X) = 1,

rank(X) = 1

(2.33)
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The relaxed problem, removing the rank constraint, is expressed as follows:

min
X

tr(CX)

subject to X ⪰ 0,

diag(X) = 1

(2.34)

This problem is a convex optimization problem, which is classified as a semi-definite
programming (SDP) problem.

Another approach to solve the BQP problem is the branch and bound method. This
technique is supported by the cvxpy solver GUROBI [26], which accommodates 0-1
programming. By making simple adjustments to the code, we can directly apply this
method for BQP. However, despite its applicability, the branch and bound method has
several disadvantages. First, it can be computationally expensive, especially for larger
problems where the number of possible solutions grows exponentially. This growth
significantly increases the computational time, making it impractical for large-scale
applications. Additionally, while this method guarantees finding the global optimum,
the time required to reach convergence can be prohibitive, limiting its utility in scenarios
demanding quick results.

2.5.3 Extension to General BQP

We now consider extending the original optimization problem which minimizes x⊤Cx
by including a linear term and a constant, which allows the problem to take the form:

min
x∈{−1,1}N

x⊤Cx+ c⊤x+ c (2.35)

To solve this, we introduce an augmented vector x′ = [1,x⊤]⊤. Defining X′ = x′x′⊤,
the extended objective function can then be equivalently expressed as tr(C′X′), where
the augmented matrix C′ is defined as:

C′ =

(
c 1

2
c⊤

1
2
c C

)
(2.36)

Since X′ is still a positive semi-definite matrix and its diagonal is 1, we finally obtain
the problem

min Tr(C′X′)

s.t. X′ ⪰ 0,

diag(X′) = 1,

rank(X′) = 1

(2.37)

Again, dropping the rank constraint, we obtain the following SDP problem:

min Tr(C′X′)

s.t. X′ ⪰ 0,

diag(X′) = 1.

(2.38)
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2.6 Discrete Quadratic Programming

Discrete quadratic programming (DQP) is an extension of binary quadratic program-
ming (BQP). Essentially, it deals with optimization problems that extend (2.31) by
expanding the variable range from {−1, 1} to any discrete interval. That is

min
x

x⊤Cx

subject to x ∈ D1 × · · · ×Dn,
(2.39)

where each Di = {c1i , c2i , . . . , c
pi
i } is a finite subset of R, and every cji is a candidate for

Di.

Here, we will explain an SDR trick [27] to solve this problem. This trick is basically an
extension of what we used to solve the BQP.

For the objective, let

C̃ =

(
0 0⊤

0 C

)
(2.40)

and define

x′ =

[
1
x

]
(2.41)

Following the idea of SDR, we introduce

X′ = x′x′T (2.42)

Let our indexing of X′ start from 0, and let X ′
ij represent the element at the i-th row

and j-th column of X′. Then we have:

x2
i = X ′

ii, xi = X ′
0i (2.43)

For xi ∈ {c1i , c2i , . . . , c
pi
i }, the value range of (xi, x

2
i ) can be relaxed to a convex hull

formed by the corner points (cji , (c
j
i )

2).

To illustrate this convex hull, let’s take an example. Consider plotting the result for cji
on the curve y = x2. Suppose we have four points: c1i , c

2
i , c

3
i , and c4i . On the graph of

y = x2, these points correspond to the blue dots representing

{(c1i , (c1i )2), (c2i , (c2i )2), (c3i , (c3i )2), (c4i , (c4i )2)} (2.44)

By determining the convex hull of these four points, we obtain the feasible region for
(X ′

0i, X
′
ii). This region is illustrated in purple in Fig. 2.1.
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Figure 2.1: Convex hull formed by four blue points on y = x2

Denoting the convex hull for index i as CHi, our problem simplifies to

min
X′

tr(C̃X′)

subject to (X ′
0i, X

′
ii) ∈ CHi for i = 1, 2, . . . , N,

X′ ⪰ 0,

X ′
00 = 1.

(2.45)

This approach evidently encompasses the BQP, as for BQP, each Di = {−1, 1}. The
condition (X ′

0i, X
′
ii) ∈ CHi enforces X

′
ii = 1, which is the same as for a BQP.
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Extending GTI for the SEM 3
In this project, we primarily focus on extending Case 2, which states that y = Sy+ e.
Considering theorem 2, there are two constraints: first, that Smust represent a directed
acyclic graph (DAG), and second, that e must follow a Gaussian distribution with equal
variance. With respect to these constraints, we propose two directions for extension:
first, by generalizing S to another class of graphs; second, by broadening e to more
general distributions.

In this chapter, we first consider undirected graphs and initially experiment with a triv-
ial method referred to as signal matching (SigMatch). However, we will prove that this
approach fails to consistently converge to the correct graph structure. Subsequently,
we shift our focus to the concept of covariance matching (CovMatch), deriving an op-
timization problem that consistently converges to the correct solution under relatively
lenient conditions. Furthermore, we extend our consideration of e to any known Gaus-
sian distribution. Finally, we provide experiments validating the effectiveness of our
method and compare it with other approaches.

We begin with the extension of S to a class of graphs beyond the class of DAGs. For
ease of discussion, we assume that e ∼ N (0, I). Given that y = (I−S)−1e, this leads to
the mean of y, denoted µy, being zero. And the covariance matrix Σy can be derived
as:

Σy = E[yy⊤] = (I− S)−1E[ee⊤](I− S)−⊤ = (I− S)−1(I− S)−⊤. (3.1)

Corresponding to the discussions in Subsection 2.3.1, this formulation implies that
y follows a normal distribution, y ∼ N (µ(S),Σ(S)), where µ(S) = 0 and Σ(S) =
(I−S)−1(I−S)−⊤. If further S is symmetric, then the covariance simplifies to Σ(S) =
(I− S)−2.

3.1 Signal Matching

3.1.1 Problem Formulation

A straightforward idea is to extend S to symmetric graphs without self-loops. To
distinguish between the estimated and the actual S, we use Ŝ for the estimated graph.
It is well known that symmetry corresponds to Ŝ = Ŝ⊤, and the absence of self-loops
is represented by diag(Ŝ) = 0.

Following our previous discussion, we aim to minimize the difference between Y and
SY+FU, whereU = 0. Thus, we naturally obtain the following optimization problem:

Optimization Problem 1.
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min
Ŝ

1

T
∥Y − ŜY∥2F

subject to Ŝ = ŜT ,

diag(Ŝ) = 0.

(3.2)

In trace form this is equal to

min
Ŝ

tr
(
Ŝ2Cy

)
− 2 tr(ŜCy) + tr(Cy)

subject to Ŝ = ŜT ,

diag(Ŝ) = 0,

(3.3)

where Cy = 1
T
YYT represents the sample covariance matrix.

3.1.2 Identifiability Analysis

The formulation of Optimization Problem 1 is not new, see for instance [12]. However,
in our testing, although this method can produce approximately correct graphs for
simple structures, it generally fails to correctly recover the graph in more complex
scenarios. This raises a significant misconception: it is unclear whether the method
itself is inadequate, or if the failure to converge to the correct result is due to insufficient
observations. To address this, we consider a hypothetical scenario with an infinite
number of observations, or equivalently, we consider the expected value of the objective
function. In other words, we consider a new optimization problem:

Optimization Problem 2.

S∗ = argmin
Ŝ

E{∥y − Ŝy∥2}

subject to Ŝ = Ŝ⊤

diag(Ŝ) = 0

(3.4)

By doing that, we can successfully prove that it is impossible to correctly reconstruct
the graph solely through the Optimization Problem 2. This also indicates that for
simple graphs, the earlier mentioned results were only somewhat related to the true
graph, they were not identical. This lack of identifiability is shown in the next theorem.

Theorem 3. Assume that the signal and the graph satisfy the SEM relation y = Sy+e,
where e ∼ N (0, I), and S is a non-zero hollow symmetric matrix. Then it follows that
the solution to Optimization Problem 2 is not exact, i.e., S∗ ̸= S.

Proof. In this proof, we will make use of the following two lemmas.

Lemma 1. If matrix A is symmetric, then A is diagonalizable and its eigenvectors can
form an orthogonal matrix. In other words, there exists an orthogonal matrix P and a
diagonal matrix D such that A = PDP⊤, where P⊤ = P−1, demonstrating that P is
an orthogonal matrix.
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Lemma 2. If matrices A and B are diagonalizable, such that A = PADAP
−1
A and

B = PBDBP
−1
B , then AB = BA if and only if A and B are simultaneously diagonal-

izable [28].

We start from the basic expression of the error:

∥y − Ŝy∥2

=∥(I− Ŝ)y∥2

=y⊤(I− Ŝ)⊤(I− Ŝ)y

=tr
(
(I− Ŝ)2(yy⊤)

) (3.5)

Since E{yy⊤} = E{(I− S)−1ee⊤(I− S)−⊤} = (I− S)−2, the objective becomes

f(Ŝ) = tr
(
(I− S)−2(I− Ŝ)2

)
(3.6)

Without considering any constraints, we now differentiate with respect to Ŝ, which
leads to

∂f

∂Ŝ
= (I− S)−2Ŝ+ Ŝ(I− S)−2 − 2(I− S)−2 (3.7)

If Ŝ = S, and Ŝ is also the optimal solution, we aim to derive a contradiction.

Considering the symmetry of S, according to [29], the derivative becomes

df

dŜ
=

∂f

∂Ŝ
+

∂f

∂Ŝ⊤
−Diag

∂f

∂Ŝ
(3.8)

Since ∂f

∂Ŝ
= ∂f

∂Ŝ⊤ and df

dŜ
should be a diagnal matrix, then also ∂f

∂Ŝ
should be a diagonal

matrix.

In conclusion, ∂f

∂Ŝ
may be non-zero only on the diagonal, and should be zero elsewhere.

That is,
∂f

∂Ŝ
= diag(λ), λ ∈ RN×1 (3.9)

According to Lemma 1, the matrix S is diagonalizable. Let the eigenvalue decompo-
sition (EVD) of S be UΛUT , where U is an orthogonal matrix and Λ is a diagonal
matrix containing the eigenvalues of S. Consequently, the inverse square of I − S can
be expressed as:

(I− S)−2 = U(I−Λ)−2UT (3.10)

So S and (I − S)−2 are simultaneously diagonalizable. Referring to Lemma 2, S and
(I− S)−2 commute, and hence we can write

∂f

∂Ŝ
= 2(I− S)−2Ŝ− 2(I− S)−2

= 2(I− S)−2(Ŝ− I)

= −2(I− S)−1,

(3.11)
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where the last equation is obtained by plugging in as optimal solution Ŝ = S.

As we mentioned, optimality means that

−2(I− S)−1 = diag(λ),

leading to (note that x = Sx+ e is indefinite when I− S is not invertible)

S = I− diag(λ/2)−1

Thus, S should be a diagonal matrix which leads to a contradiction.

3.2 Covariance Matching

In this section, we introduce the first successful method capable of recovering a symmet-
ric GSO S from a SEM. We begin by discussing the motivation behind this approach.
We then proceed to derive the related optimization problem, specifically a BQP prob-
lem.

3.2.1 Motivation

The following exposition encapsulates the thought process underlying our approach to
this problem.

Initially, we consider the relationship y = (I − S)−1e, where e follows a zero mean
white Gaussian distribution, thereby implying that y is also Gaussian. For Gaussian
distributions, knowing the mean and the covariance matrix is tantamount to possessing
complete knowledge of the distribution. For the considered SEM, the mean zero, and
the covariance matrix is (I− S)−2.

We typically approximate the true covariance matrix Σy with the observed covariance

matrix Cy = YY⊤

T
. Under ideal circumstances, as the number of observations tends

toward infinity, we have:
lim
T→∞

Cy = Σy

and this estimation becomes our best possible approximation of the covariance ma-
trix. This understanding forms the starting point of our approach: beginning with the
observed sample covariance matrix, which essentially retains all pertinent information
about the distribution, we try to fit this to the theoretical covariance matrix which
solely depends on the GSO.

3.2.2 Covariance Matching Optimization Problem

Let us again start from
y = (I− S)−1e

Denoting (I− S)−1 as H, we then have

y ∼ N (0,HH⊤)
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Note that since S is symmetric, H is also symmetric.

Now we basically want to estimate H. To distinguish with the true H, let us assume
the estimated variable is Ĥ and Ĥ = (I − Ŝ)−2. Following our covariance matching
idea, our objective is to estimate H such that it reproduces the same sample covariance.

Assuming that Cy = YY⊤

T
, we formulate the following optimization problem

H∗ = argmin
Ĥ

∥ĤĤ⊤ −Cy∥F

subject to diag(Ĥ−1) = 1,

Ĥ = Ĥ⊤

(3.12)

This question is hard to solve though, so we further tune this into a more manageable
form.

Let the eigenvalue decomposition (EVD) of the estimated matrix Ĥ be given by

Ĥ = Û diag(λ̂)Û⊤,

which leads to
Ĥ2 = Û diag(λ̂

2
)Û⊤. (3.13)

Notice this is naturally in an EVD form. Now the question transforms to estimating
two variables Û and λ̂. Consider the EVD of Cy that is given by

Cy = Uy diag(λy)U
⊤
y

We can then approximate the covariance matching problem by setting Û = Uy and

fitting λ̂
2
to λy. So the problem becomes

λ∗ = argmin
λ̂

∥λ̂
2
− λy∥22

subject to diag(Uydiag(λ̂
−1
)U⊤

y ) = 1.

(3.14)

To solve the above question, we firstly switch the objective and constraint. Then the
new optimization problem is formulated as

λ∗ = argmin
λ̂

∥∥∥diag(Uydiag(λ̂
−1
)U⊤

y )− 1
∥∥∥2
2

subject to λ̂
2
= λy

(3.15)

You might think we have already obtained the solution, merely needing to take a
square root of λy, but unfortunately, λy can include negative values. Now that we

can determine the absolute values of λ̂, the uncertainty remains only in their signs.
To address this uncertainty, we introduce a variable q̂ to represent the signs of each
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element in λ̂. Let q̂ ∈ {−1, 1}N×1, and λ̂ = diag(q̂)λ1/2
y . Rewriting the objective we

then obtain
∥ diag(Uy diag(λ̂

−1
)U⊤

y )− 1∥22
= ∥ diag(Uy diag(q̂

−1) diag(λ−1/2
y )U⊤

y )− 1∥22
= ∥ diag(Uy diag(q̂) diag(λ

−1/2
y )U⊤

y )− 1∥22
= ∥(Uy ⊙Uy) diag(λ

−1/2
y )q̂− 1∥22,

(3.16)

where we used that q̂−1 = q̂. Finally, defining

W = (Uy ⊙Uy) diag(λ
−1/2
y )

the objective function becomes
∥Wq̂− 1∥22

Hence, the final problem translates into

Optimization Problem 3.

q∗ = arg min
q̂∈{−1,1}N×1

∥Wq̂− 1∥22

This problem can be solved by the SDR trick we disscussed in Section 2.5.

3.2.3 Identifiability Analysis

Proving directly whether our method is identifiable poses a significant challenge;
however, we can establish that for a specific class of graphs, our estimated result
S∗ = I − Ux diag(q

∗) diag(λ−1/2
x )U⊤

x from Optimization Problem 3 converges to the
true S. It is also important to note that SDR is a powerful approach to solve Opti-
mization Problem 3, as discussed in [24].

Theorem 4. Let the EVD of the true GSO S be given by S = U diag(λ)U⊤. Further
assume p̂ is a binary variable and consider the equation

(U⊙U)|I− diag(λ)|p̂− 1 = 0. (3.17)

If this equation only has one binary solution p∗, then the estimator S∗, ob-
tained from the solution of problem Optimization Problem 3, i.e., S∗ = I −
Ux diag(q

∗) diag(λ−1/2
x )U⊤

x , will converge to the true S when the number of obser-
vations T goes to infinity.

Our proof sketch starts with observing that at T = ∞ we have Cx = Σx = (I− S)−2.
As a result, the EVD of Cx then is Cx = U(I− diag(λ))−2U⊤, and thus Ux = U and

λ−1/2
x = |1− diag(λ)|. Hence, saying that (3.17) has a unique binary solution p∗ is the

same as saying that the optimization problem only has a unique solution q∗ at T = ∞
and these solutions are then also the same.

Although this theorem may seem evident, it can be considered as a broadening of
the theorem mentioned in [14], where rank(U ⊙ U) = N − 1 is required. Under this
condition, our theorem holds trivially.
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However, our theorem has the potential to handle cases where rank(U ⊙U) < N − 1
and in our experiments, we will verify this in our last experiment.

3.3 Extension to General Distribution

In this section, we explore extending the distribution of the latent variable e. More
specifically, we assume that e ∼ N (0,Σe).

Estimating S then again boils down to estimating H = (I − S)−1. At first sight, one

could exploit the fact that Σx = HΣeH
⊤ and match ĤΣeĤ

⊤ with Cx. Solving this
matching problem is challenging though. As an alternative, observe that (HΣe)

2 =

HΣeHΣe = ΣxΣe. This allows us to match (ĤΣe)
2 with CxΣe which is similar to

(3.12), where we matched Ĥ2 with Cx. As a result, we follow again the same steps.

First, we introduce two new variables Û and λ̂ by considering the EVD of ĤΣe, i.e.,
ĤΣe = Û diag(λ̂)Û−1. This obviously leads to (ĤΣe)

2 = Û diag(λ̂)2Û−1. Computing

the EVD of CxΣe, we obtain1 CxΣe = Uxe diag(λxe)U
−1
xe . Setting now Û = Uxe and

replacing the matching problem by the constraint λ̂
2
= λxe introduces once again a

sign ambiguity. More specifically, we can change the variable λ̂ by the binary variable
q̂ ∈ {−1, 1}N×1 using λ̂ = diag(q̂)λ1/2

xe . Overall, this allows us to write Ĥ as a function
of q̂ through

Ĥ = Uxe diag(q̂)diag(λ
1/2
xe )U

−1
xeΣ

−1
e . (3.18)

The inverse of Ĥ is then given by

Ĥ−1 = ΣeUxediag(λ
−1/2
xe ) diag(q̂)U−1

xe (3.19)

and the diagonal of Ĥ−1 is

diag(Ĥ−1) = [(ΣeUxe)⊙U−⊤
xe ]diag(λ−1/2

xe )q̂. (3.20)

Finally, definingW = [(ΣeUxe)⊙U−⊤
xe ]diag(λ−1/2

xe ), the optimization problem simplifies
to:

Optimization Problem 4.

min
q̂∈{1,1}N×1

∥Wq̂− 1∥22, (3.21)

which is again a BQP that can be solved using semi-definite relaxation.

Comparing Optimization Problem 3 and Optimization Problem 4, their formulations
are almost identical. Furthermore, if we assume Σe = I, then Uxe in Optimization
Problem 4 reduces to Ux, and U−⊤

xe also reduces to Ux. Moreover, λ−1/2
xe reduces

to λ−1/2
x . This extension of the SEM problem is quite elegant, as it scarcely alters

the structure of the problem, and the complexity of solving the optimization problem
remains the same.

1Note that we use the notation U primarily to align with the previous notation and it does not imply that
U is unitary.
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3.4 Experiments

3.4.1 Graph Configuration

In order to demonstrate the superiority of our method, we selected two challenging
graph configurations for our experiments.

Fully Connected Graph: First, we generated a fully connected graph, which corre-
sponds to not making any sparsity assumptions. Specifically, we constructed a graph
with 20 nodes where every node is connected to every other node. The weights of the
edges are assigned values in the range [−2,−0.1]

⋃
[0.1, 2].

Sparse Graph: The second configuration involved generating a sparse graph. For
this setup, we chose to constrain the rank of S to N − 3. Specifically, the graph
consisted of 20 nodes with 20 edges, and the edge weights were also set within the
range [−2,−0.1]

⋃
[0.1, 2].

The experiments will demonstrate that our method can effectively address three key
issues that other methods struggle with:

• Non-sparse issues: Virtually all methods assume some level of sparsity [14, 2].

• Negative edge values: This issue, which is unresolved by methods such as those
in [2], poses significant challenges.

• Rank constraints (≤ N−2): Problems arise when Σy has repeated eigenvalues,
at which point methods relying on commutative constraints [14, 2] fail.

To configure the matrix Σe in case the latent variables are not white, we first generated
a random square root matrix, denoted as Σsqrt, which is an N × N matrix with each
element uniformly distributed in the range [-1, 1]. The matrix Σe was then formed by
ΣsqrtΣ

⊤
sqrt, ensuring that Σe is symmetric and positive definite, which is crucial for the

stability of the graph-based processes studied.

Beyond addressing these issues, our method offers numerous additional advantages,
such as requiring no parameter tuning, eliminating any scale ambiguity and handling
any latent Gaussian variables.

For each experimental setup, we provide two types of results. First, results for a sample
dataset that demonstrate what the estimation should look like for a specific graph under
ideal conditions (T → ∞) and when T = 10000. This highlights the behavior of our
method for individual graph instances.

Secondly, we report results averaged over a larger set of graphs. Specifically, we ran-
domly generate 100 graphs meeting the described criteria and we measure the distri-
bution of errors as the number of samples changes. We utilize box plots to visually
represent these results, providing a clear overview of the error distribution across dif-
ferent scenarios.

In our final experiment, we compare our method against PGL [2], SpecTemp [14] and
SigMatch [6].
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For assessing the error, we employ the normalized square error (NSE) to quantify
discrepancies between the estimated and the true graph structures. Specifically, given
the estimated graph S∗ and the true graph S, the error is measured using the following
formula:

NSE (S∗,S) =
∥S∗ − S∥2F

∥S∥2F
(3.22)

3.4.2 One-Sample Results for Sparse and Fully Connected Graphs

We begin by examining individual sample results for both sparse and fully connected
graph configurations. Fig. 3.1 illustrates the true graph configuration for the sparse
graph experiment, while Fig. 3.2 shows the true graph configuration for the fully con-
nected graph experiment. These figures provide a visual representation of the estimated
graphs under both ideal and practical conditions, allowing us to assess the effectiveness
of our method in different scenarios.

Figure 3.1: True graph configuration for the
sparse graph experiment.

Figure 3.2: True graph configuration for the
fully connected graph experiment.

Results under ideal conditions (T → ∞) for both configurations are demonstrated
in Fig. 3.3 for the sparse graph and Fig. 3.4 for the fully connected graph. In these
scenarios, the normalized square error (NSE) is smaller than 10−10, indicating highly
accurate graph estimation under ideal conditions.
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Figure 3.3: Estimated sparse graph under ideal conditions.

Figure 3.4: Estimated fully connected graph under ideal conditions.

For the finite observation case with T = 10000 samples, the results are depicted in
Fig. 3.5 for the sparse graph and Fig. 3.6 for the fully connected graph. Here, the NSE
for the sparse graph is 2.591×10−2 and for the fully connected graph, it is 1.209×10−1.
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Figure 3.5: Estimated sparse graph under practical conditions. NSE: 2.591× 10−2.

Figure 3.6: Estimated fully connected graph under practical conditions. NSE: 1.209× 10−1.

For sparse graphs, our estimations continue to be quite accurate. For fully connected
graphs, the results are acceptable, which also suggests that fully connected graphs
indeed represent a more challenging problem. In fact, addressing the challenges posed
by dense graphs was the initial motivation for developing our method, given that other
methods yield poor results for such graph configurations.

3.4.3 Average Results Across 100 Graphs

The relationship between the number of samples and the distribution of the estimation
error is depicted as follows
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Figure 3.7: Boxplot showing the distribution
of NSE as a function of sample size for sparse
graphs.

Figure 3.8: Boxplot showing the distribution
of NSE for fully connected graphs as a func-
tion of sample size.

As T → ∞, both configurations exhibit a decrease in NSE, demonstrating the effec-
tiveness of our method under varying graph densities and structures.

3.4.4 Comparision with Other Methods

Below we present a comparison of our results with those from [2]. Fig. 3.9 shows the
PGL’s performance across different graph types: small world (SW), stochastic block
model (SBM), and Barabási-Albert (BA) graphs. It is important to note that in PGL’s
context, SSEM pertains to the undirected graph SEM, which is also the focus of our
study. At the same time, we adopt the simplest assumption that Σe = I.

Unlike PGL, we did not restrict our optimization problem to non-negative weights,
which is a prerequisite for PGL’s methodology. Fig. 3.9 and Fig. 3.10 respectively
showcase the results from PGL and our CovMatch approach. In Fig. 3.9, SSEM refers
to symmetric SEM, where the symmetry of the graph aligns with the assumptions made
in our analysis. This mirrors the symmetric structure of the graph, as considered in
our scenario.

Despite the broader constraints in our method, our results for the Small World (SW)
and Stochastic Block Model (SBM) models surpass those reported by PGL. As for the
Barabási-Albert (BA) model, we conjecture that the exceptionally good performance
noted in [2] may be due to randomness. Our results show no significant distinctions
across the three graph models, while the remarkable results for the BA model in [2] are
counterintuitive.
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Figure 3.9: Performance results from PGL [2]
on SW, SBM, and BA models, demonstrat-
ing the effectiveness of non-negative weight
constraints.

Figure 3.10: Results from CovMatch indicat-
ing average Normalized Square Error (NSE)
across SW, SBM, and BA models, showcas-
ing performance without non-negative weight
constraints.

We also compare our approach (refered to as CovMatch) with SpecTemp [14] and with a

trivial signal matching approach (SigMatch) [6] based on minimizing ∥X− ŜX∥2F . Due
to the sign constraints of SpecTemp, all graphs are assigned positive weights ranging
from 0.1 to 2. At the same time, we adopt the simplest assumption that Σe = I.
In the first experiment (labelled as simple), we deliberately generate scenarios where
rank(U ⊙ U) = N − 1, using graphs with 20 nodes and 20 edges. In the second
experiment (labelled as hard), we only generate graphs with rank(U ⊙ U) < N − 1
to check the robustness of our method under less controlled conditions. Over the 100
graph realizations, we calculate the average NSE. Note that a singular value less than
5× 10−4 is considered as a rank loss here.

Figure 3.11: Average NSE for different samples.

As shown in Fig. 3.11, it is evident that SpecTemp often fails due to a loss of rank.
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Conversely, our method, CovMatch, continues to perform well. This highlights the ro-
bustness and reliability of CovMatch. Further, the SigMatch approach never converges
to the correct result, but it performs better than others with less observations. This is
because both SpecTemp and CovMatch highly rely on an accurate sample covariance,
which requires many samples.
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Extension to Directed Graphs 4
In this chapter, we address a more challenging problem: can we identify S corresponding
to directed graphs in a SEM using covariance matching? Our discussion is structured
as follows: we first analyze why this problem is particularly difficult, primarily due to
the issue of having more variables than equations. Consequently, we do not aim to
solve the general problem outright; instead, we propose that by imposing a sparsity
constraint, a fundamental optimization problem can be derived. We then discuss how
this optimization problem can be relaxed to a convex optimization problem. Addi-
tionally, we will introduce the use of the Schur complement as a method to make the
problem solvable by cvx [30]. This chapter also serves as a preparation for the next
chapter. We will not present experimental results here, as a more unified method will
be introduced and experimentally validated in the following chapter.

4.1 Challenges for a SEM based on Directed Graphs

Before discussing how to generalize our approach to directed graphs, it is crucial to
understand why this task is inherently more difficult.

Assume we again consider the standard SEM where

y = (I− S)−1e, e ∼ N(0, I), (4.1)

yet now S is a non-symmetric but hollow matrix.

Again, let H = (I − S)−1, which is also a non-symmetric matrix. Assuming the SVD
of H is UΛV⊤, we obtain

Σy = E[yyT ] = HH⊤ = UΛ2U⊤. (4.2)

As previously discussed, for Gaussian distributions, knowing the variance and mean
equates to knowing all information about y. However, from the result above, it is
apparent that we invariably lose all information about V. It is also worthy to note that
there is no sign ambiguity on Λ here, because we are utilizing the SVD, which ensures
Λ ≥ 0. Therefore, all uncertainties are concentrated in the unitary matrix V.

Now, let us consider whether we have sufficient information to solve for V. In the
general case, for any S, it is impossible to determine the corresponding V.

Considering all elements of the unitary matrix, we have N2 variables. The constraints

of unitarity equate to N(N−1)
2

orthogonal conditions plus N conditions for vector norms
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to be 1. The only remaining constraints are the diagonal constraints, which are N
equations. Thus, we have:

N(N − 1)

2
+N +N =

N(N + 3)

2

equations. When N > 3, N(N+3)
2

< N2, implying that the number of unknowns exceeds
the number of equations, rendering the graph unidentifiable.

While solving for the general directed graph in the context of a SEM is impractical, it
is important to recognize that graphs in real-life applications are typically sparse. This
means that most edge weights are zero or close to zero. Hence, including a sparsity
constraint, we might be able to boost the number of equations and correctly estimate
the graph. In fact, our experiments have demonstrated that correct results can be
obtained when the graph is sparse.

4.2 Covariance Matching with Sparsity

Building on the challenges described earlier, we incorporate the sparsity information
of the graph to formulate our new optimization problem. We assume a constraint that
allows the sparsity level of Ŝ, measured by the ℓ0-norm, to be less than or equal to

smax. As before, we want to match ĤĤ⊤ and Cy = YY⊤

T
. This leads to the following

problem
H∗ = argmin

Ĥ
∥ĤĤ⊤ −Cy∥F

subject to diag(Ĥ−1) = 1,

∥I− Ĥ−1∥0 ≤ smax

(4.3)

To estimate H, assume the EVD of Cy is given by Cy = Uy diag(λy)U
⊤
y . The SVD

of Ĥ is denoted as Û diag(λ̂)V̂⊤, thereby introducing three new variables, Û, λ̂, and

V̂. Further observe that ĤĤ⊤ = Û diag(λ̂
2
)Û⊤, which itself is in the form of an EVD.

To approximate the solution of the earlier problem, we now set Û = Uy and λ̂ = λ1/2
y ,

which means Ĥ = Uy diag(λ
1/2
y )V̂⊤ can be represented by the single unitary variable

V̂. Rewriting the diagonal constraint as objective, we then obtain the problem

argmin
V̂

∥∥∥diag(V̂ diag(λ−1/2
y )U⊤

y − I)
∥∥∥
F

subject to: V̂V̂⊤ = I,

∥I− V̂ diag(λ−1/2
y )U⊤

y ∥0 ≤ smax

(4.4)

This optimization problem still presents two challenges. The first is the difficulty in
optimizing the L0 norm, which is inherently non-convex and hard to handle directly.
As an approximation, we can transform the L0 norm into an L1 norm and incorporate
it into the objective function. This leads to
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argmin
V̂

∥∥∥diag(V̂ diag(λ−1/2
y )U⊤

y − I)
∥∥∥
F
+ α

∥∥∥V̂ diag(λ−1/2
y )U⊤

y − I
∥∥∥
1

subject to: V̂V̂⊤ = I
(4.5)

The second issue concerns the non-convex space formed by unitary matrices. In this
chapter, we propose a relaxation method to address this challenge. In the following
chapter, we will introduce a more robust solution that combines this relaxation ap-
proach with a projection.

4.2.1 Convex Relaxation for Unitary Variable

In our optimization framework, the sole non-convex constraint is V̂V̂⊤ = I. To sim-
plify this, we propose relaxing it to V̂V̂⊤ ⪯ I, thus creating a convex feasible space.
Although it is not immediately obvious, we will demonstrate next why this relaxation
leads to a convex space. Note that this modification is akin to the scalar scenario where
the region of x constrained by x2 = 1 is non-convex, but the region of x constrained by
x2 ≤ 1 is convex.

Using this relaxation technique, we can finally rewrite our problem as

Optimization Problem 5.

argmin
V̂

∥∥∥diag(V̂ diag(λ−1/2
y )U⊤

y − I)
∥∥∥
F
+ α

∥∥∥V̂ diag(λ−1/2
y )U⊤

y − I
∥∥∥
1

subject to: V̂V̂⊤ ⪯ I
(4.6)

4.2.1.1 Proof of Convexity for Relaxed Constraint

To prove the convexity of the constraint V̂V̂⊤ ⪯ I, we introduce the Schur complement
and the lemma [31] :

Lemma 3 (Schur Complement Condition). For any symmetric matrix M of the form

M =

(
A B
B⊤ C

)
, (4.7)

if C ≻ 0, then M ⪰ 0 if and only if A−BC−1B⊤ ⪰ 0.

Using the Schur complement lemma, we set A = C = I and B = V̂ in the lemma’s
framework, yielding the matrix

V̄ =

(
I V̂

V̂⊤ I

)
.

According to the lemma, since I ≻ 0, V̄ ⪰ 0 if and only if I− V̂V̂⊤ ⪰ 0 (or V̂V̂⊤ ⪯ I).

As a result, V̂V̂⊤ ⪯ I characterizes a convex set, since the equivalent condition V̄ ⪰ 0
is a linear matrix inequality which always represents a convex set.
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Introducing this property is beneficial for another reason. Although a convex region
has been identified for the constraint V̂V̂⊤ ⪯ I, a direct implementation in code is
not feasible as such a constraint does not satisfy the disciplined convex programming
(DCP) rules [32]. However, the configuration

V̄ =

(
I V̂

V̂⊤ I

)
⪰ 0

adheres to DCP rules and can be solved using convex optimization tools like CVX.
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Unified SEM Approach 5
Just as we extended the SEM for undirected graphs from white to non-white latent
variable scenarios, we have long contemplated a similar expansion for the SEM using
directed graphs. The excitement surrounding this prospect stems from its potential
to complete our theoretical framework of the SEM. If successful, we would have a
comprehensive model covering all permutations: SEM for white latent variables and
undirected graphs, for non-white latent variables and undirected graphs, for white latent
variables and directed graphs, and the final piece of the puzzle, for non-white latent
variables and directed graphs.

In this chapter, we will introduce a new methodology robust enough to handle nearly
all scenarios within a unified framework, regardless of whether the graph is directed or
contains cycles. The only necessary condition is that S must be sparse. It is worthy
to note this does not imply that previous discussions are entirely irrelevant. Since for
undirected graphs, the methods previously discussed actually do not require the graph
to be sparse.

5.1 Covariance Matching Optimization Problem

In this chapter, assume that y and e satisfy the regular SEM

y = (I− S)−1e,

where e ∼ N (0,Σe) with Σe known but e unknown. The underlying graph here is
known to be sparse, so S is a sparse matrix. Our goal is to derive S from Y. Again,

we denote the sample covariance by Cy = YY⊤

T
and let H = (I− S)−1.

The covariance matrix of y, Σy, can be expressed as:

Σy = E{yy⊤} = HΣeH
⊤. (5.1)

Now, we aim to match the covariance matrix Cy with ĤΣeĤ
⊤. Similar to (4.3), we

can formulate the problem

H∗ = argmin
Ĥ

∥ĤΣeĤ
⊤ −Cy∥F

subject to diag(Ĥ−1) = 1,

∥I− Ĥ−1∥0 ≤ smax

(5.2)
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To minimize the objective, we apply the Cholesky decomposition1. Given that both
Cy and Σe are generally positive definite2, they can be uniquely decomposed as follows

Cy = LyL
⊤
y ,

Σe = LeL
⊤
e .

(5.3)

Rewriting the objective, we obtain

∥ĤΣeĤ
⊤ −Cy∥F = ∥(ĤLe)(ĤLe)

⊤ − LyL
⊤
y ∥F .

Forcing this objective to zero, we can state that Ly and ĤLe can differ only by a

unitary matrix V̂, that is
ĤLe = LyV̂. (5.4)

This allows us to replace the GSO variable Ŝ by the unitary variable V̂ as

Ŝ = I− Ĥ−1 = I− LeV̂
⊤L−1

y . (5.5)

Observing that Ŝ is linear with respect to V̂, which is similar to the conditions in (4.5),
allows for the following problem formulation:

V∗ = argmin
V̂

∥∥∥diag(LeV̂
⊤L−1

y − I)
∥∥∥
F
+ α

∥∥∥LeV̂
⊤L−1

y − I
∥∥∥
1

subject to: V̂V̂⊤ = I
(5.6)

5.2 Iterative Method

The primary reason for proposing an iterative method, is that V̂∗ often fails to sat-
isfy the unitarity condition. To tackle this, our strategy involves re-mapping V̂ to a
unitary matrix after each iteration. In subsequent iterations, the objective function
is augmented with a term β∥V̂ − V̂u∥F to ensure that V̂ remains close to a unitary

matrix, where V̂u is the unitary version of V̂ from a previous iteration.

5.2.1 Projection onto Unitary Matrix Space

To project a matrix V̂ onto the space of unitary matrices. Denote the projection result
by V̂u. This process is equivalent to solving an optimization problem formulated as:

min
V̂uV̂⊤

u =I
∥V̂ − V̂u∥F . (5.7)

This problem is equivalent to minimizing the Frobenius norm difference between V̂V̂⊤
u

and I, which is expressed as:

min
V̂uV̂⊤

u =I
∥V̂V̂⊤

u − I∥F , (5.8)

1We can also use the SVD, but the Cholesky decomposition is more concise and avoids excessive notation.
2The Cholesky decomposition is unique for positive definite matrices and exists for semidefinite matrices.
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characterizing it as an orthogonal Procrustes problem [33].

The closed-form solution to this problem can be obtained by performing an SVD of V̂,
given by V̂ = UvΣvR

⊤
v . And the unitary matrix V∗

u is then determined as

V∗
u = UvR

⊤
v . (5.9)

5.2.2 Algorithm Description

The following algorithm provides a detailed step-by-step procedure to implement the
iterative method:

Algorithm 1 Iterative Method to Ensure Unitarity of V

Require: Initial guess for V, V(0), tolerance ϵ, maximum iterations N , weights α, β
Ensure: V approximates a unitary matrix

for k = 1 to N do
Step 1: Project V(k) onto the unitary space to get V

(k)
u

Step 2: Solve the optimization problem for V(k+1):

V(k+1) = argmin
V̂

∥∥∥diag(LeV̂
⊤L−1

y − I)
∥∥∥
F
+ α

∥∥∥LeV̂
⊤L−1

y − I
∥∥∥
1
+ β∥V̂ −V(k)

u ∥F

Step 3: Check for convergence:

if ∥V(k+1) −V
(k)
u ∥F < ϵ then

break
end if

end for
return Vk+1

This algorithm iteratively adjusts V, refining it towards unitarity, thereby enhancing
the alignment of the solution with the required mathematical properties.

5.3 Experiment

In this chapter, we firstly validate our method on graphs with cycles to demonstrate its
effectiveness. In contrast to Section 3.4, we have not conducted experiments on a large
number of graphs. This limitation is primarily due to the high computational com-
plexity of our algorithm, which makes extensive testing time-consuming and resource-
intensive. Despite these limitations, we provide a comparative analysis with the results
from [9], using graph structures generated from their code. The outcomes show that
our method is more accurate than the one proposed in [9].

5.3.1 Experiment on Directed Graphs with Cycles

A random directed graph with 15 nodes and 15 edges is generated repeatedly until a
graph containing at least one cycle is obtained. If a generated graph is acyclic, it is
discarded and the process is retried. The obtained graph from Fig. 5.1 has two cycles:
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9 → 10 → 7 → 2 → 9, 1 → 13 → 4 → 1 . Additionally, we generate Σx following the
method outlined in Subsection 3.4.1 for generating Σe.

Figure 5.1: True graph configuration for a directed graph with cycles.

Figure 5.2: Graph estimation result with NSE
= 5.907× 10−3 at T = 1000 samples.

Figure 5.3: Graph estimation result with NSE
= 1.468× 10−3 as T → ∞.

The estimation results at different sample sizes are depicted in Fig. 5.2 and Fig. 5.3. At
T = 1000 samples, the NSE is 5.907× 10−3 (Fig. 5.2), which improves to 1.468× 10−3

as the number of samples approaches infinity (Fig. 5.3). In contrast to undirected
graphs, our method does not completely converge to the true graph configuration. A
notable aspect of these results is that our algorithm achieves commendable accuracy
with relatively few samples, a benefit likely due to the integration of sparsity principles
into our model.
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5.3.2 Comparsion

Here, we compare our CovMatch method with the DAGs with no tears method [9]
for scenarios involving infinite observations. The DAGs with no tears approach is
specifically designed for DAGs and is capable of handling a variety of non-Gaussian
distributions. However, it cannot address scenarios involving non-white Gaussian noise.
Thus, we consider e ∼ N (0, I). Here, we adopt the graph used in the DAG notears,
which is generated when the random seed is set to zero.

Figure 5.4: Results using DAGs with no tears
method. NSE = 6.727× 10−3.

Figure 5.5: Results using our CovMatch
method. NSE = 3.944× 10−5.

As shown in Fig. 5.4 and Fig. 5.5, our CovMatch method significantly outperforms the
DAGs with no tears method. Indeed, for DAGs, our results nearly match the true graph
configuration. This suggests that graphs with cycles are inherently more challenging
than acyclic graphs.
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Extension to Polynomial Model 6
This chapter introduces an extension of our method to encompass polynomial relation-
ships. We start by defining the problem and detailing its divergence from standard SEM
formulations. We assume that the latent variables follow a zero mean white Gaussian
distribution and that S is a hollow symmetric matrix. Within this framework, we de-
rive a discrete quadratic programming (DQP) [34], for which we introduce a relaxation
method Section 2.6 to find a solution.

We then broaden our discussion to scenarios accommodating a general Gaussian dis-
tribution, Finally, we will present a series of experiments designed to validate the
effectiveness of our method.

6.1 Covariance Matching Optimization Problem

Assume y = Hx, where H is a polynomial of S, denoted by h(S) and S is a hollow
symmetric matrix (for a SEM, h(S) = (I − S)−1). Here, we use x, which actually
represents unmodeled inputs, analogous to the notation e commonly used in a SEM to
denote unmodeled noise.

Using the following notation

Σy = E{yyT} = h(S)h(S)⊤ = h(S)2, (6.1)

we will then try to match Cy to h2(Ŝ). This leads to the following problem

Ŝ∗ = argmin
Ŝ

∥h(Ŝ)2 −Cy∥2F

subject to diag(Ŝ) = 0,

Ŝ = Ŝ⊤.

(6.2)

To solve this, we replicate our EVD trick used in Subsection 3.2.2. Let Ŝ =
Û diag(λ̂)Û⊤, which leads to h2(Ŝ) = Ûh2(diag(λ̂))Û⊤. Further, let the EVD of
the sample covariance matrix be given by Cy = Uy diag(λy)U

⊤
y . To match Cy and

h2(Ŝ), we then set Û = Uy and h2(diag(λ̂)) = diag(λy).

Switching again the objective and constraint, we finally obtain the problem

λ∗ = argmin
λ̂

∥(Uy ⊙Uy)λ̂∥22

subject to h2(diag(λ̂))− diag(λy) = 0.
(6.3)
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The constraint basically represents a set of scalar polynomial constraints of the form
h2(λ̂i) − λi,y = 0, i = 1, 2, . . . , N , where λ̂i (λi,y) denotes the ith element of λ̂ (λy).
Denoting the roots of the ith scalar polynomial as Ci = {c1i , c2i , . . . , c

pi
i } we can replace

h2(λ̂i)− λi,y = 0 by λ̂i ∈ Ci. Our proposed problem can finally be stated as

Optimization Problem 6.

λ∗ = argmin
λ̂

∥(Uy ⊙Uy)λ̂∥22

subject to λ̂i ∈ Ci, i = 1, 2, . . . , N.
(6.4)

Remark 2. Let us explore how Optimization Problem 6 specializes to Optimization
Problem 3. If we set h(S) = (I − S)−1 in Optimization Problem 6, then all solutions

to the equation h2(diag(λ̂))− diag(λy) = 0 can be expressed as λ̂ = diag(λ−1/2
y )q̂− 1,

where q̂ ∈ {−1, 1}N×1. Therefore, the objective of Optimization Problem 6 can be

rewritten as (Uy⊙Uy)(diag(λ
−1/2
y )q̂−1), which, due to the property (Uy⊙Uy)1 = 1,

becomes identical to the problem defined in Optimization Problem 3. Thus, Optimiza-
tion Problem 6 can be viewed as an extension of Optimization Problem 3.

Since
∥(Uy ⊙Uy)λ̂∥22 = λ̂

⊤
(Uy ⊙Uy)

⊤(Uy ⊙Uy)λ̂,

this problem can be solved using the method discussed in Section 2.6.

6.2 Extension of the Latent Variable Distribution

The previous assumption that x ∼ N (0, I) is overly idealistic and significantly limits
the applicability of the method. To address these limitations and apply the method to
more realistic scenarios, we propose a method for a general Gaussian distribution.

Consider the latent variables x to be normally distributed as x ∼ N (µx,Σx) (µx ̸= 0),
where both µx and Σx are known. For y, the sample mean and covariance are denoted
by my and Cy, respectively.

The first step involves estimating H in the relation y = Hx, where H = h(S) is a
polynomial of S. In a second step we then estimate S from H.

To estimate H, we consider the relation Σy = HΣxH
⊤. Hence, we could match

ĤΣxĤ
⊤ with Cy.

Solving this matching problem is challenging though. As an alternative, observe that
(HΣx)

2 = HΣxHΣx = CyΣx. This allows us to match (ĤΣx)
2 with CyΣx which is

similar to (3.12) and (6.2), where we matched Ĥ2 with Cy.

Assume the EVD of ĤΣx is given by1 ĤΣx = Û diag(λ̂)Û−1, then (ĤΣx)
2 =

Û diag(λ̂)2Û−1. For the EVD of CyΣx, let CyΣx = Uyx diag(λyx)U
−1
yx . Setting

1Here, the notation U is again primarily used to align with previous notation and does not imply that U
is unitary.
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Û = Uyx and λ̂
2
= λyx concludes the covariance matching but introduces a sign

ambiguity. To resolve this, introduce q̂ ∈ {−1, 1}N×1, and define λ̂ = diag(λyx)q̂.

We can then write Ĥ as

Ĥ = UyxD
1/2
yx diag(q̂)U−1

yxC
−1
x . (6.5)

Now we want to match the mean, that is match Ĥµx to my. Notice that

Ĥµx = UyxD
1/2
yx diag(q̂)U−1

yxC
−1
x µx = UyxD

1/2
yx diag(U−1

yxC
−1
x µx)q̂ (6.6)

Let W = UyxD
1/2
yx diag(U−1

yxC
−1
x µx), the resulting optimization problem is given by

Optimization Problem 7.

min
q̂∈{1,1}N×1

∥Wq̂−my∥2F (6.7)

This is again a BQP and can be solved by the methd in Section 2.5

After estimating H, the next step involves estimating S from H, which is actually
matching h(Ŝ) to Ĥ. This procedure is analogous to our previous approach of matching

h2(Ŝ) to Cy and will not be elaborated further in this thesis.

Remark 3. One might wonder why we do not utilize the symmetric properties in our
optimization problem, but instead use the mean as the basis of our optimization. The
following lemma, with a proof provided by Dan Fulea [35], clarifies this choice.

Lemma 4. Let H and Cx be symmetric matrices, with Cx being invertible, and sup-
pose HCx has an EVD given by UDU−1. If D has all distinct diagonal values, then,
for any diagonal matrix D′ , UD′U−1 is always symmetric.

Given the lemma discussed, we recognize that the condition of symmetry for the matrix
S is almost naturally fulfilled. In other words, this implies that regardless of the choice
of q in Optimization Problem 7, for a large portion of S, the estimated H∗ is invariably
symmetric. Thus, the symmetry of H is almost redundant information in this context.

Remark 4. Here, we assume that ĤCx admits a real-valued EVD. Actually, a real-
valued EVD exists if ĤCx is a full rank matrix with distinct eigenvalues. Here, EVD

exists because it has distinct eigenvalues [36]. It’s real because λ(ĤCx) = λ(C
1
2
xĤC

1
2
x )

and all eigenvalues of C
1
2
xĤC

1
2
x are real. This is a corollary from [37]

6.3 Experiments

6.3.1 Simulation Experiment

Here we consider 100 graphs with 20 nodes and 40 edges with edge weights belonging
to [−2,−0.1] ∪ [0.1, 2].
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The function h(λ), representing the spectral filter applied to the Laplacian eigenvalues,
was chosen to be a cubic polynomial given by:

h(λ) = h3λ
3 + h2λ

2 + h1λ+ h0,

where h0, h1, h2, and h3 are coefficients uniformly randomly drawn from the interval
[−1, 1].

To configure the covariance Σx, we first generated a random sqaure root matrix, de-
noted as Σsqrt, which is an N × N matrix with each element uniformly distributed in
the range [-1, 1]. The matrix Σx was then formed by ΣsqrtΣ

⊤
sqrt, ensuring that Σx is

symmetric and positive definite, which is crucial for the stability of the graph-based
processes studied. For the latent mean µx, each entry is uniformly at random drawn
from the interval [−1, 1].

(a) Boxplot of average NSE for Ĥ for different
sample sizes

(b) Boxplot of average NSE for Ŝ for different
sample sizes

Figure 6.1: As T → ∞, the average NSE decreases to below the order of 10−5.

As shown in the Fig. 6.1b, with the increase in the number of samples, the NSE for
most graphs reduces to very low levels, although it remains relatively high for a few.
When we let T → ∞, the NSE drops below 10−5 for all graphs, demonstrating that our
method can nearly perfectly estimate the graph structure given a sufficient number of
samples.

6.3.2 Real Data Experiment

We also compare our approach with network deconvolution (referred to as NetDeconv)
[15], which similarly involves estimating S from H. In this experiment, each node
within the network corresponds to an amino acid residue, and the edges denote mutual
information, reflecting co-variation among residues across multiple sequence alignments
that include 2,000 to 72,000 sequences. Our objective is to deduce structural constraints
among amino acid pairs to aid in predicting protein structures.
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We employ a relatively straightforward polynomial h(x) = 1
80
(x3 + 2x2 + 4x), whereas

NetDeconv approximates h(x) = x
1−x

. Terms such as “1wvn” shown in Fig. 6.2 rep-
resent different protein labels. The figure illustrates that in various cases, our results
outperform those of NetDeconv.

Figure 6.2: Real contact edge recovery as a function of the number of edges considered.
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Conclusion and Future work 7
7.1 Conclusions

In this thesis, as shown in Table 7.1, we have systematically addressed a broad class
of problems in graph topology identification (GTI) within the framework of covariance
matching. Our method introduces a straightforward notion: the desire for our estimates
to reproduce the observed covariance. Our final experimental results demonstrate that
our approach is more powerful than many existing methods and shows substantial po-
tential for addressing more complex issues in future extensions. Overall, the covariance
matching approach introduces new possibilities and directions within the field of GTI.

Table 7.1: Overview of Our Method’s Applicability

Model Type Is Directed Is Sparse Latent Variable Distribution Applicability
SEM No – N (0,Σ) Applicable
SEM Yes No N (0,Σ) Unsolvable
SEM Yes Yes N (0,Σ) Applicable
PM No – N (µ,Σ),µ ̸= 0 Applicable
PM No – N (0, I) Applicable
PM Yes – – Unknown

Specifically, we started with undirected graphs, proving that for a large portion of
graphs, our method can converge to the true graph structure, a feat unachievable by
other methods based solely on signal matching. We studied this method for white as
well as non-white Gaussian latent variables.

Furthermore, we ventured into the theoretically challenging territory of directed graphs,
adhering still to the covariance matching approach. First, we consider a convex relax-
ation based approach for the case of white Gaussian latent variables and a sparse graph.
We then proposed a unified method capable of broadly addressing non-white Gaussian
latent variables and sparse graphs, which yielded surprisingly positive results. The fea-
sibility of our approach for cyclic graphs, seldom discussed in the literature, proved more
effective than some existing methods limited only to directed acyclic graphs (DAGs).

Finally, we extended our methodology to polynomial models, broadening the potential
applications of our approach to more complex scenarios.

In conclusion, our work not only advances the theoretical and practical aspects of GTI
but also sets the stage for future explorations that could further exploit the intricacies
of covariance matching in increasingly sophisticated models.
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7.2 Future Work

In completing this thesis, I became aware of numerous potential directions for further
research, some of which are already taking shape. I wish to candidly write these ideas
here, hoping they may guide future research along these lines. For each chapter, I have
highlighted a problem that still needs to be solved.

Firstly, while our solution for a SEM based on undirected graphs is mathematically
elegant and conceptually straightforward, it still harbors a fundamental issue: our com-
plete reliance on the fact that the spectrum (or, more specifically, the eigenvectors) for
finite samples is the same as the theoretical spectrum. This trust is not entirely feasible,
leading to performance issues for fewer observations, as discussed in Subsection 3.4.4.
Early on, I recognized this problem, which seemed formidable but not insurmountable.
A potential solution could leverage the beautiful mathematical property that the space
of unitary matrices is closed under matrix multiplication. If we have an inaccurate
spectrum Uy, we could estimate it as Ûy = UyÛ, where Û is a unitary matrix ideally
equal to the identity matrix. This problem is akin to the one described in the unified
approach of Chapter 6.

Secondly, I discovered that the unitary optimization problem, employed in the unified
approach, could be addressed via gradient descent. Indeed, computing the gradient for
a unitary matrix equates to solving an optimization problem concerning a constrained
skew-symmetric matrix, which is nearly a linear problem. This discovery could replace
our current iterative method.

Thirdly, the reason behind the success of the unified approach remains unclear. The
method has proved more successful than anticipated, leading me to hypothesize that a
significant class of graphs exists where our method is effective, or the error is bounded.
I believe this issue depends on the resolution of the second point.

Fourthly, we could think about extending our methods to dynamic scenarios. There is
a trivial approach to this: one can always obtain a covariance matrix within a window
and allow only limited changes from one window to the next.

Fifthly, regarding the polynomial model, I am convinced that a more elegant solution
exists. My method initially solves an equation h2(diag(λ̂)) − diag(λy) = 0; however,
due to errors, the equation can become rootless, rendering the problem unsolvable.
We considered alternatives to tackle this issue like gradient descent, but found them
unsatisfactory due to high order derivatives leading to significant numerical instability.
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