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Abstract—Code comments are a key software component
containing information about the underlying implementation.
Several studies have shown that code comments enhance the
readability of the code. Nevertheless, not all the comments have
the same goal and target audience. In this paper, we investigate
how six diverse Java OSS projects use code comments, with the
aim of understanding their purpose. Through our analysis, we
produce a taxonomy of source code comments; subsequently, we
investigate how often each category occur by manually classify-
ing more than 2,000 code comments from the aforementioned
projects. In addition, we conduct an initial evaluation on how
to automatically classify code comments at line level into our
taxonomy using machine learning; initial results are promising
and suggest that an accurate classification is within reach.

I. INTRODUCTION

While writing and reading source code, software engineers
routinely introduce code comments [6]. Several researchers
investigated the usefulness of these comments, showing that
thoroughly commented code is more readable and maintain-
able. For example, Woodfield et al. conducted one of the
first experiments demonstrating that code comments improve
program readability [35]; Tenny et al. confirmed these results
with more experiments [31], [32]. Hartzman et al. investi-
gated the economical maintenance of large software products
showing that comments are crucial for maintenance [12]. Jiang
et al. found that comments that are misaligned to the anno-
tated functions confuse authors of future code changes [13].
Overall, given these results, having abundant comments in the
source code is a recognized good practice [4]. Accordingly,
researchers proposed to evaluate code quality with a new
metric based on code/comment ratio [21], [9].

Nevertheless, not all the comments are the same. This is
evident, for example, by glancing through the comments in
a source code file1 from the Java Apache Hadoop Frame-
work [1]. In fact, we see that some comments target end-
user programmers (e.g., Javadoc), while others target internal
developers (e.g., inline comments); moreover, each comment is
used for a different purpose, such as providing the implementa-
tion rationale, separating logical blocks, and adding reminders;
finally, the interpretation of a comment also depends on its
position with respect to the source code.

Defining a taxonomy of the source code comments that
developers produce is an open research problem.

1https://tinyurl.com/zqeqgpq

Haouari et al. [11] and Steidl et al. [28] presented the ear-
liest and most significant results in comments’ classification.
Haouari et al. investigated developers’ commenting habits, fo-
cusing on the position of comments with respect to source code
and proposing an initial taxonomy that includes four high-
level categories [11]; Steidl et al. proposed a semi-automated
approach for the quantitative and qualitative evaluation of
comment quality, based on classifying comments in seven
high-level categories [28]. In spite of the innovative techniques
they proposed to both understanding developers’ commenting
habits and assessing comments’ quality, the classification of
comments was not in their primary focus.

In this paper, we focus on increasing our empirical under-
standing of the types of comments that developers write in
source code files. This is a key step to guide future research
on the topic. Moreover, this increased understanding has the
potential to (1) improve current quality analysis approaches
that are restricted to the comment ratio metric only [21], [9]
and to (2) strengthen the reliability of other mining approaches
that use source code comments as input (e.g., [30], [23]).

To this aim, we conducted an in-depth analysis of the
comments in the source code files of six major OSS systems
in Java. We set up our study as an exploratory investigation.
We started without hypotheses regarding the content of source
code comments, with the aim of discovering their purposes
and roles, their format, and their frequency. To this end,
we (1) conducted three iterative content analysis sessions
(involving four researchers) over 50 source files including
about 250 comment blocks to define an initial taxonomy of
code comments, (2) validated the taxonomy externally with 3
developers, (3) inspected 2, 000 source code files and manually
classified (using a new application we devised for this purpose)
over 15, 000 comment blocks comprising more than 28, 000
lines, and (4) used the resulting dataset to evaluate how
effectively comments can be automatically classified.

Our results show that developers write comments with a
large variety of different meanings and that this should be
taken into account by analyses and techniques that rely on
code comments. The most prominent category of comments
summarizes the purpose of the code, confirming the impor-
tance of research related to automatically creating this type
of comments. Finally, our automated classification approach
reaches promising initial results.



II. MOTIVATING EXAMPLE

1 p u b l i c c l a s s S T S u b s c r i p t E x p r e s s i o n ex tends STExpres s ion {
2
3 p r i v a t e s t a t i c C S p e l l i n g S e r v i c e f I n s t a n c e ;
4
5 /∗∗
6 ∗ R e t u r n s t h e c r e a t e d e x p r e s s i o n , o r n u l l i n c a s e o f e r r o r .
7 ∗ @depreca ted Rep laced by {@link # g e t E x p r e s s i o n ()}
8 ∗/
9 @Deprecated

10 p u b l i c STExpres s ion g e t S u b s c r i p t E x p r e s s i o n (){
11 i f ( f I n s t a n c e == n u l l ) {
12 f I n s t a n c e = new E x p r e s s i o n ( C o n s o l e E d i t o r s . g e t P r e f e r e n c e S t o r e ( ) ) ;
13 }
14 re turn f I n s t a n c e ;
15 }
16
17 /∗∗
18 ∗ Handle t e r m i n a t e d sub−l a u n c h
19 ∗ @param l a u n c h a t e r m i n a b l e l a u n c h o b j e c t .
20 ∗ @author J e s s e MC Wilson
21 ∗/
22 p r i v a t e vo id STLaunchTerminated ( ILaunch l a u n c h ) {
23 / / See com . v a a d i n . d a t a . que ry . Que ryDe lega t e # getPr imaryKeyColumns
24 i f ( t h i s == l a u n c h )
25 re turn ;
26 / / Remove sub launch , k e e p i n g t h e p r o c e s s e s o f t h e t e r m i n a t e d l a u n c h t o
27 / / show t h e a s s o c i a t i o n and t o keep t h e c o n s o l e c o n t e n t a c c e s s i b l e
28 i f ( subLaunches . remove ( l a u n c h ) != n u l l ) {
29 / / t e r m i n a t e o u r s e l v e s i f t h i s i s t h e l a s t sub l a u n c h
30 i f ( subLaunches . s i z e ( ) == 0) {
31 / / TODO: Check t h e p o s s i b i l i t y t o e x c l u d e i t
32 / / m o n i t o r . e x l u d e ( ) ;
33 m o n i t o r . subTask ( ” T e r m i n a t e d ” ) ; / / $NON−NLS−1$
34 f T e r m i n a t e d = t rue ;
35 f i r e T e r m i n a t e ( ) ;
36 / / %%%
37 }
38 }
39 }
40 }

Listing 1. Example of Java file.

Listing 1 shows a Java source file example containing both
code and comments. In a well-documented file, comments help
the reader with a number of tasks, such as understanding the
code, knowing the choices and rationale of authors, and find-
ing additional references. When developers perform software
maintenance, the aforementioned tasks become mandatory
steps that practitioners should attend. The fluency in perform-
ing maintenance tasks depends on the quality of both code
and comments. When comments are omitted, much depends
on developers’ ability and code complexity; when well-written
comments are present, the maintenance could be simplified.

A. Code/comment ratio to measure software maintainability
When developers want to estimate the maintainability of

code, one of the easiest solutions consists in the evaluation
of the code/comment ratio proposed by Garcia et al. [9]. By
evaluating the aforementioned metric in the snippet in Listing
1, we find an overall indicator of good quality. However, the
evaluated measure is inaccurate. The limitation arises from the
fact that this metric considers only one kind of comment. More
precisely, Garcia et al. focus only on the presence or absence
of comments, omitting the possibility of use comments with
different benefits for different end-users. Unfortunately, the
previous sample of code represents a case where the author
used comments for different purposes. The comment on line 31
represents a note that developers use to remember an activity,
an improvement, or a fix. On line 20 the author marks his
contribution on the file. Both these two comments represent
real cases where the presence of comments increases the
code/comment ratio without any real effect on code readability.
This situation hinders the validity of this kind of metric and
indicates the need for a more accurate approach to tackle the
problem.

B. An existing taxonomy of source code comments

A great source of inspiration for our work comes from Steidl
et al. who presented a first detailed approach for evaluating
comment quality [28]. One of the key steps of their approach is
to first automatically categorize the comments to differentiate
between different comment types. They define a preliminary
taxonomy of comments that comprises 7 high-level categories:
COPYRIGHT, HEADER, MEMBER, INLINE, SECTION, CODE,
and TASK. They provide evidence that their quality model,
based on this taxonomy, provides important insights on docu-
mentation quality and can reveal quality defects in practice.

The study of Steidl et al. demonstrates the importance of
treating comments in a way that suits their different categories.
However, the creation of the taxonomy was not the focus of
their work, as also witnessed by the few details given about
the process that led to its creation. In fact, we found a number
of cases in which the categories did not provide adequate
information or did not differentiate the type of comments
enough to obtain a clear understanding. To further clarify this,
we consider three examples taken from Listing 1:

Member category. Lines 5, 6, 7 and 8 correspond to the
MEMBER category in the taxonomy by Steidl et al.
In fact, MEMBER comments describe the features of a
method or field being located near to definition [28].
Nevertheless, we see that the function of line 6 differs
from that of line 7; the former summarizes the purpose
of the method, the latter gives notice about replacing the
usage of the method with an alternative. By classifying
these two lines together, one would lose this important
difference.

IDE directives. Lines 33 does not belong to any explicit
category in the taxonomy by Steidl et al. In this case,
the target is not a developer, but another stakeholder: the
Integrated Development Environment (IDE). Similarly,
line 23 does not have a category, while it is a possibly
important external reference to read for more details.

Noise. Line 36 represents a case of a comment that should
be disregarded from any further analysis. Since it does
not separate parts, the SECTION would not apply and an
automated classification approach would try to wrongly
assign it to one of the other categories. No sort of noise
category is considered.

With our work, we specifically focus on devising an em-
pirically grounded, fine-grained classification of comments
that expands on previous initial efforts. Our aim is to get
a comprehensive view of the comments, by focusing on
the purpose of the comments written by developers. Besides
improving our scientific understanding of this type of artifacts,
we expect this work to be also beneficial, for example, to the
effectiveness of the quality model proposed by Steidl et al.
and other approaches relying on mining and analyzing code
comments (e.g., [21], [30], [23]).



III. METHODOLOGY

This section defines the overall goal of our study, motivates
our research questions, and outlines our research method.

A. Research Questions

The ultimate goal of this study is to understand and
classify the primary purpose of code comments written by
software developers. In fact, past research showed evidence
that comments provide practitioners with a great assistance
during maintenance and future development, but not all the
comments are the same or bring the same value.

We started analyzing past literature looking for similar
efforts on analysis of code comments. We observed that only
a few studies define a rudimentary taxonomy of comments
and none of them provides an exhaustive categorization of
all kinds of comments. Most of past work focuses on the
impact of comments on software development processes such
as code understanding, maintenance, or code review and the
classification of comments is only treated as a side outcome
(e.g., [31], [32]). Therefore, we set our first research question:

RQ1. How can code comments be categorized?

Given the importance of comments in software develop-
ment, the natural next step is to apply the resulting taxonomy
and investigate on the primary use of comments. Therefore,
we investigate whether some classes of comments are predom-
inant and whether there is a pattern across different projects.
This investigation is reflected in our second research question:

RQ2. How often does each category occur?

Finally, we investigate to what extent an automated ap-
proach can classify unseen code comments according to the
taxonomy defined in RQ1. An accurate automated classifica-
tion mechanism is the first essential step in using the taxonomy
to mine information from large-scale projects and to improve
existing approaches that rely on code comments. This leads to
our last research question:

RQ3. How effective is an automated approach, based on
machine learning, in classifying code comments?

B. Selection of subject systems

To conduct our analysis, we focused on a single pro-
gramming language (i.e., Java, one of the most popular
programming languages [5]) and on projects whose source
code is publicly available, i.e., open-source software (OSS)
projects. Particularly, we selected six heterogeneous software
systems: Apache Spark [2], Eclipse CDT, Google Guava,
Apache Hadoop, Google Guice, and Vaadin. They are all
open source projects and the history of the changes are
controlled with GIT version control system. Table I details the
selected systems. We select unrelated projects emerging from

the context of different four software ecosystems (i.e., Apache,
Google, Eclipse, and Vaadin); the development environment,
the number of contributors, and the project size are different,
thus mitigating some threats to the external validity.

Table I
DETAILS OF THE SUBJECT OSS SYSTEMS

Project Java source lines Commits Contributors Sample sets

Code Comment Ratio Files Blocks
of comments

Apache Spark 753k 287k 38% 38k 1,351 61 465
Eclipse CDT 1,239k 466k 38% 26k 211 799 6,009
Google Guava 252k 88k 35% 4k 185 158 1,100
Apache Hadoop 1,258k 396k 31% 15k 171 672 4,228
Google Guice 9k 5k 56% 2k 32 59 718
Vaadin 2,643k 1,101k 42% 91k 726 401 3,340

C. Categorization of code comments

To answer our first research question about categorizing
code comments, we conducted three iterative content analysis
sessions [15] involving 4 software engineering researchers (3
Ph.D. candidates and 1 faculty member) with at least 3 years of
programming experience. Two of these researchers are authors
of this paper. In the first iteration, we started choosing 6
appropriate projects (reported in Table I) and sampling 35
files with a large variety of code comments. Subsequently,
together we analyzed all source code and comments. During
this analysis we could define some obvious categories and
left undecided some comments; this resulted in the first draft
taxonomy defining temporary category names. In the course
of the second phase, we first conducted an individual work
analyzing 10 new files, in order to check or suggest improve-
ments to the previous taxonomy, then we gathered together to
discuss the findings. The second phase resulted in a validation
of some clusters in our draft and the redefinitions of others.
The third phase was conducted in team and we analyzed 5 files
that were previously unseen. During this session we completed
the final draft of our taxonomy verifying that each kind of
comments we encountered was covered by our definitions and
those overlapping categories were absent.

Through this iterative process, we defined a taxonomy
having a hierarchy with two layers. The top layer consists of
6 categories and the inner layer consists of 16 subcategories.

Validation. We externally validated the resulting taxonomy
with 3 professional developers having 3 to 5 years of Java
programming experience. We conducted one session with each
developer. At the beginning of the session, the developer
received a printed copy of the description of the comment
categories in our taxonomy (similar to the explanation we
provide in Section IV-A) and was allowed to read through
it and ask questions to the researcher guiding the session.
Afterwards, the developer was required to login into COM-
MEAN (a web application, described in Section III-D, that we
devised for this task and to facilitate the large-scale manual
classification necessary to answer RQ2 and RQ3) and classify
each comment in 3 Java source code files (the same files have
been used for all the developers), according to the provided
taxonomy. During the classification, the researcher was not
in the experiment room, but the printed taxonomy could be



consulted. At the end of the session, the guiding researcher
came back to the experiment room and asked the participant
to comment on the taxonomy and the classification task. At
the end of all three sessions, we compared the differences (if
any) among the classifications that the developers produced.

All the participants found the categories clear and the task
feasible; however, they also reported the need for consulting
the printed taxonomy several times during the session to make
sure that their choice was in line with the description of the
category. The analysis of the three sets of answers showed
a few minor differences with an agreement above 92%. The
differences were all within the same top category and mostly
regarding where the developers split certain code blocks into
two sub-categories.

D. A dataset of categorized code comments, publicly available

To answer the second research question about the frequen-
cies of each category, we needed a statistically significant
set of code comments classified accordingly to the taxonomy
produced as an answer to RQ1.

Sampling approach. Since the classification had to be
done manually, we relied on random sampling to produce a
statistically significant set of code comments from each one of
the six OSS projects we considered in our study. To establish
the size of such sample sets, we used as a unit the number of
files, rather than number of comments: This results in sample
sets that give a more realistic overview of how comments are
distributed in a system. In particular, we established the size
(n) of such set with the following formula [33]:

n =
N · p̂q̂

(
zα/2

)2
(N − 1)E2 + p̂q̂

(
zα/2

)2
The size has been chosen to allow the simple random sam-

pling without replacement. In the formula p̂ is a value between
0 and 1 that represents the proportion of files containing a
specific block of code comment, while q̂ is the proportion
of files not containing such kind of comment. Since the a-
priori proportion of p̂ is not known, we consider the worst
case scenario where p̂ · q̂ = 0.25. In addition, considering we
are dealing with a small population (i.e., 557 Java files for
Google Guice project) we use the finite population correction
factor to take into account their size (N ). We sample to reach a
confidence level of 95% and error (E) of 5% (i.e., if a specific
comment entity is present in f% of the files in the sample set,
we are 95% confident it will be in f% ± 5% files of our
population). The suggested value for the sample set is 1, 925
files. In addition, since we split the sample sets in two parts
with an overlapped chunk for validation, we finally sampled
2, 000 files. This value does not change significantly the error
level that remains close to 5%. This choice only validates
the quality of our dataset as a representation of the overall
population: It is not related to the precision and recall values
presented later, which are actual values based on manually
analyzed elements.

Manual classification. Once the sample of files with com-
ments was selected, each of them had to be manually classified
according to our taxonomy. To facilitate this error-prone and
time-consuming task, we build a web application, named
COMMEAN. Figure 1 shows the main page of COMMEAN,
which comprises the following components:

• The Actions panel (1) handles the authentication of the
users and several actions such as ‘start’, ‘suspend’, or
‘send classification’. In addition, the panel keeps the user
updated on the status of the classification showing the
path of the resource loaded in the application and the
progress with the following syntax: I-P /T . Where I
represents the current index, P is the progress, and T
is the total number of files to be processed.

• The Annotation panel (2) allows the user to append a
pre-defined label to the selected text or define a new
label. It enables the possibility to append a free text
comment, create a link between comments and code, or
categorize text composed of multiple parts. In addition,
two keyboard shortcuts help the user to append the current
label to selected text and create a link between source
code and comments.

• The Source view panel (3) is the main view of the appli-
cation. It contains the Java source file with highlighted
syntax to help users during the classification and increase
the quality of the analysis. In addition, the processed parts
of the file are marked with different colors.

• The Status panel (4) shows the progress of the current
file. A dynamic table is created when a new comment is
added. A row of the table contains the initial position,
the final position, the label used in the categorization, a
summary of how many parts compose it, and a summary
of linked code (if any). Clicking on rows, the correspon-
dent text is highlighted and using the delete button the
user is able to cancel a wrong classification.

• The Selection panel (5) shows details such as selected
test, initial position, final position, and length of the text.

The two authors of this paper manually inspected the sample
set composed of 2, 000 files. One author analyzed 100% of
these files, while another analyzed a random, overlapping
subset comprising 10% of the files. These overlapped files
were used to verify their agreement, which, similarly to the
external validation of the taxonomy with professional devel-
opers (Section III-C), highlighted only negligible differences.
Moreover, this large-scale categorization also confirmed the
exhaustiveness of the taxonomy created in RQ1: None of
the annotators felt that comments, or parts of the comments,
should have been classified by creating a new category.

Finally, the two researchers annotated, when present, any
link between comments and the code they are referring to. This
allows the use of our dataset for future approaches that attempt
to recover the traceability links between code and comments.
We make our dataset publicly available [24].



1

2

3

4

5

Figure 1. COMMEAN: our web application for classifying code comments content.

E. Automated classification of source code comments

In the third research question we set to investigate to what
extent and with which accuracy source code comments can be
automatically categorized according to the taxonomy resulting
from the answer to RQ1. Employing sophisticated classifica-
tion techniques (e.g., based on deep learning approaches [10])
to accomplish this task goes beyond the scope of the current
work. Our aim is to two-fold: (1) Verifying whether it is
feasible to create an automatic classification approach that
provides fair accuracy and (2) defining a reasonable baseline
against which future methods that aim at a more accurate,
project-specific classification can be tested.

Classification granularity. We set the automated clas-
sification to work at line level. In fact, from our manual
classification, we found several blocks of comments that had
to be split and classified into different categories (similarly
to the block defined in the lines 5–8 in Listing 1) and in the
vast majority of the cases (96%), the split was at line level. In
only less than 4% of the cases, one line had to be classified
into more than one category. In these cases, we replicated the
line in our dataset for each of the assigned categories, to get
a lower bound on the effectiveness in these cases.

Classification technique. Having created a reasonably large
dataset to answer RQ2 (it comprises more than 15,000 com-
ment blocks totaling over 30,000 lines), we employ supervised
machine learning [8] to build the automated classification
approach. This kind of machine learning uses a pre-classified

set of samples to infer the classification function. In partic-
ular, we tested two different classes of supervised classifiers:
(1) probabilistic classifiers, such as naive Bayes or naive Bayes
Multinominal, and (2) decision tree algorithms, such as J48
and Random Forest. These classes make different assumptions
on the underlying data, as well as have different advantages
and drawbacks in terms of execution speed and overfitting.

Classification evaluation. To evaluate the effectiveness of
our automated technique to classification code comments into
our taxonomy, we measured two well known Information
Retrieval (IR) metrics for the quality of results [18], named
precision and recall:

Precision =
|TP |

|TP + FP |

Recall =
|TP |

|TP + FN |
TP , FP , and FN are based on the following definitions:
• TRUE POSITIVES (TP ): elements that are correctly re-

trieved by the approach under analysis (i.e., comments
categorized in accord to annotators)

• FALSE POSITIVES (FP ): elements that are wrongly clas-
sified by the approach under analysis (i.e., comments
categorized in a different way by the oracle)

• FALSE NEGATIVES (FN ): elements that are not retrieved
by the approach under analysis (i.e., comments present
only in the oracle)



The union of TP and FN constitutes the set of correct
classifications for a given category (or overall) present in the
benchmark, while the union of TP and FP constitutes the
set of comments as classified by the used approach. In other
words, precision represents the fraction of the comments that
are correctly classified into a given category, while recall
represents the fraction of correct comments in that category.

F. Threats to validity

Sample validity. One potential criticism of a scientific
study conducted on a small sample of projects is that it could
deliver little knowledge. In addition, the study highlights the
characteristics and distributions of 6 open source frameworks
mainly focusing on developers practices rather than end-users
patterns. Historical evidence shows otherwise: Flyvbjerg gave
many examples of individual cases contributing to discoveries
in physics, economics, and social science [7]. To answer to
our research questions, we read and inspected more than
28, 000 lines of comments belonging to 2, 000 Java files (see
Section III-D) written by more than 3, 000 contributors in
6 different projects (in accord to Table I). We also chose
projects belonging to four open-source software ecosystems
and with different development environments, number of
contributors, and size of the project.

Taxonomy validity. To ensure that the comments categories
emerged from our content analysis sessions were clear and
accurate, and to evaluate whether our taxonomy provides
an exhaustive and effective way to organize source code
comments, we conduced a validation session that involved
three experienced developers (see Section III-C) external to
content analysis sessions. These software engineers conducted
an individual session on 3 unrelated Java source files. They
observed that categories were clear and the task feasible, and
the analysis of the three sets of answers showed a few minor
differences with an agreement above 92%. In addition, we
reduce the impact of human errors during the creation of the
dataset by developing COMMEAN, a web application to assist
the annotation process.

External validity. Threats come with the generalization
of our results. The proposed approach may show different
result on different target systems. To reduce this limitation
we selected 6 projects with unrelated characteristics and with
different size in term of contributors and number of lines.
To judge the generalizability we tested our results simu-
lating this circumstance using the project cross validation.
Similarly, another threat concerning the generalizability is
that our taxonomy refers only to a single object-oriented
programming language i.e., Java. However, since many object-
oriented languages descend to common ancestor languages,
many functionalities across object-oriented programming are
similar and it is reasonable to expect the same to happen
for their corresponding comments. Further research can be
designed to investigate whether our results hold in other
programming paradigms.

IV. RESULTS AND ANALYSIS

In this section, we present and analyze the results of our
research questions aimed at understanding what developers
write in comments and with which frequency, as well as at
evaluating the results of an automated classification approach.

A. RQ1. How can code comments be categorized?

Our manual analysis led to the creation of a taxonomy
of comments having a hierarchy with two layers. The top
level categories gather comments with similar overall purpose,
the internal levels provide a fine-grained definition using
explanatory names. The top level categories are composed of 6
distinct groups and the second level categories are composed
of 16 definitions. We now describe each category with the
corresponding subcategories.

A. PURPOSE

The PURPOSE category contains the code comments used
to describe the functionality of linked source code either in
a shorter way than the code itself or in a more exhaustive
manner. Moreover, these comments are often written in a pure
natural language and are used to describe the purpose or the
behavior of the referenced source code. The keywords ‘what’,
‘how’ and ‘why’ describe the actions that take place in the
source code in SUMMARY, EXPAND, and RATIONALE groups,
respectively, which are the subcategories of PURPOSE:

A.1 SUMMARY: This type of comments contains a brief de-
scription of the behavior of the source code referenced. To
highlight this type of comments the question word ‘what’
is used. Intuitively, this category incorporates comments
that represent a sharp description of what the code does.
Often, this kind of comments is used by developers to
provide a summary that helps understanding the behavior
of the code without reading it.

A.2 EXPAND: As with the previous category, the main pur-
pose of reading this type of comment is to obtain a
description of the associated code. In this case, the
goal is to provide more details on the code itself. The
question word ‘how’ can be used to easily recognize
the comments belonging to this category. Usually, these
comments explain in detail the purpose of short parts of
the code, such as details about a variable declaration.

A.3 RATIONALE: This type of comment is used to explain
the rationale behind some choices, patterns, or options.
The comments that answer the question ‘why’ belong
to that category (e.g., “Why does the code use that
implementation?” or “Why did the developer use this
specific option?”).

B. NOTICE

The NOTICE category contains the comments related to the
description of warning, alerts, messages, or in general, func-
tionalities that should be used with care. It also includes the
reasons and the explanation of some developers’ choices. In
addition, it covers the description of the adopted strategies to



solve a bug, improve performance, prevent fault, etc. Further,
it covers the use case examples giving to developer additional
advice over parameters or options. Moreover, it covers exam-
ples of use cases or warnings about exceptions.

B.1 DEPRECATION: This type of comments contains explicit
warnings used to inform the users about deprecated
interface artifacts. This subcategory contains comments
related to alternative methods or classes that should be
used (e.g., “do not use [this]”, “is it safe to use?” or
“refer to: [ref]”). It also includes the description of the
future or scheduled deprecation to inform the users of
candidate changes. Sometimes, a tag comment such as
@version, @deprecated, or @since is used.

B.2 USAGE: This type of comments regards explicit sugges-
tions to users that are planning to use a functionality. It
combines pure natural language text with examples, use
cases, snippets of code, etc. Often, the advice is preceded
by a metadata mark e.g., @usage, @param or @return

B.3 EXCEPTION: This category describes the reasons for
the occurred exception. Sometimes it contains potential
suggestions to prevent the unwanted behavior or actions
to do when that event arise. Some tags are used also in
this case, such as @throws and @exception.

C. UNDER DEVELOPMENT

The UNDER DEVELOPMENT category covers the topics related
to ongoing and future development. In addition, it envelopes
temporary tips, notes, or suggestions that developers use
during development. Sometimes informal requests of improve-
ment or bug correction may also appear.

C.1 TODO: This type of comments regards explicit actions
to be done or remarks both for the owners of the file and
for other developers. It contains explicit fix notes about
bugs to analyze and resolve, or already treated and fixed.
Furthermore, it references to implicit TODO actions that
may be potential enhancements or fixes.

C.2 INCOMPLETE: This type comprises partial, pending or
empty comment bodies. It may be introduced inten-
tionally or accidentally by developers and left in the
incomplete state for some reason. This type may be
added automatically by the IDE and not filled in by the
developer e.g., empty “@param” or “@return” directives.

C.3 COMMENTED CODE: This category is composed of
comments that contain source code commented out by
developers. It envelopes functional code in a comment to
try hidden features or some work in progress. Usually,
this type of comments represents features under test or
temporarily removed. The effect of this kind of comments
is directly transposed on the program flow.

D. STYLE & IDE
The STYLE & IDE category contains comments that are used
to logically separate the code or provide special services.
These comments may be added automatically by the IDE or
used to communicate with it.

D.1 DIRECTIVE: This is an additional text used to communi-
cate with the IDE. It is in form of comments to be easily
skipped by the compiler and it contains text of limited
meaning to human readers. These comments are often
added automatically by the IDE or used by developers to
change the default behavior of the IDE or compiler.

D.2 FORMATTER: This type of comments represents a sim-
ple solution adopted by the developers to separate the
source code in logical sections. The occurrence of pat-
terns or the repetition of symbols is a good hint at the
presence of a comment in the formatter category.

E. METADATA

The METADATA category aims to classify comments that
define meta information about the code, such as authors,
license, and external references. Usually, some specific tags
(e.g., “@author”) are used to mark the developer name and its
ownership. The license section provides the legal information
about the source code rights or the intellectual property.

E.1 LICENSE: Generally placed on top of the file, this types
of comments describes the end-user license agreement,
the terms of use, the possibility to study, share and
modify the related resource. Commonly, it contains only
a preliminary description and some external references to
the complete policy agreement.

E.2 OWNERSHIP: These comments describe the authors and
the ownership with different granularity. They may ad-
dress methods, classes or files. In addition, this type
of comments includes credentials or external references
about the developers. A special tag is often used e.g.,
“@author”.

E.3 POINTER: This types of comments contains references
to linked resources. The common tags are: “@see”,
“@link” and “@url”. Other times developers use custom
references such as “FIX #2611” or “BUG #82100” that
are examples of traditional external resources.

F. DISCARDED

This category groups the comments that do not fit into the
categories previously defined; they have two flavors:

F.1 AUTOMATICALLY GENERATED: This category defines
auto-generated notes (e.g., “Auto-generated method
stub”). In most case, the comment represents the skeleton
with a comment’s placeholder provided by the IDE and
left untouched by the developers.

F.2 NOISE: This category contains all remaining comments
that are not covered by the previous categories. In addi-
tion, it contains the comments whose meaning is hard to
understand due to their poor content (e.g., meaningless
because out of context).

B. RQ2. How often does each category occur?

The second research question investigates the occurrence of
each category of comments in the 2, 000 source files that we
manually classified from our 6 OSS subject projects.



Figure 2. Frequencies of comments per category. Top, red bars show the
occurrences by blocks of comments and bottom, blue bars by lines.
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Figure 2 shows the distribution of the comments across the
categories; it reports the cumulative value for the top level
categories (e.g., NOTICE) and the absolute value for the inner
categories (e.g., EXCEPTION). For each category, the top red
bar indicates the number of blocks of comments in the category,
while the bottom blue bar indicates the number of non-blank
lines of comments in the category.

Comparing blocks and lines, we see that, unsurprisingly, the
longest type of comments is LICENSE, with more than 11 lines
on average per block. The EXPAND category follows with a
similar average length. The SUMMARY category has only an
average length of 1.4 lines, which is surprising, since it is
used to describe the purpose of possibly very long methods,
variables, or blocks of code. The remaining categories show
negligible differences between number of blocks and lines.

We consider the quality metric code/comment ratio, which
was proposed at line granularity [21], [9], in the light of our
results. We see that 59% of lines of comments should not be
considered (i.e., categories from C to F), as they do not reflect
any aspect of the readability and maintainability of the code
they pertain to; this would significantly change the results. On
the other hand, if one considers blocks of comments, the result
would be closer to the aspect that is set to measure with the

code/comment metric. In this case, a simple solution would be
to only filter out the METADATA category, because the other
categories seem to have a more negligible impact.

Considering the distribution of the comments, we see that
the SUMMARY subcategory is the most prominent one. This
confirms the value of research efforts that attempt to generate
summaries for functions and methods automatically, by an-
alyzing the source code [26]. In fact, these methods would
alleviate developers from the burden of writing a significant
amount of the comments we found in source code files. On
the other hand, the SUMMARY accounts for only 24% of
the overall lines of comments, thus suggesting that they only
give a partial picture on the variety and role of this type
of documentation. The second most prominent category is
USAGE. Together with the prominence of SUMMARY, this
suggests that the comments in the systems we analyzed are
targeting end-user developers more frequently than internal
developers. This is also confirmed by the low occurrence
of the UNDER DEVELOPMENT category. Concerning UNDER
DEVELOPMENT, the low number of comments in this category
may also indicate that developers favor other channels to keep
track of tasks to be done in the code.

Finally, the variety of categories of comments and their
distribution underlines once more the importance of a clas-
sification effort before applying any analysis technique on the
content and value of code comments. The low number of dis-
carded cases corroborates the completeness of the taxonomy
proposed in RQ1.

C. RQ3. How effective is an automated approach, based on
machine learning, in classifying code comments?

To evaluate the effectiveness of machine learning algorithm
in classifying code comments we employed a supervised learn-
ing method. Supervised machine learning bases the decision
evaluating on a pre-defined set of features. Since we set to
classify lines of code comments, we computed the features at
line granularity.

Text preprocessing. We preprocessed the comments by do-
ing the following actions in this order: (1) tokenizing the words
on spaces and punctuation (except for words such as ‘@usage’
that would remain compounded), (2) splitting identifiers based
on camel-casing (e.g., ‘ModelTree’ became ‘Model Tree’),
(3) lowercasing the resulting terms, (4) removing numbers and
rare symbols, and (5) creating one instance per line.

Feature creation. Table II shows some of the features we
devised and all that appear in the final model. Due to the
optimal set of features is not known a priori, we started with
some simple, traditional features and iteratively experimented
with others more sophisticated, in order to improve precision
and recall for all the projects we analyzed.
A set of features commonly used in text recognition [25]
consists in measuring the occurrence of the words; in fact,
words are the fundamental tokens of all languages we want to
classify. To avoid overfitting to words too specific to a project,
such as code identifiers, we considered only words above a
certain threshold t. This value has been found experimentally,



Table II
MACHINE LEARNING FEATURES FOR COMMENTS CLASSIFICATION

Feature Type Description

words numeric counts the occurrence of each word in the bag
of unique words

punctuation boolean
used in combination of a regular expression to
distinguish source code from natural language
e.g., object.method(par1, par2);

words
count numeric measures the length of the comment, using

the words as unit size
unique
words
count

numeric measures the length of the comment, only
unique words are counted

row
position numeric detects the absolute position of the comment

adjacent
rows numeric recognizes the nature of the adjacent rows

e.g., comments or code

deprecation boolean true if comment contains special tags
like @deprecation

usage boolean true if comment contains special tags
such as @usage, @return or @value

exception boolean true if comment contains special tags
such as @exception or @throws

TODO boolean true if comment contains keywords such
as todo or fix or a link to a bug is detected

incomplete boolean true if comment contains an empty body
commented
code boolean true if comment contains code snippets

directive boolean true if comment contains special sequence
of symbols used by IDE

formatter boolean true if comment is composed of patterns
of symbols or characters

license boolean true if comment contains words such as
license, copyright, legal or law

ownership boolean true if comment contains tags such as
@author or @owner

pointer boolean true if comment contains a reference to an
external linkable resource

automatic
generated boolean

true if comment contains text automatically
inserted by IDE e.g., Auto-generated
method stub

we started with a minimum of 3 increasing up to 10. Since
the values around 7 do not change the precision and recall
quality, we chose that threshold.
In addition, other features consider the information about the
context of the line, such as the text length, the comment
position in the whole file, the number of rows, the nature of
the adjacent rows, etc.
The last set of features is category specific. We defined regular
expressions to recognize specific patterns. We report three
detailed examples:

• This regular expression is used to match comments in
single line or multiple lines with empty body.
ˆ\s*\/(\*|\s)*(\/|\*\s*\*\/)\n*$

• This regular expression matches the special keywords
used in the Usage category.
(?i)@param|@usage|@since|@value|@return

• The following regular expression is used to find patterns
of symbols that may be used in Formatter category.
([ˆ*\s])(\1\1)|ˆ\s*\/\/\/\s*\S*
|\$\S*\s*\S*\$

Machine learning validation with 10-fold. We tested both
probabilistic classifiers and decision tree algorithms. When
using probabilistic classifiers, the average values of precision
and recall were usually lower than values obtained using
decision tree algorithms, thus a minor number of comments are
correctly classified. Conversely, using decision tree algorithm
the percentage value associated with the correctly classified
instances is better, with Random Forest we obtain up to 98.4%
and the effect is that more comments are correctly classified.
Nevertheless, in the latter case, many comments belonging
to classes with a low occurrence were wrongly classified.
Since the purpose of our tool is to best fit the aforementioned
taxonomy we discovered that the best classifier is based on a
probabilistic approach.
In Table III we report only the results (precision, recall, and
weighted average TP rate) for the naive Bayes Multinomi-
nal classifier that on average, considering whole categories,
achieves a better result accordingly to the aforementioned
considerations. In Table III we intentionally leave empty cells
that correspond to categories of comments that are not present
in related projects. For the evaluation, we started with a
standard 10-fold cross validation. Table III shows the results
in the column ‘10-fold’.

Cross-project validation. Different systems have
comments describing different code artifacts and are likely to
use different words and jargons. Thus, term-features working
for the comments in one system may not work for others.
To better test the generalizability of the results achieved by
the classifier, we conduct a cross-project validation, as also
previously proposed and tested by Bacchelli et al. [3]. In
practice, cross-project validation consists in a 6-folds cross
validation, in which folds are neither stratified nor randomly
taken, but correspond exactly to the different systems: We
train the classifiers on 5 systems and we try to predict the
classification of the comments in the remaining system. We
do this six times rotating the test system. The right-most
columns (i.e., ‘cross-project’) in Table III show the results by
tested system.

Summary. The values for 10-fold cross validation reported
in Table III show accurate results (mostly above 0.95%)
achieved for top-level categories. This means that the classifier
could be used as an input for tools that analyze source code
comments of the considered systems. For inner-categories, the
results are lower; nevertheless, the weighted average TP rate
remains 0.85. Furthermore, we do not see large effects due to
the prominent class imbalance. This suggests that the amount
of training data is enough for each class.
As expected, testing with cross-project validation, the classifier
performance drops. However, this is a more reliable test for
what to expect with JAVA comments from unseen projects. The
weighted average TP rate that goes as low as 0.74. This indi-
cates that project-specific terms are key for the classification
and either an approach should start with some supervised data
or more sophisticated features must be devised.



Table III
RESULTS OF THE CLASSIFICATION WITH NAIVE BAYES MULTINOMIAL

CLASSIFIER

Validation
P = Precision

R = Recall Cross project

Top
categories

Inner
categories

10-fold CDT Guava Guice Hadoop Vaadin Spark

P 0.88 0.96 0.68 0.61 0.72 0.62 0.65Summary R 0.82 0.99 0.61 0.69 0.56 0.69 0.84
P 1.00 0.84 0.00 0.00 0.09 0.00 0.00Expand R 0.98 0.64 0.00 0.00 0.05 0.00 0.00
P 0.50 0.56 0.15 0.00 0.10 0.03 0.67Rational R 0.69 0.84 0.23 0.00 0.41 0.17 0.17
P 0.99 0.77 0.77 0.81 0.80 0.83 0.68

Purpose

Purpose R 0.99 0.98 0.98 0.81 1.00 1.00 1.00
P 0.74 0.75 0.22 0.14Deprecation R 0.78 0.81 1.00 1.00
P 0.86 0.85 0.50 0.43 0.67 0.90 0.56Usage R 0.90 0.87 0.45 0.64 0.61 0.65 0.15
P 0.76 0.75 0.43 0.00 0.58 0.69 0.13Exception R 0.98 0.95 0.87 0.00 0.88 0.97 0.29
P 1.00 0.50 0.50 0.36 0.60 1.00 1.00

Notice

Notice R 0.98 0.50 0.50 1.00 0.41 0.33 0.17
P 0.61 0.97 0.57 0.29 0.03 0.19TODO R 0.52 0.96 0.83 1.00 0.16 0.11
P 0.91 0.92 0.11 0.95Incomplete R 0.96 1.00 0.88 0.91
P 0.91 0.91 0.05 0.92Commented

code R 0.91 0.95 0.06 0.50
P 0.98 1.00 0.00 0.00 0.00 0.00

Under
dev.

Under
development R 0.93 0.67 0.00 0.00 0.00 0.00

P 0.96 0.96 0.00Directive R 1.00 1.00 0.00
P 0.81 0.93 0.00 0.00Formatter R 0.77 0.28 0.00 0.00
P 0.97 1.00 1.00 0.00

Style
& IDE

Style & IDE R 0.99 1.00 1.00 0.00
P 0.99 1.00 0.98 1.00 0.99 0.99 1.00License R 0.98 0.99 1.00 0.95 0.99 1.00 1.00
P 0.80 1.00 1.00 0.57 0.00 1.00Ownership R 0.96 1.00 0.08 0.27 0.00 0.98
P 0.84 0.80 0.82 0.81 0.79 0.97 1.00Pointer R 0.94 0.74 0.52 0.54 0.70 0.85 0.60
P 1.00 1.00 1.00 1.00 1.00 1.00 0.89

Metadata

Metadata R 1.00 0.68 0.68 0.57 0.57 0.95 1.00
P 0.90 0.91 0.13 0.84Auto

generated R 1.00 1.00 1.00 1.00
P 0.65 1.00 0.00 0.00 0.00Noise R 0.77 0.39 0.00 0.00 0.00
P 0.96 0.00 0.00 0.00 0.00

Discarded

Discarded R 0.98 0.00 0.00 0.00 0.00
Weighted average

TP rate 0.85 0.88 0.77 0.79 0.74 0.80 0.83

V. RELATED WORK

A. Information Retrieval Technique

Lawrie et al. [14] use information retrieval techniques based
on cosine similarity in vector space models to assess program
quality under the hypothesis that “if the code is high quality,
then the comments give a good description of the code”.
Marcus et al. propose a novel information retrieval techniques
to automatically identify traceability links between code and
documentation [19]. Similarly, de Lucia et al. focus on the
problem of recovering traceability links between the source
code and connected free text documentation. They propose
a comparison between a probabilistic information retrieval
model and a vector space information retrieval [16]. Even
though comments are part of software documentation, previous
studies on information retrieval focus generally on the relation
between code and free text documentation.

B. Comments Classification

Several studies regarding code comments in the 80’s and
90’s concern the benefit of using comments for program
comprehension [35], [31], [32]. Stamelos et al. suggest a

simple ratio metric between code and comments, with the
weak hypothesis that software quality grows if the code is
more commented [27]. Similarly, other two authors define
metrics for measuring the maintainability of a software system
and discuss how those metrics can be combined to control
quality characteristics in an efficient manner [21], [9].

New recent studies add more emphasis to the code com-
ments in a software project. Fluri et al. present a heuristic ap-
proach to associate comments with code investigating whether
developers comment their code. Marcus and Maletic propose
an approach based on information retrieval technique [20].
Maalej and Robillard investigate API reference documentation
(such as javadoc) in Java SDK 6 and .NET 4.0 proposing a
taxonomy of knowledge types. They use a combination of
grounded and analytical approaches to create such taxonomy.
[17]. Instead Witte et al. used Semantic Web Technologies
to connect software code and documentation artifacts [34].
However, both approaches focus on external documentation
and do not investigate evolutionary aspects or quality rela-
tionship between code and comments, i.e., they do not track
how documentation and source code changes together over
time or the combined quality factor. More in focus is the
work of Steidl et al. where they investigate over the quality
of the source code comments [29]. They proposed model for
comment quality based on different comment categories and
use a classification based on machine learning technique tested
on Java and C/C++ programs. Despite the quality of the work,
they found only 7 high-level categories of comments based
mostly on comment syntax, i.e., inline comments, section
separator comments, task comments, etc. A different approach
is adopted by Padioleau et al. [22]. The innovative idea is to
create a taxonomy based on the comment’s meaning. Even if it
is more difficult to extract the content from human sentences,
their proposal is a more suitable technique for defining a
taxonomy. We follow this path in our work.

VI. CONCLUSION

Code comments contain valuable information to support
software development especially during code reading and code
maintenance. Nevertheless, not all the comments are the same,
for accurate investigations, analyses, usages, and mining of
code comments, this has to be taken into account. In this
work we investigated how comments can be categorized, also
proposing an approach for their automatic classification.

The contributions of our work are:
• A novel, empirically validated, hierarchical taxonomy of

code comments for Java projects, comprising 16 inner
categories and 6 top categories.

• An assessment of the relative frequency of comment
categories in 6 OSS Java software systems.

• A publicly available dataset of more than 2,000 source
code files with manually classified comments, also linked
to the source code entities they refer to.

• An empirical evaluation of a machine learning approach
to automatically classify code comments according to the
aforementioned taxonomy.
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